if_wpi.c revision 1.29 1 /* $NetBSD: if_wpi.c,v 1.29 2007/11/23 19:47:27 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.29 2007/11/23 19:47:27 joerg Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39 #include <sys/callout.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47 #include <dev/pci/pcidevs.h>
48
49 #if NBPFILTER > 0
50 #include <net/bpf.h>
51 #endif
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x) if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 { 4, { 2, 4, 11, 22 } };
90
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94 static int wpi_match(device_t, struct cfdata *, void *);
95 static void wpi_attach(device_t, device_t, void *);
96 static int wpi_detach(device_t , int);
97 static void wpi_power(int, void *);
98 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
99 void **, bus_size_t, bus_size_t, int);
100 static void wpi_dma_contig_free(struct wpi_dma_info *);
101 static int wpi_alloc_shared(struct wpi_softc *);
102 static void wpi_free_shared(struct wpi_softc *);
103 static int wpi_alloc_fwmem(struct wpi_softc *);
104 static void wpi_free_fwmem(struct wpi_softc *);
105 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
106 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
107 static int wpi_alloc_rpool(struct wpi_softc *);
108 static void wpi_free_rpool(struct wpi_softc *);
109 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
112 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
113 int);
114 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
116 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
117 static void wpi_newassoc(struct ieee80211_node *, int);
118 static int wpi_media_change(struct ifnet *);
119 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
120 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
121 static void wpi_mem_lock(struct wpi_softc *);
122 static void wpi_mem_unlock(struct wpi_softc *);
123 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
124 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
125 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
126 const uint32_t *, int);
127 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
128 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
129 static int wpi_load_firmware(struct wpi_softc *);
130 static void wpi_calib_timeout(void *);
131 static void wpi_iter_func(void *, struct ieee80211_node *);
132 static void wpi_power_calibration(struct wpi_softc *, int);
133 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
134 struct wpi_rx_data *);
135 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
136 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
137 static void wpi_notif_intr(struct wpi_softc *);
138 static int wpi_intr(void *);
139 static void wpi_read_eeprom(struct wpi_softc *);
140 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
141 static void wpi_read_eeprom_group(struct wpi_softc *, int);
142 static uint8_t wpi_plcp_signal(int);
143 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
144 struct ieee80211_node *, int);
145 static void wpi_start(struct ifnet *);
146 static void wpi_watchdog(struct ifnet *);
147 static int wpi_ioctl(struct ifnet *, u_long, void *);
148 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
149 static int wpi_wme_update(struct ieee80211com *);
150 static int wpi_mrr_setup(struct wpi_softc *);
151 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
152 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
153 static int wpi_set_txpower(struct wpi_softc *,
154 struct ieee80211_channel *, int);
155 static int wpi_get_power_index(struct wpi_softc *,
156 struct wpi_power_group *, struct ieee80211_channel *, int);
157 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
158 static int wpi_auth(struct wpi_softc *);
159 static int wpi_scan(struct wpi_softc *, uint16_t);
160 static int wpi_config(struct wpi_softc *);
161 static void wpi_stop_master(struct wpi_softc *);
162 static int wpi_power_up(struct wpi_softc *);
163 static int wpi_reset(struct wpi_softc *);
164 static void wpi_hw_config(struct wpi_softc *);
165 static int wpi_init(struct ifnet *);
166 static void wpi_stop(struct ifnet *, int);
167
168 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
169 wpi_detach, NULL);
170
171 static int
172 wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
173 {
174 struct pci_attach_args *pa = aux;
175
176 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
177 return 0;
178
179 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
180 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
181 return 1;
182
183 return 0;
184 }
185
186 /* Base Address Register */
187 #define WPI_PCI_BAR0 0x10
188
189 static void
190 wpi_attach(device_t parent __unused, device_t self, void *aux)
191 {
192 struct wpi_softc *sc = device_private(self);
193 struct ieee80211com *ic = &sc->sc_ic;
194 struct ifnet *ifp = &sc->sc_ec.ec_if;
195 struct pci_attach_args *pa = aux;
196 const char *intrstr;
197 char devinfo[256];
198 bus_space_tag_t memt;
199 bus_space_handle_t memh;
200 pci_intr_handle_t ih;
201 pcireg_t data;
202 int error, ac, revision;
203
204 sc->sc_pct = pa->pa_pc;
205 sc->sc_pcitag = pa->pa_tag;
206
207 callout_init(&sc->calib_to, 0);
208 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
209
210 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
211 revision = PCI_REVISION(pa->pa_class);
212 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
213
214 /* clear device specific PCI configuration register 0x41 */
215 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
216 data &= ~0x0000ff00;
217 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
218
219 /* enable bus-mastering */
220 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
221 data |= PCI_COMMAND_MASTER_ENABLE;
222 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
223
224 /* map the register window */
225 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
226 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
227 if (error != 0) {
228 aprint_error_dev(self, "could not map memory space\n");
229 return;
230 }
231
232 sc->sc_st = memt;
233 sc->sc_sh = memh;
234 sc->sc_dmat = pa->pa_dmat;
235
236 if (pci_intr_map(pa, &ih) != 0) {
237 aprint_error_dev(self, "could not map interrupt\n");
238 return;
239 }
240
241 intrstr = pci_intr_string(sc->sc_pct, ih);
242 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
243 if (sc->sc_ih == NULL) {
244 aprint_error_dev(self, "could not establish interrupt");
245 if (intrstr != NULL)
246 aprint_error(" at %s", intrstr);
247 aprint_error("\n");
248 return;
249 }
250 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
251
252 if (wpi_reset(sc) != 0) {
253 aprint_error_dev(self, "could not reset adapter\n");
254 return;
255 }
256
257 /*
258 * Allocate DMA memory for firmware transfers.
259 */
260 if ((error = wpi_alloc_fwmem(sc)) != 0)
261 return;
262
263 /*
264 * Allocate shared page and Tx/Rx rings.
265 */
266 if ((error = wpi_alloc_shared(sc)) != 0) {
267 aprint_error_dev(self, "could not allocate shared area\n");
268 goto fail1;
269 }
270
271 if ((error = wpi_alloc_rpool(sc)) != 0) {
272 aprint_error_dev(self, "could not allocate Rx buffers\n");
273 goto fail2;
274 }
275
276 for (ac = 0; ac < 4; ac++) {
277 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
278 if (error != 0) {
279 aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
280 goto fail3;
281 }
282 }
283
284 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
285 if (error != 0) {
286 aprint_error_dev(self, "could not allocate command ring\n");
287 goto fail3;
288 }
289
290 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
291 aprint_error_dev(self, "could not allocate Rx ring\n");
292 goto fail4;
293 }
294
295 ic->ic_ifp = ifp;
296 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
297 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
298 ic->ic_state = IEEE80211_S_INIT;
299
300 /* set device capabilities */
301 ic->ic_caps =
302 IEEE80211_C_IBSS | /* IBSS mode support */
303 IEEE80211_C_WPA | /* 802.11i */
304 IEEE80211_C_MONITOR | /* monitor mode supported */
305 IEEE80211_C_TXPMGT | /* tx power management */
306 IEEE80211_C_SHSLOT | /* short slot time supported */
307 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
308 IEEE80211_C_WME; /* 802.11e */
309
310 /* read supported channels and MAC address from EEPROM */
311 wpi_read_eeprom(sc);
312
313 /* set supported .11a, .11b, .11g rates */
314 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
315 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
316 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
317
318 ic->ic_ibss_chan = &ic->ic_channels[0];
319
320 ifp->if_softc = sc;
321 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
322 ifp->if_init = wpi_init;
323 ifp->if_stop = wpi_stop;
324 ifp->if_ioctl = wpi_ioctl;
325 ifp->if_start = wpi_start;
326 ifp->if_watchdog = wpi_watchdog;
327 IFQ_SET_READY(&ifp->if_snd);
328 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
329
330 if_attach(ifp);
331 ieee80211_ifattach(ic);
332 /* override default methods */
333 ic->ic_node_alloc = wpi_node_alloc;
334 ic->ic_newassoc = wpi_newassoc;
335 ic->ic_wme.wme_update = wpi_wme_update;
336
337 /* override state transition machine */
338 sc->sc_newstate = ic->ic_newstate;
339 ic->ic_newstate = wpi_newstate;
340 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
341
342 sc->amrr.amrr_min_success_threshold = 1;
343 sc->amrr.amrr_max_success_threshold = 15;
344
345 /* set powerhook */
346 sc->powerhook = powerhook_establish(device_xname(self), wpi_power, sc);
347
348 #if NBPFILTER > 0
349 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
350 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
351 &sc->sc_drvbpf);
352
353 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
354 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
355 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
356
357 sc->sc_txtap_len = sizeof sc->sc_txtapu;
358 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
359 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
360 #endif
361
362 ieee80211_announce(ic);
363
364 return;
365
366 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
367 fail3: while (--ac >= 0)
368 wpi_free_tx_ring(sc, &sc->txq[ac]);
369 wpi_free_rpool(sc);
370 fail2: wpi_free_shared(sc);
371 fail1: wpi_free_fwmem(sc);
372 }
373
374 static int
375 wpi_detach(device_t self, int flags __unused)
376 {
377 struct wpi_softc *sc = device_private(self);
378 struct ifnet *ifp = sc->sc_ic.ic_ifp;
379 int ac;
380
381 wpi_stop(ifp, 1);
382
383 #if NBPFILTER > 0
384 if (ifp != NULL)
385 bpfdetach(ifp);
386 #endif
387 ieee80211_ifdetach(&sc->sc_ic);
388 if (ifp != NULL)
389 if_detach(ifp);
390
391 for (ac = 0; ac < 4; ac++)
392 wpi_free_tx_ring(sc, &sc->txq[ac]);
393 wpi_free_tx_ring(sc, &sc->cmdq);
394 wpi_free_rx_ring(sc, &sc->rxq);
395 wpi_free_rpool(sc);
396 wpi_free_shared(sc);
397
398 if (sc->sc_ih != NULL) {
399 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
400 sc->sc_ih = NULL;
401 }
402
403 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
404
405 return 0;
406 }
407
408 static void
409 wpi_power(int why, void *arg)
410 {
411 struct wpi_softc *sc = arg;
412 struct ifnet *ifp;
413 pcireg_t data;
414 int s;
415
416 if (why != PWR_RESUME)
417 return;
418
419 /* clear device specific PCI configuration register 0x41 */
420 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
421 data &= ~0x0000ff00;
422 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
423
424 s = splnet();
425 ifp = sc->sc_ic.ic_ifp;
426 if (ifp->if_flags & IFF_UP) {
427 ifp->if_init(ifp);
428 if (ifp->if_flags & IFF_RUNNING)
429 ifp->if_start(ifp);
430 }
431 splx(s);
432 }
433
434 static int
435 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
436 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
437 {
438 int nsegs, error;
439
440 dma->tag = tag;
441 dma->size = size;
442
443 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
444 if (error != 0)
445 goto fail;
446
447 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
448 flags);
449 if (error != 0)
450 goto fail;
451
452 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
453 if (error != 0)
454 goto fail;
455
456 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
457 if (error != 0)
458 goto fail;
459
460 memset(dma->vaddr, 0, size);
461
462 dma->paddr = dma->map->dm_segs[0].ds_addr;
463 if (kvap != NULL)
464 *kvap = dma->vaddr;
465
466 return 0;
467
468 fail: wpi_dma_contig_free(dma);
469 return error;
470 }
471
472 static void
473 wpi_dma_contig_free(struct wpi_dma_info *dma)
474 {
475 if (dma->map != NULL) {
476 if (dma->vaddr != NULL) {
477 bus_dmamap_unload(dma->tag, dma->map);
478 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
479 bus_dmamem_free(dma->tag, &dma->seg, 1);
480 dma->vaddr = NULL;
481 }
482 bus_dmamap_destroy(dma->tag, dma->map);
483 dma->map = NULL;
484 }
485 }
486
487 /*
488 * Allocate a shared page between host and NIC.
