Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.34
      1 /*  $NetBSD: if_wpi.c,v 1.34 2008/01/09 20:15:40 degroote Exp $    */
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007
      5  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.34 2008/01/09 20:15:40 degroote Exp $");
     22 
     23 /*
     24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25  */
     26 
     27 #include "bpfilter.h"
     28 
     29 #include <sys/param.h>
     30 #include <sys/sockio.h>
     31 #include <sys/sysctl.h>
     32 #include <sys/mbuf.h>
     33 #include <sys/kernel.h>
     34 #include <sys/socket.h>
     35 #include <sys/systm.h>
     36 #include <sys/malloc.h>
     37 #include <sys/conf.h>
     38 #include <sys/kauth.h>
     39 #include <sys/callout.h>
     40 
     41 #include <sys/bus.h>
     42 #include <machine/endian.h>
     43 #include <sys/intr.h>
     44 
     45 #include <dev/pci/pcireg.h>
     46 #include <dev/pci/pcivar.h>
     47 #include <dev/pci/pcidevs.h>
     48 
     49 #if NBPFILTER > 0
     50 #include <net/bpf.h>
     51 #endif
     52 #include <net/if.h>
     53 #include <net/if_arp.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_ether.h>
     56 #include <net/if_media.h>
     57 #include <net/if_types.h>
     58 
     59 #include <net80211/ieee80211_var.h>
     60 #include <net80211/ieee80211_amrr.h>
     61 #include <net80211/ieee80211_radiotap.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <netinet/ip.h>
     67 
     68 #include <dev/firmload.h>
     69 
     70 #include <dev/pci/if_wpireg.h>
     71 #include <dev/pci/if_wpivar.h>
     72 
     73 #ifdef WPI_DEBUG
     74 #define DPRINTF(x)	if (wpi_debug > 0) printf x
     75 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
     76 int wpi_debug = 1;
     77 #else
     78 #define DPRINTF(x)
     79 #define DPRINTFN(n, x)
     80 #endif
     81 
     82 /*
     83  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
     84  */
     85 static const struct ieee80211_rateset wpi_rateset_11a =
     86 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
     87 
     88 static const struct ieee80211_rateset wpi_rateset_11b =
     89 	{ 4, { 2, 4, 11, 22 } };
     90 
     91 static const struct ieee80211_rateset wpi_rateset_11g =
     92 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
     93 
     94 static int  wpi_match(device_t, struct cfdata *, void *);
     95 static void wpi_attach(device_t, device_t, void *);
     96 static int  wpi_detach(device_t , int);
     97 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
     98 	void **, bus_size_t, bus_size_t, int);
     99 static void wpi_dma_contig_free(struct wpi_dma_info *);
    100 static int  wpi_alloc_shared(struct wpi_softc *);
    101 static void wpi_free_shared(struct wpi_softc *);
    102 static int  wpi_alloc_fwmem(struct wpi_softc *);
    103 static void wpi_free_fwmem(struct wpi_softc *);
    104 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
    105 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
    106 static int  wpi_alloc_rpool(struct wpi_softc *);
    107 static void wpi_free_rpool(struct wpi_softc *);
    108 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    109 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    110 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    111 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
    112 	int);
    113 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    114 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    115 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    116 static void wpi_newassoc(struct ieee80211_node *, int);
    117 static int  wpi_media_change(struct ifnet *);
    118 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    119 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
    120 static void wpi_mem_lock(struct wpi_softc *);
    121 static void wpi_mem_unlock(struct wpi_softc *);
    122 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
    123 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    124 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    125 								   const uint32_t *, int);
    126 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    127 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    128 static int  wpi_load_firmware(struct wpi_softc *);
    129 static void wpi_calib_timeout(void *);
    130 static void wpi_iter_func(void *, struct ieee80211_node *);
    131 static void wpi_power_calibration(struct wpi_softc *, int);
    132 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    133 	struct wpi_rx_data *);
    134 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    135 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    136 static void wpi_notif_intr(struct wpi_softc *);
    137 static int  wpi_intr(void *);
    138 static void wpi_read_eeprom(struct wpi_softc *);
    139 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
    140 static void wpi_read_eeprom_group(struct wpi_softc *, int);
    141 static uint8_t wpi_plcp_signal(int);
    142 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
    143 	struct ieee80211_node *, int);
    144 static void wpi_start(struct ifnet *);
    145 static void wpi_watchdog(struct ifnet *);
    146 static int  wpi_ioctl(struct ifnet *, u_long, void *);
    147 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    148 static int  wpi_wme_update(struct ieee80211com *);
    149 static int  wpi_mrr_setup(struct wpi_softc *);
    150 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    151 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    152 static int  wpi_set_txpower(struct wpi_softc *,
    153 			    struct ieee80211_channel *, int);
    154 static int  wpi_get_power_index(struct wpi_softc *,
    155 		struct wpi_power_group *, struct ieee80211_channel *, int);
    156 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    157 static int  wpi_auth(struct wpi_softc *);
    158 static int  wpi_scan(struct wpi_softc *, uint16_t);
    159 static int  wpi_config(struct wpi_softc *);
    160 static void wpi_stop_master(struct wpi_softc *);
    161 static int  wpi_power_up(struct wpi_softc *);
    162 static int  wpi_reset(struct wpi_softc *);
    163 static void wpi_hw_config(struct wpi_softc *);
    164 static int  wpi_init(struct ifnet *);
    165 static void wpi_stop(struct ifnet *, int);
    166 static bool wpi_resume(device_t);
    167 static int	wpi_getrfkill(struct wpi_softc *);
    168 static void wpi_sysctlattach(struct wpi_softc *);
    169 
    170 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    171 	wpi_detach, NULL);
    172 
    173 static int
    174 wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
    175 {
    176 	struct pci_attach_args *pa = aux;
    177 
    178 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    179 		return 0;
    180 
    181 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    182 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    183 		return 1;
    184 
    185 	return 0;
    186 }
    187 
    188 /* Base Address Register */
    189 #define WPI_PCI_BAR0	0x10
    190 
    191 static void
    192 wpi_attach(device_t parent __unused, device_t self, void *aux)
    193 {
    194 	struct wpi_softc *sc = device_private(self);
    195 	struct ieee80211com *ic = &sc->sc_ic;
    196 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    197 	struct pci_attach_args *pa = aux;
    198 	const char *intrstr;
    199 	char devinfo[256];
    200 	bus_space_tag_t memt;
    201 	bus_space_handle_t memh;
    202 	pci_intr_handle_t ih;
    203 	pcireg_t data;
    204 	int error, ac, revision;
    205 
    206 	sc->sc_dev = self;
    207 	sc->sc_pct = pa->pa_pc;
    208 	sc->sc_pcitag = pa->pa_tag;
    209 
    210 	callout_init(&sc->calib_to, 0);
    211 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    212 
    213 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    214 	revision = PCI_REVISION(pa->pa_class);
    215 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    216 
    217 	pci_disable_retry(pa->pa_pc, pa->pa_tag);
    218 
    219 	/* enable bus-mastering */
    220 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    221 	data |= PCI_COMMAND_MASTER_ENABLE;
    222 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    223 
    224 	/* map the register window */
    225 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    226 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    227 	if (error != 0) {
    228 		aprint_error_dev(self, "could not map memory space\n");
    229 		return;
    230 	}
    231 
    232 	sc->sc_st = memt;
    233 	sc->sc_sh = memh;
    234 	sc->sc_dmat = pa->pa_dmat;
    235 
    236 	if (pci_intr_map(pa, &ih) != 0) {
    237 		aprint_error_dev(self, "could not map interrupt\n");
    238 		return;
    239 	}
    240 
    241 	intrstr = pci_intr_string(sc->sc_pct, ih);
    242 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
    243 	if (sc->sc_ih == NULL) {
    244 		aprint_error_dev(self, "could not establish interrupt");
    245 		if (intrstr != NULL)
    246 			aprint_error(" at %s", intrstr);
    247 		aprint_error("\n");
    248 		return;
    249 	}
    250 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    251 
    252 	if (wpi_reset(sc) != 0) {
    253 		aprint_error_dev(self, "could not reset adapter\n");
    254 		return;
    255 	}
    256 
    257  	/*
    258 	 * Allocate DMA memory for firmware transfers.
    259 	 */
    260 	if ((error = wpi_alloc_fwmem(sc)) != 0)
    261 		return;
    262 
    263 	/*
    264 	 * Allocate shared page and Tx/Rx rings.
    265 	 */
    266 	if ((error = wpi_alloc_shared(sc)) != 0) {
    267 		aprint_error_dev(self, "could not allocate shared area\n");
    268 		goto fail1;
    269 	}
    270 
    271 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    272 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    273 		goto fail2;
    274 	}
    275 
    276 	for (ac = 0; ac < 4; ac++) {
    277 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
    278 		if (error != 0) {
    279 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
    280 			goto fail3;
    281 		}
    282 	}
    283 
    284 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    285 	if (error != 0) {
    286 		aprint_error_dev(self, "could not allocate command ring\n");
    287 		goto fail3;
    288 	}
    289 
    290 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
    291 		aprint_error_dev(self, "could not allocate Rx ring\n");
    292 		goto fail4;
    293 	}
    294 
    295 	ic->ic_ifp = ifp;
    296 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    297 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    298 	ic->ic_state = IEEE80211_S_INIT;
    299 
    300 	/* set device capabilities */
    301 	ic->ic_caps =
    302 		IEEE80211_C_IBSS |       /* IBSS mode support */
    303 		IEEE80211_C_WPA |        /* 802.11i */
    304 		IEEE80211_C_MONITOR |    /* monitor mode supported */
    305 		IEEE80211_C_TXPMGT |     /* tx power management */
    306 		IEEE80211_C_SHSLOT |     /* short slot time supported */
    307 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
    308 		IEEE80211_C_WME;         /* 802.11e */
    309 
    310 	/* read supported channels and MAC address from EEPROM */
    311 	wpi_read_eeprom(sc);
    312 
    313 	/* set supported .11a, .11b, .11g rates */
    314 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
    315 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
    316 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
    317 
    318 	ic->ic_ibss_chan = &ic->ic_channels[0];
    319 
    320 	ifp->if_softc = sc;
    321 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    322 	ifp->if_init = wpi_init;
    323 	ifp->if_stop = wpi_stop;
    324 	ifp->if_ioctl = wpi_ioctl;
    325 	ifp->if_start = wpi_start;
    326 	ifp->if_watchdog = wpi_watchdog;
    327 	IFQ_SET_READY(&ifp->if_snd);
    328 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    329 
    330 	if_attach(ifp);
    331 	ieee80211_ifattach(ic);
    332 	/* override default methods */
    333 	ic->ic_node_alloc = wpi_node_alloc;
    334 	ic->ic_newassoc = wpi_newassoc;
    335 	ic->ic_wme.wme_update = wpi_wme_update;
    336 
    337 	/* override state transition machine */
    338 	sc->sc_newstate = ic->ic_newstate;
    339 	ic->ic_newstate = wpi_newstate;
    340 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
    341 
    342 	sc->amrr.amrr_min_success_threshold = 1;
    343 	sc->amrr.amrr_max_success_threshold = 15;
    344 
    345 	wpi_sysctlattach(sc);
    346 
    347 	if (!pmf_device_register(self, NULL, wpi_resume))
    348 		aprint_error_dev(self, "couldn't establish power handler\n");
    349 	else
    350 		pmf_class_network_register(self, ifp);
    351 
    352 #if NBPFILTER > 0
    353 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    354 		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    355 		&sc->sc_drvbpf);
    356 
    357 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    358 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    359 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    360 
    361 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    362 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    363 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    364 #endif
    365 
    366 	ieee80211_announce(ic);
    367 
    368 	return;
    369 
    370 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
    371 fail3:  while (--ac >= 0)
    372 			wpi_free_tx_ring(sc, &sc->txq[ac]);
    373 	wpi_free_rpool(sc);
    374 fail2:	wpi_free_shared(sc);
    375 fail1:	wpi_free_fwmem(sc);
    376 }
    377 
    378 static int
    379 wpi_detach(device_t self, int flags __unused)
    380 {
    381 	struct wpi_softc *sc = device_private(self);
    382 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    383 	int ac;
    384 
    385 	wpi_stop(ifp, 1);
    386 
    387 #if NBPFILTER > 0
    388 	if (ifp != NULL)
    389 		bpfdetach(ifp);
    390 #endif
    391 	ieee80211_ifdetach(&sc->sc_ic);
    392 	if (ifp != NULL)
    393 		if_detach(ifp);
    394 
    395 	for (ac = 0; ac < 4; ac++)
    396 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    397 	wpi_free_tx_ring(sc, &sc->cmdq);
    398 	wpi_free_rx_ring(sc, &sc->rxq);
    399 	wpi_free_rpool(sc);
    400 	wpi_free_shared(sc);
    401 
    402 	if (sc->sc_ih != NULL) {
    403 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    404 		sc->sc_ih = NULL;
    405 	}
    406 
    407 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    408 
    409 	return 0;
    410 }
    411 
    412 static int
    413 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
    414 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
    415 {
    416 	int nsegs, error;
    417 
    418 	dma->tag = tag;
    419 	dma->size = size;
    420 
    421 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    422 	if (error != 0)
    423 		goto fail;
    424 
    425 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    426 	    flags);
    427 	if (error != 0)
    428 		goto fail;
    429 
    430 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    431 	if (error != 0)
    432 		goto fail;
    433 
    434 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    435 	if (error != 0)
    436 		goto fail;
    437 
    438 	memset(dma->vaddr, 0, size);
    439 
    440 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    441 	if (kvap != NULL)
    442 		*kvap = dma->vaddr;
    443 
    444 	return 0;
    445 
    446 fail:   wpi_dma_contig_free(dma);
    447 	return error;
    448 }
    449 
    450 static void
    451 wpi_dma_contig_free(struct wpi_dma_info *dma)
    452 {
    453 	if (dma->map != NULL) {
    454 		if (dma->vaddr != NULL) {
    455 			bus_dmamap_unload(dma->tag, dma->map);
    456 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    457 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    458 			dma->vaddr = NULL;
    459 		}
    460 		bus_dmamap_destroy(dma->tag, dma->map);
    461 		dma->map = NULL;
    462 	}
    463 }
    464 
    465 /*
    466  * Allocate a shared page between host and NIC.
