if_wpi.c revision 1.31 1 /* $NetBSD: if_wpi.c,v 1.31 2007/11/28 22:51:49 degroote Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.31 2007/11/28 22:51:49 degroote Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39 #include <sys/callout.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47 #include <dev/pci/pcidevs.h>
48
49 #if NBPFILTER > 0
50 #include <net/bpf.h>
51 #endif
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x) if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 { 4, { 2, 4, 11, 22 } };
90
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94 static int wpi_match(device_t, struct cfdata *, void *);
95 static void wpi_attach(device_t, device_t, void *);
96 static int wpi_detach(device_t , int);
97 static void wpi_power(int, void *);
98 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
99 void **, bus_size_t, bus_size_t, int);
100 static void wpi_dma_contig_free(struct wpi_dma_info *);
101 static int wpi_alloc_shared(struct wpi_softc *);
102 static void wpi_free_shared(struct wpi_softc *);
103 static int wpi_alloc_fwmem(struct wpi_softc *);
104 static void wpi_free_fwmem(struct wpi_softc *);
105 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
106 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
107 static int wpi_alloc_rpool(struct wpi_softc *);
108 static void wpi_free_rpool(struct wpi_softc *);
109 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
112 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
113 int);
114 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
116 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
117 static void wpi_newassoc(struct ieee80211_node *, int);
118 static int wpi_media_change(struct ifnet *);
119 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
120 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
121 static void wpi_mem_lock(struct wpi_softc *);
122 static void wpi_mem_unlock(struct wpi_softc *);
123 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
124 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
125 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
126 const uint32_t *, int);
127 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
128 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
129 static int wpi_load_firmware(struct wpi_softc *);
130 static void wpi_calib_timeout(void *);
131 static void wpi_iter_func(void *, struct ieee80211_node *);
132 static void wpi_power_calibration(struct wpi_softc *, int);
133 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
134 struct wpi_rx_data *);
135 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
136 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
137 static void wpi_notif_intr(struct wpi_softc *);
138 static int wpi_intr(void *);
139 static void wpi_read_eeprom(struct wpi_softc *);
140 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
141 static void wpi_read_eeprom_group(struct wpi_softc *, int);
142 static uint8_t wpi_plcp_signal(int);
143 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
144 struct ieee80211_node *, int);
145 static void wpi_start(struct ifnet *);
146 static void wpi_watchdog(struct ifnet *);
147 static int wpi_ioctl(struct ifnet *, u_long, void *);
148 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
149 static int wpi_wme_update(struct ieee80211com *);
150 static int wpi_mrr_setup(struct wpi_softc *);
151 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
152 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
153 static int wpi_set_txpower(struct wpi_softc *,
154 struct ieee80211_channel *, int);
155 static int wpi_get_power_index(struct wpi_softc *,
156 struct wpi_power_group *, struct ieee80211_channel *, int);
157 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
158 static int wpi_auth(struct wpi_softc *);
159 static int wpi_scan(struct wpi_softc *, uint16_t);
160 static int wpi_config(struct wpi_softc *);
161 static void wpi_stop_master(struct wpi_softc *);
162 static int wpi_power_up(struct wpi_softc *);
163 static int wpi_reset(struct wpi_softc *);
164 static void wpi_hw_config(struct wpi_softc *);
165 static int wpi_init(struct ifnet *);
166 static void wpi_stop(struct ifnet *, int);
167
168 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
169 wpi_detach, NULL);
170
171 static int
172 wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
173 {
174 struct pci_attach_args *pa = aux;
175
176 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
177 return 0;
178
179 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
180 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
181 return 1;
182
183 return 0;
184 }
185
186 /* Base Address Register */
187 #define WPI_PCI_BAR0 0x10
188
189 static void
190 wpi_attach(device_t parent __unused, device_t self, void *aux)
191 {
192 struct wpi_softc *sc = device_private(self);
193 struct ieee80211com *ic = &sc->sc_ic;
194 struct ifnet *ifp = &sc->sc_ec.ec_if;
195 struct pci_attach_args *pa = aux;
196 const char *intrstr;
197 char devinfo[256];
198 bus_space_tag_t memt;
199 bus_space_handle_t memh;
200 pci_intr_handle_t ih;
201 pcireg_t data;
202 int error, ac, revision;
203
204 sc->sc_dev = self;
205 sc->sc_pct = pa->pa_pc;
206 sc->sc_pcitag = pa->pa_tag;
207
208 callout_init(&sc->calib_to, 0);
209 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
210
211 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
212 revision = PCI_REVISION(pa->pa_class);
213 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
214
215 /* clear device specific PCI configuration register 0x41 */
216 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
217 data &= ~0x0000ff00;
218 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
219
220 /* enable bus-mastering */
221 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
222 data |= PCI_COMMAND_MASTER_ENABLE;
223 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
224
225 /* map the register window */
226 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
227 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
228 if (error != 0) {
229 aprint_error_dev(self, "could not map memory space\n");
230 return;
231 }
232
233 sc->sc_st = memt;
234 sc->sc_sh = memh;
235 sc->sc_dmat = pa->pa_dmat;
236
237 if (pci_intr_map(pa, &ih) != 0) {
238 aprint_error_dev(self, "could not map interrupt\n");
239 return;
240 }
241
242 intrstr = pci_intr_string(sc->sc_pct, ih);
243 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
244 if (sc->sc_ih == NULL) {
245 aprint_error_dev(self, "could not establish interrupt");
246 if (intrstr != NULL)
247 aprint_error(" at %s", intrstr);
248 aprint_error("\n");
249 return;
250 }
251 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
252
253 if (wpi_reset(sc) != 0) {
254 aprint_error_dev(self, "could not reset adapter\n");
255 return;
256 }
257
258 /*
259 * Allocate DMA memory for firmware transfers.
260 */
261 if ((error = wpi_alloc_fwmem(sc)) != 0)
262 return;
263
264 /*
265 * Allocate shared page and Tx/Rx rings.
266 */
267 if ((error = wpi_alloc_shared(sc)) != 0) {
268 aprint_error_dev(self, "could not allocate shared area\n");
269 goto fail1;
270 }
271
272 if ((error = wpi_alloc_rpool(sc)) != 0) {
273 aprint_error_dev(self, "could not allocate Rx buffers\n");
274 goto fail2;
275 }
276
277 for (ac = 0; ac < 4; ac++) {
278 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
279 if (error != 0) {
280 aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
281 goto fail3;
282 }
283 }
284
285 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
286 if (error != 0) {
287 aprint_error_dev(self, "could not allocate command ring\n");
288 goto fail3;
289 }
290
291 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
292 aprint_error_dev(self, "could not allocate Rx ring\n");
293 goto fail4;
294 }
295
296 ic->ic_ifp = ifp;
297 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
298 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
299 ic->ic_state = IEEE80211_S_INIT;
300
301 /* set device capabilities */
302 ic->ic_caps =
303 IEEE80211_C_IBSS | /* IBSS mode support */
304 IEEE80211_C_WPA | /* 802.11i */
305 IEEE80211_C_MONITOR | /* monitor mode supported */
306 IEEE80211_C_TXPMGT | /* tx power management */
307 IEEE80211_C_SHSLOT | /* short slot time supported */
308 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
309 IEEE80211_C_WME; /* 802.11e */
310
311 /* read supported channels and MAC address from EEPROM */
312 wpi_read_eeprom(sc);
313
314 /* set supported .11a, .11b, .11g rates */
315 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
316 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
317 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
318
319 ic->ic_ibss_chan = &ic->ic_channels[0];
320
321 ifp->if_softc = sc;
322 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
323 ifp->if_init = wpi_init;
324 ifp->if_stop = wpi_stop;
325 ifp->if_ioctl = wpi_ioctl;
326 ifp->if_start = wpi_start;
327 ifp->if_watchdog = wpi_watchdog;
328 IFQ_SET_READY(&ifp->if_snd);
329 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
330
331 if_attach(ifp);
332 ieee80211_ifattach(ic);
333 /* override default methods */
334 ic->ic_node_alloc = wpi_node_alloc;
335 ic->ic_newassoc = wpi_newassoc;
336 ic->ic_wme.wme_update = wpi_wme_update;
337
338 /* override state transition machine */
339 sc->sc_newstate = ic->ic_newstate;
340 ic->ic_newstate = wpi_newstate;
341 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
342
343 sc->amrr.amrr_min_success_threshold = 1;
344 sc->amrr.amrr_max_success_threshold = 15;
345
346 /* set powerhook */
347 sc->powerhook = powerhook_establish(device_xname(self), wpi_power, sc);
348
349 #if NBPFILTER > 0
350 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
351 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
352 &sc->sc_drvbpf);
353
354 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
355 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
356 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
357
358 sc->sc_txtap_len = sizeof sc->sc_txtapu;
359 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
360 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
361 #endif
362
363 ieee80211_announce(ic);
364
365 return;
366
367 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
368 fail3: while (--ac >= 0)
369 wpi_free_tx_ring(sc, &sc->txq[ac]);
370 wpi_free_rpool(sc);
371 fail2: wpi_free_shared(sc);
372 fail1: wpi_free_fwmem(sc);
373 }
374
375 static int
376 wpi_detach(device_t self, int flags __unused)
377 {
378 struct wpi_softc *sc = device_private(self);
379 struct ifnet *ifp = sc->sc_ic.ic_ifp;
380 int ac;
381
382 wpi_stop(ifp, 1);
383
384 #if NBPFILTER > 0
385 if (ifp != NULL)
386 bpfdetach(ifp);
387 #endif
388 ieee80211_ifdetach(&sc->sc_ic);
389 if (ifp != NULL)
390 if_detach(ifp);
391
392 for (ac = 0; ac < 4; ac++)
393 wpi_free_tx_ring(sc, &sc->txq[ac]);
394 wpi_free_tx_ring(sc, &sc->cmdq);
395 wpi_free_rx_ring(sc, &sc->rxq);
396 wpi_free_rpool(sc);
397 wpi_free_shared(sc);
398
399 if (sc->sc_ih != NULL) {
400 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
401 sc->sc_ih = NULL;
402 }
403
404 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
405
406 return 0;
407 }
408
409 static void
410 wpi_power(int why, void *arg)
411 {
412 struct wpi_softc *sc = arg;
413 struct ifnet *ifp;
414 pcireg_t data;
415 int s;
416
417 if (why != PWR_RESUME)
418 return;
419
420 /* clear device specific PCI configuration register 0x41 */
421 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
422 data &= ~0x0000ff00;
423 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
424
425 s = splnet();
426 ifp = sc->sc_ic.ic_ifp;
427 if (ifp->if_flags & IFF_UP) {
428 ifp->if_init(ifp);
429 if (ifp->if_flags & IFF_RUNNING)
430 ifp->if_start(ifp);
431 }
432 splx(s);
433 }
434
435 static int
436 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
437 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
438 {
439 int nsegs, error;
440
441 dma->tag = tag;
442 dma->size = size;
443
444 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
445 if (error != 0)
446 goto fail;
447
448 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
449 flags);
450 if (error != 0)
451 goto fail;
452
453 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
454 if (error != 0)
455 goto fail;
456
457 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
458 if (error != 0)
459 goto fail;
460
461 memset(dma->vaddr, 0, size);
462
463 dma->paddr = dma->map->dm_segs[0].ds_addr;
464 if (kvap != NULL)
465 *kvap = dma->vaddr;
466
467 return 0;
468
469 fail: wpi_dma_contig_free(dma);
470 return error;
471 }
472
473 static void
474 wpi_dma_contig_free(struct wpi_dma_info *dma)
475 {
476 if (dma->map != NULL) {
477 if (dma->vaddr != NULL) {
478 bus_dmamap_unload(dma->tag, dma->map);
479 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
480 bus_dmamem_free(dma->tag, &dma->seg, 1);
481 dma->vaddr = NULL;
482 }
483 bus_dmamap_destroy(dma->tag, dma->map);
484 dma->map = NULL;
485 }
486 }
487
488 /*
489 * Allocate a shared page between host and NIC.
