if_wpi.c revision 1.10 1 /* $NetBSD: if_wpi.c,v 1.10 2007/06/18 19:40:49 degroote Exp $ */
2
3 /*-
4 * Copyright (c) 2006
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.10 2007/06/18 19:40:49 degroote Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39 #include <sys/callout.h>
40
41 #include <machine/bus.h>
42 #include <machine/endian.h>
43 #include <machine/intr.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47 #include <dev/pci/pcidevs.h>
48
49 #if NBPFILTER > 0
50 #include <net/bpf.h>
51 #endif
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x) if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 { 4, { 2, 4, 11, 22 } };
90
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94 static const uint8_t wpi_ridx_to_plcp[] = {
95 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, /* OFDM R1-R4 */
96 10, 20, 55, 110 /* CCK */
97 };
98
99 static int wpi_match(struct device *, struct cfdata *, void *);
100 static void wpi_attach(struct device *, struct device *, void *);
101 static int wpi_detach(struct device*, int);
102 static void wpi_power(int, void *);
103 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
104 void **, bus_size_t, bus_size_t, int);
105 static void wpi_dma_contig_free(struct wpi_dma_info *);
106 static int wpi_alloc_shared(struct wpi_softc *);
107 static void wpi_free_shared(struct wpi_softc *);
108 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
109 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
110 static int wpi_alloc_rpool(struct wpi_softc *);
111 static void wpi_free_rpool(struct wpi_softc *);
112 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
113 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
114 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
115 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
116 int);
117 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
118 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
119 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
120 static int wpi_media_change(struct ifnet *);
121 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
122 static void wpi_mem_lock(struct wpi_softc *);
123 static void wpi_mem_unlock(struct wpi_softc *);
124 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
125 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
126 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
127 const uint32_t *, int);
128 static uint16_t wpi_read_prom_word(struct wpi_softc *, uint32_t);
129 static int wpi_load_firmware(struct wpi_softc *, uint32_t, const char *,
130 int);
131 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
132 struct wpi_rx_data *);
133 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
134 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
135 static void wpi_notif_intr(struct wpi_softc *);
136 static int wpi_intr(void *);
137 static uint8_t wpi_plcp_signal(int);
138 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
139 struct ieee80211_node *, int);
140 static void wpi_start(struct ifnet *);
141 static void wpi_watchdog(struct ifnet *);
142 static int wpi_ioctl(struct ifnet *, u_long, void *);
143 static void wpi_read_eeprom(struct wpi_softc *);
144 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
145 static int wpi_wme_update(struct ieee80211com *);
146 static int wpi_mrr_setup(struct wpi_softc *);
147 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
148 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
149 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
150 static int wpi_auth(struct wpi_softc *);
151 static int wpi_scan(struct wpi_softc *, uint16_t);
152 static int wpi_config(struct wpi_softc *);
153 static void wpi_stop_master(struct wpi_softc *);
154 static int wpi_power_up(struct wpi_softc *);
155 static int wpi_reset(struct wpi_softc *);
156 static void wpi_hw_config(struct wpi_softc *);
157 static int wpi_init(struct ifnet *);
158 static void wpi_stop(struct ifnet *, int);
159
160 /* rate control algorithm: should be moved to net80211 */
161 static void wpi_iter_func(void *, struct ieee80211_node *);
162 static void wpi_amrr_timeout(void *);
163 static void wpi_newassoc(struct ieee80211_node *, int);
164
165 CFATTACH_DECL(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
166 wpi_detach, NULL);
167
168 static int
169 wpi_match(struct device *parent, struct cfdata *match __unused, void *aux)
170 {
171 struct pci_attach_args *pa = aux;
172
173 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
174 return 0;
175
176 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
177 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
178 return 1;
179
180 return 0;
181 }
182
183 /* Base Address Register */
184 #define WPI_PCI_BAR0 0x10
185
186 static void
187 wpi_attach(struct device *parent __unused, struct device *self, void *aux)
188 {
189 struct wpi_softc *sc = (struct wpi_softc *)self;
190 struct ieee80211com *ic = &sc->sc_ic;
191 struct ifnet *ifp = &sc->sc_ec.ec_if;
192 struct pci_attach_args *pa = aux;
193 const char *intrstr;
194 char devinfo[256];
195 bus_space_tag_t memt;
196 bus_space_handle_t memh;
197 pci_intr_handle_t ih;
198 pcireg_t data;
199 int error, ac, revision, i;
200
201 sc->sc_pct = pa->pa_pc;
202 sc->sc_pcitag = pa->pa_tag;
203
204 callout_init(&sc->amrr_ch);
205
206 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
207 revision = PCI_REVISION(pa->pa_class);
208 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
209
210 /* clear device specific PCI configuration register 0x41 */
211 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
212 data &= ~0x0000ff00;
213 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
214
215 /* enable bus-mastering */
216 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
217 data |= PCI_COMMAND_MASTER_ENABLE;
218 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
219
220 /* map the register window */
221 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
222 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
223 if (error != 0) {
224 aprint_error("%s: could not map memory space\n",
225 sc->sc_dev.dv_xname);
226 return;
227 }
228
229 sc->sc_st = memt;
230 sc->sc_sh = memh;
231 sc->sc_dmat = pa->pa_dmat;
232
233 if (pci_intr_map(pa, &ih) != 0) {
234 aprint_error("%s: could not map interrupt\n",
235 sc->sc_dev.dv_xname);
236 return;
237 }
238
239 intrstr = pci_intr_string(sc->sc_pct, ih);
240 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
241 if (sc->sc_ih == NULL) {
242 aprint_error("%s: could not establish interrupt",
243 sc->sc_dev.dv_xname);
244 if (intrstr != NULL)
245 aprint_error(" at %s", intrstr);
246 aprint_error("\n");
247 return;
248 }
249 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
250
251 if (wpi_reset(sc) != 0) {
252 aprint_error("%s: could not reset adapter\n",
253 sc->sc_dev.dv_xname);
254 return;
255 }
256
257 /*
258 * Allocate shared page and Tx/Rx rings.
259 */
260 if ((error = wpi_alloc_shared(sc)) != 0) {
261 aprint_error("%s: could not allocate shared area\n",
262 sc->sc_dev.dv_xname);
263 return;
264 }
265
266 if ((error = wpi_alloc_rpool(sc)) != 0) {
267 aprint_error("%s: could not allocate Rx buffers\n",
268 sc->sc_dev.dv_xname);
269 goto fail1;
270 }
271
272 for (ac = 0; ac < 4; ac++) {
273 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
274 if (error != 0) {
275 aprint_error("%s: could not allocate Tx ring %d\n",
276 sc->sc_dev.dv_xname, ac);
277 goto fail2;
278 }
279 }
280
281 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
282 if (error != 0) {
283 aprint_error("%s: could not allocate command ring\n",
284 sc->sc_dev.dv_xname);
285 goto fail2;
286 }
287
288 error = wpi_alloc_tx_ring(sc, &sc->svcq, WPI_SVC_RING_COUNT, 5);
289 if (error != 0) {
290 aprint_error("%s: could not allocate service ring\n",
291 sc->sc_dev.dv_xname);
292 goto fail3;
293 }
294
295 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
296 aprint_error("%s: could not allocate Rx ring\n",
297 sc->sc_dev.dv_xname);
298 goto fail4;
299 }
300
301 ic->ic_ifp = ifp;
302 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
303 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
304 ic->ic_state = IEEE80211_S_INIT;
305
306 /* set device capabilities */
307 ic->ic_caps =
308 IEEE80211_C_IBSS | /* IBSS mode support */
309 IEEE80211_C_WPA | /* 802.11i */
310 IEEE80211_C_MONITOR | /* monitor mode supported */
311 IEEE80211_C_TXPMGT | /* tx power management */
312 IEEE80211_C_SHSLOT | /* short slot time supported */
313 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
314 IEEE80211_C_WME; /* 802.11e */
315
316 wpi_read_eeprom(sc);
317 aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
318 ether_sprintf(ic->ic_myaddr));
319
320 /* set supported .11a rates */
321 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
322
323 /* set supported .11a channels */
324 for (i = 36; i <= 64; i += 4) {
325 ic->ic_channels[i].ic_freq =
326 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
327 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
328 }
329 for (i = 100; i <= 140; i += 4) {
330 ic->ic_channels[i].ic_freq =
331 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
332 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
333 }
334 for (i = 149; i <= 165; i += 4) {
335 ic->ic_channels[i].ic_freq =
336 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
337 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
338 }
339
340 /* set supported .11b and .11g rates */
341 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
342 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
343
344 /* set supported .11b and .11g channels (1 through 14) */
345 for (i = 1; i <= 14; i++) {
346 ic->ic_channels[i].ic_freq =
347 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
348 ic->ic_channels[i].ic_flags =
349 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
350 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
351 }
352
353 ic->ic_ibss_chan = &ic->ic_channels[0];
354
355 ifp->if_softc = sc;
356 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
357 ifp->if_init = wpi_init;
358 ifp->if_stop = wpi_stop;
359 ifp->if_ioctl = wpi_ioctl;
360 ifp->if_start = wpi_start;
361 ifp->if_watchdog = wpi_watchdog;
362 IFQ_SET_READY(&ifp->if_snd);
363 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
364
365 if_attach(ifp);
366 ieee80211_ifattach(ic);
367 /* override default methods */
368 ic->ic_node_alloc = wpi_node_alloc;
369 ic->ic_newassoc = wpi_newassoc;
370 ic->ic_wme.wme_update = wpi_wme_update;
371
372 /* override state transition machine */
373 sc->sc_newstate = ic->ic_newstate;
374 ic->ic_newstate = wpi_newstate;
375 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
376
377 sc->amrr.amrr_min_success_threshold = 1;
378 sc->amrr.amrr_max_success_threshold = 15;
379
380 /* set powerhook */
381 sc->powerhook = powerhook_establish(sc->sc_dev.dv_xname, wpi_power, sc);
382
383 #if NBPFILTER > 0
384 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
385 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
386 &sc->sc_drvbpf);
387
388 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
389 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
390 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
391
392 sc->sc_txtap_len = sizeof sc->sc_txtapu;
393 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
394 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
395 #endif
396
397 ieee80211_announce(ic);
398
399 return;
400
401 fail4: wpi_free_tx_ring(sc, &sc->svcq);
402 fail3: wpi_free_tx_ring(sc, &sc->cmdq);
403 fail2: while (--ac >= 0)
404 wpi_free_tx_ring(sc, &sc->txq[ac]);
405 wpi_free_rpool(sc);
406 fail1: wpi_free_shared(sc);
407 }
408
409 static int
410 wpi_detach(struct device* self, int flags __unused)
411 {
412 struct wpi_softc *sc = (struct wpi_softc *)self;
413 struct ifnet *ifp = sc->sc_ic.ic_ifp;
414 int ac;
415
416 wpi_stop(ifp, 1);
417
418 #if NBPFILTER > 0
419 if (ifp != NULL)
420 bpfdetach(ifp);
421 #endif
422 ieee80211_ifdetach(&sc->sc_ic);
423 if (ifp != NULL)
424 if_detach(ifp);
425
426 for (ac = 0; ac < 4; ac++)
427 wpi_free_tx_ring(sc, &sc->txq[ac]);
428 wpi_free_tx_ring(sc, &sc->cmdq);
429 wpi_free_tx_ring(sc, &sc->svcq);
430 wpi_free_rx_ring(sc, &sc->rxq);
431 wpi_free_rpool(sc);
432 wpi_free_shared(sc);
433
434 if (sc->sc_ih != NULL) {
435 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
436 sc->sc_ih = NULL;
437 }
438
439 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
440
441 return 0;
442 }
443
444 static void
445 wpi_power(int why, void *arg)
446 {
447 struct wpi_softc *sc = arg;
448 struct ifnet *ifp;
449 pcireg_t data;
450 int s;
451
452 if (why != PWR_RESUME)
453 return;
454
455 /* clear device specific PCI configuration register 0x41 */
456 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
457 data &= ~0x0000ff00;
458 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
459
460 s = splnet();
461 ifp = sc->sc_ic.ic_ifp;
462 if (ifp->if_flags & IFF_UP) {
463 ifp->if_init(ifp);
464 if (ifp->if_flags & IFF_RUNNING)
465 ifp->if_start(ifp);
466 }
467 splx(s);
468 }
469
470 static int
471 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
472 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
473 {
474 int nsegs, error;
475
476 dma->tag = tag;
477 dma->size = size;
478
479 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
480 if (error != 0)
481 goto fail;
482
483 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
484 flags);
485 if (error != 0)
486 goto fail;
487
488 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
489 if (error != 0)
490 goto fail;
491
492 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
493 if (error != 0)
494 goto fail;
495
496 memset(dma->vaddr, 0, size);
497
498 dma->paddr = dma->map->dm_segs[0].ds_addr;
499 if (kvap != NULL)
500 *kvap = dma->vaddr;
501
502 return 0;
503
504 fail: wpi_dma_contig_free(dma);
505 return error;
506 }
507
508 static void
509 wpi_dma_contig_free(struct wpi_dma_info *dma)
510 {
511 if (dma->map != NULL) {
512 if (dma->vaddr != NULL) {
513 bus_dmamap_unload(dma->tag, dma->map);
514 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
515 bus_dmamem_free(dma->tag, &dma->seg, 1);
516 dma->vaddr = NULL;
517 }
518 bus_dmamap_destroy(dma->tag, dma->map);
519 dma->map = NULL;
520 }
521 }
522
523 /*
524 * Allocate a shared page between host and NIC.
