if_wpi.c revision 1.16 1 /* $NetBSD: if_wpi.c,v 1.16 2007/07/11 17:51:07 degroote Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.16 2007/07/11 17:51:07 degroote Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39 #include <sys/callout.h>
40
41 #include <machine/bus.h>
42 #include <machine/endian.h>
43 #include <machine/intr.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47 #include <dev/pci/pcidevs.h>
48
49 #if NBPFILTER > 0
50 #include <net/bpf.h>
51 #endif
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x) if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 { 4, { 2, 4, 11, 22 } };
90
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94 static int wpi_match(struct device *, struct cfdata *, void *);
95 static void wpi_attach(struct device *, struct device *, void *);
96 static int wpi_detach(struct device*, int);
97 static void wpi_power(int, void *);
98 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
99 void **, bus_size_t, bus_size_t, int);
100 static void wpi_dma_contig_free(struct wpi_dma_info *);
101 static int wpi_alloc_shared(struct wpi_softc *);
102 static void wpi_free_shared(struct wpi_softc *);
103 static int wpi_alloc_fwmem(struct wpi_softc *);
104 static void wpi_free_fwmem(struct wpi_softc *);
105 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
106 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
107 static int wpi_alloc_rpool(struct wpi_softc *);
108 static void wpi_free_rpool(struct wpi_softc *);
109 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
112 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
113 int);
114 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
116 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
117 static void wpi_newassoc(struct ieee80211_node *, int);
118 static int wpi_media_change(struct ifnet *);
119 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
120 static void wpi_mem_lock(struct wpi_softc *);
121 static void wpi_mem_unlock(struct wpi_softc *);
122 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
123 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
124 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
125 static int wpi_load_segment(struct wpi_softc *, uint32_t, const uint8_t *,
126 int);
127 static int wpi_load_firmware(struct wpi_softc *);
128 static void wpi_calib_timeout(void *);
129 static void wpi_iter_func(void *, struct ieee80211_node *);
130 static void wpi_power_calibration(struct wpi_softc *, int);
131 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
132 struct wpi_rx_data *);
133 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
134 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
135 static void wpi_notif_intr(struct wpi_softc *);
136 static int wpi_intr(void *);
137 static void wpi_read_eeprom(struct wpi_softc *);
138 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
139 static void wpi_read_eeprom_group(struct wpi_softc *, int);
140 static uint8_t wpi_plcp_signal(int);
141 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
142 struct ieee80211_node *, int);
143 static void wpi_start(struct ifnet *);
144 static void wpi_watchdog(struct ifnet *);
145 static int wpi_ioctl(struct ifnet *, u_long, void *);
146 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
147 static int wpi_wme_update(struct ieee80211com *);
148 static int wpi_mrr_setup(struct wpi_softc *);
149 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
150 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
151 static int wpi_set_txpower(struct wpi_softc *,
152 struct ieee80211_channel *, int);
153 static int wpi_get_power_index(struct wpi_softc *,
154 struct wpi_power_group *, struct ieee80211_channel *, int);
155 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
156 static int wpi_auth(struct wpi_softc *);
157 static int wpi_scan(struct wpi_softc *, uint16_t);
158 static int wpi_config(struct wpi_softc *);
159 static void wpi_stop_master(struct wpi_softc *);
160 static int wpi_power_up(struct wpi_softc *);
161 static int wpi_reset(struct wpi_softc *);
162 static void wpi_hw_config(struct wpi_softc *);
163 static int wpi_init(struct ifnet *);
164 static void wpi_stop(struct ifnet *, int);
165
166 CFATTACH_DECL(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
167 wpi_detach, NULL);
168
169 static int
170 wpi_match(struct device *parent, struct cfdata *match __unused, void *aux)
171 {
172 struct pci_attach_args *pa = aux;
173
174 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
175 return 0;
176
177 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
178 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
179 return 1;
180
181 return 0;
182 }
183
184 /* Base Address Register */
185 #define WPI_PCI_BAR0 0x10
186
187 static void
188 wpi_attach(struct device *parent __unused, struct device *self, void *aux)
189 {
190 struct wpi_softc *sc = (struct wpi_softc *)self;
191 struct ieee80211com *ic = &sc->sc_ic;
192 struct ifnet *ifp = &sc->sc_ec.ec_if;
193 struct pci_attach_args *pa = aux;
194 const char *intrstr;
195 char devinfo[256];
196 bus_space_tag_t memt;
197 bus_space_handle_t memh;
198 pci_intr_handle_t ih;
199 pcireg_t data;
200 int error, ac, revision;
201
202 sc->sc_pct = pa->pa_pc;
203 sc->sc_pcitag = pa->pa_tag;
204
205 callout_init(&sc->calib_to, 0);
206
207 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
208 revision = PCI_REVISION(pa->pa_class);
209 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
210
211 /* clear device specific PCI configuration register 0x41 */
212 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
213 data &= ~0x0000ff00;
214 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
215
216 /* enable bus-mastering */
217 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
218 data |= PCI_COMMAND_MASTER_ENABLE;
219 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
220
221 /* map the register window */
222 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
223 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
224 if (error != 0) {
225 aprint_error("%s: could not map memory space\n",
226 sc->sc_dev.dv_xname);
227 return;
228 }
229
230 sc->sc_st = memt;
231 sc->sc_sh = memh;
232 sc->sc_dmat = pa->pa_dmat;
233
234 if (pci_intr_map(pa, &ih) != 0) {
235 aprint_error("%s: could not map interrupt\n",
236 sc->sc_dev.dv_xname);
237 return;
238 }
239
240 intrstr = pci_intr_string(sc->sc_pct, ih);
241 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
242 if (sc->sc_ih == NULL) {
243 aprint_error("%s: could not establish interrupt",
244 sc->sc_dev.dv_xname);
245 if (intrstr != NULL)
246 aprint_error(" at %s", intrstr);
247 aprint_error("\n");
248 return;
249 }
250 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
251
252 if (wpi_reset(sc) != 0) {
253 aprint_error("%s: could not reset adapter\n",
254 sc->sc_dev.dv_xname);
255 return;
256 }
257
258 /*
259 * Allocate DMA memory for firmware transfers.
260 */
261 if ((error = wpi_alloc_fwmem(sc)) != 0) {
262 aprint_error(": could not allocate firmware memory\n");
263 return;
264 }
265
266 /*
267 * Allocate shared page and Tx/Rx rings.
268 */
269 if ((error = wpi_alloc_shared(sc)) != 0) {
270 aprint_error("%s: could not allocate shared area\n",
271 sc->sc_dev.dv_xname);
272 goto fail1;
273 }
274
275 if ((error = wpi_alloc_rpool(sc)) != 0) {
276 aprint_error("%s: could not allocate Rx buffers\n",
277 sc->sc_dev.dv_xname);
278 goto fail2;
279 }
280
281 for (ac = 0; ac < 4; ac++) {
282 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
283 if (error != 0) {
284 aprint_error("%s: could not allocate Tx ring %d\n",
285 sc->sc_dev.dv_xname, ac);
286 goto fail3;
287 }
288 }
289
290 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
291 if (error != 0) {
292 aprint_error("%s: could not allocate command ring\n",
293 sc->sc_dev.dv_xname);
294 goto fail3;
295 }
296
297 error = wpi_alloc_tx_ring(sc, &sc->svcq, WPI_SVC_RING_COUNT, 5);
298 if (error != 0) {
299 aprint_error("%s: could not allocate service ring\n",
300 sc->sc_dev.dv_xname);
301 goto fail4;
302 }
303
304 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
305 aprint_error("%s: could not allocate Rx ring\n",
306 sc->sc_dev.dv_xname);
307 goto fail5;
308 }
309
310 ic->ic_ifp = ifp;
311 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
312 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
313 ic->ic_state = IEEE80211_S_INIT;
314
315 /* set device capabilities */
316 ic->ic_caps =
317 IEEE80211_C_IBSS | /* IBSS mode support */
318 IEEE80211_C_WPA | /* 802.11i */
319 IEEE80211_C_MONITOR | /* monitor mode supported */
320 IEEE80211_C_TXPMGT | /* tx power management */
321 IEEE80211_C_SHSLOT | /* short slot time supported */
322 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
323 IEEE80211_C_WME; /* 802.11e */
324
325 /* read supported channels and MAC address from EEPROM */
326 wpi_read_eeprom(sc);
327
328 /* set supported .11a, .11b, .11g rates */
329 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
330 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
331 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
332
333 ic->ic_ibss_chan = &ic->ic_channels[0];
334
335 ifp->if_softc = sc;
336 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
337 ifp->if_init = wpi_init;
338 ifp->if_stop = wpi_stop;
339 ifp->if_ioctl = wpi_ioctl;
340 ifp->if_start = wpi_start;
341 ifp->if_watchdog = wpi_watchdog;
342 IFQ_SET_READY(&ifp->if_snd);
343 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
344
345 if_attach(ifp);
346 ieee80211_ifattach(ic);
347 /* override default methods */
348 ic->ic_node_alloc = wpi_node_alloc;
349 ic->ic_newassoc = wpi_newassoc;
350 ic->ic_wme.wme_update = wpi_wme_update;
351
352 /* override state transition machine */
353 sc->sc_newstate = ic->ic_newstate;
354 ic->ic_newstate = wpi_newstate;
355 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
356
357 sc->amrr.amrr_min_success_threshold = 1;
358 sc->amrr.amrr_max_success_threshold = 15;
359
360 /* set powerhook */
361 sc->powerhook = powerhook_establish(sc->sc_dev.dv_xname, wpi_power, sc);
362
363 #if NBPFILTER > 0
364 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
365 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
366 &sc->sc_drvbpf);
367
368 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
369 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
370 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
371
372 sc->sc_txtap_len = sizeof sc->sc_txtapu;
373 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
374 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
375 #endif
376
377 ieee80211_announce(ic);
378
379 return;
380
381 fail5: wpi_free_tx_ring(sc, &sc->svcq);
382 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
383 fail3: while (--ac >= 0)
384 wpi_free_tx_ring(sc, &sc->txq[ac]);
385 wpi_free_rpool(sc);
386 fail2: wpi_free_shared(sc);
387 fail1: wpi_free_fwmem(sc);
388 }
389
390 static int
391 wpi_detach(struct device* self, int flags __unused)
392 {
393 struct wpi_softc *sc = (struct wpi_softc *)self;
394 struct ifnet *ifp = sc->sc_ic.ic_ifp;
395 int ac;
396
397 wpi_stop(ifp, 1);
398
399 #if NBPFILTER > 0
400 if (ifp != NULL)
401 bpfdetach(ifp);
402 #endif
403 ieee80211_ifdetach(&sc->sc_ic);
404 if (ifp != NULL)
405 if_detach(ifp);
406
407 for (ac = 0; ac < 4; ac++)
408 wpi_free_tx_ring(sc, &sc->txq[ac]);
409 wpi_free_tx_ring(sc, &sc->cmdq);
410 wpi_free_tx_ring(sc, &sc->svcq);
411 wpi_free_rx_ring(sc, &sc->rxq);
412 wpi_free_rpool(sc);
413 wpi_free_shared(sc);
414
415 if (sc->sc_ih != NULL) {
416 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
417 sc->sc_ih = NULL;
418 }
419
420 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
421
422 return 0;
423 }
424
425 static void
426 wpi_power(int why, void *arg)
427 {
428 struct wpi_softc *sc = arg;
429 struct ifnet *ifp;
430 pcireg_t data;
431 int s;
432
433 if (why != PWR_RESUME)
434 return;
435
436 /* clear device specific PCI configuration register 0x41 */
437 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
438 data &= ~0x0000ff00;
439 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
440
441 s = splnet();
442 ifp = sc->sc_ic.ic_ifp;
443 if (ifp->if_flags & IFF_UP) {
444 ifp->if_init(ifp);
445 if (ifp->if_flags & IFF_RUNNING)
446 ifp->if_start(ifp);
447 }
448 splx(s);
449 }
450
451 static int
452 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
453 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
454 {
455 int nsegs, error;
456
457 dma->tag = tag;
458 dma->size = size;
459
460 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
461 if (error != 0)
462 goto fail;
463
464 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
465 flags);
466 if (error != 0)
467 goto fail;
468
469 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
470 if (error != 0)
471 goto fail;
472
473 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
474 if (error != 0)
475 goto fail;
476
477 memset(dma->vaddr, 0, size);
478
479 dma->paddr = dma->map->dm_segs[0].ds_addr;
480 if (kvap != NULL)
481 *kvap = dma->vaddr;
482
483 return 0;
484
485 fail: wpi_dma_contig_free(dma);
486 return error;
487 }
488
489 static void
490 wpi_dma_contig_free(struct wpi_dma_info *dma)
491 {
492 if (dma->map != NULL) {
493 if (dma->vaddr != NULL) {
494 bus_dmamap_unload(dma->tag, dma->map);
495 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
496 bus_dmamem_free(dma->tag, &dma->seg, 1);
497 dma->vaddr = NULL;
498 }
499 bus_dmamap_destroy(dma->tag, dma->map);
500 dma->map = NULL;
501 }
502 }
503
504 /*
505 * Allocate a shared page between host and NIC.
