if_wpi.c revision 1.33 1 /* $NetBSD: if_wpi.c,v 1.33 2007/12/09 20:28:10 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.33 2007/12/09 20:28:10 jmcneill Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39 #include <sys/callout.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47 #include <dev/pci/pcidevs.h>
48
49 #if NBPFILTER > 0
50 #include <net/bpf.h>
51 #endif
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x) if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 { 4, { 2, 4, 11, 22 } };
90
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94 static int wpi_match(device_t, struct cfdata *, void *);
95 static void wpi_attach(device_t, device_t, void *);
96 static int wpi_detach(device_t , int);
97 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
98 void **, bus_size_t, bus_size_t, int);
99 static void wpi_dma_contig_free(struct wpi_dma_info *);
100 static int wpi_alloc_shared(struct wpi_softc *);
101 static void wpi_free_shared(struct wpi_softc *);
102 static int wpi_alloc_fwmem(struct wpi_softc *);
103 static void wpi_free_fwmem(struct wpi_softc *);
104 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
105 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
106 static int wpi_alloc_rpool(struct wpi_softc *);
107 static void wpi_free_rpool(struct wpi_softc *);
108 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
109 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
112 int);
113 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
114 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
116 static void wpi_newassoc(struct ieee80211_node *, int);
117 static int wpi_media_change(struct ifnet *);
118 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
119 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
120 static void wpi_mem_lock(struct wpi_softc *);
121 static void wpi_mem_unlock(struct wpi_softc *);
122 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
123 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
124 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
125 const uint32_t *, int);
126 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
127 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
128 static int wpi_load_firmware(struct wpi_softc *);
129 static void wpi_calib_timeout(void *);
130 static void wpi_iter_func(void *, struct ieee80211_node *);
131 static void wpi_power_calibration(struct wpi_softc *, int);
132 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
133 struct wpi_rx_data *);
134 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
135 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
136 static void wpi_notif_intr(struct wpi_softc *);
137 static int wpi_intr(void *);
138 static void wpi_read_eeprom(struct wpi_softc *);
139 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
140 static void wpi_read_eeprom_group(struct wpi_softc *, int);
141 static uint8_t wpi_plcp_signal(int);
142 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
143 struct ieee80211_node *, int);
144 static void wpi_start(struct ifnet *);
145 static void wpi_watchdog(struct ifnet *);
146 static int wpi_ioctl(struct ifnet *, u_long, void *);
147 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
148 static int wpi_wme_update(struct ieee80211com *);
149 static int wpi_mrr_setup(struct wpi_softc *);
150 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
151 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
152 static int wpi_set_txpower(struct wpi_softc *,
153 struct ieee80211_channel *, int);
154 static int wpi_get_power_index(struct wpi_softc *,
155 struct wpi_power_group *, struct ieee80211_channel *, int);
156 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
157 static int wpi_auth(struct wpi_softc *);
158 static int wpi_scan(struct wpi_softc *, uint16_t);
159 static int wpi_config(struct wpi_softc *);
160 static void wpi_stop_master(struct wpi_softc *);
161 static int wpi_power_up(struct wpi_softc *);
162 static int wpi_reset(struct wpi_softc *);
163 static void wpi_hw_config(struct wpi_softc *);
164 static int wpi_init(struct ifnet *);
165 static void wpi_stop(struct ifnet *, int);
166 static bool wpi_resume(device_t);
167
168 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
169 wpi_detach, NULL);
170
171 static int
172 wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
173 {
174 struct pci_attach_args *pa = aux;
175
176 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
177 return 0;
178
179 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
180 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
181 return 1;
182
183 return 0;
184 }
185
186 /* Base Address Register */
187 #define WPI_PCI_BAR0 0x10
188
189 static void
190 wpi_attach(device_t parent __unused, device_t self, void *aux)
191 {
192 struct wpi_softc *sc = device_private(self);
193 struct ieee80211com *ic = &sc->sc_ic;
194 struct ifnet *ifp = &sc->sc_ec.ec_if;
195 struct pci_attach_args *pa = aux;
196 const char *intrstr;
197 char devinfo[256];
198 bus_space_tag_t memt;
199 bus_space_handle_t memh;
200 pci_intr_handle_t ih;
201 pcireg_t data;
202 int error, ac, revision;
203
204 sc->sc_dev = self;
205 sc->sc_pct = pa->pa_pc;
206 sc->sc_pcitag = pa->pa_tag;
207
208 callout_init(&sc->calib_to, 0);
209 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
210
211 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
212 revision = PCI_REVISION(pa->pa_class);
213 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
214
215 pci_disable_retry(pa->pa_pc, pa->pa_tag);
216
217 /* enable bus-mastering */
218 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
219 data |= PCI_COMMAND_MASTER_ENABLE;
220 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
221
222 /* map the register window */
223 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
224 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
225 if (error != 0) {
226 aprint_error_dev(self, "could not map memory space\n");
227 return;
228 }
229
230 sc->sc_st = memt;
231 sc->sc_sh = memh;
232 sc->sc_dmat = pa->pa_dmat;
233
234 if (pci_intr_map(pa, &ih) != 0) {
235 aprint_error_dev(self, "could not map interrupt\n");
236 return;
237 }
238
239 intrstr = pci_intr_string(sc->sc_pct, ih);
240 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
241 if (sc->sc_ih == NULL) {
242 aprint_error_dev(self, "could not establish interrupt");
243 if (intrstr != NULL)
244 aprint_error(" at %s", intrstr);
245 aprint_error("\n");
246 return;
247 }
248 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
249
250 if (wpi_reset(sc) != 0) {
251 aprint_error_dev(self, "could not reset adapter\n");
252 return;
253 }
254
255 /*
256 * Allocate DMA memory for firmware transfers.
257 */
258 if ((error = wpi_alloc_fwmem(sc)) != 0)
259 return;
260
261 /*
262 * Allocate shared page and Tx/Rx rings.
263 */
264 if ((error = wpi_alloc_shared(sc)) != 0) {
265 aprint_error_dev(self, "could not allocate shared area\n");
266 goto fail1;
267 }
268
269 if ((error = wpi_alloc_rpool(sc)) != 0) {
270 aprint_error_dev(self, "could not allocate Rx buffers\n");
271 goto fail2;
272 }
273
274 for (ac = 0; ac < 4; ac++) {
275 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
276 if (error != 0) {
277 aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
278 goto fail3;
279 }
280 }
281
282 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
283 if (error != 0) {
284 aprint_error_dev(self, "could not allocate command ring\n");
285 goto fail3;
286 }
287
288 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
289 aprint_error_dev(self, "could not allocate Rx ring\n");
290 goto fail4;
291 }
292
293 ic->ic_ifp = ifp;
294 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
295 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
296 ic->ic_state = IEEE80211_S_INIT;
297
298 /* set device capabilities */
299 ic->ic_caps =
300 IEEE80211_C_IBSS | /* IBSS mode support */
301 IEEE80211_C_WPA | /* 802.11i */
302 IEEE80211_C_MONITOR | /* monitor mode supported */
303 IEEE80211_C_TXPMGT | /* tx power management */
304 IEEE80211_C_SHSLOT | /* short slot time supported */
305 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
306 IEEE80211_C_WME; /* 802.11e */
307
308 /* read supported channels and MAC address from EEPROM */
309 wpi_read_eeprom(sc);
310
311 /* set supported .11a, .11b, .11g rates */
312 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
313 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
314 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
315
316 ic->ic_ibss_chan = &ic->ic_channels[0];
317
318 ifp->if_softc = sc;
319 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
320 ifp->if_init = wpi_init;
321 ifp->if_stop = wpi_stop;
322 ifp->if_ioctl = wpi_ioctl;
323 ifp->if_start = wpi_start;
324 ifp->if_watchdog = wpi_watchdog;
325 IFQ_SET_READY(&ifp->if_snd);
326 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
327
328 if_attach(ifp);
329 ieee80211_ifattach(ic);
330 /* override default methods */
331 ic->ic_node_alloc = wpi_node_alloc;
332 ic->ic_newassoc = wpi_newassoc;
333 ic->ic_wme.wme_update = wpi_wme_update;
334
335 /* override state transition machine */
336 sc->sc_newstate = ic->ic_newstate;
337 ic->ic_newstate = wpi_newstate;
338 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
339
340 sc->amrr.amrr_min_success_threshold = 1;
341 sc->amrr.amrr_max_success_threshold = 15;
342
343 if (!pmf_device_register(self, NULL, wpi_resume))
344 aprint_error_dev(self, "couldn't establish power handler\n");
345 else
346 pmf_class_network_register(self, ifp);
347
348 #if NBPFILTER > 0
349 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
350 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
351 &sc->sc_drvbpf);
352
353 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
354 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
355 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
356
357 sc->sc_txtap_len = sizeof sc->sc_txtapu;
358 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
359 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
360 #endif
361
362 ieee80211_announce(ic);
363
364 return;
365
366 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
367 fail3: while (--ac >= 0)
368 wpi_free_tx_ring(sc, &sc->txq[ac]);
369 wpi_free_rpool(sc);
370 fail2: wpi_free_shared(sc);
371 fail1: wpi_free_fwmem(sc);
372 }
373
374 static int
375 wpi_detach(device_t self, int flags __unused)
376 {
377 struct wpi_softc *sc = device_private(self);
378 struct ifnet *ifp = sc->sc_ic.ic_ifp;
379 int ac;
380
381 wpi_stop(ifp, 1);
382
383 #if NBPFILTER > 0
384 if (ifp != NULL)
385 bpfdetach(ifp);
386 #endif
387 ieee80211_ifdetach(&sc->sc_ic);
388 if (ifp != NULL)
389 if_detach(ifp);
390
391 for (ac = 0; ac < 4; ac++)
392 wpi_free_tx_ring(sc, &sc->txq[ac]);
393 wpi_free_tx_ring(sc, &sc->cmdq);
394 wpi_free_rx_ring(sc, &sc->rxq);
395 wpi_free_rpool(sc);
396 wpi_free_shared(sc);
397
398 if (sc->sc_ih != NULL) {
399 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
400 sc->sc_ih = NULL;
401 }
402
403 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
404
405 return 0;
406 }
407
408 static int
409 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
410 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
411 {
412 int nsegs, error;
413
414 dma->tag = tag;
415 dma->size = size;
416
417 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
418 if (error != 0)
419 goto fail;
420
421 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
422 flags);
423 if (error != 0)
424 goto fail;
425
426 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
427 if (error != 0)
428 goto fail;
429
430 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
431 if (error != 0)
432 goto fail;
433
434 memset(dma->vaddr, 0, size);
435
436 dma->paddr = dma->map->dm_segs[0].ds_addr;
437 if (kvap != NULL)
438 *kvap = dma->vaddr;
439
440 return 0;
441
442 fail: wpi_dma_contig_free(dma);
443 return error;
444 }
445
446 static void
447 wpi_dma_contig_free(struct wpi_dma_info *dma)
448 {
449 if (dma->map != NULL) {
450 if (dma->vaddr != NULL) {
451 bus_dmamap_unload(dma->tag, dma->map);
452 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
453 bus_dmamem_free(dma->tag, &dma->seg, 1);
454 dma->vaddr = NULL;
455 }
456 bus_dmamap_destroy(dma->tag, dma->map);
457 dma->map = NULL;
458 }
459 }
460
461 /*
462 * Allocate a shared page between host and NIC.