525 */
526 static int
527 wpi_alloc_shared(struct wpi_softc *sc)
528 {
529 int error;
530 /* must be aligned on a 4K-page boundary */
531 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
532 (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN
533 ,BUS_DMA_NOWAIT);
534 if (error != 0)
535 aprint_error("%s: could not allocate shared area DMA memory\n",
536 sc->sc_dev.dv_xname);
537
538 return error;
539 }
540
541 static void
542 wpi_free_shared(struct wpi_softc *sc)
543 {
544 wpi_dma_contig_free(&sc->shared_dma);
545 }
546
547 static struct wpi_rbuf *
548 wpi_alloc_rbuf(struct wpi_softc *sc)
549 {
550 struct wpi_rbuf *rbuf;
551
552 rbuf = SLIST_FIRST(&sc->rxq.freelist);
553 if (rbuf == NULL)
554 return NULL;
555 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
556 sc->rxq.nb_free_entries --;
557
558 return rbuf;
559 }
560
561 /*
562 * This is called automatically by the network stack when the mbuf to which our
563 * Rx buffer is attached is freed.
564 */
565 static void
566 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
567 {
568 struct wpi_rbuf *rbuf = arg;
569 struct wpi_softc *sc = rbuf->sc;
570 int s;
571
572 /* put the buffer back in the free list */
573
574 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
575 sc->rxq.nb_free_entries ++;
576
577 if (__predict_true(m != NULL)) {
578 s = splvm();
579 pool_cache_put(&mbpool_cache, m);
580 splx(s);
581 }
582 }
583
584 static int
585 wpi_alloc_rpool(struct wpi_softc *sc)
586 {
587 struct wpi_rx_ring *ring = &sc->rxq;
588 struct wpi_rbuf *rbuf;
589 int i, error;
590
591 /* allocate a big chunk of DMA'able memory.. */
592 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
593 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
594 if (error != 0) {
595 aprint_normal("%s: could not allocate Rx buffers DMA memory\n",
596 sc->sc_dev.dv_xname);
597 return error;
598 }
599
600 /* ..and split it into 3KB chunks */
601 SLIST_INIT(&ring->freelist);
602 for (i = 0; i < WPI_RBUF_COUNT; i++) {
603 rbuf = &ring->rbuf[i];
604 rbuf->sc = sc; /* backpointer for callbacks */
605 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
606 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
607
608 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
609 }
610
611 ring->nb_free_entries = WPI_RBUF_COUNT;
612 return 0;
613 }
614
615 static void
616 wpi_free_rpool(struct wpi_softc *sc)
617 {
618 wpi_dma_contig_free(&sc->rxq.buf_dma);
619 }
620
621 static int
622 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
623 {
624 struct wpi_rx_data *data;
625 struct wpi_rbuf *rbuf;
626 int i, error;
627
628 ring->cur = 0;
629
630 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
631 (void **)&ring->desc,
632 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
633 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
634 if (error != 0) {
635 aprint_error("%s: could not allocate rx ring DMA memory\n",
636 sc->sc_dev.dv_xname);
637 goto fail;
638 }
639
640 /*
641 * Setup Rx buffers.
642 */
643 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
644 data = &ring->data[i];
645
646 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
647 if (data->m == NULL) {
648 aprint_error("%s: could not allocate rx mbuf\n",
649 sc->sc_dev.dv_xname);
650 error = ENOMEM;
651 goto fail;
652 }
653 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
654 m_freem(data->m);
655 data->m = NULL;
656 aprint_error("%s: could not allocate rx cluster\n",
657 sc->sc_dev.dv_xname);
658 error = ENOMEM;
659 goto fail;
660 }
661 /* attach Rx buffer to mbuf */
662 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
663 rbuf);
664 data->m->m_flags |= M_EXT_RW;
665
666 ring->desc[i] = htole32(rbuf->paddr);
667 }
668
669 return 0;
670
671 fail: wpi_free_rx_ring(sc, ring);
672 return error;
673 }
674
675 static void
676 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
677 {
678 int ntries;
679
680 wpi_mem_lock(sc);
681
682 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
683 for (ntries = 0; ntries < 100; ntries++) {
684 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
685 break;
686 DELAY(10);
687 }
688 #ifdef WPI_DEBUG
689 if (ntries == 100 && wpi_debug > 0)
690 aprint_error("%s: timeout resetting Rx ring\n",
691 sc->sc_dev.dv_xname);
692 #endif
693 wpi_mem_unlock(sc);
694
695 ring->cur = 0;
696 }
697
698 static void
699 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
700 {
701 int i;
702
703 wpi_dma_contig_free(&ring->desc_dma);
704
705 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
706 if (ring->data[i].m != NULL)
707 m_freem(ring->data[i].m);
708 }
709 }
710
711 static int
712 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
713 int qid)
714 {
715 struct wpi_tx_data *data;
716 int i, error;
717
718 ring->qid = qid;
719 ring->count = count;
720 ring->queued = 0;
721 ring->cur = 0;
722
723 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
724 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
725 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
726 if (error != 0) {
727 aprint_error("%s: could not allocate tx ring DMA memory\n",
728 sc->sc_dev.dv_xname);
729 goto fail;
730 }
731
732 /* update shared page with ring's base address */
733 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
734
735 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
736 (void **)&ring->cmd,
737 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
738 if (error != 0) {
739 aprint_error("%s: could not allocate tx cmd DMA memory\n",
740 sc->sc_dev.dv_xname);
741 goto fail;
742 }
743
744 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
745 M_NOWAIT);
746 if (ring->data == NULL) {
747 aprint_error("%s: could not allocate tx data slots\n",
748 sc->sc_dev.dv_xname);
749 goto fail;
750 }
751
752 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
753
754 for (i = 0; i < count; i++) {
755 data = &ring->data[i];
756
757 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
758 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
759 &data->map);
760 if (error != 0) {
761 aprint_error("%s: could not create tx buf DMA map\n",
762 sc->sc_dev.dv_xname);
763 goto fail;
764 }
765 }
766
767 return 0;
768
769 fail: wpi_free_tx_ring(sc, ring);
770 return error;
771 }
772
773 static void
774 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
775 {
776 struct wpi_tx_data *data;
777 int i, ntries;
778
779 wpi_mem_lock(sc);
780
781 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
782 for (ntries = 0; ntries < 100; ntries++) {
783 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
784 break;
785 DELAY(10);
786 }
787 #ifdef WPI_DEBUG
788 if (ntries == 100 && wpi_debug > 0) {
789 aprint_error("%s: timeout resetting Tx ring %d\n",
790 sc->sc_dev.dv_xname, ring->qid);
791 }
792 #endif
793 wpi_mem_unlock(sc);
794
795 for (i = 0; i < ring->count; i++) {
796 data = &ring->data[i];
797
798 if (data->m != NULL) {
799 bus_dmamap_unload(sc->sc_dmat, data->map);
800 m_freem(data->m);
801 data->m = NULL;
802 }
803 }
804
805 ring->queued = 0;
806 ring->cur = 0;
807 }
808
809 static void
810 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
811 {
812 struct wpi_tx_data *data;
813 int i;
814
815 wpi_dma_contig_free(&ring->desc_dma);
816 wpi_dma_contig_free(&ring->cmd_dma);
817
818 if (ring->data != NULL) {
819 for (i = 0; i < ring->count; i++) {
820 data = &ring->data[i];
821
822 if (data->m != NULL) {
823 bus_dmamap_unload(sc->sc_dmat, data->map);
824 m_freem(data->m);
825 }
826 }
827 free(ring->data, M_DEVBUF);
828 }
829 }
830
831 /*ARGUSED*/
832 static struct ieee80211_node *
833 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
834 {
835 struct wpi_node *wn;
836
837 wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
838
839 if (wn != NULL)
840 memset(wn, 0, sizeof (struct wpi_node));
841 return (struct ieee80211_node *)wn;
842 }
843
844 static int
845 wpi_media_change(struct ifnet *ifp)
846 {
847 int error;
848
849 error = ieee80211_media_change(ifp);
850 if (error != ENETRESET)
851 return error;
852
853 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
854 wpi_init(ifp);
855
856 return 0;
857 }
858
859 static int
860 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
861 {
862 struct ifnet *ifp = ic->ic_ifp;
863 struct wpi_softc *sc = ifp->if_softc;
864 int error;
865
866 callout_stop(&sc->amrr_ch);
867
868 switch (nstate) {
869 case IEEE80211_S_SCAN:
870 ieee80211_node_table_reset(&ic->ic_scan);
871 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
872
873 /* make the link LED blink while we're scanning */
874 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
875
876 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
877 aprint_error("%s: could not initiate scan\n",
878 sc->sc_dev.dv_xname);
879 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
880 return error;
881 }
882
883 ic->ic_state = nstate;
884 return 0;
885
886 case IEEE80211_S_ASSOC:
887 if (ic->ic_state != IEEE80211_S_RUN)
888 break;
889 /* FALLTHROUGH */
890 case IEEE80211_S_AUTH:
891 sc->config.state &= ~htole16(WPI_STATE_ASSOCIATED);
892 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
893 if ((error = wpi_auth(sc)) != 0) {
894 aprint_error("%s: could not send authentication request\n",
895 sc->sc_dev.dv_xname);
896 return error;
897 }
898 break;
899
900 case IEEE80211_S_RUN:
901 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