506 */
507 static int
508 wpi_alloc_shared(struct wpi_softc *sc)
509 {
510 int error;
511 /* must be aligned on a 4K-page boundary */
512 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
513 (void **)&sc->shared, sizeof (struct wpi_shared),
514 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
515 if (error != 0)
516 aprint_error(
517 "%s: could not allocate shared area DMA memory\n",
518 sc->sc_dev.dv_xname);
519
520 return error;
521 }
522
523 static void
524 wpi_free_shared(struct wpi_softc *sc)
525 {
526 wpi_dma_contig_free(&sc->shared_dma);
527 }
528
529 /*
530 * Allocate DMA-safe memory for firmware transfer.
531 */
532 static int
533 wpi_alloc_fwmem(struct wpi_softc *sc)
534 {
535 int error;
536 /* allocate enough contiguous space to store text and data */
537 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
538 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
539 BUS_DMA_NOWAIT);
540
541 if (error != 0)
542 aprint_error(
543 "%s: could not allocate firmware transfer area"
544 "DMA memory\n", sc->sc_dev.dv_xname);
545 return error;
546 }
547
548 static void
549 wpi_free_fwmem(struct wpi_softc *sc)
550 {
551 wpi_dma_contig_free(&sc->fw_dma);
552 }
553
554
555 static struct wpi_rbuf *
556 wpi_alloc_rbuf(struct wpi_softc *sc)
557 {
558 struct wpi_rbuf *rbuf;
559
560 rbuf = SLIST_FIRST(&sc->rxq.freelist);
561 if (rbuf == NULL)
562 return NULL;
563 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
564 sc->rxq.nb_free_entries --;
565
566 return rbuf;
567 }
568
569 /*
570 * This is called automatically by the network stack when the mbuf to which our
571 * Rx buffer is attached is freed.
572 */
573 static void
574 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
575 {
576 struct wpi_rbuf *rbuf = arg;
577 struct wpi_softc *sc = rbuf->sc;
578 int s;
579
580 /* put the buffer back in the free list */
581
582 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
583 sc->rxq.nb_free_entries ++;
584
585 if (__predict_true(m != NULL)) {
586 s = splvm();
587 pool_cache_put(&mbpool_cache, m);
588 splx(s);
589 }
590 }
591
592 static int
593 wpi_alloc_rpool(struct wpi_softc *sc)
594 {
595 struct wpi_rx_ring *ring = &sc->rxq;
596 struct wpi_rbuf *rbuf;
597 int i, error;
598
599 /* allocate a big chunk of DMA'able memory.. */
600 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
601 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
602 if (error != 0) {
603 aprint_normal("%s: could not allocate Rx buffers DMA memory\n",
604 sc->sc_dev.dv_xname);
605 return error;
606 }
607
608 /* ..and split it into 3KB chunks */
609 SLIST_INIT(&ring->freelist);
610 for (i = 0; i < WPI_RBUF_COUNT; i++) {
611 rbuf = &ring->rbuf[i];
612 rbuf->sc = sc; /* backpointer for callbacks */
613 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
614 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
615
616 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
617 }
618
619 ring->nb_free_entries = WPI_RBUF_COUNT;
620 return 0;
621 }
622
623 static void
624 wpi_free_rpool(struct wpi_softc *sc)
625 {
626 wpi_dma_contig_free(&sc->rxq.buf_dma);
627 }
628
629 static int
630 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
631 {
632 struct wpi_rx_data *data;
633 struct wpi_rbuf *rbuf;
634 int i, error;
635
636 ring->cur = 0;
637
638 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
639 (void **)&ring->desc,
640 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
641 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
642 if (error != 0) {
643 aprint_error("%s: could not allocate rx ring DMA memory\n",
644 sc->sc_dev.dv_xname);
645 goto fail;
646 }
647
648 /*
649 * Setup Rx buffers.
650 */
651 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
652 data = &ring->data[i];
653
654 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
655 if (data->m == NULL) {
656 aprint_error("%s: could not allocate rx mbuf\n",
657 sc->sc_dev.dv_xname);
658 error = ENOMEM;
659 goto fail;
660 }
661 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
662 m_freem(data->m);
663 data->m = NULL;
664 aprint_error("%s: could not allocate rx cluster\n",
665 sc->sc_dev.dv_xname);
666 error = ENOMEM;
667 goto fail;
668 }
669 /* attach Rx buffer to mbuf */
670 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
671 rbuf);
672 data->m->m_flags |= M_EXT_RW;
673
674 ring->desc[i] = htole32(rbuf->paddr);
675 }
676
677 return 0;
678
679 fail: wpi_free_rx_ring(sc, ring);
680 return error;
681 }
682
683 static void
684 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
685 {
686 int ntries;
687
688 wpi_mem_lock(sc);
689
690 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
691 for (ntries = 0; ntries < 100; ntries++) {
692 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
693 break;
694 DELAY(10);
695 }
696 #ifdef WPI_DEBUG
697 if (ntries == 100 && wpi_debug > 0)
698 aprint_error("%s: timeout resetting Rx ring\n",
699 sc->sc_dev.dv_xname);
700 #endif
701 wpi_mem_unlock(sc);
702
703 ring->cur = 0;
704 }
705
706 static void
707 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
708 {
709 int i;
710
711 wpi_dma_contig_free(&ring->desc_dma);
712
713 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
714 if (ring->data[i].m != NULL)
715 m_freem(ring->data[i].m);
716 }
717 }
718
719 static int
720 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
721 int qid)
722 {
723 struct wpi_tx_data *data;
724 int i, error;
725
726 ring->qid = qid;
727 ring->count = count;
728 ring->queued = 0;
729 ring->cur = 0;
730
731 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
732 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
733 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
734 if (error != 0) {
735 aprint_error("%s: could not allocate tx ring DMA memory\n",
736 sc->sc_dev.dv_xname);
737 goto fail;
738 }
739
740 /* update shared page with ring's base address */
741 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
742
743 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
744 (void **)&ring->cmd,
745 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
746 if (error != 0) {
747 aprint_error("%s: could not allocate tx cmd DMA memory\n",
748 sc->sc_dev.dv_xname);
749 goto fail;
750 }
751
752 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
753 M_NOWAIT);
754 if (ring->data == NULL) {
755 aprint_error("%s: could not allocate tx data slots\n",
756 sc->sc_dev.dv_xname);
757 goto fail;
758 }
759
760 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
761
762 for (i = 0; i < count; i++) {
763 data = &ring->data[i];
764
765 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
766 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
767 &data->map);
768 if (error != 0) {
769 aprint_error("%s: could not create tx buf DMA map\n",
770 sc->sc_dev.dv_xname);
771 goto fail;
772 }
773 }
774
775 return 0;
776
777 fail: wpi_free_tx_ring(sc, ring);
778 return error;
779 }
780
781 static void
782 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
783 {
784 struct wpi_tx_data *data;
785 int i, ntries;
786
787 wpi_mem_lock(sc);
788
789 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
790 for (ntries = 0; ntries < 100; ntries++) {
791 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
792 break;
793 DELAY(10);
794 }
795 #ifdef WPI_DEBUG
796 if (ntries == 100 && wpi_debug > 0) {
797 aprint_error("%s: timeout resetting Tx ring %d\n",
798 sc->sc_dev.dv_xname, ring->qid);
799 }
800 #endif
801 wpi_mem_unlock(sc);
802
803 for (i = 0; i < ring->count; i++) {
804 data = &ring->data[i];
805
806 if (data->m != NULL) {
807 bus_dmamap_unload(sc->sc_dmat, data->map);
808 m_freem(data->m);
809 data->m = NULL;
810 }
811 }
812
813 ring->queued = 0;
814 ring->cur = 0;
815 }
816
817 static void
818 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
819 {
820 struct wpi_tx_data *data;
821 int i;
822
823 wpi_dma_contig_free(&ring->desc_dma);
824 wpi_dma_contig_free(&ring->cmd_dma);
825
826 if (ring->data != NULL) {
827 for (i = 0; i < ring->count; i++) {
828 data = &ring->data[i];
829
830 if (data->m != NULL) {
831 bus_dmamap_unload(sc->sc_dmat, data->map);
832 m_freem(data->m);
833 }
834 }
835 free(ring->data, M_DEVBUF);
836 }
837 }
838
839 /*ARGUSED*/
840 static struct ieee80211_node *
841 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
842 {
843 struct wpi_node *wn;
844
845 wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
846
847 if (wn != NULL)
848 memset(wn, 0, sizeof (struct wpi_node));
849 return (struct ieee80211_node *)wn;
850 }
851
852 static void
853 wpi_newassoc(struct ieee80211_node *ni, int isnew)
854 {
855 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
856 int i;
857
858 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
859
860 /* set rate to some reasonable initial value */
861 for (i = ni->ni_rates.rs_nrates - 1;
862 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
863 i--);
864 ni->ni_txrate = i;
865 }
866
867 static int
868 wpi_media_change(struct ifnet *ifp)
869 {
870 int error;
871
872 error = ieee80211_media_change(ifp);
873 if (error != ENETRESET)
874 return error;
875
876 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
877 wpi_init(ifp);
878
879 return 0;
880 }
881
882 static int
883 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
884 {
885 struct ifnet *ifp = ic->ic_ifp;
886 struct wpi_softc *sc = ifp->if_softc;
887 struct ieee80211_node *ni;
888 int error;
889
890 callout_stop(&sc->calib_to);
891
892 switch (nstate) {
893 case IEEE80211_S_SCAN:
894 ieee80211_node_table_reset(&ic->ic_scan);
895 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
896
897 /* make the link LED blink while we're scanning */
898 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
899
900 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
901 aprint_error("%s: could not initiate scan\n",
902 sc->sc_dev.dv_xname);
903 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
904 return error;
905 }
906
907 ic->ic_state = nstate;
908 return 0;
909
910 case IEEE80211_S_ASSOC:
911 if (ic->ic_state != IEEE80211_S_RUN)
912 break;
913 /* FALLTHROUGH */
914 case IEEE80211_S_AUTH:
915 sc->config.associd = 0;
916 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
917 if ((error = wpi_auth(sc)) != 0) {
918 aprint_error("%s: could not send authentication request\n",
919 sc->sc_dev.dv_xname);
920 return error;
921 }
922 break;
923
924 case IEEE80211_S_RUN:
925 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
926 /* link LED blinks while monitoring */
927 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
928 break;
929 }
930
931 ni = ic->ic_bss;
932
933 if (ic->ic_opmode != IEEE80211_M_STA) {
934 (void) wpi_auth(sc); /* XXX */
935 wpi_setup_beacon(sc, ni);
936 }
937
938 wpi_enable_tsf(sc, ni);
939
940 /* update adapter's configuration */
941 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
942 /* short preamble/slot time are negotiated when associating */
943 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
944 WPI_CONFIG_SHSLOT);
945 if (ic->ic_flags & IEEE80211_F_SHSLOT)
946 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
947 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
948 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
949 sc->config.filter |= htole32(WPI_FILTER_BSS);
950 if (ic->ic_opmode != IEEE80211_M_STA)
951 sc->config.filter |= htole32(WPI_FILTER_BEACON);
952
953 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
954
955 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
956 sc->config.flags));
957 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
958 sizeof (struct wpi_config), 1);
959 if (error != 0) {
960 aprint_error("%s: could not update configuration\n",
961 sc->sc_dev.dv_xname);
962 return error;
963 }
964
965 /* configuration has changed, set Tx power accordingly */
966 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
967 aprint_error("%s: could not set Tx power\n",
968 sc->sc_dev.dv_xname);
969 return error;
970 }
971
972 if (ic->ic_opmode == IEEE80211_M_STA) {
973 /* fake a join to init the tx rate */
974 wpi_newassoc(ni, 1);
975 }
976
977 /* start periodic calibration timer */
978 sc->calib_cnt = 0;
979 callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
980
981 /* link LED always on while associated */
982 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
983 break;
984
985 case IEEE80211_S_INIT:
986 break;
987 }
988
989 return sc->sc_newstate(ic, nstate, arg);
990 }
991
992 /*
993 * Grab exclusive access to NIC memory.