489 */
490 static int
491 wpi_alloc_shared(struct wpi_softc *sc)
492 {
493 int error;
494 /* must be aligned on a 4K-page boundary */
495 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
496 (void **)&sc->shared, sizeof (struct wpi_shared),
497 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
498 if (error != 0)
499 aprint_error_dev(sc->sc_dev,
500 "could not allocate shared area DMA memory\n");
501
502 return error;
503 }
504
505 static void
506 wpi_free_shared(struct wpi_softc *sc)
507 {
508 wpi_dma_contig_free(&sc->shared_dma);
509 }
510
511 /*
512 * Allocate DMA-safe memory for firmware transfer.
513 */
514 static int
515 wpi_alloc_fwmem(struct wpi_softc *sc)
516 {
517 int error;
518 /* allocate enough contiguous space to store text and data */
519 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
520 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
521 BUS_DMA_NOWAIT);
522
523 if (error != 0)
524 aprint_error_dev(sc->sc_dev,
525 "could not allocate firmware transfer area"
526 "DMA memory\n");
527 return error;
528 }
529
530 static void
531 wpi_free_fwmem(struct wpi_softc *sc)
532 {
533 wpi_dma_contig_free(&sc->fw_dma);
534 }
535
536
537 static struct wpi_rbuf *
538 wpi_alloc_rbuf(struct wpi_softc *sc)
539 {
540 struct wpi_rbuf *rbuf;
541
542 rbuf = SLIST_FIRST(&sc->rxq.freelist);
543 if (rbuf == NULL)
544 return NULL;
545 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
546 sc->rxq.nb_free_entries --;
547
548 return rbuf;
549 }
550
551 /*
552 * This is called automatically by the network stack when the mbuf to which our
553 * Rx buffer is attached is freed.
554 */
555 static void
556 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
557 {
558 struct wpi_rbuf *rbuf = arg;
559 struct wpi_softc *sc = rbuf->sc;
560
561 /* put the buffer back in the free list */
562
563 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
564 sc->rxq.nb_free_entries ++;
565
566 if (__predict_true(m != NULL))
567 pool_cache_put(mb_cache, m);
568 }
569
570 static int
571 wpi_alloc_rpool(struct wpi_softc *sc)
572 {
573 struct wpi_rx_ring *ring = &sc->rxq;
574 struct wpi_rbuf *rbuf;
575 int i, error;
576
577 /* allocate a big chunk of DMA'able memory.. */
578 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
579 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
580 if (error != 0) {
581 aprint_normal_dev(sc->sc_dev,
582 "could not allocate Rx buffers DMA memory\n");
583 return error;
584 }
585
586 /* ..and split it into 3KB chunks */
587 SLIST_INIT(&ring->freelist);
588 for (i = 0; i < WPI_RBUF_COUNT; i++) {
589 rbuf = &ring->rbuf[i];
590 rbuf->sc = sc; /* backpointer for callbacks */
591 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
592 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
593
594 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
595 }
596
597 ring->nb_free_entries = WPI_RBUF_COUNT;
598 return 0;
599 }
600
601 static void
602 wpi_free_rpool(struct wpi_softc *sc)
603 {
604 wpi_dma_contig_free(&sc->rxq.buf_dma);
605 }
606
607 static int
608 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
609 {
610 struct wpi_rx_data *data;
611 struct wpi_rbuf *rbuf;
612 int i, error;
613
614 ring->cur = 0;
615
616 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
617 (void **)&ring->desc,
618 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
619 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
620 if (error != 0) {
621 aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
622 goto fail;
623 }
624
625 /*
626 * Setup Rx buffers.
627 */
628 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
629 data = &ring->data[i];
630
631 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
632 if (data->m == NULL) {
633 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
634 error = ENOMEM;
635 goto fail;
636 }
637 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
638 m_freem(data->m);
639 data->m = NULL;
640 aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
641 error = ENOMEM;
642 goto fail;
643 }
644 /* attach Rx buffer to mbuf */
645 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
646 rbuf);
647 data->m->m_flags |= M_EXT_RW;
648
649 ring->desc[i] = htole32(rbuf->paddr);
650 }
651
652 return 0;
653
654 fail: wpi_free_rx_ring(sc, ring);
655 return error;
656 }
657
658 static void
659 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
660 {
661 int ntries;
662
663 wpi_mem_lock(sc);
664
665 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
666 for (ntries = 0; ntries < 100; ntries++) {
667 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
668 break;
669 DELAY(10);
670 }
671 #ifdef WPI_DEBUG
672 if (ntries == 100 && wpi_debug > 0)
673 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
674 #endif
675 wpi_mem_unlock(sc);
676
677 ring->cur = 0;
678 }
679
680 static void
681 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
682 {
683 int i;
684
685 wpi_dma_contig_free(&ring->desc_dma);
686
687 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
688 if (ring->data[i].m != NULL)
689 m_freem(ring->data[i].m);
690 }
691 }
692
693 static int
694 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
695 int qid)
696 {
697 struct wpi_tx_data *data;
698 int i, error;
699
700 ring->qid = qid;
701 ring->count = count;
702 ring->queued = 0;
703 ring->cur = 0;
704
705 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
706 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
707 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
708 if (error != 0) {
709 aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
710 goto fail;
711 }
712
713 /* update shared page with ring's base address */
714 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
715
716 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
717 (void **)&ring->cmd,
718 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
719 if (error != 0) {
720 aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
721 goto fail;
722 }
723
724 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
725 M_NOWAIT);
726 if (ring->data == NULL) {
727 aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
728 goto fail;
729 }
730
731 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
732
733 for (i = 0; i < count; i++) {
734 data = &ring->data[i];
735
736 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
737 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
738 &data->map);
739 if (error != 0) {
740 aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
741 goto fail;
742 }
743 }
744
745 return 0;
746
747 fail: wpi_free_tx_ring(sc, ring);
748 return error;
749 }
750
751 static void
752 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
753 {
754 struct wpi_tx_data *data;
755 int i, ntries;
756
757 wpi_mem_lock(sc);
758
759 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
760 for (ntries = 0; ntries < 100; ntries++) {
761 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
762 break;
763 DELAY(10);
764 }
765 #ifdef WPI_DEBUG
766 if (ntries == 100 && wpi_debug > 0) {
767 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
768 ring->qid);
769 }
770 #endif
771 wpi_mem_unlock(sc);
772
773 for (i = 0; i < ring->count; i++) {
774 data = &ring->data[i];
775
776 if (data->m != NULL) {
777 bus_dmamap_unload(sc->sc_dmat, data->map);
778 m_freem(data->m);
779 data->m = NULL;
780 }
781 }
782
783 ring->queued = 0;
784 ring->cur = 0;
785 }
786
787 static void
788 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
789 {
790 struct wpi_tx_data *data;
791 int i;
792
793 wpi_dma_contig_free(&ring->desc_dma);
794 wpi_dma_contig_free(&ring->cmd_dma);
795
796 if (ring->data != NULL) {
797 for (i = 0; i < ring->count; i++) {
798 data = &ring->data[i];
799
800 if (data->m != NULL) {
801 bus_dmamap_unload(sc->sc_dmat, data->map);
802 m_freem(data->m);
803 }
804 }
805 free(ring->data, M_DEVBUF);
806 }
807 }
808
809 /*ARGUSED*/
810 static struct ieee80211_node *
811 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
812 {
813 struct wpi_node *wn;
814
815 wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
816
817 if (wn != NULL)
818 memset(wn, 0, sizeof (struct wpi_node));
819 return (struct ieee80211_node *)wn;
820 }
821
822 static void
823 wpi_newassoc(struct ieee80211_node *ni, int isnew)
824 {
825 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
826 int i;
827
828 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
829
830 /* set rate to some reasonable initial value */
831 for (i = ni->ni_rates.rs_nrates - 1;
832 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
833 i--);
834 ni->ni_txrate = i;
835 }
836
837 static int
838 wpi_media_change(struct ifnet *ifp)
839 {
840 int error;
841
842 error = ieee80211_media_change(ifp);
843 if (error != ENETRESET)
844 return error;
845
846 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
847 wpi_init(ifp);
848
849 return 0;
850 }
851
852 static int
853 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
854 {
855 struct ifnet *ifp = ic->ic_ifp;
856 struct wpi_softc *sc = ifp->if_softc;
857 struct ieee80211_node *ni;
858 int error;
859
860 callout_stop(&sc->calib_to);
861
862 switch (nstate) {
863 case IEEE80211_S_SCAN:
864
865 if (sc->is_scanning)
866 break;
867
868 sc->is_scanning = true;
869 ieee80211_node_table_reset(&ic->ic_scan);
870 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
871
872 /* make the link LED blink while we're scanning */
873 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
874
875 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
876 aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
877 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
878 return error;
879 }
880
881 ic->ic_state = nstate;
882 return 0;
883
884 case IEEE80211_S_ASSOC:
885 if (ic->ic_state != IEEE80211_S_RUN)
886 break;
887 /* FALLTHROUGH */
888 case IEEE80211_S_AUTH:
889 sc->config.associd = 0;
890 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
891 if ((error = wpi_auth(sc)) != 0) {
892 aprint_error_dev(sc->sc_dev,
893 "could not send authentication request\n");
894 return error;
895 }
896 break;
897
898 case IEEE80211_S_RUN:
899 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
900 /* link LED blinks while monitoring */
901 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
902 break;
903 }
904
905 ni = ic->ic_bss;
906
907 if (ic->ic_opmode != IEEE80211_M_STA) {
908 (void) wpi_auth(sc); /* XXX */
909 wpi_setup_beacon(sc, ni);
910 }
911
912 wpi_enable_tsf(sc, ni);
913
914 /* update adapter's configuration */
915 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
916 /* short preamble/slot time are negotiated when associating */
917 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
918 WPI_CONFIG_SHSLOT);
919 if (ic->ic_flags & IEEE80211_F_SHSLOT)
920 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
921 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
922 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
923 sc->config.filter |= htole32(WPI_FILTER_BSS);
924 if (ic->ic_opmode != IEEE80211_M_STA)
925 sc->config.filter |= htole32(WPI_FILTER_BEACON);
926
927 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
928
929 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
930 sc->config.flags));
931 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
932 sizeof (struct wpi_config), 1);
933 if (error != 0) {
934 aprint_error_dev(sc->sc_dev, "could not update configuration\n");
935 return error;
936 }
937
938 /* configuration has changed, set Tx power accordingly */
939 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
940 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
941 return error;
942 }
943
944 if (ic->ic_opmode == IEEE80211_M_STA) {
945 /* fake a join to init the tx rate */
946 wpi_newassoc(ni, 1);
947 }
948
949 /* start periodic calibration timer */
950 sc->calib_cnt = 0;
951 callout_schedule(&sc->calib_to, hz/2);
952
953 /* link LED always on while associated */
954 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
955 break;
956
957 case IEEE80211_S_INIT:
958 sc->is_scanning = false;
959 break;
960 }
961
962 return sc->sc_newstate(ic, nstate, arg);
963 }
964
965 /*
966 * XXX: Hack to set the current channel to the value advertised in beacons or
967 * probe responses. Only used during AP detection.
