Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.31
      1 /*  $NetBSD: if_wpi.c,v 1.31 2007/11/28 22:51:49 degroote Exp $    */
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007
      5  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.31 2007/11/28 22:51:49 degroote Exp $");
     22 
     23 /*
     24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25  */
     26 
     27 #include "bpfilter.h"
     28 
     29 #include <sys/param.h>
     30 #include <sys/sockio.h>
     31 #include <sys/sysctl.h>
     32 #include <sys/mbuf.h>
     33 #include <sys/kernel.h>
     34 #include <sys/socket.h>
     35 #include <sys/systm.h>
     36 #include <sys/malloc.h>
     37 #include <sys/conf.h>
     38 #include <sys/kauth.h>
     39 #include <sys/callout.h>
     40 
     41 #include <sys/bus.h>
     42 #include <machine/endian.h>
     43 #include <sys/intr.h>
     44 
     45 #include <dev/pci/pcireg.h>
     46 #include <dev/pci/pcivar.h>
     47 #include <dev/pci/pcidevs.h>
     48 
     49 #if NBPFILTER > 0
     50 #include <net/bpf.h>
     51 #endif
     52 #include <net/if.h>
     53 #include <net/if_arp.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_ether.h>
     56 #include <net/if_media.h>
     57 #include <net/if_types.h>
     58 
     59 #include <net80211/ieee80211_var.h>
     60 #include <net80211/ieee80211_amrr.h>
     61 #include <net80211/ieee80211_radiotap.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <netinet/ip.h>
     67 
     68 #include <dev/firmload.h>
     69 
     70 #include <dev/pci/if_wpireg.h>
     71 #include <dev/pci/if_wpivar.h>
     72 
     73 #ifdef WPI_DEBUG
     74 #define DPRINTF(x)	if (wpi_debug > 0) printf x
     75 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
     76 int wpi_debug = 1;
     77 #else
     78 #define DPRINTF(x)
     79 #define DPRINTFN(n, x)
     80 #endif
     81 
     82 /*
     83  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
     84  */
     85 static const struct ieee80211_rateset wpi_rateset_11a =
     86 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
     87 
     88 static const struct ieee80211_rateset wpi_rateset_11b =
     89 	{ 4, { 2, 4, 11, 22 } };
     90 
     91 static const struct ieee80211_rateset wpi_rateset_11g =
     92 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
     93 
     94 static int  wpi_match(device_t, struct cfdata *, void *);
     95 static void wpi_attach(device_t, device_t, void *);
     96 static int  wpi_detach(device_t , int);
     97 static void wpi_power(int, void *);
     98 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
     99 	void **, bus_size_t, bus_size_t, int);
    100 static void wpi_dma_contig_free(struct wpi_dma_info *);
    101 static int  wpi_alloc_shared(struct wpi_softc *);
    102 static void wpi_free_shared(struct wpi_softc *);
    103 static int  wpi_alloc_fwmem(struct wpi_softc *);
    104 static void wpi_free_fwmem(struct wpi_softc *);
    105 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
    106 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
    107 static int  wpi_alloc_rpool(struct wpi_softc *);
    108 static void wpi_free_rpool(struct wpi_softc *);
    109 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    110 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    111 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    112 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
    113 	int);
    114 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    115 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    116 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    117 static void wpi_newassoc(struct ieee80211_node *, int);
    118 static int  wpi_media_change(struct ifnet *);
    119 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    120 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
    121 static void wpi_mem_lock(struct wpi_softc *);
    122 static void wpi_mem_unlock(struct wpi_softc *);
    123 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
    124 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    125 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    126 								   const uint32_t *, int);
    127 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    128 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    129 static int  wpi_load_firmware(struct wpi_softc *);
    130 static void wpi_calib_timeout(void *);
    131 static void wpi_iter_func(void *, struct ieee80211_node *);
    132 static void wpi_power_calibration(struct wpi_softc *, int);
    133 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    134 	struct wpi_rx_data *);
    135 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    136 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    137 static void wpi_notif_intr(struct wpi_softc *);
    138 static int  wpi_intr(void *);
    139 static void wpi_read_eeprom(struct wpi_softc *);
    140 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
    141 static void wpi_read_eeprom_group(struct wpi_softc *, int);
    142 static uint8_t wpi_plcp_signal(int);
    143 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
    144 	struct ieee80211_node *, int);
    145 static void wpi_start(struct ifnet *);
    146 static void wpi_watchdog(struct ifnet *);
    147 static int  wpi_ioctl(struct ifnet *, u_long, void *);
    148 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    149 static int  wpi_wme_update(struct ieee80211com *);
    150 static int  wpi_mrr_setup(struct wpi_softc *);
    151 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    152 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    153 static int  wpi_set_txpower(struct wpi_softc *,
    154 			    struct ieee80211_channel *, int);
    155 static int  wpi_get_power_index(struct wpi_softc *,
    156 		struct wpi_power_group *, struct ieee80211_channel *, int);
    157 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    158 static int  wpi_auth(struct wpi_softc *);
    159 static int  wpi_scan(struct wpi_softc *, uint16_t);
    160 static int  wpi_config(struct wpi_softc *);
    161 static void wpi_stop_master(struct wpi_softc *);
    162 static int  wpi_power_up(struct wpi_softc *);
    163 static int  wpi_reset(struct wpi_softc *);
    164 static void wpi_hw_config(struct wpi_softc *);
    165 static int  wpi_init(struct ifnet *);
    166 static void wpi_stop(struct ifnet *, int);
    167 
    168 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    169 	wpi_detach, NULL);
    170 
    171 static int
    172 wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
    173 {
    174 	struct pci_attach_args *pa = aux;
    175 
    176 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    177 		return 0;
    178 
    179 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    180 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    181 		return 1;
    182 
    183 	return 0;
    184 }
    185 
    186 /* Base Address Register */
    187 #define WPI_PCI_BAR0	0x10
    188 
    189 static void
    190 wpi_attach(device_t parent __unused, device_t self, void *aux)
    191 {
    192 	struct wpi_softc *sc = device_private(self);
    193 	struct ieee80211com *ic = &sc->sc_ic;
    194 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    195 	struct pci_attach_args *pa = aux;
    196 	const char *intrstr;
    197 	char devinfo[256];
    198 	bus_space_tag_t memt;
    199 	bus_space_handle_t memh;
    200 	pci_intr_handle_t ih;
    201 	pcireg_t data;
    202 	int error, ac, revision;
    203 
    204 	sc->sc_dev = self;
    205 	sc->sc_pct = pa->pa_pc;
    206 	sc->sc_pcitag = pa->pa_tag;
    207 
    208 	callout_init(&sc->calib_to, 0);
    209 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    210 
    211 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    212 	revision = PCI_REVISION(pa->pa_class);
    213 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    214 
    215 	/* clear device specific PCI configuration register 0x41 */
    216 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    217 	data &= ~0x0000ff00;
    218 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
    219 
    220 	/* enable bus-mastering */
    221 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    222 	data |= PCI_COMMAND_MASTER_ENABLE;
    223 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    224 
    225 	/* map the register window */
    226 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    227 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    228 	if (error != 0) {
    229 		aprint_error_dev(self, "could not map memory space\n");
    230 		return;
    231 	}
    232 
    233 	sc->sc_st = memt;
    234 	sc->sc_sh = memh;
    235 	sc->sc_dmat = pa->pa_dmat;
    236 
    237 	if (pci_intr_map(pa, &ih) != 0) {
    238 		aprint_error_dev(self, "could not map interrupt\n");
    239 		return;
    240 	}
    241 
    242 	intrstr = pci_intr_string(sc->sc_pct, ih);
    243 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
    244 	if (sc->sc_ih == NULL) {
    245 		aprint_error_dev(self, "could not establish interrupt");
    246 		if (intrstr != NULL)
    247 			aprint_error(" at %s", intrstr);
    248 		aprint_error("\n");
    249 		return;
    250 	}
    251 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    252 
    253 	if (wpi_reset(sc) != 0) {
    254 		aprint_error_dev(self, "could not reset adapter\n");
    255 		return;
    256 	}
    257 
    258  	/*
    259 	 * Allocate DMA memory for firmware transfers.
    260 	 */
    261 	if ((error = wpi_alloc_fwmem(sc)) != 0)
    262 		return;
    263 
    264 	/*
    265 	 * Allocate shared page and Tx/Rx rings.
    266 	 */
    267 	if ((error = wpi_alloc_shared(sc)) != 0) {
    268 		aprint_error_dev(self, "could not allocate shared area\n");
    269 		goto fail1;
    270 	}
    271 
    272 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    273 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    274 		goto fail2;
    275 	}
    276 
    277 	for (ac = 0; ac < 4; ac++) {
    278 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
    279 		if (error != 0) {
    280 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
    281 			goto fail3;
    282 		}
    283 	}
    284 
    285 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    286 	if (error != 0) {
    287 		aprint_error_dev(self, "could not allocate command ring\n");
    288 		goto fail3;
    289 	}
    290 
    291 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
    292 		aprint_error_dev(self, "could not allocate Rx ring\n");
    293 		goto fail4;
    294 	}
    295 
    296 	ic->ic_ifp = ifp;
    297 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    298 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    299 	ic->ic_state = IEEE80211_S_INIT;
    300 
    301 	/* set device capabilities */
    302 	ic->ic_caps =
    303 		IEEE80211_C_IBSS |       /* IBSS mode support */
    304 		IEEE80211_C_WPA |        /* 802.11i */
    305 		IEEE80211_C_MONITOR |    /* monitor mode supported */
    306 		IEEE80211_C_TXPMGT |     /* tx power management */
    307 		IEEE80211_C_SHSLOT |     /* short slot time supported */
    308 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
    309 		IEEE80211_C_WME;         /* 802.11e */
    310 
    311 	/* read supported channels and MAC address from EEPROM */
    312 	wpi_read_eeprom(sc);
    313 
    314 	/* set supported .11a, .11b, .11g rates */
    315 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
    316 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
    317 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
    318 
    319 	ic->ic_ibss_chan = &ic->ic_channels[0];
    320 
    321 	ifp->if_softc = sc;
    322 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    323 	ifp->if_init = wpi_init;
    324 	ifp->if_stop = wpi_stop;
    325 	ifp->if_ioctl = wpi_ioctl;
    326 	ifp->if_start = wpi_start;
    327 	ifp->if_watchdog = wpi_watchdog;
    328 	IFQ_SET_READY(&ifp->if_snd);
    329 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    330 
    331 	if_attach(ifp);
    332 	ieee80211_ifattach(ic);
    333 	/* override default methods */
    334 	ic->ic_node_alloc = wpi_node_alloc;
    335 	ic->ic_newassoc = wpi_newassoc;
    336 	ic->ic_wme.wme_update = wpi_wme_update;
    337 
    338 	/* override state transition machine */
    339 	sc->sc_newstate = ic->ic_newstate;
    340 	ic->ic_newstate = wpi_newstate;
    341 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
    342 
    343 	sc->amrr.amrr_min_success_threshold = 1;
    344 	sc->amrr.amrr_max_success_threshold = 15;
    345 
    346 	/* set powerhook */
    347 	sc->powerhook = powerhook_establish(device_xname(self), wpi_power, sc);
    348 
    349 #if NBPFILTER > 0
    350 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    351 		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    352 		&sc->sc_drvbpf);
    353 
    354 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    355 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    356 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    357 
    358 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    359 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    360 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    361 #endif
    362 
    363 	ieee80211_announce(ic);
    364 
    365 	return;
    366 
    367 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
    368 fail3:  while (--ac >= 0)
    369 			wpi_free_tx_ring(sc, &sc->txq[ac]);
    370 	wpi_free_rpool(sc);
    371 fail2:	wpi_free_shared(sc);
    372 fail1:	wpi_free_fwmem(sc);
    373 }
    374 
    375 static int
    376 wpi_detach(device_t self, int flags __unused)
    377 {
    378 	struct wpi_softc *sc = device_private(self);
    379 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    380 	int ac;
    381 
    382 	wpi_stop(ifp, 1);
    383 
    384 #if NBPFILTER > 0
    385 	if (ifp != NULL)
    386 		bpfdetach(ifp);
    387 #endif
    388 	ieee80211_ifdetach(&sc->sc_ic);
    389 	if (ifp != NULL)
    390 		if_detach(ifp);
    391 
    392 	for (ac = 0; ac < 4; ac++)
    393 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    394 	wpi_free_tx_ring(sc, &sc->cmdq);
    395 	wpi_free_rx_ring(sc, &sc->rxq);
    396 	wpi_free_rpool(sc);
    397 	wpi_free_shared(sc);
    398 
    399 	if (sc->sc_ih != NULL) {
    400 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    401 		sc->sc_ih = NULL;
    402 	}
    403 
    404 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    405 
    406 	return 0;
    407 }
    408 
    409 static void
    410 wpi_power(int why, void *arg)
    411 {
    412 	struct wpi_softc *sc = arg;
    413 	struct ifnet *ifp;
    414 	pcireg_t data;
    415 	int s;
    416 
    417 	if (why != PWR_RESUME)
    418 		return;
    419 
    420 	/* clear device specific PCI configuration register 0x41 */
    421 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
    422 	data &= ~0x0000ff00;
    423 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
    424 
    425 	s = splnet();
    426 	ifp = sc->sc_ic.ic_ifp;
    427 	if (ifp->if_flags & IFF_UP) {
    428 		ifp->if_init(ifp);
    429 		if (ifp->if_flags & IFF_RUNNING)
    430 			ifp->if_start(ifp);
    431 	}
    432 	splx(s);
    433 }
    434 
    435 static int
    436 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
    437 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
    438 {
    439 	int nsegs, error;
    440 
    441 	dma->tag = tag;
    442 	dma->size = size;
    443 
    444 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    445 	if (error != 0)
    446 		goto fail;
    447 
    448 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    449 	    flags);
    450 	if (error != 0)
    451 		goto fail;
    452 
    453 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    454 	if (error != 0)
    455 		goto fail;
    456 
    457 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    458 	if (error != 0)
    459 		goto fail;
    460 
    461 	memset(dma->vaddr, 0, size);
    462 
    463 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    464 	if (kvap != NULL)
    465 		*kvap = dma->vaddr;
    466 
    467 	return 0;
    468 
    469 fail:   wpi_dma_contig_free(dma);
    470 	return error;
    471 }
    472 
    473 static void
    474 wpi_dma_contig_free(struct wpi_dma_info *dma)
    475 {
    476 	if (dma->map != NULL) {
    477 		if (dma->vaddr != NULL) {
    478 			bus_dmamap_unload(dma->tag, dma->map);
    479 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    480 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    481 			dma->vaddr = NULL;
    482 		}
    483 		bus_dmamap_destroy(dma->tag, dma->map);
    484 		dma->map = NULL;
    485 	}
    486 }
    487 
    488 /*
    489  * Allocate a shared page between host and NIC.
