if_wpi.c revision 1.28 1 /* $NetBSD: if_wpi.c,v 1.28 2007/11/16 00:13:32 degroote Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.28 2007/11/16 00:13:32 degroote Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39 #include <sys/callout.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47 #include <dev/pci/pcidevs.h>
48
49 #if NBPFILTER > 0
50 #include <net/bpf.h>
51 #endif
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x) if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 { 4, { 2, 4, 11, 22 } };
90
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94 static int wpi_match(device_t, struct cfdata *, void *);
95 static void wpi_attach(device_t, device_t, void *);
96 static int wpi_detach(device_t , int);
97 static void wpi_power(int, void *);
98 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
99 void **, bus_size_t, bus_size_t, int);
100 static void wpi_dma_contig_free(struct wpi_dma_info *);
101 static int wpi_alloc_shared(struct wpi_softc *);
102 static void wpi_free_shared(struct wpi_softc *);
103 static int wpi_alloc_fwmem(struct wpi_softc *);
104 static void wpi_free_fwmem(struct wpi_softc *);
105 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
106 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
107 static int wpi_alloc_rpool(struct wpi_softc *);
108 static void wpi_free_rpool(struct wpi_softc *);
109 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
112 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
113 int);
114 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
116 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
117 static void wpi_newassoc(struct ieee80211_node *, int);
118 static int wpi_media_change(struct ifnet *);
119 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
120 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
121 static void wpi_mem_lock(struct wpi_softc *);
122 static void wpi_mem_unlock(struct wpi_softc *);
123 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
124 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
125 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
126 const uint32_t *, int);
127 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
128 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
129 static int wpi_load_firmware(struct wpi_softc *);
130 static void wpi_calib_timeout(void *);
131 static void wpi_iter_func(void *, struct ieee80211_node *);
132 static void wpi_power_calibration(struct wpi_softc *, int);
133 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
134 struct wpi_rx_data *);
135 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
136 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
137 static void wpi_notif_intr(struct wpi_softc *);
138 static int wpi_intr(void *);
139 static void wpi_read_eeprom(struct wpi_softc *);
140 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
141 static void wpi_read_eeprom_group(struct wpi_softc *, int);
142 static uint8_t wpi_plcp_signal(int);
143 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
144 struct ieee80211_node *, int);
145 static void wpi_start(struct ifnet *);
146 static void wpi_watchdog(struct ifnet *);
147 static int wpi_ioctl(struct ifnet *, u_long, void *);
148 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
149 static int wpi_wme_update(struct ieee80211com *);
150 static int wpi_mrr_setup(struct wpi_softc *);
151 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
152 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
153 static int wpi_set_txpower(struct wpi_softc *,
154 struct ieee80211_channel *, int);
155 static int wpi_get_power_index(struct wpi_softc *,
156 struct wpi_power_group *, struct ieee80211_channel *, int);
157 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
158 static int wpi_auth(struct wpi_softc *);
159 static int wpi_scan(struct wpi_softc *, uint16_t);
160 static int wpi_config(struct wpi_softc *);
161 static void wpi_stop_master(struct wpi_softc *);
162 static int wpi_power_up(struct wpi_softc *);
163 static int wpi_reset(struct wpi_softc *);
164 static void wpi_hw_config(struct wpi_softc *);
165 static int wpi_init(struct ifnet *);
166 static void wpi_stop(struct ifnet *, int);
167
168 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
169 wpi_detach, NULL);
170
171 static int
172 wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
173 {
174 struct pci_attach_args *pa = aux;
175
176 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
177 return 0;
178
179 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
180 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
181 return 1;
182
183 return 0;
184 }
185
186 /* Base Address Register */
187 #define WPI_PCI_BAR0 0x10
188
189 static void
190 wpi_attach(device_t parent __unused, device_t self, void *aux)
191 {
192 struct wpi_softc *sc = device_private(self);
193 struct ieee80211com *ic = &sc->sc_ic;
194 struct ifnet *ifp = &sc->sc_ec.ec_if;
195 struct pci_attach_args *pa = aux;
196 const char *intrstr;
197 char devinfo[256];
198 bus_space_tag_t memt;
199 bus_space_handle_t memh;
200 pci_intr_handle_t ih;
201 pcireg_t data;
202 int error, ac, revision;
203
204 sc->sc_pct = pa->pa_pc;
205 sc->sc_pcitag = pa->pa_tag;
206
207 callout_init(&sc->calib_to, 0);
208 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
209
210 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
211 revision = PCI_REVISION(pa->pa_class);
212 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
213
214 /* clear device specific PCI configuration register 0x41 */
215 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
216 data &= ~0x0000ff00;
217 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
218
219 /* enable bus-mastering */
220 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
221 data |= PCI_COMMAND_MASTER_ENABLE;
222 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
223
224 /* map the register window */
225 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
226 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
227 if (error != 0) {
228 aprint_error_dev(self, "could not map memory space\n");
229 return;
230 }
231
232 sc->sc_st = memt;
233 sc->sc_sh = memh;
234 sc->sc_dmat = pa->pa_dmat;
235
236 if (pci_intr_map(pa, &ih) != 0) {
237 aprint_error_dev(self, "could not map interrupt\n");
238 return;
239 }
240
241 intrstr = pci_intr_string(sc->sc_pct, ih);
242 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
243 if (sc->sc_ih == NULL) {
244 aprint_error_dev(self, "could not establish interrupt");
245 if (intrstr != NULL)
246 aprint_error(" at %s", intrstr);
247 aprint_error("\n");
248 return;
249 }
250 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
251
252 if (wpi_reset(sc) != 0) {
253 aprint_error_dev(self, "could not reset adapter\n");
254 return;
255 }
256
257 /*
258 * Allocate DMA memory for firmware transfers.
259 */
260 if ((error = wpi_alloc_fwmem(sc)) != 0) {
261 aprint_error("could not allocate firmware memory\n");
262 return;
263 }
264
265 /*
266 * Allocate shared page and Tx/Rx rings.
267 */
268 if ((error = wpi_alloc_shared(sc)) != 0) {
269 aprint_error_dev(self, "could not allocate shared area\n");
270 goto fail1;
271 }
272
273 if ((error = wpi_alloc_rpool(sc)) != 0) {
274 aprint_error_dev(self, "could not allocate Rx buffers\n");
275 goto fail2;
276 }
277
278 for (ac = 0; ac < 4; ac++) {
279 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
280 if (error != 0) {
281 aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
282 goto fail3;
283 }
284 }
285
286 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
287 if (error != 0) {
288 aprint_error_dev(self, "could not allocate command ring\n");
289 goto fail3;
290 }
291
292 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
293 aprint_error_dev(self, "could not allocate Rx ring\n");
294 goto fail4;
295 }
296
297 ic->ic_ifp = ifp;
298 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
299 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
300 ic->ic_state = IEEE80211_S_INIT;
301
302 /* set device capabilities */
303 ic->ic_caps =
304 IEEE80211_C_IBSS | /* IBSS mode support */
305 IEEE80211_C_WPA | /* 802.11i */
306 IEEE80211_C_MONITOR | /* monitor mode supported */
307 IEEE80211_C_TXPMGT | /* tx power management */
308 IEEE80211_C_SHSLOT | /* short slot time supported */
309 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
310 IEEE80211_C_WME; /* 802.11e */
311
312 /* read supported channels and MAC address from EEPROM */
313 wpi_read_eeprom(sc);
314
315 /* set supported .11a, .11b, .11g rates */
316 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
317 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
318 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
319
320 ic->ic_ibss_chan = &ic->ic_channels[0];
321
322 ifp->if_softc = sc;
323 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
324 ifp->if_init = wpi_init;
325 ifp->if_stop = wpi_stop;
326 ifp->if_ioctl = wpi_ioctl;
327 ifp->if_start = wpi_start;
328 ifp->if_watchdog = wpi_watchdog;
329 IFQ_SET_READY(&ifp->if_snd);
330 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
331
332 if_attach(ifp);
333 ieee80211_ifattach(ic);
334 /* override default methods */
335 ic->ic_node_alloc = wpi_node_alloc;
336 ic->ic_newassoc = wpi_newassoc;
337 ic->ic_wme.wme_update = wpi_wme_update;
338
339 /* override state transition machine */
340 sc->sc_newstate = ic->ic_newstate;
341 ic->ic_newstate = wpi_newstate;
342 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
343
344 sc->amrr.amrr_min_success_threshold = 1;
345 sc->amrr.amrr_max_success_threshold = 15;
346
347 /* set powerhook */
348 sc->powerhook = powerhook_establish(device_xname(self), wpi_power, sc);
349
350 #if NBPFILTER > 0
351 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
352 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
353 &sc->sc_drvbpf);
354
355 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
356 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
357 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
358
359 sc->sc_txtap_len = sizeof sc->sc_txtapu;
360 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
361 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
362 #endif
363
364 ieee80211_announce(ic);
365
366 return;
367
368 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
369 fail3: while (--ac >= 0)
370 wpi_free_tx_ring(sc, &sc->txq[ac]);
371 wpi_free_rpool(sc);
372 fail2: wpi_free_shared(sc);
373 fail1: wpi_free_fwmem(sc);
374 }
375
376 static int
377 wpi_detach(device_t self, int flags __unused)
378 {
379 struct wpi_softc *sc = device_private(self);
380 struct ifnet *ifp = sc->sc_ic.ic_ifp;
381 int ac;
382
383 wpi_stop(ifp, 1);
384
385 #if NBPFILTER > 0
386 if (ifp != NULL)
387 bpfdetach(ifp);
388 #endif
389 ieee80211_ifdetach(&sc->sc_ic);
390 if (ifp != NULL)
391 if_detach(ifp);
392
393 for (ac = 0; ac < 4; ac++)
394 wpi_free_tx_ring(sc, &sc->txq[ac]);
395 wpi_free_tx_ring(sc, &sc->cmdq);
396 wpi_free_rx_ring(sc, &sc->rxq);
397 wpi_free_rpool(sc);
398 wpi_free_shared(sc);
399
400 if (sc->sc_ih != NULL) {
401 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
402 sc->sc_ih = NULL;
403 }
404
405 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
406
407 return 0;
408 }
409
410 static void
411 wpi_power(int why, void *arg)
412 {
413 struct wpi_softc *sc = arg;
414 struct ifnet *ifp;
415 pcireg_t data;
416 int s;
417
418 if (why != PWR_RESUME)
419 return;
420
421 /* clear device specific PCI configuration register 0x41 */
422 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
423 data &= ~0x0000ff00;
424 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
425
426 s = splnet();
427 ifp = sc->sc_ic.ic_ifp;
428 if (ifp->if_flags & IFF_UP) {
429 ifp->if_init(ifp);
430 if (ifp->if_flags & IFF_RUNNING)
431 ifp->if_start(ifp);
432 }
433 splx(s);
434 }
435
436 static int
437 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
438 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
439 {
440 int nsegs, error;
441
442 dma->tag = tag;
443 dma->size = size;
444
445 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
446 if (error != 0)
447 goto fail;
448
449 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
450 flags);
451 if (error != 0)
452 goto fail;
453
454 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
455 if (error != 0)
456 goto fail;
457
458 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
459 if (error != 0)
460 goto fail;
461
462 memset(dma->vaddr, 0, size);
463
464 dma->paddr = dma->map->dm_segs[0].ds_addr;
465 if (kvap != NULL)
466 *kvap = dma->vaddr;
467
468 return 0;
469
470 fail: wpi_dma_contig_free(dma);
471 return error;
472 }
473
474 static void
475 wpi_dma_contig_free(struct wpi_dma_info *dma)
476 {
477 if (dma->map != NULL) {
478 if (dma->vaddr != NULL) {
479 bus_dmamap_unload(dma->tag, dma->map);
480 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
481 bus_dmamem_free(dma->tag, &dma->seg, 1);
482 dma->vaddr = NULL;
483 }
484 bus_dmamap_destroy(dma->tag, dma->map);
485 dma->map = NULL;
486 }
487 }
488
489 /*
490 * Allocate a shared page between host and NIC.