    467  */
    468 static int
    469 wpi_alloc_shared(struct wpi_softc *sc)
    470 {
    471 	int error;
    472 	/* must be aligned on a 4K-page boundary */
    473 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    474 			(void **)&sc->shared, sizeof (struct wpi_shared),
    475 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
    476 	if (error != 0)
    477 		aprint_error_dev(sc->sc_dev,
    478 				"could not allocate shared area DMA memory\n");
    479 
    480 	return error;
    481 }
    482 
    483 static void
    484 wpi_free_shared(struct wpi_softc *sc)
    485 {
    486 	wpi_dma_contig_free(&sc->shared_dma);
    487 }
    488 
    489 /*
    490  * Allocate DMA-safe memory for firmware transfer.
    491  */
    492 static int
    493 wpi_alloc_fwmem(struct wpi_softc *sc)
    494 {
    495 	int error;
    496 	/* allocate enough contiguous space to store text and data */
    497 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    498 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    499 	    BUS_DMA_NOWAIT);
    500 
    501 	if (error != 0)
    502 		aprint_error_dev(sc->sc_dev,
    503 			"could not allocate firmware transfer area"
    504 			"DMA memory\n");
    505 	return error;
    506 }
    507 
    508 static void
    509 wpi_free_fwmem(struct wpi_softc *sc)
    510 {
    511 	wpi_dma_contig_free(&sc->fw_dma);
    512 }
    513 
    514 
    515 static struct wpi_rbuf *
    516 wpi_alloc_rbuf(struct wpi_softc *sc)
    517 {
    518 	struct wpi_rbuf *rbuf;
    519 
    520 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    521 	if (rbuf == NULL)
    522 		return NULL;
    523 	SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    524 	sc->rxq.nb_free_entries --;
    525 
    526 	return rbuf;
    527 }
    528 
    529 /*
    530  * This is called automatically by the network stack when the mbuf to which our
    531  * Rx buffer is attached is freed.
    532  */
    533 static void
    534 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    535 {
    536 	struct wpi_rbuf *rbuf = arg;
    537 	struct wpi_softc *sc = rbuf->sc;
    538 
    539 	/* put the buffer back in the free list */
    540 
    541 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    542 	sc->rxq.nb_free_entries ++;
    543 
    544 	if (__predict_true(m != NULL))
    545 		pool_cache_put(mb_cache, m);
    546 }
    547 
    548 static int
    549 wpi_alloc_rpool(struct wpi_softc *sc)
    550 {
    551 	struct wpi_rx_ring *ring = &sc->rxq;
    552 	struct wpi_rbuf *rbuf;
    553 	int i, error;
    554 
    555 	/* allocate a big chunk of DMA'able memory.. */
    556 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    557 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    558 	if (error != 0) {
    559 		aprint_normal_dev(sc->sc_dev,
    560 						  "could not allocate Rx buffers DMA memory\n");
    561 		return error;
    562 	}
    563 
    564 	/* ..and split it into 3KB chunks */
    565 	SLIST_INIT(&ring->freelist);
    566 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    567 		rbuf = &ring->rbuf[i];
    568 		rbuf->sc = sc;	/* backpointer for callbacks */
    569 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    570 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    571 
    572 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    573 	}
    574 
    575 	ring->nb_free_entries = WPI_RBUF_COUNT;
    576 	return 0;
    577 }
    578 
    579 static void
    580 wpi_free_rpool(struct wpi_softc *sc)
    581 {
    582 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    583 }
    584 
    585 static int
    586 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    587 {
    588 	struct wpi_rx_data *data;
    589 	struct wpi_rbuf *rbuf;
    590 	int i, error;
    591 
    592 	ring->cur = 0;
    593 
    594 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    595 		(void **)&ring->desc,
    596 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
    597 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    598 	if (error != 0) {
    599 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
    600 		goto fail;
    601 	}
    602 
    603 	/*
    604 	 * Setup Rx buffers.
    605 	 */
    606 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    607 		data = &ring->data[i];
    608 
    609 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    610 		if (data->m == NULL) {
    611 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
    612 			error = ENOMEM;
    613 			goto fail;
    614 		}
    615 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    616 			m_freem(data->m);
    617 			data->m = NULL;
    618 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
    619 			error = ENOMEM;
    620 			goto fail;
    621 		}
    622 		/* attach Rx buffer to mbuf */
    623 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    624 		    rbuf);
    625 		data->m->m_flags |= M_EXT_RW;
    626 
    627 		ring->desc[i] = htole32(rbuf->paddr);
    628 	}
    629 
    630 	return 0;
    631 
    632 fail:	wpi_free_rx_ring(sc, ring);
    633 	return error;
    634 }
    635 
    636 static void
    637 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    638 {
    639 	int ntries;
    640 
    641 	wpi_mem_lock(sc);
    642 
    643 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    644 	for (ntries = 0; ntries < 100; ntries++) {
    645 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    646 			break;
    647 		DELAY(10);
    648 	}
    649 #ifdef WPI_DEBUG
    650 	if (ntries == 100 && wpi_debug > 0)
    651 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    652 #endif
    653 	wpi_mem_unlock(sc);
    654 
    655 	ring->cur = 0;
    656 }
    657 
    658 static void
    659 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    660 {
    661 	int i;
    662 
    663 	wpi_dma_contig_free(&ring->desc_dma);
    664 
    665 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    666 		if (ring->data[i].m != NULL)
    667 			m_freem(ring->data[i].m);
    668 	}
    669 }
    670 
    671 static int
    672 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    673 	int qid)
    674 {
    675 	struct wpi_tx_data *data;
    676 	int i, error;
    677 
    678 	ring->qid = qid;
    679 	ring->count = count;
    680 	ring->queued = 0;
    681 	ring->cur = 0;
    682 
    683 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    684 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    685 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    686 	if (error != 0) {
    687 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
    688 		goto fail;
    689 	}
    690 
    691 	/* update shared page with ring's base address */
    692 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    693 
    694 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    695 		(void **)&ring->cmd,
    696 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
    697 	if (error != 0) {
    698 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
    699 		goto fail;
    700 	}
    701 
    702 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    703 		M_NOWAIT);
    704 	if (ring->data == NULL) {
    705 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
    706 		goto fail;
    707 	}
    708 
    709 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
    710 
    711 	for (i = 0; i < count; i++) {
    712 		data = &ring->data[i];
    713 
    714 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    715 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    716 			&data->map);
    717 		if (error != 0) {
    718 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
    719 			goto fail;
    720 		}
    721 	}
    722 
    723 	return 0;
    724 
    725 fail:	wpi_free_tx_ring(sc, ring);
    726 	return error;
    727 }
    728 
    729 static void
    730 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    731 {
    732 	struct wpi_tx_data *data;
    733 	int i, ntries;
    734 
    735 	wpi_mem_lock(sc);
    736 
    737 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    738 	for (ntries = 0; ntries < 100; ntries++) {
    739 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    740 			break;
    741 		DELAY(10);
    742 	}
    743 #ifdef WPI_DEBUG
    744 	if (ntries == 100 && wpi_debug > 0) {
    745 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    746 									   ring->qid);
    747 	}
    748 #endif
    749 	wpi_mem_unlock(sc);
    750 
    751 	for (i = 0; i < ring->count; i++) {
    752 		data = &ring->data[i];
    753 
    754 		if (data->m != NULL) {
    755 			bus_dmamap_unload(sc->sc_dmat, data->map);
    756 			m_freem(data->m);
    757 			data->m = NULL;
    758 		}
    759 	}
    760 
    761 	ring->queued = 0;
    762 	ring->cur = 0;
    763 }
    764 
    765 static void
    766 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    767 {
    768 	struct wpi_tx_data *data;
    769 	int i;
    770 
    771 	wpi_dma_contig_free(&ring->desc_dma);
    772 	wpi_dma_contig_free(&ring->cmd_dma);
    773 
    774 	if (ring->data != NULL) {
    775 		for (i = 0; i < ring->count; i++) {
    776 			data = &ring->data[i];
    777 
    778 			if (data->m != NULL) {
    779 				bus_dmamap_unload(sc->sc_dmat, data->map);
    780 				m_freem(data->m);
    781 			}
    782 		}
    783 		free(ring->data, M_DEVBUF);
    784 	}
    785 }
    786 
    787 /*ARGUSED*/
    788 static struct ieee80211_node *
    789 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    790 {
    791 	struct wpi_node *wn;
    792 
    793 	wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
    794 
    795 	if (wn != NULL)
    796 		memset(wn, 0, sizeof (struct wpi_node));
    797 	return (struct ieee80211_node *)wn;
    798 }
    799 
    800 static void
    801 wpi_newassoc(struct ieee80211_node *ni, int isnew)
    802 {
    803 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    804 	int i;
    805 
    806 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    807 
    808 	/* set rate to some reasonable initial value */
    809 	for (i = ni->ni_rates.rs_nrates - 1;
    810 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    811 	     i--);
    812 	ni->ni_txrate = i;
    813 }
    814 
    815 static int
    816 wpi_media_change(struct ifnet *ifp)
    817 {
    818 	int error;
    819 
    820 	error = ieee80211_media_change(ifp);
    821 	if (error != ENETRESET)
    822 		return error;
    823 
    824 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    825 		wpi_init(ifp);
    826 
    827 	return 0;
    828 }
    829 
    830 static int
    831 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    832 {
    833 	struct ifnet *ifp = ic->ic_ifp;
    834 	struct wpi_softc *sc = ifp->if_softc;
    835 	struct ieee80211_node *ni;
    836 	int error;
    837 
    838 	callout_stop(&sc->calib_to);
    839 
    840 	switch (nstate) {
    841 	case IEEE80211_S_SCAN:
    842 
    843 		if (sc->is_scanning)
    844 			break;
    845 
    846 		sc->is_scanning = true;
    847 		ieee80211_node_table_reset(&ic->ic_scan);
    848 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
    849 
    850 		/* make the link LED blink while we're scanning */
    851 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    852 
    853 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
    854 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
    855 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
    856 			return error;
    857 		}
    858 
    859 		ic->ic_state = nstate;
    860 		return 0;
    861 
    862 	case IEEE80211_S_ASSOC:
    863 		if (ic->ic_state != IEEE80211_S_RUN)
    864 			break;
    865 		/* FALLTHROUGH */
    866 	case IEEE80211_S_AUTH:
    867 		sc->config.associd = 0;
    868 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    869 		if ((error = wpi_auth(sc)) != 0) {
    870 			aprint_error_dev(sc->sc_dev,
    871 							"could not send authentication request\n");
    872 			return error;
    873 		}
    874 		break;
    875 
    876 	case IEEE80211_S_RUN:
    877 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    878 			/* link LED blinks while monitoring */
    879 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    880 			break;
    881 		}
    882 
    883 		ni = ic->ic_bss;
    884 
    885 		if (ic->ic_opmode != IEEE80211_M_STA) {
    886 			(void) wpi_auth(sc);    /* XXX */
    887 			wpi_setup_beacon(sc, ni);
    888 		}
    889 
    890 		wpi_enable_tsf(sc, ni);
    891 
    892 		/* update adapter's configuration */
    893 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    894 		/* short preamble/slot time are negotiated when associating */
    895 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
    896 			WPI_CONFIG_SHSLOT);
    897 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
    898 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
    899 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
    900 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
    901 		sc->config.filter |= htole32(WPI_FILTER_BSS);
    902 		if (ic->ic_opmode != IEEE80211_M_STA)
    903 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
    904 
    905 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
    906 
    907 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
    908 			sc->config.flags));
    909 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
    910 			sizeof (struct wpi_config), 1);
    911 		if (error != 0) {
    912 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
    913 			return error;
    914 		}
    915 
    916 		/* configuration has changed, set Tx power accordingly */
    917 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
    918 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
    919 			return error;
    920 		}
    921 
    922 		if (ic->ic_opmode == IEEE80211_M_STA) {
    923 			/* fake a join to init the tx rate */
    924 			wpi_newassoc(ni, 1);
    925 		}
    926 
    927 		/* start periodic calibration timer */
    928 		sc->calib_cnt = 0;
    929 		callout_schedule(&sc->calib_to, hz/2);
    930 
    931 		/* link LED always on while associated */
    932 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
    933 		break;
    934 
    935 	case IEEE80211_S_INIT:
    936 		sc->is_scanning = false;
    937 		break;
    938 	}
    939 
    940 	return sc->sc_newstate(ic, nstate, arg);
    941 }
    942 
    943 /*
    944  * XXX: Hack to set the current channel to the value advertised in beacons or
    945  * probe responses. Only used during AP detection.