    490  */
    491 static int
    492 wpi_alloc_shared(struct wpi_softc *sc)
    493 {
    494 	int error;
    495 	/* must be aligned on a 4K-page boundary */
    496 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    497 			(void **)&sc->shared, sizeof (struct wpi_shared),
    498 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
    499 	if (error != 0)
    500 		aprint_error_dev(sc->sc_dev,
    501 				"could not allocate shared area DMA memory\n");
    502 
    503 	return error;
    504 }
    505 
    506 static void
    507 wpi_free_shared(struct wpi_softc *sc)
    508 {
    509 	wpi_dma_contig_free(&sc->shared_dma);
    510 }
    511 
    512 /*
    513  * Allocate DMA-safe memory for firmware transfer.
    514  */
    515 static int
    516 wpi_alloc_fwmem(struct wpi_softc *sc)
    517 {
    518 	int error;
    519 	/* allocate enough contiguous space to store text and data */
    520 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    521 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    522 	    BUS_DMA_NOWAIT);
    523 
    524 	if (error != 0)
    525 		aprint_error_dev(sc->sc_dev,
    526 			"could not allocate firmware transfer area"
    527 			"DMA memory\n");
    528 	return error;
    529 }
    530 
    531 static void
    532 wpi_free_fwmem(struct wpi_softc *sc)
    533 {
    534 	wpi_dma_contig_free(&sc->fw_dma);
    535 }
    536 
    537 
    538 static struct wpi_rbuf *
    539 wpi_alloc_rbuf(struct wpi_softc *sc)
    540 {
    541 	struct wpi_rbuf *rbuf;
    542 
    543 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    544 	if (rbuf == NULL)
    545 		return NULL;
    546 	SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    547 	sc->rxq.nb_free_entries --;
    548 
    549 	return rbuf;
    550 }
    551 
    552 /*
    553  * This is called automatically by the network stack when the mbuf to which our
    554  * Rx buffer is attached is freed.
    555  */
    556 static void
    557 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    558 {
    559 	struct wpi_rbuf *rbuf = arg;
    560 	struct wpi_softc *sc = rbuf->sc;
    561 
    562 	/* put the buffer back in the free list */
    563 
    564 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    565 	sc->rxq.nb_free_entries ++;
    566 
    567 	if (__predict_true(m != NULL))
    568 		pool_cache_put(mb_cache, m);
    569 }
    570 
    571 static int
    572 wpi_alloc_rpool(struct wpi_softc *sc)
    573 {
    574 	struct wpi_rx_ring *ring = &sc->rxq;
    575 	struct wpi_rbuf *rbuf;
    576 	int i, error;
    577 
    578 	/* allocate a big chunk of DMA'able memory.. */
    579 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    580 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    581 	if (error != 0) {
    582 		aprint_normal_dev(sc->sc_dev,
    583 						  "could not allocate Rx buffers DMA memory\n");
    584 		return error;
    585 	}
    586 
    587 	/* ..and split it into 3KB chunks */
    588 	SLIST_INIT(&ring->freelist);
    589 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    590 		rbuf = &ring->rbuf[i];
    591 		rbuf->sc = sc;	/* backpointer for callbacks */
    592 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    593 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    594 
    595 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    596 	}
    597 
    598 	ring->nb_free_entries = WPI_RBUF_COUNT;
    599 	return 0;
    600 }
    601 
    602 static void
    603 wpi_free_rpool(struct wpi_softc *sc)
    604 {
    605 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    606 }
    607 
    608 static int
    609 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    610 {
    611 	struct wpi_rx_data *data;
    612 	struct wpi_rbuf *rbuf;
    613 	int i, error;
    614 
    615 	ring->cur = 0;
    616 
    617 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    618 		(void **)&ring->desc,
    619 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
    620 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    621 	if (error != 0) {
    622 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
    623 		goto fail;
    624 	}
    625 
    626 	/*
    627 	 * Setup Rx buffers.
    628 	 */
    629 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    630 		data = &ring->data[i];
    631 
    632 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    633 		if (data->m == NULL) {
    634 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
    635 			error = ENOMEM;
    636 			goto fail;
    637 		}
    638 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    639 			m_freem(data->m);
    640 			data->m = NULL;
    641 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
    642 			error = ENOMEM;
    643 			goto fail;
    644 		}
    645 		/* attach Rx buffer to mbuf */
    646 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    647 		    rbuf);
    648 		data->m->m_flags |= M_EXT_RW;
    649 
    650 		ring->desc[i] = htole32(rbuf->paddr);
    651 	}
    652 
    653 	return 0;
    654 
    655 fail:	wpi_free_rx_ring(sc, ring);
    656 	return error;
    657 }
    658 
    659 static void
    660 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    661 {
    662 	int ntries;
    663 
    664 	wpi_mem_lock(sc);
    665 
    666 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    667 	for (ntries = 0; ntries < 100; ntries++) {
    668 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    669 			break;
    670 		DELAY(10);
    671 	}
    672 #ifdef WPI_DEBUG
    673 	if (ntries == 100 && wpi_debug > 0)
    674 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    675 #endif
    676 	wpi_mem_unlock(sc);
    677 
    678 	ring->cur = 0;
    679 }
    680 
    681 static void
    682 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    683 {
    684 	int i;
    685 
    686 	wpi_dma_contig_free(&ring->desc_dma);
    687 
    688 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    689 		if (ring->data[i].m != NULL)
    690 			m_freem(ring->data[i].m);
    691 	}
    692 }
    693 
    694 static int
    695 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    696 	int qid)
    697 {
    698 	struct wpi_tx_data *data;
    699 	int i, error;
    700 
    701 	ring->qid = qid;
    702 	ring->count = count;
    703 	ring->queued = 0;
    704 	ring->cur = 0;
    705 
    706 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    707 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    708 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    709 	if (error != 0) {
    710 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
    711 		goto fail;
    712 	}
    713 
    714 	/* update shared page with ring's base address */
    715 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    716 
    717 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    718 		(void **)&ring->cmd,
    719 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
    720 	if (error != 0) {
    721 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
    722 		goto fail;
    723 	}
    724 
    725 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    726 		M_NOWAIT);
    727 	if (ring->data == NULL) {
    728 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
    729 		goto fail;
    730 	}
    731 
    732 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
    733 
    734 	for (i = 0; i < count; i++) {
    735 		data = &ring->data[i];
    736 
    737 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    738 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    739 			&data->map);
    740 		if (error != 0) {
    741 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
    742 			goto fail;
    743 		}
    744 	}
    745 
    746 	return 0;
    747 
    748 fail:	wpi_free_tx_ring(sc, ring);
    749 	return error;
    750 }
    751 
    752 static void
    753 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    754 {
    755 	struct wpi_tx_data *data;
    756 	int i, ntries;
    757 
    758 	wpi_mem_lock(sc);
    759 
    760 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    761 	for (ntries = 0; ntries < 100; ntries++) {
    762 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    763 			break;
    764 		DELAY(10);
    765 	}
    766 #ifdef WPI_DEBUG
    767 	if (ntries == 100 && wpi_debug > 0) {
    768 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    769 									   ring->qid);
    770 	}
    771 #endif
    772 	wpi_mem_unlock(sc);
    773 
    774 	for (i = 0; i < ring->count; i++) {
    775 		data = &ring->data[i];
    776 
    777 		if (data->m != NULL) {
    778 			bus_dmamap_unload(sc->sc_dmat, data->map);
    779 			m_freem(data->m);
    780 			data->m = NULL;
    781 		}
    782 	}
    783 
    784 	ring->queued = 0;
    785 	ring->cur = 0;
    786 }
    787 
    788 static void
    789 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    790 {
    791 	struct wpi_tx_data *data;
    792 	int i;
    793 
    794 	wpi_dma_contig_free(&ring->desc_dma);
    795 	wpi_dma_contig_free(&ring->cmd_dma);
    796 
    797 	if (ring->data != NULL) {
    798 		for (i = 0; i < ring->count; i++) {
    799 			data = &ring->data[i];
    800 
    801 			if (data->m != NULL) {
    802 				bus_dmamap_unload(sc->sc_dmat, data->map);
    803 				m_freem(data->m);
    804 			}
    805 		}
    806 		free(ring->data, M_DEVBUF);
    807 	}
    808 }
    809 
    810 /*ARGUSED*/
    811 static struct ieee80211_node *
    812 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    813 {
    814 	struct wpi_node *wn;
    815 
    816 	wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
    817 
    818 	if (wn != NULL)
    819 		memset(wn, 0, sizeof (struct wpi_node));
    820 	return (struct ieee80211_node *)wn;
    821 }
    822 
    823 static void
    824 wpi_newassoc(struct ieee80211_node *ni, int isnew)
    825 {
    826 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    827 	int i;
    828 
    829 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    830 
    831 	/* set rate to some reasonable initial value */
    832 	for (i = ni->ni_rates.rs_nrates - 1;
    833 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    834 	     i--);
    835 	ni->ni_txrate = i;
    836 }
    837 
    838 static int
    839 wpi_media_change(struct ifnet *ifp)
    840 {
    841 	int error;
    842 
    843 	error = ieee80211_media_change(ifp);
    844 	if (error != ENETRESET)
    845 		return error;
    846 
    847 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    848 		wpi_init(ifp);
    849 
    850 	return 0;
    851 }
    852 
    853 static int
    854 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    855 {
    856 	struct ifnet *ifp = ic->ic_ifp;
    857 	struct wpi_softc *sc = ifp->if_softc;
    858 	struct ieee80211_node *ni;
    859 	int error;
    860 
    861 	callout_stop(&sc->calib_to);
    862 
    863 	switch (nstate) {
    864 	case IEEE80211_S_SCAN:
    865 
    866 		if (sc->is_scanning)
    867 			break;
    868 
    869 		sc->is_scanning = true;
    870 		ieee80211_node_table_reset(&ic->ic_scan);
    871 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
    872 
    873 		/* make the link LED blink while we're scanning */
    874 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    875 
    876 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
    877 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
    878 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
    879 			return error;
    880 		}
    881 
    882 		ic->ic_state = nstate;
    883 		return 0;
    884 
    885 	case IEEE80211_S_ASSOC:
    886 		if (ic->ic_state != IEEE80211_S_RUN)
    887 			break;
    888 		/* FALLTHROUGH */
    889 	case IEEE80211_S_AUTH:
    890 		sc->config.associd = 0;
    891 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    892 		if ((error = wpi_auth(sc)) != 0) {
    893 			aprint_error_dev(sc->sc_dev,
    894 							"could not send authentication request\n");
    895 			return error;
    896 		}
    897 		break;
    898 
    899 	case IEEE80211_S_RUN:
    900 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    901 			/* link LED blinks while monitoring */
    902 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    903 			break;
    904 		}
    905 
    906 		ni = ic->ic_bss;
    907 
    908 		if (ic->ic_opmode != IEEE80211_M_STA) {
    909 			(void) wpi_auth(sc);    /* XXX */
    910 			wpi_setup_beacon(sc, ni);
    911 		}
    912 
    913 		wpi_enable_tsf(sc, ni);
    914 
    915 		/* update adapter's configuration */
    916 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    917 		/* short preamble/slot time are negotiated when associating */
    918 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
    919 			WPI_CONFIG_SHSLOT);
    920 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
    921 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
    922 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