491 */
492 static int
493 wpi_alloc_shared(struct wpi_softc *sc)
494 {
495 int error;
496 /* must be aligned on a 4K-page boundary */
497 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
498 (void **)&sc->shared, sizeof (struct wpi_shared),
499 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
500 if (error != 0)
501 aprint_error_dev(sc->sc_dev,
502 "could not allocate shared area DMA memory\n");
503
504 return error;
505 }
506
507 static void
508 wpi_free_shared(struct wpi_softc *sc)
509 {
510 wpi_dma_contig_free(&sc->shared_dma);
511 }
512
513 /*
514 * Allocate DMA-safe memory for firmware transfer.
515 */
516 static int
517 wpi_alloc_fwmem(struct wpi_softc *sc)
518 {
519 int error;
520 /* allocate enough contiguous space to store text and data */
521 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
522 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
523 BUS_DMA_NOWAIT);
524
525 if (error != 0)
526 aprint_error_dev(sc->sc_dev,
527 "could not allocate firmware transfer area"
528 "DMA memory\n");
529 return error;
530 }
531
532 static void
533 wpi_free_fwmem(struct wpi_softc *sc)
534 {
535 wpi_dma_contig_free(&sc->fw_dma);
536 }
537
538
539 static struct wpi_rbuf *
540 wpi_alloc_rbuf(struct wpi_softc *sc)
541 {
542 struct wpi_rbuf *rbuf;
543
544 rbuf = SLIST_FIRST(&sc->rxq.freelist);
545 if (rbuf == NULL)
546 return NULL;
547 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
548 sc->rxq.nb_free_entries --;
549
550 return rbuf;
551 }
552
553 /*
554 * This is called automatically by the network stack when the mbuf to which our
555 * Rx buffer is attached is freed.
556 */
557 static void
558 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
559 {
560 struct wpi_rbuf *rbuf = arg;
561 struct wpi_softc *sc = rbuf->sc;
562
563 /* put the buffer back in the free list */
564
565 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
566 sc->rxq.nb_free_entries ++;
567
568 if (__predict_true(m != NULL))
569 pool_cache_put(mb_cache, m);
570 }
571
572 static int
573 wpi_alloc_rpool(struct wpi_softc *sc)
574 {
575 struct wpi_rx_ring *ring = &sc->rxq;
576 struct wpi_rbuf *rbuf;
577 int i, error;
578
579 /* allocate a big chunk of DMA'able memory.. */
580 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
581 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
582 if (error != 0) {
583 aprint_normal_dev(sc->sc_dev,
584 "could not allocate Rx buffers DMA memory\n");
585 return error;
586 }
587
588 /* ..and split it into 3KB chunks */
589 SLIST_INIT(&ring->freelist);
590 for (i = 0; i < WPI_RBUF_COUNT; i++) {
591 rbuf = &ring->rbuf[i];
592 rbuf->sc = sc; /* backpointer for callbacks */
593 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
594 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
595
596 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
597 }
598
599 ring->nb_free_entries = WPI_RBUF_COUNT;
600 return 0;
601 }
602
603 static void
604 wpi_free_rpool(struct wpi_softc *sc)
605 {
606 wpi_dma_contig_free(&sc->rxq.buf_dma);
607 }
608
609 static int
610 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
611 {
612 struct wpi_rx_data *data;
613 struct wpi_rbuf *rbuf;
614 int i, error;
615
616 ring->cur = 0;
617
618 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
619 (void **)&ring->desc,
620 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
621 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
622 if (error != 0) {
623 aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
624 goto fail;
625 }
626
627 /*
628 * Setup Rx buffers.
629 */
630 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
631 data = &ring->data[i];
632
633 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
634 if (data->m == NULL) {
635 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
636 error = ENOMEM;
637 goto fail;
638 }
639 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
640 m_freem(data->m);
641 data->m = NULL;
642 aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
643 error = ENOMEM;
644 goto fail;
645 }
646 /* attach Rx buffer to mbuf */
647 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
648 rbuf);
649 data->m->m_flags |= M_EXT_RW;
650
651 ring->desc[i] = htole32(rbuf->paddr);
652 }
653
654 return 0;
655
656 fail: wpi_free_rx_ring(sc, ring);
657 return error;
658 }
659
660 static void
661 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
662 {
663 int ntries;
664
665 wpi_mem_lock(sc);
666
667 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
668 for (ntries = 0; ntries < 100; ntries++) {
669 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
670 break;
671 DELAY(10);
672 }
673 #ifdef WPI_DEBUG
674 if (ntries == 100 && wpi_debug > 0)
675 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
676 #endif
677 wpi_mem_unlock(sc);
678
679 ring->cur = 0;
680 }
681
682 static void
683 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
684 {
685 int i;
686
687 wpi_dma_contig_free(&ring->desc_dma);
688
689 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
690 if (ring->data[i].m != NULL)
691 m_freem(ring->data[i].m);
692 }
693 }
694
695 static int
696 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
697 int qid)
698 {
699 struct wpi_tx_data *data;
700 int i, error;
701
702 ring->qid = qid;
703 ring->count = count;
704 ring->queued = 0;
705 ring->cur = 0;
706
707 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
708 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
709 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
710 if (error != 0) {
711 aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
712 goto fail;
713 }
714
715 /* update shared page with ring's base address */
716 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
717
718 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
719 (void **)&ring->cmd,
720 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
721 if (error != 0) {
722 aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
723 goto fail;
724 }
725
726 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
727 M_NOWAIT);
728 if (ring->data == NULL) {
729 aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
730 goto fail;
731 }
732
733 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
734
735 for (i = 0; i < count; i++) {
736 data = &ring->data[i];
737
738 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
739 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
740 &data->map);
741 if (error != 0) {
742 aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
743 goto fail;
744 }
745 }
746
747 return 0;
748
749 fail: wpi_free_tx_ring(sc, ring);
750 return error;
751 }
752
753 static void
754 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
755 {
756 struct wpi_tx_data *data;
757 int i, ntries;
758
759 wpi_mem_lock(sc);
760
761 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
762 for (ntries = 0; ntries < 100; ntries++) {
763 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
764 break;
765 DELAY(10);
766 }
767 #ifdef WPI_DEBUG
768 if (ntries == 100 && wpi_debug > 0) {
769 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
770 ring->qid);
771 }
772 #endif
773 wpi_mem_unlock(sc);
774
775 for (i = 0; i < ring->count; i++) {
776 data = &ring->data[i];
777
778 if (data->m != NULL) {
779 bus_dmamap_unload(sc->sc_dmat, data->map);
780 m_freem(data->m);
781 data->m = NULL;
782 }
783 }
784
785 ring->queued = 0;
786 ring->cur = 0;
787 }
788
789 static void
790 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
791 {
792 struct wpi_tx_data *data;
793 int i;
794
795 wpi_dma_contig_free(&ring->desc_dma);
796 wpi_dma_contig_free(&ring->cmd_dma);
797
798 if (ring->data != NULL) {
799 for (i = 0; i < ring->count; i++) {
800 data = &ring->data[i];
801
802 if (data->m != NULL) {
803 bus_dmamap_unload(sc->sc_dmat, data->map);
804 m_freem(data->m);
805 }
806 }
807 free(ring->data, M_DEVBUF);
808 }
809 }
810
811 /*ARGUSED*/
812 static struct ieee80211_node *
813 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
814 {
815 struct wpi_node *wn;
816
817 wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
818
819 if (wn != NULL)
820 memset(wn, 0, sizeof (struct wpi_node));
821 return (struct ieee80211_node *)wn;
822 }
823
824 static void
825 wpi_newassoc(struct ieee80211_node *ni, int isnew)
826 {
827 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
828 int i;
829
830 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
831
832 /* set rate to some reasonable initial value */
833 for (i = ni->ni_rates.rs_nrates - 1;
834 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
835 i--);
836 ni->ni_txrate = i;
837 }
838
839 static int
840 wpi_media_change(struct ifnet *ifp)
841 {
842 int error;
843
844 error = ieee80211_media_change(ifp);
845 if (error != ENETRESET)
846 return error;
847
848 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
849 wpi_init(ifp);
850
851 return 0;
852 }
853
854 static int
855 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
856 {
857 struct ifnet *ifp = ic->ic_ifp;
858 struct wpi_softc *sc = ifp->if_softc;
859 struct ieee80211_node *ni;
860 int error;
861
862 callout_stop(&sc->calib_to);
863
864 switch (nstate) {
865 case IEEE80211_S_SCAN:
866
867 if (sc->is_scanning)
868 break;
869
870 sc->is_scanning = true;
871 ieee80211_node_table_reset(&ic->ic_scan);
872 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
873
874 /* make the link LED blink while we're scanning */
875 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
876
877 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
878 aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
879 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
880 return error;
881 }
882
883 ic->ic_state = nstate;
884 return 0;
885
886 case IEEE80211_S_ASSOC:
887 if (ic->ic_state != IEEE80211_S_RUN)
888 break;
889 /* FALLTHROUGH */
890 case IEEE80211_S_AUTH:
891 sc->config.associd = 0;
892 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
893 if ((error = wpi_auth(sc)) != 0) {
894 aprint_error_dev(sc->sc_dev,
895 "could not send authentication request\n");
896 return error;
897 }
898 break;
899
900 case IEEE80211_S_RUN:
901 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
902 /* link LED blinks while monitoring */
903 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
904 break;
905 }
906
907 ni = ic->ic_bss;
908
909 if (ic->ic_opmode != IEEE80211_M_STA) {
910 (void) wpi_auth(sc); /* XXX */
911 wpi_setup_beacon(sc, ni);
912 }
913
914 wpi_enable_tsf(sc, ni);
915
916 /* update adapter's configuration */
917 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
918 /* short preamble/slot time are negotiated when associating */
919 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
920 WPI_CONFIG_SHSLOT);
921 if (ic->ic_flags & IEEE80211_F_SHSLOT)
922 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
923 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
924 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
925 sc->config.filter |= htole32(WPI_FILTER_BSS);
926 if (ic->ic_opmode != IEEE80211_M_STA)
927 sc->config.filter |= htole32(WPI_FILTER_BEACON);
928
929 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
930
931 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
932 sc->config.flags));
933 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
934 sizeof (struct wpi_config), 1);
935 if (error != 0) {
936 aprint_error_dev(sc->sc_dev, "could not update configuration\n");
937 return error;
938 }
939
940 /* configuration has changed, set Tx power accordingly */
941 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
942 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
943 return error;
944 }
945
946 if (ic->ic_opmode == IEEE80211_M_STA) {
947 /* fake a join to init the tx rate */
948 wpi_newassoc(ni, 1);
949 }
950
951 /* start periodic calibration timer */
952 sc->calib_cnt = 0;
953 callout_schedule(&sc->calib_to, hz/2);
954
955 /* link LED always on while associated */
956 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
957 break;
958
959 case IEEE80211_S_INIT:
960 sc->is_scanning = false;
961 break;
962 }
963
964 return sc->sc_newstate(ic, nstate, arg);
965 }
966
967 /*
968 * XXX: Hack to set the current channel to the value advertised in beacons or
969 * probe responses. Only used during AP detection.