490 */
491 static int
492 wpi_alloc_shared(struct wpi_softc *sc)
493 {
494 int error;
495 /* must be aligned on a 4K-page boundary */
496 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
497 (void **)&sc->shared, sizeof (struct wpi_shared),
498 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
499 if (error != 0)
500 aprint_error_dev(sc->sc_dev,
501 "could not allocate shared area DMA memory\n");
502
503 return error;
504 }
505
506 static void
507 wpi_free_shared(struct wpi_softc *sc)
508 {
509 wpi_dma_contig_free(&sc->shared_dma);
510 }
511
512 /*
513 * Allocate DMA-safe memory for firmware transfer.
514 */
515 static int
516 wpi_alloc_fwmem(struct wpi_softc *sc)
517 {
518 int error;
519 /* allocate enough contiguous space to store text and data */
520 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
521 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
522 BUS_DMA_NOWAIT);
523
524 if (error != 0)
525 aprint_error_dev(sc->sc_dev,
526 "could not allocate firmware transfer area"
527 "DMA memory\n");
528 return error;
529 }
530
531 static void
532 wpi_free_fwmem(struct wpi_softc *sc)
533 {
534 wpi_dma_contig_free(&sc->fw_dma);
535 }
536
537
538 static struct wpi_rbuf *
539 wpi_alloc_rbuf(struct wpi_softc *sc)
540 {
541 struct wpi_rbuf *rbuf;
542
543 rbuf = SLIST_FIRST(&sc->rxq.freelist);
544 if (rbuf == NULL)
545 return NULL;
546 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
547 sc->rxq.nb_free_entries --;
548
549 return rbuf;
550 }
551
552 /*
553 * This is called automatically by the network stack when the mbuf to which our
554 * Rx buffer is attached is freed.
555 */
556 static void
557 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
558 {
559 struct wpi_rbuf *rbuf = arg;
560 struct wpi_softc *sc = rbuf->sc;
561
562 /* put the buffer back in the free list */
563
564 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
565 sc->rxq.nb_free_entries ++;
566
567 if (__predict_true(m != NULL))
568 pool_cache_put(mb_cache, m);
569 }
570
571 static int
572 wpi_alloc_rpool(struct wpi_softc *sc)
573 {
574 struct wpi_rx_ring *ring = &sc->rxq;
575 struct wpi_rbuf *rbuf;
576 int i, error;
577
578 /* allocate a big chunk of DMA'able memory.. */
579 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
580 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
581 if (error != 0) {
582 aprint_normal_dev(sc->sc_dev,
583 "could not allocate Rx buffers DMA memory\n");
584 return error;
585 }
586
587 /* ..and split it into 3KB chunks */
588 SLIST_INIT(&ring->freelist);
589 for (i = 0; i < WPI_RBUF_COUNT; i++) {
590 rbuf = &ring->rbuf[i];
591 rbuf->sc = sc; /* backpointer for callbacks */
592 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
593 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
594
595 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
596 }
597
598 ring->nb_free_entries = WPI_RBUF_COUNT;
599 return 0;
600 }
601
602 static void
603 wpi_free_rpool(struct wpi_softc *sc)
604 {
605 wpi_dma_contig_free(&sc->rxq.buf_dma);
606 }
607
608 static int
609 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
610 {
611 struct wpi_rx_data *data;
612 struct wpi_rbuf *rbuf;
613 int i, error;
614
615 ring->cur = 0;
616
617 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
618 (void **)&ring->desc,
619 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
620 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
621 if (error != 0) {
622 aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
623 goto fail;
624 }
625
626 /*
627 * Setup Rx buffers.
628 */
629 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
630 data = &ring->data[i];
631
632 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
633 if (data->m == NULL) {
634 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
635 error = ENOMEM;
636 goto fail;
637 }
638 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
639 m_freem(data->m);
640 data->m = NULL;
641 aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
642 error = ENOMEM;
643 goto fail;
644 }
645 /* attach Rx buffer to mbuf */
646 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
647 rbuf);
648 data->m->m_flags |= M_EXT_RW;
649
650 ring->desc[i] = htole32(rbuf->paddr);
651 }
652
653 return 0;
654
655 fail: wpi_free_rx_ring(sc, ring);
656 return error;
657 }
658
659 static void
660 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
661 {
662 int ntries;
663
664 wpi_mem_lock(sc);
665
666 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
667 for (ntries = 0; ntries < 100; ntries++) {
668 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
669 break;
670 DELAY(10);
671 }
672 #ifdef WPI_DEBUG
673 if (ntries == 100 && wpi_debug > 0)
674 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
675 #endif
676 wpi_mem_unlock(sc);
677
678 ring->cur = 0;
679 }
680
681 static void
682 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
683 {
684 int i;
685
686 wpi_dma_contig_free(&ring->desc_dma);
687
688 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
689 if (ring->data[i].m != NULL)
690 m_freem(ring->data[i].m);
691 }
692 }
693
694 static int
695 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
696 int qid)
697 {
698 struct wpi_tx_data *data;
699 int i, error;
700
701 ring->qid = qid;
702 ring->count = count;
703 ring->queued = 0;
704 ring->cur = 0;
705
706 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
707 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
708 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
709 if (error != 0) {
710 aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
711 goto fail;
712 }
713
714 /* update shared page with ring's base address */
715 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
716
717 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
718 (void **)&ring->cmd,
719 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
720 if (error != 0) {
721 aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
722 goto fail;
723 }
724
725 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
726 M_NOWAIT);
727 if (ring->data == NULL) {
728 aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
729 goto fail;
730 }
731
732 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
733
734 for (i = 0; i < count; i++) {
735 data = &ring->data[i];
736
737 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
738 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
739 &data->map);
740 if (error != 0) {
741 aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
742 goto fail;
743 }
744 }
745
746 return 0;
747
748 fail: wpi_free_tx_ring(sc, ring);
749 return error;
750 }
751
752 static void
753 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
754 {
755 struct wpi_tx_data *data;
756 int i, ntries;
757
758 wpi_mem_lock(sc);
759
760 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
761 for (ntries = 0; ntries < 100; ntries++) {
762 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
763 break;
764 DELAY(10);
765 }
766 #ifdef WPI_DEBUG
767 if (ntries == 100 && wpi_debug > 0) {
768 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
769 ring->qid);
770 }
771 #endif
772 wpi_mem_unlock(sc);
773
774 for (i = 0; i < ring->count; i++) {
775 data = &ring->data[i];
776
777 if (data->m != NULL) {
778 bus_dmamap_unload(sc->sc_dmat, data->map);
779 m_freem(data->m);
780 data->m = NULL;
781 }
782 }
783
784 ring->queued = 0;
785 ring->cur = 0;
786 }
787
788 static void
789 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
790 {
791 struct wpi_tx_data *data;
792 int i;
793
794 wpi_dma_contig_free(&ring->desc_dma);
795 wpi_dma_contig_free(&ring->cmd_dma);
796
797 if (ring->data != NULL) {
798 for (i = 0; i < ring->count; i++) {
799 data = &ring->data[i];
800
801 if (data->m != NULL) {
802 bus_dmamap_unload(sc->sc_dmat, data->map);
803 m_freem(data->m);
804 }
805 }
806 free(ring->data, M_DEVBUF);
807 }
808 }
809
810 /*ARGUSED*/
811 static struct ieee80211_node *
812 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
813 {
814 struct wpi_node *wn;
815
816 wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
817
818 if (wn != NULL)
819 memset(wn, 0, sizeof (struct wpi_node));
820 return (struct ieee80211_node *)wn;
821 }
822
823 static void
824 wpi_newassoc(struct ieee80211_node *ni, int isnew)
825 {
826 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
827 int i;
828
829 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
830
831 /* set rate to some reasonable initial value */
832 for (i = ni->ni_rates.rs_nrates - 1;
833 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
834 i--);
835 ni->ni_txrate = i;
836 }
837
838 static int
839 wpi_media_change(struct ifnet *ifp)
840 {
841 int error;
842
843 error = ieee80211_media_change(ifp);
844 if (error != ENETRESET)
845 return error;
846
847 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
848 wpi_init(ifp);
849
850 return 0;
851 }
852
853 static int
854 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
855 {
856 struct ifnet *ifp = ic->ic_ifp;
857 struct wpi_softc *sc = ifp->if_softc;
858 struct ieee80211_node *ni;
859 int error;
860
861 callout_stop(&sc->calib_to);
862
863 switch (nstate) {
864 case IEEE80211_S_SCAN:
865
866 if (sc->is_scanning)
867 break;
868
869 sc->is_scanning = true;
870 ieee80211_node_table_reset(&ic->ic_scan);
871 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
872
873 /* make the link LED blink while we're scanning */
874 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
875
876 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
877 aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
878 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
879 return error;
880 }
881
882 ic->ic_state = nstate;
883 return 0;
884
885 case IEEE80211_S_ASSOC:
886 if (ic->ic_state != IEEE80211_S_RUN)
887 break;
888 /* FALLTHROUGH */
889 case IEEE80211_S_AUTH:
890 sc->config.associd = 0;
891 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
892 if ((error = wpi_auth(sc)) != 0) {
893 aprint_error_dev(sc->sc_dev,
894 "could not send authentication request\n");
895 return error;
896 }
897 break;
898
899 case IEEE80211_S_RUN:
900 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
901 /* link LED blinks while monitoring */
902 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
903 break;
904 }
905
906 ni = ic->ic_bss;
907
908 if (ic->ic_opmode != IEEE80211_M_STA) {
909 (void) wpi_auth(sc); /* XXX */
910 wpi_setup_beacon(sc, ni);
911 }
912
913 wpi_enable_tsf(sc, ni);
914
915 /* update adapter's configuration */
916 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
917 /* short preamble/slot time are negotiated when associating */
918 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
919 WPI_CONFIG_SHSLOT);
920 if (ic->ic_flags & IEEE80211_F_SHSLOT)
921 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
922 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
923 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
924 sc->config.filter |= htole32(WPI_FILTER_BSS);
925 if (ic->ic_opmode != IEEE80211_M_STA)
926 sc->config.filter |= htole32(WPI_FILTER_BEACON);
927
928 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
929
930 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
931 sc->config.flags));
932 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
933 sizeof (struct wpi_config), 1);
934 if (error != 0) {
935 aprint_error_dev(sc->sc_dev, "could not update configuration\n");
936 return error;
937 }
938
939 /* configuration has changed, set Tx power accordingly */
940 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
941 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
942 return error;
943 }
944
945 if (ic->ic_opmode == IEEE80211_M_STA) {
946 /* fake a join to init the tx rate */
947 wpi_newassoc(ni, 1);
948 }
949
950 /* start periodic calibration timer */
951 sc->calib_cnt = 0;
952 callout_schedule(&sc->calib_to, hz/2);
953
954 /* link LED always on while associated */
955 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
956 break;
957
958 case IEEE80211_S_INIT:
959 sc->is_scanning = false;
960 break;
961 }
962
963 return sc->sc_newstate(ic, nstate, arg);
964 }
965
966 /*
967 * XXX: Hack to set the current channel to the value advertised in beacons or
968 * probe responses. Only used during AP detection.
