Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.9.4.1
      1  1.9.4.1       mjf /*  $NetBSD: if_wpi.c,v 1.9.4.1 2007/07/11 20:07:47 mjf Exp $    */
      2      1.1    simonb 
      3      1.1    simonb /*-
      4  1.9.4.1       mjf  * Copyright (c) 2006, 2007
      5      1.1    simonb  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6      1.1    simonb  *
      7      1.1    simonb  * Permission to use, copy, modify, and distribute this software for any
      8      1.1    simonb  * purpose with or without fee is hereby granted, provided that the above
      9      1.1    simonb  * copyright notice and this permission notice appear in all copies.
     10      1.1    simonb  *
     11      1.1    simonb  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12      1.1    simonb  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13      1.1    simonb  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14      1.1    simonb  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15      1.1    simonb  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16      1.1    simonb  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17      1.1    simonb  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18      1.1    simonb  */
     19      1.1    simonb 
     20      1.1    simonb #include <sys/cdefs.h>
     21  1.9.4.1       mjf __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.9.4.1 2007/07/11 20:07:47 mjf Exp $");
     22      1.1    simonb 
     23      1.1    simonb /*
     24      1.1    simonb  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25      1.1    simonb  */
     26      1.1    simonb 
     27      1.1    simonb #include "bpfilter.h"
     28      1.1    simonb 
     29      1.1    simonb #include <sys/param.h>
     30      1.1    simonb #include <sys/sockio.h>
     31      1.1    simonb #include <sys/sysctl.h>
     32      1.1    simonb #include <sys/mbuf.h>
     33      1.1    simonb #include <sys/kernel.h>
     34      1.1    simonb #include <sys/socket.h>
     35      1.1    simonb #include <sys/systm.h>
     36      1.1    simonb #include <sys/malloc.h>
     37      1.1    simonb #include <sys/conf.h>
     38      1.1    simonb #include <sys/kauth.h>
     39      1.7  degroote #include <sys/callout.h>
     40      1.1    simonb 
     41      1.1    simonb #include <machine/bus.h>
     42      1.1    simonb #include <machine/endian.h>
     43      1.1    simonb #include <machine/intr.h>
     44      1.1    simonb 
     45      1.1    simonb #include <dev/pci/pcireg.h>
     46      1.1    simonb #include <dev/pci/pcivar.h>
     47      1.1    simonb #include <dev/pci/pcidevs.h>
     48      1.1    simonb 
     49      1.1    simonb #if NBPFILTER > 0
     50      1.1    simonb #include <net/bpf.h>
     51      1.1    simonb #endif
     52      1.1    simonb #include <net/if.h>
     53      1.1    simonb #include <net/if_arp.h>
     54      1.1    simonb #include <net/if_dl.h>
     55      1.1    simonb #include <net/if_ether.h>
     56      1.1    simonb #include <net/if_media.h>
     57      1.1    simonb #include <net/if_types.h>
     58      1.1    simonb 
     59      1.1    simonb #include <net80211/ieee80211_var.h>
     60      1.5     joerg #include <net80211/ieee80211_amrr.h>
     61      1.1    simonb #include <net80211/ieee80211_radiotap.h>
     62      1.1    simonb 
     63      1.1    simonb #include <netinet/in.h>
     64      1.1    simonb #include <netinet/in_systm.h>
     65      1.1    simonb #include <netinet/in_var.h>
     66      1.1    simonb #include <netinet/ip.h>
     67      1.1    simonb 
     68      1.1    simonb #include <dev/firmload.h>
     69      1.1    simonb 
     70      1.1    simonb #include <dev/pci/if_wpireg.h>
     71      1.1    simonb #include <dev/pci/if_wpivar.h>
     72      1.1    simonb 
     73      1.1    simonb #ifdef WPI_DEBUG
     74      1.1    simonb #define DPRINTF(x)	if (wpi_debug > 0) printf x
     75      1.1    simonb #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
     76      1.1    simonb int wpi_debug = 1;
     77      1.1    simonb #else
     78      1.1    simonb #define DPRINTF(x)
     79      1.1    simonb #define DPRINTFN(n, x)
     80      1.1    simonb #endif
     81      1.1    simonb 
     82      1.1    simonb /*
     83      1.1    simonb  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
     84      1.1    simonb  */
     85      1.1    simonb static const struct ieee80211_rateset wpi_rateset_11a =
     86      1.1    simonb 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
     87      1.1    simonb 
     88      1.1    simonb static const struct ieee80211_rateset wpi_rateset_11b =
     89      1.1    simonb 	{ 4, { 2, 4, 11, 22 } };
     90      1.1    simonb 
     91      1.1    simonb static const struct ieee80211_rateset wpi_rateset_11g =
     92      1.1    simonb 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
     93      1.1    simonb 
     94      1.1    simonb static int  wpi_match(struct device *, struct cfdata *, void *);
     95      1.1    simonb static void wpi_attach(struct device *, struct device *, void *);
     96      1.1    simonb static int  wpi_detach(struct device*, int);
     97      1.1    simonb static void wpi_power(int, void *);
     98      1.7  degroote static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
     99      1.1    simonb 	void **, bus_size_t, bus_size_t, int);
    100      1.7  degroote static void wpi_dma_contig_free(struct wpi_dma_info *);
    101      1.1    simonb static int  wpi_alloc_shared(struct wpi_softc *);
    102      1.1    simonb static void wpi_free_shared(struct wpi_softc *);
    103  1.9.4.1       mjf static int  wpi_alloc_fwmem(struct wpi_softc *);
    104  1.9.4.1       mjf static void wpi_free_fwmem(struct wpi_softc *);
    105      1.7  degroote static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
    106      1.9  christos static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
    107      1.7  degroote static int  wpi_alloc_rpool(struct wpi_softc *);
    108      1.7  degroote static void wpi_free_rpool(struct wpi_softc *);
    109      1.1    simonb static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    110      1.1    simonb static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    111      1.1    simonb static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    112      1.1    simonb static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
    113      1.1    simonb 	int);
    114      1.1    simonb static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    115      1.1    simonb static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    116      1.1    simonb static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    117  1.9.4.1       mjf static void wpi_newassoc(struct ieee80211_node *, int);
    118      1.1    simonb static int  wpi_media_change(struct ifnet *);
    119      1.1    simonb static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    120      1.1    simonb static void wpi_mem_lock(struct wpi_softc *);
    121      1.1    simonb static void wpi_mem_unlock(struct wpi_softc *);
    122      1.1    simonb static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
    123      1.1    simonb static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    124  1.9.4.1       mjf static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    125  1.9.4.1       mjf static int  wpi_load_segment(struct wpi_softc *, uint32_t, const uint8_t *,
    126  1.9.4.1       mjf 			     int);
    127  1.9.4.1       mjf static int  wpi_load_firmware(struct wpi_softc *);
    128  1.9.4.1       mjf static void wpi_calib_timeout(void *);
    129  1.9.4.1       mjf static void wpi_iter_func(void *, struct ieee80211_node *);
    130  1.9.4.1       mjf static void wpi_power_calibration(struct wpi_softc *, int);
    131      1.1    simonb static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    132      1.1    simonb 	struct wpi_rx_data *);
    133      1.1    simonb static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    134      1.1    simonb static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    135      1.1    simonb static void wpi_notif_intr(struct wpi_softc *);
    136      1.1    simonb static int  wpi_intr(void *);
    137  1.9.4.1       mjf static void wpi_read_eeprom(struct wpi_softc *);
    138  1.9.4.1       mjf static void wpi_read_eeprom_channels(struct wpi_softc *, int);
    139  1.9.4.1       mjf static void wpi_read_eeprom_group(struct wpi_softc *, int);
    140      1.1    simonb static uint8_t wpi_plcp_signal(int);
    141      1.1    simonb static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
    142      1.1    simonb 	struct ieee80211_node *, int);
    143      1.1    simonb static void wpi_start(struct ifnet *);
    144      1.1    simonb static void wpi_watchdog(struct ifnet *);
    145      1.9  christos static int  wpi_ioctl(struct ifnet *, u_long, void *);
    146      1.1    simonb static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    147      1.1    simonb static int  wpi_wme_update(struct ieee80211com *);
    148      1.1    simonb static int  wpi_mrr_setup(struct wpi_softc *);
    149      1.1    simonb static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    150      1.1    simonb static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    151  1.9.4.1       mjf static int  wpi_set_txpower(struct wpi_softc *,
    152  1.9.4.1       mjf 			    struct ieee80211_channel *, int);
    153  1.9.4.1       mjf static int  wpi_get_power_index(struct wpi_softc *,
    154  1.9.4.1       mjf 		struct wpi_power_group *, struct ieee80211_channel *, int);
    155      1.1    simonb static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    156      1.1    simonb static int  wpi_auth(struct wpi_softc *);
    157      1.1    simonb static int  wpi_scan(struct wpi_softc *, uint16_t);
    158      1.1    simonb static int  wpi_config(struct wpi_softc *);
    159      1.1    simonb static void wpi_stop_master(struct wpi_softc *);
    160      1.1    simonb static int  wpi_power_up(struct wpi_softc *);
    161      1.1    simonb static int  wpi_reset(struct wpi_softc *);
    162      1.1    simonb static void wpi_hw_config(struct wpi_softc *);
    163      1.1    simonb static int  wpi_init(struct ifnet *);
    164      1.1    simonb static void wpi_stop(struct ifnet *, int);
    165      1.1    simonb 
    166      1.1    simonb CFATTACH_DECL(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    167      1.1    simonb 	wpi_detach, NULL);
    168      1.1    simonb 
    169      1.1    simonb static int
    170      1.7  degroote wpi_match(struct device *parent, struct cfdata *match __unused, void *aux)
    171      1.1    simonb {
    172      1.1    simonb 	struct pci_attach_args *pa = aux;
    173      1.1    simonb 
    174      1.1    simonb 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    175      1.1    simonb 		return 0;
    176      1.1    simonb 
    177      1.1    simonb 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    178      1.7  degroote 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    179      1.1    simonb 		return 1;
    180      1.1    simonb 
    181      1.1    simonb 	return 0;
    182      1.1    simonb }
    183      1.1    simonb 
    184      1.1    simonb /* Base Address Register */
    185      1.1    simonb #define WPI_PCI_BAR0	0x10
    186      1.1    simonb 
    187      1.1    simonb static void
    188      1.7  degroote wpi_attach(struct device *parent __unused, struct device *self, void *aux)
    189      1.1    simonb {
    190      1.1    simonb 	struct wpi_softc *sc = (struct wpi_softc *)self;
    191      1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
    192      1.1    simonb 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    193      1.1    simonb 	struct pci_attach_args *pa = aux;
    194      1.1    simonb 	const char *intrstr;
    195      1.1    simonb 	char devinfo[256];
    196      1.1    simonb 	bus_space_tag_t memt;
    197      1.1    simonb 	bus_space_handle_t memh;
    198      1.1    simonb 	pci_intr_handle_t ih;
    199      1.1    simonb 	pcireg_t data;
    200  1.9.4.1       mjf 	int error, ac, revision;
    201      1.1    simonb 
    202      1.1    simonb 	sc->sc_pct = pa->pa_pc;
    203      1.1    simonb 	sc->sc_pcitag = pa->pa_tag;
    204      1.1    simonb 
    205  1.9.4.1       mjf 	callout_init(&sc->calib_to, 0);
    206      1.1    simonb 
    207      1.1    simonb 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    208      1.1    simonb 	revision = PCI_REVISION(pa->pa_class);
    209      1.1    simonb 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    210      1.1    simonb 
    211      1.1    simonb 	/* clear device specific PCI configuration register 0x41 */
    212      1.1    simonb 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    213      1.1    simonb 	data &= ~0x0000ff00;
    214      1.1    simonb 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
    215      1.1    simonb 
    216      1.1    simonb 	/* enable bus-mastering */
    217      1.1    simonb 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    218      1.1    simonb 	data |= PCI_COMMAND_MASTER_ENABLE;
    219      1.1    simonb 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    220      1.1    simonb 
    221      1.1    simonb 	/* map the register window */
    222      1.1    simonb 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    223      1.7  degroote 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    224      1.1    simonb 	if (error != 0) {
    225      1.1    simonb 		aprint_error("%s: could not map memory space\n",
    226      1.1    simonb 			sc->sc_dev.dv_xname);
    227      1.1    simonb 		return;
    228      1.1    simonb 	}
    229      1.1    simonb 
    230      1.1    simonb 	sc->sc_st = memt;
    231      1.1    simonb 	sc->sc_sh = memh;
    232      1.1    simonb 	sc->sc_dmat = pa->pa_dmat;
    233      1.1    simonb 
    234      1.1    simonb 	if (pci_intr_map(pa, &ih) != 0) {
    235      1.1    simonb 		aprint_error("%s: could not map interrupt\n",
    236      1.1    simonb 			sc->sc_dev.dv_xname);
    237      1.1    simonb 		return;
    238      1.1    simonb 	}
    239      1.1    simonb 
    240      1.1    simonb 	intrstr = pci_intr_string(sc->sc_pct, ih);
    241      1.1    simonb 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
    242      1.1    simonb 	if (sc->sc_ih == NULL) {
    243      1.1    simonb 		aprint_error("%s: could not establish interrupt",
    244      1.1    simonb 			sc->sc_dev.dv_xname);
    245      1.1    simonb 		if (intrstr != NULL)
    246      1.1    simonb 			aprint_error(" at %s", intrstr);
    247      1.1    simonb 		aprint_error("\n");
    248      1.1    simonb 		return;
    249      1.1    simonb 	}
    250      1.1    simonb 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    251      1.1    simonb 
    252      1.1    simonb 	if (wpi_reset(sc) != 0) {
    253      1.1    simonb 		aprint_error("%s: could not reset adapter\n",
    254      1.1    simonb 			sc->sc_dev.dv_xname);
    255      1.1    simonb 		return;
    256      1.1    simonb 	}
    257      1.1    simonb 
    258  1.9.4.1       mjf  	/*
    259  1.9.4.1       mjf 	 * Allocate DMA memory for firmware transfers.
    260  1.9.4.1       mjf 	 */
    261  1.9.4.1       mjf 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
    262  1.9.4.1       mjf 		aprint_error(": could not allocate firmware memory\n");
    263  1.9.4.1       mjf 		return;
    264  1.9.4.1       mjf 	}
    265  1.9.4.1       mjf 
    266      1.1    simonb 	/*
    267      1.1    simonb 	 * Allocate shared page and Tx/Rx rings.
    268      1.1    simonb 	 */
    269      1.1    simonb 	if ((error = wpi_alloc_shared(sc)) != 0) {
    270      1.1    simonb 		aprint_error("%s: could not allocate shared area\n",
    271      1.1    simonb 			sc->sc_dev.dv_xname);
    272  1.9.4.1       mjf 		goto fail1;
    273      1.1    simonb 	}
    274      1.1    simonb 
    275      1.7  degroote 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    276      1.7  degroote 		aprint_error("%s: could not allocate Rx buffers\n",
    277      1.7  degroote 			sc->sc_dev.dv_xname);
    278  1.9.4.1       mjf 		goto fail2;
    279      1.7  degroote 	}
    280      1.7  degroote 
    281      1.1    simonb 	for (ac = 0; ac < 4; ac++) {
    282      1.1    simonb 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
    283      1.1    simonb 		if (error != 0) {
    284      1.1    simonb 			aprint_error("%s: could not allocate Tx ring %d\n",
    285      1.1    simonb 					sc->sc_dev.dv_xname, ac);
    286  1.9.4.1       mjf 			goto fail3;
    287      1.1    simonb 		}
    288      1.1    simonb 	}
    289      1.1    simonb 
    290      1.1    simonb 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    291      1.1    simonb 	if (error != 0) {
    292      1.1    simonb 		aprint_error("%s: could not allocate command ring\n",
    293      1.1    simonb 			sc->sc_dev.dv_xname);
    294  1.9.4.1       mjf 		goto fail3;
    295      1.1    simonb 	}
    296      1.1    simonb 
    297      1.1    simonb 	error = wpi_alloc_tx_ring(sc, &sc->svcq, WPI_SVC_RING_COUNT, 5);
    298      1.1    simonb 	if (error != 0) {
    299      1.1    simonb 		aprint_error("%s: could not allocate service ring\n",
    300      1.1    simonb 			sc->sc_dev.dv_xname);
    301  1.9.4.1       mjf 		goto fail4;
    302      1.1    simonb 	}
    303      1.1    simonb 
    304      1.1    simonb 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
    305      1.1    simonb 		aprint_error("%s: could not allocate Rx ring\n",
    306      1.1    simonb 			sc->sc_dev.dv_xname);
    307  1.9.4.1       mjf 		goto fail5;
    308      1.1    simonb 	}
    309      1.1    simonb 
    310      1.1    simonb 	ic->ic_ifp = ifp;
    311      1.1    simonb 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    312      1.1    simonb 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    313      1.1    simonb 	ic->ic_state = IEEE80211_S_INIT;
    314      1.1    simonb 
    315      1.1    simonb 	/* set device capabilities */
    316      1.1    simonb 	ic->ic_caps =
    317      1.1    simonb 		IEEE80211_C_IBSS |       /* IBSS mode support */
    318      1.1    simonb 		IEEE80211_C_WPA |        /* 802.11i */
    319      1.1    simonb 		IEEE80211_C_MONITOR |    /* monitor mode supported */
    320      1.1    simonb 		IEEE80211_C_TXPMGT |     /* tx power management */
    321      1.1    simonb 		IEEE80211_C_SHSLOT |     /* short slot time supported */
    322      1.1    simonb 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
    323      1.1    simonb 		IEEE80211_C_WME;         /* 802.11e */
    324      1.1    simonb 
    325  1.9.4.1       mjf 	/* read supported channels and MAC address from EEPROM */
    326      1.1    simonb 	wpi_read_eeprom(sc);
    327      1.1    simonb 
    328  1.9.4.1       mjf 	/* set supported .11a, .11b, .11g rates */
    329      1.7  degroote 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
    330      1.1    simonb 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
    331      1.1    simonb 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
    332      1.1    simonb 
    333      1.1    simonb 	ic->ic_ibss_chan = &ic->ic_channels[0];
    334      1.1    simonb 
    335      1.1    simonb 	ifp->if_softc = sc;
    336      1.1    simonb 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    337      1.1    simonb 	ifp->if_init = wpi_init;
    338      1.1    simonb 	ifp->if_stop = wpi_stop;
    339      1.1    simonb 	ifp->if_ioctl = wpi_ioctl;
    340      1.1    simonb 	ifp->if_start = wpi_start;
    341      1.1    simonb 	ifp->if_watchdog = wpi_watchdog;
    342      1.1    simonb 	IFQ_SET_READY(&ifp->if_snd);
    343      1.1    simonb 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
    344      1.1    simonb 
    345      1.1    simonb 	if_attach(ifp);
    346      1.1    simonb 	ieee80211_ifattach(ic);
    347      1.1    simonb 	/* override default methods */
    348      1.1    simonb 	ic->ic_node_alloc = wpi_node_alloc;
    349      1.5     joerg 	ic->ic_newassoc = wpi_newassoc;
    350      1.1    simonb 	ic->ic_wme.wme_update = wpi_wme_update;
    351      1.1    simonb 
    352      1.1    simonb 	/* override state transition machine */
    353      1.1    simonb 	sc->sc_newstate = ic->ic_newstate;
    354      1.1    simonb 	ic->ic_newstate = wpi_newstate;
    355      1.1    simonb 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
    356      1.1    simonb 
    357      1.5     joerg 	sc->amrr.amrr_min_success_threshold = 1;
    358      1.5     joerg 	sc->amrr.amrr_max_success_threshold = 15;
    359      1.5     joerg 
    360      1.1    simonb 	/* set powerhook */
    361      1.3  jmcneill 	sc->powerhook = powerhook_establish(sc->sc_dev.dv_xname, wpi_power, sc);
    362      1.1    simonb 
    363      1.1    simonb #if NBPFILTER > 0
    364      1.1    simonb 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    365      1.1    simonb 		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    366      1.1    simonb 		&sc->sc_drvbpf);
    367      1.1    simonb 
    368      1.1    simonb 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    369      1.1    simonb 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    370      1.1    simonb 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    371      1.1    simonb 
    372      1.1    simonb 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    373      1.1    simonb 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    374      1.1    simonb 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    375      1.1    simonb #endif
    376      1.1    simonb 
    377      1.1    simonb 	ieee80211_announce(ic);
    378      1.1    simonb 
    379      1.1    simonb 	return;
    380      1.1    simonb 
    381  1.9.4.1       mjf fail5:  wpi_free_tx_ring(sc, &sc->svcq);
    382  1.9.4.1       mjf fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
    383  1.9.4.1       mjf fail3:  while (--ac >= 0)
    384      1.1    simonb 			wpi_free_tx_ring(sc, &sc->txq[ac]);
    385      1.7  degroote 	wpi_free_rpool(sc);
    386  1.9.4.1       mjf fail2:	wpi_free_shared(sc);
    387  1.9.4.1       mjf fail1:	wpi_free_fwmem(sc);
    388      1.1    simonb }
    389      1.1    simonb 
    390      1.1    simonb static int
    391      1.7  degroote wpi_detach(struct device* self, int flags __unused)
    392      1.1    simonb {
    393      1.1    simonb 	struct wpi_softc *sc = (struct wpi_softc *)self;
    394      1.7  degroote 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    395      1.1    simonb 	int ac;
    396      1.1    simonb 
    397      1.1    simonb 	wpi_stop(ifp, 1);
    398      1.1    simonb 
    399      1.1    simonb #if NBPFILTER > 0
    400      1.1    simonb 	if (ifp != NULL)
    401      1.1    simonb 		bpfdetach(ifp);
    402      1.1    simonb #endif
    403      1.1    simonb 	ieee80211_ifdetach(&sc->sc_ic);
    404      1.1    simonb 	if (ifp != NULL)
    405      1.1    simonb 		if_detach(ifp);
    406      1.1    simonb 
    407      1.1    simonb 	for (ac = 0; ac < 4; ac++)
    408      1.1    simonb 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    409      1.1    simonb 	wpi_free_tx_ring(sc, &sc->cmdq);
    410      1.1    simonb 	wpi_free_tx_ring(sc, &sc->svcq);
    411      1.1    simonb 	wpi_free_rx_ring(sc, &sc->rxq);
    412      1.7  degroote 	wpi_free_rpool(sc);
    413      1.1    simonb 	wpi_free_shared(sc);
    414      1.1    simonb 
    415      1.1    simonb 	if (sc->sc_ih != NULL) {
    416      1.1    simonb 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    417      1.1    simonb 		sc->sc_ih = NULL;
    418      1.1    simonb 	}
    419      1.1    simonb 
    420      1.1    simonb 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    421      1.1    simonb 
    422      1.1    simonb 	return 0;
    423      1.1    simonb }
    424      1.1    simonb 
    425      1.1    simonb static void
    426      1.1    simonb wpi_power(int why, void *arg)
    427      1.1    simonb {
    428      1.1    simonb 	struct wpi_softc *sc = arg;
    429      1.1    simonb 	struct ifnet *ifp;
    430      1.1    simonb 	pcireg_t data;
    431      1.1    simonb 	int s;
    432      1.1    simonb 
    433      1.1    simonb 	if (why != PWR_RESUME)
    434      1.1    simonb 		return;
    435      1.1    simonb 
    436      1.1    simonb 	/* clear device specific PCI configuration register 0x41 */
    437      1.1    simonb 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    438      1.1    simonb 	data &= ~0x0000ff00;
    439      1.1    simonb 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
    440      1.1    simonb 
    441      1.1    simonb 	s = splnet();
    442      1.1    simonb 	ifp = sc->sc_ic.ic_ifp;
    443      1.1    simonb 	if (ifp->if_flags & IFF_UP) {
    444      1.1    simonb 		ifp->if_init(ifp);
    445      1.1    simonb 		if (ifp->if_flags & IFF_RUNNING)
    446      1.1    simonb 			ifp->if_start(ifp);
    447      1.1    simonb 	}
    448      1.1    simonb 	splx(s);
    449      1.1    simonb }
    450      1.1    simonb 
    451      1.1    simonb static int
    452      1.7  degroote wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
    453      1.1    simonb 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
    454      1.1    simonb {
    455      1.1    simonb 	int nsegs, error;
    456      1.1    simonb 
    457      1.7  degroote 	dma->tag = tag;
    458      1.1    simonb 	dma->size = size;
    459      1.1    simonb 
    460      1.7  degroote 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    461      1.7  degroote 	if (error != 0)
    462      1.1    simonb 		goto fail;
    463      1.1    simonb 
    464      1.7  degroote 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    465      1.7  degroote 	    flags);
    466      1.7  degroote 	if (error != 0)
    467      1.1    simonb 		goto fail;
    468      1.1    simonb 
    469      1.7  degroote 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    470      1.7  degroote 	if (error != 0)
    471      1.1    simonb 		goto fail;
    472      1.1    simonb 
    473      1.7  degroote 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    474      1.7  degroote 	if (error != 0)
    475      1.1    simonb 		goto fail;
    476      1.1    simonb 
    477      1.1    simonb 	memset(dma->vaddr, 0, size);
    478      1.1    simonb 
    479      1.1    simonb 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    480      1.7  degroote 	if (kvap != NULL)
    481      1.7  degroote 		*kvap = dma->vaddr;
    482      1.1    simonb 
    483      1.1    simonb 	return 0;
    484      1.1    simonb 
    485      1.7  degroote fail:   wpi_dma_contig_free(dma);
    486      1.1    simonb 	return error;
    487      1.1    simonb }
    488      1.1    simonb 
    489      1.1    simonb static void
    490      1.7  degroote wpi_dma_contig_free(struct wpi_dma_info *dma)
    491      1.1    simonb {
    492      1.1    simonb 	if (dma->map != NULL) {
    493      1.1    simonb 		if (dma->vaddr != NULL) {
    494      1.7  degroote 			bus_dmamap_unload(dma->tag, dma->map);
    495      1.7  degroote 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    496      1.7  degroote 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    497      1.1    simonb 			dma->vaddr = NULL;
    498      1.1    simonb 		}
    499      1.7  degroote 		bus_dmamap_destroy(dma->tag, dma->map);
    500      1.1    simonb 		dma->map = NULL;
    501      1.1    simonb 	}
    502      1.1    simonb }
    503      1.1    simonb 
    504      1.1    simonb /*
    505      1.1    simonb  * Allocate a shared page between host and NIC.
