if_wpi.c revision 1.17.4.11 1 /* $NetBSD: if_wpi.c,v 1.17.4.11 2007/11/21 21:55:30 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.17.4.11 2007/11/21 21:55:30 joerg Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39 #include <sys/callout.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47 #include <dev/pci/pcidevs.h>
48
49 #if NBPFILTER > 0
50 #include <net/bpf.h>
51 #endif
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x) if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 { 4, { 2, 4, 11, 22 } };
90
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94 static int wpi_match(device_t, struct cfdata *, void *);
95 static void wpi_attach(device_t, device_t, void *);
96 static int wpi_detach(device_t , int);
97 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
98 void **, bus_size_t, bus_size_t, int);
99 static void wpi_dma_contig_free(struct wpi_dma_info *);
100 static int wpi_alloc_shared(struct wpi_softc *);
101 static void wpi_free_shared(struct wpi_softc *);
102 static int wpi_alloc_fwmem(struct wpi_softc *);
103 static void wpi_free_fwmem(struct wpi_softc *);
104 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
105 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
106 static int wpi_alloc_rpool(struct wpi_softc *);
107 static void wpi_free_rpool(struct wpi_softc *);
108 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
109 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
112 int);
113 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
114 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
116 static void wpi_newassoc(struct ieee80211_node *, int);
117 static int wpi_media_change(struct ifnet *);
118 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
119 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
120 static void wpi_mem_lock(struct wpi_softc *);
121 static void wpi_mem_unlock(struct wpi_softc *);
122 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
123 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
124 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
125 const uint32_t *, int);
126 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
127 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
128 static int wpi_load_firmware(struct wpi_softc *);
129 static void wpi_calib_timeout(void *);
130 static void wpi_iter_func(void *, struct ieee80211_node *);
131 static void wpi_power_calibration(struct wpi_softc *, int);
132 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
133 struct wpi_rx_data *);
134 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
135 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
136 static void wpi_notif_intr(struct wpi_softc *);
137 static int wpi_intr(void *);
138 static void wpi_read_eeprom(struct wpi_softc *);
139 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
140 static void wpi_read_eeprom_group(struct wpi_softc *, int);
141 static uint8_t wpi_plcp_signal(int);
142 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
143 struct ieee80211_node *, int);
144 static void wpi_start(struct ifnet *);
145 static void wpi_watchdog(struct ifnet *);
146 static int wpi_ioctl(struct ifnet *, u_long, void *);
147 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
148 static int wpi_wme_update(struct ieee80211com *);
149 static int wpi_mrr_setup(struct wpi_softc *);
150 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
151 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
152 static int wpi_set_txpower(struct wpi_softc *,
153 struct ieee80211_channel *, int);
154 static int wpi_get_power_index(struct wpi_softc *,
155 struct wpi_power_group *, struct ieee80211_channel *, int);
156 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
157 static int wpi_auth(struct wpi_softc *);
158 static int wpi_scan(struct wpi_softc *, uint16_t);
159 static int wpi_config(struct wpi_softc *);
160 static void wpi_stop_master(struct wpi_softc *);
161 static int wpi_power_up(struct wpi_softc *);
162 static int wpi_reset(struct wpi_softc *);
163 static void wpi_hw_config(struct wpi_softc *);
164 static int wpi_init(struct ifnet *);
165 static void wpi_stop(struct ifnet *, int);
166 static bool wpi_resume(device_t);
167
168 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
169 wpi_detach, NULL);
170
171 static int
172 wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
173 {
174 struct pci_attach_args *pa = aux;
175
176 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
177 return 0;
178
179 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
180 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
181 return 1;
182
183 return 0;
184 }
185
186 /* Base Address Register */
187 #define WPI_PCI_BAR0 0x10
188
189 static void
190 wpi_attach(device_t parent __unused, device_t self, void *aux)
191 {
192 struct wpi_softc *sc = device_private(self);
193 struct ieee80211com *ic = &sc->sc_ic;
194 struct ifnet *ifp = &sc->sc_ec.ec_if;
195 struct pci_attach_args *pa = aux;
196 const char *intrstr;
197 char devinfo[256];
198 bus_space_tag_t memt;
199 bus_space_handle_t memh;
200 pci_intr_handle_t ih;
201 pcireg_t data;
202 int error, ac, revision;
203
204 sc->sc_pct = pa->pa_pc;
205 sc->sc_pcitag = pa->pa_tag;
206
207 callout_init(&sc->calib_to, 0);
208 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
209
210 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
211 revision = PCI_REVISION(pa->pa_class);
212 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
213
214 pci_disable_retry(pa->pa_pc, pa->pa_tag);
215
216 /* enable bus-mastering */
217 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
218 data |= PCI_COMMAND_MASTER_ENABLE;
219 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
220
221 /* map the register window */
222 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
223 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
224 if (error != 0) {
225 aprint_error_dev(self, "could not map memory space\n");
226 return;
227 }
228
229 sc->sc_st = memt;
230 sc->sc_sh = memh;
231 sc->sc_dmat = pa->pa_dmat;
232
233 if (pci_intr_map(pa, &ih) != 0) {
234 aprint_error_dev(self, "could not map interrupt\n");
235 return;
236 }
237
238 intrstr = pci_intr_string(sc->sc_pct, ih);
239 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
240 if (sc->sc_ih == NULL) {
241 aprint_error_dev(self, "could not establish interrupt");
242 if (intrstr != NULL)
243 aprint_error(" at %s", intrstr);
244 aprint_error("\n");
245 return;
246 }
247 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
248
249 if (wpi_reset(sc) != 0) {
250 aprint_error_dev(self, "could not reset adapter\n");
251 return;
252 }
253
254 /*
255 * Allocate DMA memory for firmware transfers.
256 */
257 if ((error = wpi_alloc_fwmem(sc)) != 0) {
258 aprint_error("could not allocate firmware memory\n");
259 return;
260 }
261
262 /*
263 * Allocate shared page and Tx/Rx rings.
264 */
265 if ((error = wpi_alloc_shared(sc)) != 0) {
266 aprint_error_dev(self, "could not allocate shared area\n");
267 goto fail1;
268 }
269
270 if ((error = wpi_alloc_rpool(sc)) != 0) {
271 aprint_error_dev(self, "could not allocate Rx buffers\n");
272 goto fail2;
273 }
274
275 for (ac = 0; ac < 4; ac++) {
276 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
277 if (error != 0) {
278 aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
279 goto fail3;
280 }
281 }
282
283 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
284 if (error != 0) {
285 aprint_error_dev(self, "could not allocate command ring\n");
286 goto fail3;
287 }
288
289 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
290 aprint_error_dev(self, "could not allocate Rx ring\n");
291 goto fail4;
292 }
293
294 ic->ic_ifp = ifp;
295 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
296 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
297 ic->ic_state = IEEE80211_S_INIT;
298
299 /* set device capabilities */
300 ic->ic_caps =
301 IEEE80211_C_IBSS | /* IBSS mode support */
302 IEEE80211_C_WPA | /* 802.11i */
303 IEEE80211_C_MONITOR | /* monitor mode supported */
304 IEEE80211_C_TXPMGT | /* tx power management */
305 IEEE80211_C_SHSLOT | /* short slot time supported */
306 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
307 IEEE80211_C_WME; /* 802.11e */
308
309 /* read supported channels and MAC address from EEPROM */
310 wpi_read_eeprom(sc);
311
312 /* set supported .11a, .11b, .11g rates */
313 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
314 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
315 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
316
317 ic->ic_ibss_chan = &ic->ic_channels[0];
318
319 ifp->if_softc = sc;
320 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
321 ifp->if_init = wpi_init;
322 ifp->if_stop = wpi_stop;
323 ifp->if_ioctl = wpi_ioctl;
324 ifp->if_start = wpi_start;
325 ifp->if_watchdog = wpi_watchdog;
326 IFQ_SET_READY(&ifp->if_snd);
327 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
328
329 if_attach(ifp);
330 ieee80211_ifattach(ic);
331 /* override default methods */
332 ic->ic_node_alloc = wpi_node_alloc;
333 ic->ic_newassoc = wpi_newassoc;
334 ic->ic_wme.wme_update = wpi_wme_update;
335
336 /* override state transition machine */
337 sc->sc_newstate = ic->ic_newstate;
338 ic->ic_newstate = wpi_newstate;
339 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
340
341 sc->amrr.amrr_min_success_threshold = 1;
342 sc->amrr.amrr_max_success_threshold = 15;
343
344 if (!pnp_device_register(self, NULL, wpi_resume))
345 aprint_error_dev(self, "couldn't establish power handler\n");
346 else
347 pnp_class_network_register(self, ifp);
348
349 #if NBPFILTER > 0
350 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
351 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
352 &sc->sc_drvbpf);
353
354 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
355 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
356 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
357
358 sc->sc_txtap_len = sizeof sc->sc_txtapu;
359 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
360 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
361 #endif
362
363 ieee80211_announce(ic);
364
365 return;
366
367 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
368 fail3: while (--ac >= 0)
369 wpi_free_tx_ring(sc, &sc->txq[ac]);
370 wpi_free_rpool(sc);
371 fail2: wpi_free_shared(sc);
372 fail1: wpi_free_fwmem(sc);
373 }
374
375 static int
376 wpi_detach(device_t self, int flags __unused)
377 {
378 struct wpi_softc *sc = device_private(self);
379 struct ifnet *ifp = sc->sc_ic.ic_ifp;
380 int ac;
381
382 wpi_stop(ifp, 1);
383
384 #if NBPFILTER > 0
385 if (ifp != NULL)
386 bpfdetach(ifp);
387 #endif
388 ieee80211_ifdetach(&sc->sc_ic);
389 if (ifp != NULL)
390 if_detach(ifp);
391
392 for (ac = 0; ac < 4; ac++)
393 wpi_free_tx_ring(sc, &sc->txq[ac]);
394 wpi_free_tx_ring(sc, &sc->cmdq);
395 wpi_free_rx_ring(sc, &sc->rxq);
396 wpi_free_rpool(sc);
397 wpi_free_shared(sc);
398
399 if (sc->sc_ih != NULL) {
400 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
401 sc->sc_ih = NULL;
402 }
403
404 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
405
406 return 0;
407 }
408
409 static int
410 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
411 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
412 {
413 int nsegs, error;
414
415 dma->tag = tag;
416 dma->size = size;
417
418 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
419 if (error != 0)
420 goto fail;
421
422 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
423 flags);
424 if (error != 0)
425 goto fail;
426
427 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
428 if (error != 0)
429 goto fail;
430
431 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
432 if (error != 0)
433 goto fail;
434
435 memset(dma->vaddr, 0, size);
436
437 dma->paddr = dma->map->dm_segs[0].ds_addr;
438 if (kvap != NULL)
439 *kvap = dma->vaddr;
440
441 return 0;
442
443 fail: wpi_dma_contig_free(dma);
444 return error;
445 }
446
447 static void
448 wpi_dma_contig_free(struct wpi_dma_info *dma)
449 {
450 if (dma->map != NULL) {
451 if (dma->vaddr != NULL) {
452 bus_dmamap_unload(dma->tag, dma->map);
453 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
454 bus_dmamem_free(dma->tag, &dma->seg, 1);
455 dma->vaddr = NULL;
456 }
457 bus_dmamap_destroy(dma->tag, dma->map);
458 dma->map = NULL;
459 }
460 }
461
462 /*
463 * Allocate a shared page between host and NIC.
