if_wpi.c revision 1.2 1 /* $NetBSD: if_wpi.c,v 1.2 2006/08/13 03:52:33 oster Exp $ */
2
3 /*-
4 * Copyright (c) 2006
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.2 2006/08/13 03:52:33 oster Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39
40 #include <machine/bus.h>
41 #include <machine/endian.h>
42 #include <machine/intr.h>
43
44 #include <dev/pci/pcireg.h>
45 #include <dev/pci/pcivar.h>
46 #include <dev/pci/pcidevs.h>
47
48 #if NBPFILTER > 0
49 #include <net/bpf.h>
50 #endif
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_ether.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_radiotap.h>
60
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65
66 #include <dev/firmload.h>
67
68 #include <dev/pci/if_wpireg.h>
69 #include <dev/pci/if_wpivar.h>
70
71 #ifdef WPI_DEBUG
72 #define DPRINTF(x) if (wpi_debug > 0) printf x
73 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
74 int wpi_debug = 1;
75 #else
76 #define DPRINTF(x)
77 #define DPRINTFN(n, x)
78 #endif
79
80 /*
81 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
82 */
83 static const struct ieee80211_rateset wpi_rateset_11a =
84 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
85
86 static const struct ieee80211_rateset wpi_rateset_11b =
87 { 4, { 2, 4, 11, 22 } };
88
89 static const struct ieee80211_rateset wpi_rateset_11g =
90 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
91
92 static const uint8_t wpi_ridx_to_plcp[] = {
93 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, /* OFDM R1-R4 */
94 10, 20, 55, 110 /* CCK */
95 };
96
97 static int wpi_match(struct device *, struct cfdata *, void *);
98 static void wpi_attach(struct device *, struct device *, void *);
99 static int wpi_detach(struct device*, int);
100 static void wpi_power(int, void *);
101 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
102 void **, bus_size_t, bus_size_t, int);
103 static void wpi_dma_contig_free(struct wpi_softc *, struct wpi_dma_info *);
104 static int wpi_alloc_shared(struct wpi_softc *);
105 static void wpi_free_shared(struct wpi_softc *);
106 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
107 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
108 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
109 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
110 int);
111 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
112 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
113 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
114 static int wpi_media_change(struct ifnet *);
115 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
116 static void wpi_mem_lock(struct wpi_softc *);
117 static void wpi_mem_unlock(struct wpi_softc *);
118 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
119 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
120 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
121 const uint32_t *, int);
122 static uint16_t wpi_read_prom_word(struct wpi_softc *, uint32_t);
123 static int wpi_load_firmware(struct wpi_softc *, uint32_t, const char *,
124 int);
125 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
126 struct wpi_rx_data *);
127 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
128 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
129 static void wpi_notif_intr(struct wpi_softc *);
130 static int wpi_intr(void *);
131 static uint8_t wpi_plcp_signal(int);
132 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
133 struct ieee80211_node *, int);
134 static void wpi_start(struct ifnet *);
135 static void wpi_watchdog(struct ifnet *);
136 static int wpi_ioctl(struct ifnet *, u_long, caddr_t);
137 static void wpi_read_eeprom(struct wpi_softc *);
138 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
139 static int wpi_wme_update(struct ieee80211com *);
140 static int wpi_mrr_setup(struct wpi_softc *);
141 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
142 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
143 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
144 static int wpi_auth(struct wpi_softc *);
145 static int wpi_scan(struct wpi_softc *, uint16_t);
146 static int wpi_config(struct wpi_softc *);
147 static void wpi_stop_master(struct wpi_softc *);
148 static int wpi_power_up(struct wpi_softc *);
149 static int wpi_reset(struct wpi_softc *);
150 static void wpi_hw_config(struct wpi_softc *);
151 static int wpi_init(struct ifnet *);
152 static void wpi_stop(struct ifnet *, int);
153
154 /* rate control algorithm: should be moved to net80211 */
155 static void wpi_amrr_init(struct wpi_amrr *);
156 static void wpi_amrr_timeout(void *);
157 static void wpi_amrr_ratectl(void *, struct ieee80211_node *);
158
159 CFATTACH_DECL(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
160 wpi_detach, NULL);
161
162 static int
163 wpi_match(struct device *parent, struct cfdata *match, void *aux)
164 {
165 struct pci_attach_args *pa = aux;
166
167 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
168 return 0;
169
170 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
171 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
172 return 1;
173
174 return 0;
175 }
176
177 /* Base Address Register */
178 #define WPI_PCI_BAR0 0x10
179
180 static void
181 wpi_attach(struct device *parent, struct device *self, void *aux)
182 {
183 struct wpi_softc *sc = (struct wpi_softc *)self;
184 struct ieee80211com *ic = &sc->sc_ic;
185 struct ifnet *ifp = &sc->sc_ec.ec_if;
186 struct pci_attach_args *pa = aux;
187 const char *intrstr;
188 char devinfo[256];
189 bus_space_tag_t memt;
190 bus_space_handle_t memh;
191 bus_addr_t base;
192 pci_intr_handle_t ih;
193 pcireg_t data;
194 int error, ac, revision, i;
195
196 sc->sc_pct = pa->pa_pc;
197 sc->sc_pcitag = pa->pa_tag;
198
199 callout_init(&sc->amrr_ch);
200
201 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
202 revision = PCI_REVISION(pa->pa_class);
203 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
204
205 /* clear device specific PCI configuration register 0x41 */
206 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
207 data &= ~0x0000ff00;
208 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
209
210 /* enable bus-mastering */
211 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
212 data |= PCI_COMMAND_MASTER_ENABLE;
213 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
214
215 /* map the register window */
216 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
217 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz);
218 if (error != 0) {
219 aprint_error("%s: could not map memory space\n",
220 sc->sc_dev.dv_xname);
221 return;
222 }
223
224 sc->sc_st = memt;
225 sc->sc_sh = memh;
226 sc->sc_dmat = pa->pa_dmat;
227
228 if (pci_intr_map(pa, &ih) != 0) {
229 aprint_error("%s: could not map interrupt\n",
230 sc->sc_dev.dv_xname);
231 return;
232 }
233
234 intrstr = pci_intr_string(sc->sc_pct, ih);
235 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
236 if (sc->sc_ih == NULL) {
237 aprint_error("%s: could not establish interrupt",
238 sc->sc_dev.dv_xname);
239 if (intrstr != NULL)
240 aprint_error(" at %s", intrstr);
241 aprint_error("\n");
242 return;
243 }
244 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
245
246 if (wpi_reset(sc) != 0) {
247 aprint_error("%s: could not reset adapter\n",
248 sc->sc_dev.dv_xname);
249 return;
250 }
251
252 /*
253 * Allocate shared page and Tx/Rx rings.
254 */
255 if ((error = wpi_alloc_shared(sc)) != 0) {
256 aprint_error("%s: could not allocate shared area\n",
257 sc->sc_dev.dv_xname);
258 return;
259 }
260
261 for (ac = 0; ac < 4; ac++) {
262 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
263 if (error != 0) {
264 aprint_error("%s: could not allocate Tx ring %d\n",
265 sc->sc_dev.dv_xname, ac);
266 goto fail1;
267 }
268 }
269
270 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
271 if (error != 0) {
272 aprint_error("%s: could not allocate command ring\n",
273 sc->sc_dev.dv_xname);
274 goto fail1;
275 }
276
277 error = wpi_alloc_tx_ring(sc, &sc->svcq, WPI_SVC_RING_COUNT, 5);
278 if (error != 0) {
279 aprint_error("%s: could not allocate service ring\n",
280 sc->sc_dev.dv_xname);
281 goto fail2;
282 }
283
284 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
285 aprint_error("%s: could not allocate Rx ring\n",
286 sc->sc_dev.dv_xname);
287 goto fail3;
288 }
289
290
291 ic->ic_ifp = ifp;
292 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
293 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
294 ic->ic_state = IEEE80211_S_INIT;
295
296 /* set device capabilities */
297 ic->ic_caps =
298 IEEE80211_C_IBSS | /* IBSS mode support */
299 IEEE80211_C_WPA | /* 802.11i */
300 IEEE80211_C_MONITOR | /* monitor mode supported */
301 IEEE80211_C_TXPMGT | /* tx power management */
302 IEEE80211_C_SHSLOT | /* short slot time supported */
303 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
304 IEEE80211_C_WME; /* 802.11e */
305
306 wpi_read_eeprom(sc);
307 aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
308 ether_sprintf(ic->ic_myaddr));
309
310 /* set supported .11a rates */
311 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
312
313 /* set supported .11a channels */
314 for (i = 36; i <= 64; i += 4) {
315 ic->ic_channels[i].ic_freq =
316 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
317 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
318 }
319 for (i = 100; i <= 140; i += 4) {
320 ic->ic_channels[i].ic_freq =
321 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
322 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
323 }
324 for (i = 149; i <= 165; i += 4) {
325 ic->ic_channels[i].ic_freq =
326 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
327 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
328 }
329
330 /* set supported .11b and .11g rates */
331 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
332 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
333
334 /* set supported .11b and .11g channels (1 through 14) */
335 for (i = 1; i <= 14; i++) {
336 ic->ic_channels[i].ic_freq =
337 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
338 ic->ic_channels[i].ic_flags =
339 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
340 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
341 }
342
343 ic->ic_ibss_chan = &ic->ic_channels[0];
344
345 ifp->if_softc = sc;
346 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
347 ifp->if_init = wpi_init;
348 ifp->if_stop = wpi_stop;
349 ifp->if_ioctl = wpi_ioctl;
350 ifp->if_start = wpi_start;
351 ifp->if_watchdog = wpi_watchdog;
352 IFQ_SET_READY(&ifp->if_snd);
353 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
354
355 if_attach(ifp);
356 ieee80211_ifattach(ic);
357 /* override default methods */
358 ic->ic_node_alloc = wpi_node_alloc;
359 ic->ic_wme.wme_update = wpi_wme_update;
360
361 /* override state transition machine */
362 sc->sc_newstate = ic->ic_newstate;
363 ic->ic_newstate = wpi_newstate;
364 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
365
366 /* set powerhook */
367 sc->powerhook = powerhook_establish(wpi_power, sc);
368
369 #if NBPFILTER > 0
370 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
371 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
372 &sc->sc_drvbpf);
373
374 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
375 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
376 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
377
378 sc->sc_txtap_len = sizeof sc->sc_txtapu;
379 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
380 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
381 #endif
382
383 ieee80211_announce(ic);
384
385 return;
386
387 fail3: wpi_free_tx_ring(sc, &sc->svcq);
388 fail2: wpi_free_tx_ring(sc, &sc->cmdq);
389 fail1: while (--ac >= 0)
390 wpi_free_tx_ring(sc, &sc->txq[ac]);
391 wpi_free_shared(sc);
392 }
393
394 static int
395 wpi_detach(struct device* self, int flags)
396 {
397 struct wpi_softc *sc = (struct wpi_softc *)self;
398 struct ifnet *ifp = &sc->sc_ec.ec_if;
399 int ac;
400
401 wpi_stop(ifp, 1);
402
403 #if NBPFILTER > 0
404 if (ifp != NULL)
405 bpfdetach(ifp);
406 #endif
407 ieee80211_ifdetach(&sc->sc_ic);
408 if (ifp != NULL)
409 if_detach(ifp);
410
411 for (ac = 0; ac < 4; ac++)
412 wpi_free_tx_ring(sc, &sc->txq[ac]);