    506      1.1    simonb  */
    507      1.1    simonb static int
    508      1.1    simonb wpi_alloc_shared(struct wpi_softc *sc)
    509      1.1    simonb {
    510      1.1    simonb 	int error;
    511      1.1    simonb 	/* must be aligned on a 4K-page boundary */
    512      1.7  degroote 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    513  1.9.4.1       mjf 			(void **)&sc->shared, sizeof (struct wpi_shared),
    514  1.9.4.1       mjf 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
    515      1.1    simonb 	if (error != 0)
    516  1.9.4.1       mjf 		aprint_error(
    517  1.9.4.1       mjf 			"%s: could not allocate shared area DMA memory\n",
    518      1.1    simonb 			sc->sc_dev.dv_xname);
    519      1.1    simonb 
    520      1.1    simonb 	return error;
    521      1.1    simonb }
    522      1.1    simonb 
    523      1.1    simonb static void
    524      1.1    simonb wpi_free_shared(struct wpi_softc *sc)
    525      1.1    simonb {
    526      1.7  degroote 	wpi_dma_contig_free(&sc->shared_dma);
    527      1.7  degroote }
    528      1.7  degroote 
    529  1.9.4.1       mjf /*
    530  1.9.4.1       mjf  * Allocate DMA-safe memory for firmware transfer.
    531  1.9.4.1       mjf  */
    532  1.9.4.1       mjf static int
    533  1.9.4.1       mjf wpi_alloc_fwmem(struct wpi_softc *sc)
    534  1.9.4.1       mjf {
    535  1.9.4.1       mjf 	int error;
    536  1.9.4.1       mjf 	/* allocate enough contiguous space to store text and data */
    537  1.9.4.1       mjf 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    538  1.9.4.1       mjf 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    539  1.9.4.1       mjf 	    BUS_DMA_NOWAIT);
    540  1.9.4.1       mjf 
    541  1.9.4.1       mjf 	if (error != 0)
    542  1.9.4.1       mjf 		aprint_error(
    543  1.9.4.1       mjf 			"%s: could not allocate firmware transfer area"
    544  1.9.4.1       mjf 			"DMA memory\n", sc->sc_dev.dv_xname);
    545  1.9.4.1       mjf 	return error;
    546  1.9.4.1       mjf }
    547  1.9.4.1       mjf 
    548  1.9.4.1       mjf static void
    549  1.9.4.1       mjf wpi_free_fwmem(struct wpi_softc *sc)
    550  1.9.4.1       mjf {
    551  1.9.4.1       mjf 	wpi_dma_contig_free(&sc->fw_dma);
    552  1.9.4.1       mjf }
    553  1.9.4.1       mjf 
    554  1.9.4.1       mjf 
    555      1.7  degroote static struct wpi_rbuf *
    556      1.7  degroote wpi_alloc_rbuf(struct wpi_softc *sc)
    557      1.7  degroote {
    558      1.7  degroote 	struct wpi_rbuf *rbuf;
    559      1.7  degroote 
    560      1.7  degroote 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    561      1.7  degroote 	if (rbuf == NULL)
    562      1.7  degroote 		return NULL;
    563      1.7  degroote 	SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    564  1.9.4.1       mjf 	sc->rxq.nb_free_entries --;
    565  1.9.4.1       mjf 
    566      1.7  degroote 	return rbuf;
    567      1.7  degroote }
    568      1.7  degroote 
    569      1.7  degroote /*
    570      1.7  degroote  * This is called automatically by the network stack when the mbuf to which our
    571      1.7  degroote  * Rx buffer is attached is freed.
    572      1.7  degroote  */
    573      1.7  degroote static void
    574      1.9  christos wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    575      1.7  degroote {
    576      1.7  degroote 	struct wpi_rbuf *rbuf = arg;
    577      1.7  degroote 	struct wpi_softc *sc = rbuf->sc;
    578      1.7  degroote 	int s;
    579      1.7  degroote 
    580      1.7  degroote 	/* put the buffer back in the free list */
    581  1.9.4.1       mjf 
    582      1.7  degroote 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    583  1.9.4.1       mjf 	sc->rxq.nb_free_entries ++;
    584      1.7  degroote 
    585      1.7  degroote 	if (__predict_true(m != NULL)) {
    586      1.7  degroote 		s = splvm();
    587      1.7  degroote 		pool_cache_put(&mbpool_cache, m);
    588      1.7  degroote 		splx(s);
    589      1.7  degroote 	}
    590      1.7  degroote }
    591      1.7  degroote 
    592      1.7  degroote static int
    593      1.7  degroote wpi_alloc_rpool(struct wpi_softc *sc)
    594      1.7  degroote {
    595      1.7  degroote 	struct wpi_rx_ring *ring = &sc->rxq;
    596      1.7  degroote 	struct wpi_rbuf *rbuf;
    597      1.7  degroote 	int i, error;
    598      1.7  degroote 
    599      1.7  degroote 	/* allocate a big chunk of DMA'able memory.. */
    600      1.7  degroote 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    601      1.7  degroote 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    602      1.7  degroote 	if (error != 0) {
    603      1.7  degroote 		aprint_normal("%s: could not allocate Rx buffers DMA memory\n",
    604      1.7  degroote 		    sc->sc_dev.dv_xname);
    605      1.7  degroote 	return error;
    606      1.7  degroote 	}
    607      1.7  degroote 
    608      1.7  degroote 	/* ..and split it into 3KB chunks */
    609      1.7  degroote 	SLIST_INIT(&ring->freelist);
    610      1.7  degroote 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    611      1.7  degroote 		rbuf = &ring->rbuf[i];
    612      1.7  degroote 		rbuf->sc = sc;	/* backpointer for callbacks */
    613      1.9  christos 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    614      1.7  degroote 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    615      1.7  degroote 
    616      1.7  degroote 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    617      1.7  degroote 	}
    618  1.9.4.1       mjf 
    619  1.9.4.1       mjf 	ring->nb_free_entries = WPI_RBUF_COUNT;
    620      1.7  degroote 	return 0;
    621      1.7  degroote }
    622      1.7  degroote 
    623      1.7  degroote static void
    624      1.7  degroote wpi_free_rpool(struct wpi_softc *sc)
    625      1.7  degroote {
    626      1.7  degroote 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    627      1.1    simonb }
    628      1.1    simonb 
    629      1.1    simonb static int
    630      1.1    simonb wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    631      1.1    simonb {
    632      1.1    simonb 	struct wpi_rx_data *data;
    633      1.7  degroote 	struct wpi_rbuf *rbuf;
    634      1.1    simonb 	int i, error;
    635      1.1    simonb 
    636      1.1    simonb 	ring->cur = 0;
    637      1.1    simonb 
    638      1.7  degroote 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    639      1.1    simonb 		(void **)&ring->desc,
    640      1.1    simonb 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
    641      1.1    simonb 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    642      1.1    simonb 	if (error != 0) {
    643      1.1    simonb 		aprint_error("%s: could not allocate rx ring DMA memory\n",
    644      1.1    simonb 			sc->sc_dev.dv_xname);
    645      1.1    simonb 		goto fail;
    646      1.1    simonb 	}
    647      1.1    simonb 
    648      1.1    simonb 	/*
    649      1.7  degroote 	 * Setup Rx buffers.
    650      1.1    simonb 	 */
    651      1.1    simonb 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    652      1.1    simonb 		data = &ring->data[i];
    653      1.1    simonb 
    654      1.1    simonb 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    655      1.1    simonb 		if (data->m == NULL) {
    656      1.1    simonb 			aprint_error("%s: could not allocate rx mbuf\n",
    657      1.1    simonb 				sc->sc_dev.dv_xname);
    658      1.1    simonb 			error = ENOMEM;
    659      1.1    simonb 			goto fail;
    660      1.1    simonb 		}
    661      1.7  degroote 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    662      1.1    simonb 			m_freem(data->m);
    663      1.1    simonb 			data->m = NULL;
    664      1.7  degroote 			aprint_error("%s: could not allocate rx cluster\n",
    665      1.1    simonb 				sc->sc_dev.dv_xname);
    666      1.1    simonb 			error = ENOMEM;
    667      1.1    simonb 			goto fail;
    668      1.1    simonb 		}
    669      1.7  degroote 		/* attach Rx buffer to mbuf */
    670      1.7  degroote 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    671      1.7  degroote 		    rbuf);
    672      1.7  degroote 		data->m->m_flags |= M_EXT_RW;
    673      1.1    simonb 
    674      1.7  degroote 		ring->desc[i] = htole32(rbuf->paddr);
    675      1.1    simonb 	}
    676      1.1    simonb 
    677      1.1    simonb 	return 0;
    678      1.1    simonb 
    679      1.1    simonb fail:	wpi_free_rx_ring(sc, ring);
    680      1.1    simonb 	return error;
    681      1.1    simonb }
    682      1.1    simonb 
    683      1.1    simonb static void
    684      1.1    simonb wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    685      1.1    simonb {
    686      1.1    simonb 	int ntries;
    687      1.1    simonb 
    688      1.1    simonb 	wpi_mem_lock(sc);
    689      1.1    simonb 
    690      1.1    simonb 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    691      1.1    simonb 	for (ntries = 0; ntries < 100; ntries++) {
    692      1.1    simonb 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    693      1.1    simonb 			break;
    694      1.1    simonb 		DELAY(10);
    695      1.1    simonb 	}
    696      1.1    simonb #ifdef WPI_DEBUG
    697      1.1    simonb 	if (ntries == 100 && wpi_debug > 0)
    698      1.1    simonb 		aprint_error("%s: timeout resetting Rx ring\n",
    699      1.1    simonb 			sc->sc_dev.dv_xname);
    700      1.1    simonb #endif
    701      1.1    simonb 	wpi_mem_unlock(sc);
    702      1.1    simonb 
    703      1.1    simonb 	ring->cur = 0;
    704      1.1    simonb }
    705      1.1    simonb 
    706      1.1    simonb static void
    707      1.1    simonb wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    708      1.1    simonb {
    709      1.1    simonb 	int i;
    710      1.1    simonb 
    711      1.7  degroote 	wpi_dma_contig_free(&ring->desc_dma);
    712      1.1    simonb 
    713      1.1    simonb 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    714      1.7  degroote 		if (ring->data[i].m != NULL)
    715      1.7  degroote 			m_freem(ring->data[i].m);
    716      1.1    simonb 	}
    717      1.1    simonb }
    718      1.1    simonb 
    719      1.1    simonb static int
    720      1.1    simonb wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    721      1.1    simonb 	int qid)
    722      1.1    simonb {
    723      1.1    simonb 	struct wpi_tx_data *data;
    724      1.1    simonb 	int i, error;
    725      1.1    simonb 
    726      1.1    simonb 	ring->qid = qid;
    727      1.1    simonb 	ring->count = count;
    728      1.1    simonb 	ring->queued = 0;
    729      1.1    simonb 	ring->cur = 0;
    730      1.1    simonb 
    731      1.7  degroote 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    732      1.1    simonb 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    733      1.1    simonb 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    734      1.1    simonb 	if (error != 0) {
    735      1.1    simonb 		aprint_error("%s: could not allocate tx ring DMA memory\n",
    736      1.1    simonb 			sc->sc_dev.dv_xname);
    737      1.1    simonb 		goto fail;
    738      1.1    simonb 	}
    739      1.1    simonb 
    740      1.1    simonb 	/* update shared page with ring's base address */
    741      1.1    simonb 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    742      1.1    simonb 
    743      1.7  degroote 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    744      1.7  degroote 		(void **)&ring->cmd,
    745      1.1    simonb 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
    746      1.1    simonb 	if (error != 0) {
    747      1.1    simonb 		aprint_error("%s: could not allocate tx cmd DMA memory\n",
    748      1.1    simonb 			sc->sc_dev.dv_xname);
    749      1.1    simonb 		goto fail;
    750      1.1    simonb 	}
    751      1.1    simonb 
    752      1.1    simonb 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    753      1.1    simonb 		M_NOWAIT);
    754      1.1    simonb 	if (ring->data == NULL) {
    755      1.1    simonb 		aprint_error("%s: could not allocate tx data slots\n",
    756      1.1    simonb 			sc->sc_dev.dv_xname);
    757      1.1    simonb 		goto fail;
    758      1.1    simonb 	}
    759      1.1    simonb 
    760      1.1    simonb 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
    761      1.1    simonb 
    762      1.1    simonb 	for (i = 0; i < count; i++) {
    763      1.1    simonb 		data = &ring->data[i];
    764      1.1    simonb 
    765      1.1    simonb 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    766      1.1    simonb 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    767      1.1    simonb 			&data->map);
    768      1.1    simonb 		if (error != 0) {
    769      1.1    simonb 			aprint_error("%s: could not create tx buf DMA map\n",
    770      1.1    simonb 				sc->sc_dev.dv_xname);
    771      1.1    simonb 			goto fail;
    772      1.1    simonb 		}
    773      1.1    simonb 	}
    774      1.1    simonb 
    775      1.1    simonb 	return 0;
    776      1.1    simonb 
    777      1.1    simonb fail:	wpi_free_tx_ring(sc, ring);
    778      1.1    simonb 	return error;
    779      1.1    simonb }
    780      1.1    simonb 
    781      1.1    simonb static void
    782      1.1    simonb wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    783      1.1    simonb {
    784      1.1    simonb 	struct wpi_tx_data *data;
    785      1.1    simonb 	int i, ntries;
    786      1.1    simonb 
    787      1.1    simonb 	wpi_mem_lock(sc);
    788      1.1    simonb 
    789      1.1    simonb 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    790      1.1    simonb 	for (ntries = 0; ntries < 100; ntries++) {
    791      1.1    simonb 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    792      1.1    simonb 			break;
    793      1.1    simonb 		DELAY(10);
    794      1.1    simonb 	}
    795      1.1    simonb #ifdef WPI_DEBUG
    796      1.1    simonb 	if (ntries == 100 && wpi_debug > 0) {
    797      1.1    simonb 		aprint_error("%s: timeout resetting Tx ring %d\n",
    798      1.1    simonb 			sc->sc_dev.dv_xname, ring->qid);
    799      1.1    simonb 	}
    800      1.1    simonb #endif
    801      1.1    simonb 	wpi_mem_unlock(sc);
    802      1.1    simonb 
    803      1.1    simonb 	for (i = 0; i < ring->count; i++) {
    804      1.1    simonb 		data = &ring->data[i];
    805      1.1    simonb 
    806      1.1    simonb 		if (data->m != NULL) {
    807      1.1    simonb 			bus_dmamap_unload(sc->sc_dmat, data->map);
    808      1.1    simonb 			m_freem(data->m);
    809      1.1    simonb 			data->m = NULL;
    810      1.1    simonb 		}
    811      1.1    simonb 	}
    812      1.1    simonb 
    813      1.1    simonb 	ring->queued = 0;
    814      1.1    simonb 	ring->cur = 0;
    815      1.1    simonb }
    816      1.1    simonb 
    817      1.1    simonb static void
    818      1.1    simonb wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    819      1.1    simonb {
    820      1.1    simonb 	struct wpi_tx_data *data;
    821      1.1    simonb 	int i;
    822      1.1    simonb 
    823      1.7  degroote 	wpi_dma_contig_free(&ring->desc_dma);
    824      1.7  degroote 	wpi_dma_contig_free(&ring->cmd_dma);
    825      1.1    simonb 
    826      1.1    simonb 	if (ring->data != NULL) {
    827      1.1    simonb 		for (i = 0; i < ring->count; i++) {
    828      1.1    simonb 			data = &ring->data[i];
    829      1.1    simonb 
    830      1.1    simonb 			if (data->m != NULL) {
    831      1.1    simonb 				bus_dmamap_unload(sc->sc_dmat, data->map);
    832      1.1    simonb 				m_freem(data->m);
    833      1.1    simonb 			}
    834      1.1    simonb 		}
    835      1.1    simonb 		free(ring->data, M_DEVBUF);
    836      1.1    simonb 	}
    837      1.1    simonb }
    838      1.1    simonb 
    839      1.1    simonb /*ARGUSED*/
    840      1.1    simonb static struct ieee80211_node *
    841      1.7  degroote wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    842      1.1    simonb {
    843      1.5     joerg 	struct wpi_node *wn;
    844      1.1    simonb 
    845      1.5     joerg 	wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
    846      1.5     joerg 
    847      1.5     joerg 	if (wn != NULL)
    848      1.5     joerg 		memset(wn, 0, sizeof (struct wpi_node));
    849      1.5     joerg 	return (struct ieee80211_node *)wn;
    850      1.1    simonb }
    851      1.1    simonb 
    852  1.9.4.1       mjf static void
    853  1.9.4.1       mjf wpi_newassoc(struct ieee80211_node *ni, int isnew)
    854  1.9.4.1       mjf {
    855  1.9.4.1       mjf 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    856  1.9.4.1       mjf 	int i;
    857  1.9.4.1       mjf 
    858  1.9.4.1       mjf 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    859  1.9.4.1       mjf 
    860  1.9.4.1       mjf 	/* set rate to some reasonable initial value */
    861  1.9.4.1       mjf 	for (i = ni->ni_rates.rs_nrates - 1;
    862  1.9.4.1       mjf 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    863  1.9.4.1       mjf 	     i--);
    864  1.9.4.1       mjf 	ni->ni_txrate = i;
    865  1.9.4.1       mjf }
    866  1.9.4.1       mjf 
    867      1.1    simonb static int
    868      1.1    simonb wpi_media_change(struct ifnet *ifp)
    869      1.1    simonb {
    870      1.1    simonb 	int error;
    871      1.1    simonb 
    872      1.1    simonb 	error = ieee80211_media_change(ifp);
    873      1.1    simonb 	if (error != ENETRESET)
    874      1.1    simonb 		return error;
    875      1.1    simonb 
    876      1.1    simonb 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    877      1.1    simonb 		wpi_init(ifp);
    878      1.1    simonb 
    879      1.1    simonb 	return 0;
    880      1.1    simonb }
    881      1.1    simonb 
    882      1.1    simonb static int
    883      1.1    simonb wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    884      1.1    simonb {
    885      1.1    simonb 	struct ifnet *ifp = ic->ic_ifp;
    886      1.1    simonb 	struct wpi_softc *sc = ifp->if_softc;
    887  1.9.4.1       mjf 	struct ieee80211_node *ni;
    888      1.1    simonb 	int error;
    889      1.1    simonb 
    890  1.9.4.1       mjf 	callout_stop(&sc->calib_to);
    891      1.1    simonb 
    892      1.1    simonb 	switch (nstate) {
    893      1.1    simonb 	case IEEE80211_S_SCAN:
    894      1.1    simonb 		ieee80211_node_table_reset(&ic->ic_scan);
    895      1.1    simonb 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
    896      1.1    simonb 
    897      1.1    simonb 		/* make the link LED blink while we're scanning */
    898      1.1    simonb 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    899      1.1    simonb 