994 */
995 static void
996 wpi_mem_lock(struct wpi_softc *sc)
997 {
998 uint32_t tmp;
999 int ntries;
1000
1001 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1002 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1003
1004 /* spin until we actually get the lock */
1005 for (ntries = 0; ntries < 1000; ntries++) {
1006 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1007 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1008 break;
1009 DELAY(10);
1010 }
1011 if (ntries == 1000)
1012 aprint_error("%s: could not lock memory\n", sc->sc_dev.dv_xname);
1013 }
1014
1015 /*
1016 * Release lock on NIC memory.
1017 */
1018 static void
1019 wpi_mem_unlock(struct wpi_softc *sc)
1020 {
1021 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1022 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1023 }
1024
1025 static uint32_t
1026 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1027 {
1028 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1029 return WPI_READ(sc, WPI_READ_MEM_DATA);
1030 }
1031
1032 static void
1033 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1034 {
1035 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1036 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1037 }
1038
1039 /*
1040 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1041 * instead of using the traditional bit-bang method.
1042 */
1043 static int
1044 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1045 {
1046 uint8_t *out = data;
1047 uint32_t val;
1048 int ntries;
1049
1050 wpi_mem_lock(sc);
1051 for (; len > 0; len -= 2, addr++) {
1052 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1053
1054 for (ntries = 0; ntries < 10; ntries++) {
1055 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1056 WPI_EEPROM_READY)
1057 break;
1058 DELAY(5);
1059 }
1060 if (ntries == 10) {
1061 aprint_error("%s: could not read EEPROM\n",
1062 sc->sc_dev.dv_xname);
1063 return ETIMEDOUT;
1064 }
1065 *out++ = val >> 16;
1066 if (len > 1)
1067 *out++ = val >> 24;
1068 }
1069 wpi_mem_unlock(sc);
1070
1071 return 0;
1072 }
1073
1074 static int
1075 wpi_load_segment(struct wpi_softc *sc, uint32_t target, const uint8_t *data,
1076 int len)
1077 {
1078 struct wpi_dma_info *dma = &sc->fw_dma;
1079 struct wpi_tx_desc desc;
1080 int ntries, error = 0;
1081
1082 DPRINTFN(2, ("loading firmware segment target=%x len=%d\n", target,
1083 len));
1084
1085 /* copy data to pre-allocated DMA-safe memory */
1086 memcpy(dma->vaddr, data, len);
1087 bus_dmamap_sync(dma->tag, dma->map, 0, len, BUS_DMASYNC_PREWRITE);
1088
1089 /* setup Tx descriptor */
1090 memset(&desc, 0, sizeof desc);
1091 desc.flags = htole32(WPI_PAD32(len) << 28 | 1 << 24);
1092 desc.segs[0].addr = htole32(dma->paddr);
1093 desc.segs[0].len = htole32(len);
1094
1095 /* tell adapter where to copy data in its internal memory */
1096 WPI_WRITE(sc, WPI_FW_TARGET, target);
1097
1098 WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1099
1100 /* copy Tx descriptor into NIC memory */
1101 WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1102 sizeof desc / sizeof (uint32_t));
1103
1104 WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1105 WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1106 WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1107
1108 /* wait while the adapter transfers the block */
1109 for (ntries = 0; ntries < 100; ntries++) {
1110 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1111 break;
1112 DELAY(1000);
1113 }
1114 if (ntries == 100) {
1115 aprint_error("%s: timeout transferring firmware segment\n",
1116 sc->sc_dev.dv_xname);
1117 error = ETIMEDOUT;
1118 }
1119
1120 WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1121
1122 return error;
1123 }
1124
1125 static int
1126 wpi_load_firmware(struct wpi_softc *sc)
1127 {
1128 struct wpi_dma_info *dma = &sc->fw_dma;
1129 struct wpi_firmware_hdr hdr;
1130 const uint8_t *boot_text, *boot_data, *main_text, *main_data;
1131 uint32_t main_textsz, main_datasz, boot_textsz, boot_datasz;
1132 firmware_handle_t fw;
1133 u_char *dfw;
1134 size_t size;
1135 uint32_t tmp;
1136 int error;
1137
1138 /* load firmware image from disk */
1139 if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1140 aprint_error("%s: could not read firmware file\n",
1141 sc->sc_dev.dv_xname);
1142 goto fail1;
1143 }
1144
1145 size = firmware_get_size(fw);
1146
1147 /* extract firmware header information */
1148 if (size < sizeof (struct wpi_firmware_hdr)) {
1149 aprint_error("%s: truncated firmware header: %zu bytes\n",
1150 sc->sc_dev.dv_xname, size);
1151 error = EINVAL;
1152 goto fail2;
1153 }
1154
1155 if ((error = firmware_read(fw, 0, &hdr,
1156 sizeof (struct wpi_firmware_hdr))) != 0) {
1157 aprint_error("%s: can't get firmware header\n",
1158 sc->sc_dev.dv_xname);
1159 goto fail2;
1160 }
1161
1162 main_textsz = le32toh(hdr.main_textsz);
1163 main_datasz = le32toh(hdr.main_datasz);
1164 boot_textsz = le32toh(hdr.boot_textsz);
1165 boot_datasz = le32toh(hdr.boot_datasz);
1166
1167 /* sanity-check firmware header */
1168 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ) {
1169 aprint_error("%s: main .text segment too large: %u bytes\n",
1170 sc->sc_dev.dv_xname, main_textsz);
1171 error = EINVAL;
1172 goto fail2;
1173 }
1174 if (main_datasz > WPI_FW_MAIN_DATA_MAXSZ) {
1175 aprint_error("%s: main .data segment too large: %u bytes\n",
1176 sc->sc_dev.dv_xname, main_datasz);
1177 error = EINVAL;
1178 goto fail2;
1179 }
1180 if (boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ) {
1181 aprint_error("%s: boot .text segment too large: %u bytes\n",
1182 sc->sc_dev.dv_xname, boot_textsz);
1183 error = EINVAL;
1184 goto fail2;
1185 }
1186 if (boot_datasz > WPI_FW_BOOT_DATA_MAXSZ) {
1187 aprint_error("%s: boot .data segment too large: %u bytes\n",
1188 sc->sc_dev.dv_xname, boot_datasz);
1189 error = EINVAL;
1190 goto fail2;
1191 }
1192
1193 /* check that all firmware segments are present */
1194 if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1195 main_datasz + boot_textsz + boot_datasz) {
1196 aprint_error("%s: firmware file too short: %zu bytes\n",
1197 sc->sc_dev.dv_xname, size);
1198 error = EINVAL;
1199 goto fail2;
1200 }
1201
1202 dfw = firmware_malloc(size);
1203 if (dfw == NULL) {
1204 aprint_error("%s: not enough memory to stock firmware\n",
1205 sc->sc_dev.dv_xname);
1206 error = ENOMEM;
1207 goto fail2;
1208 }
1209
1210 if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1211 aprint_error("%s: can't get firmware\n",
1212 sc->sc_dev.dv_xname);
1213 goto fail2;
1214 }
1215
1216 /* get pointers to firmware segments */
1217 main_text = dfw + sizeof (struct wpi_firmware_hdr);
1218 main_data = main_text + main_textsz;
1219 boot_text = main_data + main_datasz;
1220 boot_data = boot_text + boot_textsz;
1221
1222 /* load firmware boot .data segment into NIC */
1223 error = wpi_load_segment(sc, WPI_FW_DATA, boot_data, boot_datasz);
1224 if (error != 0) {
1225 aprint_error("%s: could not load firmware boot .data segment\n",
1226 sc->sc_dev.dv_xname);
1227 goto fail3;
1228 }
1229
1230 /* load firmware boot .text segment into NIC */
1231 error = wpi_load_segment(sc, WPI_FW_TEXT, boot_text, boot_textsz);
1232 if (error != 0) {
1233 aprint_error("%s: could not load firmware boot .text segment\n",
1234 sc->sc_dev.dv_xname);
1235 goto fail3;
1236 }
1237
1238 /* copy firmware runtime into pre-allocated DMA-safe memory */
1239 memcpy(dma->vaddr, main_text, main_textsz);
1240 memcpy((uint8_t*)dma->vaddr + main_textsz, main_data, main_datasz);
1241 bus_dmamap_sync(dma->tag, dma->map, 0, main_textsz + main_datasz,
1242 BUS_DMASYNC_PREWRITE);
1243
1244 /* tell adapter where to find firmware runtime */
1245 wpi_mem_lock(sc);
1246 wpi_mem_write(sc, WPI_MEM_MAIN_TEXT_BASE, dma->paddr);
1247 wpi_mem_write(sc, WPI_MEM_MAIN_TEXT_SIZE, main_textsz);
1248 wpi_mem_write(sc, WPI_MEM_MAIN_DATA_BASE, dma->paddr + main_textsz);
1249 wpi_mem_write(sc, WPI_MEM_MAIN_DATA_SIZE, main_datasz);
1250 wpi_mem_unlock(sc);
1251
1252 /* now press "execute" ;-) */
1253 tmp = WPI_READ(sc, WPI_RESET);
1254 tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
1255 WPI_WRITE(sc, WPI_RESET, tmp);
1256
1257 /* ..and wait at most one second for adapter to initialize */
1258 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1259 /* this isn't what was supposed to happen.. */
1260 aprint_error("%s: timeout waiting for adapter to initialize\n",
1261 sc->sc_dev.dv_xname);
1262 }
1263
1264 fail3: firmware_free(dfw,size);
1265 fail2: firmware_close(fw);
1266 fail1: return error;
1267 }
1268
1269 static void
1270 wpi_calib_timeout(void *arg)
1271 {
1272 struct wpi_softc *sc = arg;
1273 struct ieee80211com *ic = &sc->sc_ic;
1274 int temp, s;
1275
1276 /* automatic rate control triggered every 500ms */
1277 if (ic->ic_fixed_rate == -1) {
1278 s = splnet();
1279 if (ic->ic_opmode == IEEE80211_M_STA)
1280 wpi_iter_func(sc, ic->ic_bss);
1281 else
1282 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1283 splx(s);
1284 }
1285
1286 /* update sensor data */
1287 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1288
1289 /* automatic power calibration every 60s */
1290 if (++sc->calib_cnt >= 120) {
1291 wpi_power_calibration(sc, temp);
1292 sc->calib_cnt = 0;
1293 }
1294
1295 callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
1296 }
1297
1298 static void
1299 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1300 {
1301 struct wpi_softc *sc = arg;
1302 struct wpi_node *wn = (struct wpi_node *)ni;
1303
1304 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1305 }
1306
1307 /*
1308 * This function is called periodically (every 60 seconds) to adjust output
1309 * power to temperature changes.
