if_wpi.c revision 1.17.4.10 1 /* $NetBSD: if_wpi.c,v 1.17.4.10 2007/11/11 16:47:42 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.17.4.10 2007/11/11 16:47:42 joerg Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39 #include <sys/callout.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47 #include <dev/pci/pcidevs.h>
48
49 #if NBPFILTER > 0
50 #include <net/bpf.h>
51 #endif
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x) if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 { 4, { 2, 4, 11, 22 } };
90
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94 static int wpi_match(struct device *, struct cfdata *, void *);
95 static void wpi_attach(struct device *, struct device *, void *);
96 static int wpi_detach(struct device*, int);
97 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
98 void **, bus_size_t, bus_size_t, int);
99 static void wpi_dma_contig_free(struct wpi_dma_info *);
100 static int wpi_alloc_shared(struct wpi_softc *);
101 static void wpi_free_shared(struct wpi_softc *);
102 static int wpi_alloc_fwmem(struct wpi_softc *);
103 static void wpi_free_fwmem(struct wpi_softc *);
104 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
105 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
106 static int wpi_alloc_rpool(struct wpi_softc *);
107 static void wpi_free_rpool(struct wpi_softc *);
108 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
109 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
112 int);
113 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
114 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
116 static void wpi_newassoc(struct ieee80211_node *, int);
117 static int wpi_media_change(struct ifnet *);
118 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
119 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
120 static void wpi_mem_lock(struct wpi_softc *);
121 static void wpi_mem_unlock(struct wpi_softc *);
122 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
123 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
124 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
125 const uint32_t *, int);
126 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
127 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
128 static int wpi_load_firmware(struct wpi_softc *);
129 static void wpi_calib_timeout(void *);
130 static void wpi_iter_func(void *, struct ieee80211_node *);
131 static void wpi_power_calibration(struct wpi_softc *, int);
132 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
133 struct wpi_rx_data *);
134 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
135 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
136 static void wpi_notif_intr(struct wpi_softc *);
137 static int wpi_intr(void *);
138 static void wpi_read_eeprom(struct wpi_softc *);
139 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
140 static void wpi_read_eeprom_group(struct wpi_softc *, int);
141 static uint8_t wpi_plcp_signal(int);
142 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
143 struct ieee80211_node *, int);
144 static void wpi_start(struct ifnet *);
145 static void wpi_watchdog(struct ifnet *);
146 static int wpi_ioctl(struct ifnet *, u_long, void *);
147 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
148 static int wpi_wme_update(struct ieee80211com *);
149 static int wpi_mrr_setup(struct wpi_softc *);
150 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
151 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
152 static int wpi_set_txpower(struct wpi_softc *,
153 struct ieee80211_channel *, int);
154 static int wpi_get_power_index(struct wpi_softc *,
155 struct wpi_power_group *, struct ieee80211_channel *, int);
156 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
157 static int wpi_auth(struct wpi_softc *);
158 static int wpi_scan(struct wpi_softc *, uint16_t);
159 static int wpi_config(struct wpi_softc *);
160 static void wpi_stop_master(struct wpi_softc *);
161 static int wpi_power_up(struct wpi_softc *);
162 static int wpi_reset(struct wpi_softc *);
163 static void wpi_hw_config(struct wpi_softc *);
164 static int wpi_init(struct ifnet *);
165 static void wpi_stop(struct ifnet *, int);
166 static bool wpi_resume(device_t);
167
168 CFATTACH_DECL(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
169 wpi_detach, NULL);
170
171 static int
172 wpi_match(struct device *parent, struct cfdata *match __unused, void *aux)
173 {
174 struct pci_attach_args *pa = aux;
175
176 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
177 return 0;
178
179 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
180 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
181 return 1;
182
183 return 0;
184 }
185
186 /* Base Address Register */
187 #define WPI_PCI_BAR0 0x10
188
189 static void
190 wpi_attach(struct device *parent __unused, struct device *self, void *aux)
191 {
192 struct wpi_softc *sc = (struct wpi_softc *)self;
193 struct ieee80211com *ic = &sc->sc_ic;
194 struct ifnet *ifp = &sc->sc_ec.ec_if;
195 struct pci_attach_args *pa = aux;
196 const char *intrstr;
197 char devinfo[256];
198 bus_space_tag_t memt;
199 bus_space_handle_t memh;
200 pci_intr_handle_t ih;
201 pcireg_t data;
202 int error, ac, revision;
203
204 sc->sc_pct = pa->pa_pc;
205 sc->sc_pcitag = pa->pa_tag;
206
207 callout_init(&sc->calib_to, 0);
208 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
209
210 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
211 revision = PCI_REVISION(pa->pa_class);
212 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
213
214 pci_disable_retry(pa->pa_pc, pa->pa_tag);
215
216 /* enable bus-mastering */
217 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
218 data |= PCI_COMMAND_MASTER_ENABLE;
219 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
220
221 /* map the register window */
222 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
223 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
224 if (error != 0) {
225 aprint_error("%s: could not map memory space\n",
226 sc->sc_dev.dv_xname);
227 return;
228 }
229
230 sc->sc_st = memt;
231 sc->sc_sh = memh;
232 sc->sc_dmat = pa->pa_dmat;
233
234 if (pci_intr_map(pa, &ih) != 0) {
235 aprint_error("%s: could not map interrupt\n",
236 sc->sc_dev.dv_xname);
237 return;
238 }
239
240 intrstr = pci_intr_string(sc->sc_pct, ih);
241 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
242 if (sc->sc_ih == NULL) {
243 aprint_error("%s: could not establish interrupt",
244 sc->sc_dev.dv_xname);
245 if (intrstr != NULL)
246 aprint_error(" at %s", intrstr);
247 aprint_error("\n");
248 return;
249 }
250 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
251
252 if (wpi_reset(sc) != 0) {
253 aprint_error("%s: could not reset adapter\n",
254 sc->sc_dev.dv_xname);
255 return;
256 }
257
258 /*
259 * Allocate DMA memory for firmware transfers.
260 */
261 if ((error = wpi_alloc_fwmem(sc)) != 0) {
262 aprint_error(": could not allocate firmware memory\n");
263 return;
264 }
265
266 /*
267 * Allocate shared page and Tx/Rx rings.
268 */
269 if ((error = wpi_alloc_shared(sc)) != 0) {
270 aprint_error("%s: could not allocate shared area\n",
271 sc->sc_dev.dv_xname);
272 goto fail1;
273 }
274
275 if ((error = wpi_alloc_rpool(sc)) != 0) {
276 aprint_error("%s: could not allocate Rx buffers\n",
277 sc->sc_dev.dv_xname);
278 goto fail2;
279 }
280
281 for (ac = 0; ac < 4; ac++) {
282 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
283 if (error != 0) {
284 aprint_error("%s: could not allocate Tx ring %d\n",
285 sc->sc_dev.dv_xname, ac);
286 goto fail3;
287 }
288 }
289
290 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
291 if (error != 0) {
292 aprint_error("%s: could not allocate command ring\n",
293 sc->sc_dev.dv_xname);
294 goto fail3;
295 }
296
297 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
298 aprint_error("%s: could not allocate Rx ring\n",
299 sc->sc_dev.dv_xname);
300 goto fail4;
301 }
302
303 ic->ic_ifp = ifp;
304 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
305 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
306 ic->ic_state = IEEE80211_S_INIT;
307
308 /* set device capabilities */
309 ic->ic_caps =
310 IEEE80211_C_IBSS | /* IBSS mode support */
311 IEEE80211_C_WPA | /* 802.11i */
312 IEEE80211_C_MONITOR | /* monitor mode supported */
313 IEEE80211_C_TXPMGT | /* tx power management */
314 IEEE80211_C_SHSLOT | /* short slot time supported */
315 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
316 IEEE80211_C_WME; /* 802.11e */
317
318 /* read supported channels and MAC address from EEPROM */
319 wpi_read_eeprom(sc);
320
321 /* set supported .11a, .11b, .11g rates */
322 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
323 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
324 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
325
326 ic->ic_ibss_chan = &ic->ic_channels[0];
327
328 ifp->if_softc = sc;
329 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
330 ifp->if_init = wpi_init;
331 ifp->if_stop = wpi_stop;
332 ifp->if_ioctl = wpi_ioctl;
333 ifp->if_start = wpi_start;
334 ifp->if_watchdog = wpi_watchdog;
335 IFQ_SET_READY(&ifp->if_snd);
336 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
337
338 if_attach(ifp);
339 ieee80211_ifattach(ic);
340 /* override default methods */
341 ic->ic_node_alloc = wpi_node_alloc;
342 ic->ic_newassoc = wpi_newassoc;
343 ic->ic_wme.wme_update = wpi_wme_update;
344
345 /* override state transition machine */
346 sc->sc_newstate = ic->ic_newstate;
347 ic->ic_newstate = wpi_newstate;
348 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
349
350 sc->amrr.amrr_min_success_threshold = 1;
351 sc->amrr.amrr_max_success_threshold = 15;
352
353 if (!pnp_device_register(self, NULL, wpi_resume))
354 aprint_error_dev(self, "couldn't establish power handler\n");
355 else
356 pnp_class_network_register(self, ifp);
357
358 #if NBPFILTER > 0
359 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
360 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
361 &sc->sc_drvbpf);
362
363 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
364 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
365 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
366
367 sc->sc_txtap_len = sizeof sc->sc_txtapu;
368 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
369 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
370 #endif
371
372 ieee80211_announce(ic);
373
374 return;
375
376 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
377 fail3: while (--ac >= 0)
378 wpi_free_tx_ring(sc, &sc->txq[ac]);
379 wpi_free_rpool(sc);
380 fail2: wpi_free_shared(sc);
381 fail1: wpi_free_fwmem(sc);
382 }
383
384 static int
385 wpi_detach(struct device* self, int flags __unused)
386 {
387 struct wpi_softc *sc = (struct wpi_softc *)self;
388 struct ifnet *ifp = sc->sc_ic.ic_ifp;
389 int ac;
390
391 wpi_stop(ifp, 1);
392
393 #if NBPFILTER > 0
394 if (ifp != NULL)
395 bpfdetach(ifp);
396 #endif
397 ieee80211_ifdetach(&sc->sc_ic);
398 if (ifp != NULL)
399 if_detach(ifp);
400
401 for (ac = 0; ac < 4; ac++)
402 wpi_free_tx_ring(sc, &sc->txq[ac]);
403 wpi_free_tx_ring(sc, &sc->cmdq);
404 wpi_free_rx_ring(sc, &sc->rxq);
405 wpi_free_rpool(sc);
406 wpi_free_shared(sc);
407
408 if (sc->sc_ih != NULL) {
409 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
410 sc->sc_ih = NULL;
411 }
412
413 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
414
415 return 0;
416 }
417
418 static int
419 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
420 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
421 {
422 int nsegs, error;
423
424 dma->tag = tag;
425 dma->size = size;
426
427 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
428 if (error != 0)
429 goto fail;
430
431 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
432 flags);
433 if (error != 0)
434 goto fail;
435
436 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
437 if (error != 0)
438 goto fail;
439
440 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
441 if (error != 0)
442 goto fail;
443
444 memset(dma->vaddr, 0, size);
445
446 dma->paddr = dma->map->dm_segs[0].ds_addr;
447 if (kvap != NULL)
448 *kvap = dma->vaddr;
449
450 return 0;
451
452 fail: wpi_dma_contig_free(dma);
453 return error;
454 }
455
456 static void
457 wpi_dma_contig_free(struct wpi_dma_info *dma)
458 {
459 if (dma->map != NULL) {
460 if (dma->vaddr != NULL) {
461 bus_dmamap_unload(dma->tag, dma->map);
462 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
463 bus_dmamem_free(dma->tag, &dma->seg, 1);
464 dma->vaddr = NULL;
465 }
466 bus_dmamap_destroy(dma->tag, dma->map);
467 dma->map = NULL;
468 }
469 }
470
471 /*
472 * Allocate a shared page between host and NIC.