    900      1.1    simonb 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
    901      1.1    simonb 			aprint_error("%s: could not initiate scan\n",
    902      1.1    simonb 				sc->sc_dev.dv_xname);
    903      1.1    simonb 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
    904      1.1    simonb 			return error;
    905      1.1    simonb 		}
    906      1.1    simonb 
    907      1.1    simonb 		ic->ic_state = nstate;
    908      1.1    simonb 		return 0;
    909      1.1    simonb 
    910      1.7  degroote 	case IEEE80211_S_ASSOC:
    911      1.7  degroote 		if (ic->ic_state != IEEE80211_S_RUN)
    912      1.7  degroote 			break;
    913      1.7  degroote 		/* FALLTHROUGH */
    914      1.1    simonb 	case IEEE80211_S_AUTH:
    915  1.9.4.1       mjf 		sc->config.associd = 0;
    916      1.1    simonb 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    917      1.1    simonb 		if ((error = wpi_auth(sc)) != 0) {
    918      1.1    simonb 			aprint_error("%s: could not send authentication request\n",
    919      1.1    simonb 				sc->sc_dev.dv_xname);
    920      1.1    simonb 			return error;
    921      1.1    simonb 		}
    922      1.1    simonb 		break;
    923      1.1    simonb 
    924      1.1    simonb 	case IEEE80211_S_RUN:
    925      1.1    simonb 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    926      1.1    simonb 			/* link LED blinks while monitoring */
    927      1.1    simonb 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    928      1.1    simonb 			break;
    929      1.1    simonb 		}
    930  1.9.4.1       mjf 
    931  1.9.4.1       mjf 		ni = ic->ic_bss;
    932      1.1    simonb 
    933      1.1    simonb 		if (ic->ic_opmode != IEEE80211_M_STA) {
    934      1.1    simonb 			(void) wpi_auth(sc);    /* XXX */
    935  1.9.4.1       mjf 			wpi_setup_beacon(sc, ni);
    936      1.1    simonb 		}
    937      1.1    simonb 
    938  1.9.4.1       mjf 		wpi_enable_tsf(sc, ni);
    939      1.1    simonb 
    940      1.1    simonb 		/* update adapter's configuration */
    941  1.9.4.1       mjf 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    942      1.1    simonb 		/* short preamble/slot time are negotiated when associating */
    943      1.1    simonb 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
    944      1.1    simonb 			WPI_CONFIG_SHSLOT);
    945      1.1    simonb 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
    946      1.1    simonb 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
    947      1.1    simonb 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
    948      1.1    simonb 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
    949      1.1    simonb 		sc->config.filter |= htole32(WPI_FILTER_BSS);
    950      1.1    simonb 		if (ic->ic_opmode != IEEE80211_M_STA)
    951      1.1    simonb 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
    952      1.1    simonb 
    953      1.1    simonb /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
    954      1.1    simonb 
    955      1.1    simonb 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
    956      1.1    simonb 			sc->config.flags));
    957      1.1    simonb 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
    958      1.1    simonb 			sizeof (struct wpi_config), 1);
    959      1.1    simonb 		if (error != 0) {
    960      1.1    simonb 			aprint_error("%s: could not update configuration\n",
    961      1.1    simonb 				sc->sc_dev.dv_xname);
    962      1.1    simonb 			return error;
    963      1.1    simonb 		}
    964      1.1    simonb 
    965  1.9.4.1       mjf 		/* configuration has changed, set Tx power accordingly */
    966  1.9.4.1       mjf 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
    967  1.9.4.1       mjf 			aprint_error("%s: could not set Tx power\n",
    968  1.9.4.1       mjf 			    sc->sc_dev.dv_xname);
    969  1.9.4.1       mjf 			return error;
    970  1.9.4.1       mjf 		}
    971  1.9.4.1       mjf 
    972      1.5     joerg 		if (ic->ic_opmode == IEEE80211_M_STA) {
    973      1.5     joerg 			/* fake a join to init the tx rate */
    974  1.9.4.1       mjf 			wpi_newassoc(ni, 1);
    975      1.5     joerg 		}
    976      1.5     joerg 
    977  1.9.4.1       mjf 		/* start periodic calibration timer */
    978  1.9.4.1       mjf 		sc->calib_cnt = 0;
    979  1.9.4.1       mjf 		callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
    980      1.1    simonb 
    981      1.1    simonb 		/* link LED always on while associated */
    982      1.1    simonb 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
    983      1.1    simonb 		break;
    984      1.1    simonb 
    985      1.1    simonb 	case IEEE80211_S_INIT:
    986      1.1    simonb 		break;
    987      1.1    simonb 	}
    988      1.1    simonb 
    989      1.1    simonb 	return sc->sc_newstate(ic, nstate, arg);
    990      1.1    simonb }
    991      1.1    simonb 
    992      1.1    simonb /*
    993      1.1    simonb  * Grab exclusive access to NIC memory.
    994      1.1    simonb  */
    995      1.1    simonb static void
    996      1.1    simonb wpi_mem_lock(struct wpi_softc *sc)
    997      1.1    simonb {
    998      1.1    simonb 	uint32_t tmp;
    999      1.1    simonb 	int ntries;
   1000      1.1    simonb 
   1001      1.1    simonb 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1002      1.1    simonb 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
   1003      1.1    simonb 
   1004      1.1    simonb 	/* spin until we actually get the lock */
   1005      1.1    simonb 	for (ntries = 0; ntries < 1000; ntries++) {
   1006      1.1    simonb 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
   1007      1.1    simonb 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
   1008      1.1    simonb 			break;
   1009      1.1    simonb 		DELAY(10);
   1010      1.1    simonb 	}
   1011      1.1    simonb 	if (ntries == 1000)
   1012      1.1    simonb 		aprint_error("%s: could not lock memory\n", sc->sc_dev.dv_xname);
   1013      1.1    simonb }
   1014      1.1    simonb 
   1015      1.1    simonb /*
   1016      1.1    simonb  * Release lock on NIC memory.
   1017      1.1    simonb  */
   1018      1.1    simonb static void
   1019      1.1    simonb wpi_mem_unlock(struct wpi_softc *sc)
   1020      1.1    simonb {
   1021      1.1    simonb 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1022      1.1    simonb 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1023      1.1    simonb }
   1024      1.1    simonb 
   1025      1.1    simonb static uint32_t
   1026      1.1    simonb wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1027      1.1    simonb {
   1028      1.1    simonb 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1029      1.1    simonb 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1030      1.1    simonb }
   1031      1.1    simonb 
   1032      1.1    simonb static void
   1033      1.1    simonb wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1034      1.1    simonb {
   1035      1.1    simonb 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1036      1.1    simonb 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1037      1.1    simonb }
   1038      1.1    simonb 
   1039      1.1    simonb /*
   1040  1.9.4.1       mjf  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1041  1.9.4.1       mjf  * instead of using the traditional bit-bang method.
   1042      1.1    simonb  */
   1043  1.9.4.1       mjf static int
   1044  1.9.4.1       mjf wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1045      1.1    simonb {
   1046  1.9.4.1       mjf 	uint8_t *out = data;
   1047      1.1    simonb 	uint32_t val;
   1048  1.9.4.1       mjf 	int ntries;
   1049      1.1    simonb 
   1050      1.1    simonb 	wpi_mem_lock(sc);
   1051  1.9.4.1       mjf 	for (; len > 0; len -= 2, addr++) {
   1052  1.9.4.1       mjf 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1053  1.9.4.1       mjf 
   1054  1.9.4.1       mjf 		for (ntries = 0; ntries < 10; ntries++) {
   1055  1.9.4.1       mjf 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1056  1.9.4.1       mjf 			    WPI_EEPROM_READY)
   1057  1.9.4.1       mjf 				break;
   1058  1.9.4.1       mjf 			DELAY(5);
   1059  1.9.4.1       mjf 		}
   1060  1.9.4.1       mjf 		if (ntries == 10) {
   1061  1.9.4.1       mjf 			aprint_error("%s: could not read EEPROM\n",
   1062  1.9.4.1       mjf 			    sc->sc_dev.dv_xname);
   1063  1.9.4.1       mjf 			return ETIMEDOUT;
   1064  1.9.4.1       mjf 		}
   1065  1.9.4.1       mjf 		*out++ = val >> 16;
   1066  1.9.4.1       mjf 		if (len > 1)
   1067  1.9.4.1       mjf 			*out++ = val >> 24;
   1068      1.1    simonb 	}
   1069      1.1    simonb 	wpi_mem_unlock(sc);
   1070      1.1    simonb 
   1071  1.9.4.1       mjf 	return 0;
   1072      1.1    simonb }
   1073      1.1    simonb 
   1074      1.1    simonb static int
   1075  1.9.4.1       mjf wpi_load_segment(struct wpi_softc *sc, uint32_t target, const uint8_t *data,
   1076  1.9.4.1       mjf 		 int len)
   1077      1.1    simonb {
   1078  1.9.4.1       mjf 	struct wpi_dma_info *dma = &sc->fw_dma;
   1079  1.9.4.1       mjf 	struct wpi_tx_desc desc;
   1080  1.9.4.1       mjf 	int ntries, error = 0;
   1081      1.1    simonb 
   1082  1.9.4.1       mjf 	DPRINTFN(2, ("loading firmware segment target=%x len=%d\n", target,
   1083  1.9.4.1       mjf 	    len));
   1084      1.1    simonb 
   1085  1.9.4.1       mjf 	/* copy data to pre-allocated DMA-safe memory */
   1086  1.9.4.1       mjf 	memcpy(dma->vaddr, data, len);
   1087  1.9.4.1       mjf 	bus_dmamap_sync(dma->tag, dma->map, 0, len, BUS_DMASYNC_PREWRITE);
   1088  1.9.4.1       mjf 
   1089  1.9.4.1       mjf 	/* setup Tx descriptor */
   1090  1.9.4.1       mjf 	memset(&desc, 0, sizeof desc);
   1091  1.9.4.1       mjf 	desc.flags = htole32(WPI_PAD32(len) << 28 | 1 << 24);
   1092  1.9.4.1       mjf 	desc.segs[0].addr = htole32(dma->paddr);
   1093  1.9.4.1       mjf 	desc.segs[0].len  = htole32(len);
   1094      1.1    simonb 
   1095  1.9.4.1       mjf 	/* tell adapter where to copy data in its internal memory */
   1096  1.9.4.1       mjf 	WPI_WRITE(sc, WPI_FW_TARGET, target);
   1097      1.1    simonb 
   1098  1.9.4.1       mjf 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
   1099      1.1    simonb 
   1100  1.9.4.1       mjf 	/* copy Tx descriptor into NIC memory */
   1101  1.9.4.1       mjf 	WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
   1102  1.9.4.1       mjf 	    sizeof desc / sizeof (uint32_t));
   1103      1.1    simonb 
   1104  1.9.4.1       mjf 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
   1105  1.9.4.1       mjf 	WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
   1106  1.9.4.1       mjf 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
   1107  1.9.4.1       mjf 
   1108  1.9.4.1       mjf 	/* wait while the adapter transfers the block */
   1109  1.9.4.1       mjf 	for (ntries = 0; ntries < 100; ntries++) {
   1110  1.9.4.1       mjf 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
   1111  1.9.4.1       mjf 			break;
   1112  1.9.4.1       mjf 		DELAY(1000);
   1113  1.9.4.1       mjf 	}
   1114  1.9.4.1       mjf 	if (ntries == 100) {
   1115  1.9.4.1       mjf 		aprint_error("%s: timeout transferring firmware segment\n",
   1116  1.9.4.1       mjf 		    sc->sc_dev.dv_xname);
   1117  1.9.4.1       mjf 		error = ETIMEDOUT;
   1118  1.9.4.1       mjf 	}
   1119  1.9.4.1       mjf 
   1120  1.9.4.1       mjf 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
   1121  1.9.4.1       mjf 
   1122  1.9.4.1       mjf 	return error;
   1123      1.1    simonb }
   1124      1.1    simonb 
   1125      1.1    simonb static int
   1126  1.9.4.1       mjf wpi_load_firmware(struct wpi_softc *sc)
   1127      1.1    simonb {
   1128  1.9.4.1       mjf 	struct wpi_dma_info *dma = &sc->fw_dma;
   1129  1.9.4.1       mjf 	struct wpi_firmware_hdr hdr;
   1130  1.9.4.1       mjf 	const uint8_t *boot_text, *boot_data, *main_text, *main_data;
   1131  1.9.4.1       mjf 	uint32_t main_textsz, main_datasz, boot_textsz, boot_datasz;
   1132  1.9.4.1       mjf 	firmware_handle_t fw;
   1133  1.9.4.1       mjf 	u_char *dfw;
   1134  1.9.4.1       mjf 	size_t size;
   1135  1.9.4.1       mjf 	uint32_t tmp;
   1136  1.9.4.1       mjf 	int error;
   1137      1.1    simonb 
   1138  1.9.4.1       mjf 	/* load firmware image from disk */
   1139  1.9.4.1       mjf 	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
   1140  1.9.4.1       mjf 		aprint_error("%s: could not read firmware file\n",
   1141  1.9.4.1       mjf 		    sc->sc_dev.dv_xname);
   1142      1.1    simonb 		goto fail1;
   1143      1.1    simonb 	}
   1144  1.9.4.1       mjf 
   1145  1.9.4.1       mjf 	size = firmware_get_size(fw);
   1146      1.1    simonb 
   1147  1.9.4.1       mjf 	/* extract firmware header information */
   1148  1.9.4.1       mjf 	if (size < sizeof (struct wpi_firmware_hdr)) {
   1149  1.9.4.1       mjf 		aprint_error("%s: truncated firmware header: %zu bytes\n",
   1150  1.9.4.1       mjf 		    sc->sc_dev.dv_xname, size);
   1151  1.9.4.1       mjf 		error = EINVAL;
   1152  1.9.4.1       mjf 		goto fail2;
   1153  1.9.4.1       mjf 	}
   1154  1.9.4.1       mjf 
   1155  1.9.4.1       mjf 	if ((error = firmware_read(fw, 0, &hdr,
   1156  1.9.4.1       mjf 		sizeof (struct wpi_firmware_hdr))) != 0) {
   1157  1.9.4.1       mjf 		aprint_error("%s: can't get firmware header\n",
   1158      1.1    simonb 			sc->sc_dev.dv_xname);
   1159      1.1    simonb 		goto fail2;
   1160      1.1    simonb 	}
   1161      1.1    simonb 
   1162  1.9.4.1       mjf 	main_textsz = le32toh(hdr.main_textsz);
   1163  1.9.4.1       mjf 	main_datasz = le32toh(hdr.main_datasz);
   1164  1.9.4.1       mjf 	boot_textsz = le32toh(hdr.boot_textsz);
   1165  1.9.4.1       mjf 	boot_datasz = le32toh(hdr.boot_datasz);
   1166  1.9.4.1       mjf 
   1167  1.9.4.1       mjf 	/* sanity-check firmware header */
   1168  1.9.4.1       mjf 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ) {
   1169  1.9.4.1       mjf 		aprint_error("%s: main .text segment too large: %u bytes\n",
   1170  1.9.4.1       mjf 		    sc->sc_dev.dv_xname, main_textsz);
   1171  1.9.4.1       mjf 		error = EINVAL;
   1172  1.9.4.1       mjf 		goto fail2;
   1173  1.9.4.1       mjf 	}
   1174  1.9.4.1       mjf 	if (main_datasz > WPI_FW_MAIN_DATA_MAXSZ) {
   1175  1.9.4.1       mjf 		aprint_error("%s: main .data segment too large: %u bytes\n",
   1176  1.9.4.1       mjf 		    sc->sc_dev.dv_xname, main_datasz);
   1177  1.9.4.1       mjf 		error = EINVAL;
   1178  1.9.4.1       mjf 		goto fail2;
   1179  1.9.4.1       mjf 	}
   1180  1.9.4.1       mjf 	if (boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ) {
   1181  1.9.4.1       mjf 		aprint_error("%s: boot .text segment too large: %u bytes\n",
   1182  1.9.4.1       mjf 		    sc->sc_dev.dv_xname, boot_textsz);
   1183  1.9.4.1       mjf 		error = EINVAL;
   1184  1.9.4.1       mjf 		goto fail2;
   1185  1.9.4.1       mjf 	}
   1186  1.9.4.1       mjf 	if (boot_datasz > WPI_FW_BOOT_DATA_MAXSZ) {
   1187  1.9.4.1       mjf 		aprint_error("%s: boot .data segment too large: %u bytes\n",
   1188  1.9.4.1       mjf 		    sc->sc_dev.dv_xname, boot_datasz);
   1189  1.9.4.1       mjf 		error = EINVAL;
   1190  1.9.4.1       mjf 		goto fail2;
   1191  1.9.4.1       mjf 	}
   1192  1.9.4.1       mjf 
   1193  1.9.4.1       mjf 	/* check that all firmware segments are present */
   1194  1.9.4.1       mjf 	if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
   1195  1.9.4.1       mjf 	    main_datasz + boot_textsz + boot_datasz) {
   1196  1.9.4.1       mjf 		aprint_error("%s: firmware file too short: %zu bytes\n",
   1197  1.9.4.1       mjf 		    sc->sc_dev.dv_xname, size);
   1198  1.9.4.1       mjf 		error = EINVAL;
   1199  1.9.4.1       mjf 		goto fail2;
   1200  1.9.4.1       mjf 	}
   1201  1.9.4.1       mjf 
   1202  1.9.4.1       mjf 	dfw = firmware_malloc(size);
   1203  1.9.4.1       mjf 	if (dfw == NULL) {
   1204  1.9.4.1       mjf 		aprint_error("%s: not enough memory to stock firmware\n",
   1205      1.1    simonb 			sc->sc_dev.dv_xname);
   1206  1.9.4.1       mjf 		error = ENOMEM;
   1207  1.9.4.1       mjf 		goto fail2;
   1208      1.1    simonb 	}
   1209      1.1    simonb 
   1210  1.9.4.1       mjf 	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
   1211  1.9.4.1       mjf 		aprint_error("%s: can't get firmware\n",
   1212      1.1    simonb 			sc->sc_dev.dv_xname);
   1213  1.9.4.1       mjf 		goto fail2;
   1214      1.1    simonb 	}
   1215      1.1    simonb 
   1216  1.9.4.1       mjf 	/* get pointers to firmware segments */
   1217  1.9.4.1       mjf 	main_text = dfw + sizeof (struct wpi_firmware_hdr);
   1218  1.9.4.1       mjf 	main_data = main_text + main_textsz;
   1219  1.9.4.1       mjf 	boot_text = main_data + main_datasz;
   1220  1.9.4.1       mjf 	boot_data = boot_text + boot_textsz;
   1221      1.1    simonb 
   1222  1.9.4.1       mjf 	/* load firmware boot .data segment into NIC */
   1223  1.9.4.1       mjf 	error = wpi_load_segment(sc, WPI_FW_DATA, boot_data, boot_datasz);
   1224  1.9.4.1       mjf 	if (error != 0) {
   1225  1.9.4.1       mjf 		aprint_error("%s: could not load firmware boot .data segment\n",
   1226  1.9.4.1       mjf 		    sc->sc_dev.dv_xname);
   1227  1.9.4.1       mjf 		goto fail3;
   1228  1.9.4.1       mjf 	}
   1229      1.1    simonb 
   1230  1.9.4.1       mjf 	/* load firmware boot .text segment into NIC */
   1231  1.9.4.1       mjf 	error = wpi_load_segment(sc, WPI_FW_TEXT, boot_text, boot_textsz);
   1232  1.9.4.1       mjf 	if (error != 0) {
   1233  1.9.4.1       mjf 		aprint_error("%s: could not load firmware boot .text segment\n",
   1234  1.9.4.1       mjf 		    sc->sc_dev.dv_xname);
   1235  1.9.4.1       mjf 		goto fail3;
   1236      1.1    simonb 	}
   1237      1.1    simonb 
   1238  1.9.4.1       mjf 	/* copy firmware runtime into pre-allocated DMA-safe memory */
   1239  1.9.4.1       mjf 	memcpy(dma->vaddr, main_text, main_textsz);
   1240  1.9.4.1       mjf 	memcpy((uint8_t*)dma->vaddr + main_textsz, main_data, main_datasz);
   1241  1.9.4.1       mjf 	bus_dmamap_sync(dma->tag, dma->map, 0, main_textsz + main_datasz,
   1242  1.9.4.1       mjf 	    BUS_DMASYNC_PREWRITE);
   1243  1.9.4.1       mjf 
   1244  1.9.4.1       mjf 	/* tell adapter where to find firmware runtime */
   1245      1.1    simonb 	wpi_mem_lock(sc);
   1246  1.9.4.1       mjf 	wpi_mem_write(sc, WPI_MEM_MAIN_TEXT_BASE, dma->paddr);
   1247  1.9.4.1       mjf 	wpi_mem_write(sc, WPI_MEM_MAIN_TEXT_SIZE, main_textsz);
   1248  1.9.4.1       mjf 	wpi_mem_write(sc, WPI_MEM_MAIN_DATA_BASE, dma->paddr + main_textsz);
   1249  1.9.4.1       mjf 	wpi_mem_write(sc, WPI_MEM_MAIN_DATA_SIZE, main_datasz);
   1250  1.9.4.1       mjf 	wpi_mem_unlock(sc);
   1251      1.1    simonb 
   1252  1.9.4.1       mjf 	/* now press "execute" ;-) */
   1253  1.9.4.1       mjf 	tmp = WPI_READ(sc, WPI_RESET);