    946  * XXX: Duplicated from if_iwi.c
    947  */
    948 static void
    949 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
    950 {
    951 	struct ieee80211_frame *wh;
    952 	uint8_t subtype;
    953 	uint8_t *frm, *efrm;
    954 
    955 	wh = mtod(m, struct ieee80211_frame *);
    956 
    957 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
    958 		return;
    959 
    960 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
    961 
    962 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
    963 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
    964 		return;
    965 
    966 	frm = (uint8_t *)(wh + 1);
    967 	efrm = mtod(m, uint8_t *) + m->m_len;
    968 
    969 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
    970 	while (frm < efrm) {
    971 		if (*frm == IEEE80211_ELEMID_DSPARMS)
    972 #if IEEE80211_CHAN_MAX < 255
    973 		if (frm[2] <= IEEE80211_CHAN_MAX)
    974 #endif
    975 			ic->ic_curchan = &ic->ic_channels[frm[2]];
    976 
    977 		frm += frm[1] + 2;
    978 	}
    979 }
    980 
    981 /*
    982  * Grab exclusive access to NIC memory.
    983  */
    984 static void
    985 wpi_mem_lock(struct wpi_softc *sc)
    986 {
    987 	uint32_t tmp;
    988 	int ntries;
    989 
    990 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
    991 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
    992 
    993 	/* spin until we actually get the lock */
    994 	for (ntries = 0; ntries < 1000; ntries++) {
    995 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
    996 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
    997 			break;
    998 		DELAY(10);
    999 	}
   1000 	if (ntries == 1000)
   1001 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
   1002 }
   1003 
   1004 /*
   1005  * Release lock on NIC memory.
   1006  */
   1007 static void
   1008 wpi_mem_unlock(struct wpi_softc *sc)
   1009 {
   1010 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1011 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1012 }
   1013 
   1014 static uint32_t
   1015 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1016 {
   1017 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1018 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1019 }
   1020 
   1021 static void
   1022 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1023 {
   1024 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1025 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1026 }
   1027 
   1028 static void
   1029 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1030 						const uint32_t *data, int wlen)
   1031 {
   1032 	for (; wlen > 0; wlen--, data++, addr += 4)
   1033 		wpi_mem_write(sc, addr, *data);
   1034 }
   1035 
   1036 
   1037 /*
   1038  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1039  * instead of using the traditional bit-bang method.
   1040  */
   1041 static int
   1042 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1043 {
   1044 	uint8_t *out = data;
   1045 	uint32_t val;
   1046 	int ntries;
   1047 
   1048 	wpi_mem_lock(sc);
   1049 	for (; len > 0; len -= 2, addr++) {
   1050 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1051 
   1052 		for (ntries = 0; ntries < 10; ntries++) {
   1053 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1054 			    WPI_EEPROM_READY)
   1055 				break;
   1056 			DELAY(5);
   1057 		}
   1058 		if (ntries == 10) {
   1059 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1060 			return ETIMEDOUT;
   1061 		}
   1062 		*out++ = val >> 16;
   1063 		if (len > 1)
   1064 			*out++ = val >> 24;
   1065 	}
   1066 	wpi_mem_unlock(sc);
   1067 
   1068 	return 0;
   1069 }
   1070 
   1071 /*
   1072  * The firmware boot code is small and is intended to be copied directly into
   1073  * the NIC internal memory.
   1074  */
   1075 int
   1076 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1077 {
   1078 	int ntries;
   1079 
   1080 	size /= sizeof (uint32_t);
   1081 
   1082 	wpi_mem_lock(sc);
   1083 
   1084 	/* copy microcode image into NIC memory */
   1085 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1086 	    (const uint32_t *)ucode, size);
   1087 
   1088 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1089 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1090 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1091 
   1092 	/* run microcode */
   1093 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1094 
   1095 	/* wait for transfer to complete */
   1096 	for (ntries = 0; ntries < 1000; ntries++) {
   1097 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1098 			break;
   1099 		DELAY(10);
   1100 	}
   1101 	if (ntries == 1000) {
   1102 		wpi_mem_unlock(sc);
   1103 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1104 		return ETIMEDOUT;
   1105 	}
   1106 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1107 
   1108 	wpi_mem_unlock(sc);
   1109 
   1110 	return 0;
   1111 }
   1112 
   1113 static int
   1114 wpi_load_firmware(struct wpi_softc *sc)
   1115 {
   1116 	struct wpi_dma_info *dma = &sc->fw_dma;
   1117 	struct wpi_firmware_hdr hdr;
   1118 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1119 	const uint8_t *boot_text;
   1120 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1121 	uint32_t boot_textsz;
   1122 	firmware_handle_t fw;
   1123 	u_char *dfw;
   1124 	size_t size;
   1125 	int error;
   1126 
   1127 	/* load firmware image from disk */
   1128 	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
   1129 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
   1130 		goto fail1;
   1131 	}
   1132 
   1133 	size = firmware_get_size(fw);
   1134 
   1135 	/* extract firmware header information */
   1136 	if (size < sizeof (struct wpi_firmware_hdr)) {
   1137 		aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
   1138 		    			 size);
   1139 		error = EINVAL;
   1140 		goto fail2;
   1141 	}
   1142 
   1143 	if ((error = firmware_read(fw, 0, &hdr,
   1144 		sizeof (struct wpi_firmware_hdr))) != 0) {
   1145 		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
   1146 		goto fail2;
   1147 	}
   1148 
   1149 	main_textsz = le32toh(hdr.main_textsz);
   1150 	main_datasz = le32toh(hdr.main_datasz);
   1151 	init_textsz = le32toh(hdr.init_textsz);
   1152 	init_datasz = le32toh(hdr.init_datasz);
   1153 	boot_textsz = le32toh(hdr.boot_textsz);
   1154 
   1155 	/* sanity-check firmware segments sizes */
   1156 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1157 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1158 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1159 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1160 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1161 	    (boot_textsz & 3) != 0) {
   1162 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1163 		error = EINVAL;
   1164 		goto fail2;
   1165 	}
   1166 
   1167 	/* check that all firmware segments are present */
   1168 	if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
   1169 		main_datasz + init_textsz + init_datasz + boot_textsz) {
   1170 		aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
   1171 		    			 size);
   1172 		error = EINVAL;
   1173 		goto fail2;
   1174 	}
   1175 
   1176 	dfw = firmware_malloc(size);
   1177 	if (dfw == NULL) {
   1178 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
   1179 		error = ENOMEM;
   1180 		goto fail2;
   1181 	}
   1182 
   1183 	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
   1184 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
   1185 		goto fail2;
   1186 	}
   1187 
   1188 	/* get pointers to firmware segments */
   1189 	main_text = dfw + sizeof (struct wpi_firmware_hdr);
   1190 	main_data = main_text + main_textsz;
   1191 	init_text = main_data + main_datasz;
   1192 	init_data = init_text + init_textsz;
   1193 	boot_text = init_data + init_datasz;
   1194 
   1195 	/* copy initialization images into pre-allocated DMA-safe memory */
   1196 	memcpy(dma->vaddr, init_data, init_datasz);
   1197 	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
   1198 
   1199 	/* tell adapter where to find initialization images */
   1200 	wpi_mem_lock(sc);
   1201 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1202 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1203 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1204 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1205 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1206 	wpi_mem_unlock(sc);
   1207 
   1208 	/* load firmware boot code */
   1209 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1210 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1211 		goto fail3;
   1212 	}
   1213 
   1214 	/* now press "execute" ;-) */
   1215 	WPI_WRITE(sc, WPI_RESET, 0);
   1216 
   1217 	/* ..and wait at most one second for adapter to initialize */
   1218 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1219 		/* this isn't what was supposed to happen.. */
   1220 		aprint_error_dev(sc->sc_dev,
   1221 					"timeout waiting for adapter to initialize\n");
   1222 	}
   1223 
   1224 	/* copy runtime images into pre-allocated DMA-safe memory */
   1225 	memcpy(dma->vaddr, main_data, main_datasz);
   1226 	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
   1227 
   1228 	/* tell adapter where to find runtime images */
   1229 	wpi_mem_lock(sc);
   1230 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1231 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1232 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1233 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1234 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1235 	wpi_mem_unlock(sc);
   1236 
   1237 	/* wait at most one second for second alive notification */
   1238 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1239 		/* this isn't what was supposed to happen.. */
   1240 		aprint_error_dev(sc->sc_dev,
   1241 						"timeout waiting for adapter to initialize\n");
   1242 	}
   1243 
   1244 
   1245 fail3: 	firmware_free(dfw,size);
   1246 fail2:	firmware_close(fw);
   1247 fail1:	return error;
   1248 }
   1249 
   1250 static void
   1251 wpi_calib_timeout(void *arg)
   1252 {
   1253 	struct wpi_softc *sc = arg;
   1254 	struct ieee80211com *ic = &sc->sc_ic;
   1255 	int temp, s;
   1256 
   1257 	/* automatic rate control triggered every 500ms */
   1258 	if (ic->ic_fixed_rate == -1) {
   1259 		s = splnet();
   1260 		if (ic->ic_opmode == IEEE80211_M_STA)
   1261 			wpi_iter_func(sc, ic->ic_bss);
   1262 		else
   1263                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1264 		splx(s);
   1265 	}
   1266 
   1267 	/* update sensor data */
   1268 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1269 
   1270 	/* automatic power calibration every 60s */
   1271 	if (++sc->calib_cnt >= 120) {
   1272 		wpi_power_calibration(sc, temp);
   1273 		sc->calib_cnt = 0;
   1274 	}
   1275 
   1276 	callout_schedule(&sc->calib_to, hz/2);
   1277 }
   1278 
   1279 static void
   1280 wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1281 {
   1282 	struct wpi_softc *sc = arg;
   1283 	struct wpi_node *wn = (struct wpi_node *)ni;
   1284 
   1285 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1286 }
   1287 
   1288 /*
   1289  * This function is called periodically (every 60 seconds) to adjust output
   1290  * power to temperature changes.