902 /* link LED blinks while monitoring */
903 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
904 break;
905 }
906
907 if (ic->ic_opmode != IEEE80211_M_STA) {
908 (void) wpi_auth(sc); /* XXX */
909 wpi_setup_beacon(sc, ic->ic_bss);
910 }
911
912 wpi_enable_tsf(sc, ic->ic_bss);
913
914 /* update adapter's configuration */
915 sc->config.state = htole16(WPI_STATE_ASSOCIATED);
916 /* short preamble/slot time are negotiated when associating */
917 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
918 WPI_CONFIG_SHSLOT);
919 if (ic->ic_flags & IEEE80211_F_SHSLOT)
920 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
921 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
922 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
923 sc->config.filter |= htole32(WPI_FILTER_BSS);
924 if (ic->ic_opmode != IEEE80211_M_STA)
925 sc->config.filter |= htole32(WPI_FILTER_BEACON);
926
927 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
928
929 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
930 sc->config.flags));
931 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
932 sizeof (struct wpi_config), 1);
933 if (error != 0) {
934 aprint_error("%s: could not update configuration\n",
935 sc->sc_dev.dv_xname);
936 return error;
937 }
938
939 if (ic->ic_opmode == IEEE80211_M_STA) {
940 /* fake a join to init the tx rate */
941 wpi_newassoc(ic->ic_bss, 1);
942 }
943
944 /* enable automatic rate adaptation in STA mode */
945 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
946 callout_reset(&sc->amrr_ch, hz/2, wpi_amrr_timeout, sc);
947
948 /* link LED always on while associated */
949 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
950 break;
951
952 case IEEE80211_S_INIT:
953 break;
954 }
955
956 return sc->sc_newstate(ic, nstate, arg);
957 }
958
959 /*
960 * Grab exclusive access to NIC memory.
961 */
962 static void
963 wpi_mem_lock(struct wpi_softc *sc)
964 {
965 uint32_t tmp;
966 int ntries;
967
968 tmp = WPI_READ(sc, WPI_GPIO_CTL);
969 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
970
971 /* spin until we actually get the lock */
972 for (ntries = 0; ntries < 1000; ntries++) {
973 if ((WPI_READ(sc, WPI_GPIO_CTL) &
974 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
975 break;
976 DELAY(10);
977 }
978 if (ntries == 1000)
979 aprint_error("%s: could not lock memory\n", sc->sc_dev.dv_xname);
980 }
981
982 /*
983 * Release lock on NIC memory.
984 */
985 static void
986 wpi_mem_unlock(struct wpi_softc *sc)
987 {
988 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
989 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
990 }
991
992 static uint32_t
993 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
994 {
995 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
996 return WPI_READ(sc, WPI_READ_MEM_DATA);
997 }
998
999 static void
1000 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1001 {
1002 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1003 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1004 }
1005
1006 static void
1007 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1008 const uint32_t *data, int wlen)
1009 {
1010 for (; wlen > 0; wlen--, data++, addr += 4)
1011 wpi_mem_write(sc, addr, *data);
1012 }
1013
1014 /*
1015 * Read 16 bits from the EEPROM. We access EEPROM through the MAC instead of
1016 * using the traditional bit-bang method.
1017 */
1018 static uint16_t
1019 wpi_read_prom_word(struct wpi_softc *sc, uint32_t addr)
1020 {
1021 int ntries;
1022 uint32_t val;
1023
1024 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1025
1026 wpi_mem_lock(sc);
1027 for (ntries = 0; ntries < 10; ntries++) {
1028 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1029 break;
1030 DELAY(10);
1031 }
1032 wpi_mem_unlock(sc);
1033
1034 if (ntries == 10) {
1035 aprint_error("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
1036 return 0xdead;
1037 }
1038 return val >> 16;
1039 }
1040
1041 /*
1042 * The firmware boot code is small and is intended to be copied directly into
1043 * the NIC internal memory.
1044 */
1045 static int
1046 wpi_load_microcode(struct wpi_softc *sc, const char *ucode, int size)
1047 {
1048 /* check that microcode size is a multiple of 4 */
1049 if (size & 3)
1050 return EINVAL;
1051
1052 size /= sizeof (uint32_t);
1053
1054 wpi_mem_lock(sc);
1055
1056 /* copy microcode image into NIC memory */
1057 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode,
1058 size);
1059
1060 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1061 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1062 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1063
1064 /* run microcode */
1065 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1066
1067 wpi_mem_unlock(sc);
1068
1069 return 0;
1070 }
1071
1072 /*
1073 * The firmware text and data segments are transferred to the NIC using DMA.
1074 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1075 * where to find it. Once the NIC has copied the firmware into its internal
1076 * memory, we can free our local copy in the driver.
1077 */
1078 static int
1079 wpi_load_firmware(struct wpi_softc *sc, uint32_t target, const char *fw,
1080 int size)
1081 {
1082 bus_dmamap_t map;
1083 bus_dma_segment_t seg;
1084 void *virtaddr;
1085 struct wpi_tx_desc desc;
1086 int i, ntries, nsegs, error;
1087
1088 /*
1089 * Allocate DMA-safe memory to store the firmware.
1090 */
1091 error = bus_dmamap_create(sc->sc_dmat, size, WPI_MAX_SCATTER,
1092 WPI_MAX_SEG_LEN, 0, BUS_DMA_NOWAIT, &map);
1093 if (error != 0) {
1094 aprint_error("%s: could not create firmware DMA map\n",
1095 sc->sc_dev.dv_xname);
1096 goto fail1;
1097 }
1098
1099 error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
1100 &nsegs, BUS_DMA_NOWAIT);
1101 if (error != 0) {
1102 aprint_error("%s: could not allocate firmware DMA memory\n",
1103 sc->sc_dev.dv_xname);
1104 goto fail2;
1105 }
1106
1107 error = bus_dmamem_map(sc->sc_dmat, &seg, nsegs, size, &virtaddr,
1108 BUS_DMA_NOWAIT);
1109 if (error != 0) {
1110 aprint_error("%s: could not map firmware DMA memory\n",
1111 sc->sc_dev.dv_xname);
1112 goto fail3;
1113 }
1114
1115 error = bus_dmamap_load(sc->sc_dmat, map, virtaddr, size, NULL,
1116 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1117 if (error != 0) {
1118 aprint_error("%s: could not load firmware DMA map\n",
1119 sc->sc_dev.dv_xname);
1120 goto fail4;
1121 }
1122
1123 /* copy firmware image to DMA-safe memory */
1124 memcpy(virtaddr, fw, size);
1125
1126 /* make sure the adapter will get up-to-date values */
1127 bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_PREWRITE);
1128
1129 bzero(&desc, sizeof desc);
1130 desc.flags = htole32(WPI_PAD32(size) << 28 | map->dm_nsegs << 24);
1131 for (i = 0; i < map->dm_nsegs; i++) {
1132 desc.segs[i].addr = htole32(map->dm_segs[i].ds_addr);
1133 desc.segs[i].len = htole32(map->dm_segs[i].ds_len);
1134 }
1135
1136 wpi_mem_lock(sc);
1137
1138 /* tell adapter where to copy image in its internal memory */
1139 WPI_WRITE(sc, WPI_FW_TARGET, target);
1140
1141 WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1142
1143 /* copy firmware descriptor into NIC memory */
1144 WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1145 sizeof desc / sizeof (uint32_t));
1146
1147 WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1148 WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1149 WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1150
1151 /* wait while the adapter is busy copying the firmware */
1152 for (ntries = 0; ntries < 100; ntries++) {
1153 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1154 break;
1155 DELAY(1000);
1156 }
1157 if (ntries == 100) {
1158 aprint_error("%s: timeout transferring firmware\n",
1159 sc->sc_dev.dv_xname);
1160 error = ETIMEDOUT;
1161 }
1162
1163 WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1164
1165 wpi_mem_unlock(sc);
1166
1167 bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_POSTWRITE);
1168 bus_dmamap_unload(sc->sc_dmat, map);
1169 fail4: bus_dmamem_unmap(sc->sc_dmat, virtaddr, size);
1170 fail3: bus_dmamem_free(sc->sc_dmat, &seg, 1);
1171 fail2: bus_dmamap_destroy(sc->sc_dmat, map);
1172 fail1: return error;
1173 }
1174
1175 static void
1176 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1177 struct wpi_rx_data *data)
1178 {
1179 struct ieee80211com *ic = &sc->sc_ic;
1180 struct ifnet *ifp = ic->ic_ifp;
1181 struct wpi_rx_ring *ring = &sc->rxq;
1182 struct wpi_rx_stat *stat;
1183 struct wpi_rx_head *head;
1184 struct wpi_rx_tail *tail;
1185 struct wpi_rbuf *rbuf;
1186 struct ieee80211_frame *wh;
1187 struct ieee80211_node *ni;
1188 struct mbuf *m, *mnew;
1189
1190 stat = (struct wpi_rx_stat *)(desc + 1);
1191
1192 if (stat->len > WPI_STAT_MAXLEN) {
1193 aprint_error("%s: invalid rx statistic header\n",
1194 sc->sc_dev.dv_xname);
1195 ifp->if_ierrors++;
1196 return;
1197 }
1198
1199 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1200 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1201
1202 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1203 "chan=%d tstamp=%llu\n", ring->cur, le32toh(desc->len),
1204 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1205 le64toh(tail->tstamp)));
1206
1207 /*
1208 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1209 * to radiotap in monitor mode).