969 * XXX: Duplicated from if_iwi.c
970 */
971 static void
972 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
973 {
974 struct ieee80211_frame *wh;
975 uint8_t subtype;
976 uint8_t *frm, *efrm;
977
978 wh = mtod(m, struct ieee80211_frame *);
979
980 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
981 return;
982
983 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
984
985 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
986 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
987 return;
988
989 frm = (uint8_t *)(wh + 1);
990 efrm = mtod(m, uint8_t *) + m->m_len;
991
992 frm += 12; /* skip tstamp, bintval and capinfo fields */
993 while (frm < efrm) {
994 if (*frm == IEEE80211_ELEMID_DSPARMS)
995 #if IEEE80211_CHAN_MAX < 255
996 if (frm[2] <= IEEE80211_CHAN_MAX)
997 #endif
998 ic->ic_curchan = &ic->ic_channels[frm[2]];
999
1000 frm += frm[1] + 2;
1001 }
1002 }
1003
1004 /*
1005 * Grab exclusive access to NIC memory.
1006 */
1007 static void
1008 wpi_mem_lock(struct wpi_softc *sc)
1009 {
1010 uint32_t tmp;
1011 int ntries;
1012
1013 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1014 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1015
1016 /* spin until we actually get the lock */
1017 for (ntries = 0; ntries < 1000; ntries++) {
1018 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1019 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1020 break;
1021 DELAY(10);
1022 }
1023 if (ntries == 1000)
1024 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1025 }
1026
1027 /*
1028 * Release lock on NIC memory.
1029 */
1030 static void
1031 wpi_mem_unlock(struct wpi_softc *sc)
1032 {
1033 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1034 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1035 }
1036
1037 static uint32_t
1038 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1039 {
1040 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1041 return WPI_READ(sc, WPI_READ_MEM_DATA);
1042 }
1043
1044 static void
1045 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1046 {
1047 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1048 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1049 }
1050
1051 static void
1052 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1053 const uint32_t *data, int wlen)
1054 {
1055 for (; wlen > 0; wlen--, data++, addr += 4)
1056 wpi_mem_write(sc, addr, *data);
1057 }
1058
1059
1060 /*
1061 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1062 * instead of using the traditional bit-bang method.
1063 */
1064 static int
1065 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1066 {
1067 uint8_t *out = data;
1068 uint32_t val;
1069 int ntries;
1070
1071 wpi_mem_lock(sc);
1072 for (; len > 0; len -= 2, addr++) {
1073 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1074
1075 for (ntries = 0; ntries < 10; ntries++) {
1076 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1077 WPI_EEPROM_READY)
1078 break;
1079 DELAY(5);
1080 }
1081 if (ntries == 10) {
1082 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1083 return ETIMEDOUT;
1084 }
1085 *out++ = val >> 16;
1086 if (len > 1)
1087 *out++ = val >> 24;
1088 }
1089 wpi_mem_unlock(sc);
1090
1091 return 0;
1092 }
1093
1094 /*
1095 * The firmware boot code is small and is intended to be copied directly into
1096 * the NIC internal memory.
1097 */
1098 int
1099 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1100 {
1101 int ntries;
1102
1103 size /= sizeof (uint32_t);
1104
1105 wpi_mem_lock(sc);
1106
1107 /* copy microcode image into NIC memory */
1108 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1109 (const uint32_t *)ucode, size);
1110
1111 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1112 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1113 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1114
1115 /* run microcode */
1116 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1117
1118 /* wait for transfer to complete */
1119 for (ntries = 0; ntries < 1000; ntries++) {
1120 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1121 break;
1122 DELAY(10);
1123 }
1124 if (ntries == 1000) {
1125 wpi_mem_unlock(sc);
1126 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1127 return ETIMEDOUT;
1128 }
1129 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1130
1131 wpi_mem_unlock(sc);
1132
1133 return 0;
1134 }
1135
1136 static int
1137 wpi_load_firmware(struct wpi_softc *sc)
1138 {
1139 struct wpi_dma_info *dma = &sc->fw_dma;
1140 struct wpi_firmware_hdr hdr;
1141 const uint8_t *init_text, *init_data, *main_text, *main_data;
1142 const uint8_t *boot_text;
1143 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1144 uint32_t boot_textsz;
1145 firmware_handle_t fw;
1146 u_char *dfw;
1147 size_t size;
1148 int error;
1149
1150 /* load firmware image from disk */
1151 if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1152 aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1153 goto fail1;
1154 }
1155
1156 size = firmware_get_size(fw);
1157
1158 /* extract firmware header information */
1159 if (size < sizeof (struct wpi_firmware_hdr)) {
1160 aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
1161 size);
1162 error = EINVAL;
1163 goto fail2;
1164 }
1165
1166 if ((error = firmware_read(fw, 0, &hdr,
1167 sizeof (struct wpi_firmware_hdr))) != 0) {
1168 aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1169 goto fail2;
1170 }
1171
1172 main_textsz = le32toh(hdr.main_textsz);
1173 main_datasz = le32toh(hdr.main_datasz);
1174 init_textsz = le32toh(hdr.init_textsz);
1175 init_datasz = le32toh(hdr.init_datasz);
1176 boot_textsz = le32toh(hdr.boot_textsz);
1177
1178 /* sanity-check firmware segments sizes */
1179 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1180 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1181 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1182 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1183 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1184 (boot_textsz & 3) != 0) {
1185 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1186 error = EINVAL;
1187 goto fail2;
1188 }
1189
1190 /* check that all firmware segments are present */
1191 if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1192 main_datasz + init_textsz + init_datasz + boot_textsz) {
1193 aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
1194 size);
1195 error = EINVAL;
1196 goto fail2;
1197 }
1198
1199 dfw = firmware_malloc(size);
1200 if (dfw == NULL) {
1201 aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1202 error = ENOMEM;
1203 goto fail2;
1204 }
1205
1206 if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1207 aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1208 goto fail2;
1209 }
1210
1211 /* get pointers to firmware segments */
1212 main_text = dfw + sizeof (struct wpi_firmware_hdr);
1213 main_data = main_text + main_textsz;
1214 init_text = main_data + main_datasz;
1215 init_data = init_text + init_textsz;
1216 boot_text = init_data + init_datasz;
1217
1218 /* copy initialization images into pre-allocated DMA-safe memory */
1219 memcpy(dma->vaddr, init_data, init_datasz);
1220 memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1221
1222 /* tell adapter where to find initialization images */
1223 wpi_mem_lock(sc);
1224 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1225 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1226 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1227 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1228 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1229 wpi_mem_unlock(sc);
1230
1231 /* load firmware boot code */
1232 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1233 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1234 goto fail3;
1235 }
1236
1237 /* now press "execute" ;-) */
1238 WPI_WRITE(sc, WPI_RESET, 0);
1239
1240 /* ..and wait at most one second for adapter to initialize */
1241 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1242 /* this isn't what was supposed to happen.. */
1243 aprint_error_dev(sc->sc_dev,
1244 "timeout waiting for adapter to initialize\n");
1245 }
1246
1247 /* copy runtime images into pre-allocated DMA-safe memory */
1248 memcpy(dma->vaddr, main_data, main_datasz);
1249 memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1250
1251 /* tell adapter where to find runtime images */
1252 wpi_mem_lock(sc);
1253 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1254 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1255 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1256 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1257 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1258 wpi_mem_unlock(sc);
1259
1260 /* wait at most one second for second alive notification */
1261 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1262 /* this isn't what was supposed to happen.. */
1263 aprint_error_dev(sc->sc_dev,
1264 "timeout waiting for adapter to initialize\n");
1265 }
1266
1267
1268 fail3: firmware_free(dfw,size);
1269 fail2: firmware_close(fw);
1270 fail1: return error;
1271 }
1272
1273 static void
1274 wpi_calib_timeout(void *arg)
1275 {
1276 struct wpi_softc *sc = arg;
1277 struct ieee80211com *ic = &sc->sc_ic;
1278 int temp, s;
1279
1280 /* automatic rate control triggered every 500ms */
1281 if (ic->ic_fixed_rate == -1) {
1282 s = splnet();
1283 if (ic->ic_opmode == IEEE80211_M_STA)
1284 wpi_iter_func(sc, ic->ic_bss);
1285 else
1286 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1287 splx(s);
1288 }
1289
1290 /* update sensor data */
1291 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1292
1293 /* automatic power calibration every 60s */
1294 if (++sc->calib_cnt >= 120) {
1295 wpi_power_calibration(sc, temp);
1296 sc->calib_cnt = 0;
1297 }
1298
1299 callout_schedule(&sc->calib_to, hz/2);
1300 }
1301
1302 static void
1303 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1304 {
1305 struct wpi_softc *sc = arg;
1306 struct wpi_node *wn = (struct wpi_node *)ni;
1307
1308 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1309 }
1310
1311 /*
1312 * This function is called periodically (every 60 seconds) to adjust output
1313 * power to temperature changes.