413 wpi_free_tx_ring(sc, &sc->cmdq);
414 wpi_free_tx_ring(sc, &sc->svcq);
415 wpi_free_rx_ring(sc, &sc->rxq);
416 wpi_free_shared(sc);
417
418 if (sc->sc_ih != NULL) {
419 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
420 sc->sc_ih = NULL;
421 }
422
423 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
424
425 return 0;
426 }
427
428 static void
429 wpi_power(int why, void *arg)
430 {
431 struct wpi_softc *sc = arg;
432 struct ifnet *ifp;
433 pcireg_t data;
434 int s;
435
436 if (why != PWR_RESUME)
437 return;
438
439 /* clear device specific PCI configuration register 0x41 */
440 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
441 data &= ~0x0000ff00;
442 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
443
444 s = splnet();
445 ifp = sc->sc_ic.ic_ifp;
446 if (ifp->if_flags & IFF_UP) {
447 ifp->if_init(ifp);
448 if (ifp->if_flags & IFF_RUNNING)
449 ifp->if_start(ifp);
450 }
451 splx(s);
452 }
453
454 static int
455 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
456 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
457 {
458 int nsegs, error;
459
460 dma->size = size;
461
462 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
463 flags, &dma->map);
464 if (error != 0) {
465 aprint_error("%s: could not create DMA map\n",
466 sc->sc_dev.dv_xname);
467 goto fail;
468 }
469
470 error = bus_dmamem_alloc(sc->sc_dmat, size, alignment, 0, &dma->seg,
471 1, &nsegs, flags);
472 if (error != 0) {
473 aprint_error("%s: could not allocate DMA memory\n",
474 sc->sc_dev.dv_xname);
475 goto fail;
476 }
477
478 error = bus_dmamem_map(sc->sc_dmat, &dma->seg, 1, size,
479 &dma->vaddr, flags);
480 if (error != 0) {
481 aprint_error("%s: could not map DMA memory\n",
482 sc->sc_dev.dv_xname);
483 goto fail;
484 }
485
486 error = bus_dmamap_load(sc->sc_dmat, dma->map, dma->vaddr,
487 size, NULL, flags);
488 if (error != 0) {
489 aprint_error("%s: could not load DMA memory\n",
490 sc->sc_dev.dv_xname);
491 goto fail;
492 }
493
494 memset(dma->vaddr, 0, size);
495
496 dma->paddr = dma->map->dm_segs[0].ds_addr;
497 *kvap = dma->vaddr;
498
499 return 0;
500
501 fail: wpi_dma_contig_free(sc, dma);
502 return error;
503 }
504
505 static void
506 wpi_dma_contig_free(struct wpi_softc *sc, struct wpi_dma_info *dma)
507 {
508 if (dma->map != NULL) {
509 if (dma->vaddr != NULL) {
510 bus_dmamap_unload(sc->sc_dmat, dma->map);
511 bus_dmamem_unmap(sc->sc_dmat, dma->vaddr, dma->size);
512 bus_dmamem_free(sc->sc_dmat, &dma->seg, 1);
513 dma->vaddr = NULL;
514 }
515 bus_dmamap_destroy(sc->sc_dmat, dma->map);
516 dma->map = NULL;
517 }
518 }
519
520 /*
521 * Allocate a shared page between host and NIC.
522 */
523 static int
524 wpi_alloc_shared(struct wpi_softc *sc)
525 {
526 int error;
527 /* must be aligned on a 4K-page boundary */
528 error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
529 (void **)&sc->shared, sizeof (struct wpi_shared), PAGE_SIZE,
530 BUS_DMA_NOWAIT);
531 if (error != 0)
532 aprint_error("%s: could not allocate shared area DMA memory\n",
533 sc->sc_dev.dv_xname);
534
535 return error;
536 }
537
538 static void
539 wpi_free_shared(struct wpi_softc *sc)
540 {
541 wpi_dma_contig_free(sc, &sc->shared_dma);
542 }
543
544 static int
545 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
546 {
547 struct wpi_rx_data *data;
548 int i, error;
549
550 ring->cur = 0;
551
552 error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
553 (void **)&ring->desc,
554 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
555 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
556 if (error != 0) {
557 aprint_error("%s: could not allocate rx ring DMA memory\n",
558 sc->sc_dev.dv_xname);
559 goto fail;
560 }
561
562 /*
563 * Allocate Rx buffers.
564 */
565 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
566 data = &ring->data[i];
567
568 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
569 0, BUS_DMA_NOWAIT, &data->map);
570 if (error != 0) {
571 aprint_error("%s: could not create rx buf DMA map\n",
572 sc->sc_dev.dv_xname);
573 goto fail;
574 }
575
576 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
577 if (data->m == NULL) {
578 aprint_error("%s: could not allocate rx mbuf\n",
579 sc->sc_dev.dv_xname);
580 error = ENOMEM;
581 goto fail;
582 }
583
584 MCLGET(data->m, M_DONTWAIT);
585 if (!(data->m->m_flags & M_EXT)) {
586 m_freem(data->m);
587 data->m = NULL;
588 aprint_error("%s: could not allocate rx mbuf cluster\n",
589 sc->sc_dev.dv_xname);
590 error = ENOMEM;
591 goto fail;
592 }
593
594 error = bus_dmamap_load(sc->sc_dmat, data->map,
595 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT |
596 BUS_DMA_READ);
597 if (error != 0) {
598 aprint_error("%s: could not load rx buf DMA map\n",
599 sc->sc_dev.dv_xname);
600 goto fail;
601 }
602
603 ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr);
604 }
605
606 return 0;
607
608 fail: wpi_free_rx_ring(sc, ring);
609 return error;
610 }
611
612 static void
613 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
614 {
615 int ntries;
616
617 wpi_mem_lock(sc);
618
619 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
620 for (ntries = 0; ntries < 100; ntries++) {
621 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
622 break;
623 DELAY(10);
624 }
625 #ifdef WPI_DEBUG
626 if (ntries == 100 && wpi_debug > 0)
627 aprint_error("%s: timeout resetting Rx ring\n",
628 sc->sc_dev.dv_xname);
629 #endif
630 wpi_mem_unlock(sc);
631
632 ring->cur = 0;
633 }
634
635 static void
636 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
637 {
638 struct wpi_rx_data *data;
639 int i;
640
641 wpi_dma_contig_free(sc, &ring->desc_dma);
642
643 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
644 data = &ring->data[i];
645
646 if (data->m != NULL) {
647 bus_dmamap_unload(sc->sc_dmat, data->map);
648 m_freem(data->m);
649 }
650 bus_dmamap_destroy(sc->sc_dmat, data->map);
651 }
652 }
653
654 static int
655 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
656 int qid)
657 {
658 struct wpi_tx_data *data;
659 int i, error;
660
661 ring->qid = qid;
662 ring->count = count;
663 ring->queued = 0;
664 ring->cur = 0;
665
666 error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
667 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
668 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
669 if (error != 0) {
670 aprint_error("%s: could not allocate tx ring DMA memory\n",
671 sc->sc_dev.dv_xname);
672 goto fail;
673 }
674
675 /* update shared page with ring's base address */
676 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
677
678 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
679 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
680 if (error != 0) {
681 aprint_error("%s: could not allocate tx cmd DMA memory\n",
682 sc->sc_dev.dv_xname);
683 goto fail;
684 }
685
686 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
687 M_NOWAIT);
688 if (ring->data == NULL) {
689 aprint_error("%s: could not allocate tx data slots\n",
690 sc->sc_dev.dv_xname);
691 goto fail;
692 }
693
694 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
695
696 for (i = 0; i < count; i++) {
697 data = &ring->data[i];
698
699 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
700 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
701 &data->map);
702 if (error != 0) {
703 aprint_error("%s: could not create tx buf DMA map\n",
704 sc->sc_dev.dv_xname);
705 goto fail;
706 }
707 }
708
709 return 0;
710
711 fail: wpi_free_tx_ring(sc, ring);
712 return error;
713 }
714
715 static void
716 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
717 {
718 struct wpi_tx_data *data;
719 int i, ntries;
720
721 wpi_mem_lock(sc);
722
723 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
724 for (ntries = 0; ntries < 100; ntries++) {
725 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
726 break;
727 DELAY(10);
728 }
729 #ifdef WPI_DEBUG
730 if (ntries == 100 && wpi_debug > 0) {
731 aprint_error("%s: timeout resetting Tx ring %d\n",
732 sc->sc_dev.dv_xname, ring->qid);
733 }
734 #endif
735 wpi_mem_unlock(sc);
736
737 for (i = 0; i < ring->count; i++) {
738 data = &ring->data[i];
739
740 if (data->m != NULL) {
741 bus_dmamap_unload(sc->sc_dmat, data->map);
742 m_freem(data->m);
743 data->m = NULL;
744 }
745 }
746
747 ring->queued = 0;
748 ring->cur = 0;
749 }
750
751 static void
752 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
753 {
754 struct wpi_tx_data *data;
755 int i;
756
757 wpi_dma_contig_free(sc, &ring->desc_dma);
758 wpi_dma_contig_free(sc, &ring->cmd_dma);
759
760 if (ring->data != NULL) {
761 for (i = 0; i < ring->count; i++) {
762 data = &ring->data[i];
763
764 if (data->m != NULL) {
765 bus_dmamap_unload(sc->sc_dmat, data->map);
766 m_freem(data->m);
767 }
768 }
769 free(ring->data, M_DEVBUF);
770 }
771 }
772
773 /*ARGUSED*/
774 static struct ieee80211_node *
775 wpi_node_alloc(struct ieee80211_node_table *ic)
776 {
777 struct wpi_amrr *amrr;
778
779 amrr = malloc(sizeof (struct wpi_amrr), M_80211_NODE, M_NOWAIT);
780 if (amrr != NULL) {
781 memset(amrr, 0, sizeof (struct wpi_amrr));
782 wpi_amrr_init(amrr);
783 }
784 return (struct ieee80211_node *)amrr;
785 }
786
787 static int
788 wpi_media_change(struct ifnet *ifp)
789 {
790 int error;
791
792 error = ieee80211_media_change(ifp);
793 if (error != ENETRESET)
794 return error;
795
796 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
797 wpi_init(ifp);
798
799 return 0;
800 }
801
802 static int
803 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
804 {
805 struct ifnet *ifp = ic->ic_ifp;
806 struct wpi_softc *sc = ifp->if_softc;
807 int error;
808
809 callout_stop(&sc->amrr_ch);
810
811 switch (nstate) {
812 case IEEE80211_S_SCAN:
813 ieee80211_node_table_reset(&ic->ic_scan);
814 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
815
816 /* make the link LED blink while we're scanning */
817 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
818
819 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
820 aprint_error("%s: could not initiate scan\n",
821 sc->sc_dev.dv_xname);
822 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
823 return error;
824 }
825
826 ic->ic_state = nstate;
827 return 0;
828
829 case IEEE80211_S_AUTH:
830 sc->config.state &= ~htole16(WPI_STATE_ASSOCIATED);
831 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
832 if ((error = wpi_auth(sc)) != 0) {
833 aprint_error("%s: could not send authentication request\n",
834 sc->sc_dev.dv_xname);
835 return error;
836 }
837 break;
838
839 case IEEE80211_S_RUN:
840 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
841 /* link LED blinks while monitoring */
842 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
843 break;
844 }
845
846 if (ic->ic_opmode != IEEE80211_M_STA) {
847 (void) wpi_auth(sc); /* XXX */
848 wpi_setup_beacon(sc, ic->ic_bss);
849 }
850
851 wpi_enable_tsf(sc, ic->ic_bss);
852
853 /* update adapter's configuration */
854 sc->config.state = htole16(WPI_STATE_ASSOCIATED);
855 /* short preamble/slot time are negotiated when associating */
856 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
857 WPI_CONFIG_SHSLOT);
858 if (ic->ic_flags & IEEE80211_F_SHSLOT)
859 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
860 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
861 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
862 sc->config.filter |= htole32(WPI_FILTER_BSS);
863 if (ic->ic_opmode != IEEE80211_M_STA)
864 sc->config.filter |= htole32(WPI_FILTER_BEACON);
865
866 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
867
868 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
869 sc->config.flags));
870 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
871 sizeof (struct wpi_config), 1);
872 if (error != 0) {
873 aprint_error("%s: could not update configuration\n",
874 sc->sc_dev.dv_xname);
875 return error;
876 }
877
878 /* enable automatic rate adaptation in STA mode */
879 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
880 callout_reset(&sc->amrr_ch, hz, wpi_amrr_timeout, sc);
881
882 /* link LED always on while associated */
883 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
884 break;
885
886 case IEEE80211_S_ASSOC:
887 case IEEE80211_S_INIT:
888 break;
889 }
890
891 return sc->sc_newstate(ic, nstate, arg);
892 }
893
894 /*
895 * Grab exclusive access to NIC memory.