1210 */
1211 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1212 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1213 ifp->if_ierrors++;
1214 return;
1215 }
1216
1217
1218
1219 /*
1220 * If the number of free entry is too low
1221 * just dup the data->m socket and reuse the same rbuf entry
1222 */
1223 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1224
1225 /* Set length before calling m_dup */
1226 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1227
1228 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1229 } else {
1230
1231 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1232 if (mnew == NULL) {
1233 ifp->if_ierrors++;
1234 return;
1235 }
1236
1237 rbuf = wpi_alloc_rbuf(sc);
1238 KASSERT(rbuf != NULL);
1239
1240 /* attach Rx buffer to mbuf */
1241 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1242 rbuf);
1243 mnew->m_flags |= M_EXT_RW;
1244
1245 m = data->m;
1246 data->m = mnew;
1247
1248 /* update Rx descriptor */
1249 ring->desc[ring->cur] = htole32(rbuf->paddr);
1250 }
1251
1252 /* finalize mbuf */
1253 m->m_pkthdr.rcvif = ifp;
1254 m->m_data = (void *)(head + 1);
1255 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1256
1257 #if NBPFILTER > 0
1258 if (sc->sc_drvbpf != NULL) {
1259 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1260
1261 tap->wr_flags = 0;
1262 tap->wr_chan_freq =
1263 htole16(ic->ic_channels[head->chan].ic_freq);
1264 tap->wr_chan_flags =
1265 htole16(ic->ic_channels[head->chan].ic_flags);
1266 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1267 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1268 tap->wr_tsft = tail->tstamp;
1269 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1270 switch (head->rate) {
1271 /* CCK rates */
1272 case 10: tap->wr_rate = 2; break;
1273 case 20: tap->wr_rate = 4; break;
1274 case 55: tap->wr_rate = 11; break;
1275 case 110: tap->wr_rate = 22; break;
1276 /* OFDM rates */
1277 case 0xd: tap->wr_rate = 12; break;
1278 case 0xf: tap->wr_rate = 18; break;
1279 case 0x5: tap->wr_rate = 24; break;
1280 case 0x7: tap->wr_rate = 36; break;
1281 case 0x9: tap->wr_rate = 48; break;
1282 case 0xb: tap->wr_rate = 72; break;
1283 case 0x1: tap->wr_rate = 96; break;
1284 case 0x3: tap->wr_rate = 108; break;
1285 /* unknown rate: should not happen */
1286 default: tap->wr_rate = 0;
1287 }
1288 if (le16toh(head->flags) & 0x4)
1289 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1290
1291 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1292 }
1293 #endif
1294
1295 /* grab a reference to the source node */
1296 wh = mtod(m, struct ieee80211_frame *);
1297 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1298
1299 /* send the frame to the 802.11 layer */
1300 ieee80211_input(ic, m, ni, stat->rssi, 0);
1301
1302 /* release node reference */
1303 ieee80211_free_node(ni);
1304 }
1305
1306 static void
1307 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1308 {
1309 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1310 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1311 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1312 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1313 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1314
1315 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1316 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1317 stat->nkill, stat->rate, le32toh(stat->duration),
1318 le32toh(stat->status)));
1319
1320 /*
1321 * Update rate control statistics for the node.
1322 * XXX we should not count mgmt frames since they're always sent at
1323 * the lowest available bit-rate.
1324 */
1325 wn->amn.amn_txcnt++;
1326 if (stat->ntries > 0) {
1327 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1328 wn->amn.amn_retrycnt++;
1329 }
1330
1331 if ((le32toh(stat->status) & 0xff) != 1)
1332 ifp->if_oerrors++;
1333 else
1334 ifp->if_opackets++;
1335
1336 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1337 m_freem(txdata->m);
1338 txdata->m = NULL;
1339 ieee80211_free_node(txdata->ni);
1340 txdata->ni = NULL;
1341
1342 ring->queued--;
1343
1344 sc->sc_tx_timer = 0;
1345 ifp->if_flags &= ~IFF_OACTIVE;
1346 wpi_start(ifp);
1347 }
1348
1349 static void
1350 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1351 {
1352 struct wpi_tx_ring *ring = &sc->cmdq;
1353 struct wpi_tx_data *data;
1354
1355 if ((desc->qid & 7) != 4)
1356 return; /* not a command ack */
1357
1358 data = &ring->data[desc->idx];
1359
1360 /* if the command was mapped in a mbuf, free it */
1361 if (data->m != NULL) {
1362 bus_dmamap_unload(sc->sc_dmat, data->map);
1363 m_freem(data->m);
1364 data->m = NULL;
1365 }
1366
1367 wakeup(&ring->cmd[desc->idx]);
1368 }
1369
1370 static void
1371 wpi_notif_intr(struct wpi_softc *sc)
1372 {
1373 struct ieee80211com *ic = &sc->sc_ic;
1374 struct ifnet *ifp = ic->ic_ifp;
1375 struct wpi_rx_desc *desc;
1376 struct wpi_rx_data *data;
1377 uint32_t hw;
1378
1379 hw = le32toh(sc->shared->next);
1380 while (sc->rxq.cur != hw) {
1381 data = &sc->rxq.data[sc->rxq.cur];
1382
1383 desc = mtod(data->m, struct wpi_rx_desc *);
1384
1385 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1386 "len=%d\n", desc->qid, desc->idx, desc->flags,
1387 desc->type, le32toh(desc->len)));
1388
1389 if (!(desc->qid & 0x80)) /* reply to a command */
1390 wpi_cmd_intr(sc, desc);
1391
1392 switch (desc->type) {
1393 case WPI_RX_DONE:
1394 /* a 802.11 frame was received */
1395 wpi_rx_intr(sc, desc, data);
1396 break;
1397
1398 case WPI_TX_DONE:
1399 /* a 802.11 frame has been transmitted */
1400 wpi_tx_intr(sc, desc);
1401 break;
1402
1403 case WPI_UC_READY:
1404 {
1405 struct wpi_ucode_info *uc =
1406 (struct wpi_ucode_info *)(desc + 1);
1407
1408 /* the microcontroller is ready */
1409 DPRINTF(("microcode alive notification version %x "
1410 "alive %x\n", le32toh(uc->version),
1411 le32toh(uc->valid)));
1412
1413 if (le32toh(uc->valid) != 1) {
1414 aprint_error("%s: microcontroller "
1415 "initialization failed\n",
1416 sc->sc_dev.dv_xname);
1417 }
1418 break;
1419 }
1420 case WPI_STATE_CHANGED:
1421 {
1422 uint32_t *status = (uint32_t *)(desc + 1);
1423
1424 /* enabled/disabled notification */
1425 DPRINTF(("state changed to %x\n", le32toh(*status)));
1426
1427 if (le32toh(*status) & 1) {
1428 /* the radio button has to be pushed */
1429 aprint_error("%s: Radio transmitter is off\n",
1430 sc->sc_dev.dv_xname);
1431 /* turn the interface down */
1432 ifp->if_flags &= ~IFF_UP;
1433 wpi_stop(ifp, 1);
1434 return; /* no further processing */
1435 }
1436 break;
1437 }
1438 case WPI_START_SCAN:
1439 {
1440 struct wpi_start_scan *scan =
1441 (struct wpi_start_scan *)(desc + 1);
1442
1443 DPRINTFN(2, ("scanning channel %d status %x\n",
1444 scan->chan, le32toh(scan->status)));
1445
1446 /* fix current channel */
1447 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1448 break;
1449 }
1450 case WPI_STOP_SCAN:
1451 {
1452 struct wpi_stop_scan *scan =
1453 (struct wpi_stop_scan *)(desc + 1);
1454
1455 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1456 scan->nchan, scan->status, scan->chan));
1457
1458 if (scan->status == 1 && scan->chan <= 14) {
1459 /*
1460 * We just finished scanning 802.11g channels,
1461 * start scanning 802.11a ones.
1462 */
1463 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1464 break;
1465 }
1466 ieee80211_end_scan(ic);
1467 break;
1468 }
1469 }
1470
1471 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1472 }
1473
1474 /* tell the firmware what we have processed */
1475 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1476 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1477 }
1478
1479 static int
1480 wpi_intr(void *arg)
1481 {
1482 struct wpi_softc *sc = arg;
1483 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1484 uint32_t r;
1485
1486 r = WPI_READ(sc, WPI_INTR);
1487 if (r == 0 || r == 0xffffffff)
1488 return 0; /* not for us */
1489
1490 DPRINTFN(5, ("interrupt reg %x\n", r));
1491
1492 /* disable interrupts */
1493 WPI_WRITE(sc, WPI_MASK, 0);
1494 /* ack interrupts */
1495 WPI_WRITE(sc, WPI_INTR, r);
1496
1497 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1498 aprint_error("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
1499 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1500 wpi_stop(sc->sc_ic.ic_ifp, 1);
1501 return 1;
1502 }
1503
1504 if (r & WPI_RX_INTR)
1505 wpi_notif_intr(sc);
1506
1507 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1508 wakeup(sc);
1509
1510 /* re-enable interrupts */
1511 if (ifp->if_flags & IFF_UP)
1512 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1513
1514 return 1;
1515 }
1516
1517 static uint8_t
1518 wpi_plcp_signal(int rate)
1519 {
1520 switch (rate) {
1521 /* CCK rates (returned values are device-dependent) */
1522 case 2: return 10;
1523 case 4: return 20;
1524 case 11: return 55;
1525 case 22: return 110;
1526
1527 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1528 /* R1-R4, (u)ral is R4-R1 */
1529 case 12: return 0xd;
1530 case 18: return 0xf;
1531 case 24: return 0x5;
1532 case 36: return 0x7;
1533 case 48: return 0x9;
1534 case 72: return 0xb;
1535 case 96: return 0x1;
1536 case 108: return 0x3;
1537
1538 /* unsupported rates (should not get there) */
1539 default: return 0;
1540 }
1541 }
1542
1543 /* quickly determine if a given rate is CCK or OFDM */
1544 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1545
1546 static int
1547 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1548 int ac)
1549 {
1550 struct ieee80211com *ic = &sc->sc_ic;
1551 struct wpi_tx_ring *ring = &sc->txq[ac];
1552 struct wpi_tx_desc *desc;
1553 struct wpi_tx_data *data;
1554 struct wpi_tx_cmd *cmd;
1555 struct wpi_cmd_data *tx;
1556 struct ieee80211_frame *wh;
1557 struct ieee80211_key *k;
1558 const struct chanAccParams *cap;
1559 struct mbuf *mnew;
1560 int i, error, rate, hdrlen, noack = 0;
1561
1562 desc = &ring->desc[ring->cur];
1563 data = &ring->data[ring->cur];
1564
1565 wh = mtod(m0, struct ieee80211_frame *);
1566
1567 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1568 hdrlen = sizeof (struct ieee80211_qosframe);
1569 cap = &ic->ic_wme.wme_chanParams;
1570 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1571 } else
1572 hdrlen = sizeof (struct ieee80211_frame);
1573
1574 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1575 k = ieee80211_crypto_encap(ic, ni, m0);
1576 if (k == NULL) {
1577 m_freem(m0);
1578 return ENOBUFS;
1579 }
1580
1581 /* packet header may have moved, reset our local pointer */
1582 wh = mtod(m0, struct ieee80211_frame *);
1583 }
1584
1585 /* pickup a rate */
1586 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1587 IEEE80211_FC0_TYPE_MGT) {
1588 /* mgmt frames are sent at the lowest available bit-rate */
1589 rate = ni->ni_rates.rs_rates[0];
1590 } else {
1591 if (ic->ic_fixed_rate != -1) {
1592 rate = ic->ic_sup_rates[ic->ic_curmode].