   1254  1.9.4.1       mjf 	tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
   1255  1.9.4.1       mjf 	WPI_WRITE(sc, WPI_RESET, tmp);
   1256      1.1    simonb 
   1257  1.9.4.1       mjf 	/* ..and wait at most one second for adapter to initialize */
   1258  1.9.4.1       mjf 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1259  1.9.4.1       mjf 		/* this isn't what was supposed to happen.. */
   1260  1.9.4.1       mjf 		aprint_error("%s: timeout waiting for adapter to initialize\n",
   1261  1.9.4.1       mjf 		    sc->sc_dev.dv_xname);
   1262  1.9.4.1       mjf 	}
   1263      1.1    simonb 
   1264  1.9.4.1       mjf fail3: 	firmware_free(dfw,size);
   1265  1.9.4.1       mjf fail2:	firmware_close(fw);
   1266  1.9.4.1       mjf fail1:	return error;
   1267  1.9.4.1       mjf }
   1268      1.1    simonb 
   1269  1.9.4.1       mjf static void
   1270  1.9.4.1       mjf wpi_calib_timeout(void *arg)
   1271  1.9.4.1       mjf {
   1272  1.9.4.1       mjf 	struct wpi_softc *sc = arg;
   1273  1.9.4.1       mjf 	struct ieee80211com *ic = &sc->sc_ic;
   1274  1.9.4.1       mjf 	int temp, s;
   1275      1.1    simonb 
   1276  1.9.4.1       mjf 	/* automatic rate control triggered every 500ms */
   1277  1.9.4.1       mjf 	if (ic->ic_fixed_rate == -1) {
   1278  1.9.4.1       mjf 		s = splnet();
   1279  1.9.4.1       mjf 		if (ic->ic_opmode == IEEE80211_M_STA)
   1280  1.9.4.1       mjf 			wpi_iter_func(sc, ic->ic_bss);
   1281  1.9.4.1       mjf 		else
   1282  1.9.4.1       mjf                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1283  1.9.4.1       mjf 		splx(s);
   1284      1.1    simonb 	}
   1285  1.9.4.1       mjf 
   1286  1.9.4.1       mjf 	/* update sensor data */
   1287  1.9.4.1       mjf 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1288  1.9.4.1       mjf 
   1289  1.9.4.1       mjf 	/* automatic power calibration every 60s */
   1290  1.9.4.1       mjf 	if (++sc->calib_cnt >= 120) {
   1291  1.9.4.1       mjf 		wpi_power_calibration(sc, temp);
   1292  1.9.4.1       mjf 		sc->calib_cnt = 0;
   1293      1.1    simonb 	}
   1294      1.1    simonb 
   1295  1.9.4.1       mjf 	callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
   1296  1.9.4.1       mjf }
   1297      1.1    simonb 
   1298  1.9.4.1       mjf static void
   1299  1.9.4.1       mjf wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1300  1.9.4.1       mjf {
   1301  1.9.4.1       mjf 	struct wpi_softc *sc = arg;
   1302  1.9.4.1       mjf 	struct wpi_node *wn = (struct wpi_node *)ni;
   1303      1.1    simonb 
   1304  1.9.4.1       mjf 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1305  1.9.4.1       mjf }
   1306  1.9.4.1       mjf 
   1307  1.9.4.1       mjf /*
   1308  1.9.4.1       mjf  * This function is called periodically (every 60 seconds) to adjust output
   1309  1.9.4.1       mjf  * power to temperature changes.
   1310  1.9.4.1       mjf  */
   1311  1.9.4.1       mjf void
   1312  1.9.4.1       mjf wpi_power_calibration(struct wpi_softc *sc, int temp)
   1313  1.9.4.1       mjf {
   1314  1.9.4.1       mjf 	/* sanity-check read value */
   1315  1.9.4.1       mjf 	if (temp < -260 || temp > 25) {
   1316  1.9.4.1       mjf 		/* this can't be correct, ignore */
   1317  1.9.4.1       mjf 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1318  1.9.4.1       mjf 		return;
   1319  1.9.4.1       mjf 	}
   1320  1.9.4.1       mjf 
   1321  1.9.4.1       mjf 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1322  1.9.4.1       mjf 
   1323  1.9.4.1       mjf 	/* adjust Tx power if need be */
   1324  1.9.4.1       mjf 	if (abs(temp - sc->temp) <= 6)
   1325  1.9.4.1       mjf 		return;
   1326  1.9.4.1       mjf 
   1327  1.9.4.1       mjf 	sc->temp = temp;
   1328  1.9.4.1       mjf 
   1329  1.9.4.1       mjf 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
   1330  1.9.4.1       mjf 		/* just warn, too bad for the automatic calibration... */
   1331  1.9.4.1       mjf 		aprint_error("%s: could not adjust Tx power\n",
   1332  1.9.4.1       mjf 		    sc->sc_dev.dv_xname);
   1333  1.9.4.1       mjf 	}
   1334      1.1    simonb }
   1335      1.1    simonb 
   1336      1.1    simonb static void
   1337      1.1    simonb wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1338      1.1    simonb 	struct wpi_rx_data *data)
   1339      1.1    simonb {
   1340      1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   1341      1.1    simonb 	struct ifnet *ifp = ic->ic_ifp;
   1342      1.1    simonb 	struct wpi_rx_ring *ring = &sc->rxq;
   1343      1.1    simonb 	struct wpi_rx_stat *stat;
   1344      1.1    simonb 	struct wpi_rx_head *head;
   1345      1.1    simonb 	struct wpi_rx_tail *tail;
   1346      1.7  degroote 	struct wpi_rbuf *rbuf;
   1347      1.1    simonb 	struct ieee80211_frame *wh;
   1348      1.1    simonb 	struct ieee80211_node *ni;
   1349      1.1    simonb 	struct mbuf *m, *mnew;
   1350      1.1    simonb 
   1351      1.1    simonb 	stat = (struct wpi_rx_stat *)(desc + 1);
   1352      1.1    simonb 
   1353      1.1    simonb 	if (stat->len > WPI_STAT_MAXLEN) {
   1354      1.1    simonb 		aprint_error("%s: invalid rx statistic header\n",
   1355      1.1    simonb 			sc->sc_dev.dv_xname);
   1356      1.1    simonb 		ifp->if_ierrors++;
   1357      1.1    simonb 		return;
   1358      1.1    simonb 	}
   1359      1.1    simonb 
   1360      1.9  christos 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1361      1.9  christos 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1362      1.1    simonb 
   1363      1.1    simonb 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1364      1.1    simonb 		"chan=%d tstamp=%llu\n", ring->cur, le32toh(desc->len),
   1365      1.1    simonb 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1366      1.1    simonb 		le64toh(tail->tstamp)));
   1367      1.1    simonb 
   1368      1.1    simonb 	/*
   1369      1.1    simonb 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1370      1.1    simonb 	 * to radiotap in monitor mode).
   1371      1.1    simonb 	 */
   1372      1.1    simonb 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1373      1.1    simonb 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
   1374      1.1    simonb 		ifp->if_ierrors++;
   1375      1.1    simonb 		return;
   1376      1.1    simonb 	}
   1377      1.1    simonb 
   1378      1.1    simonb 
   1379      1.1    simonb 
   1380  1.9.4.1       mjf 	/*
   1381  1.9.4.1       mjf 	 * If the number of free entry is too low
   1382  1.9.4.1       mjf 	 * just dup the data->m socket and reuse the same rbuf entry
   1383  1.9.4.1       mjf 	 */
   1384  1.9.4.1       mjf 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
   1385  1.9.4.1       mjf 
   1386  1.9.4.1       mjf 		/* Set length before calling m_dup */
   1387  1.9.4.1       mjf 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
   1388  1.9.4.1       mjf 
   1389  1.9.4.1       mjf 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
   1390  1.9.4.1       mjf 	} else {
   1391      1.1    simonb 
   1392  1.9.4.1       mjf 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1393  1.9.4.1       mjf 		if (mnew == NULL) {
   1394  1.9.4.1       mjf 			ifp->if_ierrors++;
   1395  1.9.4.1       mjf 			return;
   1396  1.9.4.1       mjf 		}
   1397      1.1    simonb 
   1398  1.9.4.1       mjf 		rbuf = wpi_alloc_rbuf(sc);
   1399  1.9.4.1       mjf 		KASSERT(rbuf != NULL);
   1400      1.1    simonb 
   1401  1.9.4.1       mjf  		/* attach Rx buffer to mbuf */
   1402  1.9.4.1       mjf 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1403  1.9.4.1       mjf 		 	rbuf);
   1404  1.9.4.1       mjf 		mnew->m_flags |= M_EXT_RW;
   1405  1.9.4.1       mjf 
   1406  1.9.4.1       mjf 		m = data->m;
   1407  1.9.4.1       mjf 		data->m = mnew;
   1408  1.9.4.1       mjf 
   1409  1.9.4.1       mjf 		/* update Rx descriptor */
   1410  1.9.4.1       mjf 		ring->desc[ring->cur] = htole32(rbuf->paddr);
   1411  1.9.4.1       mjf 	}
   1412      1.1    simonb 
   1413      1.1    simonb 	/* finalize mbuf */
   1414      1.1    simonb 	m->m_pkthdr.rcvif = ifp;
   1415      1.9  christos 	m->m_data = (void *)(head + 1);
   1416      1.1    simonb 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1417      1.1    simonb 
   1418      1.1    simonb #if NBPFILTER > 0
   1419      1.1    simonb 	if (sc->sc_drvbpf != NULL) {
   1420      1.1    simonb 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1421      1.1    simonb 
   1422      1.1    simonb 		tap->wr_flags = 0;
   1423      1.1    simonb 		tap->wr_chan_freq =
   1424      1.1    simonb 			htole16(ic->ic_channels[head->chan].ic_freq);
   1425      1.1    simonb 		tap->wr_chan_flags =
   1426      1.1    simonb 			htole16(ic->ic_channels[head->chan].ic_flags);
   1427      1.1    simonb 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1428      1.1    simonb 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1429      1.1    simonb 		tap->wr_tsft = tail->tstamp;
   1430      1.1    simonb 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1431      1.1    simonb 		switch (head->rate) {
   1432      1.1    simonb 		/* CCK rates */
   1433      1.1    simonb 		case  10: tap->wr_rate =   2; break;
   1434      1.1    simonb 		case  20: tap->wr_rate =   4; break;
   1435      1.1    simonb 		case  55: tap->wr_rate =  11; break;
   1436      1.1    simonb 		case 110: tap->wr_rate =  22; break;
   1437      1.1    simonb 		/* OFDM rates */
   1438      1.1    simonb 		case 0xd: tap->wr_rate =  12; break;
   1439      1.1    simonb 		case 0xf: tap->wr_rate =  18; break;
   1440      1.1    simonb 		case 0x5: tap->wr_rate =  24; break;
   1441      1.1    simonb 		case 0x7: tap->wr_rate =  36; break;
   1442      1.1    simonb 		case 0x9: tap->wr_rate =  48; break;
   1443      1.1    simonb 		case 0xb: tap->wr_rate =  72; break;
   1444      1.1    simonb 		case 0x1: tap->wr_rate =  96; break;
   1445      1.1    simonb 		case 0x3: tap->wr_rate = 108; break;
   1446      1.1    simonb 		/* unknown rate: should not happen */
   1447      1.1    simonb 		default:  tap->wr_rate =   0;
   1448      1.1    simonb 		}
   1449      1.1    simonb 		if (le16toh(head->flags) & 0x4)
   1450      1.1    simonb 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1451      1.1    simonb 
   1452      1.1    simonb 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1453      1.1    simonb 	}
   1454      1.1    simonb #endif
   1455      1.1    simonb 
   1456      1.1    simonb 	/* grab a reference to the source node */
   1457      1.1    simonb 	wh = mtod(m, struct ieee80211_frame *);
   1458      1.1    simonb 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1459      1.1    simonb 
   1460      1.1    simonb 	/* send the frame to the 802.11 layer */
   1461      1.1    simonb 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1462      1.1    simonb 
   1463      1.1    simonb 	/* release node reference */
   1464      1.1    simonb 	ieee80211_free_node(ni);
   1465      1.1    simonb }
   1466      1.1    simonb 
   1467      1.1    simonb static void
   1468      1.1    simonb wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1469      1.1    simonb {
   1470      1.1    simonb 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1471      1.1    simonb 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1472      1.1    simonb 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
   1473      1.1    simonb 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1474      1.5     joerg 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
   1475      1.1    simonb 
   1476      1.1    simonb 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1477      1.1    simonb 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1478      1.1    simonb 		stat->nkill, stat->rate, le32toh(stat->duration),
   1479      1.1    simonb 		le32toh(stat->status)));
   1480      1.1    simonb 
   1481      1.1    simonb 	/*
   1482      1.1    simonb 	 * Update rate control statistics for the node.
   1483      1.1    simonb 	 * XXX we should not count mgmt frames since they're always sent at
   1484      1.1    simonb 	 * the lowest available bit-rate.
   1485      1.1    simonb 	 */
   1486      1.5     joerg 	wn->amn.amn_txcnt++;
   1487      1.1    simonb 	if (stat->ntries > 0) {
   1488      1.1    simonb 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1489      1.5     joerg 		wn->amn.amn_retrycnt++;
   1490      1.1    simonb 	}
   1491      1.1    simonb 
   1492      1.2     oster 	if ((le32toh(stat->status) & 0xff) != 1)
   1493      1.2     oster 		ifp->if_oerrors++;
   1494      1.2     oster 	else
   1495      1.2     oster 		ifp->if_opackets++;
   1496      1.2     oster 
   1497      1.1    simonb 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
   1498      1.1    simonb 	m_freem(txdata->m);
   1499      1.1    simonb 	txdata->m = NULL;
   1500      1.1    simonb 	ieee80211_free_node(txdata->ni);
   1501      1.1    simonb 	txdata->ni = NULL;
   1502      1.1    simonb 
   1503      1.1    simonb 	ring->queued--;
   1504      1.1    simonb 
   1505      1.1    simonb 	sc->sc_tx_timer = 0;
   1506      1.1    simonb 	ifp->if_flags &= ~IFF_OACTIVE;
   1507      1.1    simonb 	wpi_start(ifp);
   1508      1.1    simonb }
   1509      1.1    simonb 
   1510      1.1    simonb static void
   1511      1.1    simonb wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1512      1.1    simonb {
   1513      1.1    simonb 	struct wpi_tx_ring *ring = &sc->cmdq;
   1514      1.1    simonb 	struct wpi_tx_data *data;
   1515      1.1    simonb 
   1516      1.1    simonb 	if ((desc->qid & 7) != 4)
   1517      1.1    simonb 		return;	/* not a command ack */
   1518      1.1    simonb 
   1519      1.1    simonb 	data = &ring->data[desc->idx];
   1520      1.1    simonb 
   1521      1.1    simonb 	/* if the command was mapped in a mbuf, free it */
   1522      1.1    simonb 	if (data->m != NULL) {
   1523      1.1    simonb 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1524      1.1    simonb 		m_freem(data->m);
   1525      1.1    simonb 		data->m = NULL;
   1526      1.1    simonb 	}
   1527      1.1    simonb 
   1528      1.1    simonb 	wakeup(&ring->cmd[desc->idx]);
   1529      1.1    simonb }
   1530      1.1    simonb 
   1531      1.1    simonb static void
   1532      1.1    simonb wpi_notif_intr(struct wpi_softc *sc)
   1533      1.1    simonb {
   1534      1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   1535      1.7  degroote 	struct ifnet *ifp =  ic->ic_ifp;
   1536      1.1    simonb 	struct wpi_rx_desc *desc;
   1537      1.1    simonb 	struct wpi_rx_data *data;
   1538      1.1    simonb 	uint32_t hw;
   1539      1.1    simonb 
   1540      1.1    simonb 	hw = le32toh(sc->shared->next);
   1541      1.1    simonb 	while (sc->rxq.cur != hw) {
   1542      1.1    simonb 		data = &sc->rxq.data[sc->rxq.cur];
   1543      1.1    simonb 
   1544      1.1    simonb 		desc = mtod(data->m, struct wpi_rx_desc *);
   1545      1.1    simonb 
   1546      1.1    simonb 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1547      1.1    simonb 			"len=%d\n", desc->qid, desc->idx, desc->flags,
   1548      1.1    simonb 			desc->type, le32toh(desc->len)));
   1549      1.1    simonb 
   1550      1.1    simonb 		if (!(desc->qid & 0x80))	/* reply to a command */
   1551      1.1    simonb 			wpi_cmd_intr(sc, desc);
   1552      1.1    simonb 
   1553      1.1    simonb 		switch (desc->type) {
   1554      1.1    simonb 		case WPI_RX_DONE:
   1555      1.1    simonb 			/* a 802.11 frame was received */
   1556      1.1    simonb 			wpi_rx_intr(sc, desc, data);
   1557      1.1    simonb 			break;
   1558      1.1    simonb 
   1559      1.1    simonb 		case WPI_TX_DONE:
   1560      1.1    simonb 			/* a 802.11 frame has been transmitted */
   1561      1.1    simonb 			wpi_tx_intr(sc, desc);
   1562      1.1    simonb 			break;
   1563      1.1    simonb 
   1564      1.1    simonb 		case WPI_UC_READY:
   1565      1.1    simonb 		{
   1566      1.1    simonb 			struct wpi_ucode_info *uc =
   1567      1.1    simonb 				(struct wpi_ucode_info *)(desc + 1);
   1568      1.1    simonb 
   1569      1.1    simonb 			/* the microcontroller is ready */
   1570      1.1    simonb 			DPRINTF(("microcode alive notification version %x "
   1571      1.1    simonb 				"alive %x\n", le32toh(uc->version),
   1572      1.1    simonb 				le32toh(uc->valid)));
   1573      1.1    simonb 
   1574      1.1    simonb 			if (le32toh(uc->valid) != 1) {
   1575      1.1    simonb 				aprint_error("%s: microcontroller "
   1576      1.1    simonb 					"initialization failed\n",
   1577      1.1    simonb 					sc->sc_dev.dv_xname);
   1578      1.1    simonb 			}
   1579      1.1    simonb 			break;
   1580      1.1    simonb 		}
   1581      1.1    simonb 		case WPI_STATE_CHANGED:
   1582      1.1    simonb 		{
   1583      1.1    simonb 			uint32_t *status = (uint32_t *)(desc + 1);
   1584      1.1    simonb 
   1585      1.1    simonb 			/* enabled/disabled notification */
   1586      1.1    simonb 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1587      1.1    simonb 
   1588      1.1    simonb 			if (le32toh(*status) & 1) {
   1589      1.1    simonb 				/* the radio button has to be pushed */
   1590      1.1    simonb 				aprint_error("%s: Radio transmitter is off\n",
   1591      1.1    simonb 					sc->sc_dev.dv_xname);
   1592      1.7  degroote 				/* turn the interface down */
   1593      1.7  degroote 				ifp->if_flags &= ~IFF_UP;
   1594      1.7  degroote 				wpi_stop(ifp, 1);
   1595      1.7  degroote 				return;	/* no further processing */
   1596      1.1    simonb 			}
   1597      1.1    simonb 			break;
   1598      1.1    simonb 		}
   1599      1.1    simonb 		case WPI_START_SCAN:
   1600      1.1    simonb 		{
   1601      1.1    simonb 			struct wpi_start_scan *scan =
   1602      1.1    simonb 				(struct wpi_start_scan *)(desc + 1);
   1603      1.1    simonb 
   1604      1.1    simonb 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1605      1.1    simonb 				scan->chan, le32toh(scan->status)));
   1606      1.1    simonb 
   1607      1.1    simonb 			/* fix current channel */
   1608      1.1    simonb 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   1609      1.1    simonb 			break;
   1610      1.1    simonb 		}
   1611      1.1    simonb 		case WPI_STOP_SCAN:
   1612      1.1    simonb 		{
   1613      1.1    simonb 			struct wpi_stop_scan *scan =
   1614      1.1    simonb 				(struct wpi_stop_scan *)(desc + 1);
   1615      1.1    simonb 
   1616      1.1    simonb 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1617      1.1    simonb 				scan->nchan, scan->status, scan->chan));
   1618      1.1    simonb 
   1619      1.1    simonb 			if (scan->status == 1 && scan->chan <= 14) {
   1620      1.1    simonb 				/*
   1621      1.1    simonb 				 * We just finished scanning 802.11g channels,
   1622      1.1    simonb 				 * start scanning 802.11a ones.
