Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.36
      1 /*  $NetBSD: if_wpi.c,v 1.36 2008/02/29 06:13:39 dyoung Exp $    */
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007
      5  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.36 2008/02/29 06:13:39 dyoung Exp $");
     22 
     23 /*
     24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25  */
     26 
     27 #include "bpfilter.h"
     28 
     29 #include <sys/param.h>
     30 #include <sys/sockio.h>
     31 #include <sys/sysctl.h>
     32 #include <sys/mbuf.h>
     33 #include <sys/kernel.h>
     34 #include <sys/socket.h>
     35 #include <sys/systm.h>
     36 #include <sys/malloc.h>
     37 #include <sys/conf.h>
     38 #include <sys/kauth.h>
     39 #include <sys/callout.h>
     40 
     41 #include <sys/bus.h>
     42 #include <machine/endian.h>
     43 #include <sys/intr.h>
     44 
     45 #include <dev/pci/pcireg.h>
     46 #include <dev/pci/pcivar.h>
     47 #include <dev/pci/pcidevs.h>
     48 
     49 #if NBPFILTER > 0
     50 #include <net/bpf.h>
     51 #endif
     52 #include <net/if.h>
     53 #include <net/if_arp.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_ether.h>
     56 #include <net/if_media.h>
     57 #include <net/if_types.h>
     58 
     59 #include <net80211/ieee80211_var.h>
     60 #include <net80211/ieee80211_amrr.h>
     61 #include <net80211/ieee80211_radiotap.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <netinet/ip.h>
     67 
     68 #include <dev/firmload.h>
     69 
     70 #include <dev/pci/if_wpireg.h>
     71 #include <dev/pci/if_wpivar.h>
     72 
     73 #ifdef WPI_DEBUG
     74 #define DPRINTF(x)	if (wpi_debug > 0) printf x
     75 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
     76 int wpi_debug = 1;
     77 #else
     78 #define DPRINTF(x)
     79 #define DPRINTFN(n, x)
     80 #endif
     81 
     82 /*
     83  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
     84  */
     85 static const struct ieee80211_rateset wpi_rateset_11a =
     86 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
     87 
     88 static const struct ieee80211_rateset wpi_rateset_11b =
     89 	{ 4, { 2, 4, 11, 22 } };
     90 
     91 static const struct ieee80211_rateset wpi_rateset_11g =
     92 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
     93 
     94 static int  wpi_match(device_t, struct cfdata *, void *);
     95 static void wpi_attach(device_t, device_t, void *);
     96 static int  wpi_detach(device_t , int);
     97 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
     98 	void **, bus_size_t, bus_size_t, int);
     99 static void wpi_dma_contig_free(struct wpi_dma_info *);
    100 static int  wpi_alloc_shared(struct wpi_softc *);
    101 static void wpi_free_shared(struct wpi_softc *);
    102 static int  wpi_alloc_fwmem(struct wpi_softc *);
    103 static void wpi_free_fwmem(struct wpi_softc *);
    104 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
    105 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
    106 static int  wpi_alloc_rpool(struct wpi_softc *);
    107 static void wpi_free_rpool(struct wpi_softc *);
    108 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    109 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    110 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    111 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
    112 	int);
    113 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    114 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    115 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    116 static void wpi_newassoc(struct ieee80211_node *, int);
    117 static int  wpi_media_change(struct ifnet *);
    118 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    119 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
    120 static void wpi_mem_lock(struct wpi_softc *);
    121 static void wpi_mem_unlock(struct wpi_softc *);
    122 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
    123 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    124 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    125 								   const uint32_t *, int);
    126 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    127 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    128 static int  wpi_load_firmware(struct wpi_softc *);
    129 static void wpi_calib_timeout(void *);
    130 static void wpi_iter_func(void *, struct ieee80211_node *);
    131 static void wpi_power_calibration(struct wpi_softc *, int);
    132 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    133 	struct wpi_rx_data *);
    134 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    135 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    136 static void wpi_notif_intr(struct wpi_softc *);
    137 static int  wpi_intr(void *);
    138 static void wpi_read_eeprom(struct wpi_softc *);
    139 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
    140 static void wpi_read_eeprom_group(struct wpi_softc *, int);
    141 static uint8_t wpi_plcp_signal(int);
    142 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
    143 	struct ieee80211_node *, int);
    144 static void wpi_start(struct ifnet *);
    145 static void wpi_watchdog(struct ifnet *);
    146 static int  wpi_ioctl(struct ifnet *, u_long, void *);
    147 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    148 static int  wpi_wme_update(struct ieee80211com *);
    149 static int  wpi_mrr_setup(struct wpi_softc *);
    150 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    151 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    152 static int  wpi_set_txpower(struct wpi_softc *,
    153 			    struct ieee80211_channel *, int);
    154 static int  wpi_get_power_index(struct wpi_softc *,
    155 		struct wpi_power_group *, struct ieee80211_channel *, int);
    156 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    157 static int  wpi_auth(struct wpi_softc *);
    158 static int  wpi_scan(struct wpi_softc *, uint16_t);
    159 static int  wpi_config(struct wpi_softc *);
    160 static void wpi_stop_master(struct wpi_softc *);
    161 static int  wpi_power_up(struct wpi_softc *);
    162 static int  wpi_reset(struct wpi_softc *);
    163 static void wpi_hw_config(struct wpi_softc *);
    164 static int  wpi_init(struct ifnet *);
    165 static void wpi_stop(struct ifnet *, int);
    166 static bool wpi_resume(device_t PMF_FN_PROTO);
    167 static int	wpi_getrfkill(struct wpi_softc *);
    168 static void wpi_sysctlattach(struct wpi_softc *);
    169 
    170 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    171 	wpi_detach, NULL);
    172 
    173 static int
    174 wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
    175 {
    176 	struct pci_attach_args *pa = aux;
    177 
    178 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    179 		return 0;
    180 
    181 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    182 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    183 		return 1;
    184 
    185 	return 0;
    186 }
    187 
    188 /* Base Address Register */
    189 #define WPI_PCI_BAR0	0x10
    190 
    191 static void
    192 wpi_attach(device_t parent __unused, device_t self, void *aux)
    193 {
    194 	struct wpi_softc *sc = device_private(self);
    195 	struct ieee80211com *ic = &sc->sc_ic;
    196 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    197 	struct pci_attach_args *pa = aux;
    198 	const char *intrstr;
    199 	char devinfo[256];
    200 	bus_space_tag_t memt;
    201 	bus_space_handle_t memh;
    202 	pci_intr_handle_t ih;
    203 	pcireg_t data;
    204 	int error, ac, revision;
    205 
    206 	sc->sc_dev = self;
    207 	sc->sc_pct = pa->pa_pc;
    208 	sc->sc_pcitag = pa->pa_tag;
    209 
    210 	callout_init(&sc->calib_to, 0);
    211 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    212 
    213 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    214 	revision = PCI_REVISION(pa->pa_class);
    215 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    216 
    217 	pci_disable_retry(pa->pa_pc, pa->pa_tag);
    218 
    219 	/* enable bus-mastering */
    220 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    221 	data |= PCI_COMMAND_MASTER_ENABLE;
    222 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    223 
    224 	/* map the register window */
    225 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    226 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    227 	if (error != 0) {
    228 		aprint_error_dev(self, "could not map memory space\n");
    229 		return;
    230 	}
    231 
    232 	sc->sc_st = memt;
    233 	sc->sc_sh = memh;
    234 	sc->sc_dmat = pa->pa_dmat;
    235 
    236 	if (pci_intr_map(pa, &ih) != 0) {
    237 		aprint_error_dev(self, "could not map interrupt\n");
    238 		return;
    239 	}
    240 
    241 	intrstr = pci_intr_string(sc->sc_pct, ih);
    242 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
    243 	if (sc->sc_ih == NULL) {
    244 		aprint_error_dev(self, "could not establish interrupt");
    245 		if (intrstr != NULL)
    246 			aprint_error(" at %s", intrstr);
    247 		aprint_error("\n");
    248 		return;
    249 	}
    250 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    251 
    252 	if (wpi_reset(sc) != 0) {
    253 		aprint_error_dev(self, "could not reset adapter\n");
    254 		return;
    255 	}
    256 
    257  	/*
    258 	 * Allocate DMA memory for firmware transfers.