1310 */
1311 void
1312 wpi_power_calibration(struct wpi_softc *sc, int temp)
1313 {
1314 /* sanity-check read value */
1315 if (temp < -260 || temp > 25) {
1316 /* this can't be correct, ignore */
1317 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1318 return;
1319 }
1320
1321 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1322
1323 /* adjust Tx power if need be */
1324 if (abs(temp - sc->temp) <= 6)
1325 return;
1326
1327 sc->temp = temp;
1328
1329 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1330 /* just warn, too bad for the automatic calibration... */
1331 aprint_error("%s: could not adjust Tx power\n",
1332 sc->sc_dev.dv_xname);
1333 }
1334 }
1335
1336 static void
1337 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1338 struct wpi_rx_data *data)
1339 {
1340 struct ieee80211com *ic = &sc->sc_ic;
1341 struct ifnet *ifp = ic->ic_ifp;
1342 struct wpi_rx_ring *ring = &sc->rxq;
1343 struct wpi_rx_stat *stat;
1344 struct wpi_rx_head *head;
1345 struct wpi_rx_tail *tail;
1346 struct wpi_rbuf *rbuf;
1347 struct ieee80211_frame *wh;
1348 struct ieee80211_node *ni;
1349 struct mbuf *m, *mnew;
1350
1351 stat = (struct wpi_rx_stat *)(desc + 1);
1352
1353 if (stat->len > WPI_STAT_MAXLEN) {
1354 aprint_error("%s: invalid rx statistic header\n",
1355 sc->sc_dev.dv_xname);
1356 ifp->if_ierrors++;
1357 return;
1358 }
1359
1360 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1361 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1362
1363 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1364 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1365 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1366 le64toh(tail->tstamp)));
1367
1368 /*
1369 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1370 * to radiotap in monitor mode).
1371 */
1372 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1373 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1374 ifp->if_ierrors++;
1375 return;
1376 }
1377
1378
1379
1380 /*
1381 * If the number of free entry is too low
1382 * just dup the data->m socket and reuse the same rbuf entry
1383 */
1384 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1385
1386 /* Set length before calling m_dup */
1387 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1388
1389 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1390 } else {
1391
1392 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1393 if (mnew == NULL) {
1394 ifp->if_ierrors++;
1395 return;
1396 }
1397
1398 rbuf = wpi_alloc_rbuf(sc);
1399 KASSERT(rbuf != NULL);
1400
1401 /* attach Rx buffer to mbuf */
1402 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1403 rbuf);
1404 mnew->m_flags |= M_EXT_RW;
1405
1406 m = data->m;
1407 data->m = mnew;
1408
1409 /* update Rx descriptor */
1410 ring->desc[ring->cur] = htole32(rbuf->paddr);
1411 }
1412
1413 /* finalize mbuf */
1414 m->m_pkthdr.rcvif = ifp;
1415 m->m_data = (void *)(head + 1);
1416 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1417
1418 #if NBPFILTER > 0
1419 if (sc->sc_drvbpf != NULL) {
1420 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1421
1422 tap->wr_flags = 0;
1423 tap->wr_chan_freq =
1424 htole16(ic->ic_channels[head->chan].ic_freq);
1425 tap->wr_chan_flags =
1426 htole16(ic->ic_channels[head->chan].ic_flags);
1427 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1428 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1429 tap->wr_tsft = tail->tstamp;
1430 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1431 switch (head->rate) {
1432 /* CCK rates */
1433 case 10: tap->wr_rate = 2; break;
1434 case 20: tap->wr_rate = 4; break;
1435 case 55: tap->wr_rate = 11; break;
1436 case 110: tap->wr_rate = 22; break;
1437 /* OFDM rates */
1438 case 0xd: tap->wr_rate = 12; break;
1439 case 0xf: tap->wr_rate = 18; break;
1440 case 0x5: tap->wr_rate = 24; break;
1441 case 0x7: tap->wr_rate = 36; break;
1442 case 0x9: tap->wr_rate = 48; break;
1443 case 0xb: tap->wr_rate = 72; break;
1444 case 0x1: tap->wr_rate = 96; break;
1445 case 0x3: tap->wr_rate = 108; break;
1446 /* unknown rate: should not happen */
1447 default: tap->wr_rate = 0;
1448 }
1449 if (le16toh(head->flags) & 0x4)
1450 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1451
1452 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1453 }
1454 #endif
1455
1456 /* grab a reference to the source node */
1457 wh = mtod(m, struct ieee80211_frame *);
1458 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1459
1460 /* send the frame to the 802.11 layer */
1461 ieee80211_input(ic, m, ni, stat->rssi, 0);
1462
1463 /* release node reference */
1464 ieee80211_free_node(ni);
1465 }
1466
1467 static void
1468 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1469 {
1470 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1471 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1472 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1473 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1474 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1475
1476 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1477 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1478 stat->nkill, stat->rate, le32toh(stat->duration),
1479 le32toh(stat->status)));
1480
1481 /*
1482 * Update rate control statistics for the node.
1483 * XXX we should not count mgmt frames since they're always sent at
1484 * the lowest available bit-rate.
1485 */
1486 wn->amn.amn_txcnt++;
1487 if (stat->ntries > 0) {
1488 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1489 wn->amn.amn_retrycnt++;
1490 }
1491
1492 if ((le32toh(stat->status) & 0xff) != 1)
1493 ifp->if_oerrors++;
1494 else
1495 ifp->if_opackets++;
1496
1497 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1498 m_freem(txdata->m);
1499 txdata->m = NULL;
1500 ieee80211_free_node(txdata->ni);
1501 txdata->ni = NULL;
1502
1503 ring->queued--;
1504
1505 sc->sc_tx_timer = 0;
1506 ifp->if_flags &= ~IFF_OACTIVE;
1507 wpi_start(ifp);
1508 }
1509
1510 static void
1511 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1512 {
1513 struct wpi_tx_ring *ring = &sc->cmdq;
1514 struct wpi_tx_data *data;
1515
1516 if ((desc->qid & 7) != 4)
1517 return; /* not a command ack */
1518
1519 data = &ring->data[desc->idx];
1520
1521 /* if the command was mapped in a mbuf, free it */
1522 if (data->m != NULL) {
1523 bus_dmamap_unload(sc->sc_dmat, data->map);
1524 m_freem(data->m);
1525 data->m = NULL;
1526 }
1527
1528 wakeup(&ring->cmd[desc->idx]);
1529 }
1530
1531 static void
1532 wpi_notif_intr(struct wpi_softc *sc)
1533 {
1534 struct ieee80211com *ic = &sc->sc_ic;
1535 struct ifnet *ifp = ic->ic_ifp;
1536 struct wpi_rx_desc *desc;
1537 struct wpi_rx_data *data;
1538 uint32_t hw;
1539
1540 hw = le32toh(sc->shared->next);
1541 while (sc->rxq.cur != hw) {
1542 data = &sc->rxq.data[sc->rxq.cur];
1543
1544 desc = mtod(data->m, struct wpi_rx_desc *);
1545
1546 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1547 "len=%d\n", desc->qid, desc->idx, desc->flags,
1548 desc->type, le32toh(desc->len)));
1549
1550 if (!(desc->qid & 0x80)) /* reply to a command */
1551 wpi_cmd_intr(sc, desc);
1552
1553 switch (desc->type) {
1554 case WPI_RX_DONE:
1555 /* a 802.11 frame was received */
1556 wpi_rx_intr(sc, desc, data);
1557 break;
1558
1559 case WPI_TX_DONE:
1560 /* a 802.11 frame has been transmitted */
1561 wpi_tx_intr(sc, desc);
1562 break;
1563
1564 case WPI_UC_READY:
1565 {
1566 struct wpi_ucode_info *uc =
1567 (struct wpi_ucode_info *)(desc + 1);
1568
1569 /* the microcontroller is ready */
1570 DPRINTF(("microcode alive notification version %x "
1571 "alive %x\n", le32toh(uc->version),
1572 le32toh(uc->valid)));
1573
1574 if (le32toh(uc->valid) != 1) {
1575 aprint_error("%s: microcontroller "
1576 "initialization failed\n",
1577 sc->sc_dev.dv_xname);
1578 }
1579 break;
1580 }
1581 case WPI_STATE_CHANGED:
1582 {
1583 uint32_t *status = (uint32_t *)(desc + 1);
1584
1585 /* enabled/disabled notification */
1586 DPRINTF(("state changed to %x\n", le32toh(*status)));
1587
1588 if (le32toh(*status) & 1) {
1589 /* the radio button has to be pushed */
1590 aprint_error("%s: Radio transmitter is off\n",
1591 sc->sc_dev.dv_xname);
1592 /* turn the interface down */
1593 ifp->if_flags &= ~IFF_UP;
1594 wpi_stop(ifp, 1);
1595 return; /* no further processing */
1596 }
1597 break;
1598 }
1599 case WPI_START_SCAN:
1600 {
1601 struct wpi_start_scan *scan =
1602 (struct wpi_start_scan *)(desc + 1);
1603
1604 DPRINTFN(2, ("scanning channel %d status %x\n",
1605 scan->chan, le32toh(scan->status)));
1606
1607 /* fix current channel */
1608 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1609 break;
1610 }
1611 case WPI_STOP_SCAN:
1612 {
1613 struct wpi_stop_scan *scan =
1614 (struct wpi_stop_scan *)(desc + 1);
1615
1616 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1617 scan->nchan, scan->status, scan->chan));
1618
1619 if (scan->status == 1 && scan->chan <= 14) {
1620 /*
1621 * We just finished scanning 802.11g channels,
1622 * start scanning 802.11a ones.