970 * XXX: Duplicated from if_iwi.c
971 */
972 static void
973 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
974 {
975 struct ieee80211_frame *wh;
976 uint8_t subtype;
977 uint8_t *frm, *efrm;
978
979 wh = mtod(m, struct ieee80211_frame *);
980
981 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
982 return;
983
984 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
985
986 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
987 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
988 return;
989
990 frm = (uint8_t *)(wh + 1);
991 efrm = mtod(m, uint8_t *) + m->m_len;
992
993 frm += 12; /* skip tstamp, bintval and capinfo fields */
994 while (frm < efrm) {
995 if (*frm == IEEE80211_ELEMID_DSPARMS)
996 #if IEEE80211_CHAN_MAX < 255
997 if (frm[2] <= IEEE80211_CHAN_MAX)
998 #endif
999 ic->ic_curchan = &ic->ic_channels[frm[2]];
1000
1001 frm += frm[1] + 2;
1002 }
1003 }
1004
1005 /*
1006 * Grab exclusive access to NIC memory.
1007 */
1008 static void
1009 wpi_mem_lock(struct wpi_softc *sc)
1010 {
1011 uint32_t tmp;
1012 int ntries;
1013
1014 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1015 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1016
1017 /* spin until we actually get the lock */
1018 for (ntries = 0; ntries < 1000; ntries++) {
1019 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1020 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1021 break;
1022 DELAY(10);
1023 }
1024 if (ntries == 1000)
1025 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1026 }
1027
1028 /*
1029 * Release lock on NIC memory.
1030 */
1031 static void
1032 wpi_mem_unlock(struct wpi_softc *sc)
1033 {
1034 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1035 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1036 }
1037
1038 static uint32_t
1039 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1040 {
1041 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1042 return WPI_READ(sc, WPI_READ_MEM_DATA);
1043 }
1044
1045 static void
1046 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1047 {
1048 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1049 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1050 }
1051
1052 static void
1053 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1054 const uint32_t *data, int wlen)
1055 {
1056 for (; wlen > 0; wlen--, data++, addr += 4)
1057 wpi_mem_write(sc, addr, *data);
1058 }
1059
1060
1061 /*
1062 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1063 * instead of using the traditional bit-bang method.
1064 */
1065 static int
1066 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1067 {
1068 uint8_t *out = data;
1069 uint32_t val;
1070 int ntries;
1071
1072 wpi_mem_lock(sc);
1073 for (; len > 0; len -= 2, addr++) {
1074 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1075
1076 for (ntries = 0; ntries < 10; ntries++) {
1077 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1078 WPI_EEPROM_READY)
1079 break;
1080 DELAY(5);
1081 }
1082 if (ntries == 10) {
1083 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1084 return ETIMEDOUT;
1085 }
1086 *out++ = val >> 16;
1087 if (len > 1)
1088 *out++ = val >> 24;
1089 }
1090 wpi_mem_unlock(sc);
1091
1092 return 0;
1093 }
1094
1095 /*
1096 * The firmware boot code is small and is intended to be copied directly into
1097 * the NIC internal memory.
1098 */
1099 int
1100 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1101 {
1102 int ntries;
1103
1104 size /= sizeof (uint32_t);
1105
1106 wpi_mem_lock(sc);
1107
1108 /* copy microcode image into NIC memory */
1109 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1110 (const uint32_t *)ucode, size);
1111
1112 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1113 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1114 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1115
1116 /* run microcode */
1117 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1118
1119 /* wait for transfer to complete */
1120 for (ntries = 0; ntries < 1000; ntries++) {
1121 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1122 break;
1123 DELAY(10);
1124 }
1125 if (ntries == 1000) {
1126 wpi_mem_unlock(sc);
1127 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1128 return ETIMEDOUT;
1129 }
1130 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1131
1132 wpi_mem_unlock(sc);
1133
1134 return 0;
1135 }
1136
1137 static int
1138 wpi_load_firmware(struct wpi_softc *sc)
1139 {
1140 struct wpi_dma_info *dma = &sc->fw_dma;
1141 struct wpi_firmware_hdr hdr;
1142 const uint8_t *init_text, *init_data, *main_text, *main_data;
1143 const uint8_t *boot_text;
1144 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1145 uint32_t boot_textsz;
1146 firmware_handle_t fw;
1147 u_char *dfw;
1148 size_t size;
1149 int error;
1150
1151 /* load firmware image from disk */
1152 if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1153 aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1154 goto fail1;
1155 }
1156
1157 size = firmware_get_size(fw);
1158
1159 /* extract firmware header information */
1160 if (size < sizeof (struct wpi_firmware_hdr)) {
1161 aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
1162 size);
1163 error = EINVAL;
1164 goto fail2;
1165 }
1166
1167 if ((error = firmware_read(fw, 0, &hdr,
1168 sizeof (struct wpi_firmware_hdr))) != 0) {
1169 aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1170 goto fail2;
1171 }
1172
1173 main_textsz = le32toh(hdr.main_textsz);
1174 main_datasz = le32toh(hdr.main_datasz);
1175 init_textsz = le32toh(hdr.init_textsz);
1176 init_datasz = le32toh(hdr.init_datasz);
1177 boot_textsz = le32toh(hdr.boot_textsz);
1178
1179 /* sanity-check firmware segments sizes */
1180 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1181 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1182 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1183 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1184 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1185 (boot_textsz & 3) != 0) {
1186 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1187 error = EINVAL;
1188 goto fail2;
1189 }
1190
1191 /* check that all firmware segments are present */
1192 if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1193 main_datasz + init_textsz + init_datasz + boot_textsz) {
1194 aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
1195 size);
1196 error = EINVAL;
1197 goto fail2;
1198 }
1199
1200 dfw = firmware_malloc(size);
1201 if (dfw == NULL) {
1202 aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1203 error = ENOMEM;
1204 goto fail2;
1205 }
1206
1207 if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1208 aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1209 goto fail2;
1210 }
1211
1212 /* get pointers to firmware segments */
1213 main_text = dfw + sizeof (struct wpi_firmware_hdr);
1214 main_data = main_text + main_textsz;
1215 init_text = main_data + main_datasz;
1216 init_data = init_text + init_textsz;
1217 boot_text = init_data + init_datasz;
1218
1219 /* copy initialization images into pre-allocated DMA-safe memory */
1220 memcpy(dma->vaddr, init_data, init_datasz);
1221 memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1222
1223 /* tell adapter where to find initialization images */
1224 wpi_mem_lock(sc);
1225 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1226 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1227 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1228 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1229 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1230 wpi_mem_unlock(sc);
1231
1232 /* load firmware boot code */
1233 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1234 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1235 goto fail3;
1236 }
1237
1238 /* now press "execute" ;-) */
1239 WPI_WRITE(sc, WPI_RESET, 0);
1240
1241 /* ..and wait at most one second for adapter to initialize */
1242 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1243 /* this isn't what was supposed to happen.. */
1244 aprint_error_dev(sc->sc_dev,
1245 "timeout waiting for adapter to initialize\n");
1246 }
1247
1248 /* copy runtime images into pre-allocated DMA-safe memory */
1249 memcpy(dma->vaddr, main_data, main_datasz);
1250 memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1251
1252 /* tell adapter where to find runtime images */
1253 wpi_mem_lock(sc);
1254 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1255 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1256 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1257 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1258 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1259 wpi_mem_unlock(sc);
1260
1261 /* wait at most one second for second alive notification */
1262 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1263 /* this isn't what was supposed to happen.. */
1264 aprint_error_dev(sc->sc_dev,
1265 "timeout waiting for adapter to initialize\n");
1266 }
1267
1268
1269 fail3: firmware_free(dfw,size);
1270 fail2: firmware_close(fw);
1271 fail1: return error;
1272 }
1273
1274 static void
1275 wpi_calib_timeout(void *arg)
1276 {
1277 struct wpi_softc *sc = arg;
1278 struct ieee80211com *ic = &sc->sc_ic;
1279 int temp, s;
1280
1281 /* automatic rate control triggered every 500ms */
1282 if (ic->ic_fixed_rate == -1) {
1283 s = splnet();
1284 if (ic->ic_opmode == IEEE80211_M_STA)
1285 wpi_iter_func(sc, ic->ic_bss);
1286 else
1287 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1288 splx(s);
1289 }
1290
1291 /* update sensor data */
1292 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1293
1294 /* automatic power calibration every 60s */
1295 if (++sc->calib_cnt >= 120) {
1296 wpi_power_calibration(sc, temp);
1297 sc->calib_cnt = 0;
1298 }
1299
1300 callout_schedule(&sc->calib_to, hz/2);
1301 }
1302
1303 static void
1304 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1305 {
1306 struct wpi_softc *sc = arg;
1307 struct wpi_node *wn = (struct wpi_node *)ni;
1308
1309 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1310 }
1311
1312 /*
1313 * This function is called periodically (every 60 seconds) to adjust output
1314 * power to temperature changes.