    923 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
    924 		sc->config.filter |= htole32(WPI_FILTER_BSS);
    925 		if (ic->ic_opmode != IEEE80211_M_STA)
    926 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
    927 
    928 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
    929 
    930 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
    931 			sc->config.flags));
    932 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
    933 			sizeof (struct wpi_config), 1);
    934 		if (error != 0) {
    935 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
    936 			return error;
    937 		}
    938 
    939 		/* configuration has changed, set Tx power accordingly */
    940 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
    941 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
    942 			return error;
    943 		}
    944 
    945 		if (ic->ic_opmode == IEEE80211_M_STA) {
    946 			/* fake a join to init the tx rate */
    947 			wpi_newassoc(ni, 1);
    948 		}
    949 
    950 		/* start periodic calibration timer */
    951 		sc->calib_cnt = 0;
    952 		callout_schedule(&sc->calib_to, hz/2);
    953 
    954 		/* link LED always on while associated */
    955 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
    956 		break;
    957 
    958 	case IEEE80211_S_INIT:
    959 		sc->is_scanning = false;
    960 		break;
    961 	}
    962 
    963 	return sc->sc_newstate(ic, nstate, arg);
    964 }
    965 
    966 /*
    967  * XXX: Hack to set the current channel to the value advertised in beacons or
    968  * probe responses. Only used during AP detection.
    969  * XXX: Duplicated from if_iwi.c
    970  */
    971 static void
    972 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
    973 {
    974 	struct ieee80211_frame *wh;
    975 	uint8_t subtype;
    976 	uint8_t *frm, *efrm;
    977 
    978 	wh = mtod(m, struct ieee80211_frame *);
    979 
    980 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
    981 		return;
    982 
    983 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
    984 
    985 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
    986 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
    987 		return;
    988 
    989 	frm = (uint8_t *)(wh + 1);
    990 	efrm = mtod(m, uint8_t *) + m->m_len;
    991 
    992 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
    993 	while (frm < efrm) {
    994 		if (*frm == IEEE80211_ELEMID_DSPARMS)
    995 #if IEEE80211_CHAN_MAX < 255
    996 		if (frm[2] <= IEEE80211_CHAN_MAX)
    997 #endif
    998 			ic->ic_curchan = &ic->ic_channels[frm[2]];
    999 
   1000 		frm += frm[1] + 2;
   1001 	}
   1002 }
   1003 
   1004 /*
   1005  * Grab exclusive access to NIC memory.
   1006  */
   1007 static void
   1008 wpi_mem_lock(struct wpi_softc *sc)
   1009 {
   1010 	uint32_t tmp;
   1011 	int ntries;
   1012 
   1013 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1014 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
   1015 
   1016 	/* spin until we actually get the lock */
   1017 	for (ntries = 0; ntries < 1000; ntries++) {
   1018 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
   1019 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
   1020 			break;
   1021 		DELAY(10);
   1022 	}
   1023 	if (ntries == 1000)
   1024 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
   1025 }
   1026 
   1027 /*
   1028  * Release lock on NIC memory.
   1029  */
   1030 static void
   1031 wpi_mem_unlock(struct wpi_softc *sc)
   1032 {
   1033 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1034 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1035 }
   1036 
   1037 static uint32_t
   1038 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1039 {
   1040 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1041 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1042 }
   1043 
   1044 static void
   1045 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1046 {
   1047 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1048 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1049 }
   1050 
   1051 static void
   1052 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1053 						const uint32_t *data, int wlen)
   1054 {
   1055 	for (; wlen > 0; wlen--, data++, addr += 4)
   1056 		wpi_mem_write(sc, addr, *data);
   1057 }
   1058 
   1059 
   1060 /*
   1061  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1062  * instead of using the traditional bit-bang method.
   1063  */
   1064 static int
   1065 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1066 {
   1067 	uint8_t *out = data;
   1068 	uint32_t val;
   1069 	int ntries;
   1070 
   1071 	wpi_mem_lock(sc);
   1072 	for (; len > 0; len -= 2, addr++) {
   1073 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1074 
   1075 		for (ntries = 0; ntries < 10; ntries++) {
   1076 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1077 			    WPI_EEPROM_READY)
   1078 				break;
   1079 			DELAY(5);
   1080 		}
   1081 		if (ntries == 10) {
   1082 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1083 			return ETIMEDOUT;
   1084 		}
   1085 		*out++ = val >> 16;
   1086 		if (len > 1)
   1087 			*out++ = val >> 24;
   1088 	}
   1089 	wpi_mem_unlock(sc);
   1090 
   1091 	return 0;
   1092 }
   1093 
   1094 /*
   1095  * The firmware boot code is small and is intended to be copied directly into
   1096  * the NIC internal memory.
   1097  */
   1098 int
   1099 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1100 {
   1101 	int ntries;
   1102 
   1103 	size /= sizeof (uint32_t);
   1104 
   1105 	wpi_mem_lock(sc);
   1106 
   1107 	/* copy microcode image into NIC memory */
   1108 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1109 	    (const uint32_t *)ucode, size);
   1110 
   1111 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1112 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1113 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1114 
   1115 	/* run microcode */
   1116 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1117 
   1118 	/* wait for transfer to complete */
   1119 	for (ntries = 0; ntries < 1000; ntries++) {
   1120 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1121 			break;
   1122 		DELAY(10);
   1123 	}
   1124 	if (ntries == 1000) {
   1125 		wpi_mem_unlock(sc);
   1126 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1127 		return ETIMEDOUT;
   1128 	}
   1129 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1130 
   1131 	wpi_mem_unlock(sc);
   1132 
   1133 	return 0;
   1134 }
   1135 
   1136 static int
   1137 wpi_load_firmware(struct wpi_softc *sc)
   1138 {
   1139 	struct wpi_dma_info *dma = &sc->fw_dma;
   1140 	struct wpi_firmware_hdr hdr;
   1141 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1142 	const uint8_t *boot_text;
   1143 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1144 	uint32_t boot_textsz;
   1145 	firmware_handle_t fw;
   1146 	u_char *dfw;
   1147 	size_t size;
   1148 	int error;
   1149 
   1150 	/* load firmware image from disk */
   1151 	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
   1152 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
   1153 		goto fail1;
   1154 	}
   1155 
   1156 	size = firmware_get_size(fw);
   1157 
   1158 	/* extract firmware header information */
   1159 	if (size < sizeof (struct wpi_firmware_hdr)) {
   1160 		aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
   1161 		    			 size);
   1162 		error = EINVAL;
   1163 		goto fail2;
   1164 	}
   1165 
   1166 	if ((error = firmware_read(fw, 0, &hdr,
   1167 		sizeof (struct wpi_firmware_hdr))) != 0) {
   1168 		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
   1169 		goto fail2;
   1170 	}
   1171 
   1172 	main_textsz = le32toh(hdr.main_textsz);
   1173 	main_datasz = le32toh(hdr.main_datasz);
   1174 	init_textsz = le32toh(hdr.init_textsz);
   1175 	init_datasz = le32toh(hdr.init_datasz);
   1176 	boot_textsz = le32toh(hdr.boot_textsz);
   1177 
   1178 	/* sanity-check firmware segments sizes */
   1179 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1180 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1181 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1182 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1183 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1184 	    (boot_textsz & 3) != 0) {
   1185 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1186 		error = EINVAL;
   1187 		goto fail2;
   1188 	}
   1189 
   1190 	/* check that all firmware segments are present */
   1191 	if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
   1192 		main_datasz + init_textsz + init_datasz + boot_textsz) {
   1193 		aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
   1194 		    			 size);
   1195 		error = EINVAL;
   1196 		goto fail2;
   1197 	}
   1198 
   1199 	dfw = firmware_malloc(size);
   1200 	if (dfw == NULL) {
   1201 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
   1202 		error = ENOMEM;
   1203 		goto fail2;
   1204 	}
   1205 
   1206 	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
   1207 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
   1208 		goto fail2;
   1209 	}
   1210 
   1211 	/* get pointers to firmware segments */
   1212 	main_text = dfw + sizeof (struct wpi_firmware_hdr);
   1213 	main_data = main_text + main_textsz;
   1214 	init_text = main_data + main_datasz;
   1215 	init_data = init_text + init_textsz;
   1216 	boot_text = init_data + init_datasz;
   1217 
   1218 	/* copy initialization images into pre-allocated DMA-safe memory */
   1219 	memcpy(dma->vaddr, init_data, init_datasz);
   1220 	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
   1221 
   1222 	/* tell adapter where to find initialization images */
   1223 	wpi_mem_lock(sc);
   1224 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1225 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1226 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1227 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1228 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1229 	wpi_mem_unlock(sc);
   1230 
   1231 	/* load firmware boot code */
   1232 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1233 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1234 		goto fail3;
   1235 	}
   1236 
   1237 	/* now press "execute" ;-) */
   1238 	WPI_WRITE(sc, WPI_RESET, 0);
   1239 
   1240 	/* ..and wait at most one second for adapter to initialize */
   1241 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1242 		/* this isn't what was supposed to happen.. */
   1243 		aprint_error_dev(sc->sc_dev,
   1244 					"timeout waiting for adapter to initialize\n");
   1245 	}
   1246 
   1247 	/* copy runtime images into pre-allocated DMA-safe memory */
   1248 	memcpy(dma->vaddr, main_data, main_datasz);
   1249 	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
   1250 
   1251 	/* tell adapter where to find runtime images */
   1252 	wpi_mem_lock(sc);
   1253 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1254 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1255 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1256 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1257 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1258 	wpi_mem_unlock(sc);
   1259 
   1260 	/* wait at most one second for second alive notification */
   1261 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1262 		/* this isn't what was supposed to happen.. */
   1263 		aprint_error_dev(sc->sc_dev,
   1264 						"timeout waiting for adapter to initialize\n");
   1265 	}
   1266 
   1267 
   1268 fail3: 	firmware_free(dfw,size);
   1269 fail2:	firmware_close(fw);
   1270 fail1:	return error;
   1271 }
   1272 
   1273 static void
   1274 wpi_calib_timeout(void *arg)
   1275 {
   1276 	struct wpi_softc *sc = arg;
   1277 	struct ieee80211com *ic = &sc->sc_ic;
   1278 	int temp, s;
   1279 
   1280 	/* automatic rate control triggered every 500ms */
   1281 	if (ic->ic_fixed_rate == -1) {
   1282 		s = splnet();
   1283 		if (ic->ic_opmode == IEEE80211_M_STA)
   1284 			wpi_iter_func(sc, ic->ic_bss);
   1285 		else
   1286                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1287 		splx(s);
   1288 	}
   1289 
   1290 	/* update sensor data */
   1291 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1292 
   1293 	/* automatic power calibration every 60s */
   1294 	if (++sc->calib_cnt >= 120) {
   1295 		wpi_power_calibration(sc, temp);
   1296 		sc->calib_cnt = 0;
   1297 	}
   1298 
   1299 	callout_schedule(&sc->calib_to, hz/2);
   1300 }
   1301 
   1302 static void
   1303 wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1304 {
   1305 	struct wpi_softc *sc = arg;
   1306 	struct wpi_node *wn = (struct wpi_node *)ni;
   1307 
   1308 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1309 }
   1310 
   1311 /*
   1312  * This function is called periodically (every 60 seconds) to adjust output
   1313  * power to temperature changes.