896 */
897 static void
898 wpi_mem_lock(struct wpi_softc *sc)
899 {
900 uint32_t tmp;
901 int ntries;
902
903 tmp = WPI_READ(sc, WPI_GPIO_CTL);
904 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
905
906 /* spin until we actually get the lock */
907 for (ntries = 0; ntries < 1000; ntries++) {
908 if ((WPI_READ(sc, WPI_GPIO_CTL) &
909 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
910 break;
911 DELAY(10);
912 }
913 if (ntries == 1000)
914 aprint_error("%s: could not lock memory\n", sc->sc_dev.dv_xname);
915 }
916
917 /*
918 * Release lock on NIC memory.
919 */
920 static void
921 wpi_mem_unlock(struct wpi_softc *sc)
922 {
923 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
924 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
925 }
926
927 static uint32_t
928 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
929 {
930 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
931 return WPI_READ(sc, WPI_READ_MEM_DATA);
932 }
933
934 static void
935 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
936 {
937 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
938 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
939 }
940
941 static void
942 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
943 const uint32_t *data, int wlen)
944 {
945 for (; wlen > 0; wlen--, data++, addr += 4)
946 wpi_mem_write(sc, addr, *data);
947 }
948
949 /*
950 * Read 16 bits from the EEPROM. We access EEPROM through the MAC instead of
951 * using the traditional bit-bang method.
952 */
953 static uint16_t
954 wpi_read_prom_word(struct wpi_softc *sc, uint32_t addr)
955 {
956 int ntries;
957 uint32_t val;
958
959 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
960
961 wpi_mem_lock(sc);
962 for (ntries = 0; ntries < 10; ntries++) {
963 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
964 break;
965 DELAY(10);
966 }
967 wpi_mem_unlock(sc);
968
969 if (ntries == 10) {
970 aprint_error("%s: could not read EEPROM\n", sc->sc_dev.dv_xname);
971 return 0xdead;
972 }
973 return val >> 16;
974 }
975
976 /*
977 * The firmware boot code is small and is intended to be copied directly into
978 * the NIC internal memory.
979 */
980 static int
981 wpi_load_microcode(struct wpi_softc *sc, const char *ucode, int size)
982 {
983 /* check that microcode size is a multiple of 4 */
984 if (size & 3)
985 return EINVAL;
986
987 size /= sizeof (uint32_t);
988
989 wpi_mem_lock(sc);
990
991 /* copy microcode image into NIC memory */
992 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode,
993 size);
994
995 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
996 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
997 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
998
999 /* run microcode */
1000 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1001
1002 wpi_mem_unlock(sc);
1003
1004 return 0;
1005 }
1006
1007 /*
1008 * The firmware text and data segments are transferred to the NIC using DMA.
1009 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1010 * where to find it. Once the NIC has copied the firmware into its internal
1011 * memory, we can free our local copy in the driver.
1012 */
1013 static int
1014 wpi_load_firmware(struct wpi_softc *sc, uint32_t target, const char *fw,
1015 int size)
1016 {
1017 bus_dmamap_t map;
1018 bus_dma_segment_t seg;
1019 caddr_t virtaddr;
1020 struct wpi_tx_desc desc;
1021 int i, ntries, nsegs, error;
1022
1023 /*
1024 * Allocate DMA-safe memory to store the firmware.
1025 */
1026 error = bus_dmamap_create(sc->sc_dmat, size, WPI_MAX_SCATTER,
1027 WPI_MAX_SEG_LEN, 0, BUS_DMA_NOWAIT, &map);
1028 if (error != 0) {
1029 aprint_error("%s: could not create firmware DMA map\n",
1030 sc->sc_dev.dv_xname);
1031 goto fail1;
1032 }
1033
1034 error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
1035 &nsegs, BUS_DMA_NOWAIT);
1036 if (error != 0) {
1037 aprint_error("%s: could not allocate firmware DMA memory\n",
1038 sc->sc_dev.dv_xname);
1039 goto fail2;
1040 }
1041
1042 error = bus_dmamem_map(sc->sc_dmat, &seg, nsegs, size, &virtaddr,
1043 BUS_DMA_NOWAIT);
1044 if (error != 0) {
1045 aprint_error("%s: could not map firmware DMA memory\n",
1046 sc->sc_dev.dv_xname);
1047 goto fail3;
1048 }
1049
1050 error = bus_dmamap_load(sc->sc_dmat, map, virtaddr, size, NULL,
1051 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1052 if (error != 0) {
1053 aprint_error("%s: could not load firmware DMA map\n",
1054 sc->sc_dev.dv_xname);
1055 goto fail4;
1056 }
1057
1058 /* copy firmware image to DMA-safe memory */
1059 bcopy(fw, virtaddr, size);
1060
1061 /* make sure the adapter will get up-to-date values */
1062 bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_PREWRITE);
1063
1064 bzero(&desc, sizeof desc);
1065 desc.flags = htole32(WPI_PAD32(size) << 28 | map->dm_nsegs << 24);
1066 for (i = 0; i < map->dm_nsegs; i++) {
1067 desc.segs[i].addr = htole32(map->dm_segs[i].ds_addr);
1068 desc.segs[i].len = htole32(map->dm_segs[i].ds_len);
1069 }
1070
1071 wpi_mem_lock(sc);
1072
1073 /* tell adapter where to copy image in its internal memory */
1074 WPI_WRITE(sc, WPI_FW_TARGET, target);
1075
1076 WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1077
1078 /* copy firmware descriptor into NIC memory */
1079 WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1080 sizeof desc / sizeof (uint32_t));
1081
1082 WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1083 WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1084 WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1085
1086 /* wait while the adapter is busy copying the firmware */
1087 for (ntries = 0; ntries < 100; ntries++) {
1088 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1089 break;
1090 DELAY(1000);
1091 }
1092 if (ntries == 100) {
1093 aprint_error("%s: timeout transferring firmware\n",
1094 sc->sc_dev.dv_xname);
1095 error = ETIMEDOUT;
1096 }
1097
1098 WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1099
1100 wpi_mem_unlock(sc);
1101
1102 bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_POSTWRITE);
1103 bus_dmamap_unload(sc->sc_dmat, map);
1104 fail4: bus_dmamem_unmap(sc->sc_dmat, virtaddr, size);
1105 fail3: bus_dmamem_free(sc->sc_dmat, &seg, 1);
1106 fail2: bus_dmamap_destroy(sc->sc_dmat, map);
1107 fail1: return error;
1108 }
1109
1110 static void
1111 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1112 struct wpi_rx_data *data)
1113 {
1114 struct ieee80211com *ic = &sc->sc_ic;
1115 struct ifnet *ifp = ic->ic_ifp;
1116 struct wpi_rx_ring *ring = &sc->rxq;
1117 struct wpi_rx_stat *stat;
1118 struct wpi_rx_head *head;
1119 struct wpi_rx_tail *tail;
1120 struct ieee80211_frame *wh;
1121 struct ieee80211_node *ni;
1122 struct mbuf *m, *mnew;
1123 int error;
1124
1125 stat = (struct wpi_rx_stat *)(desc + 1);
1126
1127 if (stat->len > WPI_STAT_MAXLEN) {
1128 aprint_error("%s: invalid rx statistic header\n",
1129 sc->sc_dev.dv_xname);
1130 ifp->if_ierrors++;
1131 return;
1132 }
1133
1134 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1135 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1136
1137 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1138 "chan=%d tstamp=%llu\n", ring->cur, le32toh(desc->len),
1139 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1140 le64toh(tail->tstamp)));
1141
1142 /*
1143 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1144 * to radiotap in monitor mode).