1315 */
1316 void
1317 wpi_power_calibration(struct wpi_softc *sc, int temp)
1318 {
1319 /* sanity-check read value */
1320 if (temp < -260 || temp > 25) {
1321 /* this can't be correct, ignore */
1322 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1323 return;
1324 }
1325
1326 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1327
1328 /* adjust Tx power if need be */
1329 if (abs(temp - sc->temp) <= 6)
1330 return;
1331
1332 sc->temp = temp;
1333
1334 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1335 /* just warn, too bad for the automatic calibration... */
1336 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1337 }
1338 }
1339
1340 static void
1341 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1342 struct wpi_rx_data *data)
1343 {
1344 struct ieee80211com *ic = &sc->sc_ic;
1345 struct ifnet *ifp = ic->ic_ifp;
1346 struct wpi_rx_ring *ring = &sc->rxq;
1347 struct wpi_rx_stat *stat;
1348 struct wpi_rx_head *head;
1349 struct wpi_rx_tail *tail;
1350 struct wpi_rbuf *rbuf;
1351 struct ieee80211_frame *wh;
1352 struct ieee80211_node *ni;
1353 struct mbuf *m, *mnew;
1354 int data_off ;
1355
1356 stat = (struct wpi_rx_stat *)(desc + 1);
1357
1358 if (stat->len > WPI_STAT_MAXLEN) {
1359 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1360 ifp->if_ierrors++;
1361 return;
1362 }
1363
1364 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1365 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1366
1367 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1368 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1369 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1370 le64toh(tail->tstamp)));
1371
1372 /*
1373 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1374 * to radiotap in monitor mode).
1375 */
1376 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1377 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1378 ifp->if_ierrors++;
1379 return;
1380 }
1381
1382 /* Compute where are the useful datas */
1383 data_off = (char*)(head + 1) - mtod(data->m, char*);
1384
1385 /*
1386 * If the number of free entry is too low
1387 * just dup the data->m socket and reuse the same rbuf entry
1388 */
1389 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1390
1391 /* Prepare the mbuf for the m_dup */
1392 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1393 data->m->m_data = (char*) data->m->m_data + data_off;
1394
1395 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1396
1397 /* Restore the m_data pointer for future use */
1398 data->m->m_data = (char*) data->m->m_data - data_off;
1399
1400 if (m == NULL) {
1401 ifp->if_ierrors++;
1402 return;
1403 }
1404 } else {
1405
1406 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1407 if (mnew == NULL) {
1408 ifp->if_ierrors++;
1409 return;
1410 }
1411
1412 rbuf = wpi_alloc_rbuf(sc);
1413 KASSERT(rbuf != NULL);
1414
1415 /* attach Rx buffer to mbuf */
1416 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1417 rbuf);
1418 mnew->m_flags |= M_EXT_RW;
1419
1420 m = data->m;
1421 data->m = mnew;
1422
1423 /* update Rx descriptor */
1424 ring->desc[ring->cur] = htole32(rbuf->paddr);
1425
1426 m->m_data = (char*)m->m_data + data_off;
1427 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1428 }
1429
1430 /* finalize mbuf */
1431 m->m_pkthdr.rcvif = ifp;
1432
1433 if (ic->ic_state == IEEE80211_S_SCAN)
1434 wpi_fix_channel(ic, m);
1435
1436 #if NBPFILTER > 0
1437 if (sc->sc_drvbpf != NULL) {
1438 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1439
1440 tap->wr_flags = 0;
1441 tap->wr_chan_freq =
1442 htole16(ic->ic_channels[head->chan].ic_freq);
1443 tap->wr_chan_flags =
1444 htole16(ic->ic_channels[head->chan].ic_flags);
1445 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1446 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1447 tap->wr_tsft = tail->tstamp;
1448 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1449 switch (head->rate) {
1450 /* CCK rates */
1451 case 10: tap->wr_rate = 2; break;
1452 case 20: tap->wr_rate = 4; break;
1453 case 55: tap->wr_rate = 11; break;
1454 case 110: tap->wr_rate = 22; break;
1455 /* OFDM rates */
1456 case 0xd: tap->wr_rate = 12; break;
1457 case 0xf: tap->wr_rate = 18; break;
1458 case 0x5: tap->wr_rate = 24; break;
1459 case 0x7: tap->wr_rate = 36; break;
1460 case 0x9: tap->wr_rate = 48; break;
1461 case 0xb: tap->wr_rate = 72; break;
1462 case 0x1: tap->wr_rate = 96; break;
1463 case 0x3: tap->wr_rate = 108; break;
1464 /* unknown rate: should not happen */
1465 default: tap->wr_rate = 0;
1466 }
1467 if (le16toh(head->flags) & 0x4)
1468 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1469
1470 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1471 }
1472 #endif
1473
1474 /* grab a reference to the source node */
1475 wh = mtod(m, struct ieee80211_frame *);
1476 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1477
1478 /* send the frame to the 802.11 layer */
1479 ieee80211_input(ic, m, ni, stat->rssi, 0);
1480
1481 /* release node reference */
1482 ieee80211_free_node(ni);
1483 }
1484
1485 static void
1486 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1487 {
1488 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1489 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1490 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1491 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1492 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1493
1494 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1495 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1496 stat->nkill, stat->rate, le32toh(stat->duration),
1497 le32toh(stat->status)));
1498
1499 /*
1500 * Update rate control statistics for the node.
1501 * XXX we should not count mgmt frames since they're always sent at
1502 * the lowest available bit-rate.
1503 */
1504 wn->amn.amn_txcnt++;
1505 if (stat->ntries > 0) {
1506 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1507 wn->amn.amn_retrycnt++;
1508 }
1509
1510 if ((le32toh(stat->status) & 0xff) != 1)
1511 ifp->if_oerrors++;
1512 else
1513 ifp->if_opackets++;
1514
1515 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1516 m_freem(txdata->m);
1517 txdata->m = NULL;
1518 ieee80211_free_node(txdata->ni);
1519 txdata->ni = NULL;
1520
1521 ring->queued--;
1522
1523 sc->sc_tx_timer = 0;
1524 ifp->if_flags &= ~IFF_OACTIVE;
1525 wpi_start(ifp);
1526 }
1527
1528 static void
1529 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1530 {
1531 struct wpi_tx_ring *ring = &sc->cmdq;
1532 struct wpi_tx_data *data;
1533
1534 if ((desc->qid & 7) != 4)
1535 return; /* not a command ack */
1536
1537 data = &ring->data[desc->idx];
1538
1539 /* if the command was mapped in a mbuf, free it */
1540 if (data->m != NULL) {
1541 bus_dmamap_unload(sc->sc_dmat, data->map);
1542 m_freem(data->m);
1543 data->m = NULL;
1544 }
1545
1546 wakeup(&ring->cmd[desc->idx]);
1547 }
1548
1549 static void
1550 wpi_notif_intr(struct wpi_softc *sc)
1551 {
1552 struct ieee80211com *ic = &sc->sc_ic;
1553 struct ifnet *ifp = ic->ic_ifp;
1554 struct wpi_rx_desc *desc;
1555 struct wpi_rx_data *data;
1556 uint32_t hw;
1557
1558 hw = le32toh(sc->shared->next);
1559 while (sc->rxq.cur != hw) {
1560 data = &sc->rxq.data[sc->rxq.cur];
1561
1562 desc = mtod(data->m, struct wpi_rx_desc *);
1563
1564 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1565 "len=%d\n", desc->qid, desc->idx, desc->flags,
1566 desc->type, le32toh(desc->len)));
1567
1568 if (!(desc->qid & 0x80)) /* reply to a command */
1569 wpi_cmd_intr(sc, desc);
1570
1571 switch (desc->type) {
1572 case WPI_RX_DONE:
1573 /* a 802.11 frame was received */
1574 wpi_rx_intr(sc, desc, data);
1575 break;
1576
1577 case WPI_TX_DONE:
1578 /* a 802.11 frame has been transmitted */
1579 wpi_tx_intr(sc, desc);
1580 break;
1581
1582 case WPI_UC_READY:
1583 {
1584 struct wpi_ucode_info *uc =
1585 (struct wpi_ucode_info *)(desc + 1);
1586
1587 /* the microcontroller is ready */
1588 DPRINTF(("microcode alive notification version %x "
1589 "alive %x\n", le32toh(uc->version),
1590 le32toh(uc->valid)));
1591
1592 if (le32toh(uc->valid) != 1) {
1593 aprint_error_dev(sc->sc_dev,
1594 "microcontroller initialization failed\n");
1595 }
1596 break;
1597 }
1598 case WPI_STATE_CHANGED:
1599 {
1600 uint32_t *status = (uint32_t *)(desc + 1);
1601
1602 /* enabled/disabled notification */
1603 DPRINTF(("state changed to %x\n", le32toh(*status)));
1604
1605 if (le32toh(*status) & 1) {
1606 /* the radio button has to be pushed */
1607 aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1608 /* turn the interface down */
1609 ifp->if_flags &= ~IFF_UP;
1610 wpi_stop(ifp, 1);
1611 return; /* no further processing */
1612 }
1613 break;
1614 }
1615 case WPI_START_SCAN:
1616 {
1617 struct wpi_start_scan *scan =
1618 (struct wpi_start_scan *)(desc + 1);
1619
1620 DPRINTFN(2, ("scanning channel %d status %x\n",
1621 scan->chan, le32toh(scan->status)));
1622
1623 /* fix current channel */
1624 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1625 break;
1626 }
1627 case WPI_STOP_SCAN:
1628 {
1629 struct wpi_stop_scan *scan =
1630 (struct wpi_stop_scan *)(desc + 1);
1631
1632 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1633 scan->nchan, scan->status, scan->chan));
1634
1635 if (scan->status == 1 && scan->chan <= 14) {
1636 /*
1637 * We just finished scanning 802.11g channels,
1638 * start scanning 802.11a ones.