   1314  */
   1315 void
   1316 wpi_power_calibration(struct wpi_softc *sc, int temp)
   1317 {
   1318 	/* sanity-check read value */
   1319 	if (temp < -260 || temp > 25) {
   1320 		/* this can't be correct, ignore */
   1321 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1322 		return;
   1323 	}
   1324 
   1325 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1326 
   1327 	/* adjust Tx power if need be */
   1328 	if (abs(temp - sc->temp) <= 6)
   1329 		return;
   1330 
   1331 	sc->temp = temp;
   1332 
   1333 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
   1334 		/* just warn, too bad for the automatic calibration... */
   1335 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1336 	}
   1337 }
   1338 
   1339 static void
   1340 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1341 	struct wpi_rx_data *data)
   1342 {
   1343 	struct ieee80211com *ic = &sc->sc_ic;
   1344 	struct ifnet *ifp = ic->ic_ifp;
   1345 	struct wpi_rx_ring *ring = &sc->rxq;
   1346 	struct wpi_rx_stat *stat;
   1347 	struct wpi_rx_head *head;
   1348 	struct wpi_rx_tail *tail;
   1349 	struct wpi_rbuf *rbuf;
   1350 	struct ieee80211_frame *wh;
   1351 	struct ieee80211_node *ni;
   1352 	struct mbuf *m, *mnew;
   1353 	int data_off ;
   1354 
   1355 	stat = (struct wpi_rx_stat *)(desc + 1);
   1356 
   1357 	if (stat->len > WPI_STAT_MAXLEN) {
   1358 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1359 		ifp->if_ierrors++;
   1360 		return;
   1361 	}
   1362 
   1363 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1364 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1365 
   1366 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1367 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
   1368 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1369 		le64toh(tail->tstamp)));
   1370 
   1371 	/*
   1372 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1373 	 * to radiotap in monitor mode).
   1374 	 */
   1375 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1376 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
   1377 		ifp->if_ierrors++;
   1378 		return;
   1379 	}
   1380 
   1381 	/* Compute where are the useful datas */
   1382 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1383 
   1384 	/*
   1385 	 * If the number of free entry is too low
   1386 	 * just dup the data->m socket and reuse the same rbuf entry
   1387 	 */
   1388 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
   1389 
   1390 		/* Prepare the mbuf for the m_dup */
   1391 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
   1392 		data->m->m_data = (char*) data->m->m_data + data_off;
   1393 
   1394 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
   1395 
   1396 		/* Restore the m_data pointer for future use */
   1397 		data->m->m_data = (char*) data->m->m_data - data_off;
   1398 
   1399 		if (m == NULL) {
   1400 			ifp->if_ierrors++;
   1401 			return;
   1402 		}
   1403 	} else {
   1404 
   1405 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1406 		if (mnew == NULL) {
   1407 			ifp->if_ierrors++;
   1408 			return;
   1409 		}
   1410 
   1411 		rbuf = wpi_alloc_rbuf(sc);
   1412 		KASSERT(rbuf != NULL);
   1413 
   1414  		/* attach Rx buffer to mbuf */
   1415 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1416 		 	rbuf);
   1417 		mnew->m_flags |= M_EXT_RW;
   1418 
   1419 		m = data->m;
   1420 		data->m = mnew;
   1421 
   1422 		/* update Rx descriptor */
   1423 		ring->desc[ring->cur] = htole32(rbuf->paddr);
   1424 
   1425 		m->m_data = (char*)m->m_data + data_off;
   1426 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1427 	}
   1428 
   1429 	/* finalize mbuf */
   1430 	m->m_pkthdr.rcvif = ifp;
   1431 
   1432 	if (ic->ic_state == IEEE80211_S_SCAN)
   1433 		wpi_fix_channel(ic, m);
   1434 
   1435 #if NBPFILTER > 0
   1436 	if (sc->sc_drvbpf != NULL) {
   1437 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1438 
   1439 		tap->wr_flags = 0;
   1440 		tap->wr_chan_freq =
   1441 			htole16(ic->ic_channels[head->chan].ic_freq);
   1442 		tap->wr_chan_flags =
   1443 			htole16(ic->ic_channels[head->chan].ic_flags);
   1444 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1445 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1446 		tap->wr_tsft = tail->tstamp;
   1447 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1448 		switch (head->rate) {
   1449 		/* CCK rates */
   1450 		case  10: tap->wr_rate =   2; break;
   1451 		case  20: tap->wr_rate =   4; break;
   1452 		case  55: tap->wr_rate =  11; break;
   1453 		case 110: tap->wr_rate =  22; break;
   1454 		/* OFDM rates */
   1455 		case 0xd: tap->wr_rate =  12; break;
   1456 		case 0xf: tap->wr_rate =  18; break;
   1457 		case 0x5: tap->wr_rate =  24; break;
   1458 		case 0x7: tap->wr_rate =  36; break;
   1459 		case 0x9: tap->wr_rate =  48; break;
   1460 		case 0xb: tap->wr_rate =  72; break;
   1461 		case 0x1: tap->wr_rate =  96; break;
   1462 		case 0x3: tap->wr_rate = 108; break;
   1463 		/* unknown rate: should not happen */
   1464 		default:  tap->wr_rate =   0;
   1465 		}
   1466 		if (le16toh(head->flags) & 0x4)
   1467 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1468 
   1469 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1470 	}
   1471 #endif
   1472 
   1473 	/* grab a reference to the source node */
   1474 	wh = mtod(m, struct ieee80211_frame *);
   1475 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1476 
   1477 	/* send the frame to the 802.11 layer */
   1478 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1479 
   1480 	/* release node reference */
   1481 	ieee80211_free_node(ni);
   1482 }
   1483 
   1484 static void
   1485 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1486 {
   1487 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1488 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1489 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
   1490 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1491 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
   1492 
   1493 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1494 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1495 		stat->nkill, stat->rate, le32toh(stat->duration),
   1496 		le32toh(stat->status)));
   1497 
   1498 	/*
   1499 	 * Update rate control statistics for the node.
   1500 	 * XXX we should not count mgmt frames since they're always sent at
   1501 	 * the lowest available bit-rate.
   1502 	 */
   1503 	wn->amn.amn_txcnt++;
   1504 	if (stat->ntries > 0) {
   1505 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1506 		wn->amn.amn_retrycnt++;
   1507 	}
   1508 
   1509 	if ((le32toh(stat->status) & 0xff) != 1)
   1510 		ifp->if_oerrors++;
   1511 	else
   1512 		ifp->if_opackets++;
   1513 
   1514 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
   1515 	m_freem(txdata->m);
   1516 	txdata->m = NULL;
   1517 	ieee80211_free_node(txdata->ni);
   1518 	txdata->ni = NULL;
   1519 
   1520 	ring->queued--;
   1521 
   1522 	sc->sc_tx_timer = 0;
   1523 	ifp->if_flags &= ~IFF_OACTIVE;
   1524 	wpi_start(ifp);
   1525 }
   1526 
   1527 static void
   1528 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1529 {
   1530 	struct wpi_tx_ring *ring = &sc->cmdq;
   1531 	struct wpi_tx_data *data;
   1532 
   1533 	if ((desc->qid & 7) != 4)
   1534 		return;	/* not a command ack */
   1535 
   1536 	data = &ring->data[desc->idx];
   1537 
   1538 	/* if the command was mapped in a mbuf, free it */
   1539 	if (data->m != NULL) {
   1540 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1541 		m_freem(data->m);
   1542 		data->m = NULL;
   1543 	}
   1544 
   1545 	wakeup(&ring->cmd[desc->idx]);
   1546 }
   1547 
   1548 static void
   1549 wpi_notif_intr(struct wpi_softc *sc)
   1550 {
   1551 	struct ieee80211com *ic = &sc->sc_ic;
   1552 	struct ifnet *ifp =  ic->ic_ifp;
   1553 	struct wpi_rx_desc *desc;
   1554 	struct wpi_rx_data *data;
   1555 	uint32_t hw;
   1556 
   1557 	hw = le32toh(sc->shared->next);
   1558 	while (sc->rxq.cur != hw) {
   1559 		data = &sc->rxq.data[sc->rxq.cur];
   1560 
   1561 		desc = mtod(data->m, struct wpi_rx_desc *);
   1562 
   1563 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1564 			"len=%d\n", desc->qid, desc->idx, desc->flags,
   1565 			desc->type, le32toh(desc->len)));
   1566 
   1567 		if (!(desc->qid & 0x80))	/* reply to a command */
   1568 			wpi_cmd_intr(sc, desc);
   1569 
   1570 		switch (desc->type) {
   1571 		case WPI_RX_DONE:
   1572 			/* a 802.11 frame was received */
   1573 			wpi_rx_intr(sc, desc, data);
   1574 			break;
   1575 
   1576 		case WPI_TX_DONE:
   1577 			/* a 802.11 frame has been transmitted */
   1578 			wpi_tx_intr(sc, desc);
   1579 			break;
   1580 
   1581 		case WPI_UC_READY:
   1582 		{
   1583 			struct wpi_ucode_info *uc =
   1584 				(struct wpi_ucode_info *)(desc + 1);
   1585 
   1586 			/* the microcontroller is ready */
   1587 			DPRINTF(("microcode alive notification version %x "
   1588 				"alive %x\n", le32toh(uc->version),
   1589 				le32toh(uc->valid)));
   1590 
   1591 			if (le32toh(uc->valid) != 1) {
   1592 				aprint_error_dev(sc->sc_dev,
   1593 					"microcontroller initialization failed\n");
   1594 			}
   1595 			break;
   1596 		}
   1597 		case WPI_STATE_CHANGED:
   1598 		{
   1599 			uint32_t *status = (uint32_t *)(desc + 1);
   1600 
   1601 			/* enabled/disabled notification */
   1602 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1603 
   1604 			if (le32toh(*status) & 1) {
   1605 				/* the radio button has to be pushed */
   1606 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
   1607 				/* turn the interface down */
   1608 				ifp->if_flags &= ~IFF_UP;
   1609 				wpi_stop(ifp, 1);
   1610 				return;	/* no further processing */
   1611 			}
   1612 			break;
   1613 		}
   1614 		case WPI_START_SCAN:
   1615 		{
   1616 			struct wpi_start_scan *scan =
   1617 				(struct wpi_start_scan *)(desc + 1);
   1618 
   1619 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1620 				scan->chan, le32toh(scan->status)));
   1621 
   1622 			/* fix current channel */
   1623 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   1624 			break;
   1625 		}
   1626 		case WPI_STOP_SCAN:
   1627 		{
   1628 			struct wpi_stop_scan *scan =
   1629 				(struct wpi_stop_scan *)(desc + 1);
   1630 
   1631 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1632 				scan->nchan, scan->status, scan->chan));
   1633 
   1634 			if (scan->status == 1 && scan->chan <= 14) {
   1635 				/*
   1636 				 * We just finished scanning 802.11g channels,
   1637 				 * start scanning 802.11a ones.