   1291  */
   1292 void
   1293 wpi_power_calibration(struct wpi_softc *sc, int temp)
   1294 {
   1295 	/* sanity-check read value */
   1296 	if (temp < -260 || temp > 25) {
   1297 		/* this can't be correct, ignore */
   1298 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1299 		return;
   1300 	}
   1301 
   1302 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1303 
   1304 	/* adjust Tx power if need be */
   1305 	if (abs(temp - sc->temp) <= 6)
   1306 		return;
   1307 
   1308 	sc->temp = temp;
   1309 
   1310 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
   1311 		/* just warn, too bad for the automatic calibration... */
   1312 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1313 	}
   1314 }
   1315 
   1316 static void
   1317 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1318 	struct wpi_rx_data *data)
   1319 {
   1320 	struct ieee80211com *ic = &sc->sc_ic;
   1321 	struct ifnet *ifp = ic->ic_ifp;
   1322 	struct wpi_rx_ring *ring = &sc->rxq;
   1323 	struct wpi_rx_stat *stat;
   1324 	struct wpi_rx_head *head;
   1325 	struct wpi_rx_tail *tail;
   1326 	struct wpi_rbuf *rbuf;
   1327 	struct ieee80211_frame *wh;
   1328 	struct ieee80211_node *ni;
   1329 	struct mbuf *m, *mnew;
   1330 	int data_off ;
   1331 
   1332 	stat = (struct wpi_rx_stat *)(desc + 1);
   1333 
   1334 	if (stat->len > WPI_STAT_MAXLEN) {
   1335 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1336 		ifp->if_ierrors++;
   1337 		return;
   1338 	}
   1339 
   1340 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1341 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1342 
   1343 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1344 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
   1345 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1346 		le64toh(tail->tstamp)));
   1347 
   1348 	/*
   1349 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1350 	 * to radiotap in monitor mode).
   1351 	 */
   1352 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1353 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
   1354 		ifp->if_ierrors++;
   1355 		return;
   1356 	}
   1357 
   1358 	/* Compute where are the useful datas */
   1359 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1360 
   1361 	/*
   1362 	 * If the number of free entry is too low
   1363 	 * just dup the data->m socket and reuse the same rbuf entry
   1364 	 */
   1365 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
   1366 
   1367 		/* Prepare the mbuf for the m_dup */
   1368 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
   1369 		data->m->m_data = (char*) data->m->m_data + data_off;
   1370 
   1371 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
   1372 
   1373 		/* Restore the m_data pointer for future use */
   1374 		data->m->m_data = (char*) data->m->m_data - data_off;
   1375 
   1376 		if (m == NULL) {
   1377 			ifp->if_ierrors++;
   1378 			return;
   1379 		}
   1380 	} else {
   1381 
   1382 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1383 		if (mnew == NULL) {
   1384 			ifp->if_ierrors++;
   1385 			return;
   1386 		}
   1387 
   1388 		rbuf = wpi_alloc_rbuf(sc);
   1389 		KASSERT(rbuf != NULL);
   1390 
   1391  		/* attach Rx buffer to mbuf */
   1392 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1393 		 	rbuf);
   1394 		mnew->m_flags |= M_EXT_RW;
   1395 
   1396 		m = data->m;
   1397 		data->m = mnew;
   1398 
   1399 		/* update Rx descriptor */
   1400 		ring->desc[ring->cur] = htole32(rbuf->paddr);
   1401 
   1402 		m->m_data = (char*)m->m_data + data_off;
   1403 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1404 	}
   1405 
   1406 	/* finalize mbuf */
   1407 	m->m_pkthdr.rcvif = ifp;
   1408 
   1409 	if (ic->ic_state == IEEE80211_S_SCAN)
   1410 		wpi_fix_channel(ic, m);
   1411 
   1412 #if NBPFILTER > 0
   1413 	if (sc->sc_drvbpf != NULL) {
   1414 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1415 
   1416 		tap->wr_flags = 0;
   1417 		tap->wr_chan_freq =
   1418 			htole16(ic->ic_channels[head->chan].ic_freq);
   1419 		tap->wr_chan_flags =
   1420 			htole16(ic->ic_channels[head->chan].ic_flags);
   1421 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1422 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1423 		tap->wr_tsft = tail->tstamp;
   1424 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1425 		switch (head->rate) {
   1426 		/* CCK rates */
   1427 		case  10: tap->wr_rate =   2; break;
   1428 		case  20: tap->wr_rate =   4; break;
   1429 		case  55: tap->wr_rate =  11; break;
   1430 		case 110: tap->wr_rate =  22; break;
   1431 		/* OFDM rates */
   1432 		case 0xd: tap->wr_rate =  12; break;
   1433 		case 0xf: tap->wr_rate =  18; break;
   1434 		case 0x5: tap->wr_rate =  24; break;
   1435 		case 0x7: tap->wr_rate =  36; break;
   1436 		case 0x9: tap->wr_rate =  48; break;
   1437 		case 0xb: tap->wr_rate =  72; break;
   1438 		case 0x1: tap->wr_rate =  96; break;
   1439 		case 0x3: tap->wr_rate = 108; break;
   1440 		/* unknown rate: should not happen */
   1441 		default:  tap->wr_rate =   0;
   1442 		}
   1443 		if (le16toh(head->flags) & 0x4)
   1444 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1445 
   1446 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1447 	}
   1448 #endif
   1449 
   1450 	/* grab a reference to the source node */
   1451 	wh = mtod(m, struct ieee80211_frame *);
   1452 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1453 
   1454 	/* send the frame to the 802.11 layer */
   1455 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1456 
   1457 	/* release node reference */
   1458 	ieee80211_free_node(ni);
   1459 }
   1460 
   1461 static void
   1462 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1463 {
   1464 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1465 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1466 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
   1467 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1468 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
   1469 
   1470 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1471 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1472 		stat->nkill, stat->rate, le32toh(stat->duration),
   1473 		le32toh(stat->status)));
   1474 
   1475 	/*
   1476 	 * Update rate control statistics for the node.
   1477 	 * XXX we should not count mgmt frames since they're always sent at
   1478 	 * the lowest available bit-rate.
   1479 	 */
   1480 	wn->amn.amn_txcnt++;
   1481 	if (stat->ntries > 0) {
   1482 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1483 		wn->amn.amn_retrycnt++;
   1484 	}
   1485 
   1486 	if ((le32toh(stat->status) & 0xff) != 1)
   1487 		ifp->if_oerrors++;
   1488 	else
   1489 		ifp->if_opackets++;
   1490 
   1491 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
   1492 	m_freem(txdata->m);
   1493 	txdata->m = NULL;
   1494 	ieee80211_free_node(txdata->ni);
   1495 	txdata->ni = NULL;
   1496 
   1497 	ring->queued--;
   1498 
   1499 	sc->sc_tx_timer = 0;
   1500 	ifp->if_flags &= ~IFF_OACTIVE;
   1501 	wpi_start(ifp);
   1502 }
   1503 
   1504 static void
   1505 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1506 {
   1507 	struct wpi_tx_ring *ring = &sc->cmdq;
   1508 	struct wpi_tx_data *data;
   1509 
   1510 	if ((desc->qid & 7) != 4)
   1511 		return;	/* not a command ack */
   1512 
   1513 	data = &ring->data[desc->idx];
   1514 
   1515 	/* if the command was mapped in a mbuf, free it */
   1516 	if (data->m != NULL) {
   1517 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1518 		m_freem(data->m);
   1519 		data->m = NULL;
   1520 	}
   1521 
   1522 	wakeup(&ring->cmd[desc->idx]);
   1523 }
   1524 
   1525 static void
   1526 wpi_notif_intr(struct wpi_softc *sc)
   1527 {
   1528 	struct ieee80211com *ic = &sc->sc_ic;
   1529 	struct ifnet *ifp =  ic->ic_ifp;
   1530 	struct wpi_rx_desc *desc;
   1531 	struct wpi_rx_data *data;
   1532 	uint32_t hw;
   1533 
   1534 	hw = le32toh(sc->shared->next);
   1535 	while (sc->rxq.cur != hw) {
   1536 		data = &sc->rxq.data[sc->rxq.cur];
   1537 
   1538 		desc = mtod(data->m, struct wpi_rx_desc *);
   1539 
   1540 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1541 			"len=%d\n", desc->qid, desc->idx, desc->flags,
   1542 			desc->type, le32toh(desc->len)));
   1543 
   1544 		if (!(desc->qid & 0x80))	/* reply to a command */
   1545 			wpi_cmd_intr(sc, desc);
   1546 
   1547 		switch (desc->type) {
   1548 		case WPI_RX_DONE:
   1549 			/* a 802.11 frame was received */
   1550 			wpi_rx_intr(sc, desc, data);
   1551 			break;
   1552 
   1553 		case WPI_TX_DONE:
   1554 			/* a 802.11 frame has been transmitted */
   1555 			wpi_tx_intr(sc, desc);
   1556 			break;
   1557 
   1558 		case WPI_UC_READY:
   1559 		{
   1560 			struct wpi_ucode_info *uc =
   1561 				(struct wpi_ucode_info *)(desc + 1);
   1562 
   1563 			/* the microcontroller is ready */
   1564 			DPRINTF(("microcode alive notification version %x "
   1565 				"alive %x\n", le32toh(uc->version),
   1566 				le32toh(uc->valid)));
   1567 
   1568 			if (le32toh(uc->valid) != 1) {
   1569 				aprint_error_dev(sc->sc_dev,
   1570 					"microcontroller initialization failed\n");
   1571 			}
   1572 			break;
   1573 		}
   1574 		case WPI_STATE_CHANGED:
   1575 		{
   1576 			uint32_t *status = (uint32_t *)(desc + 1);
   1577 
   1578 			/* enabled/disabled notification */
   1579 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1580 
   1581 			if (le32toh(*status) & 1) {
   1582 				/* the radio button has to be pushed */
   1583 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
   1584 				/* turn the interface down */
   1585 				ifp->if_flags &= ~IFF_UP;
   1586 				wpi_stop(ifp, 1);
   1587 				return;	/* no further processing */
   1588 			}
   1589 			break;
   1590 		}
   1591 		case WPI_START_SCAN:
   1592 		{
   1593 			struct wpi_start_scan *scan =
   1594 				(struct wpi_start_scan *)(desc + 1);
   1595 
   1596 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1597 				scan->chan, le32toh(scan->status)));
   1598 
   1599 			/* fix current channel */
   1600 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   1601 			break;
   1602 		}
   1603 		case WPI_STOP_SCAN:
   1604 		{
   1605 			struct wpi_stop_scan *scan =
   1606 				(struct wpi_stop_scan *)(desc + 1);
   1607 
   1608 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1609 				scan->nchan, scan->status, scan->chan));
   1610 
   1611 			if (scan->status == 1 && scan->chan <= 14) {
   1612 				/*
   1613 				 * We just finished scanning 802.11g channels,
   1614 				 * start scanning 802.11a ones.