473 */
474 static int
475 wpi_alloc_shared(struct wpi_softc *sc)
476 {
477 int error;
478 /* must be aligned on a 4K-page boundary */
479 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
480 (void **)&sc->shared, sizeof (struct wpi_shared),
481 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
482 if (error != 0)
483 aprint_error(
484 "%s: could not allocate shared area DMA memory\n",
485 sc->sc_dev.dv_xname);
486
487 return error;
488 }
489
490 static void
491 wpi_free_shared(struct wpi_softc *sc)
492 {
493 wpi_dma_contig_free(&sc->shared_dma);
494 }
495
496 /*
497 * Allocate DMA-safe memory for firmware transfer.
498 */
499 static int
500 wpi_alloc_fwmem(struct wpi_softc *sc)
501 {
502 int error;
503 /* allocate enough contiguous space to store text and data */
504 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
505 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
506 BUS_DMA_NOWAIT);
507
508 if (error != 0)
509 aprint_error(
510 "%s: could not allocate firmware transfer area"
511 "DMA memory\n", sc->sc_dev.dv_xname);
512 return error;
513 }
514
515 static void
516 wpi_free_fwmem(struct wpi_softc *sc)
517 {
518 wpi_dma_contig_free(&sc->fw_dma);
519 }
520
521
522 static struct wpi_rbuf *
523 wpi_alloc_rbuf(struct wpi_softc *sc)
524 {
525 struct wpi_rbuf *rbuf;
526
527 rbuf = SLIST_FIRST(&sc->rxq.freelist);
528 if (rbuf == NULL)
529 return NULL;
530 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
531 sc->rxq.nb_free_entries --;
532
533 return rbuf;
534 }
535
536 /*
537 * This is called automatically by the network stack when the mbuf to which our
538 * Rx buffer is attached is freed.
539 */
540 static void
541 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
542 {
543 struct wpi_rbuf *rbuf = arg;
544 struct wpi_softc *sc = rbuf->sc;
545
546 /* put the buffer back in the free list */
547
548 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
549 sc->rxq.nb_free_entries ++;
550
551 if (__predict_true(m != NULL))
552 pool_cache_put(mb_cache, m);
553 }
554
555 static int
556 wpi_alloc_rpool(struct wpi_softc *sc)
557 {
558 struct wpi_rx_ring *ring = &sc->rxq;
559 struct wpi_rbuf *rbuf;
560 int i, error;
561
562 /* allocate a big chunk of DMA'able memory.. */
563 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
564 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
565 if (error != 0) {
566 aprint_normal("%s: could not allocate Rx buffers DMA memory\n",
567 sc->sc_dev.dv_xname);
568 return error;
569 }
570
571 /* ..and split it into 3KB chunks */
572 SLIST_INIT(&ring->freelist);
573 for (i = 0; i < WPI_RBUF_COUNT; i++) {
574 rbuf = &ring->rbuf[i];
575 rbuf->sc = sc; /* backpointer for callbacks */
576 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
577 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
578
579 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
580 }
581
582 ring->nb_free_entries = WPI_RBUF_COUNT;
583 return 0;
584 }
585
586 static void
587 wpi_free_rpool(struct wpi_softc *sc)
588 {
589 wpi_dma_contig_free(&sc->rxq.buf_dma);
590 }
591
592 static int
593 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
594 {
595 struct wpi_rx_data *data;
596 struct wpi_rbuf *rbuf;
597 int i, error;
598
599 ring->cur = 0;
600
601 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
602 (void **)&ring->desc,
603 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
604 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
605 if (error != 0) {
606 aprint_error("%s: could not allocate rx ring DMA memory\n",
607 sc->sc_dev.dv_xname);
608 goto fail;
609 }
610
611 /*
612 * Setup Rx buffers.
613 */
614 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
615 data = &ring->data[i];
616
617 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
618 if (data->m == NULL) {
619 aprint_error("%s: could not allocate rx mbuf\n",
620 sc->sc_dev.dv_xname);
621 error = ENOMEM;
622 goto fail;
623 }
624 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
625 m_freem(data->m);
626 data->m = NULL;
627 aprint_error("%s: could not allocate rx cluster\n",
628 sc->sc_dev.dv_xname);
629 error = ENOMEM;
630 goto fail;
631 }
632 /* attach Rx buffer to mbuf */
633 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
634 rbuf);
635 data->m->m_flags |= M_EXT_RW;
636
637 ring->desc[i] = htole32(rbuf->paddr);
638 }
639
640 return 0;
641
642 fail: wpi_free_rx_ring(sc, ring);
643 return error;
644 }
645
646 static void
647 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
648 {
649 int ntries;
650
651 wpi_mem_lock(sc);
652
653 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
654 for (ntries = 0; ntries < 100; ntries++) {
655 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
656 break;
657 DELAY(10);
658 }
659 #ifdef WPI_DEBUG
660 if (ntries == 100 && wpi_debug > 0)
661 aprint_error("%s: timeout resetting Rx ring\n",
662 sc->sc_dev.dv_xname);
663 #endif
664 wpi_mem_unlock(sc);
665
666 ring->cur = 0;
667 }
668
669 static void
670 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
671 {
672 int i;
673
674 wpi_dma_contig_free(&ring->desc_dma);
675
676 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
677 if (ring->data[i].m != NULL)
678 m_freem(ring->data[i].m);
679 }
680 }
681
682 static int
683 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
684 int qid)
685 {
686 struct wpi_tx_data *data;
687 int i, error;
688
689 ring->qid = qid;
690 ring->count = count;
691 ring->queued = 0;
692 ring->cur = 0;
693
694 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
695 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
696 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
697 if (error != 0) {
698 aprint_error("%s: could not allocate tx ring DMA memory\n",
699 sc->sc_dev.dv_xname);
700 goto fail;
701 }
702
703 /* update shared page with ring's base address */
704 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
705
706 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
707 (void **)&ring->cmd,
708 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
709 if (error != 0) {
710 aprint_error("%s: could not allocate tx cmd DMA memory\n",
711 sc->sc_dev.dv_xname);
712 goto fail;
713 }
714
715 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
716 M_NOWAIT);
717 if (ring->data == NULL) {
718 aprint_error("%s: could not allocate tx data slots\n",
719 sc->sc_dev.dv_xname);
720 goto fail;
721 }
722
723 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
724
725 for (i = 0; i < count; i++) {
726 data = &ring->data[i];
727
728 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
729 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
730 &data->map);
731 if (error != 0) {
732 aprint_error("%s: could not create tx buf DMA map\n",
733 sc->sc_dev.dv_xname);
734 goto fail;
735 }
736 }
737
738 return 0;
739
740 fail: wpi_free_tx_ring(sc, ring);
741 return error;
742 }
743
744 static void
745 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
746 {
747 struct wpi_tx_data *data;
748 int i, ntries;
749
750 wpi_mem_lock(sc);
751
752 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
753 for (ntries = 0; ntries < 100; ntries++) {
754 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
755 break;
756 DELAY(10);
757 }
758 #ifdef WPI_DEBUG
759 if (ntries == 100 && wpi_debug > 0) {
760 aprint_error("%s: timeout resetting Tx ring %d\n",
761 sc->sc_dev.dv_xname, ring->qid);
762 }
763 #endif
764 wpi_mem_unlock(sc);
765
766 for (i = 0; i < ring->count; i++) {
767 data = &ring->data[i];
768
769 if (data->m != NULL) {
770 bus_dmamap_unload(sc->sc_dmat, data->map);
771 m_freem(data->m);
772 data->m = NULL;
773 }
774 }
775
776 ring->queued = 0;
777 ring->cur = 0;
778 }
779
780 static void
781 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
782 {
783 struct wpi_tx_data *data;
784 int i;
785
786 wpi_dma_contig_free(&ring->desc_dma);
787 wpi_dma_contig_free(&ring->cmd_dma);
788
789 if (ring->data != NULL) {
790 for (i = 0; i < ring->count; i++) {
791 data = &ring->data[i];
792
793 if (data->m != NULL) {
794 bus_dmamap_unload(sc->sc_dmat, data->map);
795 m_freem(data->m);
796 }
797 }
798 free(ring->data, M_DEVBUF);
799 }
800 }
801
802 /*ARGUSED*/
803 static struct ieee80211_node *
804 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
805 {
806 struct wpi_node *wn;
807
808 wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
809
810 if (wn != NULL)
811 memset(wn, 0, sizeof (struct wpi_node));
812 return (struct ieee80211_node *)wn;
813 }
814
815 static void
816 wpi_newassoc(struct ieee80211_node *ni, int isnew)
817 {
818 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
819 int i;
820
821 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
822
823 /* set rate to some reasonable initial value */
824 for (i = ni->ni_rates.rs_nrates - 1;
825 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
826 i--);
827 ni->ni_txrate = i;
828 }
829
830 static int
831 wpi_media_change(struct ifnet *ifp)
832 {
833 int error;
834
835 error = ieee80211_media_change(ifp);
836 if (error != ENETRESET)
837 return error;
838
839 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
840 wpi_init(ifp);
841
842 return 0;
843 }
844
845 static int
846 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
847 {
848 struct ifnet *ifp = ic->ic_ifp;
849 struct wpi_softc *sc = ifp->if_softc;
850 struct ieee80211_node *ni;
851 int error;
852
853 callout_stop(&sc->calib_to);
854
855 switch (nstate) {
856 case IEEE80211_S_SCAN:
857
858 if (sc->is_scanning)
859 break;
860
861 sc->is_scanning = true;
862 ieee80211_node_table_reset(&ic->ic_scan);
863 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
864
865 /* make the link LED blink while we're scanning */
866 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
867
868 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
869 aprint_error("%s: could not initiate scan\n",
870 sc->sc_dev.dv_xname);
871 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
872 return error;
873 }
874
875 ic->ic_state = nstate;
876 return 0;
877
878 case IEEE80211_S_ASSOC:
879 if (ic->ic_state != IEEE80211_S_RUN)
880 break;
881 /* FALLTHROUGH */
882 case IEEE80211_S_AUTH:
883 sc->config.associd = 0;
884 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
885 if ((error = wpi_auth(sc)) != 0) {
886 aprint_error("%s: could not send authentication request\n",
887 sc->sc_dev.dv_xname);
888 return error;
889 }
890 break;
891
892 case IEEE80211_S_RUN:
893 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
894 /* link LED blinks while monitoring */
895 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
896 break;
897 }
898
899 ni = ic->ic_bss;
900
901 if (ic->ic_opmode != IEEE80211_M_STA) {
902 (void) wpi_auth(sc); /* XXX */
903 wpi_setup_beacon(sc, ni);
904 }
905
906 wpi_enable_tsf(sc, ni);
907
908 /* update adapter's configuration */
909 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
910 /* short preamble/slot time are negotiated when associating */
911 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
912 WPI_CONFIG_SHSLOT);
913 if (ic->ic_flags & IEEE80211_F_SHSLOT)
914 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
915 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
916 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
917 sc->config.filter |= htole32(WPI_FILTER_BSS);
918 if (ic->ic_opmode != IEEE80211_M_STA)
919 sc->config.filter |= htole32(WPI_FILTER_BEACON);
920
921 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
922
923 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
924 sc->config.flags));
925 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
926 sizeof (struct wpi_config), 1);
927 if (error != 0) {
928 aprint_error("%s: could not update configuration\n",
929 sc->sc_dev.dv_xname);
930 return error;
931 }
932
933 /* configuration has changed, set Tx power accordingly */
934 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
935 aprint_error("%s: could not set Tx power\n",
936 sc->sc_dev.dv_xname);
937 return error;
938 }
939
940 if (ic->ic_opmode == IEEE80211_M_STA) {
941 /* fake a join to init the tx rate */
942 wpi_newassoc(ni, 1);
943 }
944
945 /* start periodic calibration timer */
946 sc->calib_cnt = 0;
947 callout_schedule(&sc->calib_to, hz/2);
948
949 /* link LED always on while associated */
950 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
951 break;
952
953 case IEEE80211_S_INIT:
954 sc->is_scanning = false;
955 break;
956 }
957
958 return sc->sc_newstate(ic, nstate, arg);
959 }
960
961 /*
962 * XXX: Hack to set the current channel to the value advertised in beacons or
963 * probe responses. Only used during AP detection.