1145 */
1146 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1147 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1148 ifp->if_ierrors++;
1149 return;
1150 }
1151
1152
1153 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1154 if (mnew == NULL) {
1155 ifp->if_ierrors++;
1156 return;
1157 }
1158
1159 MCLGET(mnew, M_DONTWAIT);
1160 if (!(mnew->m_flags & M_EXT)) {
1161 m_freem(mnew);
1162 ifp->if_ierrors++;
1163 return;
1164 }
1165
1166 bus_dmamap_unload(sc->sc_dmat, data->map);
1167
1168 error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(mnew, void *),
1169 MCLBYTES, NULL, BUS_DMA_NOWAIT);
1170 if (error != 0) {
1171 m_freem(mnew);
1172
1173 /* try to reload the old mbuf */
1174 error = bus_dmamap_load(sc->sc_dmat, data->map,
1175 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1176 if (error != 0) {
1177 /* very unlikely that it will fail... */
1178 panic("%s: could not load old rx mbuf",
1179 sc->sc_dev.dv_xname);
1180 }
1181 ifp->if_ierrors++;
1182 return;
1183 }
1184
1185 m = data->m;
1186 data->m = mnew;
1187
1188 /* update Rx descriptor */
1189 ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
1190
1191 /* finalize mbuf */
1192 m->m_pkthdr.rcvif = ifp;
1193 m->m_data = (caddr_t)(head + 1);
1194 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1195
1196 #if NBPFILTER > 0
1197 if (sc->sc_drvbpf != NULL) {
1198 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1199
1200 tap->wr_flags = 0;
1201 tap->wr_chan_freq =
1202 htole16(ic->ic_channels[head->chan].ic_freq);
1203 tap->wr_chan_flags =
1204 htole16(ic->ic_channels[head->chan].ic_flags);
1205 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1206 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1207 tap->wr_tsft = tail->tstamp;
1208 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1209 switch (head->rate) {
1210 /* CCK rates */
1211 case 10: tap->wr_rate = 2; break;
1212 case 20: tap->wr_rate = 4; break;
1213 case 55: tap->wr_rate = 11; break;
1214 case 110: tap->wr_rate = 22; break;
1215 /* OFDM rates */
1216 case 0xd: tap->wr_rate = 12; break;
1217 case 0xf: tap->wr_rate = 18; break;
1218 case 0x5: tap->wr_rate = 24; break;
1219 case 0x7: tap->wr_rate = 36; break;
1220 case 0x9: tap->wr_rate = 48; break;
1221 case 0xb: tap->wr_rate = 72; break;
1222 case 0x1: tap->wr_rate = 96; break;
1223 case 0x3: tap->wr_rate = 108; break;
1224 /* unknown rate: should not happen */
1225 default: tap->wr_rate = 0;
1226 }
1227 if (le16toh(head->flags) & 0x4)
1228 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1229
1230 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1231 }
1232 #endif
1233
1234 /* grab a reference to the source node */
1235 wh = mtod(m, struct ieee80211_frame *);
1236 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1237
1238 /* send the frame to the 802.11 layer */
1239 ieee80211_input(ic, m, ni, stat->rssi, 0);
1240
1241 /* release node reference */
1242 ieee80211_free_node(ni);
1243 }
1244
1245 static void
1246 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1247 {
1248 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1249 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1250 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1251 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1252 struct wpi_amrr *amrr = (struct wpi_amrr *)txdata->ni;
1253
1254 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1255 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1256 stat->nkill, stat->rate, le32toh(stat->duration),
1257 le32toh(stat->status)));
1258
1259 /*
1260 * Update rate control statistics for the node.
1261 * XXX we should not count mgmt frames since they're always sent at
1262 * the lowest available bit-rate.
1263 */
1264 amrr->txcnt++;
1265 if (stat->ntries > 0) {
1266 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1267 amrr->retrycnt++;
1268 }
1269
1270 if ((le32toh(stat->status) & 0xff) != 1)
1271 ifp->if_oerrors++;
1272 else
1273 ifp->if_opackets++;
1274
1275 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1276 m_freem(txdata->m);
1277 txdata->m = NULL;
1278 ieee80211_free_node(txdata->ni);
1279 txdata->ni = NULL;
1280
1281 ring->queued--;
1282
1283 sc->sc_tx_timer = 0;
1284 ifp->if_flags &= ~IFF_OACTIVE;
1285 wpi_start(ifp);
1286 }
1287
1288 static void
1289 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1290 {
1291 struct wpi_tx_ring *ring = &sc->cmdq;
1292 struct wpi_tx_data *data;
1293
1294 if ((desc->qid & 7) != 4)
1295 return; /* not a command ack */
1296
1297 data = &ring->data[desc->idx];
1298
1299 /* if the command was mapped in a mbuf, free it */
1300 if (data->m != NULL) {
1301 bus_dmamap_unload(sc->sc_dmat, data->map);
1302 m_freem(data->m);
1303 data->m = NULL;
1304 }
1305
1306 wakeup(&ring->cmd[desc->idx]);
1307 }
1308
1309 static void
1310 wpi_notif_intr(struct wpi_softc *sc)
1311 {
1312 struct ieee80211com *ic = &sc->sc_ic;
1313 struct wpi_rx_desc *desc;
1314 struct wpi_rx_data *data;
1315 uint32_t hw;
1316
1317 hw = le32toh(sc->shared->next);
1318 while (sc->rxq.cur != hw) {
1319 data = &sc->rxq.data[sc->rxq.cur];
1320
1321 desc = mtod(data->m, struct wpi_rx_desc *);
1322
1323 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1324 "len=%d\n", desc->qid, desc->idx, desc->flags,
1325 desc->type, le32toh(desc->len)));
1326
1327 if (!(desc->qid & 0x80)) /* reply to a command */
1328 wpi_cmd_intr(sc, desc);
1329
1330 switch (desc->type) {
1331 case WPI_RX_DONE:
1332 /* a 802.11 frame was received */
1333 wpi_rx_intr(sc, desc, data);
1334 break;
1335
1336 case WPI_TX_DONE:
1337 /* a 802.11 frame has been transmitted */
1338 wpi_tx_intr(sc, desc);
1339 break;
1340
1341 case WPI_UC_READY:
1342 {
1343 struct wpi_ucode_info *uc =
1344 (struct wpi_ucode_info *)(desc + 1);
1345
1346 /* the microcontroller is ready */
1347 DPRINTF(("microcode alive notification version %x "
1348 "alive %x\n", le32toh(uc->version),
1349 le32toh(uc->valid)));
1350
1351 if (le32toh(uc->valid) != 1) {
1352 aprint_error("%s: microcontroller "
1353 "initialization failed\n",
1354 sc->sc_dev.dv_xname);
1355 }
1356 break;
1357 }
1358 case WPI_STATE_CHANGED:
1359 {
1360 uint32_t *status = (uint32_t *)(desc + 1);
1361
1362 /* enabled/disabled notification */
1363 DPRINTF(("state changed to %x\n", le32toh(*status)));
1364
1365 if (le32toh(*status) & 1) {
1366 /* the radio button has to be pushed */
1367 aprint_error("%s: Radio transmitter is off\n",
1368 sc->sc_dev.dv_xname);
1369 }
1370 break;
1371 }
1372 case WPI_START_SCAN:
1373 {
1374 struct wpi_start_scan *scan =
1375 (struct wpi_start_scan *)(desc + 1);
1376
1377 DPRINTFN(2, ("scanning channel %d status %x\n",
1378 scan->chan, le32toh(scan->status)));
1379
1380 /* fix current channel */
1381 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1382 break;
1383 }
1384 case WPI_STOP_SCAN:
1385 {
1386 struct wpi_stop_scan *scan =
1387 (struct wpi_stop_scan *)(desc + 1);
1388
1389 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1390 scan->nchan, scan->status, scan->chan));
1391
1392 if (scan->status == 1 && scan->chan <= 14) {
1393 /*
1394 * We just finished scanning 802.11g channels,
1395 * start scanning 802.11a ones.
1396 */
1397 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1398 break;
1399 }
1400 ieee80211_end_scan(ic);
1401 break;
1402 }
1403 }
1404
1405 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1406 }
1407
1408 /* tell the firmware what we have processed */
1409 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1410 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1411 }
1412
1413 static int
1414 wpi_intr(void *arg)
1415 {
1416 struct wpi_softc *sc = arg;
1417 uint32_t r;
1418
1419 r = WPI_READ(sc, WPI_INTR);
1420 if (r == 0 || r == 0xffffffff)
1421 return 0; /* not for us */
1422
1423 DPRINTFN(5, ("interrupt reg %x\n", r));
1424
1425 /* disable interrupts */
1426 WPI_WRITE(sc, WPI_MASK, 0);
1427 /* ack interrupts */
1428 WPI_WRITE(sc, WPI_INTR, r);
1429
1430 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1431 /* SYSTEM FAILURE, SYSTEM FAILURE */
1432 aprint_error("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
1433 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1434 wpi_stop(&sc->sc_ec.ec_if, 1);
1435 return 1;
1436 }
1437
1438 if (r & WPI_RX_INTR)
1439 wpi_notif_intr(sc);
1440
1441 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1442 wakeup(sc);
1443
1444 /* re-enable interrupts */
1445 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1446
1447 return 1;
1448 }
1449
1450 static uint8_t
1451 wpi_plcp_signal(int rate)
1452 {
1453 switch (rate) {
1454 /* CCK rates (returned values are device-dependent) */
1455 case 2: return 10;
1456 case 4: return 20;
1457 case 11: return 55;
1458 case 22: return 110;
1459
1460 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1461 /* R1-R4, (u)ral is R4-R1 */
1462 case 12: return 0xd;
1463 case 18: return 0xf;
1464 case 24: return 0x5;
1465 case 36: return 0x7;
1466 case 48: return 0x9;
1467 case 72: return 0xb;
1468 case 96: return 0x1;
1469 case 108: return 0x3;
1470
1471 /* unsupported rates (should not get there) */
1472 default: return 0;
1473 }
1474 }
1475
1476 /* quickly determine if a given rate is CCK or OFDM */
1477 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1478
1479 static int
1480 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1481 int ac)
1482 {
1483 struct ieee80211com *ic = &sc->sc_ic;
1484 struct wpi_tx_ring *ring = &sc->txq[ac];
1485 struct wpi_tx_desc *desc;
1486 struct wpi_tx_data *data;
1487 struct wpi_tx_cmd *cmd;
1488 struct wpi_cmd_data *tx;
1489 struct ieee80211_frame *wh;
1490 struct ieee80211_key *k;
1491 const struct chanAccParams *cap;
1492 struct mbuf *mnew;
1493 int i, error, rate, hdrlen, noack = 0;
1494
1495 desc = &ring->desc[ring->cur];
1496 data = &ring->data[ring->cur];
1497
1498 wh = mtod(m0, struct ieee80211_frame *);
1499
1500 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1501 hdrlen = sizeof (struct ieee80211_qosframe);
1502 cap = &ic->ic_wme.wme_chanParams;
1503 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1504 } else
1505 hdrlen = sizeof (struct ieee80211_frame);
1506
1507 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1508 k = ieee80211_crypto_encap(ic, ni, m0);
1509 if (k == NULL) {
1510 m_freem(m0);
1511 return ENOBUFS;
1512 }
1513
1514 /* packet header may have moved, reset our local pointer */
1515 wh = mtod(m0, struct ieee80211_frame *);
1516 }
1517
1518 /* pickup a rate */
1519 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1520 IEEE80211_FC0_TYPE_MGT) {
1521 /* mgmt frames are sent at the lowest available bit-rate */
1522 rate = ni->ni_rates.rs_rates[0];
1523 } else {
1524 if (ic->ic_fixed_rate != -1) {
1525 rate = ic->ic_sup_rates[ic->ic_curmode].