   1615 				 */
   1616 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
   1617 					break;
   1618 			}
   1619 			sc->is_scanning = false;
   1620 			ieee80211_end_scan(ic);
   1621 			break;
   1622 		}
   1623 		}
   1624 
   1625 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1626 	}
   1627 
   1628 	/* tell the firmware what we have processed */
   1629 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1630 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1631 }
   1632 
   1633 static int
   1634 wpi_intr(void *arg)
   1635 {
   1636 	struct wpi_softc *sc = arg;
   1637 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1638 	uint32_t r;
   1639 
   1640 	r = WPI_READ(sc, WPI_INTR);
   1641 	if (r == 0 || r == 0xffffffff)
   1642 		return 0;	/* not for us */
   1643 
   1644 	DPRINTFN(5, ("interrupt reg %x\n", r));
   1645 
   1646 	/* disable interrupts */
   1647 	WPI_WRITE(sc, WPI_MASK, 0);
   1648 	/* ack interrupts */
   1649 	WPI_WRITE(sc, WPI_INTR, r);
   1650 
   1651 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1652 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1653 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
   1654 		wpi_stop(sc->sc_ic.ic_ifp, 1);
   1655 		return 1;
   1656 	}
   1657 
   1658 	if (r & WPI_RX_INTR)
   1659 		wpi_notif_intr(sc);
   1660 
   1661 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1662 		wakeup(sc);
   1663 
   1664 	/* re-enable interrupts */
   1665 	if (ifp->if_flags & IFF_UP)
   1666 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1667 
   1668 	return 1;
   1669 }
   1670 
   1671 static uint8_t
   1672 wpi_plcp_signal(int rate)
   1673 {
   1674 	switch (rate) {
   1675 	/* CCK rates (returned values are device-dependent) */
   1676 	case 2:		return 10;
   1677 	case 4:		return 20;
   1678 	case 11:	return 55;
   1679 	case 22:	return 110;
   1680 
   1681 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1682 	/* R1-R4, (u)ral is R4-R1 */
   1683 	case 12:	return 0xd;
   1684 	case 18:	return 0xf;
   1685 	case 24:	return 0x5;
   1686 	case 36:	return 0x7;
   1687 	case 48:	return 0x9;
   1688 	case 72:	return 0xb;
   1689 	case 96:	return 0x1;
   1690 	case 108:	return 0x3;
   1691 
   1692 	/* unsupported rates (should not get there) */
   1693 	default:	return 0;
   1694 	}
   1695 }
   1696 
   1697 /* quickly determine if a given rate is CCK or OFDM */
   1698 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1699 
   1700 static int
   1701 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1702 	int ac)
   1703 {
   1704 	struct ieee80211com *ic = &sc->sc_ic;
   1705 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1706 	struct wpi_tx_desc *desc;
   1707 	struct wpi_tx_data *data;
   1708 	struct wpi_tx_cmd *cmd;
   1709 	struct wpi_cmd_data *tx;
   1710 	struct ieee80211_frame *wh;
   1711 	struct ieee80211_key *k;
   1712 	const struct chanAccParams *cap;
   1713 	struct mbuf *mnew;
   1714 	int i, error, rate, hdrlen, noack = 0;
   1715 
   1716 	desc = &ring->desc[ring->cur];
   1717 	data = &ring->data[ring->cur];
   1718 
   1719 	wh = mtod(m0, struct ieee80211_frame *);
   1720 
   1721 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   1722 		cap = &ic->ic_wme.wme_chanParams;
   1723 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1724 	}
   1725 
   1726 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1727 		k = ieee80211_crypto_encap(ic, ni, m0);
   1728 		if (k == NULL) {
   1729 			m_freem(m0);
   1730 			return ENOBUFS;
   1731 		}
   1732 
   1733 		/* packet header may have moved, reset our local pointer */
   1734 		wh = mtod(m0, struct ieee80211_frame *);
   1735 	}
   1736 
   1737 	hdrlen = ieee80211_anyhdrsize(wh);
   1738 
   1739 	/* pickup a rate */
   1740 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1741 		IEEE80211_FC0_TYPE_MGT) {
   1742 		/* mgmt frames are sent at the lowest available bit-rate */
   1743 		rate = ni->ni_rates.rs_rates[0];
   1744 	} else {
   1745 		if (ic->ic_fixed_rate != -1) {
   1746 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1747 				rs_rates[ic->ic_fixed_rate];
   1748 		} else
   1749 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1750 	}
   1751 	rate &= IEEE80211_RATE_VAL;
   1752 
   1753 
   1754 #if NBPFILTER > 0
   1755 	if (sc->sc_drvbpf != NULL) {
   1756 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1757 
   1758 		tap->wt_flags = 0;
   1759 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1760 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1761 		tap->wt_rate = rate;
   1762 		tap->wt_hwqueue = ac;
   1763 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1764 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1765 
   1766 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1767 	}
   1768 #endif
   1769 
   1770 	cmd = &ring->cmd[ring->cur];
   1771 	cmd->code = WPI_CMD_TX_DATA;
   1772 	cmd->flags = 0;
   1773 	cmd->qid = ring->qid;
   1774 	cmd->idx = ring->cur;
   1775 
   1776 	tx = (struct wpi_cmd_data *)cmd->data;
   1777 	tx->flags = 0;
   1778 
   1779 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1780 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1781 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1782 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1783 
   1784 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1785 
   1786 	/* retrieve destination node's id */
   1787 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1788 		WPI_ID_BSS;
   1789 
   1790 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1791 		IEEE80211_FC0_TYPE_MGT) {
   1792 		/* tell h/w to set timestamp in probe responses */
   1793 		if ((wh->i_fc[0] &
   1794 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1795 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1796 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1797 
   1798 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1799 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1800 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1801 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1802 			tx->timeout = htole16(3);
   1803 		else
   1804 			tx->timeout = htole16(2);
   1805 	} else
   1806 		tx->timeout = htole16(0);
   1807 
   1808 	tx->rate = wpi_plcp_signal(rate);
   1809 
   1810 	/* be very persistant at sending frames out */
   1811 	tx->rts_ntries = 7;
   1812 	tx->data_ntries = 15;
   1813 
   1814 	tx->ofdm_mask = 0xff;
   1815 	tx->cck_mask = 0xf;
   1816 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   1817 
   1818 	tx->len = htole16(m0->m_pkthdr.len);
   1819 
   1820 	/* save and trim IEEE802.11 header */
   1821 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   1822 	m_adj(m0, hdrlen);
   1823 
   1824 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1825 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1826 	if (error != 0 && error != EFBIG) {
   1827 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
   1828 		m_freem(m0);
   1829 		return error;
   1830 	}
   1831 	if (error != 0) {
   1832 		/* too many fragments, linearize */
   1833 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1834 		if (mnew == NULL) {
   1835 			m_freem(m0);
   1836 			return ENOMEM;
   1837 		}
   1838 
   1839 		M_COPY_PKTHDR(mnew, m0);
   1840 		if (m0->m_pkthdr.len > MHLEN) {
   1841 			MCLGET(mnew, M_DONTWAIT);
   1842 			if (!(mnew->m_flags & M_EXT)) {
   1843 				m_freem(m0);
   1844 				m_freem(mnew);
   1845 				return ENOMEM;
   1846 			}
   1847 		}
   1848 
   1849 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1850 		m_freem(m0);
   1851 		mnew->m_len = mnew->m_pkthdr.len;
   1852 		m0 = mnew;
   1853 
   1854 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1855 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1856 		if (error != 0) {
   1857 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1858 							 error);
   1859 			m_freem(m0);
   1860 			return error;
   1861 		}
   1862 	}
   1863 
   1864 	data->m = m0;
   1865 	data->ni = ni;
   1866 
   1867 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   1868 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   1869 
   1870 	/* first scatter/gather segment is used by the tx data command */
   1871 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   1872 		(1 + data->map->dm_nsegs) << 24);
   1873 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   1874 		ring->cur * sizeof (struct wpi_tx_cmd));
   1875 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   1876 						 ((hdrlen + 3) & ~3));
   1877 
   1878 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   1879 		desc->segs[i].addr =
   1880 			htole32(data->map->dm_segs[i - 1].ds_addr);
   1881 		desc->segs[i].len  =
   1882 			htole32(data->map->dm_segs[i - 1].ds_len);
   1883 	}
   1884 
   1885 	ring->queued++;
   1886 
   1887 	/* kick ring */
   1888 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   1889 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   1890 
   1891 	return 0;
   1892 }
   1893 
   1894 static void
   1895 wpi_start(struct ifnet *ifp)
   1896 {
   1897 	struct wpi_softc *sc = ifp->if_softc;
   1898 	struct ieee80211com *ic = &sc->sc_ic;
   1899 	struct ieee80211_node *ni;
   1900 	struct ether_header *eh;
   1901 	struct mbuf *m0;
   1902 	int ac;
   1903 
   1904 	/*
   1905 	 * net80211 may still try to send management frames even if the
   1906 	 * IFF_RUNNING flag is not set...
   1907 	 */
   1908 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1909 		return;
   1910 
   1911 	for (;;) {
   1912 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   1913 		if (m0 != NULL) {
   1914 
   1915 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   1916 			m0->m_pkthdr.rcvif = NULL;
   1917 
   1918 			/* management frames go into ring 0 */
   1919 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   1920 				ifp->if_oerrors++;
   1921 				continue;
   1922 			}
   1923 #if NBPFILTER > 0
   1924 			if (ic->ic_rawbpf != NULL)
   1925 				bpf_mtap(ic->ic_rawbpf, m0);
   1926 #endif
   1927 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   1928 				ifp->if_oerrors++;
   1929 				break;
   1930 			}
   1931 		} else {
   1932 			if (ic->ic_state != IEEE80211_S_RUN)
   1933 				break;
   1934 			IFQ_POLL(&ifp->if_snd, m0);
   1935 			if (m0 == NULL)
   1936 				break;
   1937 
   1938 			if (m0->m_len < sizeof (*eh) &&
   1939 			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
   1940 				ifp->if_oerrors++;
   1941 				continue;
   1942 			}
   1943 			eh = mtod(m0, struct ether_header *);
   1944 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1945 			if (ni == NULL) {
   1946 				m_freem(m0);
   1947 				ifp->if_oerrors++;
   1948 				continue;
   1949 			}
   1950 
   1951 			/* classify mbuf so we can find which tx ring to use */
   1952 			if (ieee80211_classify(ic, m0, ni) != 0) {
   1953 				m_freem(m0);
   1954 				ieee80211_free_node(ni);
   1955 				ifp->if_oerrors++;
   1956 				continue;
   1957 			}
   1958 
   1959 			/* no QoS encapsulation for EAPOL frames */
   1960 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   1961 			    M_WME_GETAC(m0) : WME_AC_BE;
   1962 
   1963 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   1964 				/* there is no place left in this ring */
   1965 				ifp->if_flags |= IFF_OACTIVE;
   1966 				break;
   1967 			}
   1968 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1969 #if NBPFILTER > 0
   1970 			if (ifp->if_bpf != NULL)
   1971 				bpf_mtap(ifp->if_bpf, m0);
   1972 #endif
   1973 			m0 = ieee80211_encap(ic, m0, ni);
   1974 			if (m0 == NULL) {
   1975 				ieee80211_free_node(ni);
   1976 				ifp->if_oerrors++;
   1977 				continue;
   1978 			}
   1979 #if NBPFILTER > 0
   1980 			if (ic->ic_rawbpf != NULL)
   1981 				bpf_mtap(ic->ic_rawbpf, m0);
   1982 #endif
   1983 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   1984 				ieee80211_free_node(ni);
   1985 				ifp->if_oerrors++;
   1986 				break;
   1987 			}
   1988 		}
   1989 
   1990 		sc->sc_tx_timer = 5;
   1991 		ifp->if_timer = 1;
   1992 	}
   1993 }
   1994 
   1995 static void
   1996 wpi_watchdog(struct ifnet *ifp)
   1997 {
   1998 	struct wpi_softc *sc = ifp->if_softc;
   1999 
   2000 	ifp->if_timer = 0;
   2001 
   2002 	if (sc->sc_tx_timer > 0) {
   2003 		if (--sc->sc_tx_timer == 0) {
   2004 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2005 			ifp->if_oerrors++;
   2006 			ifp->if_flags &= ~IFF_UP;
   2007 			wpi_stop(ifp, 1);
   2008 			return;
   2009 		}
   2010 		ifp->if_timer = 1;
   2011 	}
   2012 
   2013 	ieee80211_watchdog(&sc->sc_ic);
   2014 }
   2015 
   2016 static int
   2017 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2018 {
   2019 #define IS_RUNNING(ifp) \
   2020 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2021 
   2022 	struct wpi_softc *sc = ifp->if_softc;
   2023 	struct ieee80211com *ic = &sc->sc_ic;
   2024 	int s, error = 0;
   2025 
   2026 	s = splnet();
   2027 
   2028 	switch (cmd) {
   2029 	case SIOCSIFFLAGS:
   2030 		if (ifp->if_flags & IFF_UP) {
   2031 			if (!(ifp->if_flags & IFF_RUNNING))
   2032 				wpi_init(ifp);
   2033 		} else {
   2034 			if (ifp->if_flags & IFF_RUNNING)
   2035 				wpi_stop(ifp, 1);
   2036 		}
   2037 		break;
   2038 
   2039 	case SIOCADDMULTI:
   2040 	case SIOCDELMULTI:
   2041 		/* XXX no h/w multicast filter? --dyoung */
   2042 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2043 			/* setup multicast filter, etc */
   2044 			error = 0;
   2045 		}
   2046 		break;
   2047 
   2048 	default:
   2049 		error = ieee80211_ioctl(ic, cmd, data);
   2050 	}
   2051 
   2052 	if (error == ENETRESET) {
   2053 		if (IS_RUNNING(ifp) &&
   2054 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2055 			wpi_init(ifp);
   2056 		error = 0;
   2057 	}
   2058 
   2059 	splx(s);
   2060 	return error;
   2061 
   2062 #undef IS_RUNNING
   2063 }
   2064 
   2065 /*
   2066  * Extract various information from EEPROM.