1593 rs_rates[ic->ic_fixed_rate];
1594 } else
1595 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1596 }
1597 rate &= IEEE80211_RATE_VAL;
1598
1599
1600 #if NBPFILTER > 0
1601 if (sc->sc_drvbpf != NULL) {
1602 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1603
1604 tap->wt_flags = 0;
1605 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1606 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1607 tap->wt_rate = rate;
1608 tap->wt_hwqueue = ac;
1609 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1610 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1611
1612 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1613 }
1614 #endif
1615
1616 cmd = &ring->cmd[ring->cur];
1617 cmd->code = WPI_CMD_TX_DATA;
1618 cmd->flags = 0;
1619 cmd->qid = ring->qid;
1620 cmd->idx = ring->cur;
1621
1622 tx = (struct wpi_cmd_data *)cmd->data;
1623 tx->flags = 0;
1624
1625 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1626 tx->flags |= htole32(WPI_TX_NEED_ACK);
1627 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1628 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1629
1630 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1631
1632 /* retrieve destination node's id */
1633 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1634 WPI_ID_BSS;
1635
1636 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1637 IEEE80211_FC0_TYPE_MGT) {
1638 /* tell h/w to set timestamp in probe responses */
1639 if ((wh->i_fc[0] &
1640 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1641 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1642 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1643
1644 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1645 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1646 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1647 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1648 tx->timeout = htole16(3);
1649 else
1650 tx->timeout = htole16(2);
1651 } else
1652 tx->timeout = htole16(0);
1653
1654 tx->rate = wpi_plcp_signal(rate);
1655
1656 /* be very persistant at sending frames out */
1657 tx->rts_ntries = 7;
1658 tx->data_ntries = 15;
1659
1660 tx->ofdm_mask = 0xff;
1661 tx->cck_mask = 0xf;
1662 tx->lifetime = htole32(0xffffffff);
1663
1664 tx->len = htole16(m0->m_pkthdr.len);
1665
1666 /* save and trim IEEE802.11 header */
1667 m_copydata(m0, 0, hdrlen, (void *)&tx->wh);
1668 m_adj(m0, hdrlen);
1669
1670 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1671 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1672 if (error != 0 && error != EFBIG) {
1673 aprint_error("%s: could not map mbuf (error %d)\n",
1674 sc->sc_dev.dv_xname, error);
1675 m_freem(m0);
1676 return error;
1677 }
1678 if (error != 0) {
1679 /* too many fragments, linearize */
1680 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1681 if (mnew == NULL) {
1682 m_freem(m0);
1683 return ENOMEM;
1684 }
1685
1686 M_COPY_PKTHDR(mnew, m0);
1687 if (m0->m_pkthdr.len > MHLEN) {
1688 MCLGET(mnew, M_DONTWAIT);
1689 if (!(mnew->m_flags & M_EXT)) {
1690 m_freem(m0);
1691 m_freem(mnew);
1692 return ENOMEM;
1693 }
1694 }
1695
1696 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1697 m_freem(m0);
1698 mnew->m_len = mnew->m_pkthdr.len;
1699 m0 = mnew;
1700
1701 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1702 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1703 if (error != 0) {
1704 aprint_error("%s: could not map mbuf (error %d)\n",
1705 sc->sc_dev.dv_xname, error);
1706 m_freem(m0);
1707 return error;
1708 }
1709 }
1710
1711 data->m = m0;
1712 data->ni = ni;
1713
1714 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1715 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1716
1717 /* first scatter/gather segment is used by the tx data command */
1718 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1719 (1 + data->map->dm_nsegs) << 24);
1720 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1721 ring->cur * sizeof (struct wpi_tx_cmd));
1722 /*XXX The next line might be wrong. I don't use hdrlen*/
1723 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data));
1724
1725 for (i = 1; i <= data->map->dm_nsegs; i++) {
1726 desc->segs[i].addr =
1727 htole32(data->map->dm_segs[i - 1].ds_addr);
1728 desc->segs[i].len =
1729 htole32(data->map->dm_segs[i - 1].ds_len);
1730 }
1731
1732 ring->queued++;
1733
1734 /* kick ring */
1735 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1736 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1737
1738 return 0;
1739 }
1740
1741 static void
1742 wpi_start(struct ifnet *ifp)
1743 {
1744 struct wpi_softc *sc = ifp->if_softc;
1745 struct ieee80211com *ic = &sc->sc_ic;
1746 struct ieee80211_node *ni;
1747 struct ether_header *eh;
1748 struct mbuf *m0;
1749 int ac;
1750
1751 /*
1752 * net80211 may still try to send management frames even if the
1753 * IFF_RUNNING flag is not set...
1754 */
1755 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1756 return;
1757
1758 for (;;) {
1759 IF_POLL(&ic->ic_mgtq, m0);
1760 if (m0 != NULL) {
1761 IF_DEQUEUE(&ic->ic_mgtq, m0);
1762
1763 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1764 m0->m_pkthdr.rcvif = NULL;
1765
1766 /* management frames go into ring 0 */
1767 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1768 ifp->if_oerrors++;
1769 continue;
1770 }
1771 #if NBPFILTER > 0
1772 if (ic->ic_rawbpf != NULL)
1773 bpf_mtap(ic->ic_rawbpf, m0);
1774 #endif
1775 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1776 ifp->if_oerrors++;
1777 break;
1778 }
1779 } else {
1780 if (ic->ic_state != IEEE80211_S_RUN)
1781 break;
1782 IFQ_POLL(&ifp->if_snd, m0);
1783 if (m0 == NULL)
1784 break;
1785
1786 if (m0->m_len < sizeof (*eh) &&
1787 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1788 ifp->if_oerrors++;
1789 continue;
1790 }
1791 eh = mtod(m0, struct ether_header *);
1792 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1793 if (ni == NULL) {
1794 m_freem(m0);
1795 ifp->if_oerrors++;
1796 continue;
1797 }
1798
1799 /* classify mbuf so we can find which tx ring to use */
1800 if (ieee80211_classify(ic, m0, ni) != 0) {
1801 m_freem(m0);
1802 ieee80211_free_node(ni);
1803 ifp->if_oerrors++;
1804 continue;
1805 }
1806
1807 /* no QoS encapsulation for EAPOL frames */
1808 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1809 M_WME_GETAC(m0) : WME_AC_BE;
1810
1811 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1812 /* there is no place left in this ring */
1813 ifp->if_flags |= IFF_OACTIVE;
1814 break;
1815 }
1816 IFQ_DEQUEUE(&ifp->if_snd, m0);
1817 #if NBPFILTER > 0
1818 if (ifp->if_bpf != NULL)
1819 bpf_mtap(ifp->if_bpf, m0);
1820 #endif
1821 m0 = ieee80211_encap(ic, m0, ni);
1822 if (m0 == NULL) {
1823 ieee80211_free_node(ni);
1824 ifp->if_oerrors++;
1825 continue;
1826 }
1827 #if NBPFILTER > 0
1828 if (ic->ic_rawbpf != NULL)
1829 bpf_mtap(ic->ic_rawbpf, m0);
1830 #endif
1831 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
1832 ieee80211_free_node(ni);
1833 ifp->if_oerrors++;
1834 break;
1835 }
1836 }
1837
1838 sc->sc_tx_timer = 5;
1839 ifp->if_timer = 1;
1840 }
1841 }
1842
1843 static void
1844 wpi_watchdog(struct ifnet *ifp)
1845 {
1846 struct wpi_softc *sc = ifp->if_softc;
1847
1848 ifp->if_timer = 0;
1849
1850 if (sc->sc_tx_timer > 0) {
1851 if (--sc->sc_tx_timer == 0) {
1852 aprint_error("%s: device timeout\n",
1853 sc->sc_dev.dv_xname);
1854 ifp->if_oerrors++;
1855 ifp->if_flags &= ~IFF_UP;
1856 wpi_stop(ifp, 1);
1857 return;
1858 }
1859 ifp->if_timer = 1;
1860 }
1861
1862 ieee80211_watchdog(&sc->sc_ic);
1863 }
1864
1865 static int
1866 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1867 {
1868 #define IS_RUNNING(ifp) \
1869 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1870
1871 struct wpi_softc *sc = ifp->if_softc;
1872 struct ieee80211com *ic = &sc->sc_ic;
1873 struct ifreq *ifr = (struct ifreq *)data;
1874 int s, error = 0;
1875
1876 s = splnet();
1877
1878 switch (cmd) {
1879 case SIOCSIFFLAGS:
1880 if (ifp->if_flags & IFF_UP) {
1881 if (!(ifp->if_flags & IFF_RUNNING))
1882 wpi_init(ifp);
1883 } else {
1884 if (ifp->if_flags & IFF_RUNNING)
1885 wpi_stop(ifp, 1);
1886 }
1887 break;
1888
1889 case SIOCADDMULTI:
1890 case SIOCDELMULTI:
1891 error = (cmd == SIOCADDMULTI) ?