464 */
465 static int
466 wpi_alloc_shared(struct wpi_softc *sc)
467 {
468 int error;
469 /* must be aligned on a 4K-page boundary */
470 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
471 (void **)&sc->shared, sizeof (struct wpi_shared),
472 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
473 if (error != 0)
474 aprint_error_dev(sc->sc_dev,
475 "could not allocate shared area DMA memory\n");
476
477 return error;
478 }
479
480 static void
481 wpi_free_shared(struct wpi_softc *sc)
482 {
483 wpi_dma_contig_free(&sc->shared_dma);
484 }
485
486 /*
487 * Allocate DMA-safe memory for firmware transfer.
488 */
489 static int
490 wpi_alloc_fwmem(struct wpi_softc *sc)
491 {
492 int error;
493 /* allocate enough contiguous space to store text and data */
494 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
495 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
496 BUS_DMA_NOWAIT);
497
498 if (error != 0)
499 aprint_error_dev(sc->sc_dev,
500 "could not allocate firmware transfer area"
501 "DMA memory\n");
502 return error;
503 }
504
505 static void
506 wpi_free_fwmem(struct wpi_softc *sc)
507 {
508 wpi_dma_contig_free(&sc->fw_dma);
509 }
510
511
512 static struct wpi_rbuf *
513 wpi_alloc_rbuf(struct wpi_softc *sc)
514 {
515 struct wpi_rbuf *rbuf;
516
517 rbuf = SLIST_FIRST(&sc->rxq.freelist);
518 if (rbuf == NULL)
519 return NULL;
520 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
521 sc->rxq.nb_free_entries --;
522
523 return rbuf;
524 }
525
526 /*
527 * This is called automatically by the network stack when the mbuf to which our
528 * Rx buffer is attached is freed.
529 */
530 static void
531 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
532 {
533 struct wpi_rbuf *rbuf = arg;
534 struct wpi_softc *sc = rbuf->sc;
535
536 /* put the buffer back in the free list */
537
538 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
539 sc->rxq.nb_free_entries ++;
540
541 if (__predict_true(m != NULL))
542 pool_cache_put(mb_cache, m);
543 }
544
545 static int
546 wpi_alloc_rpool(struct wpi_softc *sc)
547 {
548 struct wpi_rx_ring *ring = &sc->rxq;
549 struct wpi_rbuf *rbuf;
550 int i, error;
551
552 /* allocate a big chunk of DMA'able memory.. */
553 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
554 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
555 if (error != 0) {
556 aprint_normal_dev(sc->sc_dev,
557 "could not allocate Rx buffers DMA memory\n");
558 return error;
559 }
560
561 /* ..and split it into 3KB chunks */
562 SLIST_INIT(&ring->freelist);
563 for (i = 0; i < WPI_RBUF_COUNT; i++) {
564 rbuf = &ring->rbuf[i];
565 rbuf->sc = sc; /* backpointer for callbacks */
566 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
567 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
568
569 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
570 }
571
572 ring->nb_free_entries = WPI_RBUF_COUNT;
573 return 0;
574 }
575
576 static void
577 wpi_free_rpool(struct wpi_softc *sc)
578 {
579 wpi_dma_contig_free(&sc->rxq.buf_dma);
580 }
581
582 static int
583 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
584 {
585 struct wpi_rx_data *data;
586 struct wpi_rbuf *rbuf;
587 int i, error;
588
589 ring->cur = 0;
590
591 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
592 (void **)&ring->desc,
593 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
594 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
595 if (error != 0) {
596 aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
597 goto fail;
598 }
599
600 /*
601 * Setup Rx buffers.
602 */
603 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
604 data = &ring->data[i];
605
606 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
607 if (data->m == NULL) {
608 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
609 error = ENOMEM;
610 goto fail;
611 }
612 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
613 m_freem(data->m);
614 data->m = NULL;
615 aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
616 error = ENOMEM;
617 goto fail;
618 }
619 /* attach Rx buffer to mbuf */
620 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
621 rbuf);
622 data->m->m_flags |= M_EXT_RW;
623
624 ring->desc[i] = htole32(rbuf->paddr);
625 }
626
627 return 0;
628
629 fail: wpi_free_rx_ring(sc, ring);
630 return error;
631 }
632
633 static void
634 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
635 {
636 int ntries;
637
638 wpi_mem_lock(sc);
639
640 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
641 for (ntries = 0; ntries < 100; ntries++) {
642 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
643 break;
644 DELAY(10);
645 }
646 #ifdef WPI_DEBUG
647 if (ntries == 100 && wpi_debug > 0)
648 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
649 #endif
650 wpi_mem_unlock(sc);
651
652 ring->cur = 0;
653 }
654
655 static void
656 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
657 {
658 int i;
659
660 wpi_dma_contig_free(&ring->desc_dma);
661
662 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
663 if (ring->data[i].m != NULL)
664 m_freem(ring->data[i].m);
665 }
666 }
667
668 static int
669 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
670 int qid)
671 {
672 struct wpi_tx_data *data;
673 int i, error;
674
675 ring->qid = qid;
676 ring->count = count;
677 ring->queued = 0;
678 ring->cur = 0;
679
680 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
681 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
682 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
683 if (error != 0) {
684 aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
685 goto fail;
686 }
687
688 /* update shared page with ring's base address */
689 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
690
691 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
692 (void **)&ring->cmd,
693 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
694 if (error != 0) {
695 aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
696 goto fail;
697 }
698
699 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
700 M_NOWAIT);
701 if (ring->data == NULL) {
702 aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
703 goto fail;
704 }
705
706 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
707
708 for (i = 0; i < count; i++) {
709 data = &ring->data[i];
710
711 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
712 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
713 &data->map);
714 if (error != 0) {
715 aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
716 goto fail;
717 }
718 }
719
720 return 0;
721
722 fail: wpi_free_tx_ring(sc, ring);
723 return error;
724 }
725
726 static void
727 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
728 {
729 struct wpi_tx_data *data;
730 int i, ntries;
731
732 wpi_mem_lock(sc);
733
734 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
735 for (ntries = 0; ntries < 100; ntries++) {
736 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
737 break;
738 DELAY(10);
739 }
740 #ifdef WPI_DEBUG
741 if (ntries == 100 && wpi_debug > 0) {
742 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
743 ring->qid);
744 }
745 #endif
746 wpi_mem_unlock(sc);
747
748 for (i = 0; i < ring->count; i++) {
749 data = &ring->data[i];
750
751 if (data->m != NULL) {
752 bus_dmamap_unload(sc->sc_dmat, data->map);
753 m_freem(data->m);
754 data->m = NULL;
755 }
756 }
757
758 ring->queued = 0;
759 ring->cur = 0;
760 }
761
762 static void
763 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
764 {
765 struct wpi_tx_data *data;
766 int i;
767
768 wpi_dma_contig_free(&ring->desc_dma);
769 wpi_dma_contig_free(&ring->cmd_dma);
770
771 if (ring->data != NULL) {
772 for (i = 0; i < ring->count; i++) {
773 data = &ring->data[i];
774
775 if (data->m != NULL) {
776 bus_dmamap_unload(sc->sc_dmat, data->map);
777 m_freem(data->m);
778 }
779 }
780 free(ring->data, M_DEVBUF);
781 }
782 }
783
784 /*ARGUSED*/
785 static struct ieee80211_node *
786 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
787 {
788 struct wpi_node *wn;
789
790 wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
791
792 if (wn != NULL)
793 memset(wn, 0, sizeof (struct wpi_node));
794 return (struct ieee80211_node *)wn;
795 }
796
797 static void
798 wpi_newassoc(struct ieee80211_node *ni, int isnew)
799 {
800 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
801 int i;
802
803 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
804
805 /* set rate to some reasonable initial value */
806 for (i = ni->ni_rates.rs_nrates - 1;
807 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
808 i--);
809 ni->ni_txrate = i;
810 }
811
812 static int
813 wpi_media_change(struct ifnet *ifp)
814 {
815 int error;
816
817 error = ieee80211_media_change(ifp);
818 if (error != ENETRESET)
819 return error;
820
821 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
822 wpi_init(ifp);
823
824 return 0;
825 }
826
827 static int
828 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
829 {
830 struct ifnet *ifp = ic->ic_ifp;
831 struct wpi_softc *sc = ifp->if_softc;
832 struct ieee80211_node *ni;
833 int error;
834
835 callout_stop(&sc->calib_to);
836
837 switch (nstate) {
838 case IEEE80211_S_SCAN:
839
840 if (sc->is_scanning)
841 break;
842
843 sc->is_scanning = true;
844 ieee80211_node_table_reset(&ic->ic_scan);
845 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
846
847 /* make the link LED blink while we're scanning */
848 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
849
850 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
851 aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
852 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
853 return error;
854 }
855
856 ic->ic_state = nstate;
857 return 0;
858
859 case IEEE80211_S_ASSOC:
860 if (ic->ic_state != IEEE80211_S_RUN)
861 break;
862 /* FALLTHROUGH */
863 case IEEE80211_S_AUTH:
864 sc->config.associd = 0;
865 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
866 if ((error = wpi_auth(sc)) != 0) {
867 aprint_error_dev(sc->sc_dev,
868 "could not send authentication request\n");
869 return error;
870 }
871 break;
872
873 case IEEE80211_S_RUN:
874 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
875 /* link LED blinks while monitoring */
876 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
877 break;
878 }
879
880 ni = ic->ic_bss;
881
882 if (ic->ic_opmode != IEEE80211_M_STA) {
883 (void) wpi_auth(sc); /* XXX */
884 wpi_setup_beacon(sc, ni);
885 }
886
887 wpi_enable_tsf(sc, ni);
888
889 /* update adapter's configuration */
890 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
891 /* short preamble/slot time are negotiated when associating */
892 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
893 WPI_CONFIG_SHSLOT);
894 if (ic->ic_flags & IEEE80211_F_SHSLOT)
895 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
896 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
897 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
898 sc->config.filter |= htole32(WPI_FILTER_BSS);
899 if (ic->ic_opmode != IEEE80211_M_STA)
900 sc->config.filter |= htole32(WPI_FILTER_BEACON);
901
902 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
903
904 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
905 sc->config.flags));
906 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
907 sizeof (struct wpi_config), 1);
908 if (error != 0) {
909 aprint_error_dev(sc->sc_dev, "could not update configuration\n");
910 return error;
911 }
912
913 /* configuration has changed, set Tx power accordingly */
914 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
915 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
916 return error;
917 }
918
919 if (ic->ic_opmode == IEEE80211_M_STA) {
920 /* fake a join to init the tx rate */
921 wpi_newassoc(ni, 1);
922 }
923
924 /* start periodic calibration timer */
925 sc->calib_cnt = 0;
926 callout_schedule(&sc->calib_to, hz/2);
927
928 /* link LED always on while associated */
929 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
930 break;
931
932 case IEEE80211_S_INIT:
933 sc->is_scanning = false;
934 break;
935 }
936
937 return sc->sc_newstate(ic, nstate, arg);
938 }
939
940 /*
941 * XXX: Hack to set the current channel to the value advertised in beacons or
942 * probe responses. Only used during AP detection.