964 * XXX: Duplicated from if_iwi.c
965 */
966 static void
967 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
968 {
969 struct ieee80211_frame *wh;
970 uint8_t subtype;
971 uint8_t *frm, *efrm;
972
973 wh = mtod(m, struct ieee80211_frame *);
974
975 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
976 return;
977
978 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
979
980 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
981 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
982 return;
983
984 frm = (uint8_t *)(wh + 1);
985 efrm = mtod(m, uint8_t *) + m->m_len;
986
987 frm += 12; /* skip tstamp, bintval and capinfo fields */
988 while (frm < efrm) {
989 if (*frm == IEEE80211_ELEMID_DSPARMS)
990 #if IEEE80211_CHAN_MAX < 255
991 if (frm[2] <= IEEE80211_CHAN_MAX)
992 #endif
993 ic->ic_curchan = &ic->ic_channels[frm[2]];
994
995 frm += frm[1] + 2;
996 }
997 }
998
999 /*
1000 * Grab exclusive access to NIC memory.
1001 */
1002 static void
1003 wpi_mem_lock(struct wpi_softc *sc)
1004 {
1005 uint32_t tmp;
1006 int ntries;
1007
1008 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1009 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1010
1011 /* spin until we actually get the lock */
1012 for (ntries = 0; ntries < 1000; ntries++) {
1013 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1014 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1015 break;
1016 DELAY(10);
1017 }
1018 if (ntries == 1000)
1019 aprint_error_dev(&sc->sc_dev, "could not lock memory\n");
1020 }
1021
1022 /*
1023 * Release lock on NIC memory.
1024 */
1025 static void
1026 wpi_mem_unlock(struct wpi_softc *sc)
1027 {
1028 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1029 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1030 }
1031
1032 static uint32_t
1033 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1034 {
1035 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1036 return WPI_READ(sc, WPI_READ_MEM_DATA);
1037 }
1038
1039 static void
1040 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1041 {
1042 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1043 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1044 }
1045
1046 static void
1047 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1048 const uint32_t *data, int wlen)
1049 {
1050 for (; wlen > 0; wlen--, data++, addr += 4)
1051 wpi_mem_write(sc, addr, *data);
1052 }
1053
1054
1055 /*
1056 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1057 * instead of using the traditional bit-bang method.
1058 */
1059 static int
1060 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1061 {
1062 uint8_t *out = data;
1063 uint32_t val;
1064 int ntries;
1065
1066 wpi_mem_lock(sc);
1067 for (; len > 0; len -= 2, addr++) {
1068 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1069
1070 for (ntries = 0; ntries < 10; ntries++) {
1071 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1072 WPI_EEPROM_READY)
1073 break;
1074 DELAY(5);
1075 }
1076 if (ntries == 10) {
1077 aprint_error("%s: could not read EEPROM\n",
1078 sc->sc_dev.dv_xname);
1079 return ETIMEDOUT;
1080 }
1081 *out++ = val >> 16;
1082 if (len > 1)
1083 *out++ = val >> 24;
1084 }
1085 wpi_mem_unlock(sc);
1086
1087 return 0;
1088 }
1089
1090 /*
1091 * The firmware boot code is small and is intended to be copied directly into
1092 * the NIC internal memory.
1093 */
1094 int
1095 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1096 {
1097 int ntries;
1098
1099 size /= sizeof (uint32_t);
1100
1101 wpi_mem_lock(sc);
1102
1103 /* copy microcode image into NIC memory */
1104 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1105 (const uint32_t *)ucode, size);
1106
1107 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1108 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1109 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1110
1111 /* run microcode */
1112 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1113
1114 /* wait for transfer to complete */
1115 for (ntries = 0; ntries < 1000; ntries++) {
1116 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1117 break;
1118 DELAY(10);
1119 }
1120 if (ntries == 1000) {
1121 wpi_mem_unlock(sc);
1122 printf("%s: could not load boot firmware\n",
1123 sc->sc_dev.dv_xname);
1124 return ETIMEDOUT;
1125 }
1126 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1127
1128 wpi_mem_unlock(sc);
1129
1130 return 0;
1131 }
1132
1133 static int
1134 wpi_load_firmware(struct wpi_softc *sc)
1135 {
1136 struct wpi_dma_info *dma = &sc->fw_dma;
1137 struct wpi_firmware_hdr hdr;
1138 const uint8_t *init_text, *init_data, *main_text, *main_data;
1139 const uint8_t *boot_text;
1140 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1141 uint32_t boot_textsz;
1142 firmware_handle_t fw;
1143 u_char *dfw;
1144 size_t size;
1145 int error;
1146
1147 /* load firmware image from disk */
1148 if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1149 aprint_error("%s: could not read firmware file\n",
1150 sc->sc_dev.dv_xname);
1151 goto fail1;
1152 }
1153
1154 size = firmware_get_size(fw);
1155
1156 /* extract firmware header information */
1157 if (size < sizeof (struct wpi_firmware_hdr)) {
1158 aprint_error("%s: truncated firmware header: %zu bytes\n",
1159 sc->sc_dev.dv_xname, size);
1160 error = EINVAL;
1161 goto fail2;
1162 }
1163
1164 if ((error = firmware_read(fw, 0, &hdr,
1165 sizeof (struct wpi_firmware_hdr))) != 0) {
1166 aprint_error("%s: can't get firmware header\n",
1167 sc->sc_dev.dv_xname);
1168 goto fail2;
1169 }
1170
1171 main_textsz = le32toh(hdr.main_textsz);
1172 main_datasz = le32toh(hdr.main_datasz);
1173 init_textsz = le32toh(hdr.init_textsz);
1174 init_datasz = le32toh(hdr.init_datasz);
1175 boot_textsz = le32toh(hdr.boot_textsz);
1176
1177 /* sanity-check firmware segments sizes */
1178 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1179 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1180 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1181 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1182 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1183 (boot_textsz & 3) != 0) {
1184 printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname);
1185 error = EINVAL;
1186 goto fail2;
1187 }
1188
1189 /* check that all firmware segments are present */
1190 if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1191 main_datasz + init_textsz + init_datasz + boot_textsz) {
1192 aprint_error("%s: firmware file too short: %zu bytes\n",
1193 sc->sc_dev.dv_xname, size);
1194 error = EINVAL;
1195 goto fail2;
1196 }
1197
1198 dfw = firmware_malloc(size);
1199 if (dfw == NULL) {
1200 aprint_error("%s: not enough memory to stock firmware\n",
1201 sc->sc_dev.dv_xname);
1202 error = ENOMEM;
1203 goto fail2;
1204 }
1205
1206 if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1207 aprint_error("%s: can't get firmware\n",
1208 sc->sc_dev.dv_xname);
1209 goto fail2;
1210 }
1211
1212 /* get pointers to firmware segments */
1213 main_text = dfw + sizeof (struct wpi_firmware_hdr);
1214 main_data = main_text + main_textsz;
1215 init_text = main_data + main_datasz;
1216 init_data = init_text + init_textsz;
1217 boot_text = init_data + init_datasz;
1218
1219 /* copy initialization images into pre-allocated DMA-safe memory */
1220 memcpy(dma->vaddr, init_data, init_datasz);
1221 memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1222
1223 /* tell adapter where to find initialization images */
1224 wpi_mem_lock(sc);
1225 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1226 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1227 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1228 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1229 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1230 wpi_mem_unlock(sc);
1231
1232 /* load firmware boot code */
1233 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1234 printf("%s: could not load boot firmware\n",
1235 sc->sc_dev.dv_xname);
1236 goto fail3;
1237 }
1238
1239 /* now press "execute" ;-) */
1240 WPI_WRITE(sc, WPI_RESET, 0);
1241
1242 /* ..and wait at most one second for adapter to initialize */
1243 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1244 /* this isn't what was supposed to happen.. */
1245 aprint_error("%s: timeout waiting for adapter to initialize\n",
1246 sc->sc_dev.dv_xname);
1247 }
1248
1249 /* copy runtime images into pre-allocated DMA-safe memory */
1250 memcpy(dma->vaddr, main_data, main_datasz);
1251 memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1252
1253 /* tell adapter where to find runtime images */
1254 wpi_mem_lock(sc);
1255 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1256 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1257 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1258 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1259 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1260 wpi_mem_unlock(sc);
1261
1262 /* wait at most one second for second alive notification */
1263 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1264 /* this isn't what was supposed to happen.. */
1265 printf("%s: timeout waiting for adapter to initialize\n",
1266 sc->sc_dev.dv_xname);
1267 }
1268
1269
1270 fail3: firmware_free(dfw,size);
1271 fail2: firmware_close(fw);
1272 fail1: return error;
1273 }
1274
1275 static void
1276 wpi_calib_timeout(void *arg)
1277 {
1278 struct wpi_softc *sc = arg;
1279 struct ieee80211com *ic = &sc->sc_ic;
1280 int temp, s;
1281
1282 /* automatic rate control triggered every 500ms */
1283 if (ic->ic_fixed_rate == -1) {
1284 s = splnet();
1285 if (ic->ic_opmode == IEEE80211_M_STA)
1286 wpi_iter_func(sc, ic->ic_bss);
1287 else
1288 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1289 splx(s);
1290 }
1291
1292 /* update sensor data */
1293 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1294
1295 /* automatic power calibration every 60s */
1296 if (++sc->calib_cnt >= 120) {
1297 wpi_power_calibration(sc, temp);
1298 sc->calib_cnt = 0;
1299 }
1300
1301 callout_schedule(&sc->calib_to, hz/2);
1302 }
1303
1304 static void
1305 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1306 {
1307 struct wpi_softc *sc = arg;
1308 struct wpi_node *wn = (struct wpi_node *)ni;
1309
1310 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1311 }
1312
1313 /*
1314 * This function is called periodically (every 60 seconds) to adjust output
1315 * power to temperature changes.