    259 	 */
    260 	if ((error = wpi_alloc_fwmem(sc)) != 0)
    261 		return;
    262 
    263 	/*
    264 	 * Allocate shared page and Tx/Rx rings.
    265 	 */
    266 	if ((error = wpi_alloc_shared(sc)) != 0) {
    267 		aprint_error_dev(self, "could not allocate shared area\n");
    268 		goto fail1;
    269 	}
    270 
    271 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    272 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    273 		goto fail2;
    274 	}
    275 
    276 	for (ac = 0; ac < 4; ac++) {
    277 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
    278 		if (error != 0) {
    279 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
    280 			goto fail3;
    281 		}
    282 	}
    283 
    284 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    285 	if (error != 0) {
    286 		aprint_error_dev(self, "could not allocate command ring\n");
    287 		goto fail3;
    288 	}
    289 
    290 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
    291 		aprint_error_dev(self, "could not allocate Rx ring\n");
    292 		goto fail4;
    293 	}
    294 
    295 	ic->ic_ifp = ifp;
    296 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    297 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    298 	ic->ic_state = IEEE80211_S_INIT;
    299 
    300 	/* set device capabilities */
    301 	ic->ic_caps =
    302 		IEEE80211_C_IBSS |       /* IBSS mode support */
    303 		IEEE80211_C_WPA |        /* 802.11i */
    304 		IEEE80211_C_MONITOR |    /* monitor mode supported */
    305 		IEEE80211_C_TXPMGT |     /* tx power management */
    306 		IEEE80211_C_SHSLOT |     /* short slot time supported */
    307 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
    308 		IEEE80211_C_WME;         /* 802.11e */
    309 
    310 	/* read supported channels and MAC address from EEPROM */
    311 	wpi_read_eeprom(sc);
    312 
    313 	/* set supported .11a, .11b, .11g rates */
    314 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
    315 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
    316 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
    317 
    318 	ic->ic_ibss_chan = &ic->ic_channels[0];
    319 
    320 	ifp->if_softc = sc;
    321 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    322 	ifp->if_init = wpi_init;
    323 	ifp->if_stop = wpi_stop;
    324 	ifp->if_ioctl = wpi_ioctl;
    325 	ifp->if_start = wpi_start;
    326 	ifp->if_watchdog = wpi_watchdog;
    327 	IFQ_SET_READY(&ifp->if_snd);
    328 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    329 
    330 	if_attach(ifp);
    331 	ieee80211_ifattach(ic);
    332 	/* override default methods */
    333 	ic->ic_node_alloc = wpi_node_alloc;
    334 	ic->ic_newassoc = wpi_newassoc;
    335 	ic->ic_wme.wme_update = wpi_wme_update;
    336 
    337 	/* override state transition machine */
    338 	sc->sc_newstate = ic->ic_newstate;
    339 	ic->ic_newstate = wpi_newstate;
    340 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
    341 
    342 	sc->amrr.amrr_min_success_threshold = 1;
    343 	sc->amrr.amrr_max_success_threshold = 15;
    344 
    345 	wpi_sysctlattach(sc);
    346 
    347 	if (!pmf_device_register(self, NULL, wpi_resume))
    348 		aprint_error_dev(self, "couldn't establish power handler\n");
    349 	else
    350 		pmf_class_network_register(self, ifp);
    351 
    352 #if NBPFILTER > 0
    353 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    354 		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    355 		&sc->sc_drvbpf);
    356 
    357 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    358 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    359 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    360 
    361 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    362 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    363 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    364 #endif
    365 
    366 	ieee80211_announce(ic);
    367 
    368 	return;
    369 
    370 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
    371 fail3:  while (--ac >= 0)
    372 			wpi_free_tx_ring(sc, &sc->txq[ac]);
    373 	wpi_free_rpool(sc);
    374 fail2:	wpi_free_shared(sc);
    375 fail1:	wpi_free_fwmem(sc);
    376 }
    377 
    378 static int
    379 wpi_detach(device_t self, int flags __unused)
    380 {
    381 	struct wpi_softc *sc = device_private(self);
    382 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    383 	int ac;
    384 
    385 	wpi_stop(ifp, 1);
    386 
    387 #if NBPFILTER > 0
    388 	if (ifp != NULL)
    389 		bpfdetach(ifp);
    390 #endif
    391 	ieee80211_ifdetach(&sc->sc_ic);
    392 	if (ifp != NULL)
    393 		if_detach(ifp);
    394 
    395 	for (ac = 0; ac < 4; ac++)
    396 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    397 	wpi_free_tx_ring(sc, &sc->cmdq);
    398 	wpi_free_rx_ring(sc, &sc->rxq);
    399 	wpi_free_rpool(sc);
    400 	wpi_free_shared(sc);
    401 
    402 	if (sc->sc_ih != NULL) {
    403 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    404 		sc->sc_ih = NULL;
    405 	}
    406 
    407 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    408 
    409 	return 0;
    410 }
    411 
    412 static int
    413 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
    414 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
    415 {
    416 	int nsegs, error;
    417 
    418 	dma->tag = tag;
    419 	dma->size = size;
    420 
    421 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    422 	if (error != 0)
    423 		goto fail;
    424 
    425 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    426 	    flags);
    427 	if (error != 0)
    428 		goto fail;
    429 
    430 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    431 	if (error != 0)
    432 		goto fail;
    433 
    434 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    435 	if (error != 0)
    436 		goto fail;
    437 
    438 	memset(dma->vaddr, 0, size);
    439 
    440 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    441 	if (kvap != NULL)
    442 		*kvap = dma->vaddr;
    443 
    444 	return 0;
    445 
    446 fail:   wpi_dma_contig_free(dma);
    447 	return error;
    448 }
    449 
    450 static void
    451 wpi_dma_contig_free(struct wpi_dma_info *dma)
    452 {
    453 	if (dma->map != NULL) {
    454 		if (dma->vaddr != NULL) {
    455 			bus_dmamap_unload(dma->tag, dma->map);
    456 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    457 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    458 			dma->vaddr = NULL;
    459 		}
    460 		bus_dmamap_destroy(dma->tag, dma->map);
    461 		dma->map = NULL;
    462 	}
    463 }
    464 
    465 /*
    466  * Allocate a shared page between host and NIC.