943 * XXX: Duplicated from if_iwi.c
944 */
945 static void
946 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
947 {
948 struct ieee80211_frame *wh;
949 uint8_t subtype;
950 uint8_t *frm, *efrm;
951
952 wh = mtod(m, struct ieee80211_frame *);
953
954 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
955 return;
956
957 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
958
959 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
960 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
961 return;
962
963 frm = (uint8_t *)(wh + 1);
964 efrm = mtod(m, uint8_t *) + m->m_len;
965
966 frm += 12; /* skip tstamp, bintval and capinfo fields */
967 while (frm < efrm) {
968 if (*frm == IEEE80211_ELEMID_DSPARMS)
969 #if IEEE80211_CHAN_MAX < 255
970 if (frm[2] <= IEEE80211_CHAN_MAX)
971 #endif
972 ic->ic_curchan = &ic->ic_channels[frm[2]];
973
974 frm += frm[1] + 2;
975 }
976 }
977
978 /*
979 * Grab exclusive access to NIC memory.
980 */
981 static void
982 wpi_mem_lock(struct wpi_softc *sc)
983 {
984 uint32_t tmp;
985 int ntries;
986
987 tmp = WPI_READ(sc, WPI_GPIO_CTL);
988 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
989
990 /* spin until we actually get the lock */
991 for (ntries = 0; ntries < 1000; ntries++) {
992 if ((WPI_READ(sc, WPI_GPIO_CTL) &
993 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
994 break;
995 DELAY(10);
996 }
997 if (ntries == 1000)
998 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
999 }
1000
1001 /*
1002 * Release lock on NIC memory.
1003 */
1004 static void
1005 wpi_mem_unlock(struct wpi_softc *sc)
1006 {
1007 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1008 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1009 }
1010
1011 static uint32_t
1012 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1013 {
1014 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1015 return WPI_READ(sc, WPI_READ_MEM_DATA);
1016 }
1017
1018 static void
1019 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1020 {
1021 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1022 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1023 }
1024
1025 static void
1026 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1027 const uint32_t *data, int wlen)
1028 {
1029 for (; wlen > 0; wlen--, data++, addr += 4)
1030 wpi_mem_write(sc, addr, *data);
1031 }
1032
1033
1034 /*
1035 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1036 * instead of using the traditional bit-bang method.
1037 */
1038 static int
1039 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1040 {
1041 uint8_t *out = data;
1042 uint32_t val;
1043 int ntries;
1044
1045 wpi_mem_lock(sc);
1046 for (; len > 0; len -= 2, addr++) {
1047 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1048
1049 for (ntries = 0; ntries < 10; ntries++) {
1050 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1051 WPI_EEPROM_READY)
1052 break;
1053 DELAY(5);
1054 }
1055 if (ntries == 10) {
1056 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1057 return ETIMEDOUT;
1058 }
1059 *out++ = val >> 16;
1060 if (len > 1)
1061 *out++ = val >> 24;
1062 }
1063 wpi_mem_unlock(sc);
1064
1065 return 0;
1066 }
1067
1068 /*
1069 * The firmware boot code is small and is intended to be copied directly into
1070 * the NIC internal memory.
1071 */
1072 int
1073 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1074 {
1075 int ntries;
1076
1077 size /= sizeof (uint32_t);
1078
1079 wpi_mem_lock(sc);
1080
1081 /* copy microcode image into NIC memory */
1082 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1083 (const uint32_t *)ucode, size);
1084
1085 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1086 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1087 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1088
1089 /* run microcode */
1090 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1091
1092 /* wait for transfer to complete */
1093 for (ntries = 0; ntries < 1000; ntries++) {
1094 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1095 break;
1096 DELAY(10);
1097 }
1098 if (ntries == 1000) {
1099 wpi_mem_unlock(sc);
1100 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1101 return ETIMEDOUT;
1102 }
1103 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1104
1105 wpi_mem_unlock(sc);
1106
1107 return 0;
1108 }
1109
1110 static int
1111 wpi_load_firmware(struct wpi_softc *sc)
1112 {
1113 struct wpi_dma_info *dma = &sc->fw_dma;
1114 struct wpi_firmware_hdr hdr;
1115 const uint8_t *init_text, *init_data, *main_text, *main_data;
1116 const uint8_t *boot_text;
1117 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1118 uint32_t boot_textsz;
1119 firmware_handle_t fw;
1120 u_char *dfw;
1121 size_t size;
1122 int error;
1123
1124 /* load firmware image from disk */
1125 if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1126 aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1127 goto fail1;
1128 }
1129
1130 size = firmware_get_size(fw);
1131
1132 /* extract firmware header information */
1133 if (size < sizeof (struct wpi_firmware_hdr)) {
1134 aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
1135 size);
1136 error = EINVAL;
1137 goto fail2;
1138 }
1139
1140 if ((error = firmware_read(fw, 0, &hdr,
1141 sizeof (struct wpi_firmware_hdr))) != 0) {
1142 aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1143 goto fail2;
1144 }
1145
1146 main_textsz = le32toh(hdr.main_textsz);
1147 main_datasz = le32toh(hdr.main_datasz);
1148 init_textsz = le32toh(hdr.init_textsz);
1149 init_datasz = le32toh(hdr.init_datasz);
1150 boot_textsz = le32toh(hdr.boot_textsz);
1151
1152 /* sanity-check firmware segments sizes */
1153 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1154 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1155 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1156 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1157 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1158 (boot_textsz & 3) != 0) {
1159 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1160 error = EINVAL;
1161 goto fail2;
1162 }
1163
1164 /* check that all firmware segments are present */
1165 if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1166 main_datasz + init_textsz + init_datasz + boot_textsz) {
1167 aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
1168 size);
1169 error = EINVAL;
1170 goto fail2;
1171 }
1172
1173 dfw = firmware_malloc(size);
1174 if (dfw == NULL) {
1175 aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1176 error = ENOMEM;
1177 goto fail2;
1178 }
1179
1180 if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1181 aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1182 goto fail2;
1183 }
1184
1185 /* get pointers to firmware segments */
1186 main_text = dfw + sizeof (struct wpi_firmware_hdr);
1187 main_data = main_text + main_textsz;
1188 init_text = main_data + main_datasz;
1189 init_data = init_text + init_textsz;
1190 boot_text = init_data + init_datasz;
1191
1192 /* copy initialization images into pre-allocated DMA-safe memory */
1193 memcpy(dma->vaddr, init_data, init_datasz);
1194 memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1195
1196 /* tell adapter where to find initialization images */
1197 wpi_mem_lock(sc);
1198 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1199 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1200 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1201 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1202 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1203 wpi_mem_unlock(sc);
1204
1205 /* load firmware boot code */
1206 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1207 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1208 goto fail3;
1209 }
1210
1211 /* now press "execute" ;-) */
1212 WPI_WRITE(sc, WPI_RESET, 0);
1213
1214 /* ..and wait at most one second for adapter to initialize */
1215 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1216 /* this isn't what was supposed to happen.. */
1217 aprint_error_dev(sc->sc_dev,
1218 "timeout waiting for adapter to initialize\n");
1219 }
1220
1221 /* copy runtime images into pre-allocated DMA-safe memory */
1222 memcpy(dma->vaddr, main_data, main_datasz);
1223 memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1224
1225 /* tell adapter where to find runtime images */
1226 wpi_mem_lock(sc);
1227 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1228 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1229 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1230 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1231 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1232 wpi_mem_unlock(sc);
1233
1234 /* wait at most one second for second alive notification */
1235 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1236 /* this isn't what was supposed to happen.. */
1237 aprint_error_dev(sc->sc_dev,
1238 "timeout waiting for adapter to initialize\n");
1239 }
1240
1241
1242 fail3: firmware_free(dfw,size);
1243 fail2: firmware_close(fw);
1244 fail1: return error;
1245 }
1246
1247 static void
1248 wpi_calib_timeout(void *arg)
1249 {
1250 struct wpi_softc *sc = arg;
1251 struct ieee80211com *ic = &sc->sc_ic;
1252 int temp, s;
1253
1254 /* automatic rate control triggered every 500ms */
1255 if (ic->ic_fixed_rate == -1) {
1256 s = splnet();
1257 if (ic->ic_opmode == IEEE80211_M_STA)
1258 wpi_iter_func(sc, ic->ic_bss);
1259 else
1260 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1261 splx(s);
1262 }
1263
1264 /* update sensor data */
1265 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1266
1267 /* automatic power calibration every 60s */
1268 if (++sc->calib_cnt >= 120) {
1269 wpi_power_calibration(sc, temp);
1270 sc->calib_cnt = 0;
1271 }
1272
1273 callout_schedule(&sc->calib_to, hz/2);
1274 }
1275
1276 static void
1277 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1278 {
1279 struct wpi_softc *sc = arg;
1280 struct wpi_node *wn = (struct wpi_node *)ni;
1281
1282 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1283 }
1284
1285 /*
1286 * This function is called periodically (every 60 seconds) to adjust output
1287 * power to temperature changes.