1316 */
1317 void
1318 wpi_power_calibration(struct wpi_softc *sc, int temp)
1319 {
1320 /* sanity-check read value */
1321 if (temp < -260 || temp > 25) {
1322 /* this can't be correct, ignore */
1323 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1324 return;
1325 }
1326
1327 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1328
1329 /* adjust Tx power if need be */
1330 if (abs(temp - sc->temp) <= 6)
1331 return;
1332
1333 sc->temp = temp;
1334
1335 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1336 /* just warn, too bad for the automatic calibration... */
1337 aprint_error("%s: could not adjust Tx power\n",
1338 sc->sc_dev.dv_xname);
1339 }
1340 }
1341
1342 static void
1343 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1344 struct wpi_rx_data *data)
1345 {
1346 struct ieee80211com *ic = &sc->sc_ic;
1347 struct ifnet *ifp = ic->ic_ifp;
1348 struct wpi_rx_ring *ring = &sc->rxq;
1349 struct wpi_rx_stat *stat;
1350 struct wpi_rx_head *head;
1351 struct wpi_rx_tail *tail;
1352 struct wpi_rbuf *rbuf;
1353 struct ieee80211_frame *wh;
1354 struct ieee80211_node *ni;
1355 struct mbuf *m, *mnew;
1356 int data_off ;
1357
1358 stat = (struct wpi_rx_stat *)(desc + 1);
1359
1360 if (stat->len > WPI_STAT_MAXLEN) {
1361 aprint_error("%s: invalid rx statistic header\n",
1362 sc->sc_dev.dv_xname);
1363 ifp->if_ierrors++;
1364 return;
1365 }
1366
1367 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1368 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1369
1370 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1371 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1372 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1373 le64toh(tail->tstamp)));
1374
1375 /*
1376 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1377 * to radiotap in monitor mode).
1378 */
1379 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1380 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1381 ifp->if_ierrors++;
1382 return;
1383 }
1384
1385 /* Compute where are the useful datas */
1386 data_off = (char*)(head + 1) - mtod(data->m, char*);
1387
1388 /*
1389 * If the number of free entry is too low
1390 * just dup the data->m socket and reuse the same rbuf entry
1391 */
1392 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1393
1394 /* Prepare the mbuf for the m_dup */
1395 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1396 data->m->m_data = (char*) data->m->m_data + data_off;
1397
1398 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1399
1400 /* Restore the m_data pointer for future use */
1401 data->m->m_data = (char*) data->m->m_data - data_off;
1402
1403 if (m == NULL) {
1404 ifp->if_ierrors++;
1405 return;
1406 }
1407 } else {
1408
1409 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1410 if (mnew == NULL) {
1411 ifp->if_ierrors++;
1412 return;
1413 }
1414
1415 rbuf = wpi_alloc_rbuf(sc);
1416 KASSERT(rbuf != NULL);
1417
1418 /* attach Rx buffer to mbuf */
1419 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1420 rbuf);
1421 mnew->m_flags |= M_EXT_RW;
1422
1423 m = data->m;
1424 data->m = mnew;
1425
1426 /* update Rx descriptor */
1427 ring->desc[ring->cur] = htole32(rbuf->paddr);
1428
1429 m->m_data = (char*)m->m_data + data_off;
1430 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1431 }
1432
1433 /* finalize mbuf */
1434 m->m_pkthdr.rcvif = ifp;
1435
1436 if (ic->ic_state == IEEE80211_S_SCAN)
1437 wpi_fix_channel(ic, m);
1438
1439 #if NBPFILTER > 0
1440 if (sc->sc_drvbpf != NULL) {
1441 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1442
1443 tap->wr_flags = 0;
1444 tap->wr_chan_freq =
1445 htole16(ic->ic_channels[head->chan].ic_freq);
1446 tap->wr_chan_flags =
1447 htole16(ic->ic_channels[head->chan].ic_flags);
1448 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1449 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1450 tap->wr_tsft = tail->tstamp;
1451 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1452 switch (head->rate) {
1453 /* CCK rates */
1454 case 10: tap->wr_rate = 2; break;
1455 case 20: tap->wr_rate = 4; break;
1456 case 55: tap->wr_rate = 11; break;
1457 case 110: tap->wr_rate = 22; break;
1458 /* OFDM rates */
1459 case 0xd: tap->wr_rate = 12; break;
1460 case 0xf: tap->wr_rate = 18; break;
1461 case 0x5: tap->wr_rate = 24; break;
1462 case 0x7: tap->wr_rate = 36; break;
1463 case 0x9: tap->wr_rate = 48; break;
1464 case 0xb: tap->wr_rate = 72; break;
1465 case 0x1: tap->wr_rate = 96; break;
1466 case 0x3: tap->wr_rate = 108; break;
1467 /* unknown rate: should not happen */
1468 default: tap->wr_rate = 0;
1469 }
1470 if (le16toh(head->flags) & 0x4)
1471 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1472
1473 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1474 }
1475 #endif
1476
1477 /* grab a reference to the source node */
1478 wh = mtod(m, struct ieee80211_frame *);
1479 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1480
1481 /* send the frame to the 802.11 layer */
1482 ieee80211_input(ic, m, ni, stat->rssi, 0);
1483
1484 /* release node reference */
1485 ieee80211_free_node(ni);
1486 }
1487
1488 static void
1489 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1490 {
1491 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1492 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1493 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1494 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1495 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1496
1497 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1498 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1499 stat->nkill, stat->rate, le32toh(stat->duration),
1500 le32toh(stat->status)));
1501
1502 /*
1503 * Update rate control statistics for the node.
1504 * XXX we should not count mgmt frames since they're always sent at
1505 * the lowest available bit-rate.
1506 */
1507 wn->amn.amn_txcnt++;
1508 if (stat->ntries > 0) {
1509 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1510 wn->amn.amn_retrycnt++;
1511 }
1512
1513 if ((le32toh(stat->status) & 0xff) != 1)
1514 ifp->if_oerrors++;
1515 else
1516 ifp->if_opackets++;
1517
1518 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1519 m_freem(txdata->m);
1520 txdata->m = NULL;
1521 ieee80211_free_node(txdata->ni);
1522 txdata->ni = NULL;
1523
1524 ring->queued--;
1525
1526 sc->sc_tx_timer = 0;
1527 ifp->if_flags &= ~IFF_OACTIVE;
1528 wpi_start(ifp);
1529 }
1530
1531 static void
1532 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1533 {
1534 struct wpi_tx_ring *ring = &sc->cmdq;
1535 struct wpi_tx_data *data;
1536
1537 if ((desc->qid & 7) != 4)
1538 return; /* not a command ack */
1539
1540 data = &ring->data[desc->idx];
1541
1542 /* if the command was mapped in a mbuf, free it */
1543 if (data->m != NULL) {
1544 bus_dmamap_unload(sc->sc_dmat, data->map);
1545 m_freem(data->m);
1546 data->m = NULL;
1547 }
1548
1549 wakeup(&ring->cmd[desc->idx]);
1550 }
1551
1552 static void
1553 wpi_notif_intr(struct wpi_softc *sc)
1554 {
1555 struct ieee80211com *ic = &sc->sc_ic;
1556 struct ifnet *ifp = ic->ic_ifp;
1557 struct wpi_rx_desc *desc;
1558 struct wpi_rx_data *data;
1559 uint32_t hw;
1560
1561 hw = le32toh(sc->shared->next);
1562 while (sc->rxq.cur != hw) {
1563 data = &sc->rxq.data[sc->rxq.cur];
1564
1565 desc = mtod(data->m, struct wpi_rx_desc *);
1566
1567 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1568 "len=%d\n", desc->qid, desc->idx, desc->flags,
1569 desc->type, le32toh(desc->len)));
1570
1571 if (!(desc->qid & 0x80)) /* reply to a command */
1572 wpi_cmd_intr(sc, desc);
1573
1574 switch (desc->type) {
1575 case WPI_RX_DONE:
1576 /* a 802.11 frame was received */
1577 wpi_rx_intr(sc, desc, data);
1578 break;
1579
1580 case WPI_TX_DONE:
1581 /* a 802.11 frame has been transmitted */
1582 wpi_tx_intr(sc, desc);
1583 break;
1584
1585 case WPI_UC_READY:
1586 {
1587 struct wpi_ucode_info *uc =
1588 (struct wpi_ucode_info *)(desc + 1);
1589
1590 /* the microcontroller is ready */
1591 DPRINTF(("microcode alive notification version %x "
1592 "alive %x\n", le32toh(uc->version),
1593 le32toh(uc->valid)));
1594
1595 if (le32toh(uc->valid) != 1) {
1596 aprint_error("%s: microcontroller "
1597 "initialization failed\n",
1598 sc->sc_dev.dv_xname);
1599 }
1600 break;
1601 }
1602 case WPI_STATE_CHANGED:
1603 {
1604 uint32_t *status = (uint32_t *)(desc + 1);
1605
1606 /* enabled/disabled notification */
1607 DPRINTF(("state changed to %x\n", le32toh(*status)));
1608
1609 if (le32toh(*status) & 1) {
1610 /* the radio button has to be pushed */
1611 aprint_error("%s: Radio transmitter is off\n",
1612 sc->sc_dev.dv_xname);
1613 /* turn the interface down */
1614 ifp->if_flags &= ~IFF_UP;
1615 wpi_stop(ifp, 1);
1616 return; /* no further processing */
1617 }
1618 break;
1619 }
1620 case WPI_START_SCAN:
1621 {
1622 struct wpi_start_scan *scan =
1623 (struct wpi_start_scan *)(desc + 1);
1624
1625 DPRINTFN(2, ("scanning channel %d status %x\n",
1626 scan->chan, le32toh(scan->status)));
1627
1628 /* fix current channel */
1629 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1630 break;
1631 }
1632 case WPI_STOP_SCAN:
1633 {
1634 struct wpi_stop_scan *scan =
1635 (struct wpi_stop_scan *)(desc + 1);
1636
1637 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1638 scan->nchan, scan->status, scan->chan));
1639
1640 if (scan->status == 1 && scan->chan <= 14) {
1641 /*
1642 * We just finished scanning 802.11g channels,
1643 * start scanning 802.11a ones.