    467  */
    468 static int
    469 wpi_alloc_shared(struct wpi_softc *sc)
    470 {
    471 	int error;
    472 	/* must be aligned on a 4K-page boundary */
    473 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    474 			(void **)&sc->shared, sizeof (struct wpi_shared),
    475 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
    476 	if (error != 0)
    477 		aprint_error_dev(sc->sc_dev,
    478 				"could not allocate shared area DMA memory\n");
    479 
    480 	return error;
    481 }
    482 
    483 static void
    484 wpi_free_shared(struct wpi_softc *sc)
    485 {
    486 	wpi_dma_contig_free(&sc->shared_dma);
    487 }
    488 
    489 /*
    490  * Allocate DMA-safe memory for firmware transfer.
    491  */
    492 static int
    493 wpi_alloc_fwmem(struct wpi_softc *sc)
    494 {
    495 	int error;
    496 	/* allocate enough contiguous space to store text and data */
    497 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    498 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    499 	    BUS_DMA_NOWAIT);
    500 
    501 	if (error != 0)
    502 		aprint_error_dev(sc->sc_dev,
    503 			"could not allocate firmware transfer area"
    504 			"DMA memory\n");
    505 	return error;
    506 }
    507 
    508 static void
    509 wpi_free_fwmem(struct wpi_softc *sc)
    510 {
    511 	wpi_dma_contig_free(&sc->fw_dma);
    512 }
    513 
    514 
    515 static struct wpi_rbuf *
    516 wpi_alloc_rbuf(struct wpi_softc *sc)
    517 {
    518 	struct wpi_rbuf *rbuf;
    519 
    520 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    521 	if (rbuf == NULL)
    522 		return NULL;
    523 	SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    524 	sc->rxq.nb_free_entries --;
    525 
    526 	return rbuf;
    527 }
    528 
    529 /*
    530  * This is called automatically by the network stack when the mbuf to which our
    531  * Rx buffer is attached is freed.
    532  */
    533 static void
    534 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    535 {
    536 	struct wpi_rbuf *rbuf = arg;
    537 	struct wpi_softc *sc = rbuf->sc;
    538 
    539 	/* put the buffer back in the free list */
    540 
    541 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    542 	sc->rxq.nb_free_entries ++;
    543 
    544 	if (__predict_true(m != NULL))
    545 		pool_cache_put(mb_cache, m);
    546 }
    547 
    548 static int
    549 wpi_alloc_rpool(struct wpi_softc *sc)
    550 {
    551 	struct wpi_rx_ring *ring = &sc->rxq;
    552 	struct wpi_rbuf *rbuf;
    553 	int i, error;
    554 
    555 	/* allocate a big chunk of DMA'able memory.. */
    556 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    557 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    558 	if (error != 0) {
    559 		aprint_normal_dev(sc->sc_dev,
    560 						  "could not allocate Rx buffers DMA memory\n");
    561 		return error;
    562 	}
    563 
    564 	/* ..and split it into 3KB chunks */
    565 	SLIST_INIT(&ring->freelist);
    566 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    567 		rbuf = &ring->rbuf[i];
    568 		rbuf->sc = sc;	/* backpointer for callbacks */
    569 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    570 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    571 
    572 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    573 	}
    574 
    575 	ring->nb_free_entries = WPI_RBUF_COUNT;
    576 	return 0;
    577 }
    578 
    579 static void
    580 wpi_free_rpool(struct wpi_softc *sc)
    581 {
    582 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    583 }
    584 
    585 static int
    586 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    587 {
    588 	struct wpi_rx_data *data;
    589 	struct wpi_rbuf *rbuf;
    590 	int i, error;
    591 
    592 	ring->cur = 0;
    593 
    594 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    595 		(void **)&ring->desc,
    596 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
    597 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    598 	if (error != 0) {
    599 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
    600 		goto fail;
    601 	}
    602 
    603 	/*
    604 	 * Setup Rx buffers.
    605 	 */
    606 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    607 		data = &ring->data[i];
    608 
    609 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    610 		if (data->m == NULL) {
    611 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
    612 			error = ENOMEM;
    613 			goto fail;
    614 		}
    615 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    616 			m_freem(data->m);
    617 			data->m = NULL;
    618 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
    619 			error = ENOMEM;
    620 			goto fail;
    621 		}
    622 		/* attach Rx buffer to mbuf */
    623 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    624 		    rbuf);
    625 		data->m->m_flags |= M_EXT_RW;
    626 
    627 		ring->desc[i] = htole32(rbuf->paddr);
    628 	}
    629 
    630 	return 0;
    631 
    632 fail:	wpi_free_rx_ring(sc, ring);
    633 	return error;
    634 }
    635 
    636 static void
    637 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    638 {
    639 	int ntries;
    640 
    641 	wpi_mem_lock(sc);
    642 
    643 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    644 	for (ntries = 0; ntries < 100; ntries++) {
    645 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    646 			break;
    647 		DELAY(10);
    648 	}
    649 #ifdef WPI_DEBUG
    650 	if (ntries == 100 && wpi_debug > 0)
    651 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    652 #endif
    653 	wpi_mem_unlock(sc);
    654 
    655 	ring->cur = 0;
    656 }
    657 
    658 static void
    659 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    660 {
    661 	int i;
    662 
    663 	wpi_dma_contig_free(&ring->desc_dma);
    664 
    665 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    666 		if (ring->data[i].m != NULL)
    667 			m_freem(ring->data[i].m);
    668 	}
    669 }
    670 
    671 static int
    672 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    673 	int qid)
    674 {
    675 	struct wpi_tx_data *data;
    676 	int i, error;
    677 
    678 	ring->qid = qid;
    679 	ring->count = count;
    680 	ring->queued = 0;
    681 	ring->cur = 0;
    682 
    683 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    684 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    685 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    686 	if (error != 0) {
    687 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
    688 		goto fail;
    689 	}
    690 
    691 	/* update shared page with ring's base address */
    692 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    693 
    694 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    695 		(void **)&ring->cmd,
    696 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
    697 	if (error != 0) {
    698 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
    699 		goto fail;
    700 	}
    701 
    702 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    703 		M_NOWAIT);
    704 	if (ring->data == NULL) {
    705 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
    706 		goto fail;
    707 	}
    708 
    709 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
    710 
    711 	for (i = 0; i < count; i++) {
    712 		data = &ring->data[i];
    713 
    714 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    715 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    716 			&data->map);
    717 		if (error != 0) {
    718 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
    719 			goto fail;
    720 		}
    721 	}
    722 
    723 	return 0;
    724 
    725 fail:	wpi_free_tx_ring(sc, ring);
    726 	return error;
    727 }
    728 
    729 static void
    730 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    731 {
    732 	struct wpi_tx_data *data;
    733 	int i, ntries;
    734 
    735 	wpi_mem_lock(sc);
    736 
    737 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    738 	for (ntries = 0; ntries < 100; ntries++) {