968 * XXX: Duplicated from if_iwi.c
969 */
970 static void
971 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
972 {
973 struct ieee80211_frame *wh;
974 uint8_t subtype;
975 uint8_t *frm, *efrm;
976
977 wh = mtod(m, struct ieee80211_frame *);
978
979 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
980 return;
981
982 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
983
984 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
985 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
986 return;
987
988 frm = (uint8_t *)(wh + 1);
989 efrm = mtod(m, uint8_t *) + m->m_len;
990
991 frm += 12; /* skip tstamp, bintval and capinfo fields */
992 while (frm < efrm) {
993 if (*frm == IEEE80211_ELEMID_DSPARMS)
994 #if IEEE80211_CHAN_MAX < 255
995 if (frm[2] <= IEEE80211_CHAN_MAX)
996 #endif
997 ic->ic_curchan = &ic->ic_channels[frm[2]];
998
999 frm += frm[1] + 2;
1000 }
1001 }
1002
1003 /*
1004 * Grab exclusive access to NIC memory.
1005 */
1006 static void
1007 wpi_mem_lock(struct wpi_softc *sc)
1008 {
1009 uint32_t tmp;
1010 int ntries;
1011
1012 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1013 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1014
1015 /* spin until we actually get the lock */
1016 for (ntries = 0; ntries < 1000; ntries++) {
1017 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1018 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1019 break;
1020 DELAY(10);
1021 }
1022 if (ntries == 1000)
1023 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1024 }
1025
1026 /*
1027 * Release lock on NIC memory.
1028 */
1029 static void
1030 wpi_mem_unlock(struct wpi_softc *sc)
1031 {
1032 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1033 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1034 }
1035
1036 static uint32_t
1037 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1038 {
1039 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1040 return WPI_READ(sc, WPI_READ_MEM_DATA);
1041 }
1042
1043 static void
1044 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1045 {
1046 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1047 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1048 }
1049
1050 static void
1051 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1052 const uint32_t *data, int wlen)
1053 {
1054 for (; wlen > 0; wlen--, data++, addr += 4)
1055 wpi_mem_write(sc, addr, *data);
1056 }
1057
1058
1059 /*
1060 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1061 * instead of using the traditional bit-bang method.
1062 */
1063 static int
1064 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1065 {
1066 uint8_t *out = data;
1067 uint32_t val;
1068 int ntries;
1069
1070 wpi_mem_lock(sc);
1071 for (; len > 0; len -= 2, addr++) {
1072 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1073
1074 for (ntries = 0; ntries < 10; ntries++) {
1075 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1076 WPI_EEPROM_READY)
1077 break;
1078 DELAY(5);
1079 }
1080 if (ntries == 10) {
1081 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1082 return ETIMEDOUT;
1083 }
1084 *out++ = val >> 16;
1085 if (len > 1)
1086 *out++ = val >> 24;
1087 }
1088 wpi_mem_unlock(sc);
1089
1090 return 0;
1091 }
1092
1093 /*
1094 * The firmware boot code is small and is intended to be copied directly into
1095 * the NIC internal memory.
1096 */
1097 int
1098 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1099 {
1100 int ntries;
1101
1102 size /= sizeof (uint32_t);
1103
1104 wpi_mem_lock(sc);
1105
1106 /* copy microcode image into NIC memory */
1107 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1108 (const uint32_t *)ucode, size);
1109
1110 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1111 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1112 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1113
1114 /* run microcode */
1115 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1116
1117 /* wait for transfer to complete */
1118 for (ntries = 0; ntries < 1000; ntries++) {
1119 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1120 break;
1121 DELAY(10);
1122 }
1123 if (ntries == 1000) {
1124 wpi_mem_unlock(sc);
1125 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1126 return ETIMEDOUT;
1127 }
1128 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1129
1130 wpi_mem_unlock(sc);
1131
1132 return 0;
1133 }
1134
1135 static int
1136 wpi_load_firmware(struct wpi_softc *sc)
1137 {
1138 struct wpi_dma_info *dma = &sc->fw_dma;
1139 struct wpi_firmware_hdr hdr;
1140 const uint8_t *init_text, *init_data, *main_text, *main_data;
1141 const uint8_t *boot_text;
1142 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1143 uint32_t boot_textsz;
1144 firmware_handle_t fw;
1145 u_char *dfw;
1146 size_t size;
1147 int error;
1148
1149 /* load firmware image from disk */
1150 if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1151 aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1152 goto fail1;
1153 }
1154
1155 size = firmware_get_size(fw);
1156
1157 /* extract firmware header information */
1158 if (size < sizeof (struct wpi_firmware_hdr)) {
1159 aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
1160 size);
1161 error = EINVAL;
1162 goto fail2;
1163 }
1164
1165 if ((error = firmware_read(fw, 0, &hdr,
1166 sizeof (struct wpi_firmware_hdr))) != 0) {
1167 aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1168 goto fail2;
1169 }
1170
1171 main_textsz = le32toh(hdr.main_textsz);
1172 main_datasz = le32toh(hdr.main_datasz);
1173 init_textsz = le32toh(hdr.init_textsz);
1174 init_datasz = le32toh(hdr.init_datasz);
1175 boot_textsz = le32toh(hdr.boot_textsz);
1176
1177 /* sanity-check firmware segments sizes */
1178 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1179 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1180 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1181 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1182 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1183 (boot_textsz & 3) != 0) {
1184 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1185 error = EINVAL;
1186 goto fail2;
1187 }
1188
1189 /* check that all firmware segments are present */
1190 if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1191 main_datasz + init_textsz + init_datasz + boot_textsz) {
1192 aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
1193 size);
1194 error = EINVAL;
1195 goto fail2;
1196 }
1197
1198 dfw = firmware_malloc(size);
1199 if (dfw == NULL) {
1200 aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1201 error = ENOMEM;
1202 goto fail2;
1203 }
1204
1205 if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1206 aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1207 goto fail2;
1208 }
1209
1210 /* get pointers to firmware segments */
1211 main_text = dfw + sizeof (struct wpi_firmware_hdr);
1212 main_data = main_text + main_textsz;
1213 init_text = main_data + main_datasz;
1214 init_data = init_text + init_textsz;
1215 boot_text = init_data + init_datasz;
1216
1217 /* copy initialization images into pre-allocated DMA-safe memory */
1218 memcpy(dma->vaddr, init_data, init_datasz);
1219 memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1220
1221 /* tell adapter where to find initialization images */
1222 wpi_mem_lock(sc);
1223 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1224 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1225 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1226 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1227 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1228 wpi_mem_unlock(sc);
1229
1230 /* load firmware boot code */
1231 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1232 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1233 goto fail3;
1234 }
1235
1236 /* now press "execute" ;-) */
1237 WPI_WRITE(sc, WPI_RESET, 0);
1238
1239 /* ..and wait at most one second for adapter to initialize */
1240 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1241 /* this isn't what was supposed to happen.. */
1242 aprint_error_dev(sc->sc_dev,
1243 "timeout waiting for adapter to initialize\n");
1244 }
1245
1246 /* copy runtime images into pre-allocated DMA-safe memory */
1247 memcpy(dma->vaddr, main_data, main_datasz);
1248 memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1249
1250 /* tell adapter where to find runtime images */
1251 wpi_mem_lock(sc);
1252 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1253 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1254 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1255 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1256 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1257 wpi_mem_unlock(sc);
1258
1259 /* wait at most one second for second alive notification */
1260 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1261 /* this isn't what was supposed to happen.. */
1262 aprint_error_dev(sc->sc_dev,
1263 "timeout waiting for adapter to initialize\n");
1264 }
1265
1266
1267 fail3: firmware_free(dfw,size);
1268 fail2: firmware_close(fw);
1269 fail1: return error;
1270 }
1271
1272 static void
1273 wpi_calib_timeout(void *arg)
1274 {
1275 struct wpi_softc *sc = arg;
1276 struct ieee80211com *ic = &sc->sc_ic;
1277 int temp, s;
1278
1279 /* automatic rate control triggered every 500ms */
1280 if (ic->ic_fixed_rate == -1) {
1281 s = splnet();
1282 if (ic->ic_opmode == IEEE80211_M_STA)
1283 wpi_iter_func(sc, ic->ic_bss);
1284 else
1285 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1286 splx(s);
1287 }
1288
1289 /* update sensor data */
1290 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1291
1292 /* automatic power calibration every 60s */
1293 if (++sc->calib_cnt >= 120) {
1294 wpi_power_calibration(sc, temp);
1295 sc->calib_cnt = 0;
1296 }
1297
1298 callout_schedule(&sc->calib_to, hz/2);
1299 }
1300
1301 static void
1302 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1303 {
1304 struct wpi_softc *sc = arg;
1305 struct wpi_node *wn = (struct wpi_node *)ni;
1306
1307 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1308 }
1309
1310 /*
1311 * This function is called periodically (every 60 seconds) to adjust output
1312 * power to temperature changes.