463 */
464 static int
465 wpi_alloc_shared(struct wpi_softc *sc)
466 {
467 int error;
468 /* must be aligned on a 4K-page boundary */
469 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
470 (void **)&sc->shared, sizeof (struct wpi_shared),
471 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
472 if (error != 0)
473 aprint_error_dev(sc->sc_dev,
474 "could not allocate shared area DMA memory\n");
475
476 return error;
477 }
478
479 static void
480 wpi_free_shared(struct wpi_softc *sc)
481 {
482 wpi_dma_contig_free(&sc->shared_dma);
483 }
484
485 /*
486 * Allocate DMA-safe memory for firmware transfer.
487 */
488 static int
489 wpi_alloc_fwmem(struct wpi_softc *sc)
490 {
491 int error;
492 /* allocate enough contiguous space to store text and data */
493 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
494 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
495 BUS_DMA_NOWAIT);
496
497 if (error != 0)
498 aprint_error_dev(sc->sc_dev,
499 "could not allocate firmware transfer area"
500 "DMA memory\n");
501 return error;
502 }
503
504 static void
505 wpi_free_fwmem(struct wpi_softc *sc)
506 {
507 wpi_dma_contig_free(&sc->fw_dma);
508 }
509
510
511 static struct wpi_rbuf *
512 wpi_alloc_rbuf(struct wpi_softc *sc)
513 {
514 struct wpi_rbuf *rbuf;
515
516 rbuf = SLIST_FIRST(&sc->rxq.freelist);
517 if (rbuf == NULL)
518 return NULL;
519 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
520 sc->rxq.nb_free_entries --;
521
522 return rbuf;
523 }
524
525 /*
526 * This is called automatically by the network stack when the mbuf to which our
527 * Rx buffer is attached is freed.
528 */
529 static void
530 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
531 {
532 struct wpi_rbuf *rbuf = arg;
533 struct wpi_softc *sc = rbuf->sc;
534
535 /* put the buffer back in the free list */
536
537 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
538 sc->rxq.nb_free_entries ++;
539
540 if (__predict_true(m != NULL))
541 pool_cache_put(mb_cache, m);
542 }
543
544 static int
545 wpi_alloc_rpool(struct wpi_softc *sc)
546 {
547 struct wpi_rx_ring *ring = &sc->rxq;
548 struct wpi_rbuf *rbuf;
549 int i, error;
550
551 /* allocate a big chunk of DMA'able memory.. */
552 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
553 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
554 if (error != 0) {
555 aprint_normal_dev(sc->sc_dev,
556 "could not allocate Rx buffers DMA memory\n");
557 return error;
558 }
559
560 /* ..and split it into 3KB chunks */
561 SLIST_INIT(&ring->freelist);
562 for (i = 0; i < WPI_RBUF_COUNT; i++) {
563 rbuf = &ring->rbuf[i];
564 rbuf->sc = sc; /* backpointer for callbacks */
565 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
566 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
567
568 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
569 }
570
571 ring->nb_free_entries = WPI_RBUF_COUNT;
572 return 0;
573 }
574
575 static void
576 wpi_free_rpool(struct wpi_softc *sc)
577 {
578 wpi_dma_contig_free(&sc->rxq.buf_dma);
579 }
580
581 static int
582 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
583 {
584 struct wpi_rx_data *data;
585 struct wpi_rbuf *rbuf;
586 int i, error;
587
588 ring->cur = 0;
589
590 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
591 (void **)&ring->desc,
592 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
593 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
594 if (error != 0) {
595 aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
596 goto fail;
597 }
598
599 /*
600 * Setup Rx buffers.
601 */
602 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
603 data = &ring->data[i];
604
605 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
606 if (data->m == NULL) {
607 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
608 error = ENOMEM;
609 goto fail;
610 }
611 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
612 m_freem(data->m);
613 data->m = NULL;
614 aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
615 error = ENOMEM;
616 goto fail;
617 }
618 /* attach Rx buffer to mbuf */
619 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
620 rbuf);
621 data->m->m_flags |= M_EXT_RW;
622
623 ring->desc[i] = htole32(rbuf->paddr);
624 }
625
626 return 0;
627
628 fail: wpi_free_rx_ring(sc, ring);
629 return error;
630 }
631
632 static void
633 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
634 {
635 int ntries;
636
637 wpi_mem_lock(sc);
638
639 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
640 for (ntries = 0; ntries < 100; ntries++) {
641 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
642 break;
643 DELAY(10);
644 }
645 #ifdef WPI_DEBUG
646 if (ntries == 100 && wpi_debug > 0)
647 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
648 #endif
649 wpi_mem_unlock(sc);
650
651 ring->cur = 0;
652 }
653
654 static void
655 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
656 {
657 int i;
658
659 wpi_dma_contig_free(&ring->desc_dma);
660
661 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
662 if (ring->data[i].m != NULL)
663 m_freem(ring->data[i].m);
664 }
665 }
666
667 static int
668 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
669 int qid)
670 {
671 struct wpi_tx_data *data;
672 int i, error;
673
674 ring->qid = qid;
675 ring->count = count;
676 ring->queued = 0;
677 ring->cur = 0;
678
679 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
680 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
681 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
682 if (error != 0) {
683 aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
684 goto fail;
685 }
686
687 /* update shared page with ring's base address */
688 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
689
690 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
691 (void **)&ring->cmd,
692 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
693 if (error != 0) {
694 aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
695 goto fail;
696 }
697
698 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
699 M_NOWAIT);
700 if (ring->data == NULL) {
701 aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
702 goto fail;
703 }
704
705 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
706
707 for (i = 0; i < count; i++) {
708 data = &ring->data[i];
709
710 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
711 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
712 &data->map);
713 if (error != 0) {
714 aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
715 goto fail;
716 }
717 }
718
719 return 0;
720
721 fail: wpi_free_tx_ring(sc, ring);
722 return error;
723 }
724
725 static void
726 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
727 {
728 struct wpi_tx_data *data;
729 int i, ntries;
730
731 wpi_mem_lock(sc);
732
733 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
734 for (ntries = 0; ntries < 100; ntries++) {
735 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
736 break;
737 DELAY(10);
738 }
739 #ifdef WPI_DEBUG
740 if (ntries == 100 && wpi_debug > 0) {
741 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
742 ring->qid);
743 }
744 #endif
745 wpi_mem_unlock(sc);
746
747 for (i = 0; i < ring->count; i++) {
748 data = &ring->data[i];
749
750 if (data->m != NULL) {
751 bus_dmamap_unload(sc->sc_dmat, data->map);
752 m_freem(data->m);
753 data->m = NULL;
754 }
755 }
756
757 ring->queued = 0;
758 ring->cur = 0;
759 }
760
761 static void
762 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
763 {
764 struct wpi_tx_data *data;
765 int i;
766
767 wpi_dma_contig_free(&ring->desc_dma);
768 wpi_dma_contig_free(&ring->cmd_dma);
769
770 if (ring->data != NULL) {
771 for (i = 0; i < ring->count; i++) {
772 data = &ring->data[i];
773
774 if (data->m != NULL) {
775 bus_dmamap_unload(sc->sc_dmat, data->map);
776 m_freem(data->m);
777 }
778 }
779 free(ring->data, M_DEVBUF);
780 }
781 }
782
783 /*ARGUSED*/
784 static struct ieee80211_node *
785 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
786 {
787 struct wpi_node *wn;
788
789 wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
790
791 if (wn != NULL)
792 memset(wn, 0, sizeof (struct wpi_node));
793 return (struct ieee80211_node *)wn;
794 }
795
796 static void
797 wpi_newassoc(struct ieee80211_node *ni, int isnew)
798 {
799 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
800 int i;
801
802 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
803
804 /* set rate to some reasonable initial value */
805 for (i = ni->ni_rates.rs_nrates - 1;
806 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
807 i--);
808 ni->ni_txrate = i;
809 }
810
811 static int
812 wpi_media_change(struct ifnet *ifp)
813 {
814 int error;
815
816 error = ieee80211_media_change(ifp);
817 if (error != ENETRESET)
818 return error;
819
820 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
821 wpi_init(ifp);
822
823 return 0;
824 }
825
826 static int
827 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
828 {
829 struct ifnet *ifp = ic->ic_ifp;
830 struct wpi_softc *sc = ifp->if_softc;
831 struct ieee80211_node *ni;
832 int error;
833
834 callout_stop(&sc->calib_to);
835
836 switch (nstate) {
837 case IEEE80211_S_SCAN:
838
839 if (sc->is_scanning)
840 break;
841
842 sc->is_scanning = true;
843 ieee80211_node_table_reset(&ic->ic_scan);
844 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
845
846 /* make the link LED blink while we're scanning */
847 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
848
849 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
850 aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
851 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
852 return error;
853 }
854
855 ic->ic_state = nstate;
856 return 0;
857
858 case IEEE80211_S_ASSOC:
859 if (ic->ic_state != IEEE80211_S_RUN)
860 break;
861 /* FALLTHROUGH */
862 case IEEE80211_S_AUTH:
863 sc->config.associd = 0;
864 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
865 if ((error = wpi_auth(sc)) != 0) {
866 aprint_error_dev(sc->sc_dev,
867 "could not send authentication request\n");
868 return error;
869 }
870 break;
871
872 case IEEE80211_S_RUN:
873 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
874 /* link LED blinks while monitoring */
875 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
876 break;
877 }
878
879 ni = ic->ic_bss;
880
881 if (ic->ic_opmode != IEEE80211_M_STA) {
882 (void) wpi_auth(sc); /* XXX */
883 wpi_setup_beacon(sc, ni);
884 }
885
886 wpi_enable_tsf(sc, ni);
887
888 /* update adapter's configuration */
889 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
890 /* short preamble/slot time are negotiated when associating */
891 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
892 WPI_CONFIG_SHSLOT);
893 if (ic->ic_flags & IEEE80211_F_SHSLOT)
894 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
895 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
896 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
897 sc->config.filter |= htole32(WPI_FILTER_BSS);
898 if (ic->ic_opmode != IEEE80211_M_STA)
899 sc->config.filter |= htole32(WPI_FILTER_BEACON);
900
901 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
902
903 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
904 sc->config.flags));
905 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
906 sizeof (struct wpi_config), 1);
907 if (error != 0) {
908 aprint_error_dev(sc->sc_dev, "could not update configuration\n");
909 return error;
910 }
911
912 /* configuration has changed, set Tx power accordingly */
913 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
914 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
915 return error;
916 }
917
918 if (ic->ic_opmode == IEEE80211_M_STA) {
919 /* fake a join to init the tx rate */
920 wpi_newassoc(ni, 1);
921 }
922
923 /* start periodic calibration timer */
924 sc->calib_cnt = 0;
925 callout_schedule(&sc->calib_to, hz/2);
926
927 /* link LED always on while associated */
928 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
929 break;
930
931 case IEEE80211_S_INIT:
932 sc->is_scanning = false;
933 break;
934 }
935
936 return sc->sc_newstate(ic, nstate, arg);
937 }
938
939 /*
940 * XXX: Hack to set the current channel to the value advertised in beacons or
941 * probe responses. Only used during AP detection.