1288 */
1289 void
1290 wpi_power_calibration(struct wpi_softc *sc, int temp)
1291 {
1292 /* sanity-check read value */
1293 if (temp < -260 || temp > 25) {
1294 /* this can't be correct, ignore */
1295 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1296 return;
1297 }
1298
1299 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1300
1301 /* adjust Tx power if need be */
1302 if (abs(temp - sc->temp) <= 6)
1303 return;
1304
1305 sc->temp = temp;
1306
1307 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1308 /* just warn, too bad for the automatic calibration... */
1309 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1310 }
1311 }
1312
1313 static void
1314 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1315 struct wpi_rx_data *data)
1316 {
1317 struct ieee80211com *ic = &sc->sc_ic;
1318 struct ifnet *ifp = ic->ic_ifp;
1319 struct wpi_rx_ring *ring = &sc->rxq;
1320 struct wpi_rx_stat *stat;
1321 struct wpi_rx_head *head;
1322 struct wpi_rx_tail *tail;
1323 struct wpi_rbuf *rbuf;
1324 struct ieee80211_frame *wh;
1325 struct ieee80211_node *ni;
1326 struct mbuf *m, *mnew;
1327 int data_off ;
1328
1329 stat = (struct wpi_rx_stat *)(desc + 1);
1330
1331 if (stat->len > WPI_STAT_MAXLEN) {
1332 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1333 ifp->if_ierrors++;
1334 return;
1335 }
1336
1337 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1338 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1339
1340 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1341 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1342 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1343 le64toh(tail->tstamp)));
1344
1345 /*
1346 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1347 * to radiotap in monitor mode).
1348 */
1349 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1350 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1351 ifp->if_ierrors++;
1352 return;
1353 }
1354
1355 /* Compute where are the useful datas */
1356 data_off = (char*)(head + 1) - mtod(data->m, char*);
1357
1358 /*
1359 * If the number of free entry is too low
1360 * just dup the data->m socket and reuse the same rbuf entry
1361 */
1362 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1363
1364 /* Prepare the mbuf for the m_dup */
1365 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1366 data->m->m_data = (char*) data->m->m_data + data_off;
1367
1368 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1369
1370 /* Restore the m_data pointer for future use */
1371 data->m->m_data = (char*) data->m->m_data - data_off;
1372
1373 if (m == NULL) {
1374 ifp->if_ierrors++;
1375 return;
1376 }
1377 } else {
1378
1379 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1380 if (mnew == NULL) {
1381 ifp->if_ierrors++;
1382 return;
1383 }
1384
1385 rbuf = wpi_alloc_rbuf(sc);
1386 KASSERT(rbuf != NULL);
1387
1388 /* attach Rx buffer to mbuf */
1389 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1390 rbuf);
1391 mnew->m_flags |= M_EXT_RW;
1392
1393 m = data->m;
1394 data->m = mnew;
1395
1396 /* update Rx descriptor */
1397 ring->desc[ring->cur] = htole32(rbuf->paddr);
1398
1399 m->m_data = (char*)m->m_data + data_off;
1400 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1401 }
1402
1403 /* finalize mbuf */
1404 m->m_pkthdr.rcvif = ifp;
1405
1406 if (ic->ic_state == IEEE80211_S_SCAN)
1407 wpi_fix_channel(ic, m);
1408
1409 #if NBPFILTER > 0
1410 if (sc->sc_drvbpf != NULL) {
1411 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1412
1413 tap->wr_flags = 0;
1414 tap->wr_chan_freq =
1415 htole16(ic->ic_channels[head->chan].ic_freq);
1416 tap->wr_chan_flags =
1417 htole16(ic->ic_channels[head->chan].ic_flags);
1418 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1419 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1420 tap->wr_tsft = tail->tstamp;
1421 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1422 switch (head->rate) {
1423 /* CCK rates */
1424 case 10: tap->wr_rate = 2; break;
1425 case 20: tap->wr_rate = 4; break;
1426 case 55: tap->wr_rate = 11; break;
1427 case 110: tap->wr_rate = 22; break;
1428 /* OFDM rates */
1429 case 0xd: tap->wr_rate = 12; break;
1430 case 0xf: tap->wr_rate = 18; break;
1431 case 0x5: tap->wr_rate = 24; break;
1432 case 0x7: tap->wr_rate = 36; break;
1433 case 0x9: tap->wr_rate = 48; break;
1434 case 0xb: tap->wr_rate = 72; break;
1435 case 0x1: tap->wr_rate = 96; break;
1436 case 0x3: tap->wr_rate = 108; break;
1437 /* unknown rate: should not happen */
1438 default: tap->wr_rate = 0;
1439 }
1440 if (le16toh(head->flags) & 0x4)
1441 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1442
1443 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1444 }
1445 #endif
1446
1447 /* grab a reference to the source node */
1448 wh = mtod(m, struct ieee80211_frame *);
1449 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1450
1451 /* send the frame to the 802.11 layer */
1452 ieee80211_input(ic, m, ni, stat->rssi, 0);
1453
1454 /* release node reference */
1455 ieee80211_free_node(ni);
1456 }
1457
1458 static void
1459 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1460 {
1461 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1462 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1463 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1464 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1465 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1466
1467 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1468 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1469 stat->nkill, stat->rate, le32toh(stat->duration),
1470 le32toh(stat->status)));
1471
1472 /*
1473 * Update rate control statistics for the node.
1474 * XXX we should not count mgmt frames since they're always sent at
1475 * the lowest available bit-rate.
1476 */
1477 wn->amn.amn_txcnt++;
1478 if (stat->ntries > 0) {
1479 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1480 wn->amn.amn_retrycnt++;
1481 }
1482
1483 if ((le32toh(stat->status) & 0xff) != 1)
1484 ifp->if_oerrors++;
1485 else
1486 ifp->if_opackets++;
1487
1488 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1489 m_freem(txdata->m);
1490 txdata->m = NULL;
1491 ieee80211_free_node(txdata->ni);
1492 txdata->ni = NULL;
1493
1494 ring->queued--;
1495
1496 sc->sc_tx_timer = 0;
1497 ifp->if_flags &= ~IFF_OACTIVE;
1498 wpi_start(ifp);
1499 }
1500
1501 static void
1502 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1503 {
1504 struct wpi_tx_ring *ring = &sc->cmdq;
1505 struct wpi_tx_data *data;
1506
1507 if ((desc->qid & 7) != 4)
1508 return; /* not a command ack */
1509
1510 data = &ring->data[desc->idx];
1511
1512 /* if the command was mapped in a mbuf, free it */
1513 if (data->m != NULL) {
1514 bus_dmamap_unload(sc->sc_dmat, data->map);
1515 m_freem(data->m);
1516 data->m = NULL;
1517 }
1518
1519 wakeup(&ring->cmd[desc->idx]);
1520 }
1521
1522 static void
1523 wpi_notif_intr(struct wpi_softc *sc)
1524 {
1525 struct ieee80211com *ic = &sc->sc_ic;
1526 struct ifnet *ifp = ic->ic_ifp;
1527 struct wpi_rx_desc *desc;
1528 struct wpi_rx_data *data;
1529 uint32_t hw;
1530
1531 hw = le32toh(sc->shared->next);
1532 while (sc->rxq.cur != hw) {
1533 data = &sc->rxq.data[sc->rxq.cur];
1534
1535 desc = mtod(data->m, struct wpi_rx_desc *);
1536
1537 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1538 "len=%d\n", desc->qid, desc->idx, desc->flags,
1539 desc->type, le32toh(desc->len)));
1540
1541 if (!(desc->qid & 0x80)) /* reply to a command */
1542 wpi_cmd_intr(sc, desc);
1543
1544 switch (desc->type) {
1545 case WPI_RX_DONE:
1546 /* a 802.11 frame was received */
1547 wpi_rx_intr(sc, desc, data);
1548 break;
1549
1550 case WPI_TX_DONE:
1551 /* a 802.11 frame has been transmitted */
1552 wpi_tx_intr(sc, desc);
1553 break;
1554
1555 case WPI_UC_READY:
1556 {
1557 struct wpi_ucode_info *uc =
1558 (struct wpi_ucode_info *)(desc + 1);
1559
1560 /* the microcontroller is ready */
1561 DPRINTF(("microcode alive notification version %x "
1562 "alive %x\n", le32toh(uc->version),
1563 le32toh(uc->valid)));
1564
1565 if (le32toh(uc->valid) != 1) {
1566 aprint_error_dev(sc->sc_dev,
1567 "microcontroller initialization failed\n");
1568 }
1569 break;
1570 }
1571 case WPI_STATE_CHANGED:
1572 {
1573 uint32_t *status = (uint32_t *)(desc + 1);
1574
1575 /* enabled/disabled notification */
1576 DPRINTF(("state changed to %x\n", le32toh(*status)));
1577
1578 if (le32toh(*status) & 1) {
1579 /* the radio button has to be pushed */
1580 aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1581 /* turn the interface down */
1582 ifp->if_flags &= ~IFF_UP;
1583 wpi_stop(ifp, 1);
1584 return; /* no further processing */
1585 }
1586 break;
1587 }
1588 case WPI_START_SCAN:
1589 {
1590 struct wpi_start_scan *scan =
1591 (struct wpi_start_scan *)(desc + 1);
1592
1593 DPRINTFN(2, ("scanning channel %d status %x\n",
1594 scan->chan, le32toh(scan->status)));
1595
1596 /* fix current channel */
1597 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1598 break;
1599 }
1600 case WPI_STOP_SCAN:
1601 {
1602 struct wpi_stop_scan *scan =
1603 (struct wpi_stop_scan *)(desc + 1);
1604
1605 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1606 scan->nchan, scan->status, scan->chan));
1607
1608 if (scan->status == 1 && scan->chan <= 14) {
1609 /*
1610 * We just finished scanning 802.11g channels,
1611 * start scanning 802.11a ones.