   2067  */
   2068 static void
   2069 wpi_read_eeprom(struct wpi_softc *sc)
   2070 {
   2071 	struct ieee80211com *ic = &sc->sc_ic;
   2072 	char domain[4];
   2073 	int i;
   2074 
   2075 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2076 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2077 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2078 
   2079 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2080 	    sc->type));
   2081 
   2082 	/* read and print regulatory domain */
   2083 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2084 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
   2085 
   2086 	/* read and print MAC address */
   2087 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2088 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2089 
   2090 	/* read the list of authorized channels */
   2091 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2092 		wpi_read_eeprom_channels(sc, i);
   2093 
   2094 	/* read the list of power groups */
   2095 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2096 		wpi_read_eeprom_group(sc, i);
   2097 }
   2098 
   2099 static void
   2100 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2101 {
   2102 	struct ieee80211com *ic = &sc->sc_ic;
   2103 	const struct wpi_chan_band *band = &wpi_bands[n];
   2104 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2105 	int chan, i;
   2106 
   2107 	wpi_read_prom_data(sc, band->addr, channels,
   2108 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2109 
   2110 	for (i = 0; i < band->nchan; i++) {
   2111 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2112 			continue;
   2113 
   2114 		chan = band->chan[i];
   2115 
   2116 		if (n == 0) {	/* 2GHz band */
   2117 			ic->ic_channels[chan].ic_freq =
   2118 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2119 			ic->ic_channels[chan].ic_flags =
   2120 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2121 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2122 
   2123 		} else {	/* 5GHz band */
   2124 			/*
   2125 			 * Some 3945abg adapters support channels 7, 8, 11
   2126 			 * and 12 in the 2GHz *and* 5GHz bands.
   2127 			 * Because of limitations in our net80211(9) stack,
   2128 			 * we can't support these channels in 5GHz band.
   2129 			 */
   2130 			if (chan <= 14)
   2131 				continue;
   2132 
   2133 			ic->ic_channels[chan].ic_freq =
   2134 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2135 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2136 		}
   2137 
   2138 		/* is active scan allowed on this channel? */
   2139 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2140 			ic->ic_channels[chan].ic_flags |=
   2141 			    IEEE80211_CHAN_PASSIVE;
   2142 		}
   2143 
   2144 		/* save maximum allowed power for this channel */
   2145 		sc->maxpwr[chan] = channels[i].maxpwr;
   2146 
   2147 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2148 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2149 	}
   2150 }
   2151 
   2152 static void
   2153 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2154 {
   2155 	struct wpi_power_group *group = &sc->groups[n];
   2156 	struct wpi_eeprom_group rgroup;
   2157 	int i;
   2158 
   2159 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2160 	    sizeof rgroup);
   2161 
   2162 	/* save power group information */
   2163 	group->chan   = rgroup.chan;
   2164 	group->maxpwr = rgroup.maxpwr;
   2165 	/* temperature at which the samples were taken */
   2166 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2167 
   2168 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2169 	    group->chan, group->maxpwr, group->temp));
   2170 
   2171 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2172 		group->samples[i].index = rgroup.samples[i].index;
   2173 		group->samples[i].power = rgroup.samples[i].power;
   2174 
   2175 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2176 		    group->samples[i].index, group->samples[i].power));
   2177 	}
   2178 }
   2179 
   2180 /*
   2181  * Send a command to the firmware.
   2182  */
   2183 static int
   2184 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2185 {
   2186 	struct wpi_tx_ring *ring = &sc->cmdq;
   2187 	struct wpi_tx_desc *desc;
   2188 	struct wpi_tx_cmd *cmd;
   2189 
   2190 	KASSERT(size <= sizeof cmd->data);
   2191 
   2192 	desc = &ring->desc[ring->cur];
   2193 	cmd = &ring->cmd[ring->cur];
   2194 
   2195 	cmd->code = code;
   2196 	cmd->flags = 0;
   2197 	cmd->qid = ring->qid;
   2198 	cmd->idx = ring->cur;
   2199 	memcpy(cmd->data, buf, size);
   2200 
   2201 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2202 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2203 		ring->cur * sizeof (struct wpi_tx_cmd));
   2204 	desc->segs[0].len  = htole32(4 + size);
   2205 
   2206 	/* kick cmd ring */
   2207 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2208 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2209 
   2210 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2211 }
   2212 
   2213 static int
   2214 wpi_wme_update(struct ieee80211com *ic)
   2215 {
   2216 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2217 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2218 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2219 	const struct wmeParams *wmep;
   2220 	struct wpi_wme_setup wme;
   2221 	int ac;
   2222 
   2223 	/* don't override default WME values if WME is not actually enabled */
   2224 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2225 		return 0;
   2226 
   2227 	wme.flags = 0;
   2228 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2229 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2230 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2231 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2232 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2233 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2234 
   2235 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2236 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2237 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2238 	}
   2239 
   2240 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2241 #undef WPI_USEC
   2242 #undef WPI_EXP2
   2243 }
   2244 
   2245 /*
   2246  * Configure h/w multi-rate retries.
   2247  */
   2248 static int
   2249 wpi_mrr_setup(struct wpi_softc *sc)
   2250 {
   2251 	struct ieee80211com *ic = &sc->sc_ic;
   2252 	struct wpi_mrr_setup mrr;
   2253 	int i, error;
   2254 
   2255 	/* CCK rates (not used with 802.11a) */
   2256 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2257 		mrr.rates[i].flags = 0;
   2258 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2259 		/* fallback to the immediate lower CCK rate (if any) */
   2260 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2261 		/* try one time at this rate before falling back to "next" */
   2262 		mrr.rates[i].ntries = 1;
   2263 	}
   2264 
   2265 	/* OFDM rates (not used with 802.11b) */
   2266 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2267 		mrr.rates[i].flags = 0;
   2268 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2269 		/* fallback to the immediate lower rate (if any) */
   2270 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2271 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2272 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2273 			WPI_OFDM6 : WPI_CCK2) :
   2274 		    i - 1;
   2275 		/* try one time at this rate before falling back to "next" */
   2276 		mrr.rates[i].ntries = 1;
   2277 	}
   2278 
   2279 	/* setup MRR for control frames */
   2280 	mrr.which = htole32(WPI_MRR_CTL);
   2281 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2282 	if (error != 0) {
   2283 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
   2284 		return error;
   2285 	}
   2286 
   2287 	/* setup MRR for data frames */
   2288 	mrr.which = htole32(WPI_MRR_DATA);
   2289 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2290 	if (error != 0) {
   2291 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
   2292 		return error;
   2293 	}
   2294 
   2295 	return 0;
   2296 }
   2297 
   2298 static void
   2299 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2300 {
   2301 	struct wpi_cmd_led led;
   2302 
   2303 	led.which = which;
   2304 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2305 	led.off = off;
   2306 	led.on = on;
   2307 
   2308 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2309 }
   2310 
   2311 static void
   2312 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2313 {
   2314 	struct wpi_cmd_tsf tsf;
   2315 	uint64_t val, mod;
   2316 
   2317 	memset(&tsf, 0, sizeof tsf);
   2318 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
   2319 	tsf.bintval = htole16(ni->ni_intval);
   2320 	tsf.lintval = htole16(10);
   2321 
   2322 	/* compute remaining time until next beacon */
   2323 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
   2324 	mod = le64toh(tsf.tstamp) % val;
   2325 	tsf.binitval = htole32((uint32_t)(val - mod));
   2326 
   2327 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
   2328 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2329 
   2330 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2331 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2332 }
   2333 
   2334 /*
   2335  * Update Tx power to match what is defined for channel `c'.
   2336  */
   2337 static int
   2338 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2339 {
   2340 	struct ieee80211com *ic = &sc->sc_ic;
   2341 	struct wpi_power_group *group;
   2342 	struct wpi_cmd_txpower txpower;
   2343 	u_int chan;
   2344 	int i;
   2345 
   2346 	/* get channel number */
   2347 	chan = ieee80211_chan2ieee(ic, c);
   2348 
   2349 	/* find the power group to which this channel belongs */
   2350 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2351 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2352 			if (chan <= group->chan)
   2353 				break;
   2354 	} else
   2355 		group = &sc->groups[0];
   2356 
   2357 	memset(&txpower, 0, sizeof txpower);
   2358 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2359 	txpower.chan = htole16(chan);
   2360 
   2361 	/* set Tx power for all OFDM and CCK rates */
   2362 	for (i = 0; i <= 11 ; i++) {
   2363 		/* retrieve Tx power for this channel/rate combination */
   2364 		int idx = wpi_get_power_index(sc, group, c,
   2365 		    wpi_ridx_to_rate[i]);
   2366 
   2367 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2368 
   2369 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2370 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2371 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2372 		} else {
   2373 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2374 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2375 		}
   2376 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2377 		    wpi_ridx_to_rate[i], idx));
   2378 	}
   2379 
   2380 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2381 }
   2382 
   2383 /*
   2384  * Determine Tx power index for a given channel/rate combination.
   2385  * This takes into account the regulatory information from EEPROM and the
   2386  * current temperature.
   2387  */
   2388 static int
   2389 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2390     struct ieee80211_channel *c, int rate)
   2391 {
   2392 /* fixed-point arithmetic division using a n-bit fractional part */
   2393 #define fdivround(a, b, n)	\
   2394 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2395 
   2396 /* linear interpolation */
   2397 #define interpolate(x, x1, y1, x2, y2, n)	\
   2398 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2399 
   2400 	struct ieee80211com *ic = &sc->sc_ic;
   2401 	struct wpi_power_sample *sample;
   2402 	int pwr, idx;
   2403 	u_int chan;
   2404 
   2405 	/* get channel number */
   2406 	chan = ieee80211_chan2ieee(ic, c);
   2407 
   2408 	/* default power is group's maximum power - 3dB */
   2409 	pwr = group->maxpwr / 2;
   2410 
   2411 	/* decrease power for highest OFDM rates to reduce distortion */
   2412 	switch (rate) {
   2413 	case 72:	/* 36Mb/s */
   2414 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2415 		break;
   2416 	case 96:	/* 48Mb/s */
   2417 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2418 		break;
   2419 	case 108:	/* 54Mb/s */
   2420 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2421 		break;
   2422 	}
   2423 
   2424 	/* never exceed channel's maximum allowed Tx power */
   2425 	pwr = min(pwr, sc->maxpwr[chan]);
   2426 
   2427 	/* retrieve power index into gain tables from samples */
   2428 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2429 		if (pwr > sample[1].power)
   2430 			break;
   2431 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2432 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2433 	    sample[1].power, sample[1].index, 19);
   2434 
   2435 	/*
   2436 	 * Adjust power index based on current temperature:
   2437 	 * - if cooler than factory-calibrated: decrease output power
   2438 	 * - if warmer than factory-calibrated: increase output power
   2439 	 */
   2440 	idx -= (sc->temp - group->temp) * 11 / 100;
   2441 
   2442 	/* decrease power for CCK rates (-5dB) */
   2443 	if (!WPI_RATE_IS_OFDM(rate))
   2444 		idx += 10;
   2445 
   2446 	/* keep power index in a valid range */
   2447 	if (idx < 0)
   2448 		return 0;
   2449 	if (idx > WPI_MAX_PWR_INDEX)
   2450 		return WPI_MAX_PWR_INDEX;
   2451 	return idx;
   2452 
   2453 #undef interpolate
   2454 #undef fdivround
   2455 }
   2456 
   2457 /*
   2458  * Build a beacon frame that the firmware will broadcast periodically in
   2459  * IBSS or HostAP modes.