   1623      1.1    simonb 				 */
   1624      1.1    simonb 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
   1625      1.1    simonb 					break;
   1626      1.1    simonb 			}
   1627      1.1    simonb 			ieee80211_end_scan(ic);
   1628      1.1    simonb 			break;
   1629      1.1    simonb 		}
   1630      1.1    simonb 		}
   1631      1.1    simonb 
   1632      1.1    simonb 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1633      1.1    simonb 	}
   1634      1.1    simonb 
   1635      1.1    simonb 	/* tell the firmware what we have processed */
   1636      1.1    simonb 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1637      1.1    simonb 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1638      1.1    simonb }
   1639      1.1    simonb 
   1640      1.1    simonb static int
   1641      1.1    simonb wpi_intr(void *arg)
   1642      1.1    simonb {
   1643      1.1    simonb 	struct wpi_softc *sc = arg;
   1644      1.7  degroote 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1645      1.1    simonb 	uint32_t r;
   1646      1.1    simonb 
   1647      1.1    simonb 	r = WPI_READ(sc, WPI_INTR);
   1648      1.1    simonb 	if (r == 0 || r == 0xffffffff)
   1649      1.1    simonb 		return 0;	/* not for us */
   1650      1.1    simonb 
   1651      1.1    simonb 	DPRINTFN(5, ("interrupt reg %x\n", r));
   1652      1.1    simonb 
   1653      1.1    simonb 	/* disable interrupts */
   1654      1.1    simonb 	WPI_WRITE(sc, WPI_MASK, 0);
   1655      1.1    simonb 	/* ack interrupts */
   1656      1.1    simonb 	WPI_WRITE(sc, WPI_INTR, r);
   1657      1.1    simonb 
   1658      1.1    simonb 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1659      1.1    simonb 		aprint_error("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
   1660      1.1    simonb 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
   1661      1.7  degroote 		wpi_stop(sc->sc_ic.ic_ifp, 1);
   1662      1.1    simonb 		return 1;
   1663      1.1    simonb 	}
   1664      1.1    simonb 
   1665      1.1    simonb 	if (r & WPI_RX_INTR)
   1666      1.1    simonb 		wpi_notif_intr(sc);
   1667      1.1    simonb 
   1668      1.1    simonb 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1669      1.1    simonb 		wakeup(sc);
   1670      1.1    simonb 
   1671      1.1    simonb 	/* re-enable interrupts */
   1672      1.7  degroote 	if (ifp->if_flags & IFF_UP)
   1673      1.7  degroote 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1674      1.1    simonb 
   1675      1.1    simonb 	return 1;
   1676      1.1    simonb }
   1677      1.1    simonb 
   1678      1.1    simonb static uint8_t
   1679      1.1    simonb wpi_plcp_signal(int rate)
   1680      1.1    simonb {
   1681      1.1    simonb 	switch (rate) {
   1682      1.1    simonb 	/* CCK rates (returned values are device-dependent) */
   1683      1.1    simonb 	case 2:		return 10;
   1684      1.1    simonb 	case 4:		return 20;
   1685      1.1    simonb 	case 11:	return 55;
   1686      1.1    simonb 	case 22:	return 110;
   1687      1.1    simonb 
   1688      1.1    simonb 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1689      1.1    simonb 	/* R1-R4, (u)ral is R4-R1 */
   1690      1.1    simonb 	case 12:	return 0xd;
   1691      1.1    simonb 	case 18:	return 0xf;
   1692      1.1    simonb 	case 24:	return 0x5;
   1693      1.1    simonb 	case 36:	return 0x7;
   1694      1.1    simonb 	case 48:	return 0x9;
   1695      1.1    simonb 	case 72:	return 0xb;
   1696      1.1    simonb 	case 96:	return 0x1;
   1697      1.1    simonb 	case 108:	return 0x3;
   1698      1.1    simonb 
   1699      1.1    simonb 	/* unsupported rates (should not get there) */
   1700      1.1    simonb 	default:	return 0;
   1701      1.1    simonb 	}
   1702      1.1    simonb }
   1703      1.1    simonb 
   1704      1.1    simonb /* quickly determine if a given rate is CCK or OFDM */
   1705      1.1    simonb #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1706      1.1    simonb 
   1707      1.1    simonb static int
   1708      1.1    simonb wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1709      1.1    simonb 	int ac)
   1710      1.1    simonb {
   1711      1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   1712      1.1    simonb 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1713      1.1    simonb 	struct wpi_tx_desc *desc;
   1714      1.1    simonb 	struct wpi_tx_data *data;
   1715      1.1    simonb 	struct wpi_tx_cmd *cmd;
   1716      1.1    simonb 	struct wpi_cmd_data *tx;
   1717      1.1    simonb 	struct ieee80211_frame *wh;
   1718      1.1    simonb 	struct ieee80211_key *k;
   1719      1.1    simonb 	const struct chanAccParams *cap;
   1720      1.1    simonb 	struct mbuf *mnew;
   1721      1.1    simonb 	int i, error, rate, hdrlen, noack = 0;
   1722      1.1    simonb 
   1723      1.1    simonb 	desc = &ring->desc[ring->cur];
   1724      1.1    simonb 	data = &ring->data[ring->cur];
   1725      1.1    simonb 
   1726      1.1    simonb 	wh = mtod(m0, struct ieee80211_frame *);
   1727      1.1    simonb 
   1728      1.1    simonb 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   1729      1.1    simonb 		hdrlen = sizeof (struct ieee80211_qosframe);
   1730      1.1    simonb 		cap = &ic->ic_wme.wme_chanParams;
   1731      1.1    simonb 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1732      1.1    simonb 	} else
   1733      1.1    simonb 		hdrlen = sizeof (struct ieee80211_frame);
   1734      1.1    simonb 
   1735      1.1    simonb 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1736      1.1    simonb 		k = ieee80211_crypto_encap(ic, ni, m0);
   1737      1.1    simonb 		if (k == NULL) {
   1738      1.1    simonb 			m_freem(m0);
   1739      1.1    simonb 			return ENOBUFS;
   1740      1.1    simonb 		}
   1741      1.1    simonb 
   1742      1.1    simonb 		/* packet header may have moved, reset our local pointer */
   1743      1.1    simonb 		wh = mtod(m0, struct ieee80211_frame *);
   1744      1.1    simonb 	}
   1745      1.1    simonb 
   1746      1.1    simonb 	/* pickup a rate */
   1747      1.1    simonb 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1748      1.1    simonb 		IEEE80211_FC0_TYPE_MGT) {
   1749      1.1    simonb 		/* mgmt frames are sent at the lowest available bit-rate */
   1750      1.1    simonb 		rate = ni->ni_rates.rs_rates[0];
   1751      1.1    simonb 	} else {
   1752      1.1    simonb 		if (ic->ic_fixed_rate != -1) {
   1753      1.1    simonb 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1754      1.1    simonb 				rs_rates[ic->ic_fixed_rate];
   1755      1.1    simonb 		} else
   1756      1.1    simonb 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1757      1.1    simonb 	}
   1758      1.1    simonb 	rate &= IEEE80211_RATE_VAL;
   1759      1.1    simonb 
   1760      1.1    simonb 
   1761      1.1    simonb #if NBPFILTER > 0
   1762      1.1    simonb 	if (sc->sc_drvbpf != NULL) {
   1763      1.1    simonb 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1764      1.1    simonb 
   1765      1.1    simonb 		tap->wt_flags = 0;
   1766      1.1    simonb 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1767      1.1    simonb 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1768      1.1    simonb 		tap->wt_rate = rate;
   1769      1.1    simonb 		tap->wt_hwqueue = ac;
   1770      1.1    simonb 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1771      1.1    simonb 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1772      1.1    simonb 
   1773      1.1    simonb 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1774      1.1    simonb 	}
   1775      1.1    simonb #endif
   1776      1.1    simonb 
   1777      1.1    simonb 	cmd = &ring->cmd[ring->cur];
   1778      1.1    simonb 	cmd->code = WPI_CMD_TX_DATA;
   1779      1.1    simonb 	cmd->flags = 0;
   1780      1.1    simonb 	cmd->qid = ring->qid;
   1781      1.1    simonb 	cmd->idx = ring->cur;
   1782      1.1    simonb 
   1783      1.1    simonb 	tx = (struct wpi_cmd_data *)cmd->data;
   1784      1.1    simonb 	tx->flags = 0;
   1785      1.1    simonb 
   1786      1.1    simonb 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1787      1.1    simonb 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1788      1.7  degroote 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1789      1.7  degroote 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1790      1.1    simonb 
   1791      1.1    simonb 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1792      1.1    simonb 
   1793      1.7  degroote 	/* retrieve destination node's id */
   1794      1.7  degroote 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1795      1.7  degroote 		WPI_ID_BSS;
   1796      1.7  degroote 
   1797      1.1    simonb 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1798      1.1    simonb 		IEEE80211_FC0_TYPE_MGT) {
   1799      1.1    simonb 		/* tell h/w to set timestamp in probe responses */
   1800      1.1    simonb 		if ((wh->i_fc[0] &
   1801      1.1    simonb 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1802      1.1    simonb 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1803      1.1    simonb 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1804      1.1    simonb 
   1805      1.1    simonb 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1806      1.1    simonb 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1807      1.1    simonb 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1808      1.1    simonb 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1809      1.1    simonb 			tx->timeout = htole16(3);
   1810      1.1    simonb 		else
   1811      1.1    simonb 			tx->timeout = htole16(2);
   1812      1.1    simonb 	} else
   1813      1.1    simonb 		tx->timeout = htole16(0);
   1814      1.1    simonb 
   1815      1.1    simonb 	tx->rate = wpi_plcp_signal(rate);
   1816      1.1    simonb 
   1817      1.1    simonb 	/* be very persistant at sending frames out */
   1818      1.1    simonb 	tx->rts_ntries = 7;
   1819      1.1    simonb 	tx->data_ntries = 15;
   1820      1.1    simonb 
   1821      1.1    simonb 	tx->ofdm_mask = 0xff;
   1822      1.1    simonb 	tx->cck_mask = 0xf;
   1823  1.9.4.1       mjf 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   1824      1.1    simonb 
   1825      1.1    simonb 	tx->len = htole16(m0->m_pkthdr.len);
   1826      1.1    simonb 
   1827      1.1    simonb 	/* save and trim IEEE802.11 header */
   1828      1.9  christos 	m_copydata(m0, 0, hdrlen, (void *)&tx->wh);
   1829      1.1    simonb 	m_adj(m0, hdrlen);
   1830      1.1    simonb 
   1831      1.1    simonb 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1832      1.1    simonb 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1833      1.1    simonb 	if (error != 0 && error != EFBIG) {
   1834      1.1    simonb 		aprint_error("%s: could not map mbuf (error %d)\n",
   1835      1.1    simonb 			sc->sc_dev.dv_xname, error);
   1836      1.1    simonb 		m_freem(m0);
   1837      1.1    simonb 		return error;
   1838      1.1    simonb 	}
   1839      1.1    simonb 	if (error != 0) {
   1840      1.1    simonb 		/* too many fragments, linearize */
   1841      1.1    simonb 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1842      1.1    simonb 		if (mnew == NULL) {
   1843      1.1    simonb 			m_freem(m0);
   1844      1.1    simonb 			return ENOMEM;
   1845      1.1    simonb 		}
   1846      1.1    simonb 
   1847      1.1    simonb 		M_COPY_PKTHDR(mnew, m0);
   1848      1.1    simonb 		if (m0->m_pkthdr.len > MHLEN) {
   1849      1.1    simonb 			MCLGET(mnew, M_DONTWAIT);
   1850      1.1    simonb 			if (!(mnew->m_flags & M_EXT)) {
   1851      1.1    simonb 				m_freem(m0);
   1852      1.1    simonb 				m_freem(mnew);
   1853      1.1    simonb 				return ENOMEM;
   1854      1.1    simonb 			}
   1855      1.1    simonb 		}
   1856      1.1    simonb 
   1857      1.9  christos 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1858      1.1    simonb 		m_freem(m0);
   1859      1.1    simonb 		mnew->m_len = mnew->m_pkthdr.len;
   1860      1.1    simonb 		m0 = mnew;
   1861      1.1    simonb 
   1862      1.1    simonb 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1863      1.1    simonb 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1864      1.1    simonb 		if (error != 0) {
   1865      1.1    simonb 			aprint_error("%s: could not map mbuf (error %d)\n",
   1866      1.1    simonb 				sc->sc_dev.dv_xname, error);
   1867      1.1    simonb 			m_freem(m0);
   1868      1.1    simonb 			return error;
   1869      1.1    simonb 		}
   1870      1.1    simonb 	}
   1871      1.1    simonb 
   1872      1.1    simonb 	data->m = m0;
   1873      1.1    simonb 	data->ni = ni;
   1874      1.1    simonb 
   1875      1.1    simonb 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   1876      1.1    simonb 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   1877      1.1    simonb 
   1878      1.1    simonb 	/* first scatter/gather segment is used by the tx data command */
   1879      1.1    simonb 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   1880      1.1    simonb 		(1 + data->map->dm_nsegs) << 24);
   1881      1.1    simonb 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   1882      1.1    simonb 		ring->cur * sizeof (struct wpi_tx_cmd));
   1883      1.1    simonb 	/*XXX The next line might be wrong. I don't use hdrlen*/
   1884      1.1    simonb 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
   1885      1.1    simonb 
   1886      1.1    simonb 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   1887      1.1    simonb 		desc->segs[i].addr =
   1888      1.1    simonb 			htole32(data->map->dm_segs[i - 1].ds_addr);
   1889      1.1    simonb 		desc->segs[i].len  =
   1890      1.1    simonb 			htole32(data->map->dm_segs[i - 1].ds_len);
   1891      1.1    simonb 	}
   1892      1.1    simonb 
   1893      1.1    simonb 	ring->queued++;
   1894      1.1    simonb 
   1895      1.1    simonb 	/* kick ring */
   1896      1.1    simonb 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   1897      1.1    simonb 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   1898      1.1    simonb 
   1899      1.1    simonb 	return 0;
   1900      1.1    simonb }
   1901      1.1    simonb 
   1902      1.1    simonb static void
   1903      1.1    simonb wpi_start(struct ifnet *ifp)
   1904      1.1    simonb {
   1905      1.1    simonb 	struct wpi_softc *sc = ifp->if_softc;
   1906      1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   1907      1.1    simonb 	struct ieee80211_node *ni;
   1908      1.1    simonb 	struct ether_header *eh;
   1909      1.1    simonb 	struct mbuf *m0;
   1910      1.1    simonb 	int ac;
   1911      1.1    simonb 
   1912      1.1    simonb 	/*
   1913      1.1    simonb 	 * net80211 may still try to send management frames even if the
   1914      1.1    simonb 	 * IFF_RUNNING flag is not set...