1612 */
1613 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1614 break;
1615 }
1616 sc->is_scanning = false;
1617 ieee80211_end_scan(ic);
1618 break;
1619 }
1620 }
1621
1622 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1623 }
1624
1625 /* tell the firmware what we have processed */
1626 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1627 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1628 }
1629
1630 static int
1631 wpi_intr(void *arg)
1632 {
1633 struct wpi_softc *sc = arg;
1634 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1635 uint32_t r;
1636
1637 r = WPI_READ(sc, WPI_INTR);
1638 if (r == 0 || r == 0xffffffff)
1639 return 0; /* not for us */
1640
1641 DPRINTFN(5, ("interrupt reg %x\n", r));
1642
1643 /* disable interrupts */
1644 WPI_WRITE(sc, WPI_MASK, 0);
1645 /* ack interrupts */
1646 WPI_WRITE(sc, WPI_INTR, r);
1647
1648 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1649 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1650 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1651 wpi_stop(sc->sc_ic.ic_ifp, 1);
1652 return 1;
1653 }
1654
1655 if (r & WPI_RX_INTR)
1656 wpi_notif_intr(sc);
1657
1658 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1659 wakeup(sc);
1660
1661 /* re-enable interrupts */
1662 if (ifp->if_flags & IFF_UP)
1663 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1664
1665 return 1;
1666 }
1667
1668 static uint8_t
1669 wpi_plcp_signal(int rate)
1670 {
1671 switch (rate) {
1672 /* CCK rates (returned values are device-dependent) */
1673 case 2: return 10;
1674 case 4: return 20;
1675 case 11: return 55;
1676 case 22: return 110;
1677
1678 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1679 /* R1-R4, (u)ral is R4-R1 */
1680 case 12: return 0xd;
1681 case 18: return 0xf;
1682 case 24: return 0x5;
1683 case 36: return 0x7;
1684 case 48: return 0x9;
1685 case 72: return 0xb;
1686 case 96: return 0x1;
1687 case 108: return 0x3;
1688
1689 /* unsupported rates (should not get there) */
1690 default: return 0;
1691 }
1692 }
1693
1694 /* quickly determine if a given rate is CCK or OFDM */
1695 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1696
1697 static int
1698 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1699 int ac)
1700 {
1701 struct ieee80211com *ic = &sc->sc_ic;
1702 struct wpi_tx_ring *ring = &sc->txq[ac];
1703 struct wpi_tx_desc *desc;
1704 struct wpi_tx_data *data;
1705 struct wpi_tx_cmd *cmd;
1706 struct wpi_cmd_data *tx;
1707 struct ieee80211_frame *wh;
1708 struct ieee80211_key *k;
1709 const struct chanAccParams *cap;
1710 struct mbuf *mnew;
1711 int i, error, rate, hdrlen, noack = 0;
1712
1713 desc = &ring->desc[ring->cur];
1714 data = &ring->data[ring->cur];
1715
1716 wh = mtod(m0, struct ieee80211_frame *);
1717
1718 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1719 cap = &ic->ic_wme.wme_chanParams;
1720 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1721 }
1722
1723 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1724 k = ieee80211_crypto_encap(ic, ni, m0);
1725 if (k == NULL) {
1726 m_freem(m0);
1727 return ENOBUFS;
1728 }
1729
1730 /* packet header may have moved, reset our local pointer */
1731 wh = mtod(m0, struct ieee80211_frame *);
1732 }
1733
1734 hdrlen = ieee80211_anyhdrsize(wh);
1735
1736 /* pickup a rate */
1737 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1738 IEEE80211_FC0_TYPE_MGT) {
1739 /* mgmt frames are sent at the lowest available bit-rate */
1740 rate = ni->ni_rates.rs_rates[0];
1741 } else {
1742 if (ic->ic_fixed_rate != -1) {
1743 rate = ic->ic_sup_rates[ic->ic_curmode].
1744 rs_rates[ic->ic_fixed_rate];
1745 } else
1746 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1747 }
1748 rate &= IEEE80211_RATE_VAL;
1749
1750
1751 #if NBPFILTER > 0
1752 if (sc->sc_drvbpf != NULL) {
1753 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1754
1755 tap->wt_flags = 0;
1756 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1757 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1758 tap->wt_rate = rate;
1759 tap->wt_hwqueue = ac;
1760 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1761 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1762
1763 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1764 }
1765 #endif
1766
1767 cmd = &ring->cmd[ring->cur];
1768 cmd->code = WPI_CMD_TX_DATA;
1769 cmd->flags = 0;
1770 cmd->qid = ring->qid;
1771 cmd->idx = ring->cur;
1772
1773 tx = (struct wpi_cmd_data *)cmd->data;
1774 tx->flags = 0;
1775
1776 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1777 tx->flags |= htole32(WPI_TX_NEED_ACK);
1778 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1779 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1780
1781 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1782
1783 /* retrieve destination node's id */
1784 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1785 WPI_ID_BSS;
1786
1787 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1788 IEEE80211_FC0_TYPE_MGT) {
1789 /* tell h/w to set timestamp in probe responses */
1790 if ((wh->i_fc[0] &
1791 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1792 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1793 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1794
1795 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1796 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1797 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1798 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1799 tx->timeout = htole16(3);
1800 else
1801 tx->timeout = htole16(2);
1802 } else
1803 tx->timeout = htole16(0);
1804
1805 tx->rate = wpi_plcp_signal(rate);
1806
1807 /* be very persistant at sending frames out */
1808 tx->rts_ntries = 7;
1809 tx->data_ntries = 15;
1810
1811 tx->ofdm_mask = 0xff;
1812 tx->cck_mask = 0xf;
1813 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1814
1815 tx->len = htole16(m0->m_pkthdr.len);
1816
1817 /* save and trim IEEE802.11 header */
1818 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1819 m_adj(m0, hdrlen);
1820
1821 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1822 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1823 if (error != 0 && error != EFBIG) {
1824 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1825 m_freem(m0);
1826 return error;
1827 }
1828 if (error != 0) {
1829 /* too many fragments, linearize */
1830 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1831 if (mnew == NULL) {
1832 m_freem(m0);
1833 return ENOMEM;
1834 }
1835
1836 M_COPY_PKTHDR(mnew, m0);
1837 if (m0->m_pkthdr.len > MHLEN) {
1838 MCLGET(mnew, M_DONTWAIT);
1839 if (!(mnew->m_flags & M_EXT)) {
1840 m_freem(m0);
1841 m_freem(mnew);
1842 return ENOMEM;
1843 }
1844 }
1845
1846 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1847 m_freem(m0);
1848 mnew->m_len = mnew->m_pkthdr.len;
1849 m0 = mnew;
1850
1851 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1852 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1853 if (error != 0) {
1854 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1855 error);
1856 m_freem(m0);
1857 return error;
1858 }
1859 }
1860
1861 data->m = m0;
1862 data->ni = ni;
1863
1864 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1865 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1866
1867 /* first scatter/gather segment is used by the tx data command */
1868 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1869 (1 + data->map->dm_nsegs) << 24);
1870 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1871 ring->cur * sizeof (struct wpi_tx_cmd));
1872 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1873 ((hdrlen + 3) & ~3));
1874
1875 for (i = 1; i <= data->map->dm_nsegs; i++) {
1876 desc->segs[i].addr =
1877 htole32(data->map->dm_segs[i - 1].ds_addr);
1878 desc->segs[i].len =
1879 htole32(data->map->dm_segs[i - 1].ds_len);
1880 }
1881
1882 ring->queued++;
1883
1884 /* kick ring */
1885 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1886 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1887
1888 return 0;
1889 }
1890
1891 static void
1892 wpi_start(struct ifnet *ifp)
1893 {
1894 struct wpi_softc *sc = ifp->if_softc;
1895 struct ieee80211com *ic = &sc->sc_ic;
1896 struct ieee80211_node *ni;
1897 struct ether_header *eh;
1898 struct mbuf *m0;
1899 int ac;
1900
1901 /*
1902 * net80211 may still try to send management frames even if the
1903 * IFF_RUNNING flag is not set...
1904 */
1905 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1906 return;
1907
1908 for (;;) {
1909 IF_DEQUEUE(&ic->ic_mgtq, m0);
1910 if (m0 != NULL) {
1911
1912 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1913 m0->m_pkthdr.rcvif = NULL;
1914
1915 /* management frames go into ring 0 */
1916 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1917 ifp->if_oerrors++;
1918 continue;
1919 }
1920 #if NBPFILTER > 0
1921 if (ic->ic_rawbpf != NULL)
1922 bpf_mtap(ic->ic_rawbpf, m0);
1923 #endif
1924 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1925 ifp->if_oerrors++;
1926 break;
1927 }
1928 } else {
1929 if (ic->ic_state != IEEE80211_S_RUN)
1930 break;
1931 IFQ_POLL(&ifp->if_snd, m0);
1932 if (m0 == NULL)
1933 break;
1934
1935 if (m0->m_len < sizeof (*eh) &&
1936 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1937 ifp->if_oerrors++;
1938 continue;
1939 }
1940 eh = mtod(m0, struct ether_header *);
1941 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1942 if (ni == NULL) {
1943 m_freem(m0);
1944 ifp->if_oerrors++;
1945 continue;
1946 }
1947
1948 /* classify mbuf so we can find which tx ring to use */
1949 if (ieee80211_classify(ic, m0, ni) != 0) {
1950 m_freem(m0);
1951 ieee80211_free_node(ni);
1952 ifp->if_oerrors++;
1953 continue;
1954 }
1955
1956 /* no QoS encapsulation for EAPOL frames */
1957 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1958 M_WME_GETAC(m0) : WME_AC_BE;
1959
1960 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1961 /* there is no place left in this ring */
1962 ifp->if_flags |= IFF_OACTIVE;
1963 break;
1964 }
1965 IFQ_DEQUEUE(&ifp->if_snd, m0);
1966 #if NBPFILTER > 0
1967 if (ifp->if_bpf != NULL)
1968 bpf_mtap(ifp->if_bpf, m0);
1969 #endif
1970 m0 = ieee80211_encap(ic, m0, ni);
1971 if (m0 == NULL) {
1972 ieee80211_free_node(ni);
1973 ifp->if_oerrors++;
1974 continue;
1975 }
1976 #if NBPFILTER > 0
1977 if (ic->ic_rawbpf != NULL)
1978 bpf_mtap(ic->ic_rawbpf, m0);
1979 #endif
1980 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
1981 ieee80211_free_node(ni);
1982 ifp->if_oerrors++;
1983 break;
1984 }
1985 }
1986
1987 sc->sc_tx_timer = 5;
1988 ifp->if_timer = 1;
1989 }
1990 }
1991
1992 static void
1993 wpi_watchdog(struct ifnet *ifp)
1994 {
1995 struct wpi_softc *sc = ifp->if_softc;
1996
1997 ifp->if_timer = 0;
1998
1999 if (sc->sc_tx_timer > 0) {
2000 if (--sc->sc_tx_timer == 0) {
2001 aprint_error_dev(sc->sc_dev, "device timeout\n");
2002 ifp->if_oerrors++;
2003 ifp->if_flags &= ~IFF_UP;
2004 wpi_stop(ifp, 1);
2005 return;
2006 }
2007 ifp->if_timer = 1;
2008 }
2009
2010 ieee80211_watchdog(&sc->sc_ic);
2011 }
2012
2013 static int
2014 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2015 {
2016 #define IS_RUNNING(ifp) \
2017 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2018
2019 struct wpi_softc *sc = ifp->if_softc;
2020 struct ieee80211com *ic = &sc->sc_ic;
2021 int s, error = 0;
2022
2023 s = splnet();
2024
2025 switch (cmd) {
2026 case SIOCSIFFLAGS:
2027 if (ifp->if_flags & IFF_UP) {
2028 if (!(ifp->if_flags & IFF_RUNNING))
2029 wpi_init(ifp);
2030 } else {
2031 if (ifp->if_flags & IFF_RUNNING)
2032 wpi_stop(ifp, 1);
2033 }
2034 break;
2035
2036 case SIOCADDMULTI:
2037 case SIOCDELMULTI:
2038 /* XXX no h/w multicast filter? --dyoung */
2039 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2040 /* setup multicast filter, etc */
2041 error = 0;
2042 }
2043 break;
2044
2045 default:
2046 error = ieee80211_ioctl(ic, cmd, data);
2047 }
2048
2049 if (error == ENETRESET) {
2050 if (IS_RUNNING(ifp) &&
2051 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2052 wpi_init(ifp);
2053 error = 0;
2054 }
2055
2056 splx(s);
2057 return error;
2058
2059 #undef IS_RUNNING
2060 }
2061
2062 /*
2063 * Extract various information from EEPROM.