1892 ether_addmulti(ifr, &sc->sc_ec) :
1893 ether_delmulti(ifr, &sc->sc_ec);
1894 if (error == ENETRESET) {
1895 /* setup multicast filter, etc */
1896 error = 0;
1897 }
1898 break;
1899
1900 default:
1901 error = ieee80211_ioctl(ic, cmd, data);
1902 }
1903
1904 if (error == ENETRESET) {
1905 if (IS_RUNNING(ifp) &&
1906 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1907 wpi_init(ifp);
1908 error = 0;
1909 }
1910
1911 splx(s);
1912 return error;
1913
1914 #undef IS_RUNNING
1915 }
1916
1917 /*
1918 * Extract various information from EEPROM.
1919 */
1920 static void
1921 wpi_read_eeprom(struct wpi_softc *sc)
1922 {
1923 struct ieee80211com *ic = &sc->sc_ic;
1924 uint16_t val;
1925 int i;
1926
1927 /* read MAC address */
1928 val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0);
1929 ic->ic_myaddr[0] = val & 0xff;
1930 ic->ic_myaddr[1] = val >> 8;
1931 val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1);
1932 ic->ic_myaddr[2] = val & 0xff;
1933 ic->ic_myaddr[3] = val >> 8;
1934 val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2);
1935 ic->ic_myaddr[4] = val & 0xff;
1936 ic->ic_myaddr[5] = val >> 8;
1937
1938 /* read power settings for 2.4GHz channels */
1939 for (i = 0; i < 14; i++) {
1940 sc->pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i);
1941 sc->pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i);
1942 DPRINTFN(2, ("channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1,
1943 sc->pwr1[i], sc->pwr2[i]));
1944 }
1945 }
1946
1947 /*
1948 * Send a command to the firmware.
1949 */
1950 static int
1951 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
1952 {
1953 struct wpi_tx_ring *ring = &sc->cmdq;
1954 struct wpi_tx_desc *desc;
1955 struct wpi_tx_cmd *cmd;
1956
1957 KASSERT(size <= sizeof cmd->data);
1958
1959 desc = &ring->desc[ring->cur];
1960 cmd = &ring->cmd[ring->cur];
1961
1962 cmd->code = code;
1963 cmd->flags = 0;
1964 cmd->qid = ring->qid;
1965 cmd->idx = ring->cur;
1966 memcpy(cmd->data, buf, size);
1967
1968 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
1969 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1970 ring->cur * sizeof (struct wpi_tx_cmd));
1971 desc->segs[0].len = htole32(4 + size);
1972
1973 /* kick cmd ring */
1974 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
1975 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1976
1977 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
1978 }
1979
1980 static int
1981 wpi_wme_update(struct ieee80211com *ic)
1982 {
1983 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
1984 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
1985 struct wpi_softc *sc = ic->ic_ifp->if_softc;
1986 const struct wmeParams *wmep;
1987 struct wpi_wme_setup wme;
1988 int ac;
1989
1990 /* don't override default WME values if WME is not actually enabled */
1991 if (!(ic->ic_flags & IEEE80211_F_WME))
1992 return 0;
1993
1994 wme.flags = 0;
1995 for (ac = 0; ac < WME_NUM_AC; ac++) {
1996 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1997 wme.ac[ac].aifsn = wmep->wmep_aifsn;
1998 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
1999 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2000 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2001
2002 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2003 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2004 wme.ac[ac].cwmax, wme.ac[ac].txop));
2005 }
2006
2007 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2008 #undef WPI_USEC
2009 #undef WPI_EXP2
2010 }
2011
2012 /*
2013 * Configure h/w multi-rate retries.
2014 */
2015 static int
2016 wpi_mrr_setup(struct wpi_softc *sc)
2017 {
2018 struct ieee80211com *ic = &sc->sc_ic;
2019 struct wpi_mrr_setup mrr;
2020 int i, error;
2021
2022 /* CCK rates (not used with 802.11a) */
2023 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2024 mrr.rates[i].flags = 0;
2025 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2026 /* fallback to the immediate lower CCK rate (if any) */
2027 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2028 /* try one time at this rate before falling back to "next" */
2029 mrr.rates[i].ntries = 1;
2030 }
2031
2032 /* OFDM rates (not used with 802.11b) */
2033 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2034 mrr.rates[i].flags = 0;
2035 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2036 /* fallback to the immediate lower rate (if any) */
2037 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2038 mrr.rates[i].next = (i == WPI_OFDM6) ?
2039 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2040 WPI_OFDM6 : WPI_CCK2) :
2041 i - 1;
2042 /* try one time at this rate before falling back to "next" */
2043 mrr.rates[i].ntries = 1;
2044 }
2045
2046 /* setup MRR for control frames */
2047 mrr.which = htole32(WPI_MRR_CTL);
2048 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 1);
2049 if (error != 0) {
2050 aprint_error("%s: could not setup MRR for control frames\n",
2051 sc->sc_dev.dv_xname);
2052 return error;
2053 }
2054
2055 /* setup MRR for data frames */
2056 mrr.which = htole32(WPI_MRR_DATA);
2057 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 1);
2058 if (error != 0) {
2059 aprint_error("%s: could not setup MRR for data frames\n",
2060 sc->sc_dev.dv_xname);
2061 return error;
2062 }
2063
2064 return 0;
2065 }
2066
2067 static void
2068 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2069 {
2070 struct wpi_cmd_led led;
2071
2072 led.which = which;
2073 led.unit = htole32(100000); /* on/off in unit of 100ms */
2074 led.off = off;
2075 led.on = on;
2076
2077 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2078 }
2079
2080 static void
2081 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2082 {
2083 struct wpi_cmd_tsf tsf;
2084 uint64_t val, mod;
2085
2086 memset(&tsf, 0, sizeof tsf);
2087 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2088 tsf.bintval = htole16(ni->ni_intval);
2089 tsf.lintval = htole16(10);
2090
2091 /* compute remaining time until next beacon */
2092 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2093 mod = le64toh(tsf.tstamp) % val;
2094 tsf.binitval = htole32((uint32_t)(val - mod));
2095
2096 DPRINTF(("TSF bintval=%u tstamp=%llu, init=%u\n",
2097 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2098
2099 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2100 aprint_error("%s: could not enable TSF\n", sc->sc_dev.dv_xname);
2101 }
2102
2103 /*
2104 * Build a beacon frame that the firmware will broadcast periodically in
2105 * IBSS or HostAP modes.
2106 */
2107 static int
2108 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2109 {
2110 struct ieee80211com *ic = &sc->sc_ic;
2111 struct wpi_tx_ring *ring = &sc->cmdq;
2112 struct wpi_tx_desc *desc;
2113 struct wpi_tx_data *data;
2114 struct wpi_tx_cmd *cmd;
2115 struct wpi_cmd_beacon *bcn;
2116 struct ieee80211_beacon_offsets bo;
2117 struct mbuf *m0;
2118 int error;
2119
2120 desc = &ring->desc[ring->cur];
2121 data = &ring->data[ring->cur];
2122
2123 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2124 if (m0 == NULL) {
2125 aprint_error("%s: could not allocate beacon frame\n",
2126 sc->sc_dev.dv_xname);
2127 return ENOMEM;
2128 }
2129
2130 cmd = &ring->cmd[ring->cur];
2131 cmd->code = WPI_CMD_SET_BEACON;
2132 cmd->flags = 0;
2133 cmd->qid = ring->qid;
2134 cmd->idx = ring->cur;
2135
2136 bcn = (struct wpi_cmd_beacon *)cmd->data;
2137 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2138 bcn->id = WPI_ID_BROADCAST;
2139 bcn->ofdm_mask = 0xff;
2140 bcn->cck_mask = 0x0f;
2141 bcn->lifetime = htole32(0xffffffff);
2142 bcn->len = htole16(m0->m_pkthdr.len);
2143 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2144 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2145 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2146
2147 /* save and trim IEEE802.11 header */
2148 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2149 m_adj(m0, sizeof (struct ieee80211_frame));
2150
2151 /* assume beacon frame is contiguous */
2152 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2153 BUS_DMA_READ | BUS_DMA_NOWAIT);
2154 if (error) {
2155 aprint_error("%s: could not map beacon\n", sc->sc_dev.dv_xname);
2156 m_freem(m0);
2157 return error;
2158 }
2159
2160 data->m = m0;
2161
2162 /* first scatter/gather segment is used by the beacon command */
2163 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2164 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2165 ring->cur * sizeof (struct wpi_tx_cmd));
2166 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2167 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2168 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2169
2170 /* kick cmd ring */
2171 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2172 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2173
2174 return 0;
2175 }
2176
2177 static int
2178 wpi_auth(struct wpi_softc *sc)
2179 {
2180 struct ieee80211com *ic = &sc->sc_ic;
2181 struct ieee80211_node *ni = ic->ic_bss;
2182 struct wpi_node_info node;
2183 int error;
2184
2185 /* update adapter's configuration */
2186 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2187 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2188 sc->config.flags = htole32(WPI_CONFIG_TSF);
2189 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2190 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2191 WPI_CONFIG_24GHZ);
2192 }
2193 switch (ic->ic_curmode) {
2194 case IEEE80211_MODE_11A:
2195 sc->config.cck_mask = 0;
2196 sc->config.ofdm_mask = 0x15;
2197 break;
2198 case IEEE80211_MODE_11B:
2199 sc->config.cck_mask = 0x03;
2200 sc->config.ofdm_mask = 0;
2201 break;
2202 default: /* assume 802.11b/g */
2203 sc->config.cck_mask = 0x0f;
2204 sc->config.ofdm_mask = 0x15;
2205 }
2206
2207 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2208 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2209 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2210 sizeof (struct wpi_config), 1);
2211 if (error != 0) {
2212 aprint_error("%s: could not configure\n", sc->sc_dev.dv_xname);
2213 return error;
2214 }
2215
2216 /* add default node */
2217 memset(&node, 0, sizeof node);
2218 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2219 node.id = WPI_ID_BSS;
2220 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2221 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2222 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2223 if (error != 0) {
2224 aprint_error("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
2225 return error;
2226 }
2227
2228 error = wpi_mrr_setup(sc);
2229 if (error != 0) {
2230 aprint_error("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
2231 return error;
2232 }
2233
2234 return 0;
2235 }
2236
2237 /*
2238 * Send a scan request to the firmware. Since this command is huge, we map it
2239 * into a mbuf instead of using the pre-allocated set of commands.