1639 */
1640 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1641 break;
1642 }
1643 sc->is_scanning = false;
1644 ieee80211_end_scan(ic);
1645 break;
1646 }
1647 }
1648
1649 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1650 }
1651
1652 /* tell the firmware what we have processed */
1653 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1654 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1655 }
1656
1657 static int
1658 wpi_intr(void *arg)
1659 {
1660 struct wpi_softc *sc = arg;
1661 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1662 uint32_t r;
1663
1664 r = WPI_READ(sc, WPI_INTR);
1665 if (r == 0 || r == 0xffffffff)
1666 return 0; /* not for us */
1667
1668 DPRINTFN(5, ("interrupt reg %x\n", r));
1669
1670 /* disable interrupts */
1671 WPI_WRITE(sc, WPI_MASK, 0);
1672 /* ack interrupts */
1673 WPI_WRITE(sc, WPI_INTR, r);
1674
1675 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1676 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1677 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1678 wpi_stop(sc->sc_ic.ic_ifp, 1);
1679 return 1;
1680 }
1681
1682 if (r & WPI_RX_INTR)
1683 wpi_notif_intr(sc);
1684
1685 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1686 wakeup(sc);
1687
1688 /* re-enable interrupts */
1689 if (ifp->if_flags & IFF_UP)
1690 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1691
1692 return 1;
1693 }
1694
1695 static uint8_t
1696 wpi_plcp_signal(int rate)
1697 {
1698 switch (rate) {
1699 /* CCK rates (returned values are device-dependent) */
1700 case 2: return 10;
1701 case 4: return 20;
1702 case 11: return 55;
1703 case 22: return 110;
1704
1705 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1706 /* R1-R4, (u)ral is R4-R1 */
1707 case 12: return 0xd;
1708 case 18: return 0xf;
1709 case 24: return 0x5;
1710 case 36: return 0x7;
1711 case 48: return 0x9;
1712 case 72: return 0xb;
1713 case 96: return 0x1;
1714 case 108: return 0x3;
1715
1716 /* unsupported rates (should not get there) */
1717 default: return 0;
1718 }
1719 }
1720
1721 /* quickly determine if a given rate is CCK or OFDM */
1722 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1723
1724 static int
1725 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1726 int ac)
1727 {
1728 struct ieee80211com *ic = &sc->sc_ic;
1729 struct wpi_tx_ring *ring = &sc->txq[ac];
1730 struct wpi_tx_desc *desc;
1731 struct wpi_tx_data *data;
1732 struct wpi_tx_cmd *cmd;
1733 struct wpi_cmd_data *tx;
1734 struct ieee80211_frame *wh;
1735 struct ieee80211_key *k;
1736 const struct chanAccParams *cap;
1737 struct mbuf *mnew;
1738 int i, error, rate, hdrlen, noack = 0;
1739
1740 desc = &ring->desc[ring->cur];
1741 data = &ring->data[ring->cur];
1742
1743 wh = mtod(m0, struct ieee80211_frame *);
1744
1745 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1746 cap = &ic->ic_wme.wme_chanParams;
1747 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1748 }
1749
1750 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1751 k = ieee80211_crypto_encap(ic, ni, m0);
1752 if (k == NULL) {
1753 m_freem(m0);
1754 return ENOBUFS;
1755 }
1756
1757 /* packet header may have moved, reset our local pointer */
1758 wh = mtod(m0, struct ieee80211_frame *);
1759 }
1760
1761 hdrlen = ieee80211_anyhdrsize(wh);
1762
1763 /* pickup a rate */
1764 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1765 IEEE80211_FC0_TYPE_MGT) {
1766 /* mgmt frames are sent at the lowest available bit-rate */
1767 rate = ni->ni_rates.rs_rates[0];
1768 } else {
1769 if (ic->ic_fixed_rate != -1) {
1770 rate = ic->ic_sup_rates[ic->ic_curmode].
1771 rs_rates[ic->ic_fixed_rate];
1772 } else
1773 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1774 }
1775 rate &= IEEE80211_RATE_VAL;
1776
1777
1778 #if NBPFILTER > 0
1779 if (sc->sc_drvbpf != NULL) {
1780 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1781
1782 tap->wt_flags = 0;
1783 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1784 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1785 tap->wt_rate = rate;
1786 tap->wt_hwqueue = ac;
1787 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1788 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1789
1790 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1791 }
1792 #endif
1793
1794 cmd = &ring->cmd[ring->cur];
1795 cmd->code = WPI_CMD_TX_DATA;
1796 cmd->flags = 0;
1797 cmd->qid = ring->qid;
1798 cmd->idx = ring->cur;
1799
1800 tx = (struct wpi_cmd_data *)cmd->data;
1801 tx->flags = 0;
1802
1803 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1804 tx->flags |= htole32(WPI_TX_NEED_ACK);
1805 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1806 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1807
1808 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1809
1810 /* retrieve destination node's id */
1811 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1812 WPI_ID_BSS;
1813
1814 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1815 IEEE80211_FC0_TYPE_MGT) {
1816 /* tell h/w to set timestamp in probe responses */
1817 if ((wh->i_fc[0] &
1818 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1819 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1820 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1821
1822 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1823 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1824 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1825 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1826 tx->timeout = htole16(3);
1827 else
1828 tx->timeout = htole16(2);
1829 } else
1830 tx->timeout = htole16(0);
1831
1832 tx->rate = wpi_plcp_signal(rate);
1833
1834 /* be very persistant at sending frames out */
1835 tx->rts_ntries = 7;
1836 tx->data_ntries = 15;
1837
1838 tx->ofdm_mask = 0xff;
1839 tx->cck_mask = 0xf;
1840 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1841
1842 tx->len = htole16(m0->m_pkthdr.len);
1843
1844 /* save and trim IEEE802.11 header */
1845 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1846 m_adj(m0, hdrlen);
1847
1848 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1849 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1850 if (error != 0 && error != EFBIG) {
1851 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1852 m_freem(m0);
1853 return error;
1854 }
1855 if (error != 0) {
1856 /* too many fragments, linearize */
1857 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1858 if (mnew == NULL) {
1859 m_freem(m0);
1860 return ENOMEM;
1861 }
1862
1863 M_COPY_PKTHDR(mnew, m0);
1864 if (m0->m_pkthdr.len > MHLEN) {
1865 MCLGET(mnew, M_DONTWAIT);
1866 if (!(mnew->m_flags & M_EXT)) {
1867 m_freem(m0);
1868 m_freem(mnew);
1869 return ENOMEM;
1870 }
1871 }
1872
1873 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1874 m_freem(m0);
1875 mnew->m_len = mnew->m_pkthdr.len;
1876 m0 = mnew;
1877
1878 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1879 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1880 if (error != 0) {
1881 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1882 error);
1883 m_freem(m0);
1884 return error;
1885 }
1886 }
1887
1888 data->m = m0;
1889 data->ni = ni;
1890
1891 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1892 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1893
1894 /* first scatter/gather segment is used by the tx data command */
1895 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1896 (1 + data->map->dm_nsegs) << 24);
1897 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1898 ring->cur * sizeof (struct wpi_tx_cmd));
1899 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1900 ((hdrlen + 3) & ~3));
1901
1902 for (i = 1; i <= data->map->dm_nsegs; i++) {
1903 desc->segs[i].addr =
1904 htole32(data->map->dm_segs[i - 1].ds_addr);
1905 desc->segs[i].len =
1906 htole32(data->map->dm_segs[i - 1].ds_len);
1907 }
1908
1909 ring->queued++;
1910
1911 /* kick ring */
1912 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1913 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1914
1915 return 0;
1916 }
1917
1918 static void
1919 wpi_start(struct ifnet *ifp)
1920 {
1921 struct wpi_softc *sc = ifp->if_softc;
1922 struct ieee80211com *ic = &sc->sc_ic;
1923 struct ieee80211_node *ni;
1924 struct ether_header *eh;
1925 struct mbuf *m0;
1926 int ac;
1927
1928 /*
1929 * net80211 may still try to send management frames even if the
1930 * IFF_RUNNING flag is not set...
1931 */
1932 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1933 return;
1934
1935 for (;;) {
1936 IF_DEQUEUE(&ic->ic_mgtq, m0);
1937 if (m0 != NULL) {
1938
1939 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1940 m0->m_pkthdr.rcvif = NULL;
1941
1942 /* management frames go into ring 0 */
1943 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1944 ifp->if_oerrors++;
1945 continue;
1946 }
1947 #if NBPFILTER > 0
1948 if (ic->ic_rawbpf != NULL)
1949 bpf_mtap(ic->ic_rawbpf, m0);
1950 #endif
1951 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1952 ifp->if_oerrors++;
1953 break;
1954 }
1955 } else {
1956 if (ic->ic_state != IEEE80211_S_RUN)
1957 break;
1958 IFQ_POLL(&ifp->if_snd, m0);
1959 if (m0 == NULL)
1960 break;
1961
1962 if (m0->m_len < sizeof (*eh) &&
1963 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1964 ifp->if_oerrors++;
1965 continue;
1966 }
1967 eh = mtod(m0, struct ether_header *);
1968 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1969 if (ni == NULL) {
1970 m_freem(m0);
1971 ifp->if_oerrors++;
1972 continue;
1973 }
1974
1975 /* classify mbuf so we can find which tx ring to use */
1976 if (ieee80211_classify(ic, m0, ni) != 0) {
1977 m_freem(m0);
1978 ieee80211_free_node(ni);
1979 ifp->if_oerrors++;
1980 continue;
1981 }
1982
1983 /* no QoS encapsulation for EAPOL frames */
1984 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1985 M_WME_GETAC(m0) : WME_AC_BE;
1986
1987 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1988 /* there is no place left in this ring */
1989 ifp->if_flags |= IFF_OACTIVE;
1990 break;
1991 }
1992 IFQ_DEQUEUE(&ifp->if_snd, m0);
1993 #if NBPFILTER > 0
1994 if (ifp->if_bpf != NULL)
1995 bpf_mtap(ifp->if_bpf, m0);
1996 #endif
1997 m0 = ieee80211_encap(ic, m0, ni);
1998 if (m0 == NULL) {
1999 ieee80211_free_node(ni);
2000 ifp->if_oerrors++;
2001 continue;
2002 }
2003 #if NBPFILTER > 0
2004 if (ic->ic_rawbpf != NULL)
2005 bpf_mtap(ic->ic_rawbpf, m0);
2006 #endif
2007 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2008 ieee80211_free_node(ni);
2009 ifp->if_oerrors++;
2010 break;
2011 }
2012 }
2013
2014 sc->sc_tx_timer = 5;
2015 ifp->if_timer = 1;
2016 }
2017 }
2018
2019 static void
2020 wpi_watchdog(struct ifnet *ifp)
2021 {
2022 struct wpi_softc *sc = ifp->if_softc;
2023
2024 ifp->if_timer = 0;
2025
2026 if (sc->sc_tx_timer > 0) {
2027 if (--sc->sc_tx_timer == 0) {
2028 aprint_error_dev(sc->sc_dev, "device timeout\n");
2029 ifp->if_oerrors++;
2030 ifp->if_flags &= ~IFF_UP;
2031 wpi_stop(ifp, 1);
2032 return;
2033 }
2034 ifp->if_timer = 1;
2035 }
2036
2037 ieee80211_watchdog(&sc->sc_ic);
2038 }
2039
2040 static int
2041 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2042 {
2043 #define IS_RUNNING(ifp) \
2044 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2045
2046 struct wpi_softc *sc = ifp->if_softc;
2047 struct ieee80211com *ic = &sc->sc_ic;
2048 int s, error = 0;
2049
2050 s = splnet();
2051
2052 switch (cmd) {
2053 case SIOCSIFFLAGS:
2054 if (ifp->if_flags & IFF_UP) {
2055 if (!(ifp->if_flags & IFF_RUNNING))
2056 wpi_init(ifp);
2057 } else {
2058 if (ifp->if_flags & IFF_RUNNING)
2059 wpi_stop(ifp, 1);
2060 }
2061 break;
2062
2063 case SIOCADDMULTI:
2064 case SIOCDELMULTI:
2065 /* XXX no h/w multicast filter? --dyoung */
2066 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2067 /* setup multicast filter, etc */
2068 error = 0;
2069 }
2070 break;
2071
2072 default:
2073 error = ieee80211_ioctl(ic, cmd, data);
2074 }
2075
2076 if (error == ENETRESET) {
2077 if (IS_RUNNING(ifp) &&
2078 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2079 wpi_init(ifp);
2080 error = 0;
2081 }
2082
2083 splx(s);
2084 return error;
2085
2086 #undef IS_RUNNING
2087 }
2088
2089 /*
2090 * Extract various information from EEPROM.