942 * XXX: Duplicated from if_iwi.c
943 */
944 static void
945 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
946 {
947 struct ieee80211_frame *wh;
948 uint8_t subtype;
949 uint8_t *frm, *efrm;
950
951 wh = mtod(m, struct ieee80211_frame *);
952
953 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
954 return;
955
956 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
957
958 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
959 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
960 return;
961
962 frm = (uint8_t *)(wh + 1);
963 efrm = mtod(m, uint8_t *) + m->m_len;
964
965 frm += 12; /* skip tstamp, bintval and capinfo fields */
966 while (frm < efrm) {
967 if (*frm == IEEE80211_ELEMID_DSPARMS)
968 #if IEEE80211_CHAN_MAX < 255
969 if (frm[2] <= IEEE80211_CHAN_MAX)
970 #endif
971 ic->ic_curchan = &ic->ic_channels[frm[2]];
972
973 frm += frm[1] + 2;
974 }
975 }
976
977 /*
978 * Grab exclusive access to NIC memory.
979 */
980 static void
981 wpi_mem_lock(struct wpi_softc *sc)
982 {
983 uint32_t tmp;
984 int ntries;
985
986 tmp = WPI_READ(sc, WPI_GPIO_CTL);
987 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
988
989 /* spin until we actually get the lock */
990 for (ntries = 0; ntries < 1000; ntries++) {
991 if ((WPI_READ(sc, WPI_GPIO_CTL) &
992 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
993 break;
994 DELAY(10);
995 }
996 if (ntries == 1000)
997 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
998 }
999
1000 /*
1001 * Release lock on NIC memory.
1002 */
1003 static void
1004 wpi_mem_unlock(struct wpi_softc *sc)
1005 {
1006 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1007 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1008 }
1009
1010 static uint32_t
1011 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1012 {
1013 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1014 return WPI_READ(sc, WPI_READ_MEM_DATA);
1015 }
1016
1017 static void
1018 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1019 {
1020 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1021 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1022 }
1023
1024 static void
1025 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1026 const uint32_t *data, int wlen)
1027 {
1028 for (; wlen > 0; wlen--, data++, addr += 4)
1029 wpi_mem_write(sc, addr, *data);
1030 }
1031
1032
1033 /*
1034 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1035 * instead of using the traditional bit-bang method.
1036 */
1037 static int
1038 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1039 {
1040 uint8_t *out = data;
1041 uint32_t val;
1042 int ntries;
1043
1044 wpi_mem_lock(sc);
1045 for (; len > 0; len -= 2, addr++) {
1046 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1047
1048 for (ntries = 0; ntries < 10; ntries++) {
1049 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1050 WPI_EEPROM_READY)
1051 break;
1052 DELAY(5);
1053 }
1054 if (ntries == 10) {
1055 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1056 return ETIMEDOUT;
1057 }
1058 *out++ = val >> 16;
1059 if (len > 1)
1060 *out++ = val >> 24;
1061 }
1062 wpi_mem_unlock(sc);
1063
1064 return 0;
1065 }
1066
1067 /*
1068 * The firmware boot code is small and is intended to be copied directly into
1069 * the NIC internal memory.
1070 */
1071 int
1072 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1073 {
1074 int ntries;
1075
1076 size /= sizeof (uint32_t);
1077
1078 wpi_mem_lock(sc);
1079
1080 /* copy microcode image into NIC memory */
1081 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1082 (const uint32_t *)ucode, size);
1083
1084 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1085 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1086 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1087
1088 /* run microcode */
1089 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1090
1091 /* wait for transfer to complete */
1092 for (ntries = 0; ntries < 1000; ntries++) {
1093 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1094 break;
1095 DELAY(10);
1096 }
1097 if (ntries == 1000) {
1098 wpi_mem_unlock(sc);
1099 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1100 return ETIMEDOUT;
1101 }
1102 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1103
1104 wpi_mem_unlock(sc);
1105
1106 return 0;
1107 }
1108
1109 static int
1110 wpi_load_firmware(struct wpi_softc *sc)
1111 {
1112 struct wpi_dma_info *dma = &sc->fw_dma;
1113 struct wpi_firmware_hdr hdr;
1114 const uint8_t *init_text, *init_data, *main_text, *main_data;
1115 const uint8_t *boot_text;
1116 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1117 uint32_t boot_textsz;
1118 firmware_handle_t fw;
1119 u_char *dfw;
1120 size_t size;
1121 int error;
1122
1123 /* load firmware image from disk */
1124 if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1125 aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1126 goto fail1;
1127 }
1128
1129 size = firmware_get_size(fw);
1130
1131 /* extract firmware header information */
1132 if (size < sizeof (struct wpi_firmware_hdr)) {
1133 aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
1134 size);
1135 error = EINVAL;
1136 goto fail2;
1137 }
1138
1139 if ((error = firmware_read(fw, 0, &hdr,
1140 sizeof (struct wpi_firmware_hdr))) != 0) {
1141 aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1142 goto fail2;
1143 }
1144
1145 main_textsz = le32toh(hdr.main_textsz);
1146 main_datasz = le32toh(hdr.main_datasz);
1147 init_textsz = le32toh(hdr.init_textsz);
1148 init_datasz = le32toh(hdr.init_datasz);
1149 boot_textsz = le32toh(hdr.boot_textsz);
1150
1151 /* sanity-check firmware segments sizes */
1152 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1153 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1154 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1155 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1156 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1157 (boot_textsz & 3) != 0) {
1158 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1159 error = EINVAL;
1160 goto fail2;
1161 }
1162
1163 /* check that all firmware segments are present */
1164 if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1165 main_datasz + init_textsz + init_datasz + boot_textsz) {
1166 aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
1167 size);
1168 error = EINVAL;
1169 goto fail2;
1170 }
1171
1172 dfw = firmware_malloc(size);
1173 if (dfw == NULL) {
1174 aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1175 error = ENOMEM;
1176 goto fail2;
1177 }
1178
1179 if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1180 aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1181 goto fail2;
1182 }
1183
1184 /* get pointers to firmware segments */
1185 main_text = dfw + sizeof (struct wpi_firmware_hdr);
1186 main_data = main_text + main_textsz;
1187 init_text = main_data + main_datasz;
1188 init_data = init_text + init_textsz;
1189 boot_text = init_data + init_datasz;
1190
1191 /* copy initialization images into pre-allocated DMA-safe memory */
1192 memcpy(dma->vaddr, init_data, init_datasz);
1193 memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1194
1195 /* tell adapter where to find initialization images */
1196 wpi_mem_lock(sc);
1197 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1198 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1199 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1200 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1201 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1202 wpi_mem_unlock(sc);
1203
1204 /* load firmware boot code */
1205 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1206 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1207 goto fail3;
1208 }
1209
1210 /* now press "execute" ;-) */
1211 WPI_WRITE(sc, WPI_RESET, 0);
1212
1213 /* ..and wait at most one second for adapter to initialize */
1214 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1215 /* this isn't what was supposed to happen.. */
1216 aprint_error_dev(sc->sc_dev,
1217 "timeout waiting for adapter to initialize\n");
1218 }
1219
1220 /* copy runtime images into pre-allocated DMA-safe memory */
1221 memcpy(dma->vaddr, main_data, main_datasz);
1222 memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1223
1224 /* tell adapter where to find runtime images */
1225 wpi_mem_lock(sc);
1226 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1227 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1228 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1229 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1230 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1231 wpi_mem_unlock(sc);
1232
1233 /* wait at most one second for second alive notification */
1234 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1235 /* this isn't what was supposed to happen.. */
1236 aprint_error_dev(sc->sc_dev,
1237 "timeout waiting for adapter to initialize\n");
1238 }
1239
1240
1241 fail3: firmware_free(dfw,size);
1242 fail2: firmware_close(fw);
1243 fail1: return error;
1244 }
1245
1246 static void
1247 wpi_calib_timeout(void *arg)
1248 {
1249 struct wpi_softc *sc = arg;
1250 struct ieee80211com *ic = &sc->sc_ic;
1251 int temp, s;
1252
1253 /* automatic rate control triggered every 500ms */
1254 if (ic->ic_fixed_rate == -1) {
1255 s = splnet();
1256 if (ic->ic_opmode == IEEE80211_M_STA)
1257 wpi_iter_func(sc, ic->ic_bss);
1258 else
1259 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1260 splx(s);
1261 }
1262
1263 /* update sensor data */
1264 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1265
1266 /* automatic power calibration every 60s */
1267 if (++sc->calib_cnt >= 120) {
1268 wpi_power_calibration(sc, temp);
1269 sc->calib_cnt = 0;
1270 }
1271
1272 callout_schedule(&sc->calib_to, hz/2);
1273 }
1274
1275 static void
1276 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1277 {
1278 struct wpi_softc *sc = arg;
1279 struct wpi_node *wn = (struct wpi_node *)ni;
1280
1281 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1282 }
1283
1284 /*
1285 * This function is called periodically (every 60 seconds) to adjust output
1286 * power to temperature changes.