1526 rs_rates[ic->ic_fixed_rate];
1527 } else
1528 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1529 }
1530 rate &= IEEE80211_RATE_VAL;
1531
1532
1533 #if NBPFILTER > 0
1534 if (sc->sc_drvbpf != NULL) {
1535 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1536
1537 tap->wt_flags = 0;
1538 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1539 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1540 tap->wt_rate = rate;
1541 tap->wt_hwqueue = ac;
1542 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1543 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1544
1545 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1546 }
1547 #endif
1548
1549 cmd = &ring->cmd[ring->cur];
1550 cmd->code = WPI_CMD_TX_DATA;
1551 cmd->flags = 0;
1552 cmd->qid = ring->qid;
1553 cmd->idx = ring->cur;
1554
1555 tx = (struct wpi_cmd_data *)cmd->data;
1556 tx->flags = 0;
1557
1558 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1559 tx->id = WPI_ID_BSS;
1560 tx->flags |= htole32(WPI_TX_NEED_ACK);
1561 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >
1562 ic->ic_rtsthreshold || (WPI_RATE_IS_OFDM(rate) &&
1563 (ic->ic_flags & IEEE80211_F_USEPROT)))
1564 tx->flags |= htole32(WPI_TX_NEED_RTS |
1565 WPI_TX_FULL_TXOP);
1566 } else
1567 tx->id = WPI_ID_BROADCAST;
1568
1569 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1570
1571 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1572 IEEE80211_FC0_TYPE_MGT) {
1573 /* tell h/w to set timestamp in probe responses */
1574 if ((wh->i_fc[0] &
1575 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1576 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1577 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1578
1579 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1580 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1581 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1582 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1583 tx->timeout = htole16(3);
1584 else
1585 tx->timeout = htole16(2);
1586 } else
1587 tx->timeout = htole16(0);
1588
1589 tx->rate = wpi_plcp_signal(rate);
1590
1591 /* be very persistant at sending frames out */
1592 tx->rts_ntries = 7;
1593 tx->data_ntries = 15;
1594
1595 tx->ofdm_mask = 0xff;
1596 tx->cck_mask = 0xf;
1597 tx->lifetime = htole32(0xffffffff);
1598
1599 tx->len = htole16(m0->m_pkthdr.len);
1600
1601 /* save and trim IEEE802.11 header */
1602 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1603 m_adj(m0, hdrlen);
1604
1605 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1606 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1607 if (error != 0 && error != EFBIG) {
1608 aprint_error("%s: could not map mbuf (error %d)\n",
1609 sc->sc_dev.dv_xname, error);
1610 m_freem(m0);
1611 return error;
1612 }
1613 if (error != 0) {
1614 /* too many fragments, linearize */
1615 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1616 if (mnew == NULL) {
1617 m_freem(m0);
1618 return ENOMEM;
1619 }
1620
1621 M_COPY_PKTHDR(mnew, m0);
1622 if (m0->m_pkthdr.len > MHLEN) {
1623 MCLGET(mnew, M_DONTWAIT);
1624 if (!(mnew->m_flags & M_EXT)) {
1625 m_freem(m0);
1626 m_freem(mnew);
1627 return ENOMEM;
1628 }
1629 }
1630
1631 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t));
1632 m_freem(m0);
1633 mnew->m_len = mnew->m_pkthdr.len;
1634 m0 = mnew;
1635
1636 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1637 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1638 if (error != 0) {
1639 aprint_error("%s: could not map mbuf (error %d)\n",
1640 sc->sc_dev.dv_xname, error);
1641 m_freem(m0);
1642 return error;
1643 }
1644 }
1645
1646 data->m = m0;
1647 data->ni = ni;
1648
1649 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1650 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1651
1652 /* first scatter/gather segment is used by the tx data command */
1653 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1654 (1 + data->map->dm_nsegs) << 24);
1655 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1656 ring->cur * sizeof (struct wpi_tx_cmd));
1657 /*XXX The next line might be wrong. I don't use hdrlen*/
1658 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data));
1659
1660 for (i = 1; i <= data->map->dm_nsegs; i++) {
1661 desc->segs[i].addr =
1662 htole32(data->map->dm_segs[i - 1].ds_addr);
1663 desc->segs[i].len =
1664 htole32(data->map->dm_segs[i - 1].ds_len);
1665 }
1666
1667 ring->queued++;
1668
1669 /* kick ring */
1670 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1671 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1672
1673 return 0;
1674 }
1675
1676 static void
1677 wpi_start(struct ifnet *ifp)
1678 {
1679 struct wpi_softc *sc = ifp->if_softc;
1680 struct ieee80211com *ic = &sc->sc_ic;
1681 struct ieee80211_node *ni;
1682 struct ether_header *eh;
1683 struct mbuf *m0;
1684 int ac;
1685
1686 /*
1687 * net80211 may still try to send management frames even if the
1688 * IFF_RUNNING flag is not set...
1689 */
1690 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1691 return;
1692
1693 for (;;) {
1694 IF_POLL(&ic->ic_mgtq, m0);
1695 if (m0 != NULL) {
1696 IF_DEQUEUE(&ic->ic_mgtq, m0);
1697
1698 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1699 m0->m_pkthdr.rcvif = NULL;
1700
1701 /* management frames go into ring 0 */
1702 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1703 ifp->if_oerrors++;
1704 continue;
1705 }
1706 #if NBPFILTER > 0
1707 if (ic->ic_rawbpf != NULL)
1708 bpf_mtap(ic->ic_rawbpf, m0);
1709 #endif
1710 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1711 ifp->if_oerrors++;
1712 break;
1713 }
1714 } else {
1715 if (ic->ic_state != IEEE80211_S_RUN)
1716 break;
1717 IF_DEQUEUE(&ifp->if_snd, m0);
1718 if (m0 == NULL)
1719 break;
1720
1721 if (m0->m_len < sizeof (*eh) &&
1722 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1723 ifp->if_oerrors++;
1724 continue;
1725 }
1726 eh = mtod(m0, struct ether_header *);
1727 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1728 if (ni == NULL) {
1729 m_freem(m0);
1730 ifp->if_oerrors++;
1731 continue;
1732 }
1733
1734 /* classify mbuf so we can find which tx ring to use */
1735 if (ieee80211_classify(ic, m0, ni) != 0) {
1736 m_freem(m0);
1737 ieee80211_free_node(ni);
1738 ifp->if_oerrors++;
1739 continue;
1740 }
1741
1742 /* no QoS encapsulation for EAPOL frames */
1743 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1744 M_WME_GETAC(m0) : WME_AC_BE;
1745
1746 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1747 /* there is no place left in this ring */
1748 IF_PREPEND(&ifp->if_snd, m0);
1749 ifp->if_flags |= IFF_OACTIVE;
1750 break;
1751 }
1752 #if NBPFILTER > 0
1753 if (ifp->if_bpf != NULL)
1754 bpf_mtap(ifp->if_bpf, m0);
1755 #endif
1756 m0 = ieee80211_encap(ic, m0, ni);
1757 if (m0 == NULL) {
1758 ieee80211_free_node(ni);
1759 ifp->if_oerrors++;
1760 continue;
1761 }
1762 #if NBPFILTER > 0
1763 if (ic->ic_rawbpf != NULL)
1764 bpf_mtap(ic->ic_rawbpf, m0);
1765 #endif
1766 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
1767 ieee80211_free_node(ni);
1768 ifp->if_oerrors++;
1769 break;
1770 }
1771 }
1772
1773 sc->sc_tx_timer = 5;
1774 ifp->if_timer = 1;
1775 }
1776 }
1777
1778 static void
1779 wpi_watchdog(struct ifnet *ifp)
1780 {
1781 struct wpi_softc *sc = ifp->if_softc;
1782
1783 ifp->if_timer = 0;
1784
1785 if (sc->sc_tx_timer > 0) {
1786 if (--sc->sc_tx_timer == 0) {
1787 aprint_error("%s: device timeout\n",
1788 sc->sc_dev.dv_xname);
1789 ifp->if_oerrors++;
1790 ifp->if_flags &= ~IFF_UP;
1791 wpi_stop(ifp, 1);
1792 return;
1793 }
1794 ifp->if_timer = 1;
1795 }
1796
1797 ieee80211_watchdog(&sc->sc_ic);
1798 }
1799
1800 static int
1801 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1802 {
1803 #define IS_RUNNING(ifp) \
1804 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1805
1806 struct wpi_softc *sc = ifp->if_softc;
1807 struct ieee80211com *ic = &sc->sc_ic;
1808 struct ifreq *ifr = (struct ifreq *)data;
1809 int s, error = 0;
1810
1811 s = splnet();
1812
1813 switch (cmd) {
1814 case SIOCSIFFLAGS:
1815 if (ifp->if_flags & IFF_UP) {
1816 if (!(ifp->if_flags & IFF_RUNNING))
1817 wpi_init(ifp);
1818 } else {
1819 if (ifp->if_flags & IFF_RUNNING)
1820 wpi_stop(ifp, 1);
1821 }
1822 break;
1823
1824 case SIOCADDMULTI:
1825 case SIOCDELMULTI:
1826 error = (cmd == SIOCADDMULTI) ?
1827 ether_addmulti(ifr, &sc->sc_ec) :
1828 ether_delmulti(ifr, &sc->sc_ec);
1829 if (error == ENETRESET) {
1830 /* setup multicast filter, etc */
1831 error = 0;
1832 }
1833 break;
1834
1835 default:
1836 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1837 }
1838
1839 if (error == ENETRESET) {
1840 if (IS_RUNNING(ifp) &&
1841 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1842 wpi_init(ifp);
1843 error = 0;
1844 }
1845
1846 splx(s);
1847 return error;
1848
1849 #undef IS_RUNNING
1850 }
1851
1852 /*
1853 * Extract various information from EEPROM.
1854 */
1855 static void
1856 wpi_read_eeprom(struct wpi_softc *sc)
1857 {
1858 struct ieee80211com *ic = &sc->sc_ic;
1859 uint16_t val;
1860 int i;
1861
1862 /* read MAC address */
1863 val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0);
1864 ic->ic_myaddr[0] = val & 0xff;
1865 ic->ic_myaddr[1] = val >> 8;
1866 val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1);
1867 ic->ic_myaddr[2] = val & 0xff;
1868 ic->ic_myaddr[3] = val >> 8;
1869 val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2);
1870 ic->ic_myaddr[4] = val & 0xff;
1871 ic->ic_myaddr[5] = val >> 8;
1872
1873 /* read power settings for 2.4GHz channels */
1874 for (i = 0; i < 14; i++) {
1875 sc->pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i);
1876 sc->pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i);
1877 DPRINTFN(2, ("channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1,
1878 sc->pwr1[i], sc->pwr2[i]));
1879 }
1880 }
1881
1882 /*
1883 * Send a command to the firmware.