1644 */
1645 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1646 break;
1647 }
1648 sc->is_scanning = false;
1649 ieee80211_end_scan(ic);
1650 break;
1651 }
1652 }
1653
1654 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1655 }
1656
1657 /* tell the firmware what we have processed */
1658 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1659 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1660 }
1661
1662 static int
1663 wpi_intr(void *arg)
1664 {
1665 struct wpi_softc *sc = arg;
1666 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1667 uint32_t r;
1668
1669 r = WPI_READ(sc, WPI_INTR);
1670 if (r == 0 || r == 0xffffffff)
1671 return 0; /* not for us */
1672
1673 DPRINTFN(5, ("interrupt reg %x\n", r));
1674
1675 /* disable interrupts */
1676 WPI_WRITE(sc, WPI_MASK, 0);
1677 /* ack interrupts */
1678 WPI_WRITE(sc, WPI_INTR, r);
1679
1680 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1681 aprint_error("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
1682 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1683 wpi_stop(sc->sc_ic.ic_ifp, 1);
1684 return 1;
1685 }
1686
1687 if (r & WPI_RX_INTR)
1688 wpi_notif_intr(sc);
1689
1690 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1691 wakeup(sc);
1692
1693 /* re-enable interrupts */
1694 if (ifp->if_flags & IFF_UP)
1695 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1696
1697 return 1;
1698 }
1699
1700 static uint8_t
1701 wpi_plcp_signal(int rate)
1702 {
1703 switch (rate) {
1704 /* CCK rates (returned values are device-dependent) */
1705 case 2: return 10;
1706 case 4: return 20;
1707 case 11: return 55;
1708 case 22: return 110;
1709
1710 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1711 /* R1-R4, (u)ral is R4-R1 */
1712 case 12: return 0xd;
1713 case 18: return 0xf;
1714 case 24: return 0x5;
1715 case 36: return 0x7;
1716 case 48: return 0x9;
1717 case 72: return 0xb;
1718 case 96: return 0x1;
1719 case 108: return 0x3;
1720
1721 /* unsupported rates (should not get there) */
1722 default: return 0;
1723 }
1724 }
1725
1726 /* quickly determine if a given rate is CCK or OFDM */
1727 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1728
1729 static int
1730 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1731 int ac)
1732 {
1733 struct ieee80211com *ic = &sc->sc_ic;
1734 struct wpi_tx_ring *ring = &sc->txq[ac];
1735 struct wpi_tx_desc *desc;
1736 struct wpi_tx_data *data;
1737 struct wpi_tx_cmd *cmd;
1738 struct wpi_cmd_data *tx;
1739 struct ieee80211_frame *wh;
1740 struct ieee80211_key *k;
1741 const struct chanAccParams *cap;
1742 struct mbuf *mnew;
1743 int i, error, rate, hdrlen, noack = 0;
1744
1745 desc = &ring->desc[ring->cur];
1746 data = &ring->data[ring->cur];
1747
1748 wh = mtod(m0, struct ieee80211_frame *);
1749
1750 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1751 cap = &ic->ic_wme.wme_chanParams;
1752 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1753 }
1754
1755 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1756 k = ieee80211_crypto_encap(ic, ni, m0);
1757 if (k == NULL) {
1758 m_freem(m0);
1759 return ENOBUFS;
1760 }
1761
1762 /* packet header may have moved, reset our local pointer */
1763 wh = mtod(m0, struct ieee80211_frame *);
1764 }
1765
1766 hdrlen = ieee80211_anyhdrsize(wh);
1767
1768 /* pickup a rate */
1769 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1770 IEEE80211_FC0_TYPE_MGT) {
1771 /* mgmt frames are sent at the lowest available bit-rate */
1772 rate = ni->ni_rates.rs_rates[0];
1773 } else {
1774 if (ic->ic_fixed_rate != -1) {
1775 rate = ic->ic_sup_rates[ic->ic_curmode].
1776 rs_rates[ic->ic_fixed_rate];
1777 } else
1778 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1779 }
1780 rate &= IEEE80211_RATE_VAL;
1781
1782
1783 #if NBPFILTER > 0
1784 if (sc->sc_drvbpf != NULL) {
1785 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1786
1787 tap->wt_flags = 0;
1788 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1789 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1790 tap->wt_rate = rate;
1791 tap->wt_hwqueue = ac;
1792 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1793 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1794
1795 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1796 }
1797 #endif
1798
1799 cmd = &ring->cmd[ring->cur];
1800 cmd->code = WPI_CMD_TX_DATA;
1801 cmd->flags = 0;
1802 cmd->qid = ring->qid;
1803 cmd->idx = ring->cur;
1804
1805 tx = (struct wpi_cmd_data *)cmd->data;
1806 tx->flags = 0;
1807
1808 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1809 tx->flags |= htole32(WPI_TX_NEED_ACK);
1810 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1811 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1812
1813 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1814
1815 /* retrieve destination node's id */
1816 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1817 WPI_ID_BSS;
1818
1819 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1820 IEEE80211_FC0_TYPE_MGT) {
1821 /* tell h/w to set timestamp in probe responses */
1822 if ((wh->i_fc[0] &
1823 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1824 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1825 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1826
1827 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1828 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1829 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1830 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1831 tx->timeout = htole16(3);
1832 else
1833 tx->timeout = htole16(2);
1834 } else
1835 tx->timeout = htole16(0);
1836
1837 tx->rate = wpi_plcp_signal(rate);
1838
1839 /* be very persistant at sending frames out */
1840 tx->rts_ntries = 7;
1841 tx->data_ntries = 15;
1842
1843 tx->ofdm_mask = 0xff;
1844 tx->cck_mask = 0xf;
1845 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1846
1847 tx->len = htole16(m0->m_pkthdr.len);
1848
1849 /* save and trim IEEE802.11 header */
1850 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1851 m_adj(m0, hdrlen);
1852
1853 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1854 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1855 if (error != 0 && error != EFBIG) {
1856 aprint_error("%s: could not map mbuf (error %d)\n",
1857 sc->sc_dev.dv_xname, error);
1858 m_freem(m0);
1859 return error;
1860 }
1861 if (error != 0) {
1862 /* too many fragments, linearize */
1863 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1864 if (mnew == NULL) {
1865 m_freem(m0);
1866 return ENOMEM;
1867 }
1868
1869 M_COPY_PKTHDR(mnew, m0);
1870 if (m0->m_pkthdr.len > MHLEN) {
1871 MCLGET(mnew, M_DONTWAIT);
1872 if (!(mnew->m_flags & M_EXT)) {
1873 m_freem(m0);
1874 m_freem(mnew);
1875 return ENOMEM;
1876 }
1877 }
1878
1879 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1880 m_freem(m0);
1881 mnew->m_len = mnew->m_pkthdr.len;
1882 m0 = mnew;
1883
1884 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1885 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1886 if (error != 0) {
1887 aprint_error("%s: could not map mbuf (error %d)\n",
1888 sc->sc_dev.dv_xname, error);
1889 m_freem(m0);
1890 return error;
1891 }
1892 }
1893
1894 data->m = m0;
1895 data->ni = ni;
1896
1897 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1898 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1899
1900 /* first scatter/gather segment is used by the tx data command */
1901 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1902 (1 + data->map->dm_nsegs) << 24);
1903 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1904 ring->cur * sizeof (struct wpi_tx_cmd));
1905 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1906 ((hdrlen + 3) & ~3));
1907
1908 for (i = 1; i <= data->map->dm_nsegs; i++) {
1909 desc->segs[i].addr =
1910 htole32(data->map->dm_segs[i - 1].ds_addr);
1911 desc->segs[i].len =
1912 htole32(data->map->dm_segs[i - 1].ds_len);
1913 }
1914
1915 ring->queued++;
1916
1917 /* kick ring */
1918 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1919 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1920
1921 return 0;
1922 }
1923
1924 static void
1925 wpi_start(struct ifnet *ifp)
1926 {
1927 struct wpi_softc *sc = ifp->if_softc;
1928 struct ieee80211com *ic = &sc->sc_ic;
1929 struct ieee80211_node *ni;
1930 struct ether_header *eh;
1931 struct mbuf *m0;
1932 int ac;
1933
1934 /*
1935 * net80211 may still try to send management frames even if the
1936 * IFF_RUNNING flag is not set...
1937 */
1938 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1939 return;
1940
1941 for (;;) {
1942 IF_DEQUEUE(&ic->ic_mgtq, m0);
1943 if (m0 != NULL) {
1944
1945 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1946 m0->m_pkthdr.rcvif = NULL;
1947
1948 /* management frames go into ring 0 */
1949 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1950 ifp->if_oerrors++;
1951 continue;
1952 }
1953 #if NBPFILTER > 0
1954 if (ic->ic_rawbpf != NULL)
1955 bpf_mtap(ic->ic_rawbpf, m0);
1956 #endif
1957 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1958 ifp->if_oerrors++;
1959 break;
1960 }
1961 } else {
1962 if (ic->ic_state != IEEE80211_S_RUN)
1963 break;
1964 IFQ_POLL(&ifp->if_snd, m0);
1965 if (m0 == NULL)
1966 break;
1967
1968 if (m0->m_len < sizeof (*eh) &&
1969 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1970 ifp->if_oerrors++;
1971 continue;
1972 }
1973 eh = mtod(m0, struct ether_header *);
1974 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1975 if (ni == NULL) {
1976 m_freem(m0);
1977 ifp->if_oerrors++;
1978 continue;
1979 }
1980
1981 /* classify mbuf so we can find which tx ring to use */
1982 if (ieee80211_classify(ic, m0, ni) != 0) {
1983 m_freem(m0);
1984 ieee80211_free_node(ni);
1985 ifp->if_oerrors++;
1986 continue;
1987 }
1988
1989 /* no QoS encapsulation for EAPOL frames */
1990 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1991 M_WME_GETAC(m0) : WME_AC_BE;
1992
1993 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1994 /* there is no place left in this ring */
1995 ifp->if_flags |= IFF_OACTIVE;
1996 break;
1997 }
1998 IFQ_DEQUEUE(&ifp->if_snd, m0);
1999 #if NBPFILTER > 0
2000 if (ifp->if_bpf != NULL)
2001 bpf_mtap(ifp->if_bpf, m0);
2002 #endif
2003 m0 = ieee80211_encap(ic, m0, ni);
2004 if (m0 == NULL) {
2005 ieee80211_free_node(ni);
2006 ifp->if_oerrors++;
2007 continue;
2008 }
2009 #if NBPFILTER > 0
2010 if (ic->ic_rawbpf != NULL)
2011 bpf_mtap(ic->ic_rawbpf, m0);
2012 #endif
2013 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2014 ieee80211_free_node(ni);
2015 ifp->if_oerrors++;
2016 break;
2017 }
2018 }
2019
2020 sc->sc_tx_timer = 5;
2021 ifp->if_timer = 1;
2022 }
2023 }
2024
2025 static void
2026 wpi_watchdog(struct ifnet *ifp)
2027 {
2028 struct wpi_softc *sc = ifp->if_softc;
2029
2030 ifp->if_timer = 0;
2031
2032 if (sc->sc_tx_timer > 0) {
2033 if (--sc->sc_tx_timer == 0) {
2034 aprint_error("%s: device timeout\n",
2035 sc->sc_dev.dv_xname);
2036 ifp->if_oerrors++;
2037 ifp->if_flags &= ~IFF_UP;
2038 wpi_stop(ifp, 1);
2039 return;
2040 }
2041 ifp->if_timer = 1;
2042 }
2043
2044 ieee80211_watchdog(&sc->sc_ic);
2045 }
2046
2047 static int
2048 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2049 {
2050 #define IS_RUNNING(ifp) \
2051 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2052
2053 struct wpi_softc *sc = ifp->if_softc;
2054 struct ieee80211com *ic = &sc->sc_ic;
2055 int s, error = 0;
2056
2057 s = splnet();
2058
2059 switch (cmd) {
2060 case SIOCSIFFLAGS:
2061 if (ifp->if_flags & IFF_UP) {
2062 if (!(ifp->if_flags & IFF_RUNNING))
2063 wpi_init(ifp);
2064 } else {
2065 if (ifp->if_flags & IFF_RUNNING)
2066 wpi_stop(ifp, 1);
2067 }
2068 break;
2069
2070 case SIOCADDMULTI:
2071 case SIOCDELMULTI:
2072 /* XXX no h/w multicast filter? --dyoung */
2073 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2074 /* setup multicast filter, etc */
2075 error = 0;
2076 }
2077 break;
2078
2079 default:
2080 error = ieee80211_ioctl(ic, cmd, data);
2081 }
2082
2083 if (error == ENETRESET) {
2084 if (IS_RUNNING(ifp) &&
2085 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2086 wpi_init(ifp);
2087 error = 0;
2088 }
2089
2090 splx(s);
2091 return error;
2092
2093 #undef IS_RUNNING
2094 }
2095
2096 /*
2097 * Extract various information from EEPROM.