1287 */
1288 void
1289 wpi_power_calibration(struct wpi_softc *sc, int temp)
1290 {
1291 /* sanity-check read value */
1292 if (temp < -260 || temp > 25) {
1293 /* this can't be correct, ignore */
1294 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1295 return;
1296 }
1297
1298 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1299
1300 /* adjust Tx power if need be */
1301 if (abs(temp - sc->temp) <= 6)
1302 return;
1303
1304 sc->temp = temp;
1305
1306 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1307 /* just warn, too bad for the automatic calibration... */
1308 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1309 }
1310 }
1311
1312 static void
1313 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1314 struct wpi_rx_data *data)
1315 {
1316 struct ieee80211com *ic = &sc->sc_ic;
1317 struct ifnet *ifp = ic->ic_ifp;
1318 struct wpi_rx_ring *ring = &sc->rxq;
1319 struct wpi_rx_stat *stat;
1320 struct wpi_rx_head *head;
1321 struct wpi_rx_tail *tail;
1322 struct wpi_rbuf *rbuf;
1323 struct ieee80211_frame *wh;
1324 struct ieee80211_node *ni;
1325 struct mbuf *m, *mnew;
1326 int data_off ;
1327
1328 stat = (struct wpi_rx_stat *)(desc + 1);
1329
1330 if (stat->len > WPI_STAT_MAXLEN) {
1331 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1332 ifp->if_ierrors++;
1333 return;
1334 }
1335
1336 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1337 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1338
1339 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1340 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1341 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1342 le64toh(tail->tstamp)));
1343
1344 /*
1345 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1346 * to radiotap in monitor mode).
1347 */
1348 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1349 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1350 ifp->if_ierrors++;
1351 return;
1352 }
1353
1354 /* Compute where are the useful datas */
1355 data_off = (char*)(head + 1) - mtod(data->m, char*);
1356
1357 /*
1358 * If the number of free entry is too low
1359 * just dup the data->m socket and reuse the same rbuf entry
1360 */
1361 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1362
1363 /* Prepare the mbuf for the m_dup */
1364 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1365 data->m->m_data = (char*) data->m->m_data + data_off;
1366
1367 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1368
1369 /* Restore the m_data pointer for future use */
1370 data->m->m_data = (char*) data->m->m_data - data_off;
1371
1372 if (m == NULL) {
1373 ifp->if_ierrors++;
1374 return;
1375 }
1376 } else {
1377
1378 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1379 if (mnew == NULL) {
1380 ifp->if_ierrors++;
1381 return;
1382 }
1383
1384 rbuf = wpi_alloc_rbuf(sc);
1385 KASSERT(rbuf != NULL);
1386
1387 /* attach Rx buffer to mbuf */
1388 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1389 rbuf);
1390 mnew->m_flags |= M_EXT_RW;
1391
1392 m = data->m;
1393 data->m = mnew;
1394
1395 /* update Rx descriptor */
1396 ring->desc[ring->cur] = htole32(rbuf->paddr);
1397
1398 m->m_data = (char*)m->m_data + data_off;
1399 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1400 }
1401
1402 /* finalize mbuf */
1403 m->m_pkthdr.rcvif = ifp;
1404
1405 if (ic->ic_state == IEEE80211_S_SCAN)
1406 wpi_fix_channel(ic, m);
1407
1408 #if NBPFILTER > 0
1409 if (sc->sc_drvbpf != NULL) {
1410 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1411
1412 tap->wr_flags = 0;
1413 tap->wr_chan_freq =
1414 htole16(ic->ic_channels[head->chan].ic_freq);
1415 tap->wr_chan_flags =
1416 htole16(ic->ic_channels[head->chan].ic_flags);
1417 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1418 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1419 tap->wr_tsft = tail->tstamp;
1420 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1421 switch (head->rate) {
1422 /* CCK rates */
1423 case 10: tap->wr_rate = 2; break;
1424 case 20: tap->wr_rate = 4; break;
1425 case 55: tap->wr_rate = 11; break;
1426 case 110: tap->wr_rate = 22; break;
1427 /* OFDM rates */
1428 case 0xd: tap->wr_rate = 12; break;
1429 case 0xf: tap->wr_rate = 18; break;
1430 case 0x5: tap->wr_rate = 24; break;
1431 case 0x7: tap->wr_rate = 36; break;
1432 case 0x9: tap->wr_rate = 48; break;
1433 case 0xb: tap->wr_rate = 72; break;
1434 case 0x1: tap->wr_rate = 96; break;
1435 case 0x3: tap->wr_rate = 108; break;
1436 /* unknown rate: should not happen */
1437 default: tap->wr_rate = 0;
1438 }
1439 if (le16toh(head->flags) & 0x4)
1440 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1441
1442 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1443 }
1444 #endif
1445
1446 /* grab a reference to the source node */
1447 wh = mtod(m, struct ieee80211_frame *);
1448 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1449
1450 /* send the frame to the 802.11 layer */
1451 ieee80211_input(ic, m, ni, stat->rssi, 0);
1452
1453 /* release node reference */
1454 ieee80211_free_node(ni);
1455 }
1456
1457 static void
1458 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1459 {
1460 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1461 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1462 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1463 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1464 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1465
1466 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1467 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1468 stat->nkill, stat->rate, le32toh(stat->duration),
1469 le32toh(stat->status)));
1470
1471 /*
1472 * Update rate control statistics for the node.
1473 * XXX we should not count mgmt frames since they're always sent at
1474 * the lowest available bit-rate.
1475 */
1476 wn->amn.amn_txcnt++;
1477 if (stat->ntries > 0) {
1478 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1479 wn->amn.amn_retrycnt++;
1480 }
1481
1482 if ((le32toh(stat->status) & 0xff) != 1)
1483 ifp->if_oerrors++;
1484 else
1485 ifp->if_opackets++;
1486
1487 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1488 m_freem(txdata->m);
1489 txdata->m = NULL;
1490 ieee80211_free_node(txdata->ni);
1491 txdata->ni = NULL;
1492
1493 ring->queued--;
1494
1495 sc->sc_tx_timer = 0;
1496 ifp->if_flags &= ~IFF_OACTIVE;
1497 wpi_start(ifp);
1498 }
1499
1500 static void
1501 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1502 {
1503 struct wpi_tx_ring *ring = &sc->cmdq;
1504 struct wpi_tx_data *data;
1505
1506 if ((desc->qid & 7) != 4)
1507 return; /* not a command ack */
1508
1509 data = &ring->data[desc->idx];
1510
1511 /* if the command was mapped in a mbuf, free it */
1512 if (data->m != NULL) {
1513 bus_dmamap_unload(sc->sc_dmat, data->map);
1514 m_freem(data->m);
1515 data->m = NULL;
1516 }
1517
1518 wakeup(&ring->cmd[desc->idx]);
1519 }
1520
1521 static void
1522 wpi_notif_intr(struct wpi_softc *sc)
1523 {
1524 struct ieee80211com *ic = &sc->sc_ic;
1525 struct ifnet *ifp = ic->ic_ifp;
1526 struct wpi_rx_desc *desc;
1527 struct wpi_rx_data *data;
1528 uint32_t hw;
1529
1530 hw = le32toh(sc->shared->next);
1531 while (sc->rxq.cur != hw) {
1532 data = &sc->rxq.data[sc->rxq.cur];
1533
1534 desc = mtod(data->m, struct wpi_rx_desc *);
1535
1536 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1537 "len=%d\n", desc->qid, desc->idx, desc->flags,
1538 desc->type, le32toh(desc->len)));
1539
1540 if (!(desc->qid & 0x80)) /* reply to a command */
1541 wpi_cmd_intr(sc, desc);
1542
1543 switch (desc->type) {
1544 case WPI_RX_DONE:
1545 /* a 802.11 frame was received */
1546 wpi_rx_intr(sc, desc, data);
1547 break;
1548
1549 case WPI_TX_DONE:
1550 /* a 802.11 frame has been transmitted */
1551 wpi_tx_intr(sc, desc);
1552 break;
1553
1554 case WPI_UC_READY:
1555 {
1556 struct wpi_ucode_info *uc =
1557 (struct wpi_ucode_info *)(desc + 1);
1558
1559 /* the microcontroller is ready */
1560 DPRINTF(("microcode alive notification version %x "
1561 "alive %x\n", le32toh(uc->version),
1562 le32toh(uc->valid)));
1563
1564 if (le32toh(uc->valid) != 1) {
1565 aprint_error_dev(sc->sc_dev,
1566 "microcontroller initialization failed\n");
1567 }
1568 break;
1569 }
1570 case WPI_STATE_CHANGED:
1571 {
1572 uint32_t *status = (uint32_t *)(desc + 1);
1573
1574 /* enabled/disabled notification */
1575 DPRINTF(("state changed to %x\n", le32toh(*status)));
1576
1577 if (le32toh(*status) & 1) {
1578 /* the radio button has to be pushed */
1579 aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1580 /* turn the interface down */
1581 ifp->if_flags &= ~IFF_UP;
1582 wpi_stop(ifp, 1);
1583 return; /* no further processing */
1584 }
1585 break;
1586 }
1587 case WPI_START_SCAN:
1588 {
1589 struct wpi_start_scan *scan =
1590 (struct wpi_start_scan *)(desc + 1);
1591
1592 DPRINTFN(2, ("scanning channel %d status %x\n",
1593 scan->chan, le32toh(scan->status)));
1594
1595 /* fix current channel */
1596 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1597 break;
1598 }
1599 case WPI_STOP_SCAN:
1600 {
1601 struct wpi_stop_scan *scan =
1602 (struct wpi_stop_scan *)(desc + 1);
1603
1604 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1605 scan->nchan, scan->status, scan->chan));
1606
1607 if (scan->status == 1 && scan->chan <= 14) {
1608 /*
1609 * We just finished scanning 802.11g channels,
1610 * start scanning 802.11a ones.