   1638 				 */
   1639 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
   1640 					break;
   1641 			}
   1642 			sc->is_scanning = false;
   1643 			ieee80211_end_scan(ic);
   1644 			break;
   1645 		}
   1646 		}
   1647 
   1648 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1649 	}
   1650 
   1651 	/* tell the firmware what we have processed */
   1652 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1653 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1654 }
   1655 
   1656 static int
   1657 wpi_intr(void *arg)
   1658 {
   1659 	struct wpi_softc *sc = arg;
   1660 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1661 	uint32_t r;
   1662 
   1663 	r = WPI_READ(sc, WPI_INTR);
   1664 	if (r == 0 || r == 0xffffffff)
   1665 		return 0;	/* not for us */
   1666 
   1667 	DPRINTFN(5, ("interrupt reg %x\n", r));
   1668 
   1669 	/* disable interrupts */
   1670 	WPI_WRITE(sc, WPI_MASK, 0);
   1671 	/* ack interrupts */
   1672 	WPI_WRITE(sc, WPI_INTR, r);
   1673 
   1674 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1675 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1676 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
   1677 		wpi_stop(sc->sc_ic.ic_ifp, 1);
   1678 		return 1;
   1679 	}
   1680 
   1681 	if (r & WPI_RX_INTR)
   1682 		wpi_notif_intr(sc);
   1683 
   1684 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1685 		wakeup(sc);
   1686 
   1687 	/* re-enable interrupts */
   1688 	if (ifp->if_flags & IFF_UP)
   1689 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1690 
   1691 	return 1;
   1692 }
   1693 
   1694 static uint8_t
   1695 wpi_plcp_signal(int rate)
   1696 {
   1697 	switch (rate) {
   1698 	/* CCK rates (returned values are device-dependent) */
   1699 	case 2:		return 10;
   1700 	case 4:		return 20;
   1701 	case 11:	return 55;
   1702 	case 22:	return 110;
   1703 
   1704 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1705 	/* R1-R4, (u)ral is R4-R1 */
   1706 	case 12:	return 0xd;
   1707 	case 18:	return 0xf;
   1708 	case 24:	return 0x5;
   1709 	case 36:	return 0x7;
   1710 	case 48:	return 0x9;
   1711 	case 72:	return 0xb;
   1712 	case 96:	return 0x1;
   1713 	case 108:	return 0x3;
   1714 
   1715 	/* unsupported rates (should not get there) */
   1716 	default:	return 0;
   1717 	}
   1718 }
   1719 
   1720 /* quickly determine if a given rate is CCK or OFDM */
   1721 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1722 
   1723 static int
   1724 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1725 	int ac)
   1726 {
   1727 	struct ieee80211com *ic = &sc->sc_ic;
   1728 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1729 	struct wpi_tx_desc *desc;
   1730 	struct wpi_tx_data *data;
   1731 	struct wpi_tx_cmd *cmd;
   1732 	struct wpi_cmd_data *tx;
   1733 	struct ieee80211_frame *wh;
   1734 	struct ieee80211_key *k;
   1735 	const struct chanAccParams *cap;
   1736 	struct mbuf *mnew;
   1737 	int i, error, rate, hdrlen, noack = 0;
   1738 
   1739 	desc = &ring->desc[ring->cur];
   1740 	data = &ring->data[ring->cur];
   1741 
   1742 	wh = mtod(m0, struct ieee80211_frame *);
   1743 
   1744 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   1745 		cap = &ic->ic_wme.wme_chanParams;
   1746 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1747 	}
   1748 
   1749 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1750 		k = ieee80211_crypto_encap(ic, ni, m0);
   1751 		if (k == NULL) {
   1752 			m_freem(m0);
   1753 			return ENOBUFS;
   1754 		}
   1755 
   1756 		/* packet header may have moved, reset our local pointer */
   1757 		wh = mtod(m0, struct ieee80211_frame *);
   1758 	}
   1759 
   1760 	hdrlen = ieee80211_anyhdrsize(wh);
   1761 
   1762 	/* pickup a rate */
   1763 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1764 		IEEE80211_FC0_TYPE_MGT) {
   1765 		/* mgmt frames are sent at the lowest available bit-rate */
   1766 		rate = ni->ni_rates.rs_rates[0];
   1767 	} else {
   1768 		if (ic->ic_fixed_rate != -1) {
   1769 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1770 				rs_rates[ic->ic_fixed_rate];
   1771 		} else
   1772 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1773 	}
   1774 	rate &= IEEE80211_RATE_VAL;
   1775 
   1776 
   1777 #if NBPFILTER > 0
   1778 	if (sc->sc_drvbpf != NULL) {
   1779 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1780 
   1781 		tap->wt_flags = 0;
   1782 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1783 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1784 		tap->wt_rate = rate;
   1785 		tap->wt_hwqueue = ac;
   1786 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1787 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1788 
   1789 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1790 	}
   1791 #endif
   1792 
   1793 	cmd = &ring->cmd[ring->cur];
   1794 	cmd->code = WPI_CMD_TX_DATA;
   1795 	cmd->flags = 0;
   1796 	cmd->qid = ring->qid;
   1797 	cmd->idx = ring->cur;
   1798 
   1799 	tx = (struct wpi_cmd_data *)cmd->data;
   1800 	tx->flags = 0;
   1801 
   1802 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1803 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1804 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1805 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1806 
   1807 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1808 
   1809 	/* retrieve destination node's id */
   1810 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1811 		WPI_ID_BSS;
   1812 
   1813 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1814 		IEEE80211_FC0_TYPE_MGT) {
   1815 		/* tell h/w to set timestamp in probe responses */
   1816 		if ((wh->i_fc[0] &
   1817 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1818 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1819 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1820 
   1821 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1822 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1823 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1824 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1825 			tx->timeout = htole16(3);
   1826 		else
   1827 			tx->timeout = htole16(2);
   1828 	} else
   1829 		tx->timeout = htole16(0);
   1830 
   1831 	tx->rate = wpi_plcp_signal(rate);
   1832 
   1833 	/* be very persistant at sending frames out */
   1834 	tx->rts_ntries = 7;
   1835 	tx->data_ntries = 15;
   1836 
   1837 	tx->ofdm_mask = 0xff;
   1838 	tx->cck_mask = 0xf;
   1839 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   1840 
   1841 	tx->len = htole16(m0->m_pkthdr.len);
   1842 
   1843 	/* save and trim IEEE802.11 header */
   1844 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   1845 	m_adj(m0, hdrlen);
   1846 
   1847 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1848 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1849 	if (error != 0 && error != EFBIG) {
   1850 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
   1851 		m_freem(m0);
   1852 		return error;
   1853 	}
   1854 	if (error != 0) {
   1855 		/* too many fragments, linearize */
   1856 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1857 		if (mnew == NULL) {
   1858 			m_freem(m0);
   1859 			return ENOMEM;
   1860 		}
   1861 
   1862 		M_COPY_PKTHDR(mnew, m0);
   1863 		if (m0->m_pkthdr.len > MHLEN) {
   1864 			MCLGET(mnew, M_DONTWAIT);
   1865 			if (!(mnew->m_flags & M_EXT)) {
   1866 				m_freem(m0);
   1867 				m_freem(mnew);
   1868 				return ENOMEM;
   1869 			}
   1870 		}
   1871 
   1872 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1873 		m_freem(m0);
   1874 		mnew->m_len = mnew->m_pkthdr.len;
   1875 		m0 = mnew;
   1876 
   1877 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1878 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1879 		if (error != 0) {
   1880 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1881 							 error);
   1882 			m_freem(m0);
   1883 			return error;
   1884 		}
   1885 	}
   1886 
   1887 	data->m = m0;
   1888 	data->ni = ni;
   1889 
   1890 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   1891 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   1892 
   1893 	/* first scatter/gather segment is used by the tx data command */
   1894 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   1895 		(1 + data->map->dm_nsegs) << 24);
   1896 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   1897 		ring->cur * sizeof (struct wpi_tx_cmd));
   1898 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   1899 						 ((hdrlen + 3) & ~3));
   1900 
   1901 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   1902 		desc->segs[i].addr =
   1903 			htole32(data->map->dm_segs[i - 1].ds_addr);
   1904 		desc->segs[i].len  =
   1905 			htole32(data->map->dm_segs[i - 1].ds_len);
   1906 	}
   1907 
   1908 	ring->queued++;
   1909 
   1910 	/* kick ring */
   1911 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   1912 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   1913 
   1914 	return 0;
   1915 }
   1916 
   1917 static void
   1918 wpi_start(struct ifnet *ifp)
   1919 {
   1920 	struct wpi_softc *sc = ifp->if_softc;
   1921 	struct ieee80211com *ic = &sc->sc_ic;
   1922 	struct ieee80211_node *ni;
   1923 	struct ether_header *eh;
   1924 	struct mbuf *m0;
   1925 	int ac;
   1926 
   1927 	/*
   1928 	 * net80211 may still try to send management frames even if the
   1929 	 * IFF_RUNNING flag is not set...