2098 */
2099 static void
2100 wpi_read_eeprom(struct wpi_softc *sc)
2101 {
2102 struct ieee80211com *ic = &sc->sc_ic;
2103 char domain[4];
2104 int i;
2105
2106 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2107 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2108 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2109
2110 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2111 sc->type));
2112
2113 /* read and print regulatory domain */
2114 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2115 aprint_normal(", %.4s", domain);
2116
2117 /* read and print MAC address */
2118 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2119 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2120
2121 /* read the list of authorized channels */
2122 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2123 wpi_read_eeprom_channels(sc, i);
2124
2125 /* read the list of power groups */
2126 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2127 wpi_read_eeprom_group(sc, i);
2128 }
2129
2130 static void
2131 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2132 {
2133 struct ieee80211com *ic = &sc->sc_ic;
2134 const struct wpi_chan_band *band = &wpi_bands[n];
2135 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2136 int chan, i;
2137
2138 wpi_read_prom_data(sc, band->addr, channels,
2139 band->nchan * sizeof (struct wpi_eeprom_chan));
2140
2141 for (i = 0; i < band->nchan; i++) {
2142 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2143 continue;
2144
2145 chan = band->chan[i];
2146
2147 if (n == 0) { /* 2GHz band */
2148 ic->ic_channels[chan].ic_freq =
2149 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2150 ic->ic_channels[chan].ic_flags =
2151 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2152 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2153
2154 } else { /* 5GHz band */
2155 /*
2156 * Some 3945abg adapters support channels 7, 8, 11
2157 * and 12 in the 2GHz *and* 5GHz bands.
2158 * Because of limitations in our net80211(9) stack,
2159 * we can't support these channels in 5GHz band.
2160 */
2161 if (chan <= 14)
2162 continue;
2163
2164 ic->ic_channels[chan].ic_freq =
2165 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2166 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2167 }
2168
2169 /* is active scan allowed on this channel? */
2170 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2171 ic->ic_channels[chan].ic_flags |=
2172 IEEE80211_CHAN_PASSIVE;
2173 }
2174
2175 /* save maximum allowed power for this channel */
2176 sc->maxpwr[chan] = channels[i].maxpwr;
2177
2178 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2179 chan, channels[i].flags, sc->maxpwr[chan]));
2180 }
2181 }
2182
2183 static void
2184 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2185 {
2186 struct wpi_power_group *group = &sc->groups[n];
2187 struct wpi_eeprom_group rgroup;
2188 int i;
2189
2190 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2191 sizeof rgroup);
2192
2193 /* save power group information */
2194 group->chan = rgroup.chan;
2195 group->maxpwr = rgroup.maxpwr;
2196 /* temperature at which the samples were taken */
2197 group->temp = (int16_t)le16toh(rgroup.temp);
2198
2199 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2200 group->chan, group->maxpwr, group->temp));
2201
2202 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2203 group->samples[i].index = rgroup.samples[i].index;
2204 group->samples[i].power = rgroup.samples[i].power;
2205
2206 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2207 group->samples[i].index, group->samples[i].power));
2208 }
2209 }
2210
2211 /*
2212 * Send a command to the firmware.
2213 */
2214 static int
2215 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2216 {
2217 struct wpi_tx_ring *ring = &sc->cmdq;
2218 struct wpi_tx_desc *desc;
2219 struct wpi_tx_cmd *cmd;
2220
2221 KASSERT(size <= sizeof cmd->data);
2222
2223 desc = &ring->desc[ring->cur];
2224 cmd = &ring->cmd[ring->cur];
2225
2226 cmd->code = code;
2227 cmd->flags = 0;
2228 cmd->qid = ring->qid;
2229 cmd->idx = ring->cur;
2230 memcpy(cmd->data, buf, size);
2231
2232 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2233 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2234 ring->cur * sizeof (struct wpi_tx_cmd));
2235 desc->segs[0].len = htole32(4 + size);
2236
2237 /* kick cmd ring */
2238 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2239 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2240
2241 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2242 }
2243
2244 static int
2245 wpi_wme_update(struct ieee80211com *ic)
2246 {
2247 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2248 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2249 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2250 const struct wmeParams *wmep;
2251 struct wpi_wme_setup wme;
2252 int ac;
2253
2254 /* don't override default WME values if WME is not actually enabled */
2255 if (!(ic->ic_flags & IEEE80211_F_WME))
2256 return 0;
2257
2258 wme.flags = 0;
2259 for (ac = 0; ac < WME_NUM_AC; ac++) {
2260 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2261 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2262 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2263 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2264 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2265
2266 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2267 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2268 wme.ac[ac].cwmax, wme.ac[ac].txop));
2269 }
2270
2271 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2272 #undef WPI_USEC
2273 #undef WPI_EXP2
2274 }
2275
2276 /*
2277 * Configure h/w multi-rate retries.
2278 */
2279 static int
2280 wpi_mrr_setup(struct wpi_softc *sc)
2281 {
2282 struct ieee80211com *ic = &sc->sc_ic;
2283 struct wpi_mrr_setup mrr;
2284 int i, error;
2285
2286 /* CCK rates (not used with 802.11a) */
2287 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2288 mrr.rates[i].flags = 0;
2289 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2290 /* fallback to the immediate lower CCK rate (if any) */
2291 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2292 /* try one time at this rate before falling back to "next" */
2293 mrr.rates[i].ntries = 1;
2294 }
2295
2296 /* OFDM rates (not used with 802.11b) */
2297 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2298 mrr.rates[i].flags = 0;
2299 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2300 /* fallback to the immediate lower rate (if any) */
2301 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2302 mrr.rates[i].next = (i == WPI_OFDM6) ?
2303 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2304 WPI_OFDM6 : WPI_CCK2) :
2305 i - 1;
2306 /* try one time at this rate before falling back to "next" */
2307 mrr.rates[i].ntries = 1;
2308 }
2309
2310 /* setup MRR for control frames */
2311 mrr.which = htole32(WPI_MRR_CTL);
2312 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2313 if (error != 0) {
2314 aprint_error("%s: could not setup MRR for control frames\n",
2315 sc->sc_dev.dv_xname);
2316 return error;
2317 }
2318
2319 /* setup MRR for data frames */
2320 mrr.which = htole32(WPI_MRR_DATA);
2321 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2322 if (error != 0) {
2323 aprint_error("%s: could not setup MRR for data frames\n",
2324 sc->sc_dev.dv_xname);
2325 return error;
2326 }
2327
2328 return 0;
2329 }
2330
2331 static void
2332 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2333 {
2334 struct wpi_cmd_led led;
2335
2336 led.which = which;
2337 led.unit = htole32(100000); /* on/off in unit of 100ms */
2338 led.off = off;
2339 led.on = on;
2340
2341 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2342 }
2343
2344 static void
2345 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2346 {
2347 struct wpi_cmd_tsf tsf;
2348 uint64_t val, mod;
2349
2350 memset(&tsf, 0, sizeof tsf);
2351 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2352 tsf.bintval = htole16(ni->ni_intval);
2353 tsf.lintval = htole16(10);
2354
2355 /* compute remaining time until next beacon */
2356 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2357 mod = le64toh(tsf.tstamp) % val;
2358 tsf.binitval = htole32((uint32_t)(val - mod));
2359
2360 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2361 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2362
2363 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2364 aprint_error("%s: could not enable TSF\n", sc->sc_dev.dv_xname);
2365 }
2366
2367 /*
2368 * Update Tx power to match what is defined for channel `c'.
2369 */
2370 static int
2371 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2372 {
2373 struct ieee80211com *ic = &sc->sc_ic;
2374 struct wpi_power_group *group;
2375 struct wpi_cmd_txpower txpower;
2376 u_int chan;
2377 int i;
2378
2379 /* get channel number */
2380 chan = ieee80211_chan2ieee(ic, c);
2381
2382 /* find the power group to which this channel belongs */
2383 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2384 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2385 if (chan <= group->chan)
2386 break;
2387 } else
2388 group = &sc->groups[0];
2389
2390 memset(&txpower, 0, sizeof txpower);
2391 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2392 txpower.chan = htole16(chan);
2393
2394 /* set Tx power for all OFDM and CCK rates */
2395 for (i = 0; i <= 11 ; i++) {
2396 /* retrieve Tx power for this channel/rate combination */
2397 int idx = wpi_get_power_index(sc, group, c,
2398 wpi_ridx_to_rate[i]);
2399
2400 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2401
2402 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2403 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2404 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2405 } else {
2406 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2407 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2408 }
2409 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2410 wpi_ridx_to_rate[i], idx));
2411 }
2412
2413 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2414 }
2415
2416 /*
2417 * Determine Tx power index for a given channel/rate combination.
2418 * This takes into account the regulatory information from EEPROM and the
2419 * current temperature.