1611 */
1612 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1613 break;
1614 }
1615 sc->is_scanning = false;
1616 ieee80211_end_scan(ic);
1617 break;
1618 }
1619 }
1620
1621 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1622 }
1623
1624 /* tell the firmware what we have processed */
1625 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1626 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1627 }
1628
1629 static int
1630 wpi_intr(void *arg)
1631 {
1632 struct wpi_softc *sc = arg;
1633 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1634 uint32_t r;
1635
1636 r = WPI_READ(sc, WPI_INTR);
1637 if (r == 0 || r == 0xffffffff)
1638 return 0; /* not for us */
1639
1640 DPRINTFN(5, ("interrupt reg %x\n", r));
1641
1642 /* disable interrupts */
1643 WPI_WRITE(sc, WPI_MASK, 0);
1644 /* ack interrupts */
1645 WPI_WRITE(sc, WPI_INTR, r);
1646
1647 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1648 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1649 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1650 wpi_stop(sc->sc_ic.ic_ifp, 1);
1651 return 1;
1652 }
1653
1654 if (r & WPI_RX_INTR)
1655 wpi_notif_intr(sc);
1656
1657 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1658 wakeup(sc);
1659
1660 /* re-enable interrupts */
1661 if (ifp->if_flags & IFF_UP)
1662 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1663
1664 return 1;
1665 }
1666
1667 static uint8_t
1668 wpi_plcp_signal(int rate)
1669 {
1670 switch (rate) {
1671 /* CCK rates (returned values are device-dependent) */
1672 case 2: return 10;
1673 case 4: return 20;
1674 case 11: return 55;
1675 case 22: return 110;
1676
1677 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1678 /* R1-R4, (u)ral is R4-R1 */
1679 case 12: return 0xd;
1680 case 18: return 0xf;
1681 case 24: return 0x5;
1682 case 36: return 0x7;
1683 case 48: return 0x9;
1684 case 72: return 0xb;
1685 case 96: return 0x1;
1686 case 108: return 0x3;
1687
1688 /* unsupported rates (should not get there) */
1689 default: return 0;
1690 }
1691 }
1692
1693 /* quickly determine if a given rate is CCK or OFDM */
1694 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1695
1696 static int
1697 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1698 int ac)
1699 {
1700 struct ieee80211com *ic = &sc->sc_ic;
1701 struct wpi_tx_ring *ring = &sc->txq[ac];
1702 struct wpi_tx_desc *desc;
1703 struct wpi_tx_data *data;
1704 struct wpi_tx_cmd *cmd;
1705 struct wpi_cmd_data *tx;
1706 struct ieee80211_frame *wh;
1707 struct ieee80211_key *k;
1708 const struct chanAccParams *cap;
1709 struct mbuf *mnew;
1710 int i, error, rate, hdrlen, noack = 0;
1711
1712 desc = &ring->desc[ring->cur];
1713 data = &ring->data[ring->cur];
1714
1715 wh = mtod(m0, struct ieee80211_frame *);
1716
1717 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1718 cap = &ic->ic_wme.wme_chanParams;
1719 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1720 }
1721
1722 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1723 k = ieee80211_crypto_encap(ic, ni, m0);
1724 if (k == NULL) {
1725 m_freem(m0);
1726 return ENOBUFS;
1727 }
1728
1729 /* packet header may have moved, reset our local pointer */
1730 wh = mtod(m0, struct ieee80211_frame *);
1731 }
1732
1733 hdrlen = ieee80211_anyhdrsize(wh);
1734
1735 /* pickup a rate */
1736 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1737 IEEE80211_FC0_TYPE_MGT) {
1738 /* mgmt frames are sent at the lowest available bit-rate */
1739 rate = ni->ni_rates.rs_rates[0];
1740 } else {
1741 if (ic->ic_fixed_rate != -1) {
1742 rate = ic->ic_sup_rates[ic->ic_curmode].
1743 rs_rates[ic->ic_fixed_rate];
1744 } else
1745 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1746 }
1747 rate &= IEEE80211_RATE_VAL;
1748
1749
1750 #if NBPFILTER > 0
1751 if (sc->sc_drvbpf != NULL) {
1752 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1753
1754 tap->wt_flags = 0;
1755 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1756 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1757 tap->wt_rate = rate;
1758 tap->wt_hwqueue = ac;
1759 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1760 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1761
1762 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1763 }
1764 #endif
1765
1766 cmd = &ring->cmd[ring->cur];
1767 cmd->code = WPI_CMD_TX_DATA;
1768 cmd->flags = 0;
1769 cmd->qid = ring->qid;
1770 cmd->idx = ring->cur;
1771
1772 tx = (struct wpi_cmd_data *)cmd->data;
1773 tx->flags = 0;
1774
1775 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1776 tx->flags |= htole32(WPI_TX_NEED_ACK);
1777 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1778 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1779
1780 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1781
1782 /* retrieve destination node's id */
1783 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1784 WPI_ID_BSS;
1785
1786 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1787 IEEE80211_FC0_TYPE_MGT) {
1788 /* tell h/w to set timestamp in probe responses */
1789 if ((wh->i_fc[0] &
1790 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1791 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1792 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1793
1794 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1795 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1796 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1797 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1798 tx->timeout = htole16(3);
1799 else
1800 tx->timeout = htole16(2);
1801 } else
1802 tx->timeout = htole16(0);
1803
1804 tx->rate = wpi_plcp_signal(rate);
1805
1806 /* be very persistant at sending frames out */
1807 tx->rts_ntries = 7;
1808 tx->data_ntries = 15;
1809
1810 tx->ofdm_mask = 0xff;
1811 tx->cck_mask = 0xf;
1812 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1813
1814 tx->len = htole16(m0->m_pkthdr.len);
1815
1816 /* save and trim IEEE802.11 header */
1817 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1818 m_adj(m0, hdrlen);
1819
1820 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1821 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1822 if (error != 0 && error != EFBIG) {
1823 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1824 m_freem(m0);
1825 return error;
1826 }
1827 if (error != 0) {
1828 /* too many fragments, linearize */
1829 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1830 if (mnew == NULL) {
1831 m_freem(m0);
1832 return ENOMEM;
1833 }
1834
1835 M_COPY_PKTHDR(mnew, m0);
1836 if (m0->m_pkthdr.len > MHLEN) {
1837 MCLGET(mnew, M_DONTWAIT);
1838 if (!(mnew->m_flags & M_EXT)) {
1839 m_freem(m0);
1840 m_freem(mnew);
1841 return ENOMEM;
1842 }
1843 }
1844
1845 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1846 m_freem(m0);
1847 mnew->m_len = mnew->m_pkthdr.len;
1848 m0 = mnew;
1849
1850 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1851 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1852 if (error != 0) {
1853 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1854 error);
1855 m_freem(m0);
1856 return error;
1857 }
1858 }
1859
1860 data->m = m0;
1861 data->ni = ni;
1862
1863 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1864 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1865
1866 /* first scatter/gather segment is used by the tx data command */
1867 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1868 (1 + data->map->dm_nsegs) << 24);
1869 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1870 ring->cur * sizeof (struct wpi_tx_cmd));
1871 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1872 ((hdrlen + 3) & ~3));
1873
1874 for (i = 1; i <= data->map->dm_nsegs; i++) {
1875 desc->segs[i].addr =
1876 htole32(data->map->dm_segs[i - 1].ds_addr);
1877 desc->segs[i].len =
1878 htole32(data->map->dm_segs[i - 1].ds_len);
1879 }
1880
1881 ring->queued++;
1882
1883 /* kick ring */
1884 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1885 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1886
1887 return 0;
1888 }
1889
1890 static void
1891 wpi_start(struct ifnet *ifp)
1892 {
1893 struct wpi_softc *sc = ifp->if_softc;
1894 struct ieee80211com *ic = &sc->sc_ic;
1895 struct ieee80211_node *ni;
1896 struct ether_header *eh;
1897 struct mbuf *m0;
1898 int ac;
1899
1900 /*
1901 * net80211 may still try to send management frames even if the
1902 * IFF_RUNNING flag is not set...
1903 */
1904 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1905 return;
1906
1907 for (;;) {
1908 IF_DEQUEUE(&ic->ic_mgtq, m0);
1909 if (m0 != NULL) {
1910
1911 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1912 m0->m_pkthdr.rcvif = NULL;
1913
1914 /* management frames go into ring 0 */
1915 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1916 ifp->if_oerrors++;
1917 continue;
1918 }
1919 #if NBPFILTER > 0
1920 if (ic->ic_rawbpf != NULL)
1921 bpf_mtap(ic->ic_rawbpf, m0);
1922 #endif
1923 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1924 ifp->if_oerrors++;
1925 break;
1926 }
1927 } else {
1928 if (ic->ic_state != IEEE80211_S_RUN)
1929 break;
1930 IFQ_POLL(&ifp->if_snd, m0);
1931 if (m0 == NULL)
1932 break;
1933
1934 if (m0->m_len < sizeof (*eh) &&
1935 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1936 ifp->if_oerrors++;
1937 continue;
1938 }
1939 eh = mtod(m0, struct ether_header *);
1940 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1941 if (ni == NULL) {
1942 m_freem(m0);
1943 ifp->if_oerrors++;
1944 continue;
1945 }
1946
1947 /* classify mbuf so we can find which tx ring to use */
1948 if (ieee80211_classify(ic, m0, ni) != 0) {
1949 m_freem(m0);
1950 ieee80211_free_node(ni);
1951 ifp->if_oerrors++;
1952 continue;
1953 }
1954
1955 /* no QoS encapsulation for EAPOL frames */
1956 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1957 M_WME_GETAC(m0) : WME_AC_BE;
1958
1959 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1960 /* there is no place left in this ring */
1961 ifp->if_flags |= IFF_OACTIVE;
1962 break;
1963 }
1964 IFQ_DEQUEUE(&ifp->if_snd, m0);
1965 #if NBPFILTER > 0
1966 if (ifp->if_bpf != NULL)
1967 bpf_mtap(ifp->if_bpf, m0);
1968 #endif
1969 m0 = ieee80211_encap(ic, m0, ni);
1970 if (m0 == NULL) {
1971 ieee80211_free_node(ni);
1972 ifp->if_oerrors++;
1973 continue;
1974 }
1975 #if NBPFILTER > 0
1976 if (ic->ic_rawbpf != NULL)
1977 bpf_mtap(ic->ic_rawbpf, m0);
1978 #endif
1979 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
1980 ieee80211_free_node(ni);
1981 ifp->if_oerrors++;
1982 break;
1983 }
1984 }
1985
1986 sc->sc_tx_timer = 5;
1987 ifp->if_timer = 1;
1988 }
1989 }
1990
1991 static void
1992 wpi_watchdog(struct ifnet *ifp)
1993 {
1994 struct wpi_softc *sc = ifp->if_softc;
1995
1996 ifp->if_timer = 0;
1997
1998 if (sc->sc_tx_timer > 0) {
1999 if (--sc->sc_tx_timer == 0) {
2000 aprint_error_dev(sc->sc_dev, "device timeout\n");
2001 ifp->if_oerrors++;
2002 ifp->if_flags &= ~IFF_UP;
2003 wpi_stop(ifp, 1);
2004 return;
2005 }
2006 ifp->if_timer = 1;
2007 }
2008
2009 ieee80211_watchdog(&sc->sc_ic);
2010 }
2011
2012 static int
2013 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2014 {
2015 #define IS_RUNNING(ifp) \
2016 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2017
2018 struct wpi_softc *sc = ifp->if_softc;
2019 struct ieee80211com *ic = &sc->sc_ic;
2020 int s, error = 0;
2021
2022 s = splnet();
2023
2024 switch (cmd) {
2025 case SIOCSIFFLAGS:
2026 if (ifp->if_flags & IFF_UP) {
2027 if (!(ifp->if_flags & IFF_RUNNING))
2028 wpi_init(ifp);
2029 } else {
2030 if (ifp->if_flags & IFF_RUNNING)
2031 wpi_stop(ifp, 1);
2032 }
2033 break;
2034
2035 case SIOCADDMULTI:
2036 case SIOCDELMULTI:
2037 /* XXX no h/w multicast filter? --dyoung */
2038 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2039 /* setup multicast filter, etc */
2040 error = 0;
2041 }
2042 break;
2043
2044 default:
2045 error = ieee80211_ioctl(ic, cmd, data);
2046 }
2047
2048 if (error == ENETRESET) {
2049 if (IS_RUNNING(ifp) &&
2050 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2051 wpi_init(ifp);
2052 error = 0;
2053 }
2054
2055 splx(s);
2056 return error;
2057
2058 #undef IS_RUNNING
2059 }
2060
2061 /*
2062 * Extract various information from EEPROM.