    739 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    740 			break;
    741 		DELAY(10);
    742 	}
    743 #ifdef WPI_DEBUG
    744 	if (ntries == 100 && wpi_debug > 0) {
    745 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    746 									   ring->qid);
    747 	}
    748 #endif
    749 	wpi_mem_unlock(sc);
    750 
    751 	for (i = 0; i < ring->count; i++) {
    752 		data = &ring->data[i];
    753 
    754 		if (data->m != NULL) {
    755 			bus_dmamap_unload(sc->sc_dmat, data->map);
    756 			m_freem(data->m);
    757 			data->m = NULL;
    758 		}
    759 	}
    760 
    761 	ring->queued = 0;
    762 	ring->cur = 0;
    763 }
    764 
    765 static void
    766 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    767 {
    768 	struct wpi_tx_data *data;
    769 	int i;
    770 
    771 	wpi_dma_contig_free(&ring->desc_dma);
    772 	wpi_dma_contig_free(&ring->cmd_dma);
    773 
    774 	if (ring->data != NULL) {
    775 		for (i = 0; i < ring->count; i++) {
    776 			data = &ring->data[i];
    777 
    778 			if (data->m != NULL) {
    779 				bus_dmamap_unload(sc->sc_dmat, data->map);
    780 				m_freem(data->m);
    781 			}
    782 		}
    783 		free(ring->data, M_DEVBUF);
    784 	}
    785 }
    786 
    787 /*ARGUSED*/
    788 static struct ieee80211_node *
    789 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    790 {
    791 	struct wpi_node *wn;
    792 
    793 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
    794 
    795 	return (struct ieee80211_node *)wn;
    796 }
    797 
    798 static void
    799 wpi_newassoc(struct ieee80211_node *ni, int isnew)
    800 {
    801 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    802 	int i;
    803 
    804 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    805 
    806 	/* set rate to some reasonable initial value */
    807 	for (i = ni->ni_rates.rs_nrates - 1;
    808 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    809 	     i--);
    810 	ni->ni_txrate = i;
    811 }
    812 
    813 static int
    814 wpi_media_change(struct ifnet *ifp)
    815 {
    816 	int error;
    817 
    818 	error = ieee80211_media_change(ifp);
    819 	if (error != ENETRESET)
    820 		return error;
    821 
    822 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    823 		wpi_init(ifp);
    824 
    825 	return 0;
    826 }
    827 
    828 static int
    829 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    830 {
    831 	struct ifnet *ifp = ic->ic_ifp;
    832 	struct wpi_softc *sc = ifp->if_softc;
    833 	struct ieee80211_node *ni;
    834 	int error;
    835 
    836 	callout_stop(&sc->calib_to);
    837 
    838 	switch (nstate) {
    839 	case IEEE80211_S_SCAN:
    840 
    841 		if (sc->is_scanning)
    842 			break;
    843 
    844 		sc->is_scanning = true;
    845 		ieee80211_node_table_reset(&ic->ic_scan);
    846 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
    847 
    848 		/* make the link LED blink while we're scanning */
    849 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    850 
    851 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
    852 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
    853 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
    854 			return error;
    855 		}
    856 
    857 		ic->ic_state = nstate;
    858 		return 0;
    859 
    860 	case IEEE80211_S_ASSOC:
    861 		if (ic->ic_state != IEEE80211_S_RUN)
    862 			break;
    863 		/* FALLTHROUGH */
    864 	case IEEE80211_S_AUTH:
    865 		sc->config.associd = 0;
    866 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    867 		if ((error = wpi_auth(sc)) != 0) {
    868 			aprint_error_dev(sc->sc_dev,
    869 							"could not send authentication request\n");
    870 			return error;
    871 		}
    872 		break;
    873 
    874 	case IEEE80211_S_RUN:
    875 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    876 			/* link LED blinks while monitoring */
    877 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    878 			break;
    879 		}
    880 
    881 		ni = ic->ic_bss;
    882 
    883 		if (ic->ic_opmode != IEEE80211_M_STA) {
    884 			(void) wpi_auth(sc);    /* XXX */
    885 			wpi_setup_beacon(sc, ni);
    886 		}
    887 
    888 		wpi_enable_tsf(sc, ni);
    889 
    890 		/* update adapter's configuration */
    891 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    892 		/* short preamble/slot time are negotiated when associating */
    893 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
    894 			WPI_CONFIG_SHSLOT);
    895 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
    896 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
    897 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
    898 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
    899 		sc->config.filter |= htole32(WPI_FILTER_BSS);
    900 		if (ic->ic_opmode != IEEE80211_M_STA)
    901 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
    902 
    903 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
    904 
    905 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
    906 			sc->config.flags));
    907 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
    908 			sizeof (struct wpi_config), 1);
    909 		if (error != 0) {
    910 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
    911 			return error;
    912 		}
    913 
    914 		/* configuration has changed, set Tx power accordingly */
    915 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
    916 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
    917 			return error;
    918 		}
    919 
    920 		if (ic->ic_opmode == IEEE80211_M_STA) {
    921 			/* fake a join to init the tx rate */
    922 			wpi_newassoc(ni, 1);
    923 		}
    924 
    925 		/* start periodic calibration timer */
    926 		sc->calib_cnt = 0;
    927 		callout_schedule(&sc->calib_to, hz/2);
    928 
    929 		/* link LED always on while associated */
    930 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
    931 		break;
    932 
    933 	case IEEE80211_S_INIT:
    934 		sc->is_scanning = false;
    935 		break;
    936 	}
    937 
    938 	return sc->sc_newstate(ic, nstate, arg);
    939 }
    940 
    941 /*
    942  * XXX: Hack to set the current channel to the value advertised in beacons or
    943  * probe responses. Only used during AP detection.
    944  * XXX: Duplicated from if_iwi.c
    945  */
    946 static void
    947 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
    948 {
    949 	struct ieee80211_frame *wh;
    950 	uint8_t subtype;
    951 	uint8_t *frm, *efrm;
    952 
    953 	wh = mtod(m, struct ieee80211_frame *);
    954 
    955 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
    956 		return;
    957 
    958 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
    959 
    960 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
    961 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
    962 		return;
    963 
    964 	frm = (uint8_t *)(wh + 1);
    965 	efrm = mtod(m, uint8_t *) + m->m_len;
    966 
    967 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
    968 	while (frm < efrm) {
    969 		if (*frm == IEEE80211_ELEMID_DSPARMS)
    970 #if IEEE80211_CHAN_MAX < 255
    971 		if (frm[2] <= IEEE80211_CHAN_MAX)
    972 #endif
    973 			ic->ic_curchan = &ic->ic_channels[frm[2]];
    974 
    975 		frm += frm[1] + 2;
    976 	}
    977 }
    978 
    979 /*
    980  * Grab exclusive access to NIC memory.
    981  */
    982 static void
    983 wpi_mem_lock(struct wpi_softc *sc)
    984 {
    985 	uint32_t tmp;
    986 	int ntries;
    987 
    988 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
    989 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
    990 
    991 	/* spin until we actually get the lock */
    992 	for (ntries = 0; ntries < 1000; ntries++) {
    993 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
    994 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
    995 			break;
    996 		DELAY(10);
    997 	}
    998 	if (ntries == 1000)
    999 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
   1000 }
   1001 
   1002 /*
   1003  * Release lock on NIC memory.