1314 */
1315 void
1316 wpi_power_calibration(struct wpi_softc *sc, int temp)
1317 {
1318 /* sanity-check read value */
1319 if (temp < -260 || temp > 25) {
1320 /* this can't be correct, ignore */
1321 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1322 return;
1323 }
1324
1325 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1326
1327 /* adjust Tx power if need be */
1328 if (abs(temp - sc->temp) <= 6)
1329 return;
1330
1331 sc->temp = temp;
1332
1333 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1334 /* just warn, too bad for the automatic calibration... */
1335 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1336 }
1337 }
1338
1339 static void
1340 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1341 struct wpi_rx_data *data)
1342 {
1343 struct ieee80211com *ic = &sc->sc_ic;
1344 struct ifnet *ifp = ic->ic_ifp;
1345 struct wpi_rx_ring *ring = &sc->rxq;
1346 struct wpi_rx_stat *stat;
1347 struct wpi_rx_head *head;
1348 struct wpi_rx_tail *tail;
1349 struct wpi_rbuf *rbuf;
1350 struct ieee80211_frame *wh;
1351 struct ieee80211_node *ni;
1352 struct mbuf *m, *mnew;
1353 int data_off ;
1354
1355 stat = (struct wpi_rx_stat *)(desc + 1);
1356
1357 if (stat->len > WPI_STAT_MAXLEN) {
1358 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1359 ifp->if_ierrors++;
1360 return;
1361 }
1362
1363 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1364 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1365
1366 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1367 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1368 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1369 le64toh(tail->tstamp)));
1370
1371 /*
1372 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1373 * to radiotap in monitor mode).
1374 */
1375 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1376 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1377 ifp->if_ierrors++;
1378 return;
1379 }
1380
1381 /* Compute where are the useful datas */
1382 data_off = (char*)(head + 1) - mtod(data->m, char*);
1383
1384 /*
1385 * If the number of free entry is too low
1386 * just dup the data->m socket and reuse the same rbuf entry
1387 */
1388 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1389
1390 /* Prepare the mbuf for the m_dup */
1391 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1392 data->m->m_data = (char*) data->m->m_data + data_off;
1393
1394 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1395
1396 /* Restore the m_data pointer for future use */
1397 data->m->m_data = (char*) data->m->m_data - data_off;
1398
1399 if (m == NULL) {
1400 ifp->if_ierrors++;
1401 return;
1402 }
1403 } else {
1404
1405 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1406 if (mnew == NULL) {
1407 ifp->if_ierrors++;
1408 return;
1409 }
1410
1411 rbuf = wpi_alloc_rbuf(sc);
1412 KASSERT(rbuf != NULL);
1413
1414 /* attach Rx buffer to mbuf */
1415 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1416 rbuf);
1417 mnew->m_flags |= M_EXT_RW;
1418
1419 m = data->m;
1420 data->m = mnew;
1421
1422 /* update Rx descriptor */
1423 ring->desc[ring->cur] = htole32(rbuf->paddr);
1424
1425 m->m_data = (char*)m->m_data + data_off;
1426 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1427 }
1428
1429 /* finalize mbuf */
1430 m->m_pkthdr.rcvif = ifp;
1431
1432 if (ic->ic_state == IEEE80211_S_SCAN)
1433 wpi_fix_channel(ic, m);
1434
1435 #if NBPFILTER > 0
1436 if (sc->sc_drvbpf != NULL) {
1437 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1438
1439 tap->wr_flags = 0;
1440 tap->wr_chan_freq =
1441 htole16(ic->ic_channels[head->chan].ic_freq);
1442 tap->wr_chan_flags =
1443 htole16(ic->ic_channels[head->chan].ic_flags);
1444 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1445 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1446 tap->wr_tsft = tail->tstamp;
1447 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1448 switch (head->rate) {
1449 /* CCK rates */
1450 case 10: tap->wr_rate = 2; break;
1451 case 20: tap->wr_rate = 4; break;
1452 case 55: tap->wr_rate = 11; break;
1453 case 110: tap->wr_rate = 22; break;
1454 /* OFDM rates */
1455 case 0xd: tap->wr_rate = 12; break;
1456 case 0xf: tap->wr_rate = 18; break;
1457 case 0x5: tap->wr_rate = 24; break;
1458 case 0x7: tap->wr_rate = 36; break;
1459 case 0x9: tap->wr_rate = 48; break;
1460 case 0xb: tap->wr_rate = 72; break;
1461 case 0x1: tap->wr_rate = 96; break;
1462 case 0x3: tap->wr_rate = 108; break;
1463 /* unknown rate: should not happen */
1464 default: tap->wr_rate = 0;
1465 }
1466 if (le16toh(head->flags) & 0x4)
1467 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1468
1469 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1470 }
1471 #endif
1472
1473 /* grab a reference to the source node */
1474 wh = mtod(m, struct ieee80211_frame *);
1475 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1476
1477 /* send the frame to the 802.11 layer */
1478 ieee80211_input(ic, m, ni, stat->rssi, 0);
1479
1480 /* release node reference */
1481 ieee80211_free_node(ni);
1482 }
1483
1484 static void
1485 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1486 {
1487 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1488 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1489 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1490 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1491 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1492
1493 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1494 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1495 stat->nkill, stat->rate, le32toh(stat->duration),
1496 le32toh(stat->status)));
1497
1498 /*
1499 * Update rate control statistics for the node.
1500 * XXX we should not count mgmt frames since they're always sent at
1501 * the lowest available bit-rate.
1502 */
1503 wn->amn.amn_txcnt++;
1504 if (stat->ntries > 0) {
1505 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1506 wn->amn.amn_retrycnt++;
1507 }
1508
1509 if ((le32toh(stat->status) & 0xff) != 1)
1510 ifp->if_oerrors++;
1511 else
1512 ifp->if_opackets++;
1513
1514 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1515 m_freem(txdata->m);
1516 txdata->m = NULL;
1517 ieee80211_free_node(txdata->ni);
1518 txdata->ni = NULL;
1519
1520 ring->queued--;
1521
1522 sc->sc_tx_timer = 0;
1523 ifp->if_flags &= ~IFF_OACTIVE;
1524 wpi_start(ifp);
1525 }
1526
1527 static void
1528 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1529 {
1530 struct wpi_tx_ring *ring = &sc->cmdq;
1531 struct wpi_tx_data *data;
1532
1533 if ((desc->qid & 7) != 4)
1534 return; /* not a command ack */
1535
1536 data = &ring->data[desc->idx];
1537
1538 /* if the command was mapped in a mbuf, free it */
1539 if (data->m != NULL) {
1540 bus_dmamap_unload(sc->sc_dmat, data->map);
1541 m_freem(data->m);
1542 data->m = NULL;
1543 }
1544
1545 wakeup(&ring->cmd[desc->idx]);
1546 }
1547
1548 static void
1549 wpi_notif_intr(struct wpi_softc *sc)
1550 {
1551 struct ieee80211com *ic = &sc->sc_ic;
1552 struct ifnet *ifp = ic->ic_ifp;
1553 struct wpi_rx_desc *desc;
1554 struct wpi_rx_data *data;
1555 uint32_t hw;
1556
1557 hw = le32toh(sc->shared->next);
1558 while (sc->rxq.cur != hw) {
1559 data = &sc->rxq.data[sc->rxq.cur];
1560
1561 desc = mtod(data->m, struct wpi_rx_desc *);
1562
1563 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1564 "len=%d\n", desc->qid, desc->idx, desc->flags,
1565 desc->type, le32toh(desc->len)));
1566
1567 if (!(desc->qid & 0x80)) /* reply to a command */
1568 wpi_cmd_intr(sc, desc);
1569
1570 switch (desc->type) {
1571 case WPI_RX_DONE:
1572 /* a 802.11 frame was received */
1573 wpi_rx_intr(sc, desc, data);
1574 break;
1575
1576 case WPI_TX_DONE:
1577 /* a 802.11 frame has been transmitted */
1578 wpi_tx_intr(sc, desc);
1579 break;
1580
1581 case WPI_UC_READY:
1582 {
1583 struct wpi_ucode_info *uc =
1584 (struct wpi_ucode_info *)(desc + 1);
1585
1586 /* the microcontroller is ready */
1587 DPRINTF(("microcode alive notification version %x "
1588 "alive %x\n", le32toh(uc->version),
1589 le32toh(uc->valid)));
1590
1591 if (le32toh(uc->valid) != 1) {
1592 aprint_error_dev(sc->sc_dev,
1593 "microcontroller initialization failed\n");
1594 }
1595 break;
1596 }
1597 case WPI_STATE_CHANGED:
1598 {
1599 uint32_t *status = (uint32_t *)(desc + 1);
1600
1601 /* enabled/disabled notification */
1602 DPRINTF(("state changed to %x\n", le32toh(*status)));
1603
1604 if (le32toh(*status) & 1) {
1605 /* the radio button has to be pushed */
1606 aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1607 /* turn the interface down */
1608 ifp->if_flags &= ~IFF_UP;
1609 wpi_stop(ifp, 1);
1610 return; /* no further processing */
1611 }
1612 break;
1613 }
1614 case WPI_START_SCAN:
1615 {
1616 struct wpi_start_scan *scan =
1617 (struct wpi_start_scan *)(desc + 1);
1618
1619 DPRINTFN(2, ("scanning channel %d status %x\n",
1620 scan->chan, le32toh(scan->status)));
1621
1622 /* fix current channel */
1623 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1624 break;
1625 }
1626 case WPI_STOP_SCAN:
1627 {
1628 struct wpi_stop_scan *scan =
1629 (struct wpi_stop_scan *)(desc + 1);
1630
1631 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1632 scan->nchan, scan->status, scan->chan));
1633
1634 if (scan->status == 1 && scan->chan <= 14) {
1635 /*
1636 * We just finished scanning 802.11g channels,
1637 * start scanning 802.11a ones.