2063 */
2064 static void
2065 wpi_read_eeprom(struct wpi_softc *sc)
2066 {
2067 struct ieee80211com *ic = &sc->sc_ic;
2068 char domain[4];
2069 int i;
2070
2071 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2072 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2073 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2074
2075 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2076 sc->type));
2077
2078 /* read and print regulatory domain */
2079 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2080 aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2081
2082 /* read and print MAC address */
2083 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2084 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2085
2086 /* read the list of authorized channels */
2087 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2088 wpi_read_eeprom_channels(sc, i);
2089
2090 /* read the list of power groups */
2091 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2092 wpi_read_eeprom_group(sc, i);
2093 }
2094
2095 static void
2096 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2097 {
2098 struct ieee80211com *ic = &sc->sc_ic;
2099 const struct wpi_chan_band *band = &wpi_bands[n];
2100 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2101 int chan, i;
2102
2103 wpi_read_prom_data(sc, band->addr, channels,
2104 band->nchan * sizeof (struct wpi_eeprom_chan));
2105
2106 for (i = 0; i < band->nchan; i++) {
2107 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2108 continue;
2109
2110 chan = band->chan[i];
2111
2112 if (n == 0) { /* 2GHz band */
2113 ic->ic_channels[chan].ic_freq =
2114 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2115 ic->ic_channels[chan].ic_flags =
2116 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2117 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2118
2119 } else { /* 5GHz band */
2120 /*
2121 * Some 3945abg adapters support channels 7, 8, 11
2122 * and 12 in the 2GHz *and* 5GHz bands.
2123 * Because of limitations in our net80211(9) stack,
2124 * we can't support these channels in 5GHz band.
2125 */
2126 if (chan <= 14)
2127 continue;
2128
2129 ic->ic_channels[chan].ic_freq =
2130 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2131 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2132 }
2133
2134 /* is active scan allowed on this channel? */
2135 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2136 ic->ic_channels[chan].ic_flags |=
2137 IEEE80211_CHAN_PASSIVE;
2138 }
2139
2140 /* save maximum allowed power for this channel */
2141 sc->maxpwr[chan] = channels[i].maxpwr;
2142
2143 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2144 chan, channels[i].flags, sc->maxpwr[chan]));
2145 }
2146 }
2147
2148 static void
2149 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2150 {
2151 struct wpi_power_group *group = &sc->groups[n];
2152 struct wpi_eeprom_group rgroup;
2153 int i;
2154
2155 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2156 sizeof rgroup);
2157
2158 /* save power group information */
2159 group->chan = rgroup.chan;
2160 group->maxpwr = rgroup.maxpwr;
2161 /* temperature at which the samples were taken */
2162 group->temp = (int16_t)le16toh(rgroup.temp);
2163
2164 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2165 group->chan, group->maxpwr, group->temp));
2166
2167 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2168 group->samples[i].index = rgroup.samples[i].index;
2169 group->samples[i].power = rgroup.samples[i].power;
2170
2171 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2172 group->samples[i].index, group->samples[i].power));
2173 }
2174 }
2175
2176 /*
2177 * Send a command to the firmware.
2178 */
2179 static int
2180 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2181 {
2182 struct wpi_tx_ring *ring = &sc->cmdq;
2183 struct wpi_tx_desc *desc;
2184 struct wpi_tx_cmd *cmd;
2185
2186 KASSERT(size <= sizeof cmd->data);
2187
2188 desc = &ring->desc[ring->cur];
2189 cmd = &ring->cmd[ring->cur];
2190
2191 cmd->code = code;
2192 cmd->flags = 0;
2193 cmd->qid = ring->qid;
2194 cmd->idx = ring->cur;
2195 memcpy(cmd->data, buf, size);
2196
2197 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2198 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2199 ring->cur * sizeof (struct wpi_tx_cmd));
2200 desc->segs[0].len = htole32(4 + size);
2201
2202 /* kick cmd ring */
2203 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2204 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2205
2206 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2207 }
2208
2209 static int
2210 wpi_wme_update(struct ieee80211com *ic)
2211 {
2212 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2213 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2214 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2215 const struct wmeParams *wmep;
2216 struct wpi_wme_setup wme;
2217 int ac;
2218
2219 /* don't override default WME values if WME is not actually enabled */
2220 if (!(ic->ic_flags & IEEE80211_F_WME))
2221 return 0;
2222
2223 wme.flags = 0;
2224 for (ac = 0; ac < WME_NUM_AC; ac++) {
2225 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2226 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2227 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2228 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2229 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2230
2231 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2232 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2233 wme.ac[ac].cwmax, wme.ac[ac].txop));
2234 }
2235
2236 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2237 #undef WPI_USEC
2238 #undef WPI_EXP2
2239 }
2240
2241 /*
2242 * Configure h/w multi-rate retries.
2243 */
2244 static int
2245 wpi_mrr_setup(struct wpi_softc *sc)
2246 {
2247 struct ieee80211com *ic = &sc->sc_ic;
2248 struct wpi_mrr_setup mrr;
2249 int i, error;
2250
2251 /* CCK rates (not used with 802.11a) */
2252 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2253 mrr.rates[i].flags = 0;
2254 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2255 /* fallback to the immediate lower CCK rate (if any) */
2256 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2257 /* try one time at this rate before falling back to "next" */
2258 mrr.rates[i].ntries = 1;
2259 }
2260
2261 /* OFDM rates (not used with 802.11b) */
2262 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2263 mrr.rates[i].flags = 0;
2264 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2265 /* fallback to the immediate lower rate (if any) */
2266 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2267 mrr.rates[i].next = (i == WPI_OFDM6) ?
2268 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2269 WPI_OFDM6 : WPI_CCK2) :
2270 i - 1;
2271 /* try one time at this rate before falling back to "next" */
2272 mrr.rates[i].ntries = 1;
2273 }
2274
2275 /* setup MRR for control frames */
2276 mrr.which = htole32(WPI_MRR_CTL);
2277 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2278 if (error != 0) {
2279 aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2280 return error;
2281 }
2282
2283 /* setup MRR for data frames */
2284 mrr.which = htole32(WPI_MRR_DATA);
2285 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2286 if (error != 0) {
2287 aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2288 return error;
2289 }
2290
2291 return 0;
2292 }
2293
2294 static void
2295 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2296 {
2297 struct wpi_cmd_led led;
2298
2299 led.which = which;
2300 led.unit = htole32(100000); /* on/off in unit of 100ms */
2301 led.off = off;
2302 led.on = on;
2303
2304 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2305 }
2306
2307 static void
2308 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2309 {
2310 struct wpi_cmd_tsf tsf;
2311 uint64_t val, mod;
2312
2313 memset(&tsf, 0, sizeof tsf);
2314 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2315 tsf.bintval = htole16(ni->ni_intval);
2316 tsf.lintval = htole16(10);
2317
2318 /* compute remaining time until next beacon */
2319 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2320 mod = le64toh(tsf.tstamp) % val;
2321 tsf.binitval = htole32((uint32_t)(val - mod));
2322
2323 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2324 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2325
2326 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2327 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2328 }
2329
2330 /*
2331 * Update Tx power to match what is defined for channel `c'.
2332 */
2333 static int
2334 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2335 {
2336 struct ieee80211com *ic = &sc->sc_ic;
2337 struct wpi_power_group *group;
2338 struct wpi_cmd_txpower txpower;
2339 u_int chan;
2340 int i;
2341
2342 /* get channel number */
2343 chan = ieee80211_chan2ieee(ic, c);
2344
2345 /* find the power group to which this channel belongs */
2346 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2347 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2348 if (chan <= group->chan)
2349 break;
2350 } else
2351 group = &sc->groups[0];
2352
2353 memset(&txpower, 0, sizeof txpower);
2354 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2355 txpower.chan = htole16(chan);
2356
2357 /* set Tx power for all OFDM and CCK rates */
2358 for (i = 0; i <= 11 ; i++) {
2359 /* retrieve Tx power for this channel/rate combination */
2360 int idx = wpi_get_power_index(sc, group, c,
2361 wpi_ridx_to_rate[i]);
2362
2363 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2364
2365 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2366 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2367 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2368 } else {
2369 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2370 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2371 }
2372 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2373 wpi_ridx_to_rate[i], idx));
2374 }
2375
2376 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2377 }
2378
2379 /*
2380 * Determine Tx power index for a given channel/rate combination.
2381 * This takes into account the regulatory information from EEPROM and the
2382 * current temperature.