2091 */
2092 static void
2093 wpi_read_eeprom(struct wpi_softc *sc)
2094 {
2095 struct ieee80211com *ic = &sc->sc_ic;
2096 char domain[4];
2097 int i;
2098
2099 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2100 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2101 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2102
2103 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2104 sc->type));
2105
2106 /* read and print regulatory domain */
2107 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2108 aprint_normal(", %.4s", domain);
2109
2110 /* read and print MAC address */
2111 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2112 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2113
2114 /* read the list of authorized channels */
2115 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2116 wpi_read_eeprom_channels(sc, i);
2117
2118 /* read the list of power groups */
2119 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2120 wpi_read_eeprom_group(sc, i);
2121 }
2122
2123 static void
2124 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2125 {
2126 struct ieee80211com *ic = &sc->sc_ic;
2127 const struct wpi_chan_band *band = &wpi_bands[n];
2128 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2129 int chan, i;
2130
2131 wpi_read_prom_data(sc, band->addr, channels,
2132 band->nchan * sizeof (struct wpi_eeprom_chan));
2133
2134 for (i = 0; i < band->nchan; i++) {
2135 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2136 continue;
2137
2138 chan = band->chan[i];
2139
2140 if (n == 0) { /* 2GHz band */
2141 ic->ic_channels[chan].ic_freq =
2142 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2143 ic->ic_channels[chan].ic_flags =
2144 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2145 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2146
2147 } else { /* 5GHz band */
2148 /*
2149 * Some 3945abg adapters support channels 7, 8, 11
2150 * and 12 in the 2GHz *and* 5GHz bands.
2151 * Because of limitations in our net80211(9) stack,
2152 * we can't support these channels in 5GHz band.
2153 */
2154 if (chan <= 14)
2155 continue;
2156
2157 ic->ic_channels[chan].ic_freq =
2158 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2159 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2160 }
2161
2162 /* is active scan allowed on this channel? */
2163 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2164 ic->ic_channels[chan].ic_flags |=
2165 IEEE80211_CHAN_PASSIVE;
2166 }
2167
2168 /* save maximum allowed power for this channel */
2169 sc->maxpwr[chan] = channels[i].maxpwr;
2170
2171 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2172 chan, channels[i].flags, sc->maxpwr[chan]));
2173 }
2174 }
2175
2176 static void
2177 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2178 {
2179 struct wpi_power_group *group = &sc->groups[n];
2180 struct wpi_eeprom_group rgroup;
2181 int i;
2182
2183 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2184 sizeof rgroup);
2185
2186 /* save power group information */
2187 group->chan = rgroup.chan;
2188 group->maxpwr = rgroup.maxpwr;
2189 /* temperature at which the samples were taken */
2190 group->temp = (int16_t)le16toh(rgroup.temp);
2191
2192 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2193 group->chan, group->maxpwr, group->temp));
2194
2195 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2196 group->samples[i].index = rgroup.samples[i].index;
2197 group->samples[i].power = rgroup.samples[i].power;
2198
2199 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2200 group->samples[i].index, group->samples[i].power));
2201 }
2202 }
2203
2204 /*
2205 * Send a command to the firmware.
2206 */
2207 static int
2208 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2209 {
2210 struct wpi_tx_ring *ring = &sc->cmdq;
2211 struct wpi_tx_desc *desc;
2212 struct wpi_tx_cmd *cmd;
2213
2214 KASSERT(size <= sizeof cmd->data);
2215
2216 desc = &ring->desc[ring->cur];
2217 cmd = &ring->cmd[ring->cur];
2218
2219 cmd->code = code;
2220 cmd->flags = 0;
2221 cmd->qid = ring->qid;
2222 cmd->idx = ring->cur;
2223 memcpy(cmd->data, buf, size);
2224
2225 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2226 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2227 ring->cur * sizeof (struct wpi_tx_cmd));
2228 desc->segs[0].len = htole32(4 + size);
2229
2230 /* kick cmd ring */
2231 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2232 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2233
2234 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2235 }
2236
2237 static int
2238 wpi_wme_update(struct ieee80211com *ic)
2239 {
2240 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2241 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2242 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2243 const struct wmeParams *wmep;
2244 struct wpi_wme_setup wme;
2245 int ac;
2246
2247 /* don't override default WME values if WME is not actually enabled */
2248 if (!(ic->ic_flags & IEEE80211_F_WME))
2249 return 0;
2250
2251 wme.flags = 0;
2252 for (ac = 0; ac < WME_NUM_AC; ac++) {
2253 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2254 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2255 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2256 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2257 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2258
2259 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2260 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2261 wme.ac[ac].cwmax, wme.ac[ac].txop));
2262 }
2263
2264 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2265 #undef WPI_USEC
2266 #undef WPI_EXP2
2267 }
2268
2269 /*
2270 * Configure h/w multi-rate retries.
2271 */
2272 static int
2273 wpi_mrr_setup(struct wpi_softc *sc)
2274 {
2275 struct ieee80211com *ic = &sc->sc_ic;
2276 struct wpi_mrr_setup mrr;
2277 int i, error;
2278
2279 /* CCK rates (not used with 802.11a) */
2280 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2281 mrr.rates[i].flags = 0;
2282 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2283 /* fallback to the immediate lower CCK rate (if any) */
2284 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2285 /* try one time at this rate before falling back to "next" */
2286 mrr.rates[i].ntries = 1;
2287 }
2288
2289 /* OFDM rates (not used with 802.11b) */
2290 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2291 mrr.rates[i].flags = 0;
2292 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2293 /* fallback to the immediate lower rate (if any) */
2294 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2295 mrr.rates[i].next = (i == WPI_OFDM6) ?
2296 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2297 WPI_OFDM6 : WPI_CCK2) :
2298 i - 1;
2299 /* try one time at this rate before falling back to "next" */
2300 mrr.rates[i].ntries = 1;
2301 }
2302
2303 /* setup MRR for control frames */
2304 mrr.which = htole32(WPI_MRR_CTL);
2305 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2306 if (error != 0) {
2307 aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2308 return error;
2309 }
2310
2311 /* setup MRR for data frames */
2312 mrr.which = htole32(WPI_MRR_DATA);
2313 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2314 if (error != 0) {
2315 aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2316 return error;
2317 }
2318
2319 return 0;
2320 }
2321
2322 static void
2323 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2324 {
2325 struct wpi_cmd_led led;
2326
2327 led.which = which;
2328 led.unit = htole32(100000); /* on/off in unit of 100ms */
2329 led.off = off;
2330 led.on = on;
2331
2332 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2333 }
2334
2335 static void
2336 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2337 {
2338 struct wpi_cmd_tsf tsf;
2339 uint64_t val, mod;
2340
2341 memset(&tsf, 0, sizeof tsf);
2342 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2343 tsf.bintval = htole16(ni->ni_intval);
2344 tsf.lintval = htole16(10);
2345
2346 /* compute remaining time until next beacon */
2347 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2348 mod = le64toh(tsf.tstamp) % val;
2349 tsf.binitval = htole32((uint32_t)(val - mod));
2350
2351 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2352 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2353
2354 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2355 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2356 }
2357
2358 /*
2359 * Update Tx power to match what is defined for channel `c'.
2360 */
2361 static int
2362 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2363 {
2364 struct ieee80211com *ic = &sc->sc_ic;
2365 struct wpi_power_group *group;
2366 struct wpi_cmd_txpower txpower;
2367 u_int chan;
2368 int i;
2369
2370 /* get channel number */
2371 chan = ieee80211_chan2ieee(ic, c);
2372
2373 /* find the power group to which this channel belongs */
2374 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2375 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2376 if (chan <= group->chan)
2377 break;
2378 } else
2379 group = &sc->groups[0];
2380
2381 memset(&txpower, 0, sizeof txpower);
2382 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2383 txpower.chan = htole16(chan);
2384
2385 /* set Tx power for all OFDM and CCK rates */
2386 for (i = 0; i <= 11 ; i++) {
2387 /* retrieve Tx power for this channel/rate combination */
2388 int idx = wpi_get_power_index(sc, group, c,
2389 wpi_ridx_to_rate[i]);
2390
2391 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2392
2393 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2394 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2395 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2396 } else {
2397 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2398 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2399 }
2400 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2401 wpi_ridx_to_rate[i], idx));
2402 }
2403
2404 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2405 }
2406
2407 /*
2408 * Determine Tx power index for a given channel/rate combination.
2409 * This takes into account the regulatory information from EEPROM and the
2410 * current temperature.