   2460  */
   2461 static int
   2462 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2463 {
   2464 	struct ieee80211com *ic = &sc->sc_ic;
   2465 	struct wpi_tx_ring *ring = &sc->cmdq;
   2466 	struct wpi_tx_desc *desc;
   2467 	struct wpi_tx_data *data;
   2468 	struct wpi_tx_cmd *cmd;
   2469 	struct wpi_cmd_beacon *bcn;
   2470 	struct ieee80211_beacon_offsets bo;
   2471 	struct mbuf *m0;
   2472 	int error;
   2473 
   2474 	desc = &ring->desc[ring->cur];
   2475 	data = &ring->data[ring->cur];
   2476 
   2477 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2478 	if (m0 == NULL) {
   2479 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
   2480 		return ENOMEM;
   2481 	}
   2482 
   2483 	cmd = &ring->cmd[ring->cur];
   2484 	cmd->code = WPI_CMD_SET_BEACON;
   2485 	cmd->flags = 0;
   2486 	cmd->qid = ring->qid;
   2487 	cmd->idx = ring->cur;
   2488 
   2489 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2490 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2491 	bcn->id = WPI_ID_BROADCAST;
   2492 	bcn->ofdm_mask = 0xff;
   2493 	bcn->cck_mask = 0x0f;
   2494 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2495 	bcn->len = htole16(m0->m_pkthdr.len);
   2496 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2497 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2498 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2499 
   2500 	/* save and trim IEEE802.11 header */
   2501 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2502 	m_adj(m0, sizeof (struct ieee80211_frame));
   2503 
   2504 	/* assume beacon frame is contiguous */
   2505 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2506 		BUS_DMA_READ | BUS_DMA_NOWAIT);
   2507 	if (error) {
   2508 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2509 		m_freem(m0);
   2510 		return error;
   2511 	}
   2512 
   2513 	data->m = m0;
   2514 
   2515 	/* first scatter/gather segment is used by the beacon command */
   2516 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2517 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2518 		ring->cur * sizeof (struct wpi_tx_cmd));
   2519 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2520 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2521 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2522 
   2523 	/* kick cmd ring */
   2524 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2525 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2526 
   2527 	return 0;
   2528 }
   2529 
   2530 static int
   2531 wpi_auth(struct wpi_softc *sc)
   2532 {
   2533 	struct ieee80211com *ic = &sc->sc_ic;
   2534 	struct ieee80211_node *ni = ic->ic_bss;
   2535 	struct wpi_node_info node;
   2536 	int error;
   2537 
   2538 	/* update adapter's configuration */
   2539 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2540 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2541 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2542 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2543 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2544 		    WPI_CONFIG_24GHZ);
   2545 	}
   2546 	switch (ic->ic_curmode) {
   2547 	case IEEE80211_MODE_11A:
   2548 		sc->config.cck_mask  = 0;
   2549 		sc->config.ofdm_mask = 0x15;
   2550 		break;
   2551 	case IEEE80211_MODE_11B:
   2552 		sc->config.cck_mask  = 0x03;
   2553 		sc->config.ofdm_mask = 0;
   2554 		break;
   2555 	default:	/* assume 802.11b/g */
   2556 		sc->config.cck_mask  = 0x0f;
   2557 		sc->config.ofdm_mask = 0x15;
   2558 	}
   2559 
   2560 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2561 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2562 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2563 		sizeof (struct wpi_config), 1);
   2564 	if (error != 0) {
   2565 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2566 		return error;
   2567 	}
   2568 
   2569 	/* configuration has changed, set Tx power accordingly */
   2570 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2571 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2572 		return error;
   2573 	}
   2574 
   2575 	/* add default node */
   2576 	memset(&node, 0, sizeof node);
   2577 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2578 	node.id = WPI_ID_BSS;
   2579 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2580 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2581 	node.action = htole32(WPI_ACTION_SET_RATE);
   2582 	node.antenna = WPI_ANTENNA_BOTH;
   2583 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2584 	if (error != 0) {
   2585 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2586 		return error;
   2587 	}
   2588 
   2589 	return 0;
   2590 }
   2591 
   2592 /*
   2593  * Send a scan request to the firmware.  Since this command is huge, we map it
   2594  * into a mbuf instead of using the pre-allocated set of commands.
   2595  */
   2596 static int
   2597 wpi_scan(struct wpi_softc *sc, uint16_t flags)
   2598 {
   2599 	struct ieee80211com *ic = &sc->sc_ic;
   2600 	struct wpi_tx_ring *ring = &sc->cmdq;
   2601 	struct wpi_tx_desc *desc;
   2602 	struct wpi_tx_data *data;
   2603 	struct wpi_tx_cmd *cmd;
   2604 	struct wpi_scan_hdr *hdr;
   2605 	struct wpi_scan_chan *chan;
   2606 	struct ieee80211_frame *wh;
   2607 	struct ieee80211_rateset *rs;
   2608 	struct ieee80211_channel *c;
   2609 	enum ieee80211_phymode mode;
   2610 	uint8_t *frm;
   2611 	int nrates, pktlen, error;
   2612 
   2613 	desc = &ring->desc[ring->cur];
   2614 	data = &ring->data[ring->cur];
   2615 
   2616 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2617 	if (data->m == NULL) {
   2618 		aprint_error_dev(sc->sc_dev,
   2619 						"could not allocate mbuf for scan command\n");
   2620 		return ENOMEM;
   2621 	}
   2622 
   2623 	MCLGET(data->m, M_DONTWAIT);
   2624 	if (!(data->m->m_flags & M_EXT)) {
   2625 		m_freem(data->m);
   2626 		data->m = NULL;
   2627 		aprint_error_dev(sc->sc_dev,
   2628 						 "could not allocate mbuf for scan command\n");
   2629 		return ENOMEM;
   2630 	}
   2631 
   2632 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2633 	cmd->code = WPI_CMD_SCAN;
   2634 	cmd->flags = 0;
   2635 	cmd->qid = ring->qid;
   2636 	cmd->idx = ring->cur;
   2637 
   2638 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2639 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2640 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
   2641 	hdr->id = WPI_ID_BROADCAST;
   2642 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2643 
   2644 	/*
   2645 	 * Move to the next channel if no packets are received within 5 msecs
   2646 	 * after sending the probe request (this helps to reduce the duration
   2647 	 * of active scans).
   2648 	 */
   2649 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
   2650 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2651 
   2652 	if (flags & IEEE80211_CHAN_A) {
   2653 		hdr->crc_threshold = htole16(1);
   2654 		/* send probe requests at 6Mbps */
   2655 		hdr->rate = wpi_plcp_signal(12);
   2656 	} else {
   2657 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2658 		/* send probe requests at 1Mbps */
   2659 		hdr->rate = wpi_plcp_signal(2);
   2660 	}
   2661 
   2662 	/* for directed scans, firmware inserts the essid IE itself */
   2663 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2664 	hdr->essid[0].len = ic->ic_des_esslen;
   2665 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2666 
   2667 	/*
   2668 	 * Build a probe request frame.  Most of the following code is a
   2669 	 * copy & paste of what is done in net80211.
   2670 	 */
   2671 	wh = (struct ieee80211_frame *)(hdr + 1);
   2672 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2673 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2674 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2675 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2676 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2677 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2678 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2679 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2680 
   2681 	frm = (uint8_t *)(wh + 1);
   2682 
   2683 	/* add empty essid IE (firmware generates it for directed scans) */
   2684 	*frm++ = IEEE80211_ELEMID_SSID;
   2685 	*frm++ = 0;
   2686 
   2687 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
   2688 	rs = &ic->ic_sup_rates[mode];
   2689 
   2690 	/* add supported rates IE */
   2691 	*frm++ = IEEE80211_ELEMID_RATES;
   2692 	nrates = rs->rs_nrates;
   2693 	if (nrates > IEEE80211_RATE_SIZE)
   2694 		nrates = IEEE80211_RATE_SIZE;
   2695 	*frm++ = nrates;
   2696 	memcpy(frm, rs->rs_rates, nrates);
   2697 	frm += nrates;
   2698 
   2699 	/* add supported xrates IE */
   2700 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2701 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2702 		*frm++ = IEEE80211_ELEMID_XRATES;
   2703 		*frm++ = nrates;
   2704 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2705 		frm += nrates;
   2706 	}
   2707 
   2708 	/* setup length of probe request */
   2709 	hdr->paylen = htole16(frm - (uint8_t *)wh);
   2710 
   2711 	chan = (struct wpi_scan_chan *)frm;
   2712 	for (c  = &ic->ic_channels[1];
   2713 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   2714 		if ((c->ic_flags & flags) != flags)
   2715 			continue;
   2716 
   2717 		chan->chan = ieee80211_chan2ieee(ic, c);
   2718 		chan->flags = 0;
   2719 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2720 			chan->flags |= WPI_CHAN_ACTIVE;
   2721 			if (ic->ic_des_esslen != 0)
   2722 				chan->flags |= WPI_CHAN_DIRECT;
   2723 		}
   2724 		chan->dsp_gain = 0x6e;
   2725 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2726 			chan->rf_gain = 0x3b;
   2727 			chan->active = htole16(10);
   2728 			chan->passive = htole16(110);
   2729 		} else {
   2730 			chan->rf_gain = 0x28;
   2731 			chan->active = htole16(20);
   2732 			chan->passive = htole16(120);
   2733 		}
   2734 		hdr->nchan++;
   2735 		chan++;
   2736 
   2737 		frm += sizeof (struct wpi_scan_chan);
   2738 	}
   2739 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2740 	pktlen = frm - (uint8_t *)cmd;
   2741 
   2742 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
   2743 		NULL, BUS_DMA_NOWAIT);
   2744 	if (error) {
   2745 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2746 		m_freem(data->m);
   2747 		data->m = NULL;
   2748 		return error;
   2749 	}
   2750 
   2751 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2752 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2753 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2754 
   2755 	/* kick cmd ring */
   2756 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2757 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2758 
   2759 	return 0;	/* will be notified async. of failure/success */
   2760 }
   2761 
   2762 static int
   2763 wpi_config(struct wpi_softc *sc)
   2764 {
   2765 	struct ieee80211com *ic = &sc->sc_ic;
   2766 	struct ifnet *ifp = ic->ic_ifp;
   2767 	struct wpi_power power;
   2768 	struct wpi_bluetooth bluetooth;
   2769 	struct wpi_node_info node;
   2770 	int error;
   2771 
   2772 	memset(&power, 0, sizeof power);
   2773 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2774 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2775 	if (error != 0) {
   2776 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2777 		return error;
   2778 	}
   2779 
   2780 	/* configure bluetooth coexistence */
   2781 	memset(&bluetooth, 0, sizeof bluetooth);
   2782 	bluetooth.flags = 3;
   2783 	bluetooth.lead = 0xaa;
   2784 	bluetooth.kill = 1;
   2785 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   2786 		0);
   2787 	if (error != 0) {
   2788 		aprint_error_dev(sc->sc_dev,
   2789 			"could not configure bluetooth coexistence\n");
   2790 		return error;
   2791 	}
   2792 
   2793 	/* configure adapter */
   2794 	memset(&sc->config, 0, sizeof (struct wpi_config));
   2795 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2796 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   2797 	/*set default channel*/
   2798 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   2799 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2800 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
   2801 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2802 		    WPI_CONFIG_24GHZ);
   2803 	}
   2804 	sc->config.filter = 0;
   2805 	switch (ic->ic_opmode) {
   2806 	case IEEE80211_M_STA:
   2807 		sc->config.mode = WPI_MODE_STA;
   2808 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   2809 		break;
   2810 	case IEEE80211_M_IBSS:
   2811 	case IEEE80211_M_AHDEMO:
   2812 		sc->config.mode = WPI_MODE_IBSS;
   2813 		break;
   2814 	case IEEE80211_M_HOSTAP:
   2815 		sc->config.mode = WPI_MODE_HOSTAP;
   2816 		break;