2064 */
2065 static void
2066 wpi_read_eeprom(struct wpi_softc *sc)
2067 {
2068 struct ieee80211com *ic = &sc->sc_ic;
2069 char domain[4];
2070 int i;
2071
2072 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2073 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2074 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2075
2076 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2077 sc->type));
2078
2079 /* read and print regulatory domain */
2080 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2081 aprint_normal(", %.4s", domain);
2082
2083 /* read and print MAC address */
2084 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2085 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2086
2087 /* read the list of authorized channels */
2088 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2089 wpi_read_eeprom_channels(sc, i);
2090
2091 /* read the list of power groups */
2092 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2093 wpi_read_eeprom_group(sc, i);
2094 }
2095
2096 static void
2097 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2098 {
2099 struct ieee80211com *ic = &sc->sc_ic;
2100 const struct wpi_chan_band *band = &wpi_bands[n];
2101 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2102 int chan, i;
2103
2104 wpi_read_prom_data(sc, band->addr, channels,
2105 band->nchan * sizeof (struct wpi_eeprom_chan));
2106
2107 for (i = 0; i < band->nchan; i++) {
2108 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2109 continue;
2110
2111 chan = band->chan[i];
2112
2113 if (n == 0) { /* 2GHz band */
2114 ic->ic_channels[chan].ic_freq =
2115 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2116 ic->ic_channels[chan].ic_flags =
2117 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2118 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2119
2120 } else { /* 5GHz band */
2121 /*
2122 * Some 3945abg adapters support channels 7, 8, 11
2123 * and 12 in the 2GHz *and* 5GHz bands.
2124 * Because of limitations in our net80211(9) stack,
2125 * we can't support these channels in 5GHz band.
2126 */
2127 if (chan <= 14)
2128 continue;
2129
2130 ic->ic_channels[chan].ic_freq =
2131 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2132 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2133 }
2134
2135 /* is active scan allowed on this channel? */
2136 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2137 ic->ic_channels[chan].ic_flags |=
2138 IEEE80211_CHAN_PASSIVE;
2139 }
2140
2141 /* save maximum allowed power for this channel */
2142 sc->maxpwr[chan] = channels[i].maxpwr;
2143
2144 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2145 chan, channels[i].flags, sc->maxpwr[chan]));
2146 }
2147 }
2148
2149 static void
2150 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2151 {
2152 struct wpi_power_group *group = &sc->groups[n];
2153 struct wpi_eeprom_group rgroup;
2154 int i;
2155
2156 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2157 sizeof rgroup);
2158
2159 /* save power group information */
2160 group->chan = rgroup.chan;
2161 group->maxpwr = rgroup.maxpwr;
2162 /* temperature at which the samples were taken */
2163 group->temp = (int16_t)le16toh(rgroup.temp);
2164
2165 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2166 group->chan, group->maxpwr, group->temp));
2167
2168 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2169 group->samples[i].index = rgroup.samples[i].index;
2170 group->samples[i].power = rgroup.samples[i].power;
2171
2172 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2173 group->samples[i].index, group->samples[i].power));
2174 }
2175 }
2176
2177 /*
2178 * Send a command to the firmware.
2179 */
2180 static int
2181 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2182 {
2183 struct wpi_tx_ring *ring = &sc->cmdq;
2184 struct wpi_tx_desc *desc;
2185 struct wpi_tx_cmd *cmd;
2186
2187 KASSERT(size <= sizeof cmd->data);
2188
2189 desc = &ring->desc[ring->cur];
2190 cmd = &ring->cmd[ring->cur];
2191
2192 cmd->code = code;
2193 cmd->flags = 0;
2194 cmd->qid = ring->qid;
2195 cmd->idx = ring->cur;
2196 memcpy(cmd->data, buf, size);
2197
2198 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2199 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2200 ring->cur * sizeof (struct wpi_tx_cmd));
2201 desc->segs[0].len = htole32(4 + size);
2202
2203 /* kick cmd ring */
2204 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2205 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2206
2207 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2208 }
2209
2210 static int
2211 wpi_wme_update(struct ieee80211com *ic)
2212 {
2213 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2214 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2215 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2216 const struct wmeParams *wmep;
2217 struct wpi_wme_setup wme;
2218 int ac;
2219
2220 /* don't override default WME values if WME is not actually enabled */
2221 if (!(ic->ic_flags & IEEE80211_F_WME))
2222 return 0;
2223
2224 wme.flags = 0;
2225 for (ac = 0; ac < WME_NUM_AC; ac++) {
2226 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2227 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2228 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2229 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2230 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2231
2232 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2233 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2234 wme.ac[ac].cwmax, wme.ac[ac].txop));
2235 }
2236
2237 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2238 #undef WPI_USEC
2239 #undef WPI_EXP2
2240 }
2241
2242 /*
2243 * Configure h/w multi-rate retries.
2244 */
2245 static int
2246 wpi_mrr_setup(struct wpi_softc *sc)
2247 {
2248 struct ieee80211com *ic = &sc->sc_ic;
2249 struct wpi_mrr_setup mrr;
2250 int i, error;
2251
2252 /* CCK rates (not used with 802.11a) */
2253 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2254 mrr.rates[i].flags = 0;
2255 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2256 /* fallback to the immediate lower CCK rate (if any) */
2257 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2258 /* try one time at this rate before falling back to "next" */
2259 mrr.rates[i].ntries = 1;
2260 }
2261
2262 /* OFDM rates (not used with 802.11b) */
2263 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2264 mrr.rates[i].flags = 0;
2265 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2266 /* fallback to the immediate lower rate (if any) */
2267 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2268 mrr.rates[i].next = (i == WPI_OFDM6) ?
2269 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2270 WPI_OFDM6 : WPI_CCK2) :
2271 i - 1;
2272 /* try one time at this rate before falling back to "next" */
2273 mrr.rates[i].ntries = 1;
2274 }
2275
2276 /* setup MRR for control frames */
2277 mrr.which = htole32(WPI_MRR_CTL);
2278 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2279 if (error != 0) {
2280 aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2281 return error;
2282 }
2283
2284 /* setup MRR for data frames */
2285 mrr.which = htole32(WPI_MRR_DATA);
2286 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2287 if (error != 0) {
2288 aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2289 return error;
2290 }
2291
2292 return 0;
2293 }
2294
2295 static void
2296 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2297 {
2298 struct wpi_cmd_led led;
2299
2300 led.which = which;
2301 led.unit = htole32(100000); /* on/off in unit of 100ms */
2302 led.off = off;
2303 led.on = on;
2304
2305 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2306 }
2307
2308 static void
2309 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2310 {
2311 struct wpi_cmd_tsf tsf;
2312 uint64_t val, mod;
2313
2314 memset(&tsf, 0, sizeof tsf);
2315 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2316 tsf.bintval = htole16(ni->ni_intval);
2317 tsf.lintval = htole16(10);
2318
2319 /* compute remaining time until next beacon */
2320 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2321 mod = le64toh(tsf.tstamp) % val;
2322 tsf.binitval = htole32((uint32_t)(val - mod));
2323
2324 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2325 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2326
2327 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2328 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2329 }
2330
2331 /*
2332 * Update Tx power to match what is defined for channel `c'.
2333 */
2334 static int
2335 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2336 {
2337 struct ieee80211com *ic = &sc->sc_ic;
2338 struct wpi_power_group *group;
2339 struct wpi_cmd_txpower txpower;
2340 u_int chan;
2341 int i;
2342
2343 /* get channel number */
2344 chan = ieee80211_chan2ieee(ic, c);
2345
2346 /* find the power group to which this channel belongs */
2347 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2348 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2349 if (chan <= group->chan)
2350 break;
2351 } else
2352 group = &sc->groups[0];
2353
2354 memset(&txpower, 0, sizeof txpower);
2355 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2356 txpower.chan = htole16(chan);
2357
2358 /* set Tx power for all OFDM and CCK rates */
2359 for (i = 0; i <= 11 ; i++) {
2360 /* retrieve Tx power for this channel/rate combination */
2361 int idx = wpi_get_power_index(sc, group, c,
2362 wpi_ridx_to_rate[i]);
2363
2364 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2365
2366 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2367 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2368 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2369 } else {
2370 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2371 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2372 }
2373 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2374 wpi_ridx_to_rate[i], idx));
2375 }
2376
2377 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2378 }
2379
2380 /*
2381 * Determine Tx power index for a given channel/rate combination.
2382 * This takes into account the regulatory information from EEPROM and the
2383 * current temperature.