   1004  */
   1005 static void
   1006 wpi_mem_unlock(struct wpi_softc *sc)
   1007 {
   1008 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1009 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1010 }
   1011 
   1012 static uint32_t
   1013 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1014 {
   1015 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1016 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1017 }
   1018 
   1019 static void
   1020 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1021 {
   1022 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1023 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1024 }
   1025 
   1026 static void
   1027 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1028 						const uint32_t *data, int wlen)
   1029 {
   1030 	for (; wlen > 0; wlen--, data++, addr += 4)
   1031 		wpi_mem_write(sc, addr, *data);
   1032 }
   1033 
   1034 
   1035 /*
   1036  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1037  * instead of using the traditional bit-bang method.
   1038  */
   1039 static int
   1040 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1041 {
   1042 	uint8_t *out = data;
   1043 	uint32_t val;
   1044 	int ntries;
   1045 
   1046 	wpi_mem_lock(sc);
   1047 	for (; len > 0; len -= 2, addr++) {
   1048 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1049 
   1050 		for (ntries = 0; ntries < 10; ntries++) {
   1051 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1052 			    WPI_EEPROM_READY)
   1053 				break;
   1054 			DELAY(5);
   1055 		}
   1056 		if (ntries == 10) {
   1057 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1058 			return ETIMEDOUT;
   1059 		}
   1060 		*out++ = val >> 16;
   1061 		if (len > 1)
   1062 			*out++ = val >> 24;
   1063 	}
   1064 	wpi_mem_unlock(sc);
   1065 
   1066 	return 0;
   1067 }
   1068 
   1069 /*
   1070  * The firmware boot code is small and is intended to be copied directly into
   1071  * the NIC internal memory.
   1072  */
   1073 int
   1074 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1075 {
   1076 	int ntries;
   1077 
   1078 	size /= sizeof (uint32_t);
   1079 
   1080 	wpi_mem_lock(sc);
   1081 
   1082 	/* copy microcode image into NIC memory */
   1083 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1084 	    (const uint32_t *)ucode, size);
   1085 
   1086 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1087 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1088 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1089 
   1090 	/* run microcode */
   1091 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1092 
   1093 	/* wait for transfer to complete */
   1094 	for (ntries = 0; ntries < 1000; ntries++) {
   1095 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1096 			break;
   1097 		DELAY(10);
   1098 	}
   1099 	if (ntries == 1000) {
   1100 		wpi_mem_unlock(sc);
   1101 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1102 		return ETIMEDOUT;
   1103 	}
   1104 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1105 
   1106 	wpi_mem_unlock(sc);
   1107 
   1108 	return 0;
   1109 }
   1110 
   1111 static int
   1112 wpi_load_firmware(struct wpi_softc *sc)
   1113 {
   1114 	struct wpi_dma_info *dma = &sc->fw_dma;
   1115 	struct wpi_firmware_hdr hdr;
   1116 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1117 	const uint8_t *boot_text;
   1118 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1119 	uint32_t boot_textsz;
   1120 	firmware_handle_t fw;
   1121 	u_char *dfw;
   1122 	size_t size;
   1123 	int error;
   1124 
   1125 	/* load firmware image from disk */
   1126 	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
   1127 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
   1128 		goto fail1;
   1129 	}
   1130 
   1131 	size = firmware_get_size(fw);
   1132 
   1133 	/* extract firmware header information */
   1134 	if (size < sizeof (struct wpi_firmware_hdr)) {
   1135 		aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
   1136 		    			 size);
   1137 		error = EINVAL;
   1138 		goto fail2;
   1139 	}
   1140 
   1141 	if ((error = firmware_read(fw, 0, &hdr,
   1142 		sizeof (struct wpi_firmware_hdr))) != 0) {
   1143 		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
   1144 		goto fail2;
   1145 	}
   1146 
   1147 	main_textsz = le32toh(hdr.main_textsz);
   1148 	main_datasz = le32toh(hdr.main_datasz);
   1149 	init_textsz = le32toh(hdr.init_textsz);
   1150 	init_datasz = le32toh(hdr.init_datasz);
   1151 	boot_textsz = le32toh(hdr.boot_textsz);
   1152 
   1153 	/* sanity-check firmware segments sizes */
   1154 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1155 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1156 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1157 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1158 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1159 	    (boot_textsz & 3) != 0) {
   1160 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1161 		error = EINVAL;
   1162 		goto fail2;
   1163 	}
   1164 
   1165 	/* check that all firmware segments are present */
   1166 	if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
   1167 		main_datasz + init_textsz + init_datasz + boot_textsz) {
   1168 		aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
   1169 		    			 size);
   1170 		error = EINVAL;
   1171 		goto fail2;
   1172 	}
   1173 
   1174 	dfw = firmware_malloc(size);
   1175 	if (dfw == NULL) {
   1176 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
   1177 		error = ENOMEM;
   1178 		goto fail2;
   1179 	}
   1180 
   1181 	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
   1182 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
   1183 		goto fail2;
   1184 	}
   1185 
   1186 	/* get pointers to firmware segments */
   1187 	main_text = dfw + sizeof (struct wpi_firmware_hdr);
   1188 	main_data = main_text + main_textsz;
   1189 	init_text = main_data + main_datasz;
   1190 	init_data = init_text + init_textsz;
   1191 	boot_text = init_data + init_datasz;
   1192 
   1193 	/* copy initialization images into pre-allocated DMA-safe memory */
   1194 	memcpy(dma->vaddr, init_data, init_datasz);
   1195 	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
   1196 
   1197 	/* tell adapter where to find initialization images */
   1198 	wpi_mem_lock(sc);
   1199 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1200 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1201 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1202 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1203 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1204 	wpi_mem_unlock(sc);
   1205 
   1206 	/* load firmware boot code */
   1207 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1208 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1209 		goto fail3;
   1210 	}
   1211 
   1212 	/* now press "execute" ;-) */
   1213 	WPI_WRITE(sc, WPI_RESET, 0);
   1214 
   1215 	/* ..and wait at most one second for adapter to initialize */
   1216 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1217 		/* this isn't what was supposed to happen.. */
   1218 		aprint_error_dev(sc->sc_dev,
   1219 					"timeout waiting for adapter to initialize\n");
   1220 	}
   1221 
   1222 	/* copy runtime images into pre-allocated DMA-safe memory */
   1223 	memcpy(dma->vaddr, main_data, main_datasz);
   1224 	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
   1225 
   1226 	/* tell adapter where to find runtime images */
   1227 	wpi_mem_lock(sc);
   1228 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1229 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1230 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1231 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1232 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1233 	wpi_mem_unlock(sc);
   1234 
   1235 	/* wait at most one second for second alive notification */
   1236 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1237 		/* this isn't what was supposed to happen.. */
   1238 		aprint_error_dev(sc->sc_dev,
   1239 						"timeout waiting for adapter to initialize\n");
   1240 	}
   1241 
   1242 
   1243 fail3: 	firmware_free(dfw,size);
   1244 fail2:	firmware_close(fw);
   1245 fail1:	return error;
   1246 }
   1247 
   1248 static void
   1249 wpi_calib_timeout(void *arg)
   1250 {
   1251 	struct wpi_softc *sc = arg;
   1252 	struct ieee80211com *ic = &sc->sc_ic;
   1253 	int temp, s;
   1254 
   1255 	/* automatic rate control triggered every 500ms */
   1256 	if (ic->ic_fixed_rate == -1) {
   1257 		s = splnet();
   1258 		if (ic->ic_opmode == IEEE80211_M_STA)
   1259 			wpi_iter_func(sc, ic->ic_bss);
   1260 		else
   1261                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1262 		splx(s);
   1263 	}
   1264 
   1265 	/* update sensor data */
   1266 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1267 
   1268 	/* automatic power calibration every 60s */
   1269 	if (++sc->calib_cnt >= 120) {
   1270 		wpi_power_calibration(sc, temp);
   1271 		sc->calib_cnt = 0;
   1272 	}
   1273 
   1274 	callout_schedule(&sc->calib_to, hz/2);
   1275 }
   1276 
   1277 static void
   1278 wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1279 {
   1280 	struct wpi_softc *sc = arg;
   1281 	struct wpi_node *wn = (struct wpi_node *)ni;
   1282 
   1283 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1284 }
   1285 
   1286 /*
   1287  * This function is called periodically (every 60 seconds) to adjust output
   1288  * power to temperature changes.