1313 */
1314 void
1315 wpi_power_calibration(struct wpi_softc *sc, int temp)
1316 {
1317 /* sanity-check read value */
1318 if (temp < -260 || temp > 25) {
1319 /* this can't be correct, ignore */
1320 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1321 return;
1322 }
1323
1324 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1325
1326 /* adjust Tx power if need be */
1327 if (abs(temp - sc->temp) <= 6)
1328 return;
1329
1330 sc->temp = temp;
1331
1332 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1333 /* just warn, too bad for the automatic calibration... */
1334 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1335 }
1336 }
1337
1338 static void
1339 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1340 struct wpi_rx_data *data)
1341 {
1342 struct ieee80211com *ic = &sc->sc_ic;
1343 struct ifnet *ifp = ic->ic_ifp;
1344 struct wpi_rx_ring *ring = &sc->rxq;
1345 struct wpi_rx_stat *stat;
1346 struct wpi_rx_head *head;
1347 struct wpi_rx_tail *tail;
1348 struct wpi_rbuf *rbuf;
1349 struct ieee80211_frame *wh;
1350 struct ieee80211_node *ni;
1351 struct mbuf *m, *mnew;
1352 int data_off ;
1353
1354 stat = (struct wpi_rx_stat *)(desc + 1);
1355
1356 if (stat->len > WPI_STAT_MAXLEN) {
1357 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1358 ifp->if_ierrors++;
1359 return;
1360 }
1361
1362 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1363 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1364
1365 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1366 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1367 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1368 le64toh(tail->tstamp)));
1369
1370 /*
1371 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1372 * to radiotap in monitor mode).
1373 */
1374 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1375 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1376 ifp->if_ierrors++;
1377 return;
1378 }
1379
1380 /* Compute where are the useful datas */
1381 data_off = (char*)(head + 1) - mtod(data->m, char*);
1382
1383 /*
1384 * If the number of free entry is too low
1385 * just dup the data->m socket and reuse the same rbuf entry
1386 */
1387 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1388
1389 /* Prepare the mbuf for the m_dup */
1390 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1391 data->m->m_data = (char*) data->m->m_data + data_off;
1392
1393 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1394
1395 /* Restore the m_data pointer for future use */
1396 data->m->m_data = (char*) data->m->m_data - data_off;
1397
1398 if (m == NULL) {
1399 ifp->if_ierrors++;
1400 return;
1401 }
1402 } else {
1403
1404 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1405 if (mnew == NULL) {
1406 ifp->if_ierrors++;
1407 return;
1408 }
1409
1410 rbuf = wpi_alloc_rbuf(sc);
1411 KASSERT(rbuf != NULL);
1412
1413 /* attach Rx buffer to mbuf */
1414 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1415 rbuf);
1416 mnew->m_flags |= M_EXT_RW;
1417
1418 m = data->m;
1419 data->m = mnew;
1420
1421 /* update Rx descriptor */
1422 ring->desc[ring->cur] = htole32(rbuf->paddr);
1423
1424 m->m_data = (char*)m->m_data + data_off;
1425 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1426 }
1427
1428 /* finalize mbuf */
1429 m->m_pkthdr.rcvif = ifp;
1430
1431 if (ic->ic_state == IEEE80211_S_SCAN)
1432 wpi_fix_channel(ic, m);
1433
1434 #if NBPFILTER > 0
1435 if (sc->sc_drvbpf != NULL) {
1436 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1437
1438 tap->wr_flags = 0;
1439 tap->wr_chan_freq =
1440 htole16(ic->ic_channels[head->chan].ic_freq);
1441 tap->wr_chan_flags =
1442 htole16(ic->ic_channels[head->chan].ic_flags);
1443 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1444 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1445 tap->wr_tsft = tail->tstamp;
1446 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1447 switch (head->rate) {
1448 /* CCK rates */
1449 case 10: tap->wr_rate = 2; break;
1450 case 20: tap->wr_rate = 4; break;
1451 case 55: tap->wr_rate = 11; break;
1452 case 110: tap->wr_rate = 22; break;
1453 /* OFDM rates */
1454 case 0xd: tap->wr_rate = 12; break;
1455 case 0xf: tap->wr_rate = 18; break;
1456 case 0x5: tap->wr_rate = 24; break;
1457 case 0x7: tap->wr_rate = 36; break;
1458 case 0x9: tap->wr_rate = 48; break;
1459 case 0xb: tap->wr_rate = 72; break;
1460 case 0x1: tap->wr_rate = 96; break;
1461 case 0x3: tap->wr_rate = 108; break;
1462 /* unknown rate: should not happen */
1463 default: tap->wr_rate = 0;
1464 }
1465 if (le16toh(head->flags) & 0x4)
1466 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1467
1468 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1469 }
1470 #endif
1471
1472 /* grab a reference to the source node */
1473 wh = mtod(m, struct ieee80211_frame *);
1474 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1475
1476 /* send the frame to the 802.11 layer */
1477 ieee80211_input(ic, m, ni, stat->rssi, 0);
1478
1479 /* release node reference */
1480 ieee80211_free_node(ni);
1481 }
1482
1483 static void
1484 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1485 {
1486 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1487 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1488 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1489 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1490 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1491
1492 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1493 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1494 stat->nkill, stat->rate, le32toh(stat->duration),
1495 le32toh(stat->status)));
1496
1497 /*
1498 * Update rate control statistics for the node.
1499 * XXX we should not count mgmt frames since they're always sent at
1500 * the lowest available bit-rate.
1501 */
1502 wn->amn.amn_txcnt++;
1503 if (stat->ntries > 0) {
1504 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1505 wn->amn.amn_retrycnt++;
1506 }
1507
1508 if ((le32toh(stat->status) & 0xff) != 1)
1509 ifp->if_oerrors++;
1510 else
1511 ifp->if_opackets++;
1512
1513 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1514 m_freem(txdata->m);
1515 txdata->m = NULL;
1516 ieee80211_free_node(txdata->ni);
1517 txdata->ni = NULL;
1518
1519 ring->queued--;
1520
1521 sc->sc_tx_timer = 0;
1522 ifp->if_flags &= ~IFF_OACTIVE;
1523 wpi_start(ifp);
1524 }
1525
1526 static void
1527 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1528 {
1529 struct wpi_tx_ring *ring = &sc->cmdq;
1530 struct wpi_tx_data *data;
1531
1532 if ((desc->qid & 7) != 4)
1533 return; /* not a command ack */
1534
1535 data = &ring->data[desc->idx];
1536
1537 /* if the command was mapped in a mbuf, free it */
1538 if (data->m != NULL) {
1539 bus_dmamap_unload(sc->sc_dmat, data->map);
1540 m_freem(data->m);
1541 data->m = NULL;
1542 }
1543
1544 wakeup(&ring->cmd[desc->idx]);
1545 }
1546
1547 static void
1548 wpi_notif_intr(struct wpi_softc *sc)
1549 {
1550 struct ieee80211com *ic = &sc->sc_ic;
1551 struct ifnet *ifp = ic->ic_ifp;
1552 struct wpi_rx_desc *desc;
1553 struct wpi_rx_data *data;
1554 uint32_t hw;
1555
1556 hw = le32toh(sc->shared->next);
1557 while (sc->rxq.cur != hw) {
1558 data = &sc->rxq.data[sc->rxq.cur];
1559
1560 desc = mtod(data->m, struct wpi_rx_desc *);
1561
1562 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1563 "len=%d\n", desc->qid, desc->idx, desc->flags,
1564 desc->type, le32toh(desc->len)));
1565
1566 if (!(desc->qid & 0x80)) /* reply to a command */
1567 wpi_cmd_intr(sc, desc);
1568
1569 switch (desc->type) {
1570 case WPI_RX_DONE:
1571 /* a 802.11 frame was received */
1572 wpi_rx_intr(sc, desc, data);
1573 break;
1574
1575 case WPI_TX_DONE:
1576 /* a 802.11 frame has been transmitted */
1577 wpi_tx_intr(sc, desc);
1578 break;
1579
1580 case WPI_UC_READY:
1581 {
1582 struct wpi_ucode_info *uc =
1583 (struct wpi_ucode_info *)(desc + 1);
1584
1585 /* the microcontroller is ready */
1586 DPRINTF(("microcode alive notification version %x "
1587 "alive %x\n", le32toh(uc->version),
1588 le32toh(uc->valid)));
1589
1590 if (le32toh(uc->valid) != 1) {
1591 aprint_error_dev(sc->sc_dev,
1592 "microcontroller initialization failed\n");
1593 }
1594 break;
1595 }
1596 case WPI_STATE_CHANGED:
1597 {
1598 uint32_t *status = (uint32_t *)(desc + 1);
1599
1600 /* enabled/disabled notification */
1601 DPRINTF(("state changed to %x\n", le32toh(*status)));
1602
1603 if (le32toh(*status) & 1) {
1604 /* the radio button has to be pushed */
1605 aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1606 /* turn the interface down */
1607 ifp->if_flags &= ~IFF_UP;
1608 wpi_stop(ifp, 1);
1609 return; /* no further processing */
1610 }
1611 break;
1612 }
1613 case WPI_START_SCAN:
1614 {
1615 struct wpi_start_scan *scan =
1616 (struct wpi_start_scan *)(desc + 1);
1617
1618 DPRINTFN(2, ("scanning channel %d status %x\n",
1619 scan->chan, le32toh(scan->status)));
1620
1621 /* fix current channel */
1622 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1623 break;
1624 }
1625 case WPI_STOP_SCAN:
1626 {
1627 struct wpi_stop_scan *scan =
1628 (struct wpi_stop_scan *)(desc + 1);
1629
1630 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1631 scan->nchan, scan->status, scan->chan));
1632
1633 if (scan->status == 1 && scan->chan <= 14) {
1634 /*
1635 * We just finished scanning 802.11g channels,
1636 * start scanning 802.11a ones.