1623 */
1624 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1625 break;
1626 }
1627 ieee80211_end_scan(ic);
1628 break;
1629 }
1630 }
1631
1632 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1633 }
1634
1635 /* tell the firmware what we have processed */
1636 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1637 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1638 }
1639
1640 static int
1641 wpi_intr(void *arg)
1642 {
1643 struct wpi_softc *sc = arg;
1644 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1645 uint32_t r;
1646
1647 r = WPI_READ(sc, WPI_INTR);
1648 if (r == 0 || r == 0xffffffff)
1649 return 0; /* not for us */
1650
1651 DPRINTFN(5, ("interrupt reg %x\n", r));
1652
1653 /* disable interrupts */
1654 WPI_WRITE(sc, WPI_MASK, 0);
1655 /* ack interrupts */
1656 WPI_WRITE(sc, WPI_INTR, r);
1657
1658 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1659 aprint_error("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
1660 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1661 wpi_stop(sc->sc_ic.ic_ifp, 1);
1662 return 1;
1663 }
1664
1665 if (r & WPI_RX_INTR)
1666 wpi_notif_intr(sc);
1667
1668 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1669 wakeup(sc);
1670
1671 /* re-enable interrupts */
1672 if (ifp->if_flags & IFF_UP)
1673 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1674
1675 return 1;
1676 }
1677
1678 static uint8_t
1679 wpi_plcp_signal(int rate)
1680 {
1681 switch (rate) {
1682 /* CCK rates (returned values are device-dependent) */
1683 case 2: return 10;
1684 case 4: return 20;
1685 case 11: return 55;
1686 case 22: return 110;
1687
1688 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1689 /* R1-R4, (u)ral is R4-R1 */
1690 case 12: return 0xd;
1691 case 18: return 0xf;
1692 case 24: return 0x5;
1693 case 36: return 0x7;
1694 case 48: return 0x9;
1695 case 72: return 0xb;
1696 case 96: return 0x1;
1697 case 108: return 0x3;
1698
1699 /* unsupported rates (should not get there) */
1700 default: return 0;
1701 }
1702 }
1703
1704 /* quickly determine if a given rate is CCK or OFDM */
1705 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1706
1707 static int
1708 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1709 int ac)
1710 {
1711 struct ieee80211com *ic = &sc->sc_ic;
1712 struct wpi_tx_ring *ring = &sc->txq[ac];
1713 struct wpi_tx_desc *desc;
1714 struct wpi_tx_data *data;
1715 struct wpi_tx_cmd *cmd;
1716 struct wpi_cmd_data *tx;
1717 struct ieee80211_frame *wh;
1718 struct ieee80211_key *k;
1719 const struct chanAccParams *cap;
1720 struct mbuf *mnew;
1721 int i, error, rate, hdrlen, noack = 0;
1722
1723 desc = &ring->desc[ring->cur];
1724 data = &ring->data[ring->cur];
1725
1726 wh = mtod(m0, struct ieee80211_frame *);
1727
1728 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1729 hdrlen = sizeof (struct ieee80211_qosframe);
1730 cap = &ic->ic_wme.wme_chanParams;
1731 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1732 } else
1733 hdrlen = sizeof (struct ieee80211_frame);
1734
1735 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1736 k = ieee80211_crypto_encap(ic, ni, m0);
1737 if (k == NULL) {
1738 m_freem(m0);
1739 return ENOBUFS;
1740 }
1741
1742 /* packet header may have moved, reset our local pointer */
1743 wh = mtod(m0, struct ieee80211_frame *);
1744 }
1745
1746 /* pickup a rate */
1747 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1748 IEEE80211_FC0_TYPE_MGT) {
1749 /* mgmt frames are sent at the lowest available bit-rate */
1750 rate = ni->ni_rates.rs_rates[0];
1751 } else {
1752 if (ic->ic_fixed_rate != -1) {
1753 rate = ic->ic_sup_rates[ic->ic_curmode].
1754 rs_rates[ic->ic_fixed_rate];
1755 } else
1756 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1757 }
1758 rate &= IEEE80211_RATE_VAL;
1759
1760
1761 #if NBPFILTER > 0
1762 if (sc->sc_drvbpf != NULL) {
1763 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1764
1765 tap->wt_flags = 0;
1766 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1767 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1768 tap->wt_rate = rate;
1769 tap->wt_hwqueue = ac;
1770 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1771 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1772
1773 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1774 }
1775 #endif
1776
1777 cmd = &ring->cmd[ring->cur];
1778 cmd->code = WPI_CMD_TX_DATA;
1779 cmd->flags = 0;
1780 cmd->qid = ring->qid;
1781 cmd->idx = ring->cur;
1782
1783 tx = (struct wpi_cmd_data *)cmd->data;
1784 tx->flags = 0;
1785
1786 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1787 tx->flags |= htole32(WPI_TX_NEED_ACK);
1788 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1789 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1790
1791 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1792
1793 /* retrieve destination node's id */
1794 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1795 WPI_ID_BSS;
1796
1797 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1798 IEEE80211_FC0_TYPE_MGT) {
1799 /* tell h/w to set timestamp in probe responses */
1800 if ((wh->i_fc[0] &
1801 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1802 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1803 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1804
1805 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1806 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1807 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1808 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1809 tx->timeout = htole16(3);
1810 else
1811 tx->timeout = htole16(2);
1812 } else
1813 tx->timeout = htole16(0);
1814
1815 tx->rate = wpi_plcp_signal(rate);
1816
1817 /* be very persistant at sending frames out */
1818 tx->rts_ntries = 7;
1819 tx->data_ntries = 15;
1820
1821 tx->ofdm_mask = 0xff;
1822 tx->cck_mask = 0xf;
1823 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1824
1825 tx->len = htole16(m0->m_pkthdr.len);
1826
1827 /* save and trim IEEE802.11 header */
1828 m_copydata(m0, 0, hdrlen, (void *)&tx->wh);
1829 m_adj(m0, hdrlen);
1830
1831 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1832 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1833 if (error != 0 && error != EFBIG) {
1834 aprint_error("%s: could not map mbuf (error %d)\n",
1835 sc->sc_dev.dv_xname, error);
1836 m_freem(m0);
1837 return error;
1838 }
1839 if (error != 0) {
1840 /* too many fragments, linearize */
1841 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1842 if (mnew == NULL) {
1843 m_freem(m0);
1844 return ENOMEM;
1845 }
1846
1847 M_COPY_PKTHDR(mnew, m0);
1848 if (m0->m_pkthdr.len > MHLEN) {
1849 MCLGET(mnew, M_DONTWAIT);
1850 if (!(mnew->m_flags & M_EXT)) {
1851 m_freem(m0);
1852 m_freem(mnew);
1853 return ENOMEM;
1854 }
1855 }
1856
1857 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1858 m_freem(m0);
1859 mnew->m_len = mnew->m_pkthdr.len;
1860 m0 = mnew;
1861
1862 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1863 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1864 if (error != 0) {
1865 aprint_error("%s: could not map mbuf (error %d)\n",
1866 sc->sc_dev.dv_xname, error);
1867 m_freem(m0);
1868 return error;
1869 }
1870 }
1871
1872 data->m = m0;
1873 data->ni = ni;
1874
1875 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1876 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1877
1878 /* first scatter/gather segment is used by the tx data command */
1879 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1880 (1 + data->map->dm_nsegs) << 24);
1881 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1882 ring->cur * sizeof (struct wpi_tx_cmd));
1883 /*XXX The next line might be wrong. I don't use hdrlen*/
1884 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data));
1885
1886 for (i = 1; i <= data->map->dm_nsegs; i++) {
1887 desc->segs[i].addr =
1888 htole32(data->map->dm_segs[i - 1].ds_addr);
1889 desc->segs[i].len =
1890 htole32(data->map->dm_segs[i - 1].ds_len);
1891 }
1892
1893 ring->queued++;
1894
1895 /* kick ring */
1896 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1897 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1898
1899 return 0;
1900 }
1901
1902 static void
1903 wpi_start(struct ifnet *ifp)
1904 {
1905 struct wpi_softc *sc = ifp->if_softc;
1906 struct ieee80211com *ic = &sc->sc_ic;
1907 struct ieee80211_node *ni;
1908 struct ether_header *eh;
1909 struct mbuf *m0;
1910 int ac;
1911
1912 /*
1913 * net80211 may still try to send management frames even if the
1914 * IFF_RUNNING flag is not set...
1915 */
1916 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1917 return;
1918
1919 for (;;) {
1920 IF_POLL(&ic->ic_mgtq, m0);
1921 if (m0 != NULL) {
1922 IF_DEQUEUE(&ic->ic_mgtq, m0);
1923
1924 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1925 m0->m_pkthdr.rcvif = NULL;
1926
1927 /* management frames go into ring 0 */
1928 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1929 ifp->if_oerrors++;
1930 continue;
1931 }
1932 #if NBPFILTER > 0
1933 if (ic->ic_rawbpf != NULL)
1934 bpf_mtap(ic->ic_rawbpf, m0);
1935 #endif
1936 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1937 ifp->if_oerrors++;
1938 break;
1939 }
1940 } else {
1941 if (ic->ic_state != IEEE80211_S_RUN)
1942 break;
1943 IFQ_POLL(&ifp->if_snd, m0);
1944 if (m0 == NULL)
1945 break;
1946
1947 if (m0->m_len < sizeof (*eh) &&
1948 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1949 ifp->if_oerrors++;
1950 continue;
1951 }
1952 eh = mtod(m0, struct ether_header *);
1953 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1954 if (ni == NULL) {
1955 m_freem(m0);
1956 ifp->if_oerrors++;
1957 continue;
1958 }
1959
1960 /* classify mbuf so we can find which tx ring to use */
1961 if (ieee80211_classify(ic, m0, ni) != 0) {
1962 m_freem(m0);
1963 ieee80211_free_node(ni);
1964 ifp->if_oerrors++;
1965 continue;
1966 }
1967
1968 /* no QoS encapsulation for EAPOL frames */
1969 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1970 M_WME_GETAC(m0) : WME_AC_BE;
1971
1972 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1973 /* there is no place left in this ring */
1974 ifp->if_flags |= IFF_OACTIVE;
1975 break;
1976 }
1977 IFQ_DEQUEUE(&ifp->if_snd, m0);
1978 #if NBPFILTER > 0
1979 if (ifp->if_bpf != NULL)
1980 bpf_mtap(ifp->if_bpf, m0);
1981 #endif
1982 m0 = ieee80211_encap(ic, m0, ni);
1983 if (m0 == NULL) {
1984 ieee80211_free_node(ni);
1985 ifp->if_oerrors++;
1986 continue;
1987 }
1988 #if NBPFILTER > 0
1989 if (ic->ic_rawbpf != NULL)
1990 bpf_mtap(ic->ic_rawbpf, m0);
1991 #endif
1992 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
1993 ieee80211_free_node(ni);
1994 ifp->if_oerrors++;
1995 break;
1996 }
1997 }
1998
1999 sc->sc_tx_timer = 5;
2000 ifp->if_timer = 1;
2001 }
2002 }
2003
2004 static void
2005 wpi_watchdog(struct ifnet *ifp)
2006 {
2007 struct wpi_softc *sc = ifp->if_softc;
2008
2009 ifp->if_timer = 0;
2010
2011 if (sc->sc_tx_timer > 0) {
2012 if (--sc->sc_tx_timer == 0) {
2013 aprint_error("%s: device timeout\n",
2014 sc->sc_dev.dv_xname);
2015 ifp->if_oerrors++;
2016 ifp->if_flags &= ~IFF_UP;
2017 wpi_stop(ifp, 1);
2018 return;
2019 }
2020 ifp->if_timer = 1;
2021 }
2022
2023 ieee80211_watchdog(&sc->sc_ic);
2024 }
2025
2026 static int
2027 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2028 {
2029 #define IS_RUNNING(ifp) \
2030 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2031
2032 struct wpi_softc *sc = ifp->if_softc;
2033 struct ieee80211com *ic = &sc->sc_ic;
2034 struct ifreq *ifr = (struct ifreq *)data;
2035 int s, error = 0;
2036
2037 s = splnet();
2038
2039 switch (cmd) {
2040 case SIOCSIFFLAGS:
2041 if (ifp->if_flags & IFF_UP) {
2042 if (!(ifp->if_flags & IFF_RUNNING))
2043 wpi_init(ifp);
2044 } else {
2045 if (ifp->if_flags & IFF_RUNNING)
2046 wpi_stop(ifp, 1);
2047 }
2048 break;
2049
2050 case SIOCADDMULTI:
2051 case SIOCDELMULTI:
2052 error = (cmd == SIOCADDMULTI) ?