   1930 	 */
   1931 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1932 		return;
   1933 
   1934 	for (;;) {
   1935 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   1936 		if (m0 != NULL) {
   1937 
   1938 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   1939 			m0->m_pkthdr.rcvif = NULL;
   1940 
   1941 			/* management frames go into ring 0 */
   1942 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   1943 				ifp->if_oerrors++;
   1944 				continue;
   1945 			}
   1946 #if NBPFILTER > 0
   1947 			if (ic->ic_rawbpf != NULL)
   1948 				bpf_mtap(ic->ic_rawbpf, m0);
   1949 #endif
   1950 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   1951 				ifp->if_oerrors++;
   1952 				break;
   1953 			}
   1954 		} else {
   1955 			if (ic->ic_state != IEEE80211_S_RUN)
   1956 				break;
   1957 			IFQ_POLL(&ifp->if_snd, m0);
   1958 			if (m0 == NULL)
   1959 				break;
   1960 
   1961 			if (m0->m_len < sizeof (*eh) &&
   1962 			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
   1963 				ifp->if_oerrors++;
   1964 				continue;
   1965 			}
   1966 			eh = mtod(m0, struct ether_header *);
   1967 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1968 			if (ni == NULL) {
   1969 				m_freem(m0);
   1970 				ifp->if_oerrors++;
   1971 				continue;
   1972 			}
   1973 
   1974 			/* classify mbuf so we can find which tx ring to use */
   1975 			if (ieee80211_classify(ic, m0, ni) != 0) {
   1976 				m_freem(m0);
   1977 				ieee80211_free_node(ni);
   1978 				ifp->if_oerrors++;
   1979 				continue;
   1980 			}
   1981 
   1982 			/* no QoS encapsulation for EAPOL frames */
   1983 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   1984 			    M_WME_GETAC(m0) : WME_AC_BE;
   1985 
   1986 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   1987 				/* there is no place left in this ring */
   1988 				ifp->if_flags |= IFF_OACTIVE;
   1989 				break;
   1990 			}
   1991 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1992 #if NBPFILTER > 0
   1993 			if (ifp->if_bpf != NULL)
   1994 				bpf_mtap(ifp->if_bpf, m0);
   1995 #endif
   1996 			m0 = ieee80211_encap(ic, m0, ni);
   1997 			if (m0 == NULL) {
   1998 				ieee80211_free_node(ni);
   1999 				ifp->if_oerrors++;
   2000 				continue;
   2001 			}
   2002 #if NBPFILTER > 0
   2003 			if (ic->ic_rawbpf != NULL)
   2004 				bpf_mtap(ic->ic_rawbpf, m0);
   2005 #endif
   2006 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   2007 				ieee80211_free_node(ni);
   2008 				ifp->if_oerrors++;
   2009 				break;
   2010 			}
   2011 		}
   2012 
   2013 		sc->sc_tx_timer = 5;
   2014 		ifp->if_timer = 1;
   2015 	}
   2016 }
   2017 
   2018 static void
   2019 wpi_watchdog(struct ifnet *ifp)
   2020 {
   2021 	struct wpi_softc *sc = ifp->if_softc;
   2022 
   2023 	ifp->if_timer = 0;
   2024 
   2025 	if (sc->sc_tx_timer > 0) {
   2026 		if (--sc->sc_tx_timer == 0) {
   2027 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2028 			ifp->if_oerrors++;
   2029 			ifp->if_flags &= ~IFF_UP;
   2030 			wpi_stop(ifp, 1);
   2031 			return;
   2032 		}
   2033 		ifp->if_timer = 1;
   2034 	}
   2035 
   2036 	ieee80211_watchdog(&sc->sc_ic);
   2037 }
   2038 
   2039 static int
   2040 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2041 {
   2042 #define IS_RUNNING(ifp) \
   2043 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2044 
   2045 	struct wpi_softc *sc = ifp->if_softc;
   2046 	struct ieee80211com *ic = &sc->sc_ic;
   2047 	int s, error = 0;
   2048 
   2049 	s = splnet();
   2050 
   2051 	switch (cmd) {
   2052 	case SIOCSIFFLAGS:
   2053 		if (ifp->if_flags & IFF_UP) {
   2054 			if (!(ifp->if_flags & IFF_RUNNING))
   2055 				wpi_init(ifp);
   2056 		} else {
   2057 			if (ifp->if_flags & IFF_RUNNING)
   2058 				wpi_stop(ifp, 1);
   2059 		}
   2060 		break;
   2061 
   2062 	case SIOCADDMULTI:
   2063 	case SIOCDELMULTI:
   2064 		/* XXX no h/w multicast filter? --dyoung */
   2065 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2066 			/* setup multicast filter, etc */
   2067 			error = 0;
   2068 		}
   2069 		break;
   2070 
   2071 	default:
   2072 		error = ieee80211_ioctl(ic, cmd, data);
   2073 	}
   2074 
   2075 	if (error == ENETRESET) {
   2076 		if (IS_RUNNING(ifp) &&
   2077 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2078 			wpi_init(ifp);
   2079 		error = 0;
   2080 	}
   2081 
   2082 	splx(s);
   2083 	return error;
   2084 
   2085 #undef IS_RUNNING
   2086 }
   2087 
   2088 /*
   2089  * Extract various information from EEPROM.
   2090  */
   2091 static void
   2092 wpi_read_eeprom(struct wpi_softc *sc)
   2093 {
   2094 	struct ieee80211com *ic = &sc->sc_ic;
   2095 	char domain[4];
   2096 	int i;
   2097 
   2098 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2099 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2100 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2101 
   2102 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2103 	    sc->type));
   2104 
   2105 	/* read and print regulatory domain */
   2106 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2107 	aprint_normal(", %.4s", domain);
   2108 
   2109 	/* read and print MAC address */
   2110 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2111 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2112 
   2113 	/* read the list of authorized channels */
   2114 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2115 		wpi_read_eeprom_channels(sc, i);
   2116 
   2117 	/* read the list of power groups */
   2118 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2119 		wpi_read_eeprom_group(sc, i);
   2120 }
   2121 
   2122 static void
   2123 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2124 {
   2125 	struct ieee80211com *ic = &sc->sc_ic;
   2126 	const struct wpi_chan_band *band = &wpi_bands[n];
   2127 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2128 	int chan, i;
   2129 
   2130 	wpi_read_prom_data(sc, band->addr, channels,
   2131 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2132 
   2133 	for (i = 0; i < band->nchan; i++) {
   2134 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2135 			continue;
   2136 
   2137 		chan = band->chan[i];
   2138 
   2139 		if (n == 0) {	/* 2GHz band */
   2140 			ic->ic_channels[chan].ic_freq =
   2141 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2142 			ic->ic_channels[chan].ic_flags =
   2143 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2144 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2145 
   2146 		} else {	/* 5GHz band */
   2147 			/*
   2148 			 * Some 3945abg adapters support channels 7, 8, 11
   2149 			 * and 12 in the 2GHz *and* 5GHz bands.
   2150 			 * Because of limitations in our net80211(9) stack,
   2151 			 * we can't support these channels in 5GHz band.
   2152 			 */
   2153 			if (chan <= 14)
   2154 				continue;
   2155 
   2156 			ic->ic_channels[chan].ic_freq =
   2157 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2158 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2159 		}
   2160 
   2161 		/* is active scan allowed on this channel? */
   2162 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2163 			ic->ic_channels[chan].ic_flags |=
   2164 			    IEEE80211_CHAN_PASSIVE;
   2165 		}
   2166 
   2167 		/* save maximum allowed power for this channel */
   2168 		sc->maxpwr[chan] = channels[i].maxpwr;
   2169 
   2170 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2171 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2172 	}
   2173 }
   2174 
   2175 static void
   2176 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2177 {
   2178 	struct wpi_power_group *group = &sc->groups[n];
   2179 	struct wpi_eeprom_group rgroup;
   2180 	int i;
   2181 
   2182 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2183 	    sizeof rgroup);
   2184 
   2185 	/* save power group information */
   2186 	group->chan   = rgroup.chan;
   2187 	group->maxpwr = rgroup.maxpwr;
   2188 	/* temperature at which the samples were taken */
   2189 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2190 
   2191 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2192 	    group->chan, group->maxpwr, group->temp));
   2193 
   2194 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2195 		group->samples[i].index = rgroup.samples[i].index;
   2196 		group->samples[i].power = rgroup.samples[i].power;
   2197 
   2198 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2199 		    group->samples[i].index, group->samples[i].power));
   2200 	}
   2201 }
   2202 
   2203 /*
   2204  * Send a command to the firmware.
   2205  */
   2206 static int
   2207 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2208 {
   2209 	struct wpi_tx_ring *ring = &sc->cmdq;
   2210 	struct wpi_tx_desc *desc;
   2211 	struct wpi_tx_cmd *cmd;
   2212 
   2213 	KASSERT(size <= sizeof cmd->data);
   2214 
   2215 	desc = &ring->desc[ring->cur];
   2216 	cmd = &ring->cmd[ring->cur];
   2217 
   2218 	cmd->code = code;
   2219 	cmd->flags = 0;
   2220 	cmd->qid = ring->qid;
   2221 	cmd->idx = ring->cur;
   2222 	memcpy(cmd->data, buf, size);
   2223 
   2224 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2225 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2226 		ring->cur * sizeof (struct wpi_tx_cmd));
   2227 	desc->segs[0].len  = htole32(4 + size);
   2228 
   2229 	/* kick cmd ring */
   2230 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2231 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2232 
   2233 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2234 }
   2235 
   2236 static int
   2237 wpi_wme_update(struct ieee80211com *ic)
   2238 {
   2239 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2240 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2241 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2242 	const struct wmeParams *wmep;
   2243 	struct wpi_wme_setup wme;
   2244 	int ac;
   2245 
   2246 	/* don't override default WME values if WME is not actually enabled */
   2247 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2248 		return 0;
   2249 
   2250 	wme.flags = 0;
   2251 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2252 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2253 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2254 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2255 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2256 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2257 
   2258 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2259 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2260 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2261 	}
   2262 
   2263 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2264 #undef WPI_USEC
   2265 #undef WPI_EXP2
   2266 }
   2267 
   2268 /*
   2269  * Configure h/w multi-rate retries.
   2270  */
   2271 static int
   2272 wpi_mrr_setup(struct wpi_softc *sc)
   2273 {
   2274 	struct ieee80211com *ic = &sc->sc_ic;
   2275 	struct wpi_mrr_setup mrr;
   2276 	int i, error;
   2277 
   2278 	/* CCK rates (not used with 802.11a) */
   2279 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2280 		mrr.rates[i].flags = 0;
   2281 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2282 		/* fallback to the immediate lower CCK rate (if any) */
   2283 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2284 		/* try one time at this rate before falling back to "next" */
   2285 		mrr.rates[i].ntries = 1;
   2286 	}
   2287 
   2288 	/* OFDM rates (not used with 802.11b) */
   2289 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2290 		mrr.rates[i].flags = 0;
   2291 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2292 		/* fallback to the immediate lower rate (if any) */
   2293 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2294 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2295 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2296 			WPI_OFDM6 : WPI_CCK2) :
   2297 		    i - 1;
   2298 		/* try one time at this rate before falling back to "next" */
   2299 		mrr.rates[i].ntries = 1;
   2300 	}
   2301 
   2302 	/* setup MRR for control frames */
   2303 	mrr.which = htole32(WPI_MRR_CTL);
   2304 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2305 	if (error != 0) {
   2306 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
   2307 		return error;
   2308 	}
   2309 
   2310 	/* setup MRR for data frames */
   2311 	mrr.which = htole32(WPI_MRR_DATA);
   2312 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2313 	if (error != 0) {
   2314 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
   2315 		return error;
   2316 	}
   2317 
   2318 	return 0;
   2319 }
   2320 
   2321 static void
   2322 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2323 {
   2324 	struct wpi_cmd_led led;
   2325 
   2326 	led.which = which;
   2327 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2328 	led.off = off;
   2329 	led.on = on;
   2330 
   2331 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2332 }
   2333 
   2334 static void
   2335 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2336 {
   2337 	struct wpi_cmd_tsf tsf;
   2338 	uint64_t val, mod;
   2339 
   2340 	memset(&tsf, 0, sizeof tsf);
   2341 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
   2342 	tsf.bintval = htole16(ni->ni_intval);
   2343 	tsf.lintval = htole16(10);
   2344 
   2345 	/* compute remaining time until next beacon */
   2346 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
   2347 	mod = le64toh(tsf.tstamp) % val;
   2348 	tsf.binitval = htole32((uint32_t)(val - mod));
   2349 
   2350 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
   2351 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2352 
   2353 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2354 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2355 }
   2356 
   2357 /*
   2358  * Update Tx power to match what is defined for channel `c'.
   2359  */
   2360 static int
   2361 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2362 {
   2363 	struct ieee80211com *ic = &sc->sc_ic;
   2364 	struct wpi_power_group *group;
   2365 	struct wpi_cmd_txpower txpower;
   2366 	u_int chan;
   2367 	int i;
   2368 
   2369 	/* get channel number */
   2370 	chan = ieee80211_chan2ieee(ic, c);
   2371 
   2372 	/* find the power group to which this channel belongs */
   2373 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2374 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2375 			if (chan <= group->chan)
   2376 				break;
   2377 	} else
   2378 		group = &sc->groups[0];
   2379 
   2380 	memset(&txpower, 0, sizeof txpower);
   2381 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2382 	txpower.chan = htole16(chan);
   2383 
   2384 	/* set Tx power for all OFDM and CCK rates */
   2385 	for (i = 0; i <= 11 ; i++) {
   2386 		/* retrieve Tx power for this channel/rate combination */
   2387 		int idx = wpi_get_power_index(sc, group, c,
   2388 		    wpi_ridx_to_rate[i]);
   2389 
   2390 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2391 
   2392 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2393 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2394 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2395 		} else {
   2396 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2397 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2398 		}
   2399 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2400 		    wpi_ridx_to_rate[i], idx));
   2401 	}
   2402 
   2403 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2404 }
   2405 
   2406 /*
   2407  * Determine Tx power index for a given channel/rate combination.