1637 */
1638 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1639 break;
1640 }
1641 sc->is_scanning = false;
1642 ieee80211_end_scan(ic);
1643 break;
1644 }
1645 }
1646
1647 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1648 }
1649
1650 /* tell the firmware what we have processed */
1651 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1652 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1653 }
1654
1655 static int
1656 wpi_intr(void *arg)
1657 {
1658 struct wpi_softc *sc = arg;
1659 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1660 uint32_t r;
1661
1662 r = WPI_READ(sc, WPI_INTR);
1663 if (r == 0 || r == 0xffffffff)
1664 return 0; /* not for us */
1665
1666 DPRINTFN(5, ("interrupt reg %x\n", r));
1667
1668 /* disable interrupts */
1669 WPI_WRITE(sc, WPI_MASK, 0);
1670 /* ack interrupts */
1671 WPI_WRITE(sc, WPI_INTR, r);
1672
1673 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1674 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1675 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1676 wpi_stop(sc->sc_ic.ic_ifp, 1);
1677 return 1;
1678 }
1679
1680 if (r & WPI_RX_INTR)
1681 wpi_notif_intr(sc);
1682
1683 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1684 wakeup(sc);
1685
1686 /* re-enable interrupts */
1687 if (ifp->if_flags & IFF_UP)
1688 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1689
1690 return 1;
1691 }
1692
1693 static uint8_t
1694 wpi_plcp_signal(int rate)
1695 {
1696 switch (rate) {
1697 /* CCK rates (returned values are device-dependent) */
1698 case 2: return 10;
1699 case 4: return 20;
1700 case 11: return 55;
1701 case 22: return 110;
1702
1703 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1704 /* R1-R4, (u)ral is R4-R1 */
1705 case 12: return 0xd;
1706 case 18: return 0xf;
1707 case 24: return 0x5;
1708 case 36: return 0x7;
1709 case 48: return 0x9;
1710 case 72: return 0xb;
1711 case 96: return 0x1;
1712 case 108: return 0x3;
1713
1714 /* unsupported rates (should not get there) */
1715 default: return 0;
1716 }
1717 }
1718
1719 /* quickly determine if a given rate is CCK or OFDM */
1720 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1721
1722 static int
1723 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1724 int ac)
1725 {
1726 struct ieee80211com *ic = &sc->sc_ic;
1727 struct wpi_tx_ring *ring = &sc->txq[ac];
1728 struct wpi_tx_desc *desc;
1729 struct wpi_tx_data *data;
1730 struct wpi_tx_cmd *cmd;
1731 struct wpi_cmd_data *tx;
1732 struct ieee80211_frame *wh;
1733 struct ieee80211_key *k;
1734 const struct chanAccParams *cap;
1735 struct mbuf *mnew;
1736 int i, error, rate, hdrlen, noack = 0;
1737
1738 desc = &ring->desc[ring->cur];
1739 data = &ring->data[ring->cur];
1740
1741 wh = mtod(m0, struct ieee80211_frame *);
1742
1743 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1744 cap = &ic->ic_wme.wme_chanParams;
1745 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1746 }
1747
1748 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1749 k = ieee80211_crypto_encap(ic, ni, m0);
1750 if (k == NULL) {
1751 m_freem(m0);
1752 return ENOBUFS;
1753 }
1754
1755 /* packet header may have moved, reset our local pointer */
1756 wh = mtod(m0, struct ieee80211_frame *);
1757 }
1758
1759 hdrlen = ieee80211_anyhdrsize(wh);
1760
1761 /* pickup a rate */
1762 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1763 IEEE80211_FC0_TYPE_MGT) {
1764 /* mgmt frames are sent at the lowest available bit-rate */
1765 rate = ni->ni_rates.rs_rates[0];
1766 } else {
1767 if (ic->ic_fixed_rate != -1) {
1768 rate = ic->ic_sup_rates[ic->ic_curmode].
1769 rs_rates[ic->ic_fixed_rate];
1770 } else
1771 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1772 }
1773 rate &= IEEE80211_RATE_VAL;
1774
1775
1776 #if NBPFILTER > 0
1777 if (sc->sc_drvbpf != NULL) {
1778 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1779
1780 tap->wt_flags = 0;
1781 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1782 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1783 tap->wt_rate = rate;
1784 tap->wt_hwqueue = ac;
1785 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1786 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1787
1788 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1789 }
1790 #endif
1791
1792 cmd = &ring->cmd[ring->cur];
1793 cmd->code = WPI_CMD_TX_DATA;
1794 cmd->flags = 0;
1795 cmd->qid = ring->qid;
1796 cmd->idx = ring->cur;
1797
1798 tx = (struct wpi_cmd_data *)cmd->data;
1799 tx->flags = 0;
1800
1801 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1802 tx->flags |= htole32(WPI_TX_NEED_ACK);
1803 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1804 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1805
1806 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1807
1808 /* retrieve destination node's id */
1809 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1810 WPI_ID_BSS;
1811
1812 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1813 IEEE80211_FC0_TYPE_MGT) {
1814 /* tell h/w to set timestamp in probe responses */
1815 if ((wh->i_fc[0] &
1816 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1817 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1818 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1819
1820 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1821 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1822 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1823 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1824 tx->timeout = htole16(3);
1825 else
1826 tx->timeout = htole16(2);
1827 } else
1828 tx->timeout = htole16(0);
1829
1830 tx->rate = wpi_plcp_signal(rate);
1831
1832 /* be very persistant at sending frames out */
1833 tx->rts_ntries = 7;
1834 tx->data_ntries = 15;
1835
1836 tx->ofdm_mask = 0xff;
1837 tx->cck_mask = 0xf;
1838 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1839
1840 tx->len = htole16(m0->m_pkthdr.len);
1841
1842 /* save and trim IEEE802.11 header */
1843 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1844 m_adj(m0, hdrlen);
1845
1846 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1847 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1848 if (error != 0 && error != EFBIG) {
1849 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1850 m_freem(m0);
1851 return error;
1852 }
1853 if (error != 0) {
1854 /* too many fragments, linearize */
1855 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1856 if (mnew == NULL) {
1857 m_freem(m0);
1858 return ENOMEM;
1859 }
1860
1861 M_COPY_PKTHDR(mnew, m0);
1862 if (m0->m_pkthdr.len > MHLEN) {
1863 MCLGET(mnew, M_DONTWAIT);
1864 if (!(mnew->m_flags & M_EXT)) {
1865 m_freem(m0);
1866 m_freem(mnew);
1867 return ENOMEM;
1868 }
1869 }
1870
1871 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1872 m_freem(m0);
1873 mnew->m_len = mnew->m_pkthdr.len;
1874 m0 = mnew;
1875
1876 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1877 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1878 if (error != 0) {
1879 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1880 error);
1881 m_freem(m0);
1882 return error;
1883 }
1884 }
1885
1886 data->m = m0;
1887 data->ni = ni;
1888
1889 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1890 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1891
1892 /* first scatter/gather segment is used by the tx data command */
1893 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1894 (1 + data->map->dm_nsegs) << 24);
1895 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1896 ring->cur * sizeof (struct wpi_tx_cmd));
1897 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1898 ((hdrlen + 3) & ~3));
1899
1900 for (i = 1; i <= data->map->dm_nsegs; i++) {
1901 desc->segs[i].addr =
1902 htole32(data->map->dm_segs[i - 1].ds_addr);
1903 desc->segs[i].len =
1904 htole32(data->map->dm_segs[i - 1].ds_len);
1905 }
1906
1907 ring->queued++;
1908
1909 /* kick ring */
1910 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1911 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1912
1913 return 0;
1914 }
1915
1916 static void
1917 wpi_start(struct ifnet *ifp)
1918 {
1919 struct wpi_softc *sc = ifp->if_softc;
1920 struct ieee80211com *ic = &sc->sc_ic;
1921 struct ieee80211_node *ni;
1922 struct ether_header *eh;
1923 struct mbuf *m0;
1924 int ac;
1925
1926 /*
1927 * net80211 may still try to send management frames even if the
1928 * IFF_RUNNING flag is not set...
1929 */
1930 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1931 return;
1932
1933 for (;;) {
1934 IF_DEQUEUE(&ic->ic_mgtq, m0);
1935 if (m0 != NULL) {
1936
1937 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1938 m0->m_pkthdr.rcvif = NULL;
1939
1940 /* management frames go into ring 0 */
1941 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1942 ifp->if_oerrors++;
1943 continue;
1944 }
1945 #if NBPFILTER > 0
1946 if (ic->ic_rawbpf != NULL)
1947 bpf_mtap(ic->ic_rawbpf, m0);
1948 #endif
1949 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1950 ifp->if_oerrors++;
1951 break;
1952 }
1953 } else {
1954 if (ic->ic_state != IEEE80211_S_RUN)
1955 break;
1956 IFQ_POLL(&ifp->if_snd, m0);
1957 if (m0 == NULL)
1958 break;
1959
1960 if (m0->m_len < sizeof (*eh) &&
1961 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1962 ifp->if_oerrors++;
1963 continue;
1964 }
1965 eh = mtod(m0, struct ether_header *);
1966 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1967 if (ni == NULL) {
1968 m_freem(m0);
1969 ifp->if_oerrors++;
1970 continue;
1971 }
1972
1973 /* classify mbuf so we can find which tx ring to use */
1974 if (ieee80211_classify(ic, m0, ni) != 0) {
1975 m_freem(m0);
1976 ieee80211_free_node(ni);
1977 ifp->if_oerrors++;
1978 continue;
1979 }
1980
1981 /* no QoS encapsulation for EAPOL frames */
1982 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1983 M_WME_GETAC(m0) : WME_AC_BE;
1984
1985 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1986 /* there is no place left in this ring */
1987 ifp->if_flags |= IFF_OACTIVE;
1988 break;
1989 }
1990 IFQ_DEQUEUE(&ifp->if_snd, m0);
1991 #if NBPFILTER > 0
1992 if (ifp->if_bpf != NULL)
1993 bpf_mtap(ifp->if_bpf, m0);
1994 #endif
1995 m0 = ieee80211_encap(ic, m0, ni);
1996 if (m0 == NULL) {
1997 ieee80211_free_node(ni);
1998 ifp->if_oerrors++;
1999 continue;
2000 }
2001 #if NBPFILTER > 0
2002 if (ic->ic_rawbpf != NULL)
2003 bpf_mtap(ic->ic_rawbpf, m0);
2004 #endif
2005 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2006 ieee80211_free_node(ni);
2007 ifp->if_oerrors++;
2008 break;
2009 }
2010 }
2011
2012 sc->sc_tx_timer = 5;
2013 ifp->if_timer = 1;
2014 }
2015 }
2016
2017 static void
2018 wpi_watchdog(struct ifnet *ifp)
2019 {
2020 struct wpi_softc *sc = ifp->if_softc;
2021
2022 ifp->if_timer = 0;
2023
2024 if (sc->sc_tx_timer > 0) {
2025 if (--sc->sc_tx_timer == 0) {
2026 aprint_error_dev(sc->sc_dev, "device timeout\n");
2027 ifp->if_oerrors++;
2028 ifp->if_flags &= ~IFF_UP;
2029 wpi_stop(ifp, 1);
2030 return;
2031 }
2032 ifp->if_timer = 1;
2033 }
2034
2035 ieee80211_watchdog(&sc->sc_ic);
2036 }
2037
2038 static int
2039 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2040 {
2041 #define IS_RUNNING(ifp) \
2042 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2043
2044 struct wpi_softc *sc = ifp->if_softc;
2045 struct ieee80211com *ic = &sc->sc_ic;
2046 int s, error = 0;
2047
2048 s = splnet();
2049
2050 switch (cmd) {
2051 case SIOCSIFFLAGS:
2052 if (ifp->if_flags & IFF_UP) {
2053 if (!(ifp->if_flags & IFF_RUNNING))
2054 wpi_init(ifp);
2055 } else {
2056 if (ifp->if_flags & IFF_RUNNING)
2057 wpi_stop(ifp, 1);
2058 }
2059 break;
2060
2061 case SIOCADDMULTI:
2062 case SIOCDELMULTI:
2063 /* XXX no h/w multicast filter? --dyoung */
2064 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2065 /* setup multicast filter, etc */
2066 error = 0;
2067 }
2068 break;
2069
2070 default:
2071 error = ieee80211_ioctl(ic, cmd, data);
2072 }
2073
2074 if (error == ENETRESET) {
2075 if (IS_RUNNING(ifp) &&
2076 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2077 wpi_init(ifp);
2078 error = 0;
2079 }
2080
2081 splx(s);
2082 return error;
2083
2084 #undef IS_RUNNING
2085 }
2086
2087 /*
2088 * Extract various information from EEPROM.