1638 */
1639 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1640 break;
1641 }
1642 sc->is_scanning = false;
1643 ieee80211_end_scan(ic);
1644 break;
1645 }
1646 }
1647
1648 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1649 }
1650
1651 /* tell the firmware what we have processed */
1652 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1653 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1654 }
1655
1656 static int
1657 wpi_intr(void *arg)
1658 {
1659 struct wpi_softc *sc = arg;
1660 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1661 uint32_t r;
1662
1663 r = WPI_READ(sc, WPI_INTR);
1664 if (r == 0 || r == 0xffffffff)
1665 return 0; /* not for us */
1666
1667 DPRINTFN(5, ("interrupt reg %x\n", r));
1668
1669 /* disable interrupts */
1670 WPI_WRITE(sc, WPI_MASK, 0);
1671 /* ack interrupts */
1672 WPI_WRITE(sc, WPI_INTR, r);
1673
1674 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1675 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1676 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1677 wpi_stop(sc->sc_ic.ic_ifp, 1);
1678 return 1;
1679 }
1680
1681 if (r & WPI_RX_INTR)
1682 wpi_notif_intr(sc);
1683
1684 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1685 wakeup(sc);
1686
1687 /* re-enable interrupts */
1688 if (ifp->if_flags & IFF_UP)
1689 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1690
1691 return 1;
1692 }
1693
1694 static uint8_t
1695 wpi_plcp_signal(int rate)
1696 {
1697 switch (rate) {
1698 /* CCK rates (returned values are device-dependent) */
1699 case 2: return 10;
1700 case 4: return 20;
1701 case 11: return 55;
1702 case 22: return 110;
1703
1704 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1705 /* R1-R4, (u)ral is R4-R1 */
1706 case 12: return 0xd;
1707 case 18: return 0xf;
1708 case 24: return 0x5;
1709 case 36: return 0x7;
1710 case 48: return 0x9;
1711 case 72: return 0xb;
1712 case 96: return 0x1;
1713 case 108: return 0x3;
1714
1715 /* unsupported rates (should not get there) */
1716 default: return 0;
1717 }
1718 }
1719
1720 /* quickly determine if a given rate is CCK or OFDM */
1721 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1722
1723 static int
1724 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1725 int ac)
1726 {
1727 struct ieee80211com *ic = &sc->sc_ic;
1728 struct wpi_tx_ring *ring = &sc->txq[ac];
1729 struct wpi_tx_desc *desc;
1730 struct wpi_tx_data *data;
1731 struct wpi_tx_cmd *cmd;
1732 struct wpi_cmd_data *tx;
1733 struct ieee80211_frame *wh;
1734 struct ieee80211_key *k;
1735 const struct chanAccParams *cap;
1736 struct mbuf *mnew;
1737 int i, error, rate, hdrlen, noack = 0;
1738
1739 desc = &ring->desc[ring->cur];
1740 data = &ring->data[ring->cur];
1741
1742 wh = mtod(m0, struct ieee80211_frame *);
1743
1744 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1745 cap = &ic->ic_wme.wme_chanParams;
1746 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1747 }
1748
1749 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1750 k = ieee80211_crypto_encap(ic, ni, m0);
1751 if (k == NULL) {
1752 m_freem(m0);
1753 return ENOBUFS;
1754 }
1755
1756 /* packet header may have moved, reset our local pointer */
1757 wh = mtod(m0, struct ieee80211_frame *);
1758 }
1759
1760 hdrlen = ieee80211_anyhdrsize(wh);
1761
1762 /* pickup a rate */
1763 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1764 IEEE80211_FC0_TYPE_MGT) {
1765 /* mgmt frames are sent at the lowest available bit-rate */
1766 rate = ni->ni_rates.rs_rates[0];
1767 } else {
1768 if (ic->ic_fixed_rate != -1) {
1769 rate = ic->ic_sup_rates[ic->ic_curmode].
1770 rs_rates[ic->ic_fixed_rate];
1771 } else
1772 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1773 }
1774 rate &= IEEE80211_RATE_VAL;
1775
1776
1777 #if NBPFILTER > 0
1778 if (sc->sc_drvbpf != NULL) {
1779 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1780
1781 tap->wt_flags = 0;
1782 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1783 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1784 tap->wt_rate = rate;
1785 tap->wt_hwqueue = ac;
1786 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1787 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1788
1789 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1790 }
1791 #endif
1792
1793 cmd = &ring->cmd[ring->cur];
1794 cmd->code = WPI_CMD_TX_DATA;
1795 cmd->flags = 0;
1796 cmd->qid = ring->qid;
1797 cmd->idx = ring->cur;
1798
1799 tx = (struct wpi_cmd_data *)cmd->data;
1800 tx->flags = 0;
1801
1802 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1803 tx->flags |= htole32(WPI_TX_NEED_ACK);
1804 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1805 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1806
1807 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1808
1809 /* retrieve destination node's id */
1810 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1811 WPI_ID_BSS;
1812
1813 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1814 IEEE80211_FC0_TYPE_MGT) {
1815 /* tell h/w to set timestamp in probe responses */
1816 if ((wh->i_fc[0] &
1817 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1818 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1819 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1820
1821 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1822 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1823 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1824 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1825 tx->timeout = htole16(3);
1826 else
1827 tx->timeout = htole16(2);
1828 } else
1829 tx->timeout = htole16(0);
1830
1831 tx->rate = wpi_plcp_signal(rate);
1832
1833 /* be very persistant at sending frames out */
1834 tx->rts_ntries = 7;
1835 tx->data_ntries = 15;
1836
1837 tx->ofdm_mask = 0xff;
1838 tx->cck_mask = 0xf;
1839 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1840
1841 tx->len = htole16(m0->m_pkthdr.len);
1842
1843 /* save and trim IEEE802.11 header */
1844 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1845 m_adj(m0, hdrlen);
1846
1847 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1848 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1849 if (error != 0 && error != EFBIG) {
1850 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1851 m_freem(m0);
1852 return error;
1853 }
1854 if (error != 0) {
1855 /* too many fragments, linearize */
1856 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1857 if (mnew == NULL) {
1858 m_freem(m0);
1859 return ENOMEM;
1860 }
1861
1862 M_COPY_PKTHDR(mnew, m0);
1863 if (m0->m_pkthdr.len > MHLEN) {
1864 MCLGET(mnew, M_DONTWAIT);
1865 if (!(mnew->m_flags & M_EXT)) {
1866 m_freem(m0);
1867 m_freem(mnew);
1868 return ENOMEM;
1869 }
1870 }
1871
1872 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1873 m_freem(m0);
1874 mnew->m_len = mnew->m_pkthdr.len;
1875 m0 = mnew;
1876
1877 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1878 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1879 if (error != 0) {
1880 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1881 error);
1882 m_freem(m0);
1883 return error;
1884 }
1885 }
1886
1887 data->m = m0;
1888 data->ni = ni;
1889
1890 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1891 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1892
1893 /* first scatter/gather segment is used by the tx data command */
1894 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1895 (1 + data->map->dm_nsegs) << 24);
1896 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1897 ring->cur * sizeof (struct wpi_tx_cmd));
1898 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1899 ((hdrlen + 3) & ~3));
1900
1901 for (i = 1; i <= data->map->dm_nsegs; i++) {
1902 desc->segs[i].addr =
1903 htole32(data->map->dm_segs[i - 1].ds_addr);
1904 desc->segs[i].len =
1905 htole32(data->map->dm_segs[i - 1].ds_len);
1906 }
1907
1908 ring->queued++;
1909
1910 /* kick ring */
1911 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1912 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1913
1914 return 0;
1915 }
1916
1917 static void
1918 wpi_start(struct ifnet *ifp)
1919 {
1920 struct wpi_softc *sc = ifp->if_softc;
1921 struct ieee80211com *ic = &sc->sc_ic;
1922 struct ieee80211_node *ni;
1923 struct ether_header *eh;
1924 struct mbuf *m0;
1925 int ac;
1926
1927 /*
1928 * net80211 may still try to send management frames even if the
1929 * IFF_RUNNING flag is not set...
1930 */
1931 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1932 return;
1933
1934 for (;;) {
1935 IF_DEQUEUE(&ic->ic_mgtq, m0);
1936 if (m0 != NULL) {
1937
1938 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1939 m0->m_pkthdr.rcvif = NULL;
1940
1941 /* management frames go into ring 0 */
1942 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1943 ifp->if_oerrors++;
1944 continue;
1945 }
1946 #if NBPFILTER > 0
1947 if (ic->ic_rawbpf != NULL)
1948 bpf_mtap(ic->ic_rawbpf, m0);
1949 #endif
1950 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1951 ifp->if_oerrors++;
1952 break;
1953 }
1954 } else {
1955 if (ic->ic_state != IEEE80211_S_RUN)
1956 break;
1957 IFQ_POLL(&ifp->if_snd, m0);
1958 if (m0 == NULL)
1959 break;
1960
1961 if (m0->m_len < sizeof (*eh) &&
1962 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1963 ifp->if_oerrors++;
1964 continue;
1965 }
1966 eh = mtod(m0, struct ether_header *);
1967 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1968 if (ni == NULL) {
1969 m_freem(m0);
1970 ifp->if_oerrors++;
1971 continue;
1972 }
1973
1974 /* classify mbuf so we can find which tx ring to use */
1975 if (ieee80211_classify(ic, m0, ni) != 0) {
1976 m_freem(m0);
1977 ieee80211_free_node(ni);
1978 ifp->if_oerrors++;
1979 continue;
1980 }
1981
1982 /* no QoS encapsulation for EAPOL frames */
1983 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1984 M_WME_GETAC(m0) : WME_AC_BE;
1985
1986 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1987 /* there is no place left in this ring */
1988 ifp->if_flags |= IFF_OACTIVE;
1989 break;
1990 }
1991 IFQ_DEQUEUE(&ifp->if_snd, m0);
1992 #if NBPFILTER > 0
1993 if (ifp->if_bpf != NULL)
1994 bpf_mtap(ifp->if_bpf, m0);
1995 #endif
1996 m0 = ieee80211_encap(ic, m0, ni);
1997 if (m0 == NULL) {
1998 ieee80211_free_node(ni);
1999 ifp->if_oerrors++;
2000 continue;
2001 }
2002 #if NBPFILTER > 0
2003 if (ic->ic_rawbpf != NULL)
2004 bpf_mtap(ic->ic_rawbpf, m0);
2005 #endif
2006 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2007 ieee80211_free_node(ni);
2008 ifp->if_oerrors++;
2009 break;
2010 }
2011 }
2012
2013 sc->sc_tx_timer = 5;
2014 ifp->if_timer = 1;
2015 }
2016 }
2017
2018 static void
2019 wpi_watchdog(struct ifnet *ifp)
2020 {
2021 struct wpi_softc *sc = ifp->if_softc;
2022
2023 ifp->if_timer = 0;
2024
2025 if (sc->sc_tx_timer > 0) {
2026 if (--sc->sc_tx_timer == 0) {
2027 aprint_error_dev(sc->sc_dev, "device timeout\n");
2028 ifp->if_oerrors++;
2029 ifp->if_flags &= ~IFF_UP;
2030 wpi_stop(ifp, 1);
2031 return;
2032 }
2033 ifp->if_timer = 1;
2034 }
2035
2036 ieee80211_watchdog(&sc->sc_ic);
2037 }
2038
2039 static int
2040 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2041 {
2042 #define IS_RUNNING(ifp) \
2043 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2044
2045 struct wpi_softc *sc = ifp->if_softc;
2046 struct ieee80211com *ic = &sc->sc_ic;
2047 int s, error = 0;
2048
2049 s = splnet();
2050
2051 switch (cmd) {
2052 case SIOCSIFFLAGS:
2053 if (ifp->if_flags & IFF_UP) {
2054 if (!(ifp->if_flags & IFF_RUNNING))
2055 wpi_init(ifp);
2056 } else {
2057 if (ifp->if_flags & IFF_RUNNING)
2058 wpi_stop(ifp, 1);
2059 }
2060 break;
2061
2062 case SIOCADDMULTI:
2063 case SIOCDELMULTI:
2064 /* XXX no h/w multicast filter? --dyoung */
2065 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2066 /* setup multicast filter, etc */
2067 error = 0;
2068 }
2069 break;
2070
2071 default:
2072 error = ieee80211_ioctl(ic, cmd, data);
2073 }
2074
2075 if (error == ENETRESET) {
2076 if (IS_RUNNING(ifp) &&
2077 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2078 wpi_init(ifp);
2079 error = 0;
2080 }
2081
2082 splx(s);
2083 return error;
2084
2085 #undef IS_RUNNING
2086 }
2087
2088 /*
2089 * Extract various information from EEPROM.