2411 */
2412 static int
2413 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2414 struct ieee80211_channel *c, int rate)
2415 {
2416 /* fixed-point arithmetic division using a n-bit fractional part */
2417 #define fdivround(a, b, n) \
2418 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2419
2420 /* linear interpolation */
2421 #define interpolate(x, x1, y1, x2, y2, n) \
2422 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2423
2424 struct ieee80211com *ic = &sc->sc_ic;
2425 struct wpi_power_sample *sample;
2426 int pwr, idx;
2427 u_int chan;
2428
2429 /* get channel number */
2430 chan = ieee80211_chan2ieee(ic, c);
2431
2432 /* default power is group's maximum power - 3dB */
2433 pwr = group->maxpwr / 2;
2434
2435 /* decrease power for highest OFDM rates to reduce distortion */
2436 switch (rate) {
2437 case 72: /* 36Mb/s */
2438 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2439 break;
2440 case 96: /* 48Mb/s */
2441 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2442 break;
2443 case 108: /* 54Mb/s */
2444 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2445 break;
2446 }
2447
2448 /* never exceed channel's maximum allowed Tx power */
2449 pwr = min(pwr, sc->maxpwr[chan]);
2450
2451 /* retrieve power index into gain tables from samples */
2452 for (sample = group->samples; sample < &group->samples[3]; sample++)
2453 if (pwr > sample[1].power)
2454 break;
2455 /* fixed-point linear interpolation using a 19-bit fractional part */
2456 idx = interpolate(pwr, sample[0].power, sample[0].index,
2457 sample[1].power, sample[1].index, 19);
2458
2459 /*
2460 * Adjust power index based on current temperature:
2461 * - if cooler than factory-calibrated: decrease output power
2462 * - if warmer than factory-calibrated: increase output power
2463 */
2464 idx -= (sc->temp - group->temp) * 11 / 100;
2465
2466 /* decrease power for CCK rates (-5dB) */
2467 if (!WPI_RATE_IS_OFDM(rate))
2468 idx += 10;
2469
2470 /* keep power index in a valid range */
2471 if (idx < 0)
2472 return 0;
2473 if (idx > WPI_MAX_PWR_INDEX)
2474 return WPI_MAX_PWR_INDEX;
2475 return idx;
2476
2477 #undef interpolate
2478 #undef fdivround
2479 }
2480
2481 /*
2482 * Build a beacon frame that the firmware will broadcast periodically in
2483 * IBSS or HostAP modes.
2484 */
2485 static int
2486 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2487 {
2488 struct ieee80211com *ic = &sc->sc_ic;
2489 struct wpi_tx_ring *ring = &sc->cmdq;
2490 struct wpi_tx_desc *desc;
2491 struct wpi_tx_data *data;
2492 struct wpi_tx_cmd *cmd;
2493 struct wpi_cmd_beacon *bcn;
2494 struct ieee80211_beacon_offsets bo;
2495 struct mbuf *m0;
2496 int error;
2497
2498 desc = &ring->desc[ring->cur];
2499 data = &ring->data[ring->cur];
2500
2501 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2502 if (m0 == NULL) {
2503 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2504 return ENOMEM;
2505 }
2506
2507 cmd = &ring->cmd[ring->cur];
2508 cmd->code = WPI_CMD_SET_BEACON;
2509 cmd->flags = 0;
2510 cmd->qid = ring->qid;
2511 cmd->idx = ring->cur;
2512
2513 bcn = (struct wpi_cmd_beacon *)cmd->data;
2514 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2515 bcn->id = WPI_ID_BROADCAST;
2516 bcn->ofdm_mask = 0xff;
2517 bcn->cck_mask = 0x0f;
2518 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2519 bcn->len = htole16(m0->m_pkthdr.len);
2520 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2521 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2522 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2523
2524 /* save and trim IEEE802.11 header */
2525 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2526 m_adj(m0, sizeof (struct ieee80211_frame));
2527
2528 /* assume beacon frame is contiguous */
2529 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2530 BUS_DMA_READ | BUS_DMA_NOWAIT);
2531 if (error) {
2532 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2533 m_freem(m0);
2534 return error;
2535 }
2536
2537 data->m = m0;
2538
2539 /* first scatter/gather segment is used by the beacon command */
2540 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2541 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2542 ring->cur * sizeof (struct wpi_tx_cmd));
2543 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2544 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2545 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2546
2547 /* kick cmd ring */
2548 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2549 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2550
2551 return 0;
2552 }
2553
2554 static int
2555 wpi_auth(struct wpi_softc *sc)
2556 {
2557 struct ieee80211com *ic = &sc->sc_ic;
2558 struct ieee80211_node *ni = ic->ic_bss;
2559 struct wpi_node_info node;
2560 int error;
2561
2562 /* update adapter's configuration */
2563 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2564 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2565 sc->config.flags = htole32(WPI_CONFIG_TSF);
2566 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2567 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2568 WPI_CONFIG_24GHZ);
2569 }
2570 switch (ic->ic_curmode) {
2571 case IEEE80211_MODE_11A:
2572 sc->config.cck_mask = 0;
2573 sc->config.ofdm_mask = 0x15;
2574 break;
2575 case IEEE80211_MODE_11B:
2576 sc->config.cck_mask = 0x03;
2577 sc->config.ofdm_mask = 0;
2578 break;
2579 default: /* assume 802.11b/g */
2580 sc->config.cck_mask = 0x0f;
2581 sc->config.ofdm_mask = 0x15;
2582 }
2583
2584 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2585 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2586 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2587 sizeof (struct wpi_config), 1);
2588 if (error != 0) {
2589 aprint_error_dev(sc->sc_dev, "could not configure\n");
2590 return error;
2591 }
2592
2593 /* configuration has changed, set Tx power accordingly */
2594 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2595 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2596 return error;
2597 }
2598
2599 /* add default node */
2600 memset(&node, 0, sizeof node);
2601 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2602 node.id = WPI_ID_BSS;
2603 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2604 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2605 node.action = htole32(WPI_ACTION_SET_RATE);
2606 node.antenna = WPI_ANTENNA_BOTH;
2607 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2608 if (error != 0) {
2609 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2610 return error;
2611 }
2612
2613 return 0;
2614 }
2615
2616 /*
2617 * Send a scan request to the firmware. Since this command is huge, we map it
2618 * into a mbuf instead of using the pre-allocated set of commands.
2619 */
2620 static int
2621 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2622 {
2623 struct ieee80211com *ic = &sc->sc_ic;
2624 struct wpi_tx_ring *ring = &sc->cmdq;
2625 struct wpi_tx_desc *desc;
2626 struct wpi_tx_data *data;
2627 struct wpi_tx_cmd *cmd;
2628 struct wpi_scan_hdr *hdr;
2629 struct wpi_scan_chan *chan;
2630 struct ieee80211_frame *wh;
2631 struct ieee80211_rateset *rs;
2632 struct ieee80211_channel *c;
2633 enum ieee80211_phymode mode;
2634 uint8_t *frm;
2635 int nrates, pktlen, error;
2636
2637 desc = &ring->desc[ring->cur];
2638 data = &ring->data[ring->cur];
2639
2640 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2641 if (data->m == NULL) {
2642 aprint_error_dev(sc->sc_dev,
2643 "could not allocate mbuf for scan command\n");
2644 return ENOMEM;
2645 }
2646
2647 MCLGET(data->m, M_DONTWAIT);
2648 if (!(data->m->m_flags & M_EXT)) {
2649 m_freem(data->m);
2650 data->m = NULL;
2651 aprint_error_dev(sc->sc_dev,
2652 "could not allocate mbuf for scan command\n");
2653 return ENOMEM;
2654 }
2655
2656 cmd = mtod(data->m, struct wpi_tx_cmd *);
2657 cmd->code = WPI_CMD_SCAN;
2658 cmd->flags = 0;
2659 cmd->qid = ring->qid;
2660 cmd->idx = ring->cur;
2661
2662 hdr = (struct wpi_scan_hdr *)cmd->data;
2663 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2664 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2665 hdr->id = WPI_ID_BROADCAST;
2666 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2667
2668 /*
2669 * Move to the next channel if no packets are received within 5 msecs
2670 * after sending the probe request (this helps to reduce the duration
2671 * of active scans).
2672 */
2673 hdr->quiet = htole16(5); /* timeout in milliseconds */
2674 hdr->plcp_threshold = htole16(1); /* min # of packets */
2675
2676 if (flags & IEEE80211_CHAN_A) {
2677 hdr->crc_threshold = htole16(1);
2678 /* send probe requests at 6Mbps */
2679 hdr->rate = wpi_plcp_signal(12);
2680 } else {
2681 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2682 /* send probe requests at 1Mbps */
2683 hdr->rate = wpi_plcp_signal(2);
2684 }
2685
2686 /* for directed scans, firmware inserts the essid IE itself */
2687 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2688 hdr->essid[0].len = ic->ic_des_esslen;
2689 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2690
2691 /*
2692 * Build a probe request frame. Most of the following code is a
2693 * copy & paste of what is done in net80211.