2420 */
2421 static int
2422 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2423 struct ieee80211_channel *c, int rate)
2424 {
2425 /* fixed-point arithmetic division using a n-bit fractional part */
2426 #define fdivround(a, b, n) \
2427 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2428
2429 /* linear interpolation */
2430 #define interpolate(x, x1, y1, x2, y2, n) \
2431 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2432
2433 struct ieee80211com *ic = &sc->sc_ic;
2434 struct wpi_power_sample *sample;
2435 int pwr, idx;
2436 u_int chan;
2437
2438 /* get channel number */
2439 chan = ieee80211_chan2ieee(ic, c);
2440
2441 /* default power is group's maximum power - 3dB */
2442 pwr = group->maxpwr / 2;
2443
2444 /* decrease power for highest OFDM rates to reduce distortion */
2445 switch (rate) {
2446 case 72: /* 36Mb/s */
2447 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2448 break;
2449 case 96: /* 48Mb/s */
2450 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2451 break;
2452 case 108: /* 54Mb/s */
2453 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2454 break;
2455 }
2456
2457 /* never exceed channel's maximum allowed Tx power */
2458 pwr = min(pwr, sc->maxpwr[chan]);
2459
2460 /* retrieve power index into gain tables from samples */
2461 for (sample = group->samples; sample < &group->samples[3]; sample++)
2462 if (pwr > sample[1].power)
2463 break;
2464 /* fixed-point linear interpolation using a 19-bit fractional part */
2465 idx = interpolate(pwr, sample[0].power, sample[0].index,
2466 sample[1].power, sample[1].index, 19);
2467
2468 /*
2469 * Adjust power index based on current temperature:
2470 * - if cooler than factory-calibrated: decrease output power
2471 * - if warmer than factory-calibrated: increase output power
2472 */
2473 idx -= (sc->temp - group->temp) * 11 / 100;
2474
2475 /* decrease power for CCK rates (-5dB) */
2476 if (!WPI_RATE_IS_OFDM(rate))
2477 idx += 10;
2478
2479 /* keep power index in a valid range */
2480 if (idx < 0)
2481 return 0;
2482 if (idx > WPI_MAX_PWR_INDEX)
2483 return WPI_MAX_PWR_INDEX;
2484 return idx;
2485
2486 #undef interpolate
2487 #undef fdivround
2488 }
2489
2490 /*
2491 * Build a beacon frame that the firmware will broadcast periodically in
2492 * IBSS or HostAP modes.
2493 */
2494 static int
2495 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2496 {
2497 struct ieee80211com *ic = &sc->sc_ic;
2498 struct wpi_tx_ring *ring = &sc->cmdq;
2499 struct wpi_tx_desc *desc;
2500 struct wpi_tx_data *data;
2501 struct wpi_tx_cmd *cmd;
2502 struct wpi_cmd_beacon *bcn;
2503 struct ieee80211_beacon_offsets bo;
2504 struct mbuf *m0;
2505 int error;
2506
2507 desc = &ring->desc[ring->cur];
2508 data = &ring->data[ring->cur];
2509
2510 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2511 if (m0 == NULL) {
2512 aprint_error("%s: could not allocate beacon frame\n",
2513 sc->sc_dev.dv_xname);
2514 return ENOMEM;
2515 }
2516
2517 cmd = &ring->cmd[ring->cur];
2518 cmd->code = WPI_CMD_SET_BEACON;
2519 cmd->flags = 0;
2520 cmd->qid = ring->qid;
2521 cmd->idx = ring->cur;
2522
2523 bcn = (struct wpi_cmd_beacon *)cmd->data;
2524 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2525 bcn->id = WPI_ID_BROADCAST;
2526 bcn->ofdm_mask = 0xff;
2527 bcn->cck_mask = 0x0f;
2528 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2529 bcn->len = htole16(m0->m_pkthdr.len);
2530 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2531 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2532 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2533
2534 /* save and trim IEEE802.11 header */
2535 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2536 m_adj(m0, sizeof (struct ieee80211_frame));
2537
2538 /* assume beacon frame is contiguous */
2539 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2540 BUS_DMA_READ | BUS_DMA_NOWAIT);
2541 if (error) {
2542 aprint_error("%s: could not map beacon\n", sc->sc_dev.dv_xname);
2543 m_freem(m0);
2544 return error;
2545 }
2546
2547 data->m = m0;
2548
2549 /* first scatter/gather segment is used by the beacon command */
2550 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2551 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2552 ring->cur * sizeof (struct wpi_tx_cmd));
2553 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2554 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2555 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2556
2557 /* kick cmd ring */
2558 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2559 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2560
2561 return 0;
2562 }
2563
2564 static int
2565 wpi_auth(struct wpi_softc *sc)
2566 {
2567 struct ieee80211com *ic = &sc->sc_ic;
2568 struct ieee80211_node *ni = ic->ic_bss;
2569 struct wpi_node_info node;
2570 int error;
2571
2572 /* update adapter's configuration */
2573 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2574 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2575 sc->config.flags = htole32(WPI_CONFIG_TSF);
2576 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2577 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2578 WPI_CONFIG_24GHZ);
2579 }
2580 switch (ic->ic_curmode) {
2581 case IEEE80211_MODE_11A:
2582 sc->config.cck_mask = 0;
2583 sc->config.ofdm_mask = 0x15;
2584 break;
2585 case IEEE80211_MODE_11B:
2586 sc->config.cck_mask = 0x03;
2587 sc->config.ofdm_mask = 0;
2588 break;
2589 default: /* assume 802.11b/g */
2590 sc->config.cck_mask = 0x0f;
2591 sc->config.ofdm_mask = 0x15;
2592 }
2593
2594 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2595 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2596 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2597 sizeof (struct wpi_config), 1);
2598 if (error != 0) {
2599 aprint_error("%s: could not configure\n", sc->sc_dev.dv_xname);
2600 return error;
2601 }
2602
2603 /* configuration has changed, set Tx power accordingly */
2604 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2605 aprint_error("%s: could not set Tx power\n", sc->sc_dev.dv_xname);
2606 return error;
2607 }
2608
2609 /* add default node */
2610 memset(&node, 0, sizeof node);
2611 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2612 node.id = WPI_ID_BSS;
2613 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2614 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2615 node.action = htole32(WPI_ACTION_SET_RATE);
2616 node.antenna = WPI_ANTENNA_BOTH;
2617 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2618 if (error != 0) {
2619 aprint_error("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
2620 return error;
2621 }
2622
2623 return 0;
2624 }
2625
2626 /*
2627 * Send a scan request to the firmware. Since this command is huge, we map it
2628 * into a mbuf instead of using the pre-allocated set of commands.
2629 */
2630 static int
2631 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2632 {
2633 struct ieee80211com *ic = &sc->sc_ic;
2634 struct wpi_tx_ring *ring = &sc->cmdq;
2635 struct wpi_tx_desc *desc;
2636 struct wpi_tx_data *data;
2637 struct wpi_tx_cmd *cmd;
2638 struct wpi_scan_hdr *hdr;
2639 struct wpi_scan_chan *chan;
2640 struct ieee80211_frame *wh;
2641 struct ieee80211_rateset *rs;
2642 struct ieee80211_channel *c;
2643 enum ieee80211_phymode mode;
2644 uint8_t *frm;
2645 int nrates, pktlen, error;
2646
2647 desc = &ring->desc[ring->cur];
2648 data = &ring->data[ring->cur];
2649
2650 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2651 if (data->m == NULL) {
2652 aprint_error("%s: could not allocate mbuf for scan command\n",
2653 sc->sc_dev.dv_xname);
2654 return ENOMEM;
2655 }
2656
2657 MCLGET(data->m, M_DONTWAIT);
2658 if (!(data->m->m_flags & M_EXT)) {
2659 m_freem(data->m);
2660 data->m = NULL;
2661 aprint_error("%s: could not allocate mbuf for scan command\n",
2662 sc->sc_dev.dv_xname);
2663 return ENOMEM;
2664 }
2665
2666 cmd = mtod(data->m, struct wpi_tx_cmd *);
2667 cmd->code = WPI_CMD_SCAN;
2668 cmd->flags = 0;
2669 cmd->qid = ring->qid;
2670 cmd->idx = ring->cur;
2671
2672 hdr = (struct wpi_scan_hdr *)cmd->data;
2673 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2674 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2675 hdr->id = WPI_ID_BROADCAST;
2676 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2677
2678 /*
2679 * Move to the next channel if no packets are received within 5 msecs
2680 * after sending the probe request (this helps to reduce the duration
2681 * of active scans).
2682 */
2683 hdr->quiet = htole16(5); /* timeout in milliseconds */
2684 hdr->plcp_threshold = htole16(1); /* min # of packets */
2685
2686 if (flags & IEEE80211_CHAN_A) {
2687 hdr->crc_threshold = htole16(1);
2688 /* send probe requests at 6Mbps */
2689 hdr->rate = wpi_plcp_signal(12);
2690 } else {
2691 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2692 /* send probe requests at 1Mbps */
2693 hdr->rate = wpi_plcp_signal(2);
2694 }
2695
2696 /* for directed scans, firmware inserts the essid IE itself */
2697 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2698 hdr->essid[0].len = ic->ic_des_esslen;
2699 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2700
2701 /*
2702 * Build a probe request frame. Most of the following code is a
2703 * copy & paste of what is done in net80211.