   1915      1.1    simonb 	 */
   1916      1.1    simonb 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1917      1.1    simonb 		return;
   1918      1.1    simonb 
   1919      1.1    simonb 	for (;;) {
   1920      1.1    simonb 		IF_POLL(&ic->ic_mgtq, m0);
   1921      1.1    simonb 		if (m0 != NULL) {
   1922      1.1    simonb 			IF_DEQUEUE(&ic->ic_mgtq, m0);
   1923      1.1    simonb 
   1924      1.1    simonb 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   1925      1.1    simonb 			m0->m_pkthdr.rcvif = NULL;
   1926      1.1    simonb 
   1927      1.1    simonb 			/* management frames go into ring 0 */
   1928      1.1    simonb 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   1929      1.1    simonb 				ifp->if_oerrors++;
   1930      1.1    simonb 				continue;
   1931      1.1    simonb 			}
   1932      1.1    simonb #if NBPFILTER > 0
   1933      1.1    simonb 			if (ic->ic_rawbpf != NULL)
   1934      1.1    simonb 				bpf_mtap(ic->ic_rawbpf, m0);
   1935      1.1    simonb #endif
   1936      1.1    simonb 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   1937      1.1    simonb 				ifp->if_oerrors++;
   1938      1.1    simonb 				break;
   1939      1.1    simonb 			}
   1940      1.1    simonb 		} else {
   1941      1.1    simonb 			if (ic->ic_state != IEEE80211_S_RUN)
   1942      1.1    simonb 				break;
   1943      1.7  degroote 			IFQ_POLL(&ifp->if_snd, m0);
   1944      1.1    simonb 			if (m0 == NULL)
   1945      1.1    simonb 				break;
   1946      1.1    simonb 
   1947      1.1    simonb 			if (m0->m_len < sizeof (*eh) &&
   1948      1.1    simonb 			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
   1949      1.1    simonb 				ifp->if_oerrors++;
   1950      1.1    simonb 				continue;
   1951      1.1    simonb 			}
   1952      1.1    simonb 			eh = mtod(m0, struct ether_header *);
   1953      1.1    simonb 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1954      1.1    simonb 			if (ni == NULL) {
   1955      1.1    simonb 				m_freem(m0);
   1956      1.1    simonb 				ifp->if_oerrors++;
   1957      1.1    simonb 				continue;
   1958      1.1    simonb 			}
   1959      1.1    simonb 
   1960      1.1    simonb 			/* classify mbuf so we can find which tx ring to use */
   1961      1.1    simonb 			if (ieee80211_classify(ic, m0, ni) != 0) {
   1962      1.1    simonb 				m_freem(m0);
   1963      1.1    simonb 				ieee80211_free_node(ni);
   1964      1.1    simonb 				ifp->if_oerrors++;
   1965      1.1    simonb 				continue;
   1966      1.1    simonb 			}
   1967      1.1    simonb 
   1968      1.1    simonb 			/* no QoS encapsulation for EAPOL frames */
   1969      1.1    simonb 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   1970      1.1    simonb 			    M_WME_GETAC(m0) : WME_AC_BE;
   1971      1.1    simonb 
   1972      1.1    simonb 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   1973      1.1    simonb 				/* there is no place left in this ring */
   1974      1.1    simonb 				ifp->if_flags |= IFF_OACTIVE;
   1975      1.1    simonb 				break;
   1976      1.1    simonb 			}
   1977      1.7  degroote 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1978      1.1    simonb #if NBPFILTER > 0
   1979      1.1    simonb 			if (ifp->if_bpf != NULL)
   1980      1.1    simonb 				bpf_mtap(ifp->if_bpf, m0);
   1981      1.1    simonb #endif
   1982      1.1    simonb 			m0 = ieee80211_encap(ic, m0, ni);
   1983      1.1    simonb 			if (m0 == NULL) {
   1984      1.1    simonb 				ieee80211_free_node(ni);
   1985      1.1    simonb 				ifp->if_oerrors++;
   1986      1.1    simonb 				continue;
   1987      1.1    simonb 			}
   1988      1.1    simonb #if NBPFILTER > 0
   1989      1.1    simonb 			if (ic->ic_rawbpf != NULL)
   1990      1.1    simonb 				bpf_mtap(ic->ic_rawbpf, m0);
   1991      1.1    simonb #endif
   1992      1.1    simonb 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   1993      1.1    simonb 				ieee80211_free_node(ni);
   1994      1.1    simonb 				ifp->if_oerrors++;
   1995      1.1    simonb 				break;
   1996      1.1    simonb 			}
   1997      1.1    simonb 		}
   1998      1.1    simonb 
   1999      1.1    simonb 		sc->sc_tx_timer = 5;
   2000      1.1    simonb 		ifp->if_timer = 1;
   2001      1.1    simonb 	}
   2002      1.1    simonb }
   2003      1.1    simonb 
   2004      1.1    simonb static void
   2005      1.1    simonb wpi_watchdog(struct ifnet *ifp)
   2006      1.1    simonb {
   2007      1.1    simonb 	struct wpi_softc *sc = ifp->if_softc;
   2008      1.1    simonb 
   2009      1.1    simonb 	ifp->if_timer = 0;
   2010      1.1    simonb 
   2011      1.1    simonb 	if (sc->sc_tx_timer > 0) {
   2012      1.1    simonb 		if (--sc->sc_tx_timer == 0) {
   2013      1.1    simonb 			aprint_error("%s: device timeout\n",
   2014      1.1    simonb 				sc->sc_dev.dv_xname);
   2015      1.1    simonb 			ifp->if_oerrors++;
   2016      1.1    simonb 			ifp->if_flags &= ~IFF_UP;
   2017      1.1    simonb 			wpi_stop(ifp, 1);
   2018      1.1    simonb 			return;
   2019      1.1    simonb 		}
   2020      1.1    simonb 		ifp->if_timer = 1;
   2021      1.1    simonb 	}
   2022      1.1    simonb 
   2023      1.1    simonb 	ieee80211_watchdog(&sc->sc_ic);
   2024      1.1    simonb }
   2025      1.1    simonb 
   2026      1.1    simonb static int
   2027      1.9  christos wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2028      1.1    simonb {
   2029      1.1    simonb #define IS_RUNNING(ifp) \
   2030      1.1    simonb 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2031      1.1    simonb 
   2032      1.1    simonb 	struct wpi_softc *sc = ifp->if_softc;
   2033      1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   2034      1.1    simonb 	struct ifreq *ifr = (struct ifreq *)data;
   2035      1.1    simonb 	int s, error = 0;
   2036      1.1    simonb 
   2037      1.1    simonb 	s = splnet();
   2038      1.1    simonb 
   2039      1.1    simonb 	switch (cmd) {
   2040      1.1    simonb 	case SIOCSIFFLAGS:
   2041      1.1    simonb 		if (ifp->if_flags & IFF_UP) {
   2042      1.1    simonb 			if (!(ifp->if_flags & IFF_RUNNING))
   2043      1.1    simonb 				wpi_init(ifp);
   2044      1.1    simonb 		} else {
   2045      1.1    simonb 			if (ifp->if_flags & IFF_RUNNING)
   2046      1.1    simonb 				wpi_stop(ifp, 1);
   2047      1.1    simonb 		}
   2048      1.1    simonb 		break;
   2049      1.1    simonb 
   2050      1.1    simonb 	case SIOCADDMULTI:
   2051      1.1    simonb 	case SIOCDELMULTI:
   2052      1.1    simonb 		error = (cmd == SIOCADDMULTI) ?
   2053      1.1    simonb 			ether_addmulti(ifr, &sc->sc_ec) :
   2054      1.1    simonb 			ether_delmulti(ifr, &sc->sc_ec);
   2055      1.1    simonb 		if (error == ENETRESET) {
   2056      1.1    simonb 			/* setup multicast filter, etc */
   2057      1.1    simonb 			error = 0;
   2058      1.1    simonb 		}
   2059      1.1    simonb 		break;
   2060      1.1    simonb 
   2061      1.1    simonb 	default:
   2062      1.7  degroote 		error = ieee80211_ioctl(ic, cmd, data);
   2063      1.1    simonb 	}
   2064      1.1    simonb 
   2065      1.1    simonb 	if (error == ENETRESET) {
   2066      1.1    simonb 		if (IS_RUNNING(ifp) &&
   2067      1.1    simonb 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2068      1.1    simonb 			wpi_init(ifp);
   2069      1.1    simonb 		error = 0;
   2070      1.1    simonb 	}
   2071      1.1    simonb 
   2072      1.1    simonb 	splx(s);
   2073      1.1    simonb 	return error;
   2074      1.1    simonb 
   2075      1.1    simonb #undef IS_RUNNING
   2076      1.1    simonb }
   2077      1.1    simonb 
   2078      1.1    simonb /*
   2079      1.1    simonb  * Extract various information from EEPROM.
   2080      1.1    simonb  */
   2081      1.1    simonb static void
   2082      1.1    simonb wpi_read_eeprom(struct wpi_softc *sc)
   2083      1.1    simonb {
   2084      1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   2085  1.9.4.1       mjf 	char domain[4];
   2086      1.1    simonb 	int i;
   2087      1.1    simonb 
   2088  1.9.4.1       mjf 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2089  1.9.4.1       mjf 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2090  1.9.4.1       mjf 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2091  1.9.4.1       mjf 
   2092  1.9.4.1       mjf 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2093  1.9.4.1       mjf 	    sc->type));
   2094  1.9.4.1       mjf 
   2095  1.9.4.1       mjf 	/* read and print regulatory domain */
   2096  1.9.4.1       mjf 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2097  1.9.4.1       mjf 	aprint_normal(", %.4s", domain);
   2098  1.9.4.1       mjf 
   2099  1.9.4.1       mjf 	/* read and print MAC address */
   2100  1.9.4.1       mjf 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2101  1.9.4.1       mjf 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2102  1.9.4.1       mjf 
   2103  1.9.4.1       mjf 	/* read the list of authorized channels */
   2104  1.9.4.1       mjf 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2105  1.9.4.1       mjf 		wpi_read_eeprom_channels(sc, i);
   2106  1.9.4.1       mjf 
   2107  1.9.4.1       mjf 	/* read the list of power groups */
   2108  1.9.4.1       mjf 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2109  1.9.4.1       mjf 		wpi_read_eeprom_group(sc, i);
   2110  1.9.4.1       mjf }
   2111  1.9.4.1       mjf 
   2112  1.9.4.1       mjf static void
   2113  1.9.4.1       mjf wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2114  1.9.4.1       mjf {
   2115  1.9.4.1       mjf 	struct ieee80211com *ic = &sc->sc_ic;
   2116  1.9.4.1       mjf 	const struct wpi_chan_band *band = &wpi_bands[n];
   2117  1.9.4.1       mjf 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2118  1.9.4.1       mjf 	int chan, i;
   2119  1.9.4.1       mjf 
   2120  1.9.4.1       mjf 	wpi_read_prom_data(sc, band->addr, channels,
   2121  1.9.4.1       mjf 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2122  1.9.4.1       mjf 
   2123  1.9.4.1       mjf 	for (i = 0; i < band->nchan; i++) {
   2124  1.9.4.1       mjf 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2125  1.9.4.1       mjf 			continue;
   2126  1.9.4.1       mjf 
   2127  1.9.4.1       mjf 		chan = band->chan[i];
   2128  1.9.4.1       mjf 
   2129  1.9.4.1       mjf 		if (n == 0) {	/* 2GHz band */
   2130  1.9.4.1       mjf 			ic->ic_channels[chan].ic_freq =
   2131  1.9.4.1       mjf 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2132  1.9.4.1       mjf 			ic->ic_channels[chan].ic_flags =
   2133  1.9.4.1       mjf 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2134  1.9.4.1       mjf 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2135  1.9.4.1       mjf 
   2136  1.9.4.1       mjf 		} else {	/* 5GHz band */
   2137  1.9.4.1       mjf 			/*
   2138  1.9.4.1       mjf 			 * Some 3945abg adapters support channels 7, 8, 11
   2139  1.9.4.1       mjf 			 * and 12 in the 2GHz *and* 5GHz bands.
   2140  1.9.4.1       mjf 			 * Because of limitations in our net80211(9) stack,
   2141  1.9.4.1       mjf 			 * we can't support these channels in 5GHz band.
   2142  1.9.4.1       mjf 			 */
   2143  1.9.4.1       mjf 			if (chan <= 14)
   2144  1.9.4.1       mjf 				continue;
   2145  1.9.4.1       mjf 
   2146  1.9.4.1       mjf 			ic->ic_channels[chan].ic_freq =
   2147  1.9.4.1       mjf 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2148  1.9.4.1       mjf 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2149  1.9.4.1       mjf 		}
   2150  1.9.4.1       mjf 
   2151  1.9.4.1       mjf 		/* is active scan allowed on this channel? */
   2152  1.9.4.1       mjf 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2153  1.9.4.1       mjf 			ic->ic_channels[chan].ic_flags |=
   2154  1.9.4.1       mjf 			    IEEE80211_CHAN_PASSIVE;
   2155  1.9.4.1       mjf 		}
   2156  1.9.4.1       mjf 
   2157  1.9.4.1       mjf 		/* save maximum allowed power for this channel */
   2158  1.9.4.1       mjf 		sc->maxpwr[chan] = channels[i].maxpwr;
   2159  1.9.4.1       mjf 
   2160  1.9.4.1       mjf 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2161  1.9.4.1       mjf 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2162  1.9.4.1       mjf 	}
   2163  1.9.4.1       mjf }
   2164  1.9.4.1       mjf 
   2165  1.9.4.1       mjf static void
   2166  1.9.4.1       mjf wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2167  1.9.4.1       mjf {
   2168  1.9.4.1       mjf 	struct wpi_power_group *group = &sc->groups[n];
   2169  1.9.4.1       mjf 	struct wpi_eeprom_group rgroup;
   2170  1.9.4.1       mjf 	int i;
   2171  1.9.4.1       mjf 
   2172  1.9.4.1       mjf 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2173  1.9.4.1       mjf 	    sizeof rgroup);
   2174  1.9.4.1       mjf 
   2175  1.9.4.1       mjf 	/* save power group information */
   2176  1.9.4.1       mjf 	group->chan   = rgroup.chan;
   2177  1.9.4.1       mjf 	group->maxpwr = rgroup.maxpwr;
   2178  1.9.4.1       mjf 	/* temperature at which the samples were taken */
   2179  1.9.4.1       mjf 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2180  1.9.4.1       mjf 
   2181  1.9.4.1       mjf 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2182  1.9.4.1       mjf 	    group->chan, group->maxpwr, group->temp));
   2183  1.9.4.1       mjf 
   2184  1.9.4.1       mjf 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2185  1.9.4.1       mjf 		group->samples[i].index = rgroup.samples[i].index;
   2186  1.9.4.1       mjf 		group->samples[i].power = rgroup.samples[i].power;
   2187  1.9.4.1       mjf 
   2188  1.9.4.1       mjf 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2189  1.9.4.1       mjf 		    group->samples[i].index, group->samples[i].power));
   2190      1.1    simonb 	}
   2191      1.1    simonb }
   2192      1.1    simonb 
   2193      1.1    simonb /*
   2194      1.1    simonb  * Send a command to the firmware.
   2195      1.1    simonb  */
   2196      1.1    simonb static int
   2197      1.1    simonb wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2198      1.1    simonb {
   2199      1.1    simonb 	struct wpi_tx_ring *ring = &sc->cmdq;
   2200      1.1    simonb 	struct wpi_tx_desc *desc;
   2201      1.1    simonb 	struct wpi_tx_cmd *cmd;
   2202      1.1    simonb 
   2203      1.1    simonb 	KASSERT(size <= sizeof cmd->data);
   2204      1.1    simonb 
   2205      1.1    simonb 	desc = &ring->desc[ring->cur];
   2206      1.1    simonb 	cmd = &ring->cmd[ring->cur];
   2207      1.1    simonb 
   2208      1.1    simonb 	cmd->code = code;
   2209      1.1    simonb 	cmd->flags = 0;
   2210      1.1    simonb 	cmd->qid = ring->qid;
   2211      1.1    simonb 	cmd->idx = ring->cur;
   2212      1.1    simonb 	memcpy(cmd->data, buf, size);
   2213      1.1    simonb 
   2214      1.1    simonb 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2215      1.1    simonb 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2216      1.1    simonb 		ring->cur * sizeof (struct wpi_tx_cmd));
   2217      1.1    simonb 	desc->segs[0].len  = htole32(4 + size);
   2218      1.1    simonb 
   2219      1.1    simonb 	/* kick cmd ring */
   2220      1.1    simonb 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2221      1.1    simonb 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2222      1.1    simonb 
   2223      1.1    simonb 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2224      1.1    simonb }
   2225      1.1    simonb 
   2226      1.1    simonb static int
   2227      1.1    simonb wpi_wme_update(struct ieee80211com *ic)
   2228      1.1    simonb {
   2229      1.1    simonb #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2230      1.1    simonb #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2231      1.1    simonb 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2232      1.1    simonb 	const struct wmeParams *wmep;
   2233      1.1    simonb 	struct wpi_wme_setup wme;
   2234      1.1    simonb 	int ac;
   2235      1.1    simonb 
   2236      1.1    simonb 	/* don't override default WME values if WME is not actually enabled */
   2237      1.1    simonb 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2238      1.1    simonb 		return 0;
   2239      1.1    simonb 
   2240      1.1    simonb 	wme.flags = 0;
   2241      1.1    simonb 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2242      1.1    simonb 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2243      1.1    simonb 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2244      1.1    simonb 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2245      1.1    simonb 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2246      1.1    simonb 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2247      1.1    simonb 
   2248      1.1    simonb 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2249      1.1    simonb 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2250      1.1    simonb 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2251      1.1    simonb 	}
   2252      1.1    simonb 
   2253      1.1    simonb 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2254      1.1    simonb #undef WPI_USEC
   2255      1.1    simonb #undef WPI_EXP2
   2256      1.1    simonb }
   2257      1.1    simonb 
   2258      1.1    simonb /*
   2259      1.1    simonb  * Configure h/w multi-rate retries.
   2260      1.1    simonb  */
   2261      1.1    simonb static int
   2262      1.1    simonb wpi_mrr_setup(struct wpi_softc *sc)
   2263      1.1    simonb {
   2264      1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   2265      1.1    simonb 	struct wpi_mrr_setup mrr;
   2266      1.1    simonb 	int i, error;
   2267      1.1    simonb 
   2268      1.1    simonb 	/* CCK rates (not used with 802.11a) */
   2269      1.1    simonb 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2270      1.1    simonb 		mrr.rates[i].flags = 0;
   2271      1.1    simonb 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2272      1.1    simonb 		/* fallback to the immediate lower CCK rate (if any) */
   2273      1.1    simonb 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2274      1.1    simonb 		/* try one time at this rate before falling back to "next" */
   2275      1.1    simonb 		mrr.rates[i].ntries = 1;
   2276      1.1    simonb 	}
   2277      1.1    simonb 
   2278      1.1    simonb 	/* OFDM rates (not used with 802.11b) */
   2279      1.1    simonb 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2280      1.1    simonb 		mrr.rates[i].flags = 0;
   2281      1.1    simonb 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2282      1.1    simonb 		/* fallback to the immediate lower rate (if any) */
   2283      1.1    simonb 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2284      1.1    simonb 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2285      1.1    simonb 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2286      1.1    simonb 			WPI_OFDM6 : WPI_CCK2) :
   2287      1.1    simonb 		    i - 1;
   2288      1.1    simonb 		/* try one time at this rate before falling back to "next" */
   2289      1.1    simonb 		mrr.rates[i].ntries = 1;
   2290      1.1    simonb 	}
   2291      1.1    simonb 
   2292      1.1    simonb 	/* setup MRR for control frames */
   2293      1.1    simonb 	mrr.which = htole32(WPI_MRR_CTL);
   2294  1.9.4.1       mjf 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2295      1.1    simonb 	if (error != 0) {
   2296      1.1    simonb 		aprint_error("%s: could not setup MRR for control frames\n",
   2297      1.1    simonb 			sc->sc_dev.dv_xname);
   2298      1.1    simonb 		return error;
   2299      1.1    simonb 	}
   2300      1.1    simonb 
   2301      1.1    simonb 	/* setup MRR for data frames */
   2302      1.1    simonb 	mrr.which = htole32(WPI_MRR_DATA);
   2303  1.9.4.1       mjf 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2304      1.1    simonb 	if (error != 0) {
   2305      1.1    simonb 		aprint_error("%s: could not setup MRR for data frames\n",
   2306      1.1    simonb 			sc->sc_dev.dv_xname);
   2307      1.1    simonb 		return error;
   2308      1.1    simonb 	}
   2309      1.1    simonb 
   2310      1.1    simonb 	return 0;
   2311      1.1    simonb }
   2312      1.1    simonb 
   2313      1.1    simonb static void
   2314      1.1    simonb wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2315      1.1    simonb {
   2316      1.1    simonb 	struct wpi_cmd_led led;
   2317      1.1    simonb 
   2318      1.1    simonb 	led.which = which;
   2319      1.1    simonb 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2320      1.1    simonb 	led.off = off;
   2321      1.1    simonb 	led.on = on;
   2322      1.1    simonb 
   2323      1.1    simonb 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2324      1.1    simonb }
   2325      1.1    simonb 
   2326      1.1    simonb static void
   2327      1.1    simonb wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2328      1.1    simonb {
   2329      1.1    simonb 	struct wpi_cmd_tsf tsf;
   2330      1.1    simonb 	uint64_t val, mod;
   2331      1.1    simonb 
   2332      1.1    simonb 	memset(&tsf, 0, sizeof tsf);
   2333      1.1    simonb 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
   2334      1.1    simonb 	tsf.bintval = htole16(ni->ni_intval);
   2335      1.1    simonb 	tsf.lintval = htole16(10);
   2336      1.1    simonb 
   2337      1.1    simonb 	/* compute remaining time until next beacon */
   2338      1.1    simonb 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
   2339      1.1    simonb 	mod = le64toh(tsf.tstamp) % val;
   2340      1.1    simonb 	tsf.binitval = htole32((uint32_t)(val - mod));
   2341      1.1    simonb 
   2342      1.1    simonb 	DPRINTF(("TSF bintval=%u tstamp=%llu, init=%u\n",
   2343      1.1    simonb 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2344      1.1    simonb 
   2345      1.1    simonb 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2346      1.1    simonb 		aprint_error("%s: could not enable TSF\n", sc->sc_dev.dv_xname);
   2347      1.1    simonb }
   2348      1.1    simonb 
   2349      1.1    simonb /*
   2350  1.9.4.1       mjf  * Update Tx power to match what is defined for channel `c'.