2383 */
2384 static int
2385 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2386 struct ieee80211_channel *c, int rate)
2387 {
2388 /* fixed-point arithmetic division using a n-bit fractional part */
2389 #define fdivround(a, b, n) \
2390 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2391
2392 /* linear interpolation */
2393 #define interpolate(x, x1, y1, x2, y2, n) \
2394 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2395
2396 struct ieee80211com *ic = &sc->sc_ic;
2397 struct wpi_power_sample *sample;
2398 int pwr, idx;
2399 u_int chan;
2400
2401 /* get channel number */
2402 chan = ieee80211_chan2ieee(ic, c);
2403
2404 /* default power is group's maximum power - 3dB */
2405 pwr = group->maxpwr / 2;
2406
2407 /* decrease power for highest OFDM rates to reduce distortion */
2408 switch (rate) {
2409 case 72: /* 36Mb/s */
2410 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2411 break;
2412 case 96: /* 48Mb/s */
2413 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2414 break;
2415 case 108: /* 54Mb/s */
2416 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2417 break;
2418 }
2419
2420 /* never exceed channel's maximum allowed Tx power */
2421 pwr = min(pwr, sc->maxpwr[chan]);
2422
2423 /* retrieve power index into gain tables from samples */
2424 for (sample = group->samples; sample < &group->samples[3]; sample++)
2425 if (pwr > sample[1].power)
2426 break;
2427 /* fixed-point linear interpolation using a 19-bit fractional part */
2428 idx = interpolate(pwr, sample[0].power, sample[0].index,
2429 sample[1].power, sample[1].index, 19);
2430
2431 /*
2432 * Adjust power index based on current temperature:
2433 * - if cooler than factory-calibrated: decrease output power
2434 * - if warmer than factory-calibrated: increase output power
2435 */
2436 idx -= (sc->temp - group->temp) * 11 / 100;
2437
2438 /* decrease power for CCK rates (-5dB) */
2439 if (!WPI_RATE_IS_OFDM(rate))
2440 idx += 10;
2441
2442 /* keep power index in a valid range */
2443 if (idx < 0)
2444 return 0;
2445 if (idx > WPI_MAX_PWR_INDEX)
2446 return WPI_MAX_PWR_INDEX;
2447 return idx;
2448
2449 #undef interpolate
2450 #undef fdivround
2451 }
2452
2453 /*
2454 * Build a beacon frame that the firmware will broadcast periodically in
2455 * IBSS or HostAP modes.
2456 */
2457 static int
2458 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2459 {
2460 struct ieee80211com *ic = &sc->sc_ic;
2461 struct wpi_tx_ring *ring = &sc->cmdq;
2462 struct wpi_tx_desc *desc;
2463 struct wpi_tx_data *data;
2464 struct wpi_tx_cmd *cmd;
2465 struct wpi_cmd_beacon *bcn;
2466 struct ieee80211_beacon_offsets bo;
2467 struct mbuf *m0;
2468 int error;
2469
2470 desc = &ring->desc[ring->cur];
2471 data = &ring->data[ring->cur];
2472
2473 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2474 if (m0 == NULL) {
2475 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2476 return ENOMEM;
2477 }
2478
2479 cmd = &ring->cmd[ring->cur];
2480 cmd->code = WPI_CMD_SET_BEACON;
2481 cmd->flags = 0;
2482 cmd->qid = ring->qid;
2483 cmd->idx = ring->cur;
2484
2485 bcn = (struct wpi_cmd_beacon *)cmd->data;
2486 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2487 bcn->id = WPI_ID_BROADCAST;
2488 bcn->ofdm_mask = 0xff;
2489 bcn->cck_mask = 0x0f;
2490 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2491 bcn->len = htole16(m0->m_pkthdr.len);
2492 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2493 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2494 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2495
2496 /* save and trim IEEE802.11 header */
2497 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2498 m_adj(m0, sizeof (struct ieee80211_frame));
2499
2500 /* assume beacon frame is contiguous */
2501 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2502 BUS_DMA_READ | BUS_DMA_NOWAIT);
2503 if (error) {
2504 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2505 m_freem(m0);
2506 return error;
2507 }
2508
2509 data->m = m0;
2510
2511 /* first scatter/gather segment is used by the beacon command */
2512 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2513 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2514 ring->cur * sizeof (struct wpi_tx_cmd));
2515 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2516 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2517 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2518
2519 /* kick cmd ring */
2520 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2521 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2522
2523 return 0;
2524 }
2525
2526 static int
2527 wpi_auth(struct wpi_softc *sc)
2528 {
2529 struct ieee80211com *ic = &sc->sc_ic;
2530 struct ieee80211_node *ni = ic->ic_bss;
2531 struct wpi_node_info node;
2532 int error;
2533
2534 /* update adapter's configuration */
2535 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2536 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2537 sc->config.flags = htole32(WPI_CONFIG_TSF);
2538 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2539 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2540 WPI_CONFIG_24GHZ);
2541 }
2542 switch (ic->ic_curmode) {
2543 case IEEE80211_MODE_11A:
2544 sc->config.cck_mask = 0;
2545 sc->config.ofdm_mask = 0x15;
2546 break;
2547 case IEEE80211_MODE_11B:
2548 sc->config.cck_mask = 0x03;
2549 sc->config.ofdm_mask = 0;
2550 break;
2551 default: /* assume 802.11b/g */
2552 sc->config.cck_mask = 0x0f;
2553 sc->config.ofdm_mask = 0x15;
2554 }
2555
2556 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2557 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2558 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2559 sizeof (struct wpi_config), 1);
2560 if (error != 0) {
2561 aprint_error_dev(sc->sc_dev, "could not configure\n");
2562 return error;
2563 }
2564
2565 /* configuration has changed, set Tx power accordingly */
2566 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2567 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2568 return error;
2569 }
2570
2571 /* add default node */
2572 memset(&node, 0, sizeof node);
2573 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2574 node.id = WPI_ID_BSS;
2575 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2576 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2577 node.action = htole32(WPI_ACTION_SET_RATE);
2578 node.antenna = WPI_ANTENNA_BOTH;
2579 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2580 if (error != 0) {
2581 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2582 return error;
2583 }
2584
2585 return 0;
2586 }
2587
2588 /*
2589 * Send a scan request to the firmware. Since this command is huge, we map it
2590 * into a mbuf instead of using the pre-allocated set of commands.
2591 */
2592 static int
2593 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2594 {
2595 struct ieee80211com *ic = &sc->sc_ic;
2596 struct wpi_tx_ring *ring = &sc->cmdq;
2597 struct wpi_tx_desc *desc;
2598 struct wpi_tx_data *data;
2599 struct wpi_tx_cmd *cmd;
2600 struct wpi_scan_hdr *hdr;
2601 struct wpi_scan_chan *chan;
2602 struct ieee80211_frame *wh;
2603 struct ieee80211_rateset *rs;
2604 struct ieee80211_channel *c;
2605 enum ieee80211_phymode mode;
2606 uint8_t *frm;
2607 int nrates, pktlen, error;
2608
2609 desc = &ring->desc[ring->cur];
2610 data = &ring->data[ring->cur];
2611
2612 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2613 if (data->m == NULL) {
2614 aprint_error_dev(sc->sc_dev,
2615 "could not allocate mbuf for scan command\n");
2616 return ENOMEM;
2617 }
2618
2619 MCLGET(data->m, M_DONTWAIT);
2620 if (!(data->m->m_flags & M_EXT)) {
2621 m_freem(data->m);
2622 data->m = NULL;
2623 aprint_error_dev(sc->sc_dev,
2624 "could not allocate mbuf for scan command\n");
2625 return ENOMEM;
2626 }
2627
2628 cmd = mtod(data->m, struct wpi_tx_cmd *);
2629 cmd->code = WPI_CMD_SCAN;
2630 cmd->flags = 0;
2631 cmd->qid = ring->qid;
2632 cmd->idx = ring->cur;
2633
2634 hdr = (struct wpi_scan_hdr *)cmd->data;
2635 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2636 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2637 hdr->id = WPI_ID_BROADCAST;
2638 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2639
2640 /*
2641 * Move to the next channel if no packets are received within 5 msecs
2642 * after sending the probe request (this helps to reduce the duration
2643 * of active scans).
2644 */
2645 hdr->quiet = htole16(5); /* timeout in milliseconds */
2646 hdr->plcp_threshold = htole16(1); /* min # of packets */
2647
2648 if (flags & IEEE80211_CHAN_A) {
2649 hdr->crc_threshold = htole16(1);
2650 /* send probe requests at 6Mbps */
2651 hdr->rate = wpi_plcp_signal(12);
2652 } else {
2653 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2654 /* send probe requests at 1Mbps */
2655 hdr->rate = wpi_plcp_signal(2);
2656 }
2657
2658 /* for directed scans, firmware inserts the essid IE itself */
2659 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2660 hdr->essid[0].len = ic->ic_des_esslen;
2661 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2662
2663 /*
2664 * Build a probe request frame. Most of the following code is a
2665 * copy & paste of what is done in net80211.