2090 */
2091 static void
2092 wpi_read_eeprom(struct wpi_softc *sc)
2093 {
2094 struct ieee80211com *ic = &sc->sc_ic;
2095 char domain[4];
2096 int i;
2097
2098 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2099 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2100 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2101
2102 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2103 sc->type));
2104
2105 /* read and print regulatory domain */
2106 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2107 aprint_normal(", %.4s", domain);
2108
2109 /* read and print MAC address */
2110 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2111 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2112
2113 /* read the list of authorized channels */
2114 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2115 wpi_read_eeprom_channels(sc, i);
2116
2117 /* read the list of power groups */
2118 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2119 wpi_read_eeprom_group(sc, i);
2120 }
2121
2122 static void
2123 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2124 {
2125 struct ieee80211com *ic = &sc->sc_ic;
2126 const struct wpi_chan_band *band = &wpi_bands[n];
2127 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2128 int chan, i;
2129
2130 wpi_read_prom_data(sc, band->addr, channels,
2131 band->nchan * sizeof (struct wpi_eeprom_chan));
2132
2133 for (i = 0; i < band->nchan; i++) {
2134 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2135 continue;
2136
2137 chan = band->chan[i];
2138
2139 if (n == 0) { /* 2GHz band */
2140 ic->ic_channels[chan].ic_freq =
2141 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2142 ic->ic_channels[chan].ic_flags =
2143 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2144 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2145
2146 } else { /* 5GHz band */
2147 /*
2148 * Some 3945abg adapters support channels 7, 8, 11
2149 * and 12 in the 2GHz *and* 5GHz bands.
2150 * Because of limitations in our net80211(9) stack,
2151 * we can't support these channels in 5GHz band.
2152 */
2153 if (chan <= 14)
2154 continue;
2155
2156 ic->ic_channels[chan].ic_freq =
2157 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2158 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2159 }
2160
2161 /* is active scan allowed on this channel? */
2162 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2163 ic->ic_channels[chan].ic_flags |=
2164 IEEE80211_CHAN_PASSIVE;
2165 }
2166
2167 /* save maximum allowed power for this channel */
2168 sc->maxpwr[chan] = channels[i].maxpwr;
2169
2170 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2171 chan, channels[i].flags, sc->maxpwr[chan]));
2172 }
2173 }
2174
2175 static void
2176 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2177 {
2178 struct wpi_power_group *group = &sc->groups[n];
2179 struct wpi_eeprom_group rgroup;
2180 int i;
2181
2182 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2183 sizeof rgroup);
2184
2185 /* save power group information */
2186 group->chan = rgroup.chan;
2187 group->maxpwr = rgroup.maxpwr;
2188 /* temperature at which the samples were taken */
2189 group->temp = (int16_t)le16toh(rgroup.temp);
2190
2191 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2192 group->chan, group->maxpwr, group->temp));
2193
2194 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2195 group->samples[i].index = rgroup.samples[i].index;
2196 group->samples[i].power = rgroup.samples[i].power;
2197
2198 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2199 group->samples[i].index, group->samples[i].power));
2200 }
2201 }
2202
2203 /*
2204 * Send a command to the firmware.
2205 */
2206 static int
2207 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2208 {
2209 struct wpi_tx_ring *ring = &sc->cmdq;
2210 struct wpi_tx_desc *desc;
2211 struct wpi_tx_cmd *cmd;
2212
2213 KASSERT(size <= sizeof cmd->data);
2214
2215 desc = &ring->desc[ring->cur];
2216 cmd = &ring->cmd[ring->cur];
2217
2218 cmd->code = code;
2219 cmd->flags = 0;
2220 cmd->qid = ring->qid;
2221 cmd->idx = ring->cur;
2222 memcpy(cmd->data, buf, size);
2223
2224 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2225 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2226 ring->cur * sizeof (struct wpi_tx_cmd));
2227 desc->segs[0].len = htole32(4 + size);
2228
2229 /* kick cmd ring */
2230 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2231 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2232
2233 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2234 }
2235
2236 static int
2237 wpi_wme_update(struct ieee80211com *ic)
2238 {
2239 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2240 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2241 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2242 const struct wmeParams *wmep;
2243 struct wpi_wme_setup wme;
2244 int ac;
2245
2246 /* don't override default WME values if WME is not actually enabled */
2247 if (!(ic->ic_flags & IEEE80211_F_WME))
2248 return 0;
2249
2250 wme.flags = 0;
2251 for (ac = 0; ac < WME_NUM_AC; ac++) {
2252 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2253 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2254 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2255 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2256 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2257
2258 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2259 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2260 wme.ac[ac].cwmax, wme.ac[ac].txop));
2261 }
2262
2263 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2264 #undef WPI_USEC
2265 #undef WPI_EXP2
2266 }
2267
2268 /*
2269 * Configure h/w multi-rate retries.
2270 */
2271 static int
2272 wpi_mrr_setup(struct wpi_softc *sc)
2273 {
2274 struct ieee80211com *ic = &sc->sc_ic;
2275 struct wpi_mrr_setup mrr;
2276 int i, error;
2277
2278 /* CCK rates (not used with 802.11a) */
2279 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2280 mrr.rates[i].flags = 0;
2281 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2282 /* fallback to the immediate lower CCK rate (if any) */
2283 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2284 /* try one time at this rate before falling back to "next" */
2285 mrr.rates[i].ntries = 1;
2286 }
2287
2288 /* OFDM rates (not used with 802.11b) */
2289 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2290 mrr.rates[i].flags = 0;
2291 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2292 /* fallback to the immediate lower rate (if any) */
2293 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2294 mrr.rates[i].next = (i == WPI_OFDM6) ?
2295 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2296 WPI_OFDM6 : WPI_CCK2) :
2297 i - 1;
2298 /* try one time at this rate before falling back to "next" */
2299 mrr.rates[i].ntries = 1;
2300 }
2301
2302 /* setup MRR for control frames */
2303 mrr.which = htole32(WPI_MRR_CTL);
2304 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2305 if (error != 0) {
2306 aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2307 return error;
2308 }
2309
2310 /* setup MRR for data frames */
2311 mrr.which = htole32(WPI_MRR_DATA);
2312 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2313 if (error != 0) {
2314 aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2315 return error;
2316 }
2317
2318 return 0;
2319 }
2320
2321 static void
2322 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2323 {
2324 struct wpi_cmd_led led;
2325
2326 led.which = which;
2327 led.unit = htole32(100000); /* on/off in unit of 100ms */
2328 led.off = off;
2329 led.on = on;
2330
2331 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2332 }
2333
2334 static void
2335 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2336 {
2337 struct wpi_cmd_tsf tsf;
2338 uint64_t val, mod;
2339
2340 memset(&tsf, 0, sizeof tsf);
2341 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2342 tsf.bintval = htole16(ni->ni_intval);
2343 tsf.lintval = htole16(10);
2344
2345 /* compute remaining time until next beacon */
2346 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2347 mod = le64toh(tsf.tstamp) % val;
2348 tsf.binitval = htole32((uint32_t)(val - mod));
2349
2350 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2351 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2352
2353 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2354 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2355 }
2356
2357 /*
2358 * Update Tx power to match what is defined for channel `c'.
2359 */
2360 static int
2361 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2362 {
2363 struct ieee80211com *ic = &sc->sc_ic;
2364 struct wpi_power_group *group;
2365 struct wpi_cmd_txpower txpower;
2366 u_int chan;
2367 int i;
2368
2369 /* get channel number */
2370 chan = ieee80211_chan2ieee(ic, c);
2371
2372 /* find the power group to which this channel belongs */
2373 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2374 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2375 if (chan <= group->chan)
2376 break;
2377 } else
2378 group = &sc->groups[0];
2379
2380 memset(&txpower, 0, sizeof txpower);
2381 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2382 txpower.chan = htole16(chan);
2383
2384 /* set Tx power for all OFDM and CCK rates */
2385 for (i = 0; i <= 11 ; i++) {
2386 /* retrieve Tx power for this channel/rate combination */
2387 int idx = wpi_get_power_index(sc, group, c,
2388 wpi_ridx_to_rate[i]);
2389
2390 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2391
2392 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2393 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2394 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2395 } else {
2396 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2397 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2398 }
2399 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2400 wpi_ridx_to_rate[i], idx));
2401 }
2402
2403 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2404 }
2405
2406 /*
2407 * Determine Tx power index for a given channel/rate combination.
2408 * This takes into account the regulatory information from EEPROM and the
2409 * current temperature.