1884 */
1885 static int
1886 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
1887 {
1888 struct wpi_tx_ring *ring = &sc->cmdq;
1889 struct wpi_tx_desc *desc;
1890 struct wpi_tx_cmd *cmd;
1891
1892 KASSERT(size <= sizeof cmd->data);
1893
1894 desc = &ring->desc[ring->cur];
1895 cmd = &ring->cmd[ring->cur];
1896
1897 cmd->code = code;
1898 cmd->flags = 0;
1899 cmd->qid = ring->qid;
1900 cmd->idx = ring->cur;
1901 memcpy(cmd->data, buf, size);
1902
1903 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
1904 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1905 ring->cur * sizeof (struct wpi_tx_cmd));
1906 desc->segs[0].len = htole32(4 + size);
1907
1908 /* kick cmd ring */
1909 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
1910 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1911
1912 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
1913 }
1914
1915 static int
1916 wpi_wme_update(struct ieee80211com *ic)
1917 {
1918 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
1919 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
1920 struct wpi_softc *sc = ic->ic_ifp->if_softc;
1921 const struct wmeParams *wmep;
1922 struct wpi_wme_setup wme;
1923 int ac;
1924
1925 /* don't override default WME values if WME is not actually enabled */
1926 if (!(ic->ic_flags & IEEE80211_F_WME))
1927 return 0;
1928
1929 wme.flags = 0;
1930 for (ac = 0; ac < WME_NUM_AC; ac++) {
1931 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1932 wme.ac[ac].aifsn = wmep->wmep_aifsn;
1933 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
1934 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
1935 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
1936
1937 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
1938 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
1939 wme.ac[ac].cwmax, wme.ac[ac].txop));
1940 }
1941
1942 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
1943 #undef WPI_USEC
1944 #undef WPI_EXP2
1945 }
1946
1947 /*
1948 * Configure h/w multi-rate retries.
1949 */
1950 static int
1951 wpi_mrr_setup(struct wpi_softc *sc)
1952 {
1953 struct ieee80211com *ic = &sc->sc_ic;
1954 struct wpi_mrr_setup mrr;
1955 int i, error;
1956
1957 /* CCK rates (not used with 802.11a) */
1958 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
1959 mrr.rates[i].flags = 0;
1960 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
1961 /* fallback to the immediate lower CCK rate (if any) */
1962 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
1963 /* try one time at this rate before falling back to "next" */
1964 mrr.rates[i].ntries = 1;
1965 }
1966
1967 /* OFDM rates (not used with 802.11b) */
1968 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
1969 mrr.rates[i].flags = 0;
1970 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
1971 /* fallback to the immediate lower rate (if any) */
1972 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
1973 mrr.rates[i].next = (i == WPI_OFDM6) ?
1974 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
1975 WPI_OFDM6 : WPI_CCK2) :
1976 i - 1;
1977 /* try one time at this rate before falling back to "next" */
1978 mrr.rates[i].ntries = 1;
1979 }
1980
1981 /* setup MRR for control frames */
1982 mrr.which = htole32(WPI_MRR_CTL);
1983 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 1);
1984 if (error != 0) {
1985 aprint_error("%s: could not setup MRR for control frames\n",
1986 sc->sc_dev.dv_xname);
1987 return error;
1988 }
1989
1990 /* setup MRR for data frames */
1991 mrr.which = htole32(WPI_MRR_DATA);
1992 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 1);
1993 if (error != 0) {
1994 aprint_error("%s: could not setup MRR for data frames\n",
1995 sc->sc_dev.dv_xname);
1996 return error;
1997 }
1998
1999 return 0;
2000 }
2001
2002 static void
2003 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2004 {
2005 struct wpi_cmd_led led;
2006
2007 led.which = which;
2008 led.unit = htole32(100000); /* on/off in unit of 100ms */
2009 led.off = off;
2010 led.on = on;
2011
2012 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2013 }
2014
2015 static void
2016 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2017 {
2018 struct wpi_cmd_tsf tsf;
2019 uint64_t val, mod;
2020
2021 memset(&tsf, 0, sizeof tsf);
2022 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2023 tsf.bintval = htole16(ni->ni_intval);
2024 tsf.lintval = htole16(10);
2025
2026 /* compute remaining time until next beacon */
2027 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2028 mod = le64toh(tsf.tstamp) % val;
2029 tsf.binitval = htole32((uint32_t)(val - mod));
2030
2031 DPRINTF(("TSF bintval=%u tstamp=%llu, init=%u\n",
2032 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2033
2034 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2035 aprint_error("%s: could not enable TSF\n", sc->sc_dev.dv_xname);
2036 }
2037
2038 /*
2039 * Build a beacon frame that the firmware will broadcast periodically in
2040 * IBSS or HostAP modes.
2041 */
2042 static int
2043 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2044 {
2045 struct ieee80211com *ic = &sc->sc_ic;
2046 struct wpi_tx_ring *ring = &sc->cmdq;
2047 struct wpi_tx_desc *desc;
2048 struct wpi_tx_data *data;
2049 struct wpi_tx_cmd *cmd;
2050 struct wpi_cmd_beacon *bcn;
2051 struct ieee80211_beacon_offsets bo;
2052 struct mbuf *m0;
2053 int error;
2054
2055 desc = &ring->desc[ring->cur];
2056 data = &ring->data[ring->cur];
2057
2058 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2059 if (m0 == NULL) {
2060 aprint_error("%s: could not allocate beacon frame\n",
2061 sc->sc_dev.dv_xname);
2062 return ENOMEM;
2063 }
2064
2065 cmd = &ring->cmd[ring->cur];
2066 cmd->code = WPI_CMD_SET_BEACON;
2067 cmd->flags = 0;
2068 cmd->qid = ring->qid;
2069 cmd->idx = ring->cur;
2070
2071 bcn = (struct wpi_cmd_beacon *)cmd->data;
2072 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2073 bcn->id = WPI_ID_BROADCAST;
2074 bcn->ofdm_mask = 0xff;
2075 bcn->cck_mask = 0x0f;
2076 bcn->lifetime = htole32(0xffffffff);
2077 bcn->len = htole16(m0->m_pkthdr.len);
2078 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2079 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2080 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2081
2082 /* save and trim IEEE802.11 header */
2083 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2084 m_adj(m0, sizeof (struct ieee80211_frame));
2085
2086 /* assume beacon frame is contiguous */
2087 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2088 BUS_DMA_READ | BUS_DMA_NOWAIT);
2089 if (error) {
2090 aprint_error("%s: could not map beacon\n", sc->sc_dev.dv_xname);
2091 m_freem(m0);
2092 return error;
2093 }
2094
2095 data->m = m0;
2096
2097 /* first scatter/gather segment is used by the beacon command */
2098 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2099 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2100 ring->cur * sizeof (struct wpi_tx_cmd));
2101 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2102 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2103 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2104
2105 /* kick cmd ring */
2106 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2107 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2108
2109 return 0;
2110 }
2111
2112 static int
2113 wpi_auth(struct wpi_softc *sc)
2114 {
2115 struct ieee80211com *ic = &sc->sc_ic;
2116 struct ieee80211_node *ni = ic->ic_bss;
2117 struct wpi_node node;
2118 int error;
2119
2120 /* update adapter's configuration */
2121 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2122 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2123 sc->config.flags = htole32(WPI_CONFIG_TSF);
2124 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2125 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2126 WPI_CONFIG_24GHZ);
2127 }
2128 switch (ic->ic_curmode) {
2129 case IEEE80211_MODE_11A:
2130 sc->config.cck_mask = 0;
2131 sc->config.ofdm_mask = 0x15;
2132 break;
2133 case IEEE80211_MODE_11B:
2134 sc->config.cck_mask = 0x03;
2135 sc->config.ofdm_mask = 0;
2136 break;
2137 default: /* assume 802.11b/g */
2138 sc->config.cck_mask = 0x0f;
2139 sc->config.ofdm_mask = 0x15;
2140 }
2141
2142 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2143 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2144 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2145 sizeof (struct wpi_config), 1);
2146 if (error != 0) {
2147 aprint_error("%s: could not configure\n", sc->sc_dev.dv_xname);
2148 return error;
2149 }
2150
2151 /* add default node */
2152 memset(&node, 0, sizeof node);
2153 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2154 node.id = WPI_ID_BSS;
2155 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2156 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2157 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2158 if (error != 0) {
2159 aprint_error("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
2160 return error;
2161 }
2162
2163 error = wpi_mrr_setup(sc);
2164 if (error != 0) {
2165 aprint_error("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
2166 return error;
2167 }
2168
2169 return 0;
2170 }
2171
2172 /*
2173 * Send a scan request to the firmware. Since this command is huge, we map it
2174 * into a mbuf instead of using the pre-allocated set of commands.
2175 */
2176 static int
2177 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2178 {
2179 struct ieee80211com *ic = &sc->sc_ic;
2180 struct wpi_tx_ring *ring = &sc->cmdq;
2181 struct wpi_tx_desc *desc;
2182 struct wpi_tx_data *data;
2183 struct wpi_tx_cmd *cmd;
2184 struct wpi_scan_hdr *hdr;
2185 struct wpi_scan_chan *chan;
2186 struct ieee80211_frame *wh;
2187 struct ieee80211_rateset *rs;
2188 struct ieee80211_channel *c;
2189 enum ieee80211_phymode mode;
2190 uint8_t *frm;
2191 int nrates, pktlen, error;
2192
2193 desc = &ring->desc[ring->cur];
2194 data = &ring->data[ring->cur];
2195
2196 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2197 if (data->m == NULL) {
2198 aprint_error("%s: could not allocate mbuf for scan command\n",
2199 sc->sc_dev.dv_xname);
2200 return ENOMEM;
2201 }
2202
2203 MCLGET(data->m, M_DONTWAIT);
2204 if (!(data->m->m_flags & M_EXT)) {
2205 m_freem(data->m);
2206 data->m = NULL;
2207 aprint_error("%s: could not allocate mbuf for scan command\n",
2208 sc->sc_dev.dv_xname);
2209 return ENOMEM;
2210 }
2211
2212 cmd = mtod(data->m, struct wpi_tx_cmd *);
2213 cmd->code = WPI_CMD_SCAN;
2214 cmd->flags = 0;
2215 cmd->qid = ring->qid;
2216 cmd->idx = ring->cur;
2217
2218 hdr = (struct wpi_scan_hdr *)cmd->data;
2219 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2220 hdr->first = 1;
2221 /*
2222 * Move to the next channel if no packets are received within 5 msecs
2223 * after sending the probe request (this helps to reduce the duration
2224 * of active scans).
2225 */
2226 hdr->quiet = htole16(5); /* timeout in milliseconds */
2227 hdr->threshold = htole16(1); /* min # of packets */
2228
2229 if (flags & IEEE80211_CHAN_A) {
2230 hdr->band = htole16(WPI_SCAN_5GHZ);
2231 /* send probe requests at 6Mbps */
2232 hdr->rate = wpi_plcp_signal(12);
2233 } else {
2234 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2235 /* send probe requests at 1Mbps */
2236 hdr->rate = wpi_plcp_signal(2);
2237 }
2238 hdr->id = WPI_ID_BROADCAST;
2239 hdr->mask = htole32(0xffffffff);
2240 hdr->magic1 = htole32(1 << 13);
2241
2242 hdr->esslen = ic->ic_des_esslen;
2243 memcpy(hdr->essid, ic->ic_des_essid, ic->ic_des_esslen);
2244
2245 /*
2246 * Build a probe request frame. Most of the following code is a
2247 * copy & paste of what is done in net80211.