2089 */
2090 static void
2091 wpi_read_eeprom(struct wpi_softc *sc)
2092 {
2093 struct ieee80211com *ic = &sc->sc_ic;
2094 char domain[4];
2095 int i;
2096
2097 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2098 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2099 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2100
2101 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2102 sc->type));
2103
2104 /* read and print regulatory domain */
2105 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2106 aprint_normal(", %.4s", domain);
2107
2108 /* read and print MAC address */
2109 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2110 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2111
2112 /* read the list of authorized channels */
2113 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2114 wpi_read_eeprom_channels(sc, i);
2115
2116 /* read the list of power groups */
2117 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2118 wpi_read_eeprom_group(sc, i);
2119 }
2120
2121 static void
2122 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2123 {
2124 struct ieee80211com *ic = &sc->sc_ic;
2125 const struct wpi_chan_band *band = &wpi_bands[n];
2126 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2127 int chan, i;
2128
2129 wpi_read_prom_data(sc, band->addr, channels,
2130 band->nchan * sizeof (struct wpi_eeprom_chan));
2131
2132 for (i = 0; i < band->nchan; i++) {
2133 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2134 continue;
2135
2136 chan = band->chan[i];
2137
2138 if (n == 0) { /* 2GHz band */
2139 ic->ic_channels[chan].ic_freq =
2140 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2141 ic->ic_channels[chan].ic_flags =
2142 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2143 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2144
2145 } else { /* 5GHz band */
2146 /*
2147 * Some 3945abg adapters support channels 7, 8, 11
2148 * and 12 in the 2GHz *and* 5GHz bands.
2149 * Because of limitations in our net80211(9) stack,
2150 * we can't support these channels in 5GHz band.
2151 */
2152 if (chan <= 14)
2153 continue;
2154
2155 ic->ic_channels[chan].ic_freq =
2156 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2157 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2158 }
2159
2160 /* is active scan allowed on this channel? */
2161 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2162 ic->ic_channels[chan].ic_flags |=
2163 IEEE80211_CHAN_PASSIVE;
2164 }
2165
2166 /* save maximum allowed power for this channel */
2167 sc->maxpwr[chan] = channels[i].maxpwr;
2168
2169 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2170 chan, channels[i].flags, sc->maxpwr[chan]));
2171 }
2172 }
2173
2174 static void
2175 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2176 {
2177 struct wpi_power_group *group = &sc->groups[n];
2178 struct wpi_eeprom_group rgroup;
2179 int i;
2180
2181 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2182 sizeof rgroup);
2183
2184 /* save power group information */
2185 group->chan = rgroup.chan;
2186 group->maxpwr = rgroup.maxpwr;
2187 /* temperature at which the samples were taken */
2188 group->temp = (int16_t)le16toh(rgroup.temp);
2189
2190 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2191 group->chan, group->maxpwr, group->temp));
2192
2193 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2194 group->samples[i].index = rgroup.samples[i].index;
2195 group->samples[i].power = rgroup.samples[i].power;
2196
2197 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2198 group->samples[i].index, group->samples[i].power));
2199 }
2200 }
2201
2202 /*
2203 * Send a command to the firmware.
2204 */
2205 static int
2206 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2207 {
2208 struct wpi_tx_ring *ring = &sc->cmdq;
2209 struct wpi_tx_desc *desc;
2210 struct wpi_tx_cmd *cmd;
2211
2212 KASSERT(size <= sizeof cmd->data);
2213
2214 desc = &ring->desc[ring->cur];
2215 cmd = &ring->cmd[ring->cur];
2216
2217 cmd->code = code;
2218 cmd->flags = 0;
2219 cmd->qid = ring->qid;
2220 cmd->idx = ring->cur;
2221 memcpy(cmd->data, buf, size);
2222
2223 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2224 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2225 ring->cur * sizeof (struct wpi_tx_cmd));
2226 desc->segs[0].len = htole32(4 + size);
2227
2228 /* kick cmd ring */
2229 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2230 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2231
2232 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2233 }
2234
2235 static int
2236 wpi_wme_update(struct ieee80211com *ic)
2237 {
2238 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2239 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2240 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2241 const struct wmeParams *wmep;
2242 struct wpi_wme_setup wme;
2243 int ac;
2244
2245 /* don't override default WME values if WME is not actually enabled */
2246 if (!(ic->ic_flags & IEEE80211_F_WME))
2247 return 0;
2248
2249 wme.flags = 0;
2250 for (ac = 0; ac < WME_NUM_AC; ac++) {
2251 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2252 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2253 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2254 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2255 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2256
2257 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2258 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2259 wme.ac[ac].cwmax, wme.ac[ac].txop));
2260 }
2261
2262 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2263 #undef WPI_USEC
2264 #undef WPI_EXP2
2265 }
2266
2267 /*
2268 * Configure h/w multi-rate retries.
2269 */
2270 static int
2271 wpi_mrr_setup(struct wpi_softc *sc)
2272 {
2273 struct ieee80211com *ic = &sc->sc_ic;
2274 struct wpi_mrr_setup mrr;
2275 int i, error;
2276
2277 /* CCK rates (not used with 802.11a) */
2278 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2279 mrr.rates[i].flags = 0;
2280 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2281 /* fallback to the immediate lower CCK rate (if any) */
2282 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2283 /* try one time at this rate before falling back to "next" */
2284 mrr.rates[i].ntries = 1;
2285 }
2286
2287 /* OFDM rates (not used with 802.11b) */
2288 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2289 mrr.rates[i].flags = 0;
2290 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2291 /* fallback to the immediate lower rate (if any) */
2292 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2293 mrr.rates[i].next = (i == WPI_OFDM6) ?
2294 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2295 WPI_OFDM6 : WPI_CCK2) :
2296 i - 1;
2297 /* try one time at this rate before falling back to "next" */
2298 mrr.rates[i].ntries = 1;
2299 }
2300
2301 /* setup MRR for control frames */
2302 mrr.which = htole32(WPI_MRR_CTL);
2303 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2304 if (error != 0) {
2305 aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2306 return error;
2307 }
2308
2309 /* setup MRR for data frames */
2310 mrr.which = htole32(WPI_MRR_DATA);
2311 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2312 if (error != 0) {
2313 aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2314 return error;
2315 }
2316
2317 return 0;
2318 }
2319
2320 static void
2321 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2322 {
2323 struct wpi_cmd_led led;
2324
2325 led.which = which;
2326 led.unit = htole32(100000); /* on/off in unit of 100ms */
2327 led.off = off;
2328 led.on = on;
2329
2330 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2331 }
2332
2333 static void
2334 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2335 {
2336 struct wpi_cmd_tsf tsf;
2337 uint64_t val, mod;
2338
2339 memset(&tsf, 0, sizeof tsf);
2340 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2341 tsf.bintval = htole16(ni->ni_intval);
2342 tsf.lintval = htole16(10);
2343
2344 /* compute remaining time until next beacon */
2345 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2346 mod = le64toh(tsf.tstamp) % val;
2347 tsf.binitval = htole32((uint32_t)(val - mod));
2348
2349 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2350 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2351
2352 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2353 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2354 }
2355
2356 /*
2357 * Update Tx power to match what is defined for channel `c'.
2358 */
2359 static int
2360 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2361 {
2362 struct ieee80211com *ic = &sc->sc_ic;
2363 struct wpi_power_group *group;
2364 struct wpi_cmd_txpower txpower;
2365 u_int chan;
2366 int i;
2367
2368 /* get channel number */
2369 chan = ieee80211_chan2ieee(ic, c);
2370
2371 /* find the power group to which this channel belongs */
2372 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2373 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2374 if (chan <= group->chan)
2375 break;
2376 } else
2377 group = &sc->groups[0];
2378
2379 memset(&txpower, 0, sizeof txpower);
2380 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2381 txpower.chan = htole16(chan);
2382
2383 /* set Tx power for all OFDM and CCK rates */
2384 for (i = 0; i <= 11 ; i++) {
2385 /* retrieve Tx power for this channel/rate combination */
2386 int idx = wpi_get_power_index(sc, group, c,
2387 wpi_ridx_to_rate[i]);
2388
2389 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2390
2391 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2392 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2393 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2394 } else {
2395 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2396 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2397 }
2398 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2399 wpi_ridx_to_rate[i], idx));
2400 }
2401
2402 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2403 }
2404
2405 /*
2406 * Determine Tx power index for a given channel/rate combination.
2407 * This takes into account the regulatory information from EEPROM and the
2408 * current temperature.