2694 */
2695 wh = (struct ieee80211_frame *)(hdr + 1);
2696 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2697 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2698 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2699 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2700 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2701 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2702 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2703 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2704
2705 frm = (uint8_t *)(wh + 1);
2706
2707 /* add empty essid IE (firmware generates it for directed scans) */
2708 *frm++ = IEEE80211_ELEMID_SSID;
2709 *frm++ = 0;
2710
2711 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2712 rs = &ic->ic_sup_rates[mode];
2713
2714 /* add supported rates IE */
2715 *frm++ = IEEE80211_ELEMID_RATES;
2716 nrates = rs->rs_nrates;
2717 if (nrates > IEEE80211_RATE_SIZE)
2718 nrates = IEEE80211_RATE_SIZE;
2719 *frm++ = nrates;
2720 memcpy(frm, rs->rs_rates, nrates);
2721 frm += nrates;
2722
2723 /* add supported xrates IE */
2724 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2725 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2726 *frm++ = IEEE80211_ELEMID_XRATES;
2727 *frm++ = nrates;
2728 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2729 frm += nrates;
2730 }
2731
2732 /* setup length of probe request */
2733 hdr->paylen = htole16(frm - (uint8_t *)wh);
2734
2735 chan = (struct wpi_scan_chan *)frm;
2736 for (c = &ic->ic_channels[1];
2737 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2738 if ((c->ic_flags & flags) != flags)
2739 continue;
2740
2741 chan->chan = ieee80211_chan2ieee(ic, c);
2742 chan->flags = 0;
2743 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2744 chan->flags |= WPI_CHAN_ACTIVE;
2745 if (ic->ic_des_esslen != 0)
2746 chan->flags |= WPI_CHAN_DIRECT;
2747 }
2748 chan->dsp_gain = 0x6e;
2749 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2750 chan->rf_gain = 0x3b;
2751 chan->active = htole16(10);
2752 chan->passive = htole16(110);
2753 } else {
2754 chan->rf_gain = 0x28;
2755 chan->active = htole16(20);
2756 chan->passive = htole16(120);
2757 }
2758 hdr->nchan++;
2759 chan++;
2760
2761 frm += sizeof (struct wpi_scan_chan);
2762 }
2763 hdr->len = htole16(frm - (uint8_t *)hdr);
2764 pktlen = frm - (uint8_t *)cmd;
2765
2766 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2767 NULL, BUS_DMA_NOWAIT);
2768 if (error) {
2769 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2770 m_freem(data->m);
2771 data->m = NULL;
2772 return error;
2773 }
2774
2775 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2776 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2777 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2778
2779 /* kick cmd ring */
2780 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2781 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2782
2783 return 0; /* will be notified async. of failure/success */
2784 }
2785
2786 static int
2787 wpi_config(struct wpi_softc *sc)
2788 {
2789 struct ieee80211com *ic = &sc->sc_ic;
2790 struct ifnet *ifp = ic->ic_ifp;
2791 struct wpi_power power;
2792 struct wpi_bluetooth bluetooth;
2793 struct wpi_node_info node;
2794 int error;
2795
2796 memset(&power, 0, sizeof power);
2797 power.flags = htole32(WPI_POWER_CAM | 0x8);
2798 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2799 if (error != 0) {
2800 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2801 return error;
2802 }
2803
2804 /* configure bluetooth coexistence */
2805 memset(&bluetooth, 0, sizeof bluetooth);
2806 bluetooth.flags = 3;
2807 bluetooth.lead = 0xaa;
2808 bluetooth.kill = 1;
2809 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2810 0);
2811 if (error != 0) {
2812 aprint_error_dev(sc->sc_dev,
2813 "could not configure bluetooth coexistence\n");
2814 return error;
2815 }
2816
2817 /* configure adapter */
2818 memset(&sc->config, 0, sizeof (struct wpi_config));
2819 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2820 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2821 /*set default channel*/
2822 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2823 sc->config.flags = htole32(WPI_CONFIG_TSF);
2824 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2825 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2826 WPI_CONFIG_24GHZ);
2827 }
2828 sc->config.filter = 0;
2829 switch (ic->ic_opmode) {
2830 case IEEE80211_M_STA:
2831 sc->config.mode = WPI_MODE_STA;
2832 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2833 break;
2834 case IEEE80211_M_IBSS:
2835 case IEEE80211_M_AHDEMO:
2836 sc->config.mode = WPI_MODE_IBSS;
2837 break;
2838 case IEEE80211_M_HOSTAP:
2839 sc->config.mode = WPI_MODE_HOSTAP;
2840 break;
2841 case IEEE80211_M_MONITOR:
2842 sc->config.mode = WPI_MODE_MONITOR;
2843 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2844 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2845 break;
2846 }
2847 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2848 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2849 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2850 sizeof (struct wpi_config), 0);
2851 if (error != 0) {
2852 aprint_error_dev(sc->sc_dev, "configure command failed\n");
2853 return error;
2854 }
2855
2856 /* configuration has changed, set Tx power accordingly */
2857 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2858 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2859 return error;
2860 }
2861
2862 /* add broadcast node */
2863 memset(&node, 0, sizeof node);
2864 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2865 node.id = WPI_ID_BROADCAST;
2866 node.rate = wpi_plcp_signal(2);
2867 node.action = htole32(WPI_ACTION_SET_RATE);
2868 node.antenna = WPI_ANTENNA_BOTH;
2869 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2870 if (error != 0) {
2871 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2872 return error;
2873 }
2874
2875 if ((error = wpi_mrr_setup(sc)) != 0) {
2876 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2877 return error;
2878 }
2879
2880 return 0;
2881 }
2882
2883 static void
2884 wpi_stop_master(struct wpi_softc *sc)
2885 {
2886 uint32_t tmp;
2887 int ntries;
2888
2889 tmp = WPI_READ(sc, WPI_RESET);
2890 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2891
2892 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2893 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2894 return; /* already asleep */
2895
2896 for (ntries = 0; ntries < 100; ntries++) {
2897 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2898 break;
2899 DELAY(10);
2900 }
2901 if (ntries == 100) {
2902 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2903 }
2904 }
2905
2906 static int
2907 wpi_power_up(struct wpi_softc *sc)
2908 {
2909 uint32_t tmp;
2910 int ntries;
2911
2912 wpi_mem_lock(sc);
2913 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2914 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2915 wpi_mem_unlock(sc);
2916
2917 for (ntries = 0; ntries < 5000; ntries++) {
2918 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2919 break;
2920 DELAY(10);
2921 }
2922 if (ntries == 5000) {
2923 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2924 return ETIMEDOUT;
2925 }
2926 return 0;
2927 }
2928
2929 static int
2930 wpi_reset(struct wpi_softc *sc)
2931 {
2932 uint32_t tmp;
2933 int ntries;
2934
2935 /* clear any pending interrupts */
2936 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2937
2938 tmp = WPI_READ(sc, WPI_PLL_CTL);
2939 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2940
2941 tmp = WPI_READ(sc, WPI_CHICKEN);
2942 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2943
2944 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2945 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2946
2947 /* wait for clock stabilization */
2948 for (ntries = 0; ntries < 1000; ntries++) {
2949 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2950 break;
2951 DELAY(10);
2952 }
2953 if (ntries == 1000) {
2954 aprint_error_dev(sc->sc_dev,
2955 "timeout waiting for clock stabilization\n");
2956 return ETIMEDOUT;
2957 }
2958
2959 /* initialize EEPROM */
2960 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2961 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2962 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2963 return EIO;
2964 }
2965 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2966
2967 return 0;
2968 }
2969
2970 static void
2971 wpi_hw_config(struct wpi_softc *sc)
2972 {
2973 uint32_t rev, hw;
2974
2975 /* voodoo from the reference driver */
2976 hw = WPI_READ(sc, WPI_HWCONFIG);
2977
2978 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2979 rev = PCI_REVISION(rev);
2980 if ((rev & 0xc0) == 0x40)
2981 hw |= WPI_HW_ALM_MB;
2982 else if (!(rev & 0x80))
2983 hw |= WPI_HW_ALM_MM;
2984
2985 if (sc->cap == 0x80)
2986 hw |= WPI_HW_SKU_MRC;
2987
2988 hw &= ~WPI_HW_REV_D;
2989 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2990 hw |= WPI_HW_REV_D;
2991
2992 if (sc->type > 1)
2993 hw |= WPI_HW_TYPE_B;
2994
2995 DPRINTF(("setting h/w config %x\n", hw));
2996 WPI_WRITE(sc, WPI_HWCONFIG, hw);
2997 }
2998
2999 static int
3000 wpi_init(struct ifnet *ifp)
3001 {
3002 struct wpi_softc *sc = ifp->if_softc;
3003 struct ieee80211com *ic = &sc->sc_ic;
3004 uint32_t tmp;
3005 int qid, ntries, error;
3006
3007 wpi_stop(ifp,1);
3008 (void)wpi_reset(sc);
3009
3010 wpi_mem_lock(sc);
3011 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3012 DELAY(20);
3013 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3014 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3015 wpi_mem_unlock(sc);
3016
3017 (void)wpi_power_up(sc);
3018 wpi_hw_config(sc);
3019
3020 /* init Rx ring */
3021 wpi_mem_lock(sc);
3022 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3023 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3024 offsetof(struct wpi_shared, next));
3025 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3026 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3027 wpi_mem_unlock(sc);
3028
3029 /* init Tx rings */
3030 wpi_mem_lock(sc);
3031 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3032 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3033 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3034 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3035 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3036 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3037 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3038
3039 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3040 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3041
3042 for (qid = 0; qid < 6; qid++) {
3043 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3044 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3045 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3046 }
3047 wpi_mem_unlock(sc);
3048
3049 /* clear "radio off" and "disable command" bits (reversed logic) */
3050 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3051 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3052
3053 /* clear any pending interrupts */
3054 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3055 /* enable interrupts */
3056 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3057
3058 /* not sure why/if this is necessary... */
3059 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3060 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3061
3062 if ((error = wpi_load_firmware(sc)) != 0) {
3063 aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3064 goto fail1;
3065 }
3066
3067 /* wait for thermal sensors to calibrate */
3068 for (ntries = 0; ntries < 1000; ntries++) {
3069 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3070 break;
3071 DELAY(10);
3072 }
3073 if (ntries == 1000) {
3074 aprint_error_dev(sc->sc_dev,
3075 "timeout waiting for thermal sensors calibration\n");
3076 error = ETIMEDOUT;
3077 goto fail1;
3078 }
3079
3080 DPRINTF(("temperature %d\n", sc->temp));
3081
3082 if ((error = wpi_config(sc)) != 0) {
3083 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3084 goto fail1;
3085 }
3086
3087 ifp->if_flags &= ~IFF_OACTIVE;
3088 ifp->if_flags |= IFF_RUNNING;
3089
3090 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3091 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3092 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3093 }
3094 else
3095 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3096
3097 return 0;
3098
3099 fail1: wpi_stop(ifp, 1);
3100 return error;
3101 }
3102
3103
3104 static void
3105 wpi_stop(struct ifnet *ifp, int disable)
3106 {
3107 struct wpi_softc *sc = ifp->if_softc;
3108 struct ieee80211com *ic = &sc->sc_ic;
3109 uint32_t tmp;
3110 int ac;
3111
3112 ifp->if_timer = sc->sc_tx_timer = 0;
3113 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3114
3115 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3116
3117 /* disable interrupts */
3118 WPI_WRITE(sc, WPI_MASK, 0);
3119 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3120 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3121 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3122
3123 wpi_mem_lock(sc);
3124 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3125 wpi_mem_unlock(sc);
3126
3127 /* reset all Tx rings */
3128 for (ac = 0; ac < 4; ac++)
3129 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3130 wpi_reset_tx_ring(sc, &sc->cmdq);
3131
3132 /* reset Rx ring */
3133 wpi_reset_rx_ring(sc, &sc->rxq);
3134
3135 wpi_mem_lock(sc);
3136 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3137 wpi_mem_unlock(sc);
3138
3139 DELAY(5);
3140
3141 wpi_stop_master(sc);
3142
3143 tmp = WPI_READ(sc, WPI_RESET);
3144 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3145 }
3146