2248 */
2249 wh = (struct ieee80211_frame *)(hdr + 1);
2250 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2251 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2252 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2253 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2254 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2255 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2256 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2257 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2258
2259 frm = (uint8_t *)(wh + 1);
2260
2261 /* add essid IE */
2262 *frm++ = IEEE80211_ELEMID_SSID;
2263 *frm++ = ic->ic_des_esslen;
2264 memcpy(frm, ic->ic_des_essid, ic->ic_des_esslen);
2265 frm += ic->ic_des_esslen;
2266
2267 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2268 rs = &ic->ic_sup_rates[mode];
2269
2270 /* add supported rates IE */
2271 *frm++ = IEEE80211_ELEMID_RATES;
2272 nrates = rs->rs_nrates;
2273 if (nrates > IEEE80211_RATE_SIZE)
2274 nrates = IEEE80211_RATE_SIZE;
2275 *frm++ = nrates;
2276 memcpy(frm, rs->rs_rates, nrates);
2277 frm += nrates;
2278
2279 /* add supported xrates IE */
2280 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2281 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2282 *frm++ = IEEE80211_ELEMID_XRATES;
2283 *frm++ = nrates;
2284 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2285 frm += nrates;
2286 }
2287
2288 /* add optionnal IE (usually an RSN IE) */
2289 if (ic->ic_opt_ie != NULL) {
2290 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
2291 frm += ic->ic_opt_ie_len;
2292 }
2293
2294 /* setup length of probe request */
2295 hdr->pbrlen = htole16(frm - (uint8_t *)wh);
2296
2297 chan = (struct wpi_scan_chan *)frm;
2298 for (c = &ic->ic_channels[1];
2299 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2300 if ((c->ic_flags & flags) != flags)
2301 continue;
2302
2303 chan->chan = ieee80211_chan2ieee(ic, c);
2304 chan->flags = (c->ic_flags & IEEE80211_CHAN_PASSIVE) ?
2305 0 : WPI_CHAN_ACTIVE;
2306 chan->magic = htole16(0x62ab);
2307 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2308 chan->active = htole16(10);
2309 chan->passive = htole16(110);
2310 } else {
2311 chan->active = htole16(20);
2312 chan->passive = htole16(120);
2313 }
2314 hdr->nchan++;
2315 chan++;
2316
2317 frm += sizeof (struct wpi_scan_chan);
2318 }
2319
2320 hdr->len = hdr->nchan * sizeof (struct wpi_scan_chan);
2321 pktlen = frm - mtod(data->m, uint8_t *);
2322
2323 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2324 NULL, BUS_DMA_NOWAIT);
2325 if (error) {
2326 aprint_error("%s: could not map scan command\n",
2327 sc->sc_dev.dv_xname);
2328 m_freem(data->m);
2329 data->m = NULL;
2330 return error;
2331 }
2332
2333 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2334 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2335 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2336
2337 /* kick cmd ring */
2338 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2339 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2340
2341 return 0; /* will be notified async. of failure/success */
2342 }
2343
2344 static int
2345 wpi_config(struct wpi_softc *sc)
2346 {
2347 struct ieee80211com *ic = &sc->sc_ic;
2348 struct ifnet *ifp = ic->ic_ifp;
2349 struct wpi_txpower txpower;
2350 struct wpi_power power;
2351 struct wpi_bluetooth bluetooth;
2352 struct wpi_node node;
2353 int error;
2354
2355 /* set Tx power for 2.4GHz channels (values read from EEPROM) */
2356 memset(&txpower, 0, sizeof txpower);
2357 memcpy(txpower.pwr1, sc->pwr1, 14 * sizeof (uint16_t));
2358 memcpy(txpower.pwr2, sc->pwr2, 14 * sizeof (uint16_t));
2359 error = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, 0);
2360 if (error != 0) {
2361 aprint_error("%s: could not set txpower\n",
2362 sc->sc_dev.dv_xname);
2363 return error;
2364 }
2365
2366 /* set power mode */
2367 memset(&power, 0, sizeof power);
2368 power.flags = htole32(0x8); /* XXX */
2369 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2370 if (error != 0) {
2371 aprint_error("%s: could not set power mode\n",
2372 sc->sc_dev.dv_xname);
2373 return error;
2374 }
2375
2376 /* configure bluetooth coexistence */
2377 memset(&bluetooth, 0, sizeof bluetooth);
2378 bluetooth.flags = 3;
2379 bluetooth.lead = 0xaa;
2380 bluetooth.kill = 1;
2381 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2382 0);
2383 if (error != 0) {
2384 aprint_error(
2385 "%s: could not configure bluetooth coexistence\n",
2386 sc->sc_dev.dv_xname);
2387 return error;
2388 }
2389
2390 /* configure adapter */
2391 memset(&sc->config, 0, sizeof (struct wpi_config));
2392 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2393 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2394 /*set default channel*/
2395 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2396 sc->config.flags = htole32(WPI_CONFIG_TSF);
2397 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2398 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2399 WPI_CONFIG_24GHZ);
2400 }
2401 sc->config.filter = 0;
2402 switch (ic->ic_opmode) {
2403 case IEEE80211_M_STA:
2404 sc->config.mode = WPI_MODE_STA;
2405 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2406 break;
2407 case IEEE80211_M_IBSS:
2408 case IEEE80211_M_AHDEMO:
2409 sc->config.mode = WPI_MODE_IBSS;
2410 break;
2411 case IEEE80211_M_HOSTAP:
2412 sc->config.mode = WPI_MODE_HOSTAP;
2413 break;
2414 case IEEE80211_M_MONITOR:
2415 sc->config.mode = WPI_MODE_MONITOR;
2416 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2417 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2418 break;
2419 }
2420 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2421 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2422 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2423 sizeof (struct wpi_config), 0);
2424 if (error != 0) {
2425 aprint_error("%s: configure command failed\n",
2426 sc->sc_dev.dv_xname);
2427 return error;
2428 }
2429
2430 /* add broadcast node */
2431 memset(&node, 0, sizeof node);
2432 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2433 node.id = WPI_ID_BROADCAST;
2434 node.rate = wpi_plcp_signal(2);
2435 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2436 if (error != 0) {
2437 aprint_error("%s: could not add broadcast node\n",
2438 sc->sc_dev.dv_xname);
2439 return error;
2440 }
2441
2442 return 0;
2443 }
2444
2445 static void
2446 wpi_stop_master(struct wpi_softc *sc)
2447 {
2448 uint32_t tmp;
2449 int ntries;
2450
2451 tmp = WPI_READ(sc, WPI_RESET);
2452 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2453
2454 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2455 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2456 return; /* already asleep */
2457
2458 for (ntries = 0; ntries < 100; ntries++) {
2459 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2460 break;
2461 DELAY(10);
2462 }
2463 if (ntries == 100) {
2464 aprint_error("%s: timeout waiting for master\n",
2465 sc->sc_dev.dv_xname);
2466 }
2467 }
2468
2469 static int
2470 wpi_power_up(struct wpi_softc *sc)
2471 {
2472 uint32_t tmp;
2473 int ntries;
2474
2475 wpi_mem_lock(sc);
2476 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2477 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2478 wpi_mem_unlock(sc);
2479
2480 for (ntries = 0; ntries < 5000; ntries++) {
2481 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2482 break;
2483 DELAY(10);
2484 }
2485 if (ntries == 5000) {
2486 aprint_error("%s: timeout waiting for NIC to power up\n",
2487 sc->sc_dev.dv_xname);
2488 return ETIMEDOUT;
2489 }
2490 return 0;
2491 }
2492
2493 static int
2494 wpi_reset(struct wpi_softc *sc)
2495 {
2496 uint32_t tmp;
2497 int ntries;
2498
2499 /* clear any pending interrupts */
2500 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2501
2502 tmp = WPI_READ(sc, WPI_PLL_CTL);
2503 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2504
2505 tmp = WPI_READ(sc, WPI_CHICKEN);
2506 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2507
2508 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2509 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2510
2511 /* wait for clock stabilization */
2512 for (ntries = 0; ntries < 1000; ntries++) {
2513 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2514 break;
2515 DELAY(10);
2516 }
2517 if (ntries == 1000) {
2518 aprint_error("%s: timeout waiting for clock stabilization\n",
2519 sc->sc_dev.dv_xname);
2520 return ETIMEDOUT;
2521 }
2522
2523 /* initialize EEPROM */
2524 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2525 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2526 aprint_error("%s: EEPROM not found\n", sc->sc_dev.dv_xname);
2527 return EIO;
2528 }
2529 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2530
2531 return 0;
2532 }
2533
2534 static void
2535 wpi_hw_config(struct wpi_softc *sc)
2536 {
2537 uint16_t val;
2538 uint32_t rev, hw;
2539
2540 /* voodoo from the Linux "driver".. */
2541 hw = WPI_READ(sc, WPI_HWCONFIG);
2542
2543 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2544 rev = PCI_REVISION(rev);
2545 if ((rev & 0xc0) == 0x40)
2546 hw |= WPI_HW_ALM_MB;
2547 else if (!(rev & 0x80))
2548 hw |= WPI_HW_ALM_MM;
2549
2550 val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES);
2551 if ((val & 0xff) == 0x80)
2552 hw |= WPI_HW_SKU_MRC;
2553
2554 val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION);
2555 hw &= ~WPI_HW_REV_D;
2556 if ((val & 0xf0) == 0xd0)
2557 hw |= WPI_HW_REV_D;
2558
2559 val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE);
2560 if ((val & 0xff) > 1)
2561 hw |= WPI_HW_TYPE_B;
2562
2563 DPRINTF(("setting h/w config %x\n", hw));
2564 WPI_WRITE(sc, WPI_HWCONFIG, hw);
2565 }
2566
2567 static int
2568 wpi_init(struct ifnet *ifp)
2569 {
2570 struct wpi_softc *sc = ifp->if_softc;
2571 struct ieee80211com *ic = &sc->sc_ic;
2572 struct wpi_firmware_hdr hdr;
2573 const char *boot, *text, *data;
2574 firmware_handle_t fw;
2575 u_char *dfw;
2576 off_t size;
2577 size_t wsize;
2578 uint32_t tmp;
2579 int qid, ntries, error;
2580
2581 (void)wpi_reset(sc);
2582
2583 wpi_mem_lock(sc);