   2351  1.9.4.1       mjf  */
   2352  1.9.4.1       mjf static int
   2353  1.9.4.1       mjf wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2354  1.9.4.1       mjf {
   2355  1.9.4.1       mjf 	struct ieee80211com *ic = &sc->sc_ic;
   2356  1.9.4.1       mjf 	struct wpi_power_group *group;
   2357  1.9.4.1       mjf 	struct wpi_cmd_txpower txpower;
   2358  1.9.4.1       mjf 	u_int chan;
   2359  1.9.4.1       mjf 	int i;
   2360  1.9.4.1       mjf 
   2361  1.9.4.1       mjf 	/* get channel number */
   2362  1.9.4.1       mjf 	chan = ieee80211_chan2ieee(ic, c);
   2363  1.9.4.1       mjf 
   2364  1.9.4.1       mjf 	/* find the power group to which this channel belongs */
   2365  1.9.4.1       mjf 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2366  1.9.4.1       mjf 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2367  1.9.4.1       mjf 			if (chan <= group->chan)
   2368  1.9.4.1       mjf 				break;
   2369  1.9.4.1       mjf 	} else
   2370  1.9.4.1       mjf 		group = &sc->groups[0];
   2371  1.9.4.1       mjf 
   2372  1.9.4.1       mjf 	memset(&txpower, 0, sizeof txpower);
   2373  1.9.4.1       mjf 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2374  1.9.4.1       mjf 	txpower.chan = htole16(chan);
   2375  1.9.4.1       mjf 
   2376  1.9.4.1       mjf 	/* set Tx power for all OFDM and CCK rates */
   2377  1.9.4.1       mjf 	for (i = 0; i <= 11 ; i++) {
   2378  1.9.4.1       mjf 		/* retrieve Tx power for this channel/rate combination */
   2379  1.9.4.1       mjf 		int idx = wpi_get_power_index(sc, group, c,
   2380  1.9.4.1       mjf 		    wpi_ridx_to_rate[i]);
   2381  1.9.4.1       mjf 
   2382  1.9.4.1       mjf 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2383  1.9.4.1       mjf 
   2384  1.9.4.1       mjf 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2385  1.9.4.1       mjf 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2386  1.9.4.1       mjf 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2387  1.9.4.1       mjf 		} else {
   2388  1.9.4.1       mjf 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2389  1.9.4.1       mjf 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2390  1.9.4.1       mjf 		}
   2391  1.9.4.1       mjf 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2392  1.9.4.1       mjf 		    wpi_ridx_to_rate[i], idx));
   2393  1.9.4.1       mjf 	}
   2394  1.9.4.1       mjf 
   2395  1.9.4.1       mjf 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2396  1.9.4.1       mjf }
   2397  1.9.4.1       mjf 
   2398  1.9.4.1       mjf /*
   2399  1.9.4.1       mjf  * Determine Tx power index for a given channel/rate combination.
   2400  1.9.4.1       mjf  * This takes into account the regulatory information from EEPROM and the
   2401  1.9.4.1       mjf  * current temperature.
   2402  1.9.4.1       mjf  */
   2403  1.9.4.1       mjf static int
   2404  1.9.4.1       mjf wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2405  1.9.4.1       mjf     struct ieee80211_channel *c, int rate)
   2406  1.9.4.1       mjf {
   2407  1.9.4.1       mjf /* fixed-point arithmetic division using a n-bit fractional part */
   2408  1.9.4.1       mjf #define fdivround(a, b, n)	\
   2409  1.9.4.1       mjf 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2410  1.9.4.1       mjf 
   2411  1.9.4.1       mjf /* linear interpolation */
   2412  1.9.4.1       mjf #define interpolate(x, x1, y1, x2, y2, n)	\
   2413  1.9.4.1       mjf 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2414  1.9.4.1       mjf 
   2415  1.9.4.1       mjf 	struct ieee80211com *ic = &sc->sc_ic;
   2416  1.9.4.1       mjf 	struct wpi_power_sample *sample;
   2417  1.9.4.1       mjf 	int pwr, idx;
   2418  1.9.4.1       mjf 	u_int chan;
   2419  1.9.4.1       mjf 
   2420  1.9.4.1       mjf 	/* get channel number */
   2421  1.9.4.1       mjf 	chan = ieee80211_chan2ieee(ic, c);
   2422  1.9.4.1       mjf 
   2423  1.9.4.1       mjf 	/* default power is group's maximum power - 3dB */
   2424  1.9.4.1       mjf 	pwr = group->maxpwr / 2;
   2425  1.9.4.1       mjf 
   2426  1.9.4.1       mjf 	/* decrease power for highest OFDM rates to reduce distortion */
   2427  1.9.4.1       mjf 	switch (rate) {
   2428  1.9.4.1       mjf 	case 72:	/* 36Mb/s */
   2429  1.9.4.1       mjf 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2430  1.9.4.1       mjf 		break;
   2431  1.9.4.1       mjf 	case 96:	/* 48Mb/s */
   2432  1.9.4.1       mjf 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2433  1.9.4.1       mjf 		break;
   2434  1.9.4.1       mjf 	case 108:	/* 54Mb/s */
   2435  1.9.4.1       mjf 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2436  1.9.4.1       mjf 		break;
   2437  1.9.4.1       mjf 	}
   2438  1.9.4.1       mjf 
   2439  1.9.4.1       mjf 	/* never exceed channel's maximum allowed Tx power */
   2440  1.9.4.1       mjf 	pwr = min(pwr, sc->maxpwr[chan]);
   2441  1.9.4.1       mjf 
   2442  1.9.4.1       mjf 	/* retrieve power index into gain tables from samples */
   2443  1.9.4.1       mjf 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2444  1.9.4.1       mjf 		if (pwr > sample[1].power)
   2445  1.9.4.1       mjf 			break;
   2446  1.9.4.1       mjf 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2447  1.9.4.1       mjf 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2448  1.9.4.1       mjf 	    sample[1].power, sample[1].index, 19);
   2449  1.9.4.1       mjf 
   2450  1.9.4.1       mjf 	/*
   2451  1.9.4.1       mjf 	 * Adjust power index based on current temperature:
   2452  1.9.4.1       mjf 	 * - if cooler than factory-calibrated: decrease output power
   2453  1.9.4.1       mjf 	 * - if warmer than factory-calibrated: increase output power
   2454  1.9.4.1       mjf 	 */
   2455  1.9.4.1       mjf 	idx -= (sc->temp - group->temp) * 11 / 100;
   2456  1.9.4.1       mjf 
   2457  1.9.4.1       mjf 	/* decrease power for CCK rates (-5dB) */
   2458  1.9.4.1       mjf 	if (!WPI_RATE_IS_OFDM(rate))
   2459  1.9.4.1       mjf 		idx += 10;
   2460  1.9.4.1       mjf 
   2461  1.9.4.1       mjf 	/* keep power index in a valid range */
   2462  1.9.4.1       mjf 	if (idx < 0)
   2463  1.9.4.1       mjf 		return 0;
   2464  1.9.4.1       mjf 	if (idx > WPI_MAX_PWR_INDEX)
   2465  1.9.4.1       mjf 		return WPI_MAX_PWR_INDEX;
   2466  1.9.4.1       mjf 	return idx;
   2467  1.9.4.1       mjf 
   2468  1.9.4.1       mjf #undef interpolate
   2469  1.9.4.1       mjf #undef fdivround
   2470  1.9.4.1       mjf }
   2471  1.9.4.1       mjf 
   2472  1.9.4.1       mjf /*
   2473      1.1    simonb  * Build a beacon frame that the firmware will broadcast periodically in
   2474      1.1    simonb  * IBSS or HostAP modes.
   2475      1.1    simonb  */
   2476      1.1    simonb static int
   2477      1.1    simonb wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2478      1.1    simonb {
   2479      1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   2480      1.1    simonb 	struct wpi_tx_ring *ring = &sc->cmdq;
   2481      1.1    simonb 	struct wpi_tx_desc *desc;
   2482      1.1    simonb 	struct wpi_tx_data *data;
   2483      1.1    simonb 	struct wpi_tx_cmd *cmd;
   2484      1.1    simonb 	struct wpi_cmd_beacon *bcn;
   2485      1.1    simonb 	struct ieee80211_beacon_offsets bo;
   2486      1.1    simonb 	struct mbuf *m0;
   2487      1.1    simonb 	int error;
   2488      1.1    simonb 
   2489      1.1    simonb 	desc = &ring->desc[ring->cur];
   2490      1.1    simonb 	data = &ring->data[ring->cur];
   2491      1.1    simonb 
   2492      1.1    simonb 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2493      1.1    simonb 	if (m0 == NULL) {
   2494      1.1    simonb 		aprint_error("%s: could not allocate beacon frame\n",
   2495      1.1    simonb 			sc->sc_dev.dv_xname);
   2496      1.1    simonb 		return ENOMEM;
   2497      1.1    simonb 	}
   2498      1.1    simonb 
   2499      1.1    simonb 	cmd = &ring->cmd[ring->cur];
   2500      1.1    simonb 	cmd->code = WPI_CMD_SET_BEACON;
   2501      1.1    simonb 	cmd->flags = 0;
   2502      1.1    simonb 	cmd->qid = ring->qid;
   2503      1.1    simonb 	cmd->idx = ring->cur;
   2504      1.1    simonb 
   2505      1.1    simonb 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2506      1.1    simonb 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2507      1.1    simonb 	bcn->id = WPI_ID_BROADCAST;
   2508      1.1    simonb 	bcn->ofdm_mask = 0xff;
   2509      1.1    simonb 	bcn->cck_mask = 0x0f;
   2510  1.9.4.1       mjf 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2511      1.1    simonb 	bcn->len = htole16(m0->m_pkthdr.len);
   2512      1.1    simonb 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2513      1.1    simonb 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2514      1.1    simonb 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2515      1.1    simonb 
   2516      1.1    simonb 	/* save and trim IEEE802.11 header */
   2517      1.9  christos 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2518      1.1    simonb 	m_adj(m0, sizeof (struct ieee80211_frame));
   2519      1.1    simonb 
   2520      1.1    simonb 	/* assume beacon frame is contiguous */
   2521      1.1    simonb 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2522      1.1    simonb 		BUS_DMA_READ | BUS_DMA_NOWAIT);
   2523      1.1    simonb 	if (error) {
   2524      1.1    simonb 		aprint_error("%s: could not map beacon\n", sc->sc_dev.dv_xname);
   2525      1.1    simonb 		m_freem(m0);
   2526      1.1    simonb 		return error;
   2527      1.1    simonb 	}
   2528      1.1    simonb 
   2529      1.1    simonb 	data->m = m0;
   2530      1.1    simonb 
   2531      1.1    simonb 	/* first scatter/gather segment is used by the beacon command */
   2532      1.1    simonb 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2533      1.1    simonb 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2534      1.1    simonb 		ring->cur * sizeof (struct wpi_tx_cmd));
   2535      1.1    simonb 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2536      1.1    simonb 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2537      1.1    simonb 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2538      1.1    simonb 
   2539      1.1    simonb 	/* kick cmd ring */
   2540      1.1    simonb 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2541      1.1    simonb 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2542      1.1    simonb 
   2543      1.1    simonb 	return 0;
   2544      1.1    simonb }
   2545      1.1    simonb 
   2546      1.1    simonb static int
   2547      1.1    simonb wpi_auth(struct wpi_softc *sc)
   2548      1.1    simonb {
   2549      1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   2550      1.1    simonb 	struct ieee80211_node *ni = ic->ic_bss;
   2551      1.5     joerg 	struct wpi_node_info node;
   2552      1.1    simonb 	int error;
   2553      1.1    simonb 
   2554      1.1    simonb 	/* update adapter's configuration */
   2555      1.1    simonb 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2556      1.1    simonb 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2557      1.1    simonb 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2558      1.1    simonb 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2559      1.1    simonb 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2560      1.1    simonb 		    WPI_CONFIG_24GHZ);
   2561      1.1    simonb 	}
   2562      1.1    simonb 	switch (ic->ic_curmode) {
   2563      1.1    simonb 	case IEEE80211_MODE_11A:
   2564      1.1    simonb 		sc->config.cck_mask  = 0;
   2565      1.1    simonb 		sc->config.ofdm_mask = 0x15;
   2566      1.1    simonb 		break;
   2567      1.1    simonb 	case IEEE80211_MODE_11B:
   2568      1.1    simonb 		sc->config.cck_mask  = 0x03;
   2569      1.1    simonb 		sc->config.ofdm_mask = 0;
   2570      1.1    simonb 		break;
   2571      1.1    simonb 	default:	/* assume 802.11b/g */
   2572      1.1    simonb 		sc->config.cck_mask  = 0x0f;
   2573      1.1    simonb 		sc->config.ofdm_mask = 0x15;
   2574      1.1    simonb 	}
   2575      1.1    simonb 
   2576      1.1    simonb 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2577      1.1    simonb 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2578      1.1    simonb 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2579      1.1    simonb 		sizeof (struct wpi_config), 1);
   2580      1.1    simonb 	if (error != 0) {
   2581      1.1    simonb 		aprint_error("%s: could not configure\n", sc->sc_dev.dv_xname);
   2582      1.1    simonb 		return error;
   2583      1.1    simonb 	}
   2584      1.1    simonb 
   2585  1.9.4.1       mjf 	/* configuration has changed, set Tx power accordingly */
   2586  1.9.4.1       mjf 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2587  1.9.4.1       mjf 		aprint_error("%s: could not set Tx power\n", sc->sc_dev.dv_xname);
   2588  1.9.4.1       mjf 		return error;
   2589  1.9.4.1       mjf 	}
   2590  1.9.4.1       mjf 
   2591      1.1    simonb 	/* add default node */
   2592      1.1    simonb 	memset(&node, 0, sizeof node);
   2593      1.1    simonb 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2594      1.1    simonb 	node.id = WPI_ID_BSS;
   2595      1.1    simonb 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2596      1.1    simonb 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2597  1.9.4.1       mjf 	node.action = htole32(WPI_ACTION_SET_RATE);
   2598  1.9.4.1       mjf 	node.antenna = WPI_ANTENNA_BOTH;
   2599      1.1    simonb 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2600      1.1    simonb 	if (error != 0) {
   2601      1.1    simonb 		aprint_error("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
   2602      1.1    simonb 		return error;
   2603      1.1    simonb 	}
   2604      1.1    simonb 
   2605      1.1    simonb 	return 0;
   2606      1.1    simonb }
   2607      1.1    simonb 
   2608      1.1    simonb /*
   2609      1.1    simonb  * Send a scan request to the firmware.  Since this command is huge, we map it
   2610      1.1    simonb  * into a mbuf instead of using the pre-allocated set of commands.
   2611      1.1    simonb  */
   2612      1.1    simonb static int
   2613      1.1    simonb wpi_scan(struct wpi_softc *sc, uint16_t flags)
   2614      1.1    simonb {
   2615      1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   2616      1.1    simonb 	struct wpi_tx_ring *ring = &sc->cmdq;
   2617      1.1    simonb 	struct wpi_tx_desc *desc;
   2618      1.1    simonb 	struct wpi_tx_data *data;
   2619      1.1    simonb 	struct wpi_tx_cmd *cmd;
   2620      1.1    simonb 	struct wpi_scan_hdr *hdr;
   2621      1.1    simonb 	struct wpi_scan_chan *chan;
   2622      1.1    simonb 	struct ieee80211_frame *wh;
   2623      1.1    simonb 	struct ieee80211_rateset *rs;
   2624      1.1    simonb 	struct ieee80211_channel *c;
   2625      1.1    simonb 	enum ieee80211_phymode mode;
   2626      1.1    simonb 	uint8_t *frm;
   2627      1.1    simonb 	int nrates, pktlen, error;
   2628      1.1    simonb 
   2629      1.1    simonb 	desc = &ring->desc[ring->cur];
   2630      1.1    simonb 	data = &ring->data[ring->cur];
   2631      1.1    simonb 
   2632      1.1    simonb 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2633      1.1    simonb 	if (data->m == NULL) {
   2634      1.1    simonb 		aprint_error("%s: could not allocate mbuf for scan command\n",
   2635      1.1    simonb 			sc->sc_dev.dv_xname);
   2636      1.1    simonb 		return ENOMEM;
   2637      1.1    simonb 	}
   2638      1.1    simonb 
   2639      1.1    simonb 	MCLGET(data->m, M_DONTWAIT);
   2640      1.1    simonb 	if (!(data->m->m_flags & M_EXT)) {
   2641      1.1    simonb 		m_freem(data->m);
   2642      1.1    simonb 		data->m = NULL;
   2643      1.1    simonb 		aprint_error("%s: could not allocate mbuf for scan command\n",
   2644      1.1    simonb 			sc->sc_dev.dv_xname);
   2645      1.1    simonb 		return ENOMEM;
   2646      1.1    simonb 	}
   2647      1.1    simonb 
   2648      1.1    simonb 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2649      1.1    simonb 	cmd->code = WPI_CMD_SCAN;
   2650      1.1    simonb 	cmd->flags = 0;
   2651      1.1    simonb 	cmd->qid = ring->qid;
   2652      1.1    simonb 	cmd->idx = ring->cur;
   2653      1.1    simonb 
   2654      1.1    simonb 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2655      1.1    simonb 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2656  1.9.4.1       mjf 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
   2657  1.9.4.1       mjf 	hdr->id = WPI_ID_BROADCAST;
   2658  1.9.4.1       mjf 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2659  1.9.4.1       mjf 
   2660      1.1    simonb 	/*
   2661      1.1    simonb 	 * Move to the next channel if no packets are received within 5 msecs
   2662      1.1    simonb 	 * after sending the probe request (this helps to reduce the duration
   2663      1.1    simonb 	 * of active scans).
   2664      1.1    simonb 	 */
   2665      1.1    simonb 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
   2666  1.9.4.1       mjf 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2667      1.1    simonb 
   2668      1.1    simonb 	if (flags & IEEE80211_CHAN_A) {
   2669  1.9.4.1       mjf 		hdr->crc_threshold = htole16(1);
   2670      1.1    simonb 		/* send probe requests at 6Mbps */
   2671      1.1    simonb 		hdr->rate = wpi_plcp_signal(12);
   2672      1.1    simonb 	} else {
   2673      1.1    simonb 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2674      1.1    simonb 		/* send probe requests at 1Mbps */
   2675      1.1    simonb 		hdr->rate = wpi_plcp_signal(2);
   2676      1.1    simonb 	}
   2677      1.1    simonb 
   2678  1.9.4.1       mjf 	/* for directed scans, firmware inserts the essid IE itself */
   2679  1.9.4.1       mjf 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2680  1.9.4.1       mjf 	hdr->essid[0].len = ic->ic_des_esslen;
   2681  1.9.4.1       mjf 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2682      1.1    simonb 
   2683      1.1    simonb 	/*
   2684      1.1    simonb 	 * Build a probe request frame.  Most of the following code is a
   2685      1.1    simonb 	 * copy & paste of what is done in net80211.