2053 ether_addmulti(ifr, &sc->sc_ec) :
2054 ether_delmulti(ifr, &sc->sc_ec);
2055 if (error == ENETRESET) {
2056 /* setup multicast filter, etc */
2057 error = 0;
2058 }
2059 break;
2060
2061 default:
2062 error = ieee80211_ioctl(ic, cmd, data);
2063 }
2064
2065 if (error == ENETRESET) {
2066 if (IS_RUNNING(ifp) &&
2067 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2068 wpi_init(ifp);
2069 error = 0;
2070 }
2071
2072 splx(s);
2073 return error;
2074
2075 #undef IS_RUNNING
2076 }
2077
2078 /*
2079 * Extract various information from EEPROM.
2080 */
2081 static void
2082 wpi_read_eeprom(struct wpi_softc *sc)
2083 {
2084 struct ieee80211com *ic = &sc->sc_ic;
2085 char domain[4];
2086 int i;
2087
2088 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2089 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2090 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2091
2092 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2093 sc->type));
2094
2095 /* read and print regulatory domain */
2096 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2097 aprint_normal(", %.4s", domain);
2098
2099 /* read and print MAC address */
2100 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2101 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2102
2103 /* read the list of authorized channels */
2104 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2105 wpi_read_eeprom_channels(sc, i);
2106
2107 /* read the list of power groups */
2108 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2109 wpi_read_eeprom_group(sc, i);
2110 }
2111
2112 static void
2113 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2114 {
2115 struct ieee80211com *ic = &sc->sc_ic;
2116 const struct wpi_chan_band *band = &wpi_bands[n];
2117 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2118 int chan, i;
2119
2120 wpi_read_prom_data(sc, band->addr, channels,
2121 band->nchan * sizeof (struct wpi_eeprom_chan));
2122
2123 for (i = 0; i < band->nchan; i++) {
2124 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2125 continue;
2126
2127 chan = band->chan[i];
2128
2129 if (n == 0) { /* 2GHz band */
2130 ic->ic_channels[chan].ic_freq =
2131 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2132 ic->ic_channels[chan].ic_flags =
2133 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2134 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2135
2136 } else { /* 5GHz band */
2137 /*
2138 * Some 3945abg adapters support channels 7, 8, 11
2139 * and 12 in the 2GHz *and* 5GHz bands.
2140 * Because of limitations in our net80211(9) stack,
2141 * we can't support these channels in 5GHz band.
2142 */
2143 if (chan <= 14)
2144 continue;
2145
2146 ic->ic_channels[chan].ic_freq =
2147 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2148 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2149 }
2150
2151 /* is active scan allowed on this channel? */
2152 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2153 ic->ic_channels[chan].ic_flags |=
2154 IEEE80211_CHAN_PASSIVE;
2155 }
2156
2157 /* save maximum allowed power for this channel */
2158 sc->maxpwr[chan] = channels[i].maxpwr;
2159
2160 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2161 chan, channels[i].flags, sc->maxpwr[chan]));
2162 }
2163 }
2164
2165 static void
2166 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2167 {
2168 struct wpi_power_group *group = &sc->groups[n];
2169 struct wpi_eeprom_group rgroup;
2170 int i;
2171
2172 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2173 sizeof rgroup);
2174
2175 /* save power group information */
2176 group->chan = rgroup.chan;
2177 group->maxpwr = rgroup.maxpwr;
2178 /* temperature at which the samples were taken */
2179 group->temp = (int16_t)le16toh(rgroup.temp);
2180
2181 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2182 group->chan, group->maxpwr, group->temp));
2183
2184 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2185 group->samples[i].index = rgroup.samples[i].index;
2186 group->samples[i].power = rgroup.samples[i].power;
2187
2188 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2189 group->samples[i].index, group->samples[i].power));
2190 }
2191 }
2192
2193 /*
2194 * Send a command to the firmware.
2195 */
2196 static int
2197 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2198 {
2199 struct wpi_tx_ring *ring = &sc->cmdq;
2200 struct wpi_tx_desc *desc;
2201 struct wpi_tx_cmd *cmd;
2202
2203 KASSERT(size <= sizeof cmd->data);
2204
2205 desc = &ring->desc[ring->cur];
2206 cmd = &ring->cmd[ring->cur];
2207
2208 cmd->code = code;
2209 cmd->flags = 0;
2210 cmd->qid = ring->qid;
2211 cmd->idx = ring->cur;
2212 memcpy(cmd->data, buf, size);
2213
2214 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2215 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2216 ring->cur * sizeof (struct wpi_tx_cmd));
2217 desc->segs[0].len = htole32(4 + size);
2218
2219 /* kick cmd ring */
2220 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2221 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2222
2223 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2224 }
2225
2226 static int
2227 wpi_wme_update(struct ieee80211com *ic)
2228 {
2229 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2230 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2231 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2232 const struct wmeParams *wmep;
2233 struct wpi_wme_setup wme;
2234 int ac;
2235
2236 /* don't override default WME values if WME is not actually enabled */
2237 if (!(ic->ic_flags & IEEE80211_F_WME))
2238 return 0;
2239
2240 wme.flags = 0;
2241 for (ac = 0; ac < WME_NUM_AC; ac++) {
2242 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2243 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2244 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2245 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2246 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2247
2248 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2249 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2250 wme.ac[ac].cwmax, wme.ac[ac].txop));
2251 }
2252
2253 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2254 #undef WPI_USEC
2255 #undef WPI_EXP2
2256 }
2257
2258 /*
2259 * Configure h/w multi-rate retries.
2260 */
2261 static int
2262 wpi_mrr_setup(struct wpi_softc *sc)
2263 {
2264 struct ieee80211com *ic = &sc->sc_ic;
2265 struct wpi_mrr_setup mrr;
2266 int i, error;
2267
2268 /* CCK rates (not used with 802.11a) */
2269 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2270 mrr.rates[i].flags = 0;
2271 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2272 /* fallback to the immediate lower CCK rate (if any) */
2273 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2274 /* try one time at this rate before falling back to "next" */
2275 mrr.rates[i].ntries = 1;
2276 }
2277
2278 /* OFDM rates (not used with 802.11b) */
2279 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2280 mrr.rates[i].flags = 0;
2281 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2282 /* fallback to the immediate lower rate (if any) */
2283 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2284 mrr.rates[i].next = (i == WPI_OFDM6) ?
2285 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2286 WPI_OFDM6 : WPI_CCK2) :
2287 i - 1;
2288 /* try one time at this rate before falling back to "next" */
2289 mrr.rates[i].ntries = 1;
2290 }
2291
2292 /* setup MRR for control frames */
2293 mrr.which = htole32(WPI_MRR_CTL);
2294 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2295 if (error != 0) {
2296 aprint_error("%s: could not setup MRR for control frames\n",
2297 sc->sc_dev.dv_xname);
2298 return error;
2299 }
2300
2301 /* setup MRR for data frames */
2302 mrr.which = htole32(WPI_MRR_DATA);
2303 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2304 if (error != 0) {
2305 aprint_error("%s: could not setup MRR for data frames\n",
2306 sc->sc_dev.dv_xname);
2307 return error;
2308 }
2309
2310 return 0;
2311 }
2312
2313 static void
2314 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2315 {
2316 struct wpi_cmd_led led;
2317
2318 led.which = which;
2319 led.unit = htole32(100000); /* on/off in unit of 100ms */
2320 led.off = off;
2321 led.on = on;
2322
2323 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2324 }
2325
2326 static void
2327 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2328 {
2329 struct wpi_cmd_tsf tsf;
2330 uint64_t val, mod;
2331
2332 memset(&tsf, 0, sizeof tsf);
2333 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2334 tsf.bintval = htole16(ni->ni_intval);
2335 tsf.lintval = htole16(10);
2336
2337 /* compute remaining time until next beacon */
2338 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2339 mod = le64toh(tsf.tstamp) % val;
2340 tsf.binitval = htole32((uint32_t)(val - mod));
2341
2342 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2343 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2344
2345 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2346 aprint_error("%s: could not enable TSF\n", sc->sc_dev.dv_xname);
2347 }
2348
2349 /*
2350 * Update Tx power to match what is defined for channel `c'.
2351 */
2352 static int
2353 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2354 {
2355 struct ieee80211com *ic = &sc->sc_ic;
2356 struct wpi_power_group *group;
2357 struct wpi_cmd_txpower txpower;
2358 u_int chan;
2359 int i;
2360
2361 /* get channel number */
2362 chan = ieee80211_chan2ieee(ic, c);
2363
2364 /* find the power group to which this channel belongs */
2365 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2366 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2367 if (chan <= group->chan)
2368 break;
2369 } else
2370 group = &sc->groups[0];
2371
2372 memset(&txpower, 0, sizeof txpower);
2373 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2374 txpower.chan = htole16(chan);
2375
2376 /* set Tx power for all OFDM and CCK rates */
2377 for (i = 0; i <= 11 ; i++) {
2378 /* retrieve Tx power for this channel/rate combination */
2379 int idx = wpi_get_power_index(sc, group, c,
2380 wpi_ridx_to_rate[i]);
2381
2382 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2383
2384 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2385 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2386 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2387 } else {
2388 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2389 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2390 }
2391 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2392 wpi_ridx_to_rate[i], idx));
2393 }
2394
2395 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2396 }
2397
2398 /*
2399 * Determine Tx power index for a given channel/rate combination.
2400 * This takes into account the regulatory information from EEPROM and the
2401 * current temperature.