2584 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2585 DELAY(20);
2586 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
2587 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
2588 wpi_mem_unlock(sc);
2589
2590 (void)wpi_power_up(sc);
2591 wpi_hw_config(sc);
2592
2593 /* init Rx ring */
2594 wpi_mem_lock(sc);
2595 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
2596 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
2597 offsetof(struct wpi_shared, next));
2598 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
2599 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
2600 wpi_mem_unlock(sc);
2601
2602 /* init Tx rings */
2603 wpi_mem_lock(sc);
2604 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
2605 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
2606 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
2607 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
2608 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
2609 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
2610 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
2611
2612 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
2613 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
2614
2615 for (qid = 0; qid < 6; qid++) {
2616 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
2617 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
2618 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
2619 }
2620 wpi_mem_unlock(sc);
2621
2622 /* clear "radio off" and "disable command" bits (reversed logic) */
2623 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2624 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2625
2626 /* clear any pending interrupts */
2627 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2628 /* enable interrupts */
2629 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
2630
2631 if ((error = firmware_open("if_wpi", "ipw3945.ucode", &fw)) != 0) {
2632 aprint_error("%s: could not read firmware file\n",
2633 sc->sc_dev.dv_xname);
2634 goto fail1;
2635 }
2636
2637 size = firmware_get_size(fw);
2638
2639 if (size < sizeof (struct wpi_firmware_hdr)) {
2640 aprint_error("%s: firmware file too short\n",
2641 sc->sc_dev.dv_xname);
2642 error = EINVAL;
2643 goto fail2;
2644 }
2645
2646 if ((error = firmware_read(fw, 0, &hdr,
2647 sizeof (struct wpi_firmware_hdr))) != 0) {
2648 aprint_error("%s: can't get firmware header\n",
2649 sc->sc_dev.dv_xname);
2650 goto fail2;
2651 }
2652
2653 wsize = sizeof (struct wpi_firmware_hdr) + le32toh(hdr.textsz) +
2654 le32toh(hdr.datasz) + le32toh(hdr.bootsz);
2655
2656 if (size < wsize) {
2657 aprint_error("%s: fw file too short: should be %d bytes\n",
2658 sc->sc_dev.dv_xname, wsize);
2659 error = EINVAL;
2660 goto fail2;
2661 }
2662
2663 dfw = firmware_malloc(size);
2664 if (dfw == NULL) {
2665 aprint_error("%s: not enough memory to stock firmware\n",
2666 sc->sc_dev.dv_xname);
2667 error = ENOMEM;
2668 goto fail2;
2669 }
2670
2671 if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
2672 aprint_error("%s: can't get firmware\n",
2673 sc->sc_dev.dv_xname);
2674 goto fail2;
2675 }
2676
2677 /* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */
2678 text = dfw + sizeof (struct wpi_firmware_hdr);
2679 data = text + le32toh(hdr.textsz);
2680 boot = data + le32toh(hdr.datasz);
2681
2682 /* load firmware boot code into NIC */
2683 error = wpi_load_microcode(sc, boot, le32toh(hdr.bootsz));
2684 if (error != 0) {
2685 aprint_error("%s: could not load microcode\n", sc->sc_dev.dv_xname);
2686 goto fail3;
2687 }
2688
2689 /* load firmware .text segment into NIC */
2690 error = wpi_load_firmware(sc, WPI_FW_TEXT, text, le32toh(hdr.textsz));
2691 if (error != 0) {
2692 aprint_error("%s: could not load firmware\n",
2693 sc->sc_dev.dv_xname);
2694 goto fail3;
2695 }
2696
2697 /* load firmware .data segment into NIC */
2698 error = wpi_load_firmware(sc, WPI_FW_DATA, data, le32toh(hdr.datasz));
2699 if (error != 0) {
2700 aprint_error("%s: could not load firmware\n",
2701 sc->sc_dev.dv_xname);
2702 goto fail3;
2703 }
2704
2705 firmware_free(dfw, 0);
2706 firmware_close(fw);
2707
2708 /* now press "execute" ;-) */
2709 tmp = WPI_READ(sc, WPI_RESET);
2710 tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
2711 WPI_WRITE(sc, WPI_RESET, tmp);
2712
2713 /* ..and wait at most one second for adapter to initialize */
2714 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
2715 /* this isn't what was supposed to happen.. */
2716 aprint_error("%s: timeout waiting for adapter to initialize\n",
2717 sc->sc_dev.dv_xname);
2718 goto fail1;
2719 }
2720
2721 /* wait for thermal sensors to calibrate */
2722 for (ntries = 0; ntries < 1000; ntries++) {
2723 if (WPI_READ(sc, WPI_TEMPERATURE) != 0)
2724 break;
2725 DELAY(10);
2726 }
2727 if (ntries == 1000) {
2728 aprint_error("%s: timeout waiting for thermal sensors calibration\n",
2729 sc->sc_dev.dv_xname);
2730 error = ETIMEDOUT;
2731 goto fail1;
2732 }
2733 DPRINTF(("temperature %d\n", (int)WPI_READ(sc, WPI_TEMPERATURE)));
2734
2735 if ((error = wpi_config(sc)) != 0) {
2736 aprint_error("%s: could not configure device\n",
2737 sc->sc_dev.dv_xname);
2738 goto fail1;
2739 }
2740
2741 ifp->if_flags &= ~IFF_OACTIVE;
2742 ifp->if_flags |= IFF_RUNNING;
2743
2744 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2745 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2746 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2747 }
2748 else
2749 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2750
2751 return 0;
2752
2753 fail3: firmware_free(dfw, 0);
2754 fail2: firmware_close(fw);
2755 fail1: wpi_stop(ifp, 1);
2756 return error;
2757 }
2758
2759
2760 static void
2761 wpi_stop(struct ifnet *ifp, int disable)
2762 {
2763 struct wpi_softc *sc = ifp->if_softc;
2764 struct ieee80211com *ic = &sc->sc_ic;
2765 uint32_t tmp;
2766 int ac;
2767
2768 ifp->if_timer = sc->sc_tx_timer = 0;
2769 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2770
2771 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2772
2773 /* disable interrupts */
2774 WPI_WRITE(sc, WPI_MASK, 0);
2775 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
2776 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
2777 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
2778
2779 wpi_mem_lock(sc);
2780 wpi_mem_write(sc, WPI_MEM_MODE, 0);
2781 wpi_mem_unlock(sc);
2782
2783 /* reset all Tx rings */
2784 for (ac = 0; ac < 4; ac++)
2785 wpi_reset_tx_ring(sc, &sc->txq[ac]);
2786 wpi_reset_tx_ring(sc, &sc->cmdq);
2787 wpi_reset_tx_ring(sc, &sc->svcq);
2788
2789 /* reset Rx ring */
2790 wpi_reset_rx_ring(sc, &sc->rxq);
2791
2792 wpi_mem_lock(sc);
2793 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
2794 wpi_mem_unlock(sc);
2795
2796 DELAY(5);
2797
2798 wpi_stop_master(sc);
2799
2800 tmp = WPI_READ(sc, WPI_RESET);
2801 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
2802 }
2803
2804 /*-
2805 * Naive implementation of the Adaptive Multi Rate Retry algorithm:
2806 * "IEEE 802.11 Rate Adaptation: A Practical Approach"
2807 * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
2808 * INRIA Sophia - Projet Planete
2809 * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
2810 */
2811 #define is_success(amrr) \
2812 ((amrr)->retrycnt < (amrr)->txcnt / 10)
2813 #define is_failure(amrr) \
2814 ((amrr)->retrycnt > (amrr)->txcnt / 3)
2815 #define is_enough(amrr) \
2816 ((amrr)->txcnt > 10)
2817 #define is_min_rate(ni) \
2818 ((ni)->ni_txrate == 0)
2819 #define is_max_rate(ni) \
2820 ((ni)->ni_txrate == (ni)->ni_rates.rs_nrates - 1)
2821 #define increase_rate(ni) \
2822 ((ni)->ni_txrate++)
2823 #define decrease_rate(ni) \
2824 ((ni)->ni_txrate--)
2825 #define reset_cnt(amrr) \
2826 do { (amrr)->txcnt = (amrr)->retrycnt = 0; } while (0)
2827
2828 #define WPI_AMRR_MIN_SUCCESS_THRESHOLD 1
2829 #define WPI_AMRR_MAX_SUCCESS_THRESHOLD 15
2830
2831 /* XXX should reset all nodes on S_INIT */
2832 static void
2833 wpi_amrr_init(struct wpi_amrr *amrr)
2834 {
2835 struct ieee80211_node *ni = &amrr->ni;
2836 int i;
2837
2838 amrr->success = 0;
2839 amrr->recovery = 0;
2840 amrr->txcnt = amrr->retrycnt = 0;
2841 amrr->success_threshold = WPI_AMRR_MIN_SUCCESS_THRESHOLD;
2842
2843 /* set rate to some reasonable initial value */
2844 ni = &amrr->ni;
2845 for (i = ni->ni_rates.rs_nrates - 1;
2846 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2847 i--);
2848
2849 ni->ni_txrate = i;
2850 }
2851
2852 static void
2853 wpi_amrr_timeout(void *arg)
2854 {
2855 struct wpi_softc *sc = arg;
2856 struct ieee80211com *ic = &sc->sc_ic;
2857
2858 if (ic->ic_opmode == IEEE80211_M_STA)
2859 wpi_amrr_ratectl(NULL, ic->ic_bss);
2860 else
2861 ieee80211_iterate_nodes(&ic->ic_sta, wpi_amrr_ratectl, NULL);
2862
2863 callout_reset(&sc->amrr_ch, hz, wpi_amrr_timeout, sc);
2864 }
2865
2866 /* ARGSUSED */
2867 static void
2868 wpi_amrr_ratectl(void *arg, struct ieee80211_node *ni)
2869 {
2870 struct wpi_amrr *amrr = (struct wpi_amrr *)ni;
2871 int need_change = 0;
2872
2873 if (is_success(amrr) && is_enough(amrr)) {
2874 amrr->success++;
2875 if (amrr->success >= amrr->success_threshold &&
2876 !is_max_rate(ni)) {
2877 amrr->recovery = 1;
2878 amrr->success = 0;
2879 increase_rate(ni);
2880 DPRINTFN(2, ("AMRR increasing rate %d (txcnt=%d "
2881 "retrycnt=%d)\n", ni->ni_txrate, amrr->txcnt,
2882 amrr->retrycnt));
2883 need_change = 1;
2884 } else {
2885 amrr->recovery = 0;
2886 }
2887 } else if (is_failure(amrr)) {
2888 amrr->success = 0;
2889 if (!is_min_rate(ni)) {
2890 if (amrr->recovery) {
2891 amrr->success_threshold *= 2;
2892 if (amrr->success_threshold >
2893 WPI_AMRR_MAX_SUCCESS_THRESHOLD)
2894 amrr->success_threshold =
2895 WPI_AMRR_MAX_SUCCESS_THRESHOLD;
2896 } else {
2897 amrr->success_threshold =
2898 WPI_AMRR_MIN_SUCCESS_THRESHOLD;
2899 }
2900 decrease_rate(ni);
2901 DPRINTFN(2, ("AMRR decreasing rate %d (txcnt=%d "
2902 "retrycnt=%d)\n", ni->ni_txrate, amrr->txcnt,
2903 amrr->retrycnt));
2904 need_change = 1;
2905 }
2906 amrr->recovery = 0; /* paper is incorrect */
2907 }
2908
2909 if (is_enough(amrr) || need_change)
2910 reset_cnt(amrr);
2911 }
2912