2384 */
2385 static int
2386 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2387 struct ieee80211_channel *c, int rate)
2388 {
2389 /* fixed-point arithmetic division using a n-bit fractional part */
2390 #define fdivround(a, b, n) \
2391 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2392
2393 /* linear interpolation */
2394 #define interpolate(x, x1, y1, x2, y2, n) \
2395 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2396
2397 struct ieee80211com *ic = &sc->sc_ic;
2398 struct wpi_power_sample *sample;
2399 int pwr, idx;
2400 u_int chan;
2401
2402 /* get channel number */
2403 chan = ieee80211_chan2ieee(ic, c);
2404
2405 /* default power is group's maximum power - 3dB */
2406 pwr = group->maxpwr / 2;
2407
2408 /* decrease power for highest OFDM rates to reduce distortion */
2409 switch (rate) {
2410 case 72: /* 36Mb/s */
2411 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2412 break;
2413 case 96: /* 48Mb/s */
2414 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2415 break;
2416 case 108: /* 54Mb/s */
2417 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2418 break;
2419 }
2420
2421 /* never exceed channel's maximum allowed Tx power */
2422 pwr = min(pwr, sc->maxpwr[chan]);
2423
2424 /* retrieve power index into gain tables from samples */
2425 for (sample = group->samples; sample < &group->samples[3]; sample++)
2426 if (pwr > sample[1].power)
2427 break;
2428 /* fixed-point linear interpolation using a 19-bit fractional part */
2429 idx = interpolate(pwr, sample[0].power, sample[0].index,
2430 sample[1].power, sample[1].index, 19);
2431
2432 /*
2433 * Adjust power index based on current temperature:
2434 * - if cooler than factory-calibrated: decrease output power
2435 * - if warmer than factory-calibrated: increase output power
2436 */
2437 idx -= (sc->temp - group->temp) * 11 / 100;
2438
2439 /* decrease power for CCK rates (-5dB) */
2440 if (!WPI_RATE_IS_OFDM(rate))
2441 idx += 10;
2442
2443 /* keep power index in a valid range */
2444 if (idx < 0)
2445 return 0;
2446 if (idx > WPI_MAX_PWR_INDEX)
2447 return WPI_MAX_PWR_INDEX;
2448 return idx;
2449
2450 #undef interpolate
2451 #undef fdivround
2452 }
2453
2454 /*
2455 * Build a beacon frame that the firmware will broadcast periodically in
2456 * IBSS or HostAP modes.
2457 */
2458 static int
2459 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2460 {
2461 struct ieee80211com *ic = &sc->sc_ic;
2462 struct wpi_tx_ring *ring = &sc->cmdq;
2463 struct wpi_tx_desc *desc;
2464 struct wpi_tx_data *data;
2465 struct wpi_tx_cmd *cmd;
2466 struct wpi_cmd_beacon *bcn;
2467 struct ieee80211_beacon_offsets bo;
2468 struct mbuf *m0;
2469 int error;
2470
2471 desc = &ring->desc[ring->cur];
2472 data = &ring->data[ring->cur];
2473
2474 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2475 if (m0 == NULL) {
2476 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2477 return ENOMEM;
2478 }
2479
2480 cmd = &ring->cmd[ring->cur];
2481 cmd->code = WPI_CMD_SET_BEACON;
2482 cmd->flags = 0;
2483 cmd->qid = ring->qid;
2484 cmd->idx = ring->cur;
2485
2486 bcn = (struct wpi_cmd_beacon *)cmd->data;
2487 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2488 bcn->id = WPI_ID_BROADCAST;
2489 bcn->ofdm_mask = 0xff;
2490 bcn->cck_mask = 0x0f;
2491 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2492 bcn->len = htole16(m0->m_pkthdr.len);
2493 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2494 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2495 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2496
2497 /* save and trim IEEE802.11 header */
2498 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2499 m_adj(m0, sizeof (struct ieee80211_frame));
2500
2501 /* assume beacon frame is contiguous */
2502 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2503 BUS_DMA_READ | BUS_DMA_NOWAIT);
2504 if (error) {
2505 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2506 m_freem(m0);
2507 return error;
2508 }
2509
2510 data->m = m0;
2511
2512 /* first scatter/gather segment is used by the beacon command */
2513 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2514 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2515 ring->cur * sizeof (struct wpi_tx_cmd));
2516 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2517 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2518 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2519
2520 /* kick cmd ring */
2521 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2522 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2523
2524 return 0;
2525 }
2526
2527 static int
2528 wpi_auth(struct wpi_softc *sc)
2529 {
2530 struct ieee80211com *ic = &sc->sc_ic;
2531 struct ieee80211_node *ni = ic->ic_bss;
2532 struct wpi_node_info node;
2533 int error;
2534
2535 /* update adapter's configuration */
2536 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2537 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2538 sc->config.flags = htole32(WPI_CONFIG_TSF);
2539 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2540 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2541 WPI_CONFIG_24GHZ);
2542 }
2543 switch (ic->ic_curmode) {
2544 case IEEE80211_MODE_11A:
2545 sc->config.cck_mask = 0;
2546 sc->config.ofdm_mask = 0x15;
2547 break;
2548 case IEEE80211_MODE_11B:
2549 sc->config.cck_mask = 0x03;
2550 sc->config.ofdm_mask = 0;
2551 break;
2552 default: /* assume 802.11b/g */
2553 sc->config.cck_mask = 0x0f;
2554 sc->config.ofdm_mask = 0x15;
2555 }
2556
2557 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2558 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2559 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2560 sizeof (struct wpi_config), 1);
2561 if (error != 0) {
2562 aprint_error_dev(sc->sc_dev, "could not configure\n");
2563 return error;
2564 }
2565
2566 /* configuration has changed, set Tx power accordingly */
2567 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2568 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2569 return error;
2570 }
2571
2572 /* add default node */
2573 memset(&node, 0, sizeof node);
2574 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2575 node.id = WPI_ID_BSS;
2576 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2577 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2578 node.action = htole32(WPI_ACTION_SET_RATE);
2579 node.antenna = WPI_ANTENNA_BOTH;
2580 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2581 if (error != 0) {
2582 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2583 return error;
2584 }
2585
2586 return 0;
2587 }
2588
2589 /*
2590 * Send a scan request to the firmware. Since this command is huge, we map it
2591 * into a mbuf instead of using the pre-allocated set of commands.
2592 */
2593 static int
2594 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2595 {
2596 struct ieee80211com *ic = &sc->sc_ic;
2597 struct wpi_tx_ring *ring = &sc->cmdq;
2598 struct wpi_tx_desc *desc;
2599 struct wpi_tx_data *data;
2600 struct wpi_tx_cmd *cmd;
2601 struct wpi_scan_hdr *hdr;
2602 struct wpi_scan_chan *chan;
2603 struct ieee80211_frame *wh;
2604 struct ieee80211_rateset *rs;
2605 struct ieee80211_channel *c;
2606 enum ieee80211_phymode mode;
2607 uint8_t *frm;
2608 int nrates, pktlen, error;
2609
2610 desc = &ring->desc[ring->cur];
2611 data = &ring->data[ring->cur];
2612
2613 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2614 if (data->m == NULL) {
2615 aprint_error_dev(sc->sc_dev,
2616 "could not allocate mbuf for scan command\n");
2617 return ENOMEM;
2618 }
2619
2620 MCLGET(data->m, M_DONTWAIT);
2621 if (!(data->m->m_flags & M_EXT)) {
2622 m_freem(data->m);
2623 data->m = NULL;
2624 aprint_error_dev(sc->sc_dev,
2625 "could not allocate mbuf for scan command\n");
2626 return ENOMEM;
2627 }
2628
2629 cmd = mtod(data->m, struct wpi_tx_cmd *);
2630 cmd->code = WPI_CMD_SCAN;
2631 cmd->flags = 0;
2632 cmd->qid = ring->qid;
2633 cmd->idx = ring->cur;
2634
2635 hdr = (struct wpi_scan_hdr *)cmd->data;
2636 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2637 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2638 hdr->id = WPI_ID_BROADCAST;
2639 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2640
2641 /*
2642 * Move to the next channel if no packets are received within 5 msecs
2643 * after sending the probe request (this helps to reduce the duration
2644 * of active scans).
2645 */
2646 hdr->quiet = htole16(5); /* timeout in milliseconds */
2647 hdr->plcp_threshold = htole16(1); /* min # of packets */
2648
2649 if (flags & IEEE80211_CHAN_A) {
2650 hdr->crc_threshold = htole16(1);
2651 /* send probe requests at 6Mbps */
2652 hdr->rate = wpi_plcp_signal(12);
2653 } else {
2654 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2655 /* send probe requests at 1Mbps */
2656 hdr->rate = wpi_plcp_signal(2);
2657 }
2658
2659 /* for directed scans, firmware inserts the essid IE itself */
2660 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2661 hdr->essid[0].len = ic->ic_des_esslen;
2662 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2663
2664 /*
2665 * Build a probe request frame. Most of the following code is a
2666 * copy & paste of what is done in net80211.