2409 */
2410 static int
2411 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2412 struct ieee80211_channel *c, int rate)
2413 {
2414 /* fixed-point arithmetic division using a n-bit fractional part */
2415 #define fdivround(a, b, n) \
2416 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2417
2418 /* linear interpolation */
2419 #define interpolate(x, x1, y1, x2, y2, n) \
2420 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2421
2422 struct ieee80211com *ic = &sc->sc_ic;
2423 struct wpi_power_sample *sample;
2424 int pwr, idx;
2425 u_int chan;
2426
2427 /* get channel number */
2428 chan = ieee80211_chan2ieee(ic, c);
2429
2430 /* default power is group's maximum power - 3dB */
2431 pwr = group->maxpwr / 2;
2432
2433 /* decrease power for highest OFDM rates to reduce distortion */
2434 switch (rate) {
2435 case 72: /* 36Mb/s */
2436 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2437 break;
2438 case 96: /* 48Mb/s */
2439 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2440 break;
2441 case 108: /* 54Mb/s */
2442 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2443 break;
2444 }
2445
2446 /* never exceed channel's maximum allowed Tx power */
2447 pwr = min(pwr, sc->maxpwr[chan]);
2448
2449 /* retrieve power index into gain tables from samples */
2450 for (sample = group->samples; sample < &group->samples[3]; sample++)
2451 if (pwr > sample[1].power)
2452 break;
2453 /* fixed-point linear interpolation using a 19-bit fractional part */
2454 idx = interpolate(pwr, sample[0].power, sample[0].index,
2455 sample[1].power, sample[1].index, 19);
2456
2457 /*
2458 * Adjust power index based on current temperature:
2459 * - if cooler than factory-calibrated: decrease output power
2460 * - if warmer than factory-calibrated: increase output power
2461 */
2462 idx -= (sc->temp - group->temp) * 11 / 100;
2463
2464 /* decrease power for CCK rates (-5dB) */
2465 if (!WPI_RATE_IS_OFDM(rate))
2466 idx += 10;
2467
2468 /* keep power index in a valid range */
2469 if (idx < 0)
2470 return 0;
2471 if (idx > WPI_MAX_PWR_INDEX)
2472 return WPI_MAX_PWR_INDEX;
2473 return idx;
2474
2475 #undef interpolate
2476 #undef fdivround
2477 }
2478
2479 /*
2480 * Build a beacon frame that the firmware will broadcast periodically in
2481 * IBSS or HostAP modes.
2482 */
2483 static int
2484 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2485 {
2486 struct ieee80211com *ic = &sc->sc_ic;
2487 struct wpi_tx_ring *ring = &sc->cmdq;
2488 struct wpi_tx_desc *desc;
2489 struct wpi_tx_data *data;
2490 struct wpi_tx_cmd *cmd;
2491 struct wpi_cmd_beacon *bcn;
2492 struct ieee80211_beacon_offsets bo;
2493 struct mbuf *m0;
2494 int error;
2495
2496 desc = &ring->desc[ring->cur];
2497 data = &ring->data[ring->cur];
2498
2499 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2500 if (m0 == NULL) {
2501 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2502 return ENOMEM;
2503 }
2504
2505 cmd = &ring->cmd[ring->cur];
2506 cmd->code = WPI_CMD_SET_BEACON;
2507 cmd->flags = 0;
2508 cmd->qid = ring->qid;
2509 cmd->idx = ring->cur;
2510
2511 bcn = (struct wpi_cmd_beacon *)cmd->data;
2512 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2513 bcn->id = WPI_ID_BROADCAST;
2514 bcn->ofdm_mask = 0xff;
2515 bcn->cck_mask = 0x0f;
2516 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2517 bcn->len = htole16(m0->m_pkthdr.len);
2518 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2519 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2520 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2521
2522 /* save and trim IEEE802.11 header */
2523 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2524 m_adj(m0, sizeof (struct ieee80211_frame));
2525
2526 /* assume beacon frame is contiguous */
2527 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2528 BUS_DMA_READ | BUS_DMA_NOWAIT);
2529 if (error) {
2530 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2531 m_freem(m0);
2532 return error;
2533 }
2534
2535 data->m = m0;
2536
2537 /* first scatter/gather segment is used by the beacon command */
2538 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2539 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2540 ring->cur * sizeof (struct wpi_tx_cmd));
2541 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2542 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2543 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2544
2545 /* kick cmd ring */
2546 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2547 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2548
2549 return 0;
2550 }
2551
2552 static int
2553 wpi_auth(struct wpi_softc *sc)
2554 {
2555 struct ieee80211com *ic = &sc->sc_ic;
2556 struct ieee80211_node *ni = ic->ic_bss;
2557 struct wpi_node_info node;
2558 int error;
2559
2560 /* update adapter's configuration */
2561 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2562 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2563 sc->config.flags = htole32(WPI_CONFIG_TSF);
2564 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2565 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2566 WPI_CONFIG_24GHZ);
2567 }
2568 switch (ic->ic_curmode) {
2569 case IEEE80211_MODE_11A:
2570 sc->config.cck_mask = 0;
2571 sc->config.ofdm_mask = 0x15;
2572 break;
2573 case IEEE80211_MODE_11B:
2574 sc->config.cck_mask = 0x03;
2575 sc->config.ofdm_mask = 0;
2576 break;
2577 default: /* assume 802.11b/g */
2578 sc->config.cck_mask = 0x0f;
2579 sc->config.ofdm_mask = 0x15;
2580 }
2581
2582 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2583 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2584 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2585 sizeof (struct wpi_config), 1);
2586 if (error != 0) {
2587 aprint_error_dev(sc->sc_dev, "could not configure\n");
2588 return error;
2589 }
2590
2591 /* configuration has changed, set Tx power accordingly */
2592 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2593 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2594 return error;
2595 }
2596
2597 /* add default node */
2598 memset(&node, 0, sizeof node);
2599 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2600 node.id = WPI_ID_BSS;
2601 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2602 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2603 node.action = htole32(WPI_ACTION_SET_RATE);
2604 node.antenna = WPI_ANTENNA_BOTH;
2605 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2606 if (error != 0) {
2607 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2608 return error;
2609 }
2610
2611 return 0;
2612 }
2613
2614 /*
2615 * Send a scan request to the firmware. Since this command is huge, we map it
2616 * into a mbuf instead of using the pre-allocated set of commands.
2617 */
2618 static int
2619 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2620 {
2621 struct ieee80211com *ic = &sc->sc_ic;
2622 struct wpi_tx_ring *ring = &sc->cmdq;
2623 struct wpi_tx_desc *desc;
2624 struct wpi_tx_data *data;
2625 struct wpi_tx_cmd *cmd;
2626 struct wpi_scan_hdr *hdr;
2627 struct wpi_scan_chan *chan;
2628 struct ieee80211_frame *wh;
2629 struct ieee80211_rateset *rs;
2630 struct ieee80211_channel *c;
2631 enum ieee80211_phymode mode;
2632 uint8_t *frm;
2633 int nrates, pktlen, error;
2634
2635 desc = &ring->desc[ring->cur];
2636 data = &ring->data[ring->cur];
2637
2638 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2639 if (data->m == NULL) {
2640 aprint_error_dev(sc->sc_dev,
2641 "could not allocate mbuf for scan command\n");
2642 return ENOMEM;
2643 }
2644
2645 MCLGET(data->m, M_DONTWAIT);
2646 if (!(data->m->m_flags & M_EXT)) {
2647 m_freem(data->m);
2648 data->m = NULL;
2649 aprint_error_dev(sc->sc_dev,
2650 "could not allocate mbuf for scan command\n");
2651 return ENOMEM;
2652 }
2653
2654 cmd = mtod(data->m, struct wpi_tx_cmd *);
2655 cmd->code = WPI_CMD_SCAN;
2656 cmd->flags = 0;
2657 cmd->qid = ring->qid;
2658 cmd->idx = ring->cur;
2659
2660 hdr = (struct wpi_scan_hdr *)cmd->data;
2661 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2662 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2663 hdr->id = WPI_ID_BROADCAST;
2664 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2665
2666 /*
2667 * Move to the next channel if no packets are received within 5 msecs
2668 * after sending the probe request (this helps to reduce the duration
2669 * of active scans).
2670 */
2671 hdr->quiet = htole16(5); /* timeout in milliseconds */
2672 hdr->plcp_threshold = htole16(1); /* min # of packets */
2673
2674 if (flags & IEEE80211_CHAN_A) {
2675 hdr->crc_threshold = htole16(1);
2676 /* send probe requests at 6Mbps */
2677 hdr->rate = wpi_plcp_signal(12);
2678 } else {
2679 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2680 /* send probe requests at 1Mbps */
2681 hdr->rate = wpi_plcp_signal(2);
2682 }
2683
2684 /* for directed scans, firmware inserts the essid IE itself */
2685 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2686 hdr->essid[0].len = ic->ic_des_esslen;
2687 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2688
2689 /*
2690 * Build a probe request frame. Most of the following code is a
2691 * copy & paste of what is done in net80211.