2410 */
2411 static int
2412 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2413 struct ieee80211_channel *c, int rate)
2414 {
2415 /* fixed-point arithmetic division using a n-bit fractional part */
2416 #define fdivround(a, b, n) \
2417 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2418
2419 /* linear interpolation */
2420 #define interpolate(x, x1, y1, x2, y2, n) \
2421 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2422
2423 struct ieee80211com *ic = &sc->sc_ic;
2424 struct wpi_power_sample *sample;
2425 int pwr, idx;
2426 u_int chan;
2427
2428 /* get channel number */
2429 chan = ieee80211_chan2ieee(ic, c);
2430
2431 /* default power is group's maximum power - 3dB */
2432 pwr = group->maxpwr / 2;
2433
2434 /* decrease power for highest OFDM rates to reduce distortion */
2435 switch (rate) {
2436 case 72: /* 36Mb/s */
2437 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2438 break;
2439 case 96: /* 48Mb/s */
2440 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2441 break;
2442 case 108: /* 54Mb/s */
2443 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2444 break;
2445 }
2446
2447 /* never exceed channel's maximum allowed Tx power */
2448 pwr = min(pwr, sc->maxpwr[chan]);
2449
2450 /* retrieve power index into gain tables from samples */
2451 for (sample = group->samples; sample < &group->samples[3]; sample++)
2452 if (pwr > sample[1].power)
2453 break;
2454 /* fixed-point linear interpolation using a 19-bit fractional part */
2455 idx = interpolate(pwr, sample[0].power, sample[0].index,
2456 sample[1].power, sample[1].index, 19);
2457
2458 /*
2459 * Adjust power index based on current temperature:
2460 * - if cooler than factory-calibrated: decrease output power
2461 * - if warmer than factory-calibrated: increase output power
2462 */
2463 idx -= (sc->temp - group->temp) * 11 / 100;
2464
2465 /* decrease power for CCK rates (-5dB) */
2466 if (!WPI_RATE_IS_OFDM(rate))
2467 idx += 10;
2468
2469 /* keep power index in a valid range */
2470 if (idx < 0)
2471 return 0;
2472 if (idx > WPI_MAX_PWR_INDEX)
2473 return WPI_MAX_PWR_INDEX;
2474 return idx;
2475
2476 #undef interpolate
2477 #undef fdivround
2478 }
2479
2480 /*
2481 * Build a beacon frame that the firmware will broadcast periodically in
2482 * IBSS or HostAP modes.
2483 */
2484 static int
2485 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2486 {
2487 struct ieee80211com *ic = &sc->sc_ic;
2488 struct wpi_tx_ring *ring = &sc->cmdq;
2489 struct wpi_tx_desc *desc;
2490 struct wpi_tx_data *data;
2491 struct wpi_tx_cmd *cmd;
2492 struct wpi_cmd_beacon *bcn;
2493 struct ieee80211_beacon_offsets bo;
2494 struct mbuf *m0;
2495 int error;
2496
2497 desc = &ring->desc[ring->cur];
2498 data = &ring->data[ring->cur];
2499
2500 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2501 if (m0 == NULL) {
2502 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2503 return ENOMEM;
2504 }
2505
2506 cmd = &ring->cmd[ring->cur];
2507 cmd->code = WPI_CMD_SET_BEACON;
2508 cmd->flags = 0;
2509 cmd->qid = ring->qid;
2510 cmd->idx = ring->cur;
2511
2512 bcn = (struct wpi_cmd_beacon *)cmd->data;
2513 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2514 bcn->id = WPI_ID_BROADCAST;
2515 bcn->ofdm_mask = 0xff;
2516 bcn->cck_mask = 0x0f;
2517 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2518 bcn->len = htole16(m0->m_pkthdr.len);
2519 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2520 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2521 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2522
2523 /* save and trim IEEE802.11 header */
2524 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2525 m_adj(m0, sizeof (struct ieee80211_frame));
2526
2527 /* assume beacon frame is contiguous */
2528 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2529 BUS_DMA_READ | BUS_DMA_NOWAIT);
2530 if (error) {
2531 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2532 m_freem(m0);
2533 return error;
2534 }
2535
2536 data->m = m0;
2537
2538 /* first scatter/gather segment is used by the beacon command */
2539 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2540 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2541 ring->cur * sizeof (struct wpi_tx_cmd));
2542 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2543 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2544 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2545
2546 /* kick cmd ring */
2547 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2548 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2549
2550 return 0;
2551 }
2552
2553 static int
2554 wpi_auth(struct wpi_softc *sc)
2555 {
2556 struct ieee80211com *ic = &sc->sc_ic;
2557 struct ieee80211_node *ni = ic->ic_bss;
2558 struct wpi_node_info node;
2559 int error;
2560
2561 /* update adapter's configuration */
2562 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2563 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2564 sc->config.flags = htole32(WPI_CONFIG_TSF);
2565 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2566 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2567 WPI_CONFIG_24GHZ);
2568 }
2569 switch (ic->ic_curmode) {
2570 case IEEE80211_MODE_11A:
2571 sc->config.cck_mask = 0;
2572 sc->config.ofdm_mask = 0x15;
2573 break;
2574 case IEEE80211_MODE_11B:
2575 sc->config.cck_mask = 0x03;
2576 sc->config.ofdm_mask = 0;
2577 break;
2578 default: /* assume 802.11b/g */
2579 sc->config.cck_mask = 0x0f;
2580 sc->config.ofdm_mask = 0x15;
2581 }
2582
2583 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2584 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2585 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2586 sizeof (struct wpi_config), 1);
2587 if (error != 0) {
2588 aprint_error_dev(sc->sc_dev, "could not configure\n");
2589 return error;
2590 }
2591
2592 /* configuration has changed, set Tx power accordingly */
2593 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2594 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2595 return error;
2596 }
2597
2598 /* add default node */
2599 memset(&node, 0, sizeof node);
2600 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2601 node.id = WPI_ID_BSS;
2602 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2603 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2604 node.action = htole32(WPI_ACTION_SET_RATE);
2605 node.antenna = WPI_ANTENNA_BOTH;
2606 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2607 if (error != 0) {
2608 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2609 return error;
2610 }
2611
2612 return 0;
2613 }
2614
2615 /*
2616 * Send a scan request to the firmware. Since this command is huge, we map it
2617 * into a mbuf instead of using the pre-allocated set of commands.
2618 */
2619 static int
2620 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2621 {
2622 struct ieee80211com *ic = &sc->sc_ic;
2623 struct wpi_tx_ring *ring = &sc->cmdq;
2624 struct wpi_tx_desc *desc;
2625 struct wpi_tx_data *data;
2626 struct wpi_tx_cmd *cmd;
2627 struct wpi_scan_hdr *hdr;
2628 struct wpi_scan_chan *chan;
2629 struct ieee80211_frame *wh;
2630 struct ieee80211_rateset *rs;
2631 struct ieee80211_channel *c;
2632 enum ieee80211_phymode mode;
2633 uint8_t *frm;
2634 int nrates, pktlen, error;
2635
2636 desc = &ring->desc[ring->cur];
2637 data = &ring->data[ring->cur];
2638
2639 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2640 if (data->m == NULL) {
2641 aprint_error_dev(sc->sc_dev,
2642 "could not allocate mbuf for scan command\n");
2643 return ENOMEM;
2644 }
2645
2646 MCLGET(data->m, M_DONTWAIT);
2647 if (!(data->m->m_flags & M_EXT)) {
2648 m_freem(data->m);
2649 data->m = NULL;
2650 aprint_error_dev(sc->sc_dev,
2651 "could not allocate mbuf for scan command\n");
2652 return ENOMEM;
2653 }
2654
2655 cmd = mtod(data->m, struct wpi_tx_cmd *);
2656 cmd->code = WPI_CMD_SCAN;
2657 cmd->flags = 0;
2658 cmd->qid = ring->qid;
2659 cmd->idx = ring->cur;
2660
2661 hdr = (struct wpi_scan_hdr *)cmd->data;
2662 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2663 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2664 hdr->id = WPI_ID_BROADCAST;
2665 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2666
2667 /*
2668 * Move to the next channel if no packets are received within 5 msecs
2669 * after sending the probe request (this helps to reduce the duration
2670 * of active scans).
2671 */
2672 hdr->quiet = htole16(5); /* timeout in milliseconds */
2673 hdr->plcp_threshold = htole16(1); /* min # of packets */
2674
2675 if (flags & IEEE80211_CHAN_A) {
2676 hdr->crc_threshold = htole16(1);
2677 /* send probe requests at 6Mbps */
2678 hdr->rate = wpi_plcp_signal(12);
2679 } else {
2680 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2681 /* send probe requests at 1Mbps */
2682 hdr->rate = wpi_plcp_signal(2);
2683 }
2684
2685 /* for directed scans, firmware inserts the essid IE itself */
2686 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2687 hdr->essid[0].len = ic->ic_des_esslen;
2688 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2689
2690 /*
2691 * Build a probe request frame. Most of the following code is a
2692 * copy & paste of what is done in net80211.