2667 */
2668 wh = (struct ieee80211_frame *)(hdr + 1);
2669 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2670 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2671 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2672 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2673 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2674 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2675 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2676 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2677
2678 frm = (uint8_t *)(wh + 1);
2679
2680 /* add empty essid IE (firmware generates it for directed scans) */
2681 *frm++ = IEEE80211_ELEMID_SSID;
2682 *frm++ = 0;
2683
2684 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2685 rs = &ic->ic_sup_rates[mode];
2686
2687 /* add supported rates IE */
2688 *frm++ = IEEE80211_ELEMID_RATES;
2689 nrates = rs->rs_nrates;
2690 if (nrates > IEEE80211_RATE_SIZE)
2691 nrates = IEEE80211_RATE_SIZE;
2692 *frm++ = nrates;
2693 memcpy(frm, rs->rs_rates, nrates);
2694 frm += nrates;
2695
2696 /* add supported xrates IE */
2697 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2698 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2699 *frm++ = IEEE80211_ELEMID_XRATES;
2700 *frm++ = nrates;
2701 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2702 frm += nrates;
2703 }
2704
2705 /* setup length of probe request */
2706 hdr->paylen = htole16(frm - (uint8_t *)wh);
2707
2708 chan = (struct wpi_scan_chan *)frm;
2709 for (c = &ic->ic_channels[1];
2710 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2711 if ((c->ic_flags & flags) != flags)
2712 continue;
2713
2714 chan->chan = ieee80211_chan2ieee(ic, c);
2715 chan->flags = 0;
2716 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2717 chan->flags |= WPI_CHAN_ACTIVE;
2718 if (ic->ic_des_esslen != 0)
2719 chan->flags |= WPI_CHAN_DIRECT;
2720 }
2721 chan->dsp_gain = 0x6e;
2722 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2723 chan->rf_gain = 0x3b;
2724 chan->active = htole16(10);
2725 chan->passive = htole16(110);
2726 } else {
2727 chan->rf_gain = 0x28;
2728 chan->active = htole16(20);
2729 chan->passive = htole16(120);
2730 }
2731 hdr->nchan++;
2732 chan++;
2733
2734 frm += sizeof (struct wpi_scan_chan);
2735 }
2736 hdr->len = htole16(frm - (uint8_t *)hdr);
2737 pktlen = frm - (uint8_t *)cmd;
2738
2739 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2740 NULL, BUS_DMA_NOWAIT);
2741 if (error) {
2742 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2743 m_freem(data->m);
2744 data->m = NULL;
2745 return error;
2746 }
2747
2748 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2749 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2750 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2751
2752 /* kick cmd ring */
2753 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2754 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2755
2756 return 0; /* will be notified async. of failure/success */
2757 }
2758
2759 static int
2760 wpi_config(struct wpi_softc *sc)
2761 {
2762 struct ieee80211com *ic = &sc->sc_ic;
2763 struct ifnet *ifp = ic->ic_ifp;
2764 struct wpi_power power;
2765 struct wpi_bluetooth bluetooth;
2766 struct wpi_node_info node;
2767 int error;
2768
2769 memset(&power, 0, sizeof power);
2770 power.flags = htole32(WPI_POWER_CAM | 0x8);
2771 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2772 if (error != 0) {
2773 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2774 return error;
2775 }
2776
2777 /* configure bluetooth coexistence */
2778 memset(&bluetooth, 0, sizeof bluetooth);
2779 bluetooth.flags = 3;
2780 bluetooth.lead = 0xaa;
2781 bluetooth.kill = 1;
2782 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2783 0);
2784 if (error != 0) {
2785 aprint_error_dev(sc->sc_dev,
2786 "could not configure bluetooth coexistence\n");
2787 return error;
2788 }
2789
2790 /* configure adapter */
2791 memset(&sc->config, 0, sizeof (struct wpi_config));
2792 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2793 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2794 /*set default channel*/
2795 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2796 sc->config.flags = htole32(WPI_CONFIG_TSF);
2797 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2798 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2799 WPI_CONFIG_24GHZ);
2800 }
2801 sc->config.filter = 0;
2802 switch (ic->ic_opmode) {
2803 case IEEE80211_M_STA:
2804 sc->config.mode = WPI_MODE_STA;
2805 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2806 break;
2807 case IEEE80211_M_IBSS:
2808 case IEEE80211_M_AHDEMO:
2809 sc->config.mode = WPI_MODE_IBSS;
2810 break;
2811 case IEEE80211_M_HOSTAP:
2812 sc->config.mode = WPI_MODE_HOSTAP;
2813 break;
2814 case IEEE80211_M_MONITOR:
2815 sc->config.mode = WPI_MODE_MONITOR;
2816 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2817 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2818 break;
2819 }
2820 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2821 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2822 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2823 sizeof (struct wpi_config), 0);
2824 if (error != 0) {
2825 aprint_error_dev(sc->sc_dev, "configure command failed\n");
2826 return error;
2827 }
2828
2829 /* configuration has changed, set Tx power accordingly */
2830 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2831 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2832 return error;
2833 }
2834
2835 /* add broadcast node */
2836 memset(&node, 0, sizeof node);
2837 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2838 node.id = WPI_ID_BROADCAST;
2839 node.rate = wpi_plcp_signal(2);
2840 node.action = htole32(WPI_ACTION_SET_RATE);
2841 node.antenna = WPI_ANTENNA_BOTH;
2842 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2843 if (error != 0) {
2844 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2845 return error;
2846 }
2847
2848 if ((error = wpi_mrr_setup(sc)) != 0) {
2849 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2850 return error;
2851 }
2852
2853 return 0;
2854 }
2855
2856 static void
2857 wpi_stop_master(struct wpi_softc *sc)
2858 {
2859 uint32_t tmp;
2860 int ntries;
2861
2862 tmp = WPI_READ(sc, WPI_RESET);
2863 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2864
2865 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2866 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2867 return; /* already asleep */
2868
2869 for (ntries = 0; ntries < 100; ntries++) {
2870 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2871 break;
2872 DELAY(10);
2873 }
2874 if (ntries == 100) {
2875 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2876 }
2877 }
2878
2879 static int
2880 wpi_power_up(struct wpi_softc *sc)
2881 {
2882 uint32_t tmp;
2883 int ntries;
2884
2885 wpi_mem_lock(sc);
2886 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2887 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2888 wpi_mem_unlock(sc);
2889
2890 for (ntries = 0; ntries < 5000; ntries++) {
2891 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2892 break;
2893 DELAY(10);
2894 }
2895 if (ntries == 5000) {
2896 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2897 return ETIMEDOUT;
2898 }
2899 return 0;
2900 }
2901
2902 static int
2903 wpi_reset(struct wpi_softc *sc)
2904 {
2905 uint32_t tmp;
2906 int ntries;
2907
2908 /* clear any pending interrupts */
2909 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2910
2911 tmp = WPI_READ(sc, WPI_PLL_CTL);
2912 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2913
2914 tmp = WPI_READ(sc, WPI_CHICKEN);
2915 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2916
2917 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2918 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2919
2920 /* wait for clock stabilization */
2921 for (ntries = 0; ntries < 1000; ntries++) {
2922 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2923 break;
2924 DELAY(10);
2925 }
2926 if (ntries == 1000) {
2927 aprint_error_dev(sc->sc_dev,
2928 "timeout waiting for clock stabilization\n");
2929 return ETIMEDOUT;
2930 }
2931
2932 /* initialize EEPROM */
2933 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2934 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2935 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2936 return EIO;
2937 }
2938 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2939
2940 return 0;
2941 }
2942
2943 static void
2944 wpi_hw_config(struct wpi_softc *sc)
2945 {
2946 uint32_t rev, hw;
2947
2948 /* voodoo from the reference driver */
2949 hw = WPI_READ(sc, WPI_HWCONFIG);
2950
2951 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2952 rev = PCI_REVISION(rev);
2953 if ((rev & 0xc0) == 0x40)
2954 hw |= WPI_HW_ALM_MB;
2955 else if (!(rev & 0x80))
2956 hw |= WPI_HW_ALM_MM;
2957
2958 if (sc->cap == 0x80)
2959 hw |= WPI_HW_SKU_MRC;
2960
2961 hw &= ~WPI_HW_REV_D;
2962 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2963 hw |= WPI_HW_REV_D;
2964
2965 if (sc->type > 1)
2966 hw |= WPI_HW_TYPE_B;
2967
2968 DPRINTF(("setting h/w config %x\n", hw));
2969 WPI_WRITE(sc, WPI_HWCONFIG, hw);
2970 }
2971
2972 static int
2973 wpi_init(struct ifnet *ifp)
2974 {
2975 struct wpi_softc *sc = ifp->if_softc;
2976 struct ieee80211com *ic = &sc->sc_ic;
2977 uint32_t tmp;
2978 int qid, ntries, error;
2979
2980 wpi_stop(ifp,1);
2981 (void)wpi_reset(sc);
2982
2983 wpi_mem_lock(sc);
2984 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2985 DELAY(20);
2986 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
2987 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
2988 wpi_mem_unlock(sc);
2989
2990 (void)wpi_power_up(sc);
2991 wpi_hw_config(sc);
2992
2993 /* init Rx ring */
2994 wpi_mem_lock(sc);
2995 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
2996 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
2997 offsetof(struct wpi_shared, next));
2998 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
2999 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3000 wpi_mem_unlock(sc);
3001
3002 /* init Tx rings */
3003 wpi_mem_lock(sc);
3004 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3005 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3006 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3007 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3008 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3009 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3010 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3011
3012 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3013 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3014
3015 for (qid = 0; qid < 6; qid++) {
3016 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3017 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3018 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3019 }
3020 wpi_mem_unlock(sc);
3021
3022 /* clear "radio off" and "disable command" bits (reversed logic) */
3023 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3024 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3025
3026 /* clear any pending interrupts */
3027 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3028 /* enable interrupts */
3029 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3030
3031 /* not sure why/if this is necessary... */
3032 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3033 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3034
3035 if ((error = wpi_load_firmware(sc)) != 0) {
3036 aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3037 goto fail1;
3038 }
3039
3040 /* wait for thermal sensors to calibrate */
3041 for (ntries = 0; ntries < 1000; ntries++) {
3042 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3043 break;
3044 DELAY(10);
3045 }
3046 if (ntries == 1000) {
3047 aprint_error_dev(sc->sc_dev,
3048 "timeout waiting for thermal sensors calibration\n");
3049 error = ETIMEDOUT;
3050 goto fail1;
3051 }
3052
3053 DPRINTF(("temperature %d\n", sc->temp));
3054
3055 if ((error = wpi_config(sc)) != 0) {
3056 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3057 goto fail1;
3058 }
3059
3060 ifp->if_flags &= ~IFF_OACTIVE;
3061 ifp->if_flags |= IFF_RUNNING;
3062
3063 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3064 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3065 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3066 }
3067 else
3068 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3069
3070 return 0;
3071
3072 fail1: wpi_stop(ifp, 1);
3073 return error;
3074 }
3075
3076
3077 static void
3078 wpi_stop(struct ifnet *ifp, int disable)
3079 {
3080 struct wpi_softc *sc = ifp->if_softc;
3081 struct ieee80211com *ic = &sc->sc_ic;
3082 uint32_t tmp;
3083 int ac;
3084
3085 ifp->if_timer = sc->sc_tx_timer = 0;
3086 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3087
3088 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3089
3090 /* disable interrupts */
3091 WPI_WRITE(sc, WPI_MASK, 0);
3092 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3093 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3094 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3095
3096 wpi_mem_lock(sc);
3097 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3098 wpi_mem_unlock(sc);
3099
3100 /* reset all Tx rings */
3101 for (ac = 0; ac < 4; ac++)
3102 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3103 wpi_reset_tx_ring(sc, &sc->cmdq);
3104
3105 /* reset Rx ring */
3106 wpi_reset_rx_ring(sc, &sc->rxq);
3107
3108 wpi_mem_lock(sc);
3109 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3110 wpi_mem_unlock(sc);
3111
3112 DELAY(5);
3113
3114 wpi_stop_master(sc);
3115
3116 tmp = WPI_READ(sc, WPI_RESET);
3117 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3118 }
3119
3120 static bool
3121 wpi_resume(device_t dv)
3122 {
3123 struct wpi_softc *sc = device_private(dv);
3124
3125 pci_disable_retry(sc->sc_pct, sc->sc_pcitag);
3126 (void)wpi_reset(sc);
3127
3128 return true;
3129 }
3130