2402 */
2403 static int
2404 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2405 struct ieee80211_channel *c, int rate)
2406 {
2407 /* fixed-point arithmetic division using a n-bit fractional part */
2408 #define fdivround(a, b, n) \
2409 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2410
2411 /* linear interpolation */
2412 #define interpolate(x, x1, y1, x2, y2, n) \
2413 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2414
2415 struct ieee80211com *ic = &sc->sc_ic;
2416 struct wpi_power_sample *sample;
2417 int pwr, idx;
2418 u_int chan;
2419
2420 /* get channel number */
2421 chan = ieee80211_chan2ieee(ic, c);
2422
2423 /* default power is group's maximum power - 3dB */
2424 pwr = group->maxpwr / 2;
2425
2426 /* decrease power for highest OFDM rates to reduce distortion */
2427 switch (rate) {
2428 case 72: /* 36Mb/s */
2429 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2430 break;
2431 case 96: /* 48Mb/s */
2432 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2433 break;
2434 case 108: /* 54Mb/s */
2435 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2436 break;
2437 }
2438
2439 /* never exceed channel's maximum allowed Tx power */
2440 pwr = min(pwr, sc->maxpwr[chan]);
2441
2442 /* retrieve power index into gain tables from samples */
2443 for (sample = group->samples; sample < &group->samples[3]; sample++)
2444 if (pwr > sample[1].power)
2445 break;
2446 /* fixed-point linear interpolation using a 19-bit fractional part */
2447 idx = interpolate(pwr, sample[0].power, sample[0].index,
2448 sample[1].power, sample[1].index, 19);
2449
2450 /*
2451 * Adjust power index based on current temperature:
2452 * - if cooler than factory-calibrated: decrease output power
2453 * - if warmer than factory-calibrated: increase output power
2454 */
2455 idx -= (sc->temp - group->temp) * 11 / 100;
2456
2457 /* decrease power for CCK rates (-5dB) */
2458 if (!WPI_RATE_IS_OFDM(rate))
2459 idx += 10;
2460
2461 /* keep power index in a valid range */
2462 if (idx < 0)
2463 return 0;
2464 if (idx > WPI_MAX_PWR_INDEX)
2465 return WPI_MAX_PWR_INDEX;
2466 return idx;
2467
2468 #undef interpolate
2469 #undef fdivround
2470 }
2471
2472 /*
2473 * Build a beacon frame that the firmware will broadcast periodically in
2474 * IBSS or HostAP modes.
2475 */
2476 static int
2477 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2478 {
2479 struct ieee80211com *ic = &sc->sc_ic;
2480 struct wpi_tx_ring *ring = &sc->cmdq;
2481 struct wpi_tx_desc *desc;
2482 struct wpi_tx_data *data;
2483 struct wpi_tx_cmd *cmd;
2484 struct wpi_cmd_beacon *bcn;
2485 struct ieee80211_beacon_offsets bo;
2486 struct mbuf *m0;
2487 int error;
2488
2489 desc = &ring->desc[ring->cur];
2490 data = &ring->data[ring->cur];
2491
2492 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2493 if (m0 == NULL) {
2494 aprint_error("%s: could not allocate beacon frame\n",
2495 sc->sc_dev.dv_xname);
2496 return ENOMEM;
2497 }
2498
2499 cmd = &ring->cmd[ring->cur];
2500 cmd->code = WPI_CMD_SET_BEACON;
2501 cmd->flags = 0;
2502 cmd->qid = ring->qid;
2503 cmd->idx = ring->cur;
2504
2505 bcn = (struct wpi_cmd_beacon *)cmd->data;
2506 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2507 bcn->id = WPI_ID_BROADCAST;
2508 bcn->ofdm_mask = 0xff;
2509 bcn->cck_mask = 0x0f;
2510 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2511 bcn->len = htole16(m0->m_pkthdr.len);
2512 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2513 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2514 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2515
2516 /* save and trim IEEE802.11 header */
2517 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2518 m_adj(m0, sizeof (struct ieee80211_frame));
2519
2520 /* assume beacon frame is contiguous */
2521 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2522 BUS_DMA_READ | BUS_DMA_NOWAIT);
2523 if (error) {
2524 aprint_error("%s: could not map beacon\n", sc->sc_dev.dv_xname);
2525 m_freem(m0);
2526 return error;
2527 }
2528
2529 data->m = m0;
2530
2531 /* first scatter/gather segment is used by the beacon command */
2532 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2533 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2534 ring->cur * sizeof (struct wpi_tx_cmd));
2535 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2536 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2537 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2538
2539 /* kick cmd ring */
2540 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2541 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2542
2543 return 0;
2544 }
2545
2546 static int
2547 wpi_auth(struct wpi_softc *sc)
2548 {
2549 struct ieee80211com *ic = &sc->sc_ic;
2550 struct ieee80211_node *ni = ic->ic_bss;
2551 struct wpi_node_info node;
2552 int error;
2553
2554 /* update adapter's configuration */
2555 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2556 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2557 sc->config.flags = htole32(WPI_CONFIG_TSF);
2558 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2559 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2560 WPI_CONFIG_24GHZ);
2561 }
2562 switch (ic->ic_curmode) {
2563 case IEEE80211_MODE_11A:
2564 sc->config.cck_mask = 0;
2565 sc->config.ofdm_mask = 0x15;
2566 break;
2567 case IEEE80211_MODE_11B:
2568 sc->config.cck_mask = 0x03;
2569 sc->config.ofdm_mask = 0;
2570 break;
2571 default: /* assume 802.11b/g */
2572 sc->config.cck_mask = 0x0f;
2573 sc->config.ofdm_mask = 0x15;
2574 }
2575
2576 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2577 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2578 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2579 sizeof (struct wpi_config), 1);
2580 if (error != 0) {
2581 aprint_error("%s: could not configure\n", sc->sc_dev.dv_xname);
2582 return error;
2583 }
2584
2585 /* configuration has changed, set Tx power accordingly */
2586 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2587 aprint_error("%s: could not set Tx power\n", sc->sc_dev.dv_xname);
2588 return error;
2589 }
2590
2591 /* add default node */
2592 memset(&node, 0, sizeof node);
2593 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2594 node.id = WPI_ID_BSS;
2595 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2596 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2597 node.action = htole32(WPI_ACTION_SET_RATE);
2598 node.antenna = WPI_ANTENNA_BOTH;
2599 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2600 if (error != 0) {
2601 aprint_error("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
2602 return error;
2603 }
2604
2605 return 0;
2606 }
2607
2608 /*
2609 * Send a scan request to the firmware. Since this command is huge, we map it
2610 * into a mbuf instead of using the pre-allocated set of commands.
2611 */
2612 static int
2613 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2614 {
2615 struct ieee80211com *ic = &sc->sc_ic;
2616 struct wpi_tx_ring *ring = &sc->cmdq;
2617 struct wpi_tx_desc *desc;
2618 struct wpi_tx_data *data;
2619 struct wpi_tx_cmd *cmd;
2620 struct wpi_scan_hdr *hdr;
2621 struct wpi_scan_chan *chan;
2622 struct ieee80211_frame *wh;
2623 struct ieee80211_rateset *rs;
2624 struct ieee80211_channel *c;
2625 enum ieee80211_phymode mode;
2626 uint8_t *frm;
2627 int nrates, pktlen, error;
2628
2629 desc = &ring->desc[ring->cur];
2630 data = &ring->data[ring->cur];
2631
2632 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2633 if (data->m == NULL) {
2634 aprint_error("%s: could not allocate mbuf for scan command\n",
2635 sc->sc_dev.dv_xname);
2636 return ENOMEM;
2637 }
2638
2639 MCLGET(data->m, M_DONTWAIT);
2640 if (!(data->m->m_flags & M_EXT)) {
2641 m_freem(data->m);
2642 data->m = NULL;
2643 aprint_error("%s: could not allocate mbuf for scan command\n",
2644 sc->sc_dev.dv_xname);
2645 return ENOMEM;
2646 }
2647
2648 cmd = mtod(data->m, struct wpi_tx_cmd *);
2649 cmd->code = WPI_CMD_SCAN;
2650 cmd->flags = 0;
2651 cmd->qid = ring->qid;
2652 cmd->idx = ring->cur;
2653
2654 hdr = (struct wpi_scan_hdr *)cmd->data;
2655 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2656 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2657 hdr->id = WPI_ID_BROADCAST;
2658 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2659
2660 /*
2661 * Move to the next channel if no packets are received within 5 msecs
2662 * after sending the probe request (this helps to reduce the duration
2663 * of active scans).
2664 */
2665 hdr->quiet = htole16(5); /* timeout in milliseconds */
2666 hdr->plcp_threshold = htole16(1); /* min # of packets */
2667
2668 if (flags & IEEE80211_CHAN_A) {
2669 hdr->crc_threshold = htole16(1);
2670 /* send probe requests at 6Mbps */
2671 hdr->rate = wpi_plcp_signal(12);
2672 } else {
2673 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2674 /* send probe requests at 1Mbps */
2675 hdr->rate = wpi_plcp_signal(2);
2676 }
2677
2678 /* for directed scans, firmware inserts the essid IE itself */
2679 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2680 hdr->essid[0].len = ic->ic_des_esslen;
2681 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2682
2683 /*
2684 * Build a probe request frame. Most of the following code is a
2685 * copy & paste of what is done in net80211.