   2817 	case IEEE80211_M_MONITOR:
   2818 		sc->config.mode = WPI_MODE_MONITOR;
   2819 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   2820 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   2821 		break;
   2822 	}
   2823 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   2824 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   2825 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2826 		sizeof (struct wpi_config), 0);
   2827 	if (error != 0) {
   2828 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   2829 		return error;
   2830 	}
   2831 
   2832 	/* configuration has changed, set Tx power accordingly */
   2833 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
   2834 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2835 		return error;
   2836 	}
   2837 
   2838 	/* add broadcast node */
   2839 	memset(&node, 0, sizeof node);
   2840 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   2841 	node.id = WPI_ID_BROADCAST;
   2842 	node.rate = wpi_plcp_signal(2);
   2843 	node.action = htole32(WPI_ACTION_SET_RATE);
   2844 	node.antenna = WPI_ANTENNA_BOTH;
   2845 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   2846 	if (error != 0) {
   2847 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   2848 		return error;
   2849 	}
   2850 
   2851 	if ((error = wpi_mrr_setup(sc)) != 0) {
   2852 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   2853 		return error;
   2854 	}
   2855 
   2856 	return 0;
   2857 }
   2858 
   2859 static void
   2860 wpi_stop_master(struct wpi_softc *sc)
   2861 {
   2862 	uint32_t tmp;
   2863 	int ntries;
   2864 
   2865 	tmp = WPI_READ(sc, WPI_RESET);
   2866 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   2867 
   2868 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2869 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   2870 		return;	/* already asleep */
   2871 
   2872 	for (ntries = 0; ntries < 100; ntries++) {
   2873 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   2874 			break;
   2875 		DELAY(10);
   2876 	}
   2877 	if (ntries == 100) {
   2878 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   2879 	}
   2880 }
   2881 
   2882 static int
   2883 wpi_power_up(struct wpi_softc *sc)
   2884 {
   2885 	uint32_t tmp;
   2886 	int ntries;
   2887 
   2888 	wpi_mem_lock(sc);
   2889 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   2890 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   2891 	wpi_mem_unlock(sc);
   2892 
   2893 	for (ntries = 0; ntries < 5000; ntries++) {
   2894 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   2895 			break;
   2896 		DELAY(10);
   2897 	}
   2898 	if (ntries == 5000) {
   2899 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
   2900 		return ETIMEDOUT;
   2901 	}
   2902 	return 0;
   2903 }
   2904 
   2905 static int
   2906 wpi_reset(struct wpi_softc *sc)
   2907 {
   2908 	uint32_t tmp;
   2909 	int ntries;
   2910 
   2911 	/* clear any pending interrupts */
   2912 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   2913 
   2914 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   2915 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   2916 
   2917 	tmp = WPI_READ(sc, WPI_CHICKEN);
   2918 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   2919 
   2920 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2921 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   2922 
   2923 	/* wait for clock stabilization */
   2924 	for (ntries = 0; ntries < 1000; ntries++) {
   2925 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   2926 			break;
   2927 		DELAY(10);
   2928 	}
   2929 	if (ntries == 1000) {
   2930 		aprint_error_dev(sc->sc_dev,
   2931 						 "timeout waiting for clock stabilization\n");
   2932 		return ETIMEDOUT;
   2933 	}
   2934 
   2935 	/* initialize EEPROM */
   2936 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   2937 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   2938 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   2939 		return EIO;
   2940 	}
   2941 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   2942 
   2943 	return 0;
   2944 }
   2945 
   2946 static void
   2947 wpi_hw_config(struct wpi_softc *sc)
   2948 {
   2949 	uint32_t rev, hw;
   2950 
   2951 	/* voodoo from the reference driver */
   2952 	hw = WPI_READ(sc, WPI_HWCONFIG);
   2953 
   2954 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   2955 	rev = PCI_REVISION(rev);
   2956 	if ((rev & 0xc0) == 0x40)
   2957 		hw |= WPI_HW_ALM_MB;
   2958 	else if (!(rev & 0x80))
   2959 		hw |= WPI_HW_ALM_MM;
   2960 
   2961 	if (sc->cap == 0x80)
   2962 		hw |= WPI_HW_SKU_MRC;
   2963 
   2964 	hw &= ~WPI_HW_REV_D;
   2965 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   2966 		hw |= WPI_HW_REV_D;
   2967 
   2968 	if (sc->type > 1)
   2969 		hw |= WPI_HW_TYPE_B;
   2970 
   2971 	DPRINTF(("setting h/w config %x\n", hw));
   2972 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   2973 }
   2974 
   2975 static int
   2976 wpi_init(struct ifnet *ifp)
   2977 {
   2978 	struct wpi_softc *sc = ifp->if_softc;
   2979 	struct ieee80211com *ic = &sc->sc_ic;
   2980 	uint32_t tmp;
   2981 	int qid, ntries, error;
   2982 
   2983 	wpi_stop(ifp,1);
   2984 	(void)wpi_reset(sc);
   2985 
   2986 	wpi_mem_lock(sc);
   2987 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   2988 	DELAY(20);
   2989 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   2990 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   2991 	wpi_mem_unlock(sc);
   2992 
   2993 	(void)wpi_power_up(sc);
   2994 	wpi_hw_config(sc);
   2995 
   2996 	/* init Rx ring */
   2997 	wpi_mem_lock(sc);
   2998 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   2999 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   3000 	    offsetof(struct wpi_shared, next));
   3001 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3002 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3003 	wpi_mem_unlock(sc);
   3004 
   3005 	/* init Tx rings */
   3006 	wpi_mem_lock(sc);
   3007 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
   3008 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
   3009 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
   3010 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3011 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3012 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3013 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3014 
   3015 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3016 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3017 
   3018 	for (qid = 0; qid < 6; qid++) {
   3019 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3020 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3021 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3022 	}
   3023 	wpi_mem_unlock(sc);
   3024 
   3025 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3026 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3027 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3028 
   3029 	/* clear any pending interrupts */
   3030 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3031 	/* enable interrupts */
   3032 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3033 
   3034 	/* not sure why/if this is necessary... */
   3035 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3036 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3037 
   3038 	if ((error = wpi_load_firmware(sc)) != 0) {
   3039 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
   3040 		goto fail1;
   3041 	}
   3042 
   3043 	/* Check the status of the radio switch */
   3044 	if (wpi_getrfkill(sc)) {
   3045 		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
   3046 		error = EBUSY;
   3047 		goto fail1;
   3048 	}
   3049 
   3050 	/* wait for thermal sensors to calibrate */
   3051 	for (ntries = 0; ntries < 1000; ntries++) {
   3052 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3053 			break;
   3054 		DELAY(10);
   3055 	}
   3056 	if (ntries == 1000) {
   3057 		aprint_error_dev(sc->sc_dev,
   3058 						 "timeout waiting for thermal sensors calibration\n");
   3059 		error = ETIMEDOUT;
   3060 		goto fail1;
   3061 	}
   3062 
   3063 	DPRINTF(("temperature %d\n", sc->temp));
   3064 
   3065 	if ((error = wpi_config(sc)) != 0) {
   3066 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3067 		goto fail1;
   3068 	}
   3069 
   3070 	ifp->if_flags &= ~IFF_OACTIVE;
   3071 	ifp->if_flags |= IFF_RUNNING;
   3072 
   3073 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3074 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3075 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3076 	}
   3077 	else
   3078 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3079 
   3080 	return 0;
   3081 
   3082 fail1:	wpi_stop(ifp, 1);
   3083 	return error;
   3084 }
   3085 
   3086 
   3087 static void
   3088 wpi_stop(struct ifnet *ifp, int disable)
   3089 {
   3090 	struct wpi_softc *sc = ifp->if_softc;
   3091 	struct ieee80211com *ic = &sc->sc_ic;
   3092 	uint32_t tmp;
   3093 	int ac;
   3094 
   3095 	ifp->if_timer = sc->sc_tx_timer = 0;
   3096 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3097 
   3098 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3099 
   3100 	/* disable interrupts */
   3101 	WPI_WRITE(sc, WPI_MASK, 0);
   3102 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3103 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3104 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3105 
   3106 	wpi_mem_lock(sc);
   3107 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3108 	wpi_mem_unlock(sc);
   3109 
   3110 	/* reset all Tx rings */
   3111 	for (ac = 0; ac < 4; ac++)
   3112 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3113 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3114 
   3115 	/* reset Rx ring */
   3116 	wpi_reset_rx_ring(sc, &sc->rxq);
   3117 
   3118 	wpi_mem_lock(sc);
   3119 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3120 	wpi_mem_unlock(sc);
   3121 
   3122 	DELAY(5);
   3123 
   3124 	wpi_stop_master(sc);
   3125 
   3126 	tmp = WPI_READ(sc, WPI_RESET);
   3127 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3128 }
   3129 
   3130 static bool
   3131 wpi_resume(device_t dv)
   3132 {
   3133 	struct wpi_softc *sc = device_private(dv);
   3134 
   3135 	pci_disable_retry(sc->sc_pct, sc->sc_pcitag);
   3136 	(void)wpi_reset(sc);
   3137 
   3138 	return true;
   3139 }
   3140 
   3141 /*
   3142  * Return whether or not the radio is enabled in hardware
   3143  * (i.e. the rfkill switch is "off").
   3144  */
   3145 static int
   3146 wpi_getrfkill(struct wpi_softc *sc)
   3147 {
   3148 	uint32_t tmp;
   3149 
   3150 	wpi_mem_lock(sc);
   3151 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3152 	wpi_mem_unlock(sc);
   3153 
   3154 	return !(tmp & 0x01);
   3155 }
   3156 
   3157 static int
   3158 wpi_sysctl_radio(SYSCTLFN_ARGS)
   3159 {
   3160 	struct sysctlnode node;
   3161 	struct wpi_softc *sc;
   3162 	int val, error;
   3163 
   3164 	node = *rnode;
   3165 	sc = (struct wpi_softc *)node.sysctl_data;
   3166 
   3167 	val = !wpi_getrfkill(sc);
   3168 
   3169 	node.sysctl_data = &val;
   3170 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3171 
   3172 	if (error || newp == NULL)
   3173 		return error;
   3174 
   3175 	return 0;
   3176 }
   3177 
   3178 static void
   3179 wpi_sysctlattach(struct wpi_softc *sc)
   3180 {
   3181 	int rc;
   3182 	const struct sysctlnode *rnode;
   3183 	const struct sysctlnode *cnode;
   3184 
   3185 	struct sysctllog **clog = &sc->sc_sysctllog;
   3186 
   3187 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
   3188 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   3189 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
   3190 		goto err;
   3191 
   3192 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
   3193 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
   3194 	    SYSCTL_DESCR("wpi controls and statistics"),
   3195 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
   3196 		goto err;
   3197 
   3198 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3199 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
   3200 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
   3201 	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
   3202 		goto err;
   3203 
   3204 #ifdef WPI_DEBUG
   3205 	/* control debugging printfs */
   3206 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3207 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
   3208 	    "debug", SYSCTL_DESCR("Enable debugging output"),
   3209 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
   3210 		goto err;
   3211 #endif
   3212 
   3213 	return;
   3214 err:
   3215 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3216 }
   3217