2693 */
2694 wh = (struct ieee80211_frame *)(hdr + 1);
2695 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2696 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2697 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2698 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2699 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2700 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2701 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2702 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2703
2704 frm = (uint8_t *)(wh + 1);
2705
2706 /* add empty essid IE (firmware generates it for directed scans) */
2707 *frm++ = IEEE80211_ELEMID_SSID;
2708 *frm++ = 0;
2709
2710 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2711 rs = &ic->ic_sup_rates[mode];
2712
2713 /* add supported rates IE */
2714 *frm++ = IEEE80211_ELEMID_RATES;
2715 nrates = rs->rs_nrates;
2716 if (nrates > IEEE80211_RATE_SIZE)
2717 nrates = IEEE80211_RATE_SIZE;
2718 *frm++ = nrates;
2719 memcpy(frm, rs->rs_rates, nrates);
2720 frm += nrates;
2721
2722 /* add supported xrates IE */
2723 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2724 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2725 *frm++ = IEEE80211_ELEMID_XRATES;
2726 *frm++ = nrates;
2727 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2728 frm += nrates;
2729 }
2730
2731 /* setup length of probe request */
2732 hdr->paylen = htole16(frm - (uint8_t *)wh);
2733
2734 chan = (struct wpi_scan_chan *)frm;
2735 for (c = &ic->ic_channels[1];
2736 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2737 if ((c->ic_flags & flags) != flags)
2738 continue;
2739
2740 chan->chan = ieee80211_chan2ieee(ic, c);
2741 chan->flags = 0;
2742 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2743 chan->flags |= WPI_CHAN_ACTIVE;
2744 if (ic->ic_des_esslen != 0)
2745 chan->flags |= WPI_CHAN_DIRECT;
2746 }
2747 chan->dsp_gain = 0x6e;
2748 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2749 chan->rf_gain = 0x3b;
2750 chan->active = htole16(10);
2751 chan->passive = htole16(110);
2752 } else {
2753 chan->rf_gain = 0x28;
2754 chan->active = htole16(20);
2755 chan->passive = htole16(120);
2756 }
2757 hdr->nchan++;
2758 chan++;
2759
2760 frm += sizeof (struct wpi_scan_chan);
2761 }
2762 hdr->len = htole16(frm - (uint8_t *)hdr);
2763 pktlen = frm - (uint8_t *)cmd;
2764
2765 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2766 NULL, BUS_DMA_NOWAIT);
2767 if (error) {
2768 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2769 m_freem(data->m);
2770 data->m = NULL;
2771 return error;
2772 }
2773
2774 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2775 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2776 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2777
2778 /* kick cmd ring */
2779 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2780 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2781
2782 return 0; /* will be notified async. of failure/success */
2783 }
2784
2785 static int
2786 wpi_config(struct wpi_softc *sc)
2787 {
2788 struct ieee80211com *ic = &sc->sc_ic;
2789 struct ifnet *ifp = ic->ic_ifp;
2790 struct wpi_power power;
2791 struct wpi_bluetooth bluetooth;
2792 struct wpi_node_info node;
2793 int error;
2794
2795 memset(&power, 0, sizeof power);
2796 power.flags = htole32(WPI_POWER_CAM | 0x8);
2797 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2798 if (error != 0) {
2799 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2800 return error;
2801 }
2802
2803 /* configure bluetooth coexistence */
2804 memset(&bluetooth, 0, sizeof bluetooth);
2805 bluetooth.flags = 3;
2806 bluetooth.lead = 0xaa;
2807 bluetooth.kill = 1;
2808 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2809 0);
2810 if (error != 0) {
2811 aprint_error_dev(sc->sc_dev,
2812 "could not configure bluetooth coexistence\n");
2813 return error;
2814 }
2815
2816 /* configure adapter */
2817 memset(&sc->config, 0, sizeof (struct wpi_config));
2818 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2819 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2820 /*set default channel*/
2821 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2822 sc->config.flags = htole32(WPI_CONFIG_TSF);
2823 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2824 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2825 WPI_CONFIG_24GHZ);
2826 }
2827 sc->config.filter = 0;
2828 switch (ic->ic_opmode) {
2829 case IEEE80211_M_STA:
2830 sc->config.mode = WPI_MODE_STA;
2831 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2832 break;
2833 case IEEE80211_M_IBSS:
2834 case IEEE80211_M_AHDEMO:
2835 sc->config.mode = WPI_MODE_IBSS;
2836 break;
2837 case IEEE80211_M_HOSTAP:
2838 sc->config.mode = WPI_MODE_HOSTAP;
2839 break;
2840 case IEEE80211_M_MONITOR:
2841 sc->config.mode = WPI_MODE_MONITOR;
2842 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2843 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2844 break;
2845 }
2846 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2847 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2848 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2849 sizeof (struct wpi_config), 0);
2850 if (error != 0) {
2851 aprint_error_dev(sc->sc_dev, "configure command failed\n");
2852 return error;
2853 }
2854
2855 /* configuration has changed, set Tx power accordingly */
2856 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2857 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2858 return error;
2859 }
2860
2861 /* add broadcast node */
2862 memset(&node, 0, sizeof node);
2863 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2864 node.id = WPI_ID_BROADCAST;
2865 node.rate = wpi_plcp_signal(2);
2866 node.action = htole32(WPI_ACTION_SET_RATE);
2867 node.antenna = WPI_ANTENNA_BOTH;
2868 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2869 if (error != 0) {
2870 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2871 return error;
2872 }
2873
2874 if ((error = wpi_mrr_setup(sc)) != 0) {
2875 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2876 return error;
2877 }
2878
2879 return 0;
2880 }
2881
2882 static void
2883 wpi_stop_master(struct wpi_softc *sc)
2884 {
2885 uint32_t tmp;
2886 int ntries;
2887
2888 tmp = WPI_READ(sc, WPI_RESET);
2889 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2890
2891 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2892 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2893 return; /* already asleep */
2894
2895 for (ntries = 0; ntries < 100; ntries++) {
2896 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2897 break;
2898 DELAY(10);
2899 }
2900 if (ntries == 100) {
2901 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2902 }
2903 }
2904
2905 static int
2906 wpi_power_up(struct wpi_softc *sc)
2907 {
2908 uint32_t tmp;
2909 int ntries;
2910
2911 wpi_mem_lock(sc);
2912 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2913 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2914 wpi_mem_unlock(sc);
2915
2916 for (ntries = 0; ntries < 5000; ntries++) {
2917 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2918 break;
2919 DELAY(10);
2920 }
2921 if (ntries == 5000) {
2922 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2923 return ETIMEDOUT;
2924 }
2925 return 0;
2926 }
2927
2928 static int
2929 wpi_reset(struct wpi_softc *sc)
2930 {
2931 uint32_t tmp;
2932 int ntries;
2933
2934 /* clear any pending interrupts */
2935 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2936
2937 tmp = WPI_READ(sc, WPI_PLL_CTL);
2938 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2939
2940 tmp = WPI_READ(sc, WPI_CHICKEN);
2941 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2942
2943 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2944 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2945
2946 /* wait for clock stabilization */
2947 for (ntries = 0; ntries < 1000; ntries++) {
2948 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2949 break;
2950 DELAY(10);
2951 }
2952 if (ntries == 1000) {
2953 aprint_error_dev(sc->sc_dev,
2954 "timeout waiting for clock stabilization\n");
2955 return ETIMEDOUT;
2956 }
2957
2958 /* initialize EEPROM */
2959 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2960 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2961 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2962 return EIO;
2963 }
2964 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2965
2966 return 0;
2967 }
2968
2969 static void
2970 wpi_hw_config(struct wpi_softc *sc)
2971 {
2972 uint32_t rev, hw;
2973
2974 /* voodoo from the reference driver */
2975 hw = WPI_READ(sc, WPI_HWCONFIG);
2976
2977 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2978 rev = PCI_REVISION(rev);
2979 if ((rev & 0xc0) == 0x40)
2980 hw |= WPI_HW_ALM_MB;
2981 else if (!(rev & 0x80))
2982 hw |= WPI_HW_ALM_MM;
2983
2984 if (sc->cap == 0x80)
2985 hw |= WPI_HW_SKU_MRC;
2986
2987 hw &= ~WPI_HW_REV_D;
2988 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2989 hw |= WPI_HW_REV_D;
2990
2991 if (sc->type > 1)
2992 hw |= WPI_HW_TYPE_B;
2993
2994 DPRINTF(("setting h/w config %x\n", hw));
2995 WPI_WRITE(sc, WPI_HWCONFIG, hw);
2996 }
2997
2998 static int
2999 wpi_init(struct ifnet *ifp)
3000 {
3001 struct wpi_softc *sc = ifp->if_softc;
3002 struct ieee80211com *ic = &sc->sc_ic;
3003 uint32_t tmp;
3004 int qid, ntries, error;
3005
3006 wpi_stop(ifp,1);
3007 (void)wpi_reset(sc);
3008
3009 wpi_mem_lock(sc);
3010 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3011 DELAY(20);
3012 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3013 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3014 wpi_mem_unlock(sc);
3015
3016 (void)wpi_power_up(sc);
3017 wpi_hw_config(sc);
3018
3019 /* init Rx ring */
3020 wpi_mem_lock(sc);
3021 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3022 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3023 offsetof(struct wpi_shared, next));
3024 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3025 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3026 wpi_mem_unlock(sc);
3027
3028 /* init Tx rings */
3029 wpi_mem_lock(sc);
3030 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3031 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3032 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3033 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3034 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3035 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3036 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3037
3038 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3039 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3040
3041 for (qid = 0; qid < 6; qid++) {
3042 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3043 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3044 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3045 }
3046 wpi_mem_unlock(sc);
3047
3048 /* clear "radio off" and "disable command" bits (reversed logic) */
3049 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3050 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3051
3052 /* clear any pending interrupts */
3053 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3054 /* enable interrupts */
3055 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3056
3057 /* not sure why/if this is necessary... */
3058 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3059 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3060
3061 if ((error = wpi_load_firmware(sc)) != 0) {
3062 aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3063 goto fail1;
3064 }
3065
3066 /* Check the status of the radio switch */
3067 wpi_mem_lock(sc);
3068 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3069 wpi_mem_unlock(sc);
3070
3071 if (!(tmp & 0x01)) {
3072 aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3073 error = EPERM; // XXX
3074 goto fail1;
3075 }
3076
3077 /* wait for thermal sensors to calibrate */
3078 for (ntries = 0; ntries < 1000; ntries++) {
3079 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3080 break;
3081 DELAY(10);
3082 }
3083 if (ntries == 1000) {
3084 aprint_error_dev(sc->sc_dev,
3085 "timeout waiting for thermal sensors calibration\n");
3086 error = ETIMEDOUT;
3087 goto fail1;
3088 }
3089
3090 DPRINTF(("temperature %d\n", sc->temp));
3091
3092 if ((error = wpi_config(sc)) != 0) {
3093 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3094 goto fail1;
3095 }
3096
3097 ifp->if_flags &= ~IFF_OACTIVE;
3098 ifp->if_flags |= IFF_RUNNING;
3099
3100 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3101 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3102 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3103 }
3104 else
3105 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3106
3107 return 0;
3108
3109 fail1: wpi_stop(ifp, 1);
3110 return error;
3111 }
3112
3113
3114 static void
3115 wpi_stop(struct ifnet *ifp, int disable)
3116 {
3117 struct wpi_softc *sc = ifp->if_softc;
3118 struct ieee80211com *ic = &sc->sc_ic;
3119 uint32_t tmp;
3120 int ac;
3121
3122 ifp->if_timer = sc->sc_tx_timer = 0;
3123 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3124
3125 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3126
3127 /* disable interrupts */
3128 WPI_WRITE(sc, WPI_MASK, 0);
3129 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3130 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3131 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3132
3133 wpi_mem_lock(sc);
3134 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3135 wpi_mem_unlock(sc);
3136
3137 /* reset all Tx rings */
3138 for (ac = 0; ac < 4; ac++)
3139 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3140 wpi_reset_tx_ring(sc, &sc->cmdq);
3141
3142 /* reset Rx ring */
3143 wpi_reset_rx_ring(sc, &sc->rxq);
3144
3145 wpi_mem_lock(sc);
3146 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3147 wpi_mem_unlock(sc);
3148
3149 DELAY(5);
3150
3151 wpi_stop_master(sc);
3152
3153 tmp = WPI_READ(sc, WPI_RESET);
3154 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3155 }
3156