2704 */
2705 wh = (struct ieee80211_frame *)(hdr + 1);
2706 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2707 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2708 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2709 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2710 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2711 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2712 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2713 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2714
2715 frm = (uint8_t *)(wh + 1);
2716
2717 /* add empty essid IE (firmware generates it for directed scans) */
2718 *frm++ = IEEE80211_ELEMID_SSID;
2719 *frm++ = 0;
2720
2721 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2722 rs = &ic->ic_sup_rates[mode];
2723
2724 /* add supported rates IE */
2725 *frm++ = IEEE80211_ELEMID_RATES;
2726 nrates = rs->rs_nrates;
2727 if (nrates > IEEE80211_RATE_SIZE)
2728 nrates = IEEE80211_RATE_SIZE;
2729 *frm++ = nrates;
2730 memcpy(frm, rs->rs_rates, nrates);
2731 frm += nrates;
2732
2733 /* add supported xrates IE */
2734 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2735 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2736 *frm++ = IEEE80211_ELEMID_XRATES;
2737 *frm++ = nrates;
2738 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2739 frm += nrates;
2740 }
2741
2742 /* setup length of probe request */
2743 hdr->paylen = htole16(frm - (uint8_t *)wh);
2744
2745 chan = (struct wpi_scan_chan *)frm;
2746 for (c = &ic->ic_channels[1];
2747 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2748 if ((c->ic_flags & flags) != flags)
2749 continue;
2750
2751 chan->chan = ieee80211_chan2ieee(ic, c);
2752 chan->flags = 0;
2753 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2754 chan->flags |= WPI_CHAN_ACTIVE;
2755 if (ic->ic_des_esslen != 0)
2756 chan->flags |= WPI_CHAN_DIRECT;
2757 }
2758 chan->dsp_gain = 0x6e;
2759 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2760 chan->rf_gain = 0x3b;
2761 chan->active = htole16(10);
2762 chan->passive = htole16(110);
2763 } else {
2764 chan->rf_gain = 0x28;
2765 chan->active = htole16(20);
2766 chan->passive = htole16(120);
2767 }
2768 hdr->nchan++;
2769 chan++;
2770
2771 frm += sizeof (struct wpi_scan_chan);
2772 }
2773 hdr->len = htole16(frm - (uint8_t *)hdr);
2774 pktlen = frm - (uint8_t *)cmd;
2775
2776 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2777 NULL, BUS_DMA_NOWAIT);
2778 if (error) {
2779 aprint_error("%s: could not map scan command\n",
2780 sc->sc_dev.dv_xname);
2781 m_freem(data->m);
2782 data->m = NULL;
2783 return error;
2784 }
2785
2786 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2787 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2788 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2789
2790 /* kick cmd ring */
2791 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2792 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2793
2794 return 0; /* will be notified async. of failure/success */
2795 }
2796
2797 static int
2798 wpi_config(struct wpi_softc *sc)
2799 {
2800 struct ieee80211com *ic = &sc->sc_ic;
2801 struct ifnet *ifp = ic->ic_ifp;
2802 struct wpi_power power;
2803 struct wpi_bluetooth bluetooth;
2804 struct wpi_node_info node;
2805 int error;
2806
2807 memset(&power, 0, sizeof power);
2808 power.flags = htole32(WPI_POWER_CAM | 0x8);
2809 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2810 if (error != 0) {
2811 aprint_error("%s: could not set power mode\n",
2812 sc->sc_dev.dv_xname);
2813 return error;
2814 }
2815
2816 /* configure bluetooth coexistence */
2817 memset(&bluetooth, 0, sizeof bluetooth);
2818 bluetooth.flags = 3;
2819 bluetooth.lead = 0xaa;
2820 bluetooth.kill = 1;
2821 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2822 0);
2823 if (error != 0) {
2824 aprint_error(
2825 "%s: could not configure bluetooth coexistence\n",
2826 sc->sc_dev.dv_xname);
2827 return error;
2828 }
2829
2830 /* configure adapter */
2831 memset(&sc->config, 0, sizeof (struct wpi_config));
2832 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2833 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2834 /*set default channel*/
2835 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2836 sc->config.flags = htole32(WPI_CONFIG_TSF);
2837 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2838 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2839 WPI_CONFIG_24GHZ);
2840 }
2841 sc->config.filter = 0;
2842 switch (ic->ic_opmode) {
2843 case IEEE80211_M_STA:
2844 sc->config.mode = WPI_MODE_STA;
2845 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2846 break;
2847 case IEEE80211_M_IBSS:
2848 case IEEE80211_M_AHDEMO:
2849 sc->config.mode = WPI_MODE_IBSS;
2850 break;
2851 case IEEE80211_M_HOSTAP:
2852 sc->config.mode = WPI_MODE_HOSTAP;
2853 break;
2854 case IEEE80211_M_MONITOR:
2855 sc->config.mode = WPI_MODE_MONITOR;
2856 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2857 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2858 break;
2859 }
2860 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2861 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2862 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2863 sizeof (struct wpi_config), 0);
2864 if (error != 0) {
2865 aprint_error("%s: configure command failed\n",
2866 sc->sc_dev.dv_xname);
2867 return error;
2868 }
2869
2870 /* configuration has changed, set Tx power accordingly */
2871 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2872 aprint_error("%s: could not set Tx power\n", sc->sc_dev.dv_xname);
2873 return error;
2874 }
2875
2876 /* add broadcast node */
2877 memset(&node, 0, sizeof node);
2878 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2879 node.id = WPI_ID_BROADCAST;
2880 node.rate = wpi_plcp_signal(2);
2881 node.action = htole32(WPI_ACTION_SET_RATE);
2882 node.antenna = WPI_ANTENNA_BOTH;
2883 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2884 if (error != 0) {
2885 aprint_error("%s: could not add broadcast node\n",
2886 sc->sc_dev.dv_xname);
2887 return error;
2888 }
2889
2890 if ((error = wpi_mrr_setup(sc)) != 0) {
2891 aprint_error("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
2892 return error;
2893 }
2894
2895 return 0;
2896 }
2897
2898 static void
2899 wpi_stop_master(struct wpi_softc *sc)
2900 {
2901 uint32_t tmp;
2902 int ntries;
2903
2904 tmp = WPI_READ(sc, WPI_RESET);
2905 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2906
2907 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2908 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2909 return; /* already asleep */
2910
2911 for (ntries = 0; ntries < 100; ntries++) {
2912 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2913 break;
2914 DELAY(10);
2915 }
2916 if (ntries == 100) {
2917 aprint_error("%s: timeout waiting for master\n",
2918 sc->sc_dev.dv_xname);
2919 }
2920 }
2921
2922 static int
2923 wpi_power_up(struct wpi_softc *sc)
2924 {
2925 uint32_t tmp;
2926 int ntries;
2927
2928 wpi_mem_lock(sc);
2929 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2930 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2931 wpi_mem_unlock(sc);
2932
2933 for (ntries = 0; ntries < 5000; ntries++) {
2934 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2935 break;
2936 DELAY(10);
2937 }
2938 if (ntries == 5000) {
2939 aprint_error("%s: timeout waiting for NIC to power up\n",
2940 sc->sc_dev.dv_xname);
2941 return ETIMEDOUT;
2942 }
2943 return 0;
2944 }
2945
2946 static int
2947 wpi_reset(struct wpi_softc *sc)
2948 {
2949 uint32_t tmp;
2950 int ntries;
2951
2952 /* clear any pending interrupts */
2953 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2954
2955 tmp = WPI_READ(sc, WPI_PLL_CTL);
2956 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2957
2958 tmp = WPI_READ(sc, WPI_CHICKEN);
2959 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2960
2961 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2962 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2963
2964 /* wait for clock stabilization */
2965 for (ntries = 0; ntries < 1000; ntries++) {
2966 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2967 break;
2968 DELAY(10);
2969 }
2970 if (ntries == 1000) {
2971 aprint_error("%s: timeout waiting for clock stabilization\n",
2972 sc->sc_dev.dv_xname);
2973 return ETIMEDOUT;
2974 }
2975
2976 /* initialize EEPROM */
2977 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2978 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2979 aprint_error("%s: EEPROM not found\n", sc->sc_dev.dv_xname);
2980 return EIO;
2981 }
2982 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2983
2984 return 0;
2985 }
2986
2987 static void
2988 wpi_hw_config(struct wpi_softc *sc)
2989 {
2990 uint32_t rev, hw;
2991
2992 /* voodoo from the reference driver */
2993 hw = WPI_READ(sc, WPI_HWCONFIG);
2994
2995 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2996 rev = PCI_REVISION(rev);
2997 if ((rev & 0xc0) == 0x40)
2998 hw |= WPI_HW_ALM_MB;
2999 else if (!(rev & 0x80))
3000 hw |= WPI_HW_ALM_MM;
3001
3002 if (sc->cap == 0x80)
3003 hw |= WPI_HW_SKU_MRC;
3004
3005 hw &= ~WPI_HW_REV_D;
3006 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3007 hw |= WPI_HW_REV_D;
3008
3009 if (sc->type > 1)
3010 hw |= WPI_HW_TYPE_B;
3011
3012 DPRINTF(("setting h/w config %x\n", hw));
3013 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3014 }
3015
3016 static int
3017 wpi_init(struct ifnet *ifp)
3018 {
3019 struct wpi_softc *sc = ifp->if_softc;
3020 struct ieee80211com *ic = &sc->sc_ic;
3021 uint32_t tmp;
3022 int qid, ntries, error;
3023
3024 wpi_stop(ifp,1);
3025 (void)wpi_reset(sc);
3026
3027 wpi_mem_lock(sc);
3028 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3029 DELAY(20);
3030 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3031 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3032 wpi_mem_unlock(sc);
3033
3034 (void)wpi_power_up(sc);
3035 wpi_hw_config(sc);
3036
3037 /* init Rx ring */
3038 wpi_mem_lock(sc);
3039 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3040 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3041 offsetof(struct wpi_shared, next));
3042 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3043 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3044 wpi_mem_unlock(sc);
3045
3046 /* init Tx rings */
3047 wpi_mem_lock(sc);
3048 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3049 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3050 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3051 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3052 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3053 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3054 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3055
3056 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3057 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3058
3059 for (qid = 0; qid < 6; qid++) {
3060 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3061 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3062 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3063 }
3064 wpi_mem_unlock(sc);
3065
3066 /* clear "radio off" and "disable command" bits (reversed logic) */
3067 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3068 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3069
3070 /* clear any pending interrupts */
3071 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3072 /* enable interrupts */
3073 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3074
3075 /* not sure why/if this is necessary... */
3076 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3077 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3078
3079 if ((error = wpi_load_firmware(sc)) != 0) {
3080 aprint_error("%s: could not load firmware\n", sc->sc_dev.dv_xname);
3081 goto fail1;
3082 }
3083
3084 /* wait for thermal sensors to calibrate */
3085 for (ntries = 0; ntries < 1000; ntries++) {
3086 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3087 break;
3088 DELAY(10);
3089 }
3090 if (ntries == 1000) {
3091 aprint_error("%s: timeout waiting for thermal sensors calibration\n",
3092 sc->sc_dev.dv_xname);
3093 error = ETIMEDOUT;
3094 goto fail1;
3095 }
3096
3097 DPRINTF(("temperature %d\n", sc->temp));
3098
3099 if ((error = wpi_config(sc)) != 0) {
3100 aprint_error("%s: could not configure device\n",
3101 sc->sc_dev.dv_xname);
3102 goto fail1;
3103 }
3104
3105 ifp->if_flags &= ~IFF_OACTIVE;
3106 ifp->if_flags |= IFF_RUNNING;
3107
3108 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3109 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3110 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3111 }
3112 else
3113 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3114
3115 return 0;
3116
3117 fail1: wpi_stop(ifp, 1);
3118 return error;
3119 }
3120
3121
3122 static void
3123 wpi_stop(struct ifnet *ifp, int disable)
3124 {
3125 struct wpi_softc *sc = ifp->if_softc;
3126 struct ieee80211com *ic = &sc->sc_ic;
3127 uint32_t tmp;
3128 int ac;
3129
3130 ifp->if_timer = sc->sc_tx_timer = 0;
3131 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3132
3133 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3134
3135 /* disable interrupts */
3136 WPI_WRITE(sc, WPI_MASK, 0);
3137 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3138 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3139 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3140
3141 wpi_mem_lock(sc);
3142 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3143 wpi_mem_unlock(sc);
3144
3145 /* reset all Tx rings */
3146 for (ac = 0; ac < 4; ac++)
3147 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3148 wpi_reset_tx_ring(sc, &sc->cmdq);
3149
3150 /* reset Rx ring */
3151 wpi_reset_rx_ring(sc, &sc->rxq);
3152
3153 wpi_mem_lock(sc);
3154 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3155 wpi_mem_unlock(sc);
3156
3157 DELAY(5);
3158
3159 wpi_stop_master(sc);
3160
3161 tmp = WPI_READ(sc, WPI_RESET);
3162 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3163 }
3164
3165 static bool
3166 wpi_resume(device_t dv)
3167 {
3168 struct wpi_softc *sc = device_private(dv);
3169
3170 pci_disable_retry(sc->sc_pct, sc->sc_pcitag);
3171 (void)wpi_reset(sc);
3172
3173 return true;
3174 }
3175