   1289  */
   1290 void
   1291 wpi_power_calibration(struct wpi_softc *sc, int temp)
   1292 {
   1293 	/* sanity-check read value */
   1294 	if (temp < -260 || temp > 25) {
   1295 		/* this can't be correct, ignore */
   1296 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1297 		return;
   1298 	}
   1299 
   1300 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1301 
   1302 	/* adjust Tx power if need be */
   1303 	if (abs(temp - sc->temp) <= 6)
   1304 		return;
   1305 
   1306 	sc->temp = temp;
   1307 
   1308 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
   1309 		/* just warn, too bad for the automatic calibration... */
   1310 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1311 	}
   1312 }
   1313 
   1314 static void
   1315 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1316 	struct wpi_rx_data *data)
   1317 {
   1318 	struct ieee80211com *ic = &sc->sc_ic;
   1319 	struct ifnet *ifp = ic->ic_ifp;
   1320 	struct wpi_rx_ring *ring = &sc->rxq;
   1321 	struct wpi_rx_stat *stat;
   1322 	struct wpi_rx_head *head;
   1323 	struct wpi_rx_tail *tail;
   1324 	struct wpi_rbuf *rbuf;
   1325 	struct ieee80211_frame *wh;
   1326 	struct ieee80211_node *ni;
   1327 	struct mbuf *m, *mnew;
   1328 	int data_off ;
   1329 
   1330 	stat = (struct wpi_rx_stat *)(desc + 1);
   1331 
   1332 	if (stat->len > WPI_STAT_MAXLEN) {
   1333 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1334 		ifp->if_ierrors++;
   1335 		return;
   1336 	}
   1337 
   1338 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1339 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1340 
   1341 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1342 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
   1343 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1344 		le64toh(tail->tstamp)));
   1345 
   1346 	/*
   1347 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1348 	 * to radiotap in monitor mode).
   1349 	 */
   1350 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1351 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
   1352 		ifp->if_ierrors++;
   1353 		return;
   1354 	}
   1355 
   1356 	/* Compute where are the useful datas */
   1357 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1358 
   1359 	/*
   1360 	 * If the number of free entry is too low
   1361 	 * just dup the data->m socket and reuse the same rbuf entry
   1362 	 */
   1363 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
   1364 
   1365 		/* Prepare the mbuf for the m_dup */
   1366 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
   1367 		data->m->m_data = (char*) data->m->m_data + data_off;
   1368 
   1369 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
   1370 
   1371 		/* Restore the m_data pointer for future use */
   1372 		data->m->m_data = (char*) data->m->m_data - data_off;
   1373 
   1374 		if (m == NULL) {
   1375 			ifp->if_ierrors++;
   1376 			return;
   1377 		}
   1378 	} else {
   1379 
   1380 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1381 		if (mnew == NULL) {
   1382 			ifp->if_ierrors++;
   1383 			return;
   1384 		}
   1385 
   1386 		rbuf = wpi_alloc_rbuf(sc);
   1387 		KASSERT(rbuf != NULL);
   1388 
   1389  		/* attach Rx buffer to mbuf */
   1390 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1391 		 	rbuf);
   1392 		mnew->m_flags |= M_EXT_RW;
   1393 
   1394 		m = data->m;
   1395 		data->m = mnew;
   1396 
   1397 		/* update Rx descriptor */
   1398 		ring->desc[ring->cur] = htole32(rbuf->paddr);
   1399 
   1400 		m->m_data = (char*)m->m_data + data_off;
   1401 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1402 	}
   1403 
   1404 	/* finalize mbuf */
   1405 	m->m_pkthdr.rcvif = ifp;
   1406 
   1407 	if (ic->ic_state == IEEE80211_S_SCAN)
   1408 		wpi_fix_channel(ic, m);
   1409 
   1410 #if NBPFILTER > 0
   1411 	if (sc->sc_drvbpf != NULL) {
   1412 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1413 
   1414 		tap->wr_flags = 0;
   1415 		tap->wr_chan_freq =
   1416 			htole16(ic->ic_channels[head->chan].ic_freq);
   1417 		tap->wr_chan_flags =
   1418 			htole16(ic->ic_channels[head->chan].ic_flags);
   1419 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1420 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1421 		tap->wr_tsft = tail->tstamp;
   1422 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1423 		switch (head->rate) {
   1424 		/* CCK rates */
   1425 		case  10: tap->wr_rate =   2; break;
   1426 		case  20: tap->wr_rate =   4; break;
   1427 		case  55: tap->wr_rate =  11; break;
   1428 		case 110: tap->wr_rate =  22; break;
   1429 		/* OFDM rates */
   1430 		case 0xd: tap->wr_rate =  12; break;
   1431 		case 0xf: tap->wr_rate =  18; break;
   1432 		case 0x5: tap->wr_rate =  24; break;
   1433 		case 0x7: tap->wr_rate =  36; break;
   1434 		case 0x9: tap->wr_rate =  48; break;
   1435 		case 0xb: tap->wr_rate =  72; break;
   1436 		case 0x1: tap->wr_rate =  96; break;
   1437 		case 0x3: tap->wr_rate = 108; break;
   1438 		/* unknown rate: should not happen */
   1439 		default:  tap->wr_rate =   0;
   1440 		}
   1441 		if (le16toh(head->flags) & 0x4)
   1442 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1443 
   1444 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1445 	}
   1446 #endif
   1447 
   1448 	/* grab a reference to the source node */
   1449 	wh = mtod(m, struct ieee80211_frame *);
   1450 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1451 
   1452 	/* send the frame to the 802.11 layer */
   1453 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1454 
   1455 	/* release node reference */
   1456 	ieee80211_free_node(ni);
   1457 }
   1458 
   1459 static void
   1460 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1461 {
   1462 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1463 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1464 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
   1465 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1466 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
   1467 
   1468 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1469 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1470 		stat->nkill, stat->rate, le32toh(stat->duration),
   1471 		le32toh(stat->status)));
   1472 
   1473 	/*
   1474 	 * Update rate control statistics for the node.