2240 */
2241 static int
2242 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2243 {
2244 struct ieee80211com *ic = &sc->sc_ic;
2245 struct wpi_tx_ring *ring = &sc->cmdq;
2246 struct wpi_tx_desc *desc;
2247 struct wpi_tx_data *data;
2248 struct wpi_tx_cmd *cmd;
2249 struct wpi_scan_hdr *hdr;
2250 struct wpi_scan_chan *chan;
2251 struct ieee80211_frame *wh;
2252 struct ieee80211_rateset *rs;
2253 struct ieee80211_channel *c;
2254 enum ieee80211_phymode mode;
2255 uint8_t *frm;
2256 int nrates, pktlen, error;
2257
2258 desc = &ring->desc[ring->cur];
2259 data = &ring->data[ring->cur];
2260
2261 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2262 if (data->m == NULL) {
2263 aprint_error("%s: could not allocate mbuf for scan command\n",
2264 sc->sc_dev.dv_xname);
2265 return ENOMEM;
2266 }
2267
2268 MCLGET(data->m, M_DONTWAIT);
2269 if (!(data->m->m_flags & M_EXT)) {
2270 m_freem(data->m);
2271 data->m = NULL;
2272 aprint_error("%s: could not allocate mbuf for scan command\n",
2273 sc->sc_dev.dv_xname);
2274 return ENOMEM;
2275 }
2276
2277 cmd = mtod(data->m, struct wpi_tx_cmd *);
2278 cmd->code = WPI_CMD_SCAN;
2279 cmd->flags = 0;
2280 cmd->qid = ring->qid;
2281 cmd->idx = ring->cur;
2282
2283 hdr = (struct wpi_scan_hdr *)cmd->data;
2284 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2285 hdr->first = 1;
2286 /*
2287 * Move to the next channel if no packets are received within 5 msecs
2288 * after sending the probe request (this helps to reduce the duration
2289 * of active scans).
2290 */
2291 hdr->quiet = htole16(5); /* timeout in milliseconds */
2292 hdr->threshold = htole16(1); /* min # of packets */
2293
2294 if (flags & IEEE80211_CHAN_A) {
2295 hdr->band = htole16(WPI_SCAN_5GHZ);
2296 /* send probe requests at 6Mbps */
2297 hdr->rate = wpi_plcp_signal(12);
2298 } else {
2299 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2300 /* send probe requests at 1Mbps */
2301 hdr->rate = wpi_plcp_signal(2);
2302 }
2303 hdr->id = WPI_ID_BROADCAST;
2304 hdr->mask = htole32(0xffffffff);
2305 hdr->magic1 = htole32(1 << 13);
2306
2307 hdr->esslen = ic->ic_des_esslen;
2308 memcpy(hdr->essid, ic->ic_des_essid, ic->ic_des_esslen);
2309
2310 /*
2311 * Build a probe request frame. Most of the following code is a
2312 * copy & paste of what is done in net80211.
2313 */
2314 wh = (struct ieee80211_frame *)(hdr + 1);
2315 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2316 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2317 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2318 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2319 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2320 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2321 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2322 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2323
2324 frm = (uint8_t *)(wh + 1);
2325
2326 /* add essid IE */
2327 *frm++ = IEEE80211_ELEMID_SSID;
2328 *frm++ = ic->ic_des_esslen;
2329 memcpy(frm, ic->ic_des_essid, ic->ic_des_esslen);
2330 frm += ic->ic_des_esslen;
2331
2332 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2333 rs = &ic->ic_sup_rates[mode];
2334
2335 /* add supported rates IE */
2336 *frm++ = IEEE80211_ELEMID_RATES;
2337 nrates = rs->rs_nrates;
2338 if (nrates > IEEE80211_RATE_SIZE)
2339 nrates = IEEE80211_RATE_SIZE;
2340 *frm++ = nrates;
2341 memcpy(frm, rs->rs_rates, nrates);
2342 frm += nrates;
2343
2344 /* add supported xrates IE */
2345 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2346 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2347 *frm++ = IEEE80211_ELEMID_XRATES;
2348 *frm++ = nrates;
2349 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2350 frm += nrates;
2351 }
2352
2353 /* setup length of probe request */
2354 hdr->pbrlen = htole16(frm - (uint8_t *)wh);
2355
2356 chan = (struct wpi_scan_chan *)frm;
2357 for (c = &ic->ic_channels[1];
2358 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2359 if ((c->ic_flags & flags) != flags)
2360 continue;
2361
2362 chan->chan = ieee80211_chan2ieee(ic, c);
2363 chan->flags = (c->ic_flags & IEEE80211_CHAN_PASSIVE) ?
2364 0 : WPI_CHAN_ACTIVE;
2365 chan->magic = htole16(0x62ab);
2366 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2367 chan->active = htole16(10);
2368 chan->passive = htole16(110);
2369 } else {
2370 chan->active = htole16(20);
2371 chan->passive = htole16(120);
2372 }
2373 hdr->nchan++;
2374 chan++;
2375
2376 frm += sizeof (struct wpi_scan_chan);
2377 }
2378
2379 hdr->len = hdr->nchan * sizeof (struct wpi_scan_chan);
2380 pktlen = frm - mtod(data->m, uint8_t *);
2381
2382 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2383 NULL, BUS_DMA_NOWAIT);
2384 if (error) {
2385 aprint_error("%s: could not map scan command\n",
2386 sc->sc_dev.dv_xname);
2387 m_freem(data->m);
2388 data->m = NULL;
2389 return error;
2390 }
2391
2392 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2393 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2394 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2395
2396 /* kick cmd ring */
2397 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2398 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2399
2400 return 0; /* will be notified async. of failure/success */
2401 }
2402
2403 static int
2404 wpi_config(struct wpi_softc *sc)
2405 {
2406 struct ieee80211com *ic = &sc->sc_ic;
2407 struct ifnet *ifp = ic->ic_ifp;
2408 struct wpi_txpower txpower;
2409 struct wpi_power power;
2410 struct wpi_bluetooth bluetooth;
2411 struct wpi_node_info node;
2412 int error;
2413
2414 /* set Tx power for 2.4GHz channels (values read from EEPROM) */
2415 memset(&txpower, 0, sizeof txpower);
2416 memcpy(txpower.pwr1, sc->pwr1, 14 * sizeof (uint16_t));
2417 memcpy(txpower.pwr2, sc->pwr2, 14 * sizeof (uint16_t));
2418 error = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, 0);
2419 if (error != 0) {
2420 aprint_error("%s: could not set txpower\n",
2421 sc->sc_dev.dv_xname);
2422 return error;
2423 }
2424
2425 /* set power mode */
2426 memset(&power, 0, sizeof power);
2427 power.flags = htole32(0x8); /* XXX */
2428 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2429 if (error != 0) {
2430 aprint_error("%s: could not set power mode\n",
2431 sc->sc_dev.dv_xname);
2432 return error;
2433 }
2434
2435 /* configure bluetooth coexistence */
2436 memset(&bluetooth, 0, sizeof bluetooth);
2437 bluetooth.flags = 3;
2438 bluetooth.lead = 0xaa;
2439 bluetooth.kill = 1;
2440 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2441 0);
2442 if (error != 0) {
2443 aprint_error(
2444 "%s: could not configure bluetooth coexistence\n",
2445 sc->sc_dev.dv_xname);
2446 return error;
2447 }
2448
2449 /* configure adapter */
2450 memset(&sc->config, 0, sizeof (struct wpi_config));
2451 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2452 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2453 /*set default channel*/
2454 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2455 sc->config.flags = htole32(WPI_CONFIG_TSF);
2456 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2457 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2458 WPI_CONFIG_24GHZ);
2459 }
2460 sc->config.filter = 0;
2461 switch (ic->ic_opmode) {
2462 case IEEE80211_M_STA:
2463 sc->config.mode = WPI_MODE_STA;
2464 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2465 break;
2466 case IEEE80211_M_IBSS:
2467 case IEEE80211_M_AHDEMO:
2468 sc->config.mode = WPI_MODE_IBSS;
2469 break;
2470 case IEEE80211_M_HOSTAP:
2471 sc->config.mode = WPI_MODE_HOSTAP;
2472 break;
2473 case IEEE80211_M_MONITOR:
2474 sc->config.mode = WPI_MODE_MONITOR;
2475 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2476 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2477 break;
2478 }
2479 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2480 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2481 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2482 sizeof (struct wpi_config), 0);
2483 if (error != 0) {
2484 aprint_error("%s: configure command failed\n",
2485 sc->sc_dev.dv_xname);
2486 return error;
2487 }
2488
2489 /* add broadcast node */
2490 memset(&node, 0, sizeof node);
2491 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2492 node.id = WPI_ID_BROADCAST;
2493 node.rate = wpi_plcp_signal(2);
2494 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2495 if (error != 0) {
2496 aprint_error("%s: could not add broadcast node\n",
2497 sc->sc_dev.dv_xname);
2498 return error;
2499 }
2500
2501 return 0;
2502 }
2503
2504 static void
2505 wpi_stop_master(struct wpi_softc *sc)
2506 {
2507 uint32_t tmp;
2508 int ntries;
2509
2510 tmp = WPI_READ(sc, WPI_RESET);
2511 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2512
2513 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2514 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2515 return; /* already asleep */
2516
2517 for (ntries = 0; ntries < 100; ntries++) {
2518 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2519 break;
2520 DELAY(10);
2521 }
2522 if (ntries == 100) {
2523 aprint_error("%s: timeout waiting for master\n",
2524 sc->sc_dev.dv_xname);
2525 }
2526 }
2527
2528 static int
2529 wpi_power_up(struct wpi_softc *sc)
2530 {
2531 uint32_t tmp;
2532 int ntries;
2533
2534 wpi_mem_lock(sc);
2535 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2536 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2537 wpi_mem_unlock(sc);
2538
2539 for (ntries = 0; ntries < 5000; ntries++) {
2540 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2541 break;
2542 DELAY(10);
2543 }
2544 if (ntries == 5000) {
2545 aprint_error("%s: timeout waiting for NIC to power up\n",
2546 sc->sc_dev.dv_xname);
2547 return ETIMEDOUT;
2548 }
2549 return 0;
2550 }
2551
2552 static int
2553 wpi_reset(struct wpi_softc *sc)
2554 {
2555 uint32_t tmp;
2556 int ntries;
2557
2558 /* clear any pending interrupts */
2559 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2560
2561 tmp = WPI_READ(sc, WPI_PLL_CTL);
2562 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2563
2564 tmp = WPI_READ(sc, WPI_CHICKEN);