2686 */
2687 wh = (struct ieee80211_frame *)(hdr + 1);
2688 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2689 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2690 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2691 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2692 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2693 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2694 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2695 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2696
2697 frm = (uint8_t *)(wh + 1);
2698
2699 #ifdef old_code
2700 /* add essid IE */
2701 *frm++ = IEEE80211_ELEMID_SSID;
2702 *frm++ = ic->ic_des_esslen;
2703 memcpy(frm, ic->ic_des_essid, ic->ic_des_esslen);
2704 frm += ic->ic_des_esslen;
2705 #else
2706 /* add empty essid IE (firmware generates it for directed scans) */
2707 *frm++ = IEEE80211_ELEMID_SSID;
2708 *frm++ = 0;
2709 #endif
2710
2711 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2712 rs = &ic->ic_sup_rates[mode];
2713
2714 /* add supported rates IE */
2715 *frm++ = IEEE80211_ELEMID_RATES;
2716 nrates = rs->rs_nrates;
2717 if (nrates > IEEE80211_RATE_SIZE)
2718 nrates = IEEE80211_RATE_SIZE;
2719 *frm++ = nrates;
2720 memcpy(frm, rs->rs_rates, nrates);
2721 frm += nrates;
2722
2723 /* add supported xrates IE */
2724 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2725 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2726 *frm++ = IEEE80211_ELEMID_XRATES;
2727 *frm++ = nrates;
2728 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2729 frm += nrates;
2730 }
2731
2732 /* setup length of probe request */
2733 hdr->paylen = htole16(frm - (uint8_t *)wh);
2734
2735 chan = (struct wpi_scan_chan *)frm;
2736 for (c = &ic->ic_channels[1];
2737 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2738 if ((c->ic_flags & flags) != flags)
2739 continue;
2740
2741 chan->chan = ieee80211_chan2ieee(ic, c);
2742 chan->flags = 0;
2743 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2744 chan->flags |= WPI_CHAN_ACTIVE;
2745 if (ic->ic_des_esslen != 0)
2746 chan->flags |= WPI_CHAN_DIRECT;
2747 }
2748 chan->dsp_gain = 0x6e;
2749 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2750 chan->rf_gain = 0x3b;
2751 chan->active = htole16(10);
2752 chan->passive = htole16(110);
2753 } else {
2754 chan->rf_gain = 0x28;
2755 chan->active = htole16(20);
2756 chan->passive = htole16(120);
2757 }
2758 hdr->nchan++;
2759 chan++;
2760
2761 frm += sizeof (struct wpi_scan_chan);
2762 }
2763 hdr->len = htole16(frm - (uint8_t *)hdr);
2764 pktlen = frm - (uint8_t *)cmd;
2765
2766 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2767 NULL, BUS_DMA_NOWAIT);
2768 if (error) {
2769 aprint_error("%s: could not map scan command\n",
2770 sc->sc_dev.dv_xname);
2771 m_freem(data->m);
2772 data->m = NULL;
2773 return error;
2774 }
2775
2776 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2777 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2778 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2779
2780 /* kick cmd ring */
2781 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2782 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2783
2784 return 0; /* will be notified async. of failure/success */
2785 }
2786
2787 static int
2788 wpi_config(struct wpi_softc *sc)
2789 {
2790 struct ieee80211com *ic = &sc->sc_ic;
2791 struct ifnet *ifp = ic->ic_ifp;
2792 struct wpi_power power;
2793 struct wpi_bluetooth bluetooth;
2794 struct wpi_node_info node;
2795 int error;
2796
2797 memset(&power, 0, sizeof power);
2798 power.flags = htole32(WPI_POWER_CAM | 0x8);
2799 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2800 if (error != 0) {
2801 aprint_error("%s: could not set power mode\n",
2802 sc->sc_dev.dv_xname);
2803 return error;
2804 }
2805
2806 /* configure bluetooth coexistence */
2807 memset(&bluetooth, 0, sizeof bluetooth);
2808 bluetooth.flags = 3;
2809 bluetooth.lead = 0xaa;
2810 bluetooth.kill = 1;
2811 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2812 0);
2813 if (error != 0) {
2814 aprint_error(
2815 "%s: could not configure bluetooth coexistence\n",
2816 sc->sc_dev.dv_xname);
2817 return error;
2818 }
2819
2820 /* configure adapter */
2821 memset(&sc->config, 0, sizeof (struct wpi_config));
2822 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2823 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2824 /*set default channel*/
2825 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2826 sc->config.flags = htole32(WPI_CONFIG_TSF);
2827 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2828 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2829 WPI_CONFIG_24GHZ);
2830 }
2831 sc->config.filter = 0;
2832 switch (ic->ic_opmode) {
2833 case IEEE80211_M_STA:
2834 sc->config.mode = WPI_MODE_STA;
2835 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2836 break;
2837 case IEEE80211_M_IBSS:
2838 case IEEE80211_M_AHDEMO:
2839 sc->config.mode = WPI_MODE_IBSS;
2840 break;
2841 case IEEE80211_M_HOSTAP:
2842 sc->config.mode = WPI_MODE_HOSTAP;
2843 break;
2844 case IEEE80211_M_MONITOR:
2845 sc->config.mode = WPI_MODE_MONITOR;
2846 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2847 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2848 break;
2849 }
2850 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2851 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2852 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2853 sizeof (struct wpi_config), 0);
2854 if (error != 0) {
2855 aprint_error("%s: configure command failed\n",
2856 sc->sc_dev.dv_xname);
2857 return error;
2858 }
2859
2860 /* configuration has changed, set Tx power accordingly */
2861 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2862 aprint_error("%s: could not set Tx power\n", sc->sc_dev.dv_xname);
2863 return error;
2864 }
2865
2866 /* add broadcast node */
2867 memset(&node, 0, sizeof node);
2868 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2869 node.id = WPI_ID_BROADCAST;
2870 node.rate = wpi_plcp_signal(2);
2871 node.action = htole32(WPI_ACTION_SET_RATE);
2872 node.antenna = WPI_ANTENNA_BOTH;
2873 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2874 if (error != 0) {
2875 aprint_error("%s: could not add broadcast node\n",
2876 sc->sc_dev.dv_xname);
2877 return error;
2878 }
2879
2880 if ((error = wpi_mrr_setup(sc)) != 0) {
2881 aprint_error("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
2882 return error;
2883 }
2884
2885 return 0;
2886 }
2887
2888 static void
2889 wpi_stop_master(struct wpi_softc *sc)
2890 {
2891 uint32_t tmp;
2892 int ntries;
2893
2894 tmp = WPI_READ(sc, WPI_RESET);
2895 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2896
2897 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2898 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2899 return; /* already asleep */
2900
2901 for (ntries = 0; ntries < 100; ntries++) {
2902 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2903 break;
2904 DELAY(10);
2905 }
2906 if (ntries == 100) {
2907 aprint_error("%s: timeout waiting for master\n",
2908 sc->sc_dev.dv_xname);
2909 }
2910 }
2911
2912 static int
2913 wpi_power_up(struct wpi_softc *sc)
2914 {
2915 uint32_t tmp;
2916 int ntries;
2917
2918 wpi_mem_lock(sc);
2919 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2920 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2921 wpi_mem_unlock(sc);
2922
2923 for (ntries = 0; ntries < 5000; ntries++) {
2924 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2925 break;
2926 DELAY(10);
2927 }
2928 if (ntries == 5000) {
2929 aprint_error("%s: timeout waiting for NIC to power up\n",
2930 sc->sc_dev.dv_xname);
2931 return ETIMEDOUT;
2932 }
2933 return 0;
2934 }
2935
2936 static int
2937 wpi_reset(struct wpi_softc *sc)
2938 {
2939 uint32_t tmp;
2940 int ntries;
2941
2942 /* clear any pending interrupts */
2943 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2944
2945 tmp = WPI_READ(sc, WPI_PLL_CTL);
2946 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2947
2948 tmp = WPI_READ(sc, WPI_CHICKEN);
2949 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2950
2951 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2952 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2953
2954 /* wait for clock stabilization */
2955 for (ntries = 0; ntries < 1000; ntries++) {
2956 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2957 break;
2958 DELAY(10);
2959 }
2960 if (ntries == 1000) {
2961 aprint_error("%s: timeout waiting for clock stabilization\n",
2962 sc->sc_dev.dv_xname);
2963 return ETIMEDOUT;
2964 }
2965
2966 /* initialize EEPROM */
2967 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2968 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2969 aprint_error("%s: EEPROM not found\n", sc->sc_dev.dv_xname);
2970 return EIO;
2971 }
2972 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2973
2974 return 0;
2975 }
2976
2977 static void
2978 wpi_hw_config(struct wpi_softc *sc)
2979 {
2980 uint32_t rev, hw;
2981
2982 /* voodoo from the reference driver */
2983 hw = WPI_READ(sc, WPI_HWCONFIG);
2984
2985 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2986 rev = PCI_REVISION(rev);
2987 if ((rev & 0xc0) == 0x40)
2988 hw |= WPI_HW_ALM_MB;
2989 else if (!(rev & 0x80))
2990 hw |= WPI_HW_ALM_MM;
2991
2992 if (sc->cap == 0x80)
2993 hw |= WPI_HW_SKU_MRC;
2994
2995 hw &= ~WPI_HW_REV_D;
2996 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2997 hw |= WPI_HW_REV_D;
2998
2999 if (sc->type > 1)
3000 hw |= WPI_HW_TYPE_B;
3001
3002 DPRINTF(("setting h/w config %x\n", hw));
3003 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3004 }
3005
3006 static int
3007 wpi_init(struct ifnet *ifp)
3008 {
3009 struct wpi_softc *sc = ifp->if_softc;
3010 struct ieee80211com *ic = &sc->sc_ic;
3011 uint32_t tmp;
3012 int qid, ntries, error;
3013
3014 (void)wpi_reset(sc);
3015
3016 wpi_mem_lock(sc);
3017 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3018 DELAY(20);
3019 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3020 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3021 wpi_mem_unlock(sc);
3022
3023 (void)wpi_power_up(sc);
3024 wpi_hw_config(sc);
3025
3026 /* init Rx ring */
3027 wpi_mem_lock(sc);
3028 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3029 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3030 offsetof(struct wpi_shared, next));
3031 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3032 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3033 wpi_mem_unlock(sc);
3034
3035 /* init Tx rings */
3036 wpi_mem_lock(sc);
3037 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3038 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3039 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3040 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3041 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3042 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3043 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3044
3045 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3046 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3047
3048 for (qid = 0; qid < 6; qid++) {
3049 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3050 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3051 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3052 }
3053 wpi_mem_unlock(sc);
3054
3055 /* clear "radio off" and "disable command" bits (reversed logic) */
3056 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3057 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3058
3059 /* clear any pending interrupts */
3060 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3061 /* enable interrupts */
3062 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3063
3064 /* not sure why/if this is necessary... */
3065 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3066 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3067
3068 if ((error = wpi_load_firmware(sc)) != 0) {
3069 aprint_error("%s: could not load firmware\n", sc->sc_dev.dv_xname);
3070 goto fail1;
3071 }
3072
3073 /* wait for thermal sensors to calibrate */
3074 for (ntries = 0; ntries < 1000; ntries++) {
3075 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3076 break;
3077 DELAY(10);
3078 }
3079 if (ntries == 1000) {
3080 aprint_error("%s: timeout waiting for thermal sensors calibration\n",
3081 sc->sc_dev.dv_xname);
3082 error = ETIMEDOUT;
3083 goto fail1;
3084 }
3085
3086 DPRINTF(("temperature %d\n", sc->temp));
3087
3088 if ((error = wpi_config(sc)) != 0) {
3089 aprint_error("%s: could not configure device\n",
3090 sc->sc_dev.dv_xname);
3091 goto fail1;
3092 }
3093
3094 ifp->if_flags &= ~IFF_OACTIVE;
3095 ifp->if_flags |= IFF_RUNNING;
3096
3097 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3098 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3099 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3100 }
3101 else
3102 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3103
3104 return 0;
3105
3106 fail1: wpi_stop(ifp, 1);
3107 return error;
3108 }
3109
3110
3111 static void
3112 wpi_stop(struct ifnet *ifp, int disable)
3113 {
3114 struct wpi_softc *sc = ifp->if_softc;
3115 struct ieee80211com *ic = &sc->sc_ic;
3116 uint32_t tmp;
3117 int ac;
3118
3119 ifp->if_timer = sc->sc_tx_timer = 0;
3120 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3121
3122 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3123
3124 /* disable interrupts */
3125 WPI_WRITE(sc, WPI_MASK, 0);
3126 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3127 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3128 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3129
3130 wpi_mem_lock(sc);
3131 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3132 wpi_mem_unlock(sc);
3133
3134 /* reset all Tx rings */
3135 for (ac = 0; ac < 4; ac++)
3136 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3137 wpi_reset_tx_ring(sc, &sc->cmdq);
3138 wpi_reset_tx_ring(sc, &sc->svcq);
3139
3140 /* reset Rx ring */
3141 wpi_reset_rx_ring(sc, &sc->rxq);
3142
3143 wpi_mem_lock(sc);
3144 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3145 wpi_mem_unlock(sc);
3146
3147 DELAY(5);
3148
3149 wpi_stop_master(sc);
3150
3151 tmp = WPI_READ(sc, WPI_RESET);
3152 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3153 }
3154