   2686      1.1    simonb 	 */
   2687      1.1    simonb 	wh = (struct ieee80211_frame *)(hdr + 1);
   2688      1.1    simonb 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2689      1.1    simonb 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2690      1.1    simonb 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2691      1.1    simonb 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2692      1.1    simonb 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2693      1.1    simonb 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2694      1.1    simonb 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2695      1.1    simonb 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2696      1.1    simonb 
   2697      1.1    simonb 	frm = (uint8_t *)(wh + 1);
   2698      1.1    simonb 
   2699  1.9.4.1       mjf #ifdef old_code
   2700      1.1    simonb 	/* add essid IE */
   2701      1.1    simonb 	*frm++ = IEEE80211_ELEMID_SSID;
   2702      1.1    simonb 	*frm++ = ic->ic_des_esslen;
   2703      1.1    simonb 	memcpy(frm, ic->ic_des_essid, ic->ic_des_esslen);
   2704      1.1    simonb 	frm += ic->ic_des_esslen;
   2705  1.9.4.1       mjf #else
   2706  1.9.4.1       mjf 	/* add empty essid IE (firmware generates it for directed scans) */
   2707  1.9.4.1       mjf 	*frm++ = IEEE80211_ELEMID_SSID;
   2708  1.9.4.1       mjf 	*frm++ = 0;
   2709  1.9.4.1       mjf #endif
   2710      1.1    simonb 
   2711      1.1    simonb 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
   2712      1.1    simonb 	rs = &ic->ic_sup_rates[mode];
   2713      1.1    simonb 
   2714      1.1    simonb 	/* add supported rates IE */
   2715      1.1    simonb 	*frm++ = IEEE80211_ELEMID_RATES;
   2716      1.1    simonb 	nrates = rs->rs_nrates;
   2717      1.1    simonb 	if (nrates > IEEE80211_RATE_SIZE)
   2718      1.1    simonb 		nrates = IEEE80211_RATE_SIZE;
   2719      1.1    simonb 	*frm++ = nrates;
   2720      1.1    simonb 	memcpy(frm, rs->rs_rates, nrates);
   2721      1.1    simonb 	frm += nrates;
   2722      1.1    simonb 
   2723      1.1    simonb 	/* add supported xrates IE */
   2724      1.1    simonb 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2725      1.1    simonb 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2726      1.1    simonb 		*frm++ = IEEE80211_ELEMID_XRATES;
   2727      1.1    simonb 		*frm++ = nrates;
   2728      1.1    simonb 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2729      1.1    simonb 		frm += nrates;
   2730      1.1    simonb 	}
   2731      1.1    simonb 
   2732      1.1    simonb 	/* setup length of probe request */
   2733  1.9.4.1       mjf 	hdr->paylen = htole16(frm - (uint8_t *)wh);
   2734      1.1    simonb 
   2735      1.1    simonb 	chan = (struct wpi_scan_chan *)frm;
   2736      1.1    simonb 	for (c  = &ic->ic_channels[1];
   2737      1.1    simonb 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   2738      1.1    simonb 		if ((c->ic_flags & flags) != flags)
   2739      1.1    simonb 			continue;
   2740      1.1    simonb 
   2741      1.1    simonb 		chan->chan = ieee80211_chan2ieee(ic, c);
   2742  1.9.4.1       mjf 		chan->flags = 0;
   2743  1.9.4.1       mjf 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2744  1.9.4.1       mjf 			chan->flags |= WPI_CHAN_ACTIVE;
   2745  1.9.4.1       mjf 			if (ic->ic_des_esslen != 0)
   2746  1.9.4.1       mjf 				chan->flags |= WPI_CHAN_DIRECT;
   2747  1.9.4.1       mjf 		}
   2748  1.9.4.1       mjf 		chan->dsp_gain = 0x6e;
   2749      1.1    simonb 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2750  1.9.4.1       mjf 			chan->rf_gain = 0x3b;
   2751      1.1    simonb 			chan->active = htole16(10);
   2752      1.1    simonb 			chan->passive = htole16(110);
   2753      1.1    simonb 		} else {
   2754  1.9.4.1       mjf 			chan->rf_gain = 0x28;
   2755      1.1    simonb 			chan->active = htole16(20);
   2756      1.1    simonb 			chan->passive = htole16(120);
   2757      1.1    simonb 		}
   2758      1.1    simonb 		hdr->nchan++;
   2759      1.1    simonb 		chan++;
   2760      1.1    simonb 
   2761      1.1    simonb 		frm += sizeof (struct wpi_scan_chan);
   2762      1.1    simonb 	}
   2763  1.9.4.1       mjf 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2764  1.9.4.1       mjf 	pktlen = frm - (uint8_t *)cmd;
   2765      1.1    simonb 
   2766      1.1    simonb 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
   2767      1.1    simonb 		NULL, BUS_DMA_NOWAIT);
   2768      1.1    simonb 	if (error) {
   2769      1.1    simonb 		aprint_error("%s: could not map scan command\n",
   2770      1.1    simonb 			sc->sc_dev.dv_xname);
   2771      1.1    simonb 		m_freem(data->m);
   2772      1.1    simonb 		data->m = NULL;
   2773      1.1    simonb 		return error;
   2774      1.1    simonb 	}
   2775      1.1    simonb 
   2776      1.1    simonb 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2777      1.1    simonb 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2778      1.1    simonb 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2779      1.1    simonb 
   2780      1.1    simonb 	/* kick cmd ring */
   2781      1.1    simonb 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2782      1.1    simonb 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2783      1.1    simonb 
   2784      1.1    simonb 	return 0;	/* will be notified async. of failure/success */
   2785      1.1    simonb }
   2786      1.1    simonb 
   2787      1.1    simonb static int
   2788      1.1    simonb wpi_config(struct wpi_softc *sc)
   2789      1.1    simonb {
   2790      1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   2791      1.1    simonb 	struct ifnet *ifp = ic->ic_ifp;
   2792      1.1    simonb 	struct wpi_power power;
   2793      1.1    simonb 	struct wpi_bluetooth bluetooth;
   2794      1.5     joerg 	struct wpi_node_info node;
   2795      1.1    simonb 	int error;
   2796      1.1    simonb 
   2797      1.1    simonb 	memset(&power, 0, sizeof power);
   2798  1.9.4.1       mjf 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2799      1.1    simonb 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2800      1.1    simonb 	if (error != 0) {
   2801      1.1    simonb 		aprint_error("%s: could not set power mode\n",
   2802      1.1    simonb 			sc->sc_dev.dv_xname);
   2803      1.1    simonb 		return error;
   2804      1.1    simonb 	}
   2805      1.1    simonb 
   2806      1.1    simonb 	/* configure bluetooth coexistence */
   2807      1.1    simonb 	memset(&bluetooth, 0, sizeof bluetooth);
   2808      1.1    simonb 	bluetooth.flags = 3;
   2809      1.1    simonb 	bluetooth.lead = 0xaa;
   2810      1.1    simonb 	bluetooth.kill = 1;
   2811      1.1    simonb 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   2812      1.1    simonb 		0);
   2813      1.1    simonb 	if (error != 0) {
   2814      1.1    simonb 		aprint_error(
   2815      1.1    simonb 			"%s: could not configure bluetooth coexistence\n",
   2816      1.1    simonb 			sc->sc_dev.dv_xname);
   2817      1.1    simonb 		return error;
   2818      1.1    simonb 	}
   2819      1.1    simonb 
   2820      1.1    simonb 	/* configure adapter */
   2821      1.1    simonb 	memset(&sc->config, 0, sizeof (struct wpi_config));
   2822      1.1    simonb 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
   2823      1.1    simonb 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   2824      1.1    simonb 	/*set default channel*/
   2825      1.1    simonb 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   2826      1.1    simonb 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2827      1.1    simonb 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
   2828      1.1    simonb 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2829      1.1    simonb 		    WPI_CONFIG_24GHZ);
   2830      1.1    simonb 	}
   2831      1.1    simonb 	sc->config.filter = 0;
   2832      1.1    simonb 	switch (ic->ic_opmode) {
   2833      1.1    simonb 	case IEEE80211_M_STA:
   2834      1.1    simonb 		sc->config.mode = WPI_MODE_STA;
   2835      1.1    simonb 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   2836      1.1    simonb 		break;
   2837      1.1    simonb 	case IEEE80211_M_IBSS:
   2838      1.1    simonb 	case IEEE80211_M_AHDEMO:
   2839      1.1    simonb 		sc->config.mode = WPI_MODE_IBSS;
   2840      1.1    simonb 		break;
   2841      1.1    simonb 	case IEEE80211_M_HOSTAP:
   2842      1.1    simonb 		sc->config.mode = WPI_MODE_HOSTAP;
   2843      1.1    simonb 		break;
   2844      1.1    simonb 	case IEEE80211_M_MONITOR:
   2845      1.1    simonb 		sc->config.mode = WPI_MODE_MONITOR;
   2846      1.1    simonb 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   2847      1.1    simonb 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   2848      1.1    simonb 		break;
   2849      1.1    simonb 	}
   2850      1.1    simonb 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   2851      1.1    simonb 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   2852      1.1    simonb 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2853      1.1    simonb 		sizeof (struct wpi_config), 0);
   2854      1.1    simonb 	if (error != 0) {
   2855      1.1    simonb 		aprint_error("%s: configure command failed\n",
   2856      1.1    simonb 			sc->sc_dev.dv_xname);
   2857      1.1    simonb 		return error;
   2858      1.1    simonb 	}
   2859      1.1    simonb 
   2860  1.9.4.1       mjf 	/* configuration has changed, set Tx power accordingly */
   2861  1.9.4.1       mjf 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
   2862  1.9.4.1       mjf 		aprint_error("%s: could not set Tx power\n", sc->sc_dev.dv_xname);
   2863  1.9.4.1       mjf 		return error;
   2864  1.9.4.1       mjf 	}
   2865  1.9.4.1       mjf 
   2866      1.1    simonb 	/* add broadcast node */
   2867      1.1    simonb 	memset(&node, 0, sizeof node);
   2868      1.1    simonb 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   2869      1.1    simonb 	node.id = WPI_ID_BROADCAST;
   2870      1.1    simonb 	node.rate = wpi_plcp_signal(2);
   2871  1.9.4.1       mjf 	node.action = htole32(WPI_ACTION_SET_RATE);
   2872  1.9.4.1       mjf 	node.antenna = WPI_ANTENNA_BOTH;
   2873      1.1    simonb 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   2874      1.1    simonb 	if (error != 0) {
   2875      1.1    simonb 		aprint_error("%s: could not add broadcast node\n",
   2876      1.1    simonb 			sc->sc_dev.dv_xname);
   2877      1.1    simonb 		return error;
   2878      1.1    simonb 	}
   2879      1.1    simonb 
   2880  1.9.4.1       mjf 	if ((error = wpi_mrr_setup(sc)) != 0) {
   2881  1.9.4.1       mjf 		aprint_error("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
   2882  1.9.4.1       mjf 		return error;
   2883  1.9.4.1       mjf 	}
   2884  1.9.4.1       mjf 
   2885      1.1    simonb 	return 0;
   2886      1.1    simonb }
   2887      1.1    simonb 
   2888      1.1    simonb static void
   2889      1.1    simonb wpi_stop_master(struct wpi_softc *sc)
   2890      1.1    simonb {
   2891      1.1    simonb 	uint32_t tmp;
   2892      1.1    simonb 	int ntries;
   2893      1.1    simonb 
   2894      1.1    simonb 	tmp = WPI_READ(sc, WPI_RESET);
   2895      1.1    simonb 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   2896      1.1    simonb 
   2897      1.1    simonb 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2898      1.1    simonb 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   2899      1.1    simonb 		return;	/* already asleep */
   2900      1.1    simonb 
   2901      1.1    simonb 	for (ntries = 0; ntries < 100; ntries++) {
   2902      1.1    simonb 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   2903      1.1    simonb 			break;
   2904      1.1    simonb 		DELAY(10);
   2905      1.1    simonb 	}
   2906      1.1    simonb 	if (ntries == 100) {
   2907      1.1    simonb 		aprint_error("%s: timeout waiting for master\n",
   2908      1.1    simonb 			sc->sc_dev.dv_xname);
   2909      1.1    simonb 	}
   2910      1.1    simonb }
   2911      1.1    simonb 
   2912      1.1    simonb static int
   2913      1.1    simonb wpi_power_up(struct wpi_softc *sc)
   2914      1.1    simonb {
   2915      1.1    simonb 	uint32_t tmp;
   2916      1.1    simonb 	int ntries;
   2917      1.1    simonb 
   2918      1.1    simonb 	wpi_mem_lock(sc);
   2919      1.1    simonb 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   2920      1.1    simonb 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   2921      1.1    simonb 	wpi_mem_unlock(sc);
   2922      1.1    simonb 
   2923      1.1    simonb 	for (ntries = 0; ntries < 5000; ntries++) {
   2924      1.1    simonb 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   2925      1.1    simonb 			break;
   2926      1.1    simonb 		DELAY(10);
   2927      1.1    simonb 	}
   2928      1.1    simonb 	if (ntries == 5000) {
   2929      1.1    simonb 		aprint_error("%s: timeout waiting for NIC to power up\n",
   2930      1.1    simonb 			sc->sc_dev.dv_xname);
   2931      1.1    simonb 		return ETIMEDOUT;
   2932      1.1    simonb 	}
   2933      1.1    simonb 	return 0;
   2934      1.1    simonb }
   2935      1.1    simonb 
   2936      1.1    simonb static int
   2937      1.1    simonb wpi_reset(struct wpi_softc *sc)
   2938      1.1    simonb {
   2939      1.1    simonb 	uint32_t tmp;
   2940      1.1    simonb 	int ntries;
   2941      1.1    simonb 
   2942      1.1    simonb 	/* clear any pending interrupts */
   2943      1.1    simonb 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   2944      1.1    simonb 
   2945      1.1    simonb 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   2946      1.1    simonb 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   2947      1.1    simonb 
   2948      1.1    simonb 	tmp = WPI_READ(sc, WPI_CHICKEN);
   2949      1.1    simonb 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   2950      1.1    simonb 
   2951      1.1    simonb 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2952      1.1    simonb 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   2953      1.1    simonb 
   2954      1.1    simonb 	/* wait for clock stabilization */
   2955      1.1    simonb 	for (ntries = 0; ntries < 1000; ntries++) {
   2956      1.1    simonb 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   2957      1.1    simonb 			break;
   2958      1.1    simonb 		DELAY(10);
   2959      1.1    simonb 	}
   2960      1.1    simonb 	if (ntries == 1000) {
   2961      1.1    simonb 		aprint_error("%s: timeout waiting for clock stabilization\n",
   2962      1.1    simonb 			sc->sc_dev.dv_xname);
   2963      1.1    simonb 		return ETIMEDOUT;
   2964      1.1    simonb 	}
   2965      1.1    simonb 
   2966      1.1    simonb 	/* initialize EEPROM */
   2967      1.1    simonb 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   2968      1.1    simonb 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   2969      1.1    simonb 		aprint_error("%s: EEPROM not found\n", sc->sc_dev.dv_xname);
   2970      1.1    simonb 		return EIO;
   2971      1.1    simonb 	}
   2972      1.1    simonb 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   2973      1.1    simonb 
   2974      1.1    simonb 	return 0;
   2975      1.1    simonb }
   2976      1.1    simonb 
   2977      1.1    simonb static void
   2978      1.1    simonb wpi_hw_config(struct wpi_softc *sc)
   2979      1.1    simonb {
   2980      1.1    simonb 	uint32_t rev, hw;
   2981      1.1    simonb 
   2982  1.9.4.1       mjf 	/* voodoo from the reference driver */
   2983      1.1    simonb 	hw = WPI_READ(sc, WPI_HWCONFIG);
   2984      1.1    simonb 
   2985      1.1    simonb 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   2986      1.1    simonb 	rev = PCI_REVISION(rev);
   2987      1.1    simonb 	if ((rev & 0xc0) == 0x40)
   2988      1.1    simonb 		hw |= WPI_HW_ALM_MB;
   2989      1.1    simonb 	else if (!(rev & 0x80))
   2990      1.1    simonb 		hw |= WPI_HW_ALM_MM;
   2991      1.1    simonb 
   2992  1.9.4.1       mjf 	if (sc->cap == 0x80)
   2993      1.1    simonb 		hw |= WPI_HW_SKU_MRC;
   2994      1.1    simonb 
   2995      1.1    simonb 	hw &= ~WPI_HW_REV_D;
   2996  1.9.4.1       mjf 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   2997      1.1    simonb 		hw |= WPI_HW_REV_D;
   2998      1.1    simonb 
   2999  1.9.4.1       mjf 	if (sc->type > 1)
   3000      1.1    simonb 		hw |= WPI_HW_TYPE_B;
   3001      1.1    simonb 
   3002      1.1    simonb 	DPRINTF(("setting h/w config %x\n", hw));
   3003      1.1    simonb 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   3004      1.1    simonb }
   3005      1.1    simonb 
   3006      1.1    simonb static int
   3007      1.1    simonb wpi_init(struct ifnet *ifp)
   3008      1.1    simonb {
   3009      1.1    simonb 	struct wpi_softc *sc = ifp->if_softc;
   3010      1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   3011      1.1    simonb 	uint32_t tmp;
   3012      1.1    simonb 	int qid, ntries, error;
   3013      1.1    simonb 
   3014      1.1    simonb 	(void)wpi_reset(sc);
   3015      1.1    simonb 
   3016      1.1    simonb 	wpi_mem_lock(sc);
   3017      1.1    simonb 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   3018      1.1    simonb 	DELAY(20);
   3019      1.1    simonb 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   3020      1.1    simonb 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   3021      1.1    simonb 	wpi_mem_unlock(sc);
   3022      1.1    simonb 
   3023      1.1    simonb 	(void)wpi_power_up(sc);
   3024      1.1    simonb 	wpi_hw_config(sc);
   3025      1.1    simonb 
   3026      1.1    simonb 	/* init Rx ring */
   3027      1.1    simonb 	wpi_mem_lock(sc);
   3028      1.1    simonb 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   3029      1.1    simonb 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   3030      1.1    simonb 	    offsetof(struct wpi_shared, next));
   3031      1.1    simonb 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3032      1.1    simonb 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3033      1.1    simonb 	wpi_mem_unlock(sc);
   3034      1.1    simonb 
   3035      1.1    simonb 	/* init Tx rings */
   3036      1.1    simonb 	wpi_mem_lock(sc);
   3037      1.1    simonb 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
   3038      1.1    simonb 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
   3039      1.1    simonb 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
   3040      1.1    simonb 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3041      1.1    simonb 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3042      1.1    simonb 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3043      1.1    simonb 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3044      1.1    simonb 
   3045      1.1    simonb 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3046      1.1    simonb 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3047      1.1    simonb 
   3048      1.1    simonb 	for (qid = 0; qid < 6; qid++) {
   3049      1.1    simonb 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3050      1.1    simonb 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3051      1.1    simonb 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3052      1.1    simonb 	}
   3053      1.1    simonb 	wpi_mem_unlock(sc);
   3054      1.1    simonb 
   3055      1.1    simonb 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3056      1.1    simonb 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3057      1.1    simonb 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3058      1.1    simonb 
   3059      1.1    simonb 	/* clear any pending interrupts */
   3060      1.1    simonb 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3061      1.1    simonb 	/* enable interrupts */
   3062      1.1    simonb 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3063      1.1    simonb 
   3064  1.9.4.1       mjf 	/* not sure why/if this is necessary... */
   3065  1.9.4.1       mjf 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3066  1.9.4.1       mjf 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3067      1.1    simonb 
   3068  1.9.4.1       mjf 	if ((error = wpi_load_firmware(sc)) != 0) {
   3069  1.9.4.1       mjf 		aprint_error("%s: could not load firmware\n", sc->sc_dev.dv_xname);
   3070      1.1    simonb 		goto fail1;
   3071      1.1    simonb 	}
   3072      1.1    simonb 
   3073      1.1    simonb 	/* wait for thermal sensors to calibrate */
   3074      1.1    simonb 	for (ntries = 0; ntries < 1000; ntries++) {
   3075  1.9.4.1       mjf 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3076      1.1    simonb 			break;
   3077      1.1    simonb 		DELAY(10);
   3078      1.1    simonb 	}
   3079      1.1    simonb 	if (ntries == 1000) {
   3080      1.1    simonb 		aprint_error("%s: timeout waiting for thermal sensors calibration\n",
   3081      1.1    simonb 			sc->sc_dev.dv_xname);
   3082      1.1    simonb 		error = ETIMEDOUT;
   3083      1.1    simonb 		goto fail1;
   3084      1.1    simonb 	}
   3085  1.9.4.1       mjf 
   3086  1.9.4.1       mjf 	DPRINTF(("temperature %d\n", sc->temp));
   3087      1.1    simonb 
   3088      1.1    simonb 	if ((error = wpi_config(sc)) != 0) {
   3089      1.1    simonb 		aprint_error("%s: could not configure device\n",
   3090      1.1    simonb 			sc->sc_dev.dv_xname);
   3091      1.1    simonb 		goto fail1;
   3092      1.1    simonb 	}
   3093      1.1    simonb 
   3094      1.1    simonb 	ifp->if_flags &= ~IFF_OACTIVE;
   3095      1.1    simonb 	ifp->if_flags |= IFF_RUNNING;
   3096      1.1    simonb 
   3097      1.1    simonb 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3098      1.1    simonb 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3099      1.1    simonb 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3100      1.1    simonb 	}
   3101      1.1    simonb 	else
   3102      1.1    simonb 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3103      1.1    simonb 
   3104      1.1    simonb 	return 0;
   3105      1.1    simonb 
   3106      1.1    simonb fail1:	wpi_stop(ifp, 1);
   3107      1.1    simonb 	return error;
   3108      1.1    simonb }
   3109      1.1    simonb 
   3110      1.1    simonb 
   3111      1.1    simonb static void
   3112      1.6  christos wpi_stop(struct ifnet *ifp, int disable)
   3113      1.1    simonb {
   3114      1.1    simonb 	struct wpi_softc *sc = ifp->if_softc;
   3115      1.1    simonb 	struct ieee80211com *ic = &sc->sc_ic;
   3116      1.1    simonb 	uint32_t tmp;
   3117      1.1    simonb 	int ac;
   3118      1.1    simonb 
   3119      1.1    simonb 	ifp->if_timer = sc->sc_tx_timer = 0;
   3120      1.1    simonb 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3121      1.1    simonb 
   3122      1.1    simonb 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3123      1.1    simonb 
   3124      1.1    simonb 	/* disable interrupts */
   3125      1.1    simonb 	WPI_WRITE(sc, WPI_MASK, 0);
   3126      1.1    simonb 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3127      1.1    simonb 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3128      1.1    simonb 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3129      1.1    simonb 
   3130      1.1    simonb 	wpi_mem_lock(sc);
   3131      1.1    simonb 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3132      1.1    simonb 	wpi_mem_unlock(sc);
   3133      1.1    simonb 
   3134      1.1    simonb 	/* reset all Tx rings */
   3135      1.1    simonb 	for (ac = 0; ac < 4; ac++)
   3136      1.1    simonb 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3137      1.1    simonb 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3138      1.1    simonb 	wpi_reset_tx_ring(sc, &sc->svcq);
   3139      1.1    simonb 
   3140      1.1    simonb 	/* reset Rx ring */
   3141      1.1    simonb 	wpi_reset_rx_ring(sc, &sc->rxq);
   3142  1.9.4.1       mjf 
   3143      1.1    simonb 	wpi_mem_lock(sc);
   3144      1.1    simonb 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3145      1.1    simonb 	wpi_mem_unlock(sc);
   3146      1.1    simonb 
   3147      1.1    simonb 	DELAY(5);
   3148      1.1    simonb 
   3149      1.1    simonb 	wpi_stop_master(sc);
   3150      1.1    simonb 
   3151      1.1    simonb 	tmp = WPI_READ(sc, WPI_RESET);
   3152      1.1    simonb 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3153      1.1    simonb }
   3154