2692 */
2693 wh = (struct ieee80211_frame *)(hdr + 1);
2694 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2695 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2696 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2697 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2698 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2699 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2700 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2701 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2702
2703 frm = (uint8_t *)(wh + 1);
2704
2705 /* add empty essid IE (firmware generates it for directed scans) */
2706 *frm++ = IEEE80211_ELEMID_SSID;
2707 *frm++ = 0;
2708
2709 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2710 rs = &ic->ic_sup_rates[mode];
2711
2712 /* add supported rates IE */
2713 *frm++ = IEEE80211_ELEMID_RATES;
2714 nrates = rs->rs_nrates;
2715 if (nrates > IEEE80211_RATE_SIZE)
2716 nrates = IEEE80211_RATE_SIZE;
2717 *frm++ = nrates;
2718 memcpy(frm, rs->rs_rates, nrates);
2719 frm += nrates;
2720
2721 /* add supported xrates IE */
2722 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2723 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2724 *frm++ = IEEE80211_ELEMID_XRATES;
2725 *frm++ = nrates;
2726 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2727 frm += nrates;
2728 }
2729
2730 /* setup length of probe request */
2731 hdr->paylen = htole16(frm - (uint8_t *)wh);
2732
2733 chan = (struct wpi_scan_chan *)frm;
2734 for (c = &ic->ic_channels[1];
2735 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2736 if ((c->ic_flags & flags) != flags)
2737 continue;
2738
2739 chan->chan = ieee80211_chan2ieee(ic, c);
2740 chan->flags = 0;
2741 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2742 chan->flags |= WPI_CHAN_ACTIVE;
2743 if (ic->ic_des_esslen != 0)
2744 chan->flags |= WPI_CHAN_DIRECT;
2745 }
2746 chan->dsp_gain = 0x6e;
2747 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2748 chan->rf_gain = 0x3b;
2749 chan->active = htole16(10);
2750 chan->passive = htole16(110);
2751 } else {
2752 chan->rf_gain = 0x28;
2753 chan->active = htole16(20);
2754 chan->passive = htole16(120);
2755 }
2756 hdr->nchan++;
2757 chan++;
2758
2759 frm += sizeof (struct wpi_scan_chan);
2760 }
2761 hdr->len = htole16(frm - (uint8_t *)hdr);
2762 pktlen = frm - (uint8_t *)cmd;
2763
2764 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2765 NULL, BUS_DMA_NOWAIT);
2766 if (error) {
2767 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2768 m_freem(data->m);
2769 data->m = NULL;
2770 return error;
2771 }
2772
2773 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2774 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2775 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2776
2777 /* kick cmd ring */
2778 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2779 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2780
2781 return 0; /* will be notified async. of failure/success */
2782 }
2783
2784 static int
2785 wpi_config(struct wpi_softc *sc)
2786 {
2787 struct ieee80211com *ic = &sc->sc_ic;
2788 struct ifnet *ifp = ic->ic_ifp;
2789 struct wpi_power power;
2790 struct wpi_bluetooth bluetooth;
2791 struct wpi_node_info node;
2792 int error;
2793
2794 memset(&power, 0, sizeof power);
2795 power.flags = htole32(WPI_POWER_CAM | 0x8);
2796 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2797 if (error != 0) {
2798 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2799 return error;
2800 }
2801
2802 /* configure bluetooth coexistence */
2803 memset(&bluetooth, 0, sizeof bluetooth);
2804 bluetooth.flags = 3;
2805 bluetooth.lead = 0xaa;
2806 bluetooth.kill = 1;
2807 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2808 0);
2809 if (error != 0) {
2810 aprint_error_dev(sc->sc_dev,
2811 "could not configure bluetooth coexistence\n");
2812 return error;
2813 }
2814
2815 /* configure adapter */
2816 memset(&sc->config, 0, sizeof (struct wpi_config));
2817 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2818 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2819 /*set default channel*/
2820 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2821 sc->config.flags = htole32(WPI_CONFIG_TSF);
2822 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2823 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2824 WPI_CONFIG_24GHZ);
2825 }
2826 sc->config.filter = 0;
2827 switch (ic->ic_opmode) {
2828 case IEEE80211_M_STA:
2829 sc->config.mode = WPI_MODE_STA;
2830 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2831 break;
2832 case IEEE80211_M_IBSS:
2833 case IEEE80211_M_AHDEMO:
2834 sc->config.mode = WPI_MODE_IBSS;
2835 break;
2836 case IEEE80211_M_HOSTAP:
2837 sc->config.mode = WPI_MODE_HOSTAP;
2838 break;
2839 case IEEE80211_M_MONITOR:
2840 sc->config.mode = WPI_MODE_MONITOR;
2841 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2842 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2843 break;
2844 }
2845 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2846 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2847 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2848 sizeof (struct wpi_config), 0);
2849 if (error != 0) {
2850 aprint_error_dev(sc->sc_dev, "configure command failed\n");
2851 return error;
2852 }
2853
2854 /* configuration has changed, set Tx power accordingly */
2855 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2856 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2857 return error;
2858 }
2859
2860 /* add broadcast node */
2861 memset(&node, 0, sizeof node);
2862 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2863 node.id = WPI_ID_BROADCAST;
2864 node.rate = wpi_plcp_signal(2);
2865 node.action = htole32(WPI_ACTION_SET_RATE);
2866 node.antenna = WPI_ANTENNA_BOTH;
2867 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2868 if (error != 0) {
2869 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2870 return error;
2871 }
2872
2873 if ((error = wpi_mrr_setup(sc)) != 0) {
2874 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2875 return error;
2876 }
2877
2878 return 0;
2879 }
2880
2881 static void
2882 wpi_stop_master(struct wpi_softc *sc)
2883 {
2884 uint32_t tmp;
2885 int ntries;
2886
2887 tmp = WPI_READ(sc, WPI_RESET);
2888 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2889
2890 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2891 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2892 return; /* already asleep */
2893
2894 for (ntries = 0; ntries < 100; ntries++) {
2895 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2896 break;
2897 DELAY(10);
2898 }
2899 if (ntries == 100) {
2900 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2901 }
2902 }
2903
2904 static int
2905 wpi_power_up(struct wpi_softc *sc)
2906 {
2907 uint32_t tmp;
2908 int ntries;
2909
2910 wpi_mem_lock(sc);
2911 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2912 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2913 wpi_mem_unlock(sc);
2914
2915 for (ntries = 0; ntries < 5000; ntries++) {
2916 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2917 break;
2918 DELAY(10);
2919 }
2920 if (ntries == 5000) {
2921 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2922 return ETIMEDOUT;
2923 }
2924 return 0;
2925 }
2926
2927 static int
2928 wpi_reset(struct wpi_softc *sc)
2929 {
2930 uint32_t tmp;
2931 int ntries;
2932
2933 /* clear any pending interrupts */
2934 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2935
2936 tmp = WPI_READ(sc, WPI_PLL_CTL);
2937 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2938
2939 tmp = WPI_READ(sc, WPI_CHICKEN);
2940 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2941
2942 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2943 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2944
2945 /* wait for clock stabilization */
2946 for (ntries = 0; ntries < 1000; ntries++) {
2947 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2948 break;
2949 DELAY(10);
2950 }
2951 if (ntries == 1000) {
2952 aprint_error_dev(sc->sc_dev,
2953 "timeout waiting for clock stabilization\n");
2954 return ETIMEDOUT;
2955 }
2956
2957 /* initialize EEPROM */
2958 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2959 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2960 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2961 return EIO;
2962 }
2963 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2964
2965 return 0;
2966 }
2967
2968 static void
2969 wpi_hw_config(struct wpi_softc *sc)
2970 {
2971 uint32_t rev, hw;
2972
2973 /* voodoo from the reference driver */
2974 hw = WPI_READ(sc, WPI_HWCONFIG);
2975
2976 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2977 rev = PCI_REVISION(rev);
2978 if ((rev & 0xc0) == 0x40)
2979 hw |= WPI_HW_ALM_MB;
2980 else if (!(rev & 0x80))
2981 hw |= WPI_HW_ALM_MM;
2982
2983 if (sc->cap == 0x80)
2984 hw |= WPI_HW_SKU_MRC;
2985
2986 hw &= ~WPI_HW_REV_D;
2987 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2988 hw |= WPI_HW_REV_D;
2989
2990 if (sc->type > 1)
2991 hw |= WPI_HW_TYPE_B;
2992
2993 DPRINTF(("setting h/w config %x\n", hw));
2994 WPI_WRITE(sc, WPI_HWCONFIG, hw);
2995 }
2996
2997 static int
2998 wpi_init(struct ifnet *ifp)
2999 {
3000 struct wpi_softc *sc = ifp->if_softc;
3001 struct ieee80211com *ic = &sc->sc_ic;
3002 uint32_t tmp;
3003 int qid, ntries, error;
3004
3005 wpi_stop(ifp,1);
3006 (void)wpi_reset(sc);
3007
3008 wpi_mem_lock(sc);
3009 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3010 DELAY(20);
3011 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3012 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3013 wpi_mem_unlock(sc);
3014
3015 (void)wpi_power_up(sc);
3016 wpi_hw_config(sc);
3017
3018 /* init Rx ring */
3019 wpi_mem_lock(sc);
3020 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3021 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3022 offsetof(struct wpi_shared, next));
3023 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3024 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3025 wpi_mem_unlock(sc);
3026
3027 /* init Tx rings */
3028 wpi_mem_lock(sc);
3029 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3030 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3031 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3032 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3033 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3034 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3035 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3036
3037 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3038 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3039
3040 for (qid = 0; qid < 6; qid++) {
3041 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3042 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3043 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3044 }
3045 wpi_mem_unlock(sc);
3046
3047 /* clear "radio off" and "disable command" bits (reversed logic) */
3048 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3049 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3050
3051 /* clear any pending interrupts */
3052 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3053 /* enable interrupts */
3054 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3055
3056 /* not sure why/if this is necessary... */
3057 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3058 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3059
3060 if ((error = wpi_load_firmware(sc)) != 0) {
3061 aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3062 goto fail1;
3063 }
3064
3065 /* wait for thermal sensors to calibrate */
3066 for (ntries = 0; ntries < 1000; ntries++) {
3067 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3068 break;
3069 DELAY(10);
3070 }
3071 if (ntries == 1000) {
3072 aprint_error_dev(sc->sc_dev,
3073 "timeout waiting for thermal sensors calibration\n");
3074 error = ETIMEDOUT;
3075 goto fail1;
3076 }
3077
3078 DPRINTF(("temperature %d\n", sc->temp));
3079
3080 if ((error = wpi_config(sc)) != 0) {
3081 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3082 goto fail1;
3083 }
3084
3085 ifp->if_flags &= ~IFF_OACTIVE;
3086 ifp->if_flags |= IFF_RUNNING;
3087
3088 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3089 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3090 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3091 }
3092 else
3093 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3094
3095 return 0;
3096
3097 fail1: wpi_stop(ifp, 1);
3098 return error;
3099 }
3100
3101
3102 static void
3103 wpi_stop(struct ifnet *ifp, int disable)
3104 {
3105 struct wpi_softc *sc = ifp->if_softc;
3106 struct ieee80211com *ic = &sc->sc_ic;
3107 uint32_t tmp;
3108 int ac;
3109
3110 ifp->if_timer = sc->sc_tx_timer = 0;
3111 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3112
3113 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3114
3115 /* disable interrupts */
3116 WPI_WRITE(sc, WPI_MASK, 0);
3117 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3118 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3119 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3120
3121 wpi_mem_lock(sc);
3122 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3123 wpi_mem_unlock(sc);
3124
3125 /* reset all Tx rings */
3126 for (ac = 0; ac < 4; ac++)
3127 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3128 wpi_reset_tx_ring(sc, &sc->cmdq);
3129
3130 /* reset Rx ring */
3131 wpi_reset_rx_ring(sc, &sc->rxq);
3132
3133 wpi_mem_lock(sc);
3134 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3135 wpi_mem_unlock(sc);
3136
3137 DELAY(5);
3138
3139 wpi_stop_master(sc);
3140
3141 tmp = WPI_READ(sc, WPI_RESET);
3142 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3143 }
3144