   2408  * This takes into account the regulatory information from EEPROM and the
   2409  * current temperature.
   2410  */
   2411 static int
   2412 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2413     struct ieee80211_channel *c, int rate)
   2414 {
   2415 /* fixed-point arithmetic division using a n-bit fractional part */
   2416 #define fdivround(a, b, n)	\
   2417 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2418 
   2419 /* linear interpolation */
   2420 #define interpolate(x, x1, y1, x2, y2, n)	\
   2421 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2422 
   2423 	struct ieee80211com *ic = &sc->sc_ic;
   2424 	struct wpi_power_sample *sample;
   2425 	int pwr, idx;
   2426 	u_int chan;
   2427 
   2428 	/* get channel number */
   2429 	chan = ieee80211_chan2ieee(ic, c);
   2430 
   2431 	/* default power is group's maximum power - 3dB */
   2432 	pwr = group->maxpwr / 2;
   2433 
   2434 	/* decrease power for highest OFDM rates to reduce distortion */
   2435 	switch (rate) {
   2436 	case 72:	/* 36Mb/s */
   2437 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2438 		break;
   2439 	case 96:	/* 48Mb/s */
   2440 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2441 		break;
   2442 	case 108:	/* 54Mb/s */
   2443 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2444 		break;
   2445 	}
   2446 
   2447 	/* never exceed channel's maximum allowed Tx power */
   2448 	pwr = min(pwr, sc->maxpwr[chan]);
   2449 
   2450 	/* retrieve power index into gain tables from samples */
   2451 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2452 		if (pwr > sample[1].power)
   2453 			break;
   2454 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2455 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2456 	    sample[1].power, sample[1].index, 19);
   2457 
   2458 	/*
   2459 	 * Adjust power index based on current temperature:
   2460 	 * - if cooler than factory-calibrated: decrease output power
   2461 	 * - if warmer than factory-calibrated: increase output power
   2462 	 */
   2463 	idx -= (sc->temp - group->temp) * 11 / 100;
   2464 
   2465 	/* decrease power for CCK rates (-5dB) */
   2466 	if (!WPI_RATE_IS_OFDM(rate))
   2467 		idx += 10;
   2468 
   2469 	/* keep power index in a valid range */
   2470 	if (idx < 0)
   2471 		return 0;
   2472 	if (idx > WPI_MAX_PWR_INDEX)
   2473 		return WPI_MAX_PWR_INDEX;
   2474 	return idx;
   2475 
   2476 #undef interpolate
   2477 #undef fdivround
   2478 }
   2479 
   2480 /*
   2481  * Build a beacon frame that the firmware will broadcast periodically in
   2482  * IBSS or HostAP modes.
   2483  */
   2484 static int
   2485 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2486 {
   2487 	struct ieee80211com *ic = &sc->sc_ic;
   2488 	struct wpi_tx_ring *ring = &sc->cmdq;
   2489 	struct wpi_tx_desc *desc;
   2490 	struct wpi_tx_data *data;
   2491 	struct wpi_tx_cmd *cmd;
   2492 	struct wpi_cmd_beacon *bcn;
   2493 	struct ieee80211_beacon_offsets bo;
   2494 	struct mbuf *m0;
   2495 	int error;
   2496 
   2497 	desc = &ring->desc[ring->cur];
   2498 	data = &ring->data[ring->cur];
   2499 
   2500 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2501 	if (m0 == NULL) {
   2502 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
   2503 		return ENOMEM;
   2504 	}
   2505 
   2506 	cmd = &ring->cmd[ring->cur];
   2507 	cmd->code = WPI_CMD_SET_BEACON;
   2508 	cmd->flags = 0;
   2509 	cmd->qid = ring->qid;
   2510 	cmd->idx = ring->cur;
   2511 
   2512 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2513 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2514 	bcn->id = WPI_ID_BROADCAST;
   2515 	bcn->ofdm_mask = 0xff;
   2516 	bcn->cck_mask = 0x0f;
   2517 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2518 	bcn->len = htole16(m0->m_pkthdr.len);
   2519 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2520 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2521 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2522 
   2523 	/* save and trim IEEE802.11 header */
   2524 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2525 	m_adj(m0, sizeof (struct ieee80211_frame));
   2526 
   2527 	/* assume beacon frame is contiguous */
   2528 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2529 		BUS_DMA_READ | BUS_DMA_NOWAIT);
   2530 	if (error) {
   2531 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2532 		m_freem(m0);
   2533 		return error;
   2534 	}
   2535 
   2536 	data->m = m0;
   2537 
   2538 	/* first scatter/gather segment is used by the beacon command */
   2539 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2540 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2541 		ring->cur * sizeof (struct wpi_tx_cmd));
   2542 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2543 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2544 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2545 
   2546 	/* kick cmd ring */
   2547 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2548 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2549 
   2550 	return 0;
   2551 }
   2552 
   2553 static int
   2554 wpi_auth(struct wpi_softc *sc)
   2555 {
   2556 	struct ieee80211com *ic = &sc->sc_ic;
   2557 	struct ieee80211_node *ni = ic->ic_bss;
   2558 	struct wpi_node_info node;
   2559 	int error;
   2560 
   2561 	/* update adapter's configuration */
   2562 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2563 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2564 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2565 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2566 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2567 		    WPI_CONFIG_24GHZ);
   2568 	}
   2569 	switch (ic->ic_curmode) {
   2570 	case IEEE80211_MODE_11A:
   2571 		sc->config.cck_mask  = 0;
   2572 		sc->config.ofdm_mask = 0x15;
   2573 		break;
   2574 	case IEEE80211_MODE_11B:
   2575 		sc->config.cck_mask  = 0x03;
   2576 		sc->config.ofdm_mask = 0;
   2577 		break;
   2578 	default:	/* assume 802.11b/g */
   2579 		sc->config.cck_mask  = 0x0f;
   2580 		sc->config.ofdm_mask = 0x15;
   2581 	}
   2582 
   2583 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2584 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2585 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2586 		sizeof (struct wpi_config), 1);
   2587 	if (error != 0) {
   2588 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2589 		return error;
   2590 	}
   2591 
   2592 	/* configuration has changed, set Tx power accordingly */
   2593 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2594 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2595 		return error;
   2596 	}
   2597 
   2598 	/* add default node */
   2599 	memset(&node, 0, sizeof node);
   2600 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2601 	node.id = WPI_ID_BSS;
   2602 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2603 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2604 	node.action = htole32(WPI_ACTION_SET_RATE);
   2605 	node.antenna = WPI_ANTENNA_BOTH;
   2606 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2607 	if (error != 0) {
   2608 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2609 		return error;
   2610 	}
   2611 
   2612 	return 0;
   2613 }
   2614 
   2615 /*
   2616  * Send a scan request to the firmware.  Since this command is huge, we map it
   2617  * into a mbuf instead of using the pre-allocated set of commands.
   2618  */
   2619 static int
   2620 wpi_scan(struct wpi_softc *sc, uint16_t flags)
   2621 {
   2622 	struct ieee80211com *ic = &sc->sc_ic;
   2623 	struct wpi_tx_ring *ring = &sc->cmdq;
   2624 	struct wpi_tx_desc *desc;
   2625 	struct wpi_tx_data *data;
   2626 	struct wpi_tx_cmd *cmd;
   2627 	struct wpi_scan_hdr *hdr;
   2628 	struct wpi_scan_chan *chan;
   2629 	struct ieee80211_frame *wh;
   2630 	struct ieee80211_rateset *rs;
   2631 	struct ieee80211_channel *c;
   2632 	enum ieee80211_phymode mode;
   2633 	uint8_t *frm;
   2634 	int nrates, pktlen, error;
   2635 
   2636 	desc = &ring->desc[ring->cur];
   2637 	data = &ring->data[ring->cur];
   2638 
   2639 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2640 	if (data->m == NULL) {
   2641 		aprint_error_dev(sc->sc_dev,
   2642 						"could not allocate mbuf for scan command\n");
   2643 		return ENOMEM;
   2644 	}
   2645 
   2646 	MCLGET(data->m, M_DONTWAIT);
   2647 	if (!(data->m->m_flags & M_EXT)) {
   2648 		m_freem(data->m);
   2649 		data->m = NULL;
   2650 		aprint_error_dev(sc->sc_dev,
   2651 						 "could not allocate mbuf for scan command\n");
   2652 		return ENOMEM;
   2653 	}
   2654 
   2655 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2656 	cmd->code = WPI_CMD_SCAN;
   2657 	cmd->flags = 0;
   2658 	cmd->qid = ring->qid;
   2659 	cmd->idx = ring->cur;
   2660 
   2661 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2662 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2663 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
   2664 	hdr->id = WPI_ID_BROADCAST;
   2665 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2666 
   2667 	/*
   2668 	 * Move to the next channel if no packets are received within 5 msecs
   2669 	 * after sending the probe request (this helps to reduce the duration
   2670 	 * of active scans).
   2671 	 */
   2672 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
   2673 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2674 
   2675 	if (flags & IEEE80211_CHAN_A) {
   2676 		hdr->crc_threshold = htole16(1);
   2677 		/* send probe requests at 6Mbps */
   2678 		hdr->rate = wpi_plcp_signal(12);
   2679 	} else {
   2680 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2681 		/* send probe requests at 1Mbps */
   2682 		hdr->rate = wpi_plcp_signal(2);
   2683 	}
   2684 
   2685 	/* for directed scans, firmware inserts the essid IE itself */
   2686 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2687 	hdr->essid[0].len = ic->ic_des_esslen;
   2688 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2689 
   2690 	/*
   2691 	 * Build a probe request frame.  Most of the following code is a
   2692 	 * copy & paste of what is done in net80211.