   1475 	 * XXX we should not count mgmt frames since they're always sent at
   1476 	 * the lowest available bit-rate.
   1477 	 */
   1478 	wn->amn.amn_txcnt++;
   1479 	if (stat->ntries > 0) {
   1480 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1481 		wn->amn.amn_retrycnt++;
   1482 	}
   1483 
   1484 	if ((le32toh(stat->status) & 0xff) != 1)
   1485 		ifp->if_oerrors++;
   1486 	else
   1487 		ifp->if_opackets++;
   1488 
   1489 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
   1490 	m_freem(txdata->m);
   1491 	txdata->m = NULL;
   1492 	ieee80211_free_node(txdata->ni);
   1493 	txdata->ni = NULL;
   1494 
   1495 	ring->queued--;
   1496 
   1497 	sc->sc_tx_timer = 0;
   1498 	ifp->if_flags &= ~IFF_OACTIVE;
   1499 	wpi_start(ifp);
   1500 }
   1501 
   1502 static void
   1503 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1504 {
   1505 	struct wpi_tx_ring *ring = &sc->cmdq;
   1506 	struct wpi_tx_data *data;
   1507 
   1508 	if ((desc->qid & 7) != 4)
   1509 		return;	/* not a command ack */
   1510 
   1511 	data = &ring->data[desc->idx];
   1512 
   1513 	/* if the command was mapped in a mbuf, free it */
   1514 	if (data->m != NULL) {
   1515 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1516 		m_freem(data->m);
   1517 		data->m = NULL;
   1518 	}
   1519 
   1520 	wakeup(&ring->cmd[desc->idx]);
   1521 }
   1522 
   1523 static void
   1524 wpi_notif_intr(struct wpi_softc *sc)
   1525 {
   1526 	struct ieee80211com *ic = &sc->sc_ic;
   1527 	struct ifnet *ifp =  ic->ic_ifp;
   1528 	struct wpi_rx_desc *desc;
   1529 	struct wpi_rx_data *data;
   1530 	uint32_t hw;
   1531 
   1532 	hw = le32toh(sc->shared->next);
   1533 	while (sc->rxq.cur != hw) {
   1534 		data = &sc->rxq.data[sc->rxq.cur];
   1535 
   1536 		desc = mtod(data->m, struct wpi_rx_desc *);
   1537 
   1538 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1539 			"len=%d\n", desc->qid, desc->idx, desc->flags,
   1540 			desc->type, le32toh(desc->len)));
   1541 
   1542 		if (!(desc->qid & 0x80))	/* reply to a command */
   1543 			wpi_cmd_intr(sc, desc);
   1544 
   1545 		switch (desc->type) {
   1546 		case WPI_RX_DONE:
   1547 			/* a 802.11 frame was received */
   1548 			wpi_rx_intr(sc, desc, data);
   1549 			break;
   1550 
   1551 		case WPI_TX_DONE:
   1552 			/* a 802.11 frame has been transmitted */
   1553 			wpi_tx_intr(sc, desc);
   1554 			break;
   1555 
   1556 		case WPI_UC_READY:
   1557 		{
   1558 			struct wpi_ucode_info *uc =
   1559 				(struct wpi_ucode_info *)(desc + 1);
   1560 
   1561 			/* the microcontroller is ready */
   1562 			DPRINTF(("microcode alive notification version %x "
   1563 				"alive %x\n", le32toh(uc->version),
   1564 				le32toh(uc->valid)));
   1565 
   1566 			if (le32toh(uc->valid) != 1) {
   1567 				aprint_error_dev(sc->sc_dev,
   1568 					"microcontroller initialization failed\n");
   1569 			}
   1570 			break;
   1571 		}
   1572 		case WPI_STATE_CHANGED:
   1573 		{
   1574 			uint32_t *status = (uint32_t *)(desc + 1);
   1575 
   1576 			/* enabled/disabled notification */
   1577 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1578 
   1579 			if (le32toh(*status) & 1) {
   1580 				/* the radio button has to be pushed */
   1581 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
   1582 				/* turn the interface down */
   1583 				ifp->if_flags &= ~IFF_UP;
   1584 				wpi_stop(ifp, 1);
   1585 				return;	/* no further processing */
   1586 			}
   1587 			break;
   1588 		}
   1589 		case WPI_START_SCAN:
   1590 		{
   1591 			struct wpi_start_scan *scan =
   1592 				(struct wpi_start_scan *)(desc + 1);
   1593 
   1594 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1595 				scan->chan, le32toh(scan->status)));
   1596 
   1597 			/* fix current channel */
   1598 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   1599 			break;
   1600 		}
   1601 		case WPI_STOP_SCAN:
   1602 		{
   1603 			struct wpi_stop_scan *scan =
   1604 				(struct wpi_stop_scan *)(desc + 1);
   1605 
   1606 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1607 				scan->nchan, scan->status, scan->chan));
   1608 
   1609 			if (scan->status == 1 && scan->chan <= 14) {
   1610 				/*
   1611 				 * We just finished scanning 802.11g channels,
   1612 				 * start scanning 802.11a ones.