2565 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2566
2567 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2568 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2569
2570 /* wait for clock stabilization */
2571 for (ntries = 0; ntries < 1000; ntries++) {
2572 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2573 break;
2574 DELAY(10);
2575 }
2576 if (ntries == 1000) {
2577 aprint_error("%s: timeout waiting for clock stabilization\n",
2578 sc->sc_dev.dv_xname);
2579 return ETIMEDOUT;
2580 }
2581
2582 /* initialize EEPROM */
2583 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2584 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2585 aprint_error("%s: EEPROM not found\n", sc->sc_dev.dv_xname);
2586 return EIO;
2587 }
2588 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2589
2590 return 0;
2591 }
2592
2593 static void
2594 wpi_hw_config(struct wpi_softc *sc)
2595 {
2596 uint16_t val;
2597 uint32_t rev, hw;
2598
2599 /* voodoo from the Linux "driver".. */
2600 hw = WPI_READ(sc, WPI_HWCONFIG);
2601
2602 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2603 rev = PCI_REVISION(rev);
2604 if ((rev & 0xc0) == 0x40)
2605 hw |= WPI_HW_ALM_MB;
2606 else if (!(rev & 0x80))
2607 hw |= WPI_HW_ALM_MM;
2608
2609 val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES);
2610 if ((val & 0xff) == 0x80)
2611 hw |= WPI_HW_SKU_MRC;
2612
2613 val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION);
2614 hw &= ~WPI_HW_REV_D;
2615 if ((val & 0xf0) == 0xd0)
2616 hw |= WPI_HW_REV_D;
2617
2618 val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE);
2619 if ((val & 0xff) > 1)
2620 hw |= WPI_HW_TYPE_B;
2621
2622 DPRINTF(("setting h/w config %x\n", hw));
2623 WPI_WRITE(sc, WPI_HWCONFIG, hw);
2624 }
2625
2626 static int
2627 wpi_init(struct ifnet *ifp)
2628 {
2629 struct wpi_softc *sc = ifp->if_softc;
2630 struct ieee80211com *ic = &sc->sc_ic;
2631 struct wpi_firmware_hdr hdr;
2632 const char *boot, *text, *data;
2633 firmware_handle_t fw;
2634 u_char *dfw;
2635 off_t size;
2636 size_t wsize;
2637 uint32_t tmp;
2638 int qid, ntries, error;
2639
2640 (void)wpi_reset(sc);
2641
2642 wpi_mem_lock(sc);
2643 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2644 DELAY(20);
2645 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
2646 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
2647 wpi_mem_unlock(sc);
2648
2649 (void)wpi_power_up(sc);
2650 wpi_hw_config(sc);
2651
2652 /* init Rx ring */
2653 wpi_mem_lock(sc);
2654 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
2655 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
2656 offsetof(struct wpi_shared, next));
2657 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
2658 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
2659 wpi_mem_unlock(sc);
2660
2661 /* init Tx rings */
2662 wpi_mem_lock(sc);
2663 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
2664 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
2665 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
2666 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
2667 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
2668 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
2669 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
2670
2671 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
2672 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
2673
2674 for (qid = 0; qid < 6; qid++) {
2675 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
2676 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
2677 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
2678 }
2679 wpi_mem_unlock(sc);
2680
2681 /* clear "radio off" and "disable command" bits (reversed logic) */
2682 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2683 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2684
2685 /* clear any pending interrupts */
2686 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2687 /* enable interrupts */
2688 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
2689
2690 if ((error = firmware_open("if_wpi", "ipw3945.ucode", &fw)) != 0) {
2691 aprint_error("%s: could not read firmware file\n",
2692 sc->sc_dev.dv_xname);
2693 goto fail1;
2694 }
2695
2696 size = firmware_get_size(fw);
2697
2698 if (size < sizeof (struct wpi_firmware_hdr)) {
2699 aprint_error("%s: firmware file too short\n",
2700 sc->sc_dev.dv_xname);
2701 error = EINVAL;
2702 goto fail2;
2703 }
2704
2705 if ((error = firmware_read(fw, 0, &hdr,
2706 sizeof (struct wpi_firmware_hdr))) != 0) {
2707 aprint_error("%s: can't get firmware header\n",
2708 sc->sc_dev.dv_xname);
2709 goto fail2;
2710 }
2711
2712 wsize = sizeof (struct wpi_firmware_hdr) + le32toh(hdr.textsz) +
2713 le32toh(hdr.datasz) + le32toh(hdr.bootsz);
2714
2715 if (size < wsize) {
2716 aprint_error("%s: fw file too short: should be %zd bytes\n",
2717 sc->sc_dev.dv_xname, wsize);
2718 error = EINVAL;
2719 goto fail2;
2720 }
2721
2722 dfw = firmware_malloc(size);
2723 if (dfw == NULL) {
2724 aprint_error("%s: not enough memory to stock firmware\n",
2725 sc->sc_dev.dv_xname);
2726 error = ENOMEM;
2727 goto fail2;
2728 }
2729
2730 if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
2731 aprint_error("%s: can't get firmware\n",
2732 sc->sc_dev.dv_xname);
2733 goto fail2;
2734 }
2735
2736 /* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */
2737 text = dfw + sizeof (struct wpi_firmware_hdr);
2738 data = text + le32toh(hdr.textsz);
2739 boot = data + le32toh(hdr.datasz);
2740
2741 /* load firmware boot code into NIC */
2742 error = wpi_load_microcode(sc, boot, le32toh(hdr.bootsz));
2743 if (error != 0) {
2744 aprint_error("%s: could not load microcode\n", sc->sc_dev.dv_xname);
2745 goto fail3;
2746 }
2747
2748 /* load firmware .text segment into NIC */
2749 error = wpi_load_firmware(sc, WPI_FW_TEXT, text, le32toh(hdr.textsz));
2750 if (error != 0) {
2751 aprint_error("%s: could not load firmware\n",
2752 sc->sc_dev.dv_xname);
2753 goto fail3;
2754 }
2755
2756 /* load firmware .data segment into NIC */
2757 error = wpi_load_firmware(sc, WPI_FW_DATA, data, le32toh(hdr.datasz));
2758 if (error != 0) {
2759 aprint_error("%s: could not load firmware\n",
2760 sc->sc_dev.dv_xname);
2761 goto fail3;
2762 }
2763
2764 firmware_free(dfw, 0);
2765 firmware_close(fw);
2766
2767 /* now press "execute" ;-) */
2768 tmp = WPI_READ(sc, WPI_RESET);
2769 tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
2770 WPI_WRITE(sc, WPI_RESET, tmp);
2771
2772 /* ..and wait at most one second for adapter to initialize */
2773 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
2774 /* this isn't what was supposed to happen.. */
2775 aprint_error("%s: timeout waiting for adapter to initialize\n",
2776 sc->sc_dev.dv_xname);
2777 goto fail1;
2778 }
2779
2780 /* wait for thermal sensors to calibrate */
2781 for (ntries = 0; ntries < 1000; ntries++) {
2782 if (WPI_READ(sc, WPI_TEMPERATURE) != 0)
2783 break;
2784 DELAY(10);
2785 }
2786 if (ntries == 1000) {
2787 aprint_error("%s: timeout waiting for thermal sensors calibration\n",
2788 sc->sc_dev.dv_xname);
2789 error = ETIMEDOUT;
2790 goto fail1;
2791 }
2792 DPRINTF(("temperature %d\n", (int)WPI_READ(sc, WPI_TEMPERATURE)));
2793
2794 if ((error = wpi_config(sc)) != 0) {
2795 aprint_error("%s: could not configure device\n",
2796 sc->sc_dev.dv_xname);
2797 goto fail1;
2798 }
2799
2800 ifp->if_flags &= ~IFF_OACTIVE;
2801 ifp->if_flags |= IFF_RUNNING;
2802
2803 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2804 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2805 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2806 }
2807 else
2808 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2809
2810 return 0;
2811
2812 fail3: firmware_free(dfw, 0);
2813 fail2: firmware_close(fw);
2814 fail1: wpi_stop(ifp, 1);
2815 return error;
2816 }
2817
2818
2819 static void
2820 wpi_stop(struct ifnet *ifp, int disable)
2821 {
2822 struct wpi_softc *sc = ifp->if_softc;
2823 struct ieee80211com *ic = &sc->sc_ic;
2824 uint32_t tmp;
2825 int ac;
2826
2827 ifp->if_timer = sc->sc_tx_timer = 0;
2828 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2829
2830 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2831
2832 /* disable interrupts */
2833 WPI_WRITE(sc, WPI_MASK, 0);
2834 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
2835 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
2836 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
2837
2838 wpi_mem_lock(sc);
2839 wpi_mem_write(sc, WPI_MEM_MODE, 0);
2840 wpi_mem_unlock(sc);
2841
2842 /* reset all Tx rings */
2843 for (ac = 0; ac < 4; ac++)
2844 wpi_reset_tx_ring(sc, &sc->txq[ac]);
2845 wpi_reset_tx_ring(sc, &sc->cmdq);
2846 wpi_reset_tx_ring(sc, &sc->svcq);
2847
2848 /* reset Rx ring */
2849 wpi_reset_rx_ring(sc, &sc->rxq);
2850
2851 wpi_mem_lock(sc);
2852 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
2853 wpi_mem_unlock(sc);
2854
2855 DELAY(5);
2856
2857 wpi_stop_master(sc);
2858
2859 tmp = WPI_READ(sc, WPI_RESET);
2860 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
2861 }
2862
2863 static void
2864 wpi_iter_func(void *arg, struct ieee80211_node *ni)
2865 {
2866 struct wpi_softc *sc = arg;
2867 struct wpi_node *wn = (struct wpi_node *)ni;
2868
2869 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
2870 }
2871
2872 static void
2873 wpi_amrr_timeout(void *arg)
2874 {
2875 struct wpi_softc *sc = arg;
2876 struct ieee80211com *ic = &sc->sc_ic;
2877 int s;
2878
2879 s = splnet();
2880 if (ic->ic_opmode == IEEE80211_M_STA)
2881 wpi_iter_func(sc, ic->ic_bss);
2882 else
2883 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
2884 splx(s);
2885
2886 callout_reset(&sc->amrr_ch, hz/2, wpi_amrr_timeout, sc);
2887 }
2888
2889 static void
2890 wpi_newassoc(struct ieee80211_node *ni, int isnew)
2891 {
2892 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2893 int i;
2894
2895 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
2896 /* set rate to some reasonable initial value */
2897 for (i = ni->ni_rates.rs_nrates - 1;
2898 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2899 i--);
2900 ni->ni_txrate = i;
2901 }
2902