   2693 	 */
   2694 	wh = (struct ieee80211_frame *)(hdr + 1);
   2695 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2696 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2697 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2698 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2699 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2700 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2701 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2702 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2703 
   2704 	frm = (uint8_t *)(wh + 1);
   2705 
   2706 	/* add empty essid IE (firmware generates it for directed scans) */
   2707 	*frm++ = IEEE80211_ELEMID_SSID;
   2708 	*frm++ = 0;
   2709 
   2710 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
   2711 	rs = &ic->ic_sup_rates[mode];
   2712 
   2713 	/* add supported rates IE */
   2714 	*frm++ = IEEE80211_ELEMID_RATES;
   2715 	nrates = rs->rs_nrates;
   2716 	if (nrates > IEEE80211_RATE_SIZE)
   2717 		nrates = IEEE80211_RATE_SIZE;
   2718 	*frm++ = nrates;
   2719 	memcpy(frm, rs->rs_rates, nrates);
   2720 	frm += nrates;
   2721 
   2722 	/* add supported xrates IE */
   2723 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2724 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2725 		*frm++ = IEEE80211_ELEMID_XRATES;
   2726 		*frm++ = nrates;
   2727 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2728 		frm += nrates;
   2729 	}
   2730 
   2731 	/* setup length of probe request */
   2732 	hdr->paylen = htole16(frm - (uint8_t *)wh);
   2733 
   2734 	chan = (struct wpi_scan_chan *)frm;
   2735 	for (c  = &ic->ic_channels[1];
   2736 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   2737 		if ((c->ic_flags & flags) != flags)
   2738 			continue;
   2739 
   2740 		chan->chan = ieee80211_chan2ieee(ic, c);
   2741 		chan->flags = 0;
   2742 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2743 			chan->flags |= WPI_CHAN_ACTIVE;
   2744 			if (ic->ic_des_esslen != 0)
   2745 				chan->flags |= WPI_CHAN_DIRECT;
   2746 		}
   2747 		chan->dsp_gain = 0x6e;
   2748 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2749 			chan->rf_gain = 0x3b;
   2750 			chan->active = htole16(10);
   2751 			chan->passive = htole16(110);
   2752 		} else {
   2753 			chan->rf_gain = 0x28;
   2754 			chan->active = htole16(20);
   2755 			chan->passive = htole16(120);
   2756 		}
   2757 		hdr->nchan++;
   2758 		chan++;
   2759 
   2760 		frm += sizeof (struct wpi_scan_chan);
   2761 	}
   2762 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2763 	pktlen = frm - (uint8_t *)cmd;
   2764 
   2765 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
   2766 		NULL, BUS_DMA_NOWAIT);
   2767 	if (error) {
   2768 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2769 		m_freem(data->m);
   2770 		data->m = NULL;
   2771 		return error;
   2772 	}
   2773 
   2774 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2775 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2776 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2777 
   2778 	/* kick cmd ring */
   2779 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2780 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2781 
   2782 	return 0;	/* will be notified async. of failure/success */
   2783 }
   2784 
   2785 static int
   2786 wpi_config(struct wpi_softc *sc)
   2787 {
   2788 	struct ieee80211com *ic = &sc->sc_ic;
   2789 	struct ifnet *ifp = ic->ic_ifp;
   2790 	struct wpi_power power;
   2791 	struct wpi_bluetooth bluetooth;
   2792 	struct wpi_node_info node;
   2793 	int error;
   2794 
   2795 	memset(&power, 0, sizeof power);
   2796 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2797 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2798 	if (error != 0) {
   2799 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2800 		return error;
   2801 	}
   2802 
   2803 	/* configure bluetooth coexistence */
   2804 	memset(&bluetooth, 0, sizeof bluetooth);
   2805 	bluetooth.flags = 3;
   2806 	bluetooth.lead = 0xaa;
   2807 	bluetooth.kill = 1;
   2808 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   2809 		0);
   2810 	if (error != 0) {
   2811 		aprint_error_dev(sc->sc_dev,
   2812 			"could not configure bluetooth coexistence\n");
   2813 		return error;
   2814 	}
   2815 
   2816 	/* configure adapter */
   2817 	memset(&sc->config, 0, sizeof (struct wpi_config));
   2818 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2819 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   2820 	/*set default channel*/
   2821 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   2822 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2823 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
   2824 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2825 		    WPI_CONFIG_24GHZ);
   2826 	}
   2827 	sc->config.filter = 0;
   2828 	switch (ic->ic_opmode) {
   2829 	case IEEE80211_M_STA:
   2830 		sc->config.mode = WPI_MODE_STA;
   2831 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   2832 		break;
   2833 	case IEEE80211_M_IBSS:
   2834 	case IEEE80211_M_AHDEMO:
   2835 		sc->config.mode = WPI_MODE_IBSS;
   2836 		break;
   2837 	case IEEE80211_M_HOSTAP:
   2838 		sc->config.mode = WPI_MODE_HOSTAP;
   2839 		break;
   2840 	case IEEE80211_M_MONITOR:
   2841 		sc->config.mode = WPI_MODE_MONITOR;
   2842 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   2843 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   2844 		break;
   2845 	}
   2846 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   2847 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   2848 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2849 		sizeof (struct wpi_config), 0);
   2850 	if (error != 0) {
   2851 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   2852 		return error;
   2853 	}
   2854 
   2855 	/* configuration has changed, set Tx power accordingly */
   2856 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
   2857 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2858 		return error;
   2859 	}
   2860 
   2861 	/* add broadcast node */
   2862 	memset(&node, 0, sizeof node);
   2863 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   2864 	node.id = WPI_ID_BROADCAST;
   2865 	node.rate = wpi_plcp_signal(2);
   2866 	node.action = htole32(WPI_ACTION_SET_RATE);
   2867 	node.antenna = WPI_ANTENNA_BOTH;
   2868 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   2869 	if (error != 0) {
   2870 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   2871 		return error;
   2872 	}
   2873 
   2874 	if ((error = wpi_mrr_setup(sc)) != 0) {
   2875 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   2876 		return error;
   2877 	}
   2878 
   2879 	return 0;
   2880 }
   2881 
   2882 static void
   2883 wpi_stop_master(struct wpi_softc *sc)
   2884 {
   2885 	uint32_t tmp;
   2886 	int ntries;
   2887 
   2888 	tmp = WPI_READ(sc, WPI_RESET);
   2889 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   2890 
   2891 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2892 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   2893 		return;	/* already asleep */
   2894 
   2895 	for (ntries = 0; ntries < 100; ntries++) {
   2896 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   2897 			break;
   2898 		DELAY(10);
   2899 	}
   2900 	if (ntries == 100) {
   2901 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   2902 	}
   2903 }
   2904 
   2905 static int
   2906 wpi_power_up(struct wpi_softc *sc)
   2907 {
   2908 	uint32_t tmp;
   2909 	int ntries;
   2910 
   2911 	wpi_mem_lock(sc);
   2912 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   2913 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   2914 	wpi_mem_unlock(sc);
   2915 
   2916 	for (ntries = 0; ntries < 5000; ntries++) {
   2917 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   2918 			break;
   2919 		DELAY(10);
   2920 	}
   2921 	if (ntries == 5000) {
   2922 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
   2923 		return ETIMEDOUT;
   2924 	}
   2925 	return 0;
   2926 }
   2927 
   2928 static int
   2929 wpi_reset(struct wpi_softc *sc)
   2930 {
   2931 	uint32_t tmp;
   2932 	int ntries;
   2933 
   2934 	/* clear any pending interrupts */
   2935 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   2936 
   2937 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   2938 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   2939 
   2940 	tmp = WPI_READ(sc, WPI_CHICKEN);
   2941 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   2942 
   2943 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2944 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   2945 
   2946 	/* wait for clock stabilization */
   2947 	for (ntries = 0; ntries < 1000; ntries++) {
   2948 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   2949 			break;
   2950 		DELAY(10);
   2951 	}
   2952 	if (ntries == 1000) {
   2953 		aprint_error_dev(sc->sc_dev,
   2954 						 "timeout waiting for clock stabilization\n");
   2955 		return ETIMEDOUT;
   2956 	}
   2957 
   2958 	/* initialize EEPROM */
   2959 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   2960 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   2961 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   2962 		return EIO;
   2963 	}
   2964 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   2965 
   2966 	return 0;
   2967 }
   2968 
   2969 static void
   2970 wpi_hw_config(struct wpi_softc *sc)
   2971 {
   2972 	uint32_t rev, hw;
   2973 
   2974 	/* voodoo from the reference driver */
   2975 	hw = WPI_READ(sc, WPI_HWCONFIG);
   2976 
   2977 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   2978 	rev = PCI_REVISION(rev);
   2979 	if ((rev & 0xc0) == 0x40)
   2980 		hw |= WPI_HW_ALM_MB;
   2981 	else if (!(rev & 0x80))
   2982 		hw |= WPI_HW_ALM_MM;
   2983 
   2984 	if (sc->cap == 0x80)
   2985 		hw |= WPI_HW_SKU_MRC;
   2986 
   2987 	hw &= ~WPI_HW_REV_D;
   2988 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   2989 		hw |= WPI_HW_REV_D;
   2990 
   2991 	if (sc->type > 1)
   2992 		hw |= WPI_HW_TYPE_B;
   2993 
   2994 	DPRINTF(("setting h/w config %x\n", hw));
   2995 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   2996 }
   2997 
   2998 static int
   2999 wpi_init(struct ifnet *ifp)
   3000 {
   3001 	struct wpi_softc *sc = ifp->if_softc;
   3002 	struct ieee80211com *ic = &sc->sc_ic;
   3003 	uint32_t tmp;
   3004 	int qid, ntries, error;
   3005 
   3006 	wpi_stop(ifp,1);
   3007 	(void)wpi_reset(sc);
   3008 
   3009 	wpi_mem_lock(sc);
   3010 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   3011 	DELAY(20);
   3012 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   3013 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   3014 	wpi_mem_unlock(sc);
   3015 
   3016 	(void)wpi_power_up(sc);
   3017 	wpi_hw_config(sc);
   3018 
   3019 	/* init Rx ring */
   3020 	wpi_mem_lock(sc);
   3021 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   3022 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   3023 	    offsetof(struct wpi_shared, next));
   3024 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3025 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3026 	wpi_mem_unlock(sc);
   3027 
   3028 	/* init Tx rings */
   3029 	wpi_mem_lock(sc);
   3030 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
   3031 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
   3032 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
   3033 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3034 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3035 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3036 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3037 
   3038 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3039 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3040 
   3041 	for (qid = 0; qid < 6; qid++) {
   3042 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3043 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3044 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3045 	}
   3046 	wpi_mem_unlock(sc);
   3047 
   3048 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3049 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3050 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3051 
   3052 	/* clear any pending interrupts */
   3053 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3054 	/* enable interrupts */
   3055 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3056 
   3057 	/* not sure why/if this is necessary... */
   3058 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3059 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3060 
   3061 	if ((error = wpi_load_firmware(sc)) != 0) {
   3062 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
   3063 		goto fail1;
   3064 	}
   3065 
   3066 	/* Check the status of the radio switch */
   3067 	wpi_mem_lock(sc);
   3068 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3069 	wpi_mem_unlock(sc);
   3070 
   3071 	if (!(tmp & 0x01)) {
   3072 		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
   3073 		error = EPERM; // XXX
   3074 		goto fail1;
   3075 	}
   3076 
   3077 	/* wait for thermal sensors to calibrate */
   3078 	for (ntries = 0; ntries < 1000; ntries++) {
   3079 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3080 			break;
   3081 		DELAY(10);
   3082 	}
   3083 	if (ntries == 1000) {
   3084 		aprint_error_dev(sc->sc_dev,
   3085 						 "timeout waiting for thermal sensors calibration\n");
   3086 		error = ETIMEDOUT;
   3087 		goto fail1;
   3088 	}
   3089 
   3090 	DPRINTF(("temperature %d\n", sc->temp));
   3091 
   3092 	if ((error = wpi_config(sc)) != 0) {
   3093 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3094 		goto fail1;
   3095 	}
   3096 
   3097 	ifp->if_flags &= ~IFF_OACTIVE;
   3098 	ifp->if_flags |= IFF_RUNNING;
   3099 
   3100 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3101 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3102 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3103 	}
   3104 	else
   3105 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3106 
   3107 	return 0;
   3108 
   3109 fail1:	wpi_stop(ifp, 1);
   3110 	return error;
   3111 }
   3112 
   3113 
   3114 static void
   3115 wpi_stop(struct ifnet *ifp, int disable)
   3116 {
   3117 	struct wpi_softc *sc = ifp->if_softc;
   3118 	struct ieee80211com *ic = &sc->sc_ic;
   3119 	uint32_t tmp;
   3120 	int ac;
   3121 
   3122 	ifp->if_timer = sc->sc_tx_timer = 0;
   3123 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3124 
   3125 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3126 
   3127 	/* disable interrupts */
   3128 	WPI_WRITE(sc, WPI_MASK, 0);
   3129 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3130 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3131 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3132 
   3133 	wpi_mem_lock(sc);
   3134 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3135 	wpi_mem_unlock(sc);
   3136 
   3137 	/* reset all Tx rings */
   3138 	for (ac = 0; ac < 4; ac++)
   3139 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3140 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3141 
   3142 	/* reset Rx ring */
   3143 	wpi_reset_rx_ring(sc, &sc->rxq);
   3144 
   3145 	wpi_mem_lock(sc);
   3146 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3147 	wpi_mem_unlock(sc);
   3148 
   3149 	DELAY(5);
   3150 
   3151 	wpi_stop_master(sc);
   3152 
   3153 	tmp = WPI_READ(sc, WPI_RESET);
   3154 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3155 }
   3156