2666 */
2667 wh = (struct ieee80211_frame *)(hdr + 1);
2668 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2669 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2670 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2671 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2672 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2673 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2674 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2675 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2676
2677 frm = (uint8_t *)(wh + 1);
2678
2679 /* add empty essid IE (firmware generates it for directed scans) */
2680 *frm++ = IEEE80211_ELEMID_SSID;
2681 *frm++ = 0;
2682
2683 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2684 rs = &ic->ic_sup_rates[mode];
2685
2686 /* add supported rates IE */
2687 *frm++ = IEEE80211_ELEMID_RATES;
2688 nrates = rs->rs_nrates;
2689 if (nrates > IEEE80211_RATE_SIZE)
2690 nrates = IEEE80211_RATE_SIZE;
2691 *frm++ = nrates;
2692 memcpy(frm, rs->rs_rates, nrates);
2693 frm += nrates;
2694
2695 /* add supported xrates IE */
2696 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2697 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2698 *frm++ = IEEE80211_ELEMID_XRATES;
2699 *frm++ = nrates;
2700 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2701 frm += nrates;
2702 }
2703
2704 /* setup length of probe request */
2705 hdr->paylen = htole16(frm - (uint8_t *)wh);
2706
2707 chan = (struct wpi_scan_chan *)frm;
2708 for (c = &ic->ic_channels[1];
2709 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2710 if ((c->ic_flags & flags) != flags)
2711 continue;
2712
2713 chan->chan = ieee80211_chan2ieee(ic, c);
2714 chan->flags = 0;
2715 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2716 chan->flags |= WPI_CHAN_ACTIVE;
2717 if (ic->ic_des_esslen != 0)
2718 chan->flags |= WPI_CHAN_DIRECT;
2719 }
2720 chan->dsp_gain = 0x6e;
2721 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2722 chan->rf_gain = 0x3b;
2723 chan->active = htole16(10);
2724 chan->passive = htole16(110);
2725 } else {
2726 chan->rf_gain = 0x28;
2727 chan->active = htole16(20);
2728 chan->passive = htole16(120);
2729 }
2730 hdr->nchan++;
2731 chan++;
2732
2733 frm += sizeof (struct wpi_scan_chan);
2734 }
2735 hdr->len = htole16(frm - (uint8_t *)hdr);
2736 pktlen = frm - (uint8_t *)cmd;
2737
2738 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2739 NULL, BUS_DMA_NOWAIT);
2740 if (error) {
2741 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2742 m_freem(data->m);
2743 data->m = NULL;
2744 return error;
2745 }
2746
2747 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2748 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2749 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2750
2751 /* kick cmd ring */
2752 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2753 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2754
2755 return 0; /* will be notified async. of failure/success */
2756 }
2757
2758 static int
2759 wpi_config(struct wpi_softc *sc)
2760 {
2761 struct ieee80211com *ic = &sc->sc_ic;
2762 struct ifnet *ifp = ic->ic_ifp;
2763 struct wpi_power power;
2764 struct wpi_bluetooth bluetooth;
2765 struct wpi_node_info node;
2766 int error;
2767
2768 memset(&power, 0, sizeof power);
2769 power.flags = htole32(WPI_POWER_CAM | 0x8);
2770 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2771 if (error != 0) {
2772 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2773 return error;
2774 }
2775
2776 /* configure bluetooth coexistence */
2777 memset(&bluetooth, 0, sizeof bluetooth);
2778 bluetooth.flags = 3;
2779 bluetooth.lead = 0xaa;
2780 bluetooth.kill = 1;
2781 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2782 0);
2783 if (error != 0) {
2784 aprint_error_dev(sc->sc_dev,
2785 "could not configure bluetooth coexistence\n");
2786 return error;
2787 }
2788
2789 /* configure adapter */
2790 memset(&sc->config, 0, sizeof (struct wpi_config));
2791 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2792 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2793 /*set default channel*/
2794 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2795 sc->config.flags = htole32(WPI_CONFIG_TSF);
2796 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2797 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2798 WPI_CONFIG_24GHZ);
2799 }
2800 sc->config.filter = 0;
2801 switch (ic->ic_opmode) {
2802 case IEEE80211_M_STA:
2803 sc->config.mode = WPI_MODE_STA;
2804 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2805 break;
2806 case IEEE80211_M_IBSS:
2807 case IEEE80211_M_AHDEMO:
2808 sc->config.mode = WPI_MODE_IBSS;
2809 break;
2810 case IEEE80211_M_HOSTAP:
2811 sc->config.mode = WPI_MODE_HOSTAP;
2812 break;
2813 case IEEE80211_M_MONITOR:
2814 sc->config.mode = WPI_MODE_MONITOR;
2815 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2816 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2817 break;
2818 }
2819 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2820 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2821 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2822 sizeof (struct wpi_config), 0);
2823 if (error != 0) {
2824 aprint_error_dev(sc->sc_dev, "configure command failed\n");
2825 return error;
2826 }
2827
2828 /* configuration has changed, set Tx power accordingly */
2829 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2830 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2831 return error;
2832 }
2833
2834 /* add broadcast node */
2835 memset(&node, 0, sizeof node);
2836 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2837 node.id = WPI_ID_BROADCAST;
2838 node.rate = wpi_plcp_signal(2);
2839 node.action = htole32(WPI_ACTION_SET_RATE);
2840 node.antenna = WPI_ANTENNA_BOTH;
2841 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2842 if (error != 0) {
2843 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2844 return error;
2845 }
2846
2847 if ((error = wpi_mrr_setup(sc)) != 0) {
2848 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2849 return error;
2850 }
2851
2852 return 0;
2853 }
2854
2855 static void
2856 wpi_stop_master(struct wpi_softc *sc)
2857 {
2858 uint32_t tmp;
2859 int ntries;
2860
2861 tmp = WPI_READ(sc, WPI_RESET);
2862 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2863
2864 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2865 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2866 return; /* already asleep */
2867
2868 for (ntries = 0; ntries < 100; ntries++) {
2869 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2870 break;
2871 DELAY(10);
2872 }
2873 if (ntries == 100) {
2874 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2875 }
2876 }
2877
2878 static int
2879 wpi_power_up(struct wpi_softc *sc)
2880 {
2881 uint32_t tmp;
2882 int ntries;
2883
2884 wpi_mem_lock(sc);
2885 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2886 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2887 wpi_mem_unlock(sc);
2888
2889 for (ntries = 0; ntries < 5000; ntries++) {
2890 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2891 break;
2892 DELAY(10);
2893 }
2894 if (ntries == 5000) {
2895 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2896 return ETIMEDOUT;
2897 }
2898 return 0;
2899 }
2900
2901 static int
2902 wpi_reset(struct wpi_softc *sc)
2903 {
2904 uint32_t tmp;
2905 int ntries;
2906
2907 /* clear any pending interrupts */
2908 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2909
2910 tmp = WPI_READ(sc, WPI_PLL_CTL);
2911 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2912
2913 tmp = WPI_READ(sc, WPI_CHICKEN);
2914 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2915
2916 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2917 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2918
2919 /* wait for clock stabilization */
2920 for (ntries = 0; ntries < 1000; ntries++) {
2921 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2922 break;
2923 DELAY(10);
2924 }
2925 if (ntries == 1000) {
2926 aprint_error_dev(sc->sc_dev,
2927 "timeout waiting for clock stabilization\n");
2928 return ETIMEDOUT;
2929 }
2930
2931 /* initialize EEPROM */
2932 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2933 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2934 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2935 return EIO;
2936 }
2937 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2938
2939 return 0;
2940 }
2941
2942 static void
2943 wpi_hw_config(struct wpi_softc *sc)
2944 {
2945 uint32_t rev, hw;
2946
2947 /* voodoo from the reference driver */
2948 hw = WPI_READ(sc, WPI_HWCONFIG);
2949
2950 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2951 rev = PCI_REVISION(rev);
2952 if ((rev & 0xc0) == 0x40)
2953 hw |= WPI_HW_ALM_MB;
2954 else if (!(rev & 0x80))
2955 hw |= WPI_HW_ALM_MM;
2956
2957 if (sc->cap == 0x80)
2958 hw |= WPI_HW_SKU_MRC;
2959
2960 hw &= ~WPI_HW_REV_D;
2961 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2962 hw |= WPI_HW_REV_D;
2963
2964 if (sc->type > 1)
2965 hw |= WPI_HW_TYPE_B;
2966
2967 DPRINTF(("setting h/w config %x\n", hw));
2968 WPI_WRITE(sc, WPI_HWCONFIG, hw);
2969 }
2970
2971 static int
2972 wpi_init(struct ifnet *ifp)
2973 {
2974 struct wpi_softc *sc = ifp->if_softc;
2975 struct ieee80211com *ic = &sc->sc_ic;
2976 uint32_t tmp;
2977 int qid, ntries, error;
2978
2979 wpi_stop(ifp,1);
2980 (void)wpi_reset(sc);
2981
2982 wpi_mem_lock(sc);
2983 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2984 DELAY(20);
2985 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
2986 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
2987 wpi_mem_unlock(sc);
2988
2989 (void)wpi_power_up(sc);
2990 wpi_hw_config(sc);
2991
2992 /* init Rx ring */
2993 wpi_mem_lock(sc);
2994 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
2995 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
2996 offsetof(struct wpi_shared, next));
2997 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
2998 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
2999 wpi_mem_unlock(sc);
3000
3001 /* init Tx rings */
3002 wpi_mem_lock(sc);
3003 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3004 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3005 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3006 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3007 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3008 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3009 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3010
3011 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3012 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3013
3014 for (qid = 0; qid < 6; qid++) {
3015 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3016 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3017 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3018 }
3019 wpi_mem_unlock(sc);
3020
3021 /* clear "radio off" and "disable command" bits (reversed logic) */
3022 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3023 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3024
3025 /* clear any pending interrupts */
3026 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3027 /* enable interrupts */
3028 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3029
3030 /* not sure why/if this is necessary... */
3031 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3032 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3033
3034 if ((error = wpi_load_firmware(sc)) != 0) {
3035 aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3036 goto fail1;
3037 }
3038
3039 /* Check the status of the radio switch */
3040 wpi_mem_lock(sc);
3041 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3042 wpi_mem_unlock(sc);
3043
3044 if (!(tmp & 0x01)) {
3045 aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3046 error = EPERM; // XXX
3047 goto fail1;
3048 }
3049
3050 /* wait for thermal sensors to calibrate */
3051 for (ntries = 0; ntries < 1000; ntries++) {
3052 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3053 break;
3054 DELAY(10);
3055 }
3056 if (ntries == 1000) {
3057 aprint_error_dev(sc->sc_dev,
3058 "timeout waiting for thermal sensors calibration\n");
3059 error = ETIMEDOUT;
3060 goto fail1;
3061 }
3062
3063 DPRINTF(("temperature %d\n", sc->temp));
3064
3065 if ((error = wpi_config(sc)) != 0) {
3066 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3067 goto fail1;
3068 }
3069
3070 ifp->if_flags &= ~IFF_OACTIVE;
3071 ifp->if_flags |= IFF_RUNNING;
3072
3073 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3074 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3075 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3076 }
3077 else
3078 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3079
3080 return 0;
3081
3082 fail1: wpi_stop(ifp, 1);
3083 return error;
3084 }
3085
3086
3087 static void
3088 wpi_stop(struct ifnet *ifp, int disable)
3089 {
3090 struct wpi_softc *sc = ifp->if_softc;
3091 struct ieee80211com *ic = &sc->sc_ic;
3092 uint32_t tmp;
3093 int ac;
3094
3095 ifp->if_timer = sc->sc_tx_timer = 0;
3096 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3097
3098 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3099
3100 /* disable interrupts */
3101 WPI_WRITE(sc, WPI_MASK, 0);
3102 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3103 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3104 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3105
3106 wpi_mem_lock(sc);
3107 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3108 wpi_mem_unlock(sc);
3109
3110 /* reset all Tx rings */
3111 for (ac = 0; ac < 4; ac++)
3112 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3113 wpi_reset_tx_ring(sc, &sc->cmdq);
3114
3115 /* reset Rx ring */
3116 wpi_reset_rx_ring(sc, &sc->rxq);
3117
3118 wpi_mem_lock(sc);
3119 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3120 wpi_mem_unlock(sc);
3121
3122 DELAY(5);
3123
3124 wpi_stop_master(sc);
3125
3126 tmp = WPI_READ(sc, WPI_RESET);
3127 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3128 }
3129
3130 static bool
3131 wpi_resume(device_t dv)
3132 {
3133 struct wpi_softc *sc = device_private(dv);
3134
3135 pci_disable_retry(sc->sc_pct, sc->sc_pcitag);
3136 (void)wpi_reset(sc);
3137
3138 return true;
3139 }
3140