   1613 				 */
   1614 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
   1615 					break;
   1616 			}
   1617 			sc->is_scanning = false;
   1618 			ieee80211_end_scan(ic);
   1619 			break;
   1620 		}
   1621 		}
   1622 
   1623 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1624 	}
   1625 
   1626 	/* tell the firmware what we have processed */
   1627 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1628 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1629 }
   1630 
   1631 static int
   1632 wpi_intr(void *arg)
   1633 {
   1634 	struct wpi_softc *sc = arg;
   1635 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1636 	uint32_t r;
   1637 
   1638 	r = WPI_READ(sc, WPI_INTR);
   1639 	if (r == 0 || r == 0xffffffff)
   1640 		return 0;	/* not for us */
   1641 
   1642 	DPRINTFN(5, ("interrupt reg %x\n", r));
   1643 
   1644 	/* disable interrupts */
   1645 	WPI_WRITE(sc, WPI_MASK, 0);
   1646 	/* ack interrupts */
   1647 	WPI_WRITE(sc, WPI_INTR, r);
   1648 
   1649 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1650 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1651 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
   1652 		wpi_stop(sc->sc_ic.ic_ifp, 1);
   1653 		return 1;
   1654 	}
   1655 
   1656 	if (r & WPI_RX_INTR)
   1657 		wpi_notif_intr(sc);
   1658 
   1659 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1660 		wakeup(sc);
   1661 
   1662 	/* re-enable interrupts */
   1663 	if (ifp->if_flags & IFF_UP)
   1664 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1665 
   1666 	return 1;
   1667 }
   1668 
   1669 static uint8_t
   1670 wpi_plcp_signal(int rate)
   1671 {
   1672 	switch (rate) {
   1673 	/* CCK rates (returned values are device-dependent) */
   1674 	case 2:		return 10;
   1675 	case 4:		return 20;
   1676 	case 11:	return 55;
   1677 	case 22:	return 110;
   1678 
   1679 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1680 	/* R1-R4, (u)ral is R4-R1 */
   1681 	case 12:	return 0xd;
   1682 	case 18:	return 0xf;
   1683 	case 24:	return 0x5;
   1684 	case 36:	return 0x7;
   1685 	case 48:	return 0x9;
   1686 	case 72:	return 0xb;
   1687 	case 96:	return 0x1;
   1688 	case 108:	return 0x3;
   1689 
   1690 	/* unsupported rates (should not get there) */
   1691 	default:	return 0;
   1692 	}
   1693 }
   1694 
   1695 /* quickly determine if a given rate is CCK or OFDM */
   1696 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1697 
   1698 static int
   1699 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1700 	int ac)
   1701 {
   1702 	struct ieee80211com *ic = &sc->sc_ic;
   1703 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1704 	struct wpi_tx_desc *desc;
   1705 	struct wpi_tx_data *data;
   1706 	struct wpi_tx_cmd *cmd;
   1707 	struct wpi_cmd_data *tx;
   1708 	struct ieee80211_frame *wh;
   1709 	struct ieee80211_key *k;
   1710 	const struct chanAccParams *cap;
   1711 	struct mbuf *mnew;
   1712 	int i, error, rate, hdrlen, noack = 0;
   1713 
   1714 	desc = &ring->desc[ring->cur];
   1715 	data = &ring->data[ring->cur];
   1716 
   1717 	wh = mtod(m0, struct ieee80211_frame *);
   1718 
   1719 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   1720 		cap = &ic->ic_wme.wme_chanParams;
   1721 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1722 	}
   1723 
   1724 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1725 		k = ieee80211_crypto_encap(ic, ni, m0);
   1726 		if (k == NULL) {
   1727 			m_freem(m0);
   1728 			return ENOBUFS;
   1729 		}
   1730 
   1731 		/* packet header may have moved, reset our local pointer */
   1732 		wh = mtod(m0, struct ieee80211_frame *);
   1733 	}
   1734 
   1735 	hdrlen = ieee80211_anyhdrsize(wh);
   1736 
   1737 	/* pickup a rate */
   1738 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1739 		IEEE80211_FC0_TYPE_MGT) {
   1740 		/* mgmt frames are sent at the lowest available bit-rate */
   1741 		rate = ni->ni_rates.rs_rates[0];
   1742 	} else {
   1743 		if (ic->ic_fixed_rate != -1) {
   1744 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1745 				rs_rates[ic->ic_fixed_rate];
   1746 		} else
   1747 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1748 	}
   1749 	rate &= IEEE80211_RATE_VAL;
   1750 
   1751 
   1752 #if NBPFILTER > 0
   1753 	if (sc->sc_drvbpf != NULL) {
   1754 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1755 
   1756 		tap->wt_flags = 0;
   1757 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1758 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1759 		tap->wt_rate = rate;
   1760 		tap->wt_hwqueue = ac;
   1761 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1762 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1763 
   1764 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1765 	}
   1766 #endif
   1767 
   1768 	cmd = &ring->cmd[ring->cur];
   1769 	cmd->code = WPI_CMD_TX_DATA;
   1770 	cmd->flags = 0;
   1771 	cmd->qid = ring->qid;
   1772 	cmd->idx = ring->cur;
   1773 
   1774 	tx = (struct wpi_cmd_data *)cmd->data;
   1775 	tx->flags = 0;
   1776 
   1777 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1778 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1779 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1780 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1781 
   1782 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1783 
   1784 	/* retrieve destination node's id */
   1785 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1786 		WPI_ID_BSS;
   1787 
   1788 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1789 		IEEE80211_FC0_TYPE_MGT) {
   1790 		/* tell h/w to set timestamp in probe responses */
   1791 		if ((wh->i_fc[0] &
   1792 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1793 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1794 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1795 
   1796 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1797 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1798 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1799 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1800 			tx->timeout = htole16(3);
   1801 		else
   1802 			tx->timeout = htole16(2);
   1803 	} else
   1804 		tx->timeout = htole16(0);
   1805 
   1806 	tx->rate = wpi_plcp_signal(rate);
   1807 
   1808 	/* be very persistant at sending frames out */
   1809 	tx->rts_ntries = 7;
   1810 	tx->data_ntries = 15;
   1811 
   1812 	tx->ofdm_mask = 0xff;
   1813 	tx->cck_mask = 0xf;
   1814 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   1815 
   1816 	tx->len = htole16(m0->m_pkthdr.len);
   1817 
   1818 	/* save and trim IEEE802.11 header */
   1819 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   1820 	m_adj(m0, hdrlen);
   1821 
   1822 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1823 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1824 	if (error != 0 && error != EFBIG) {
   1825 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
   1826 		m_freem(m0);
   1827 		return error;
   1828 	}
   1829 	if (error != 0) {
   1830 		/* too many fragments, linearize */
   1831 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1832 		if (mnew == NULL) {
   1833 			m_freem(m0);
   1834 			return ENOMEM;
   1835 		}
   1836 
   1837 		M_COPY_PKTHDR(mnew, m0);
   1838 		if (m0->m_pkthdr.len > MHLEN) {
   1839 			MCLGET(mnew, M_DONTWAIT);
   1840 			if (!(mnew->m_flags & M_EXT)) {
   1841 				m_freem(m0);
   1842 				m_freem(mnew);
   1843 				return ENOMEM;
   1844 			}
   1845 		}
   1846 
   1847 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1848 		m_freem(m0);
   1849 		mnew->m_len = mnew->m_pkthdr.len;
   1850 		m0 = mnew;
   1851 
   1852 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1853 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1854 		if (error != 0) {
   1855 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1856 							 error);
   1857 			m_freem(m0);
   1858 			return error;
   1859 		}
   1860 	}
   1861 
   1862 	data->m = m0;
   1863 	data->ni = ni;
   1864 
   1865 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   1866 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   1867 
   1868 	/* first scatter/gather segment is used by the tx data command */
   1869 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   1870 		(1 + data->map->dm_nsegs) << 24);
   1871 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   1872 		ring->cur * sizeof (struct wpi_tx_cmd));
   1873 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   1874 						 ((hdrlen + 3) & ~3));
   1875 
   1876 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   1877 		desc->segs[i].addr =
   1878 			htole32(data->map->dm_segs[i - 1].ds_addr);
   1879 		desc->segs[i].len  =
   1880 			htole32(data->map->dm_segs[i - 1].ds_len);
   1881 	}
   1882 
   1883 	ring->queued++;
   1884 
   1885 	/* kick ring */
   1886 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   1887 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   1888 
   1889 	return 0;
   1890 }
   1891 
   1892 static void
   1893 wpi_start(struct ifnet *ifp)
   1894 {
   1895 	struct wpi_softc *sc = ifp->if_softc;
   1896 	struct ieee80211com *ic = &sc->sc_ic;
   1897 	struct ieee80211_node *ni;
   1898 	struct ether_header *eh;
   1899 	struct mbuf *m0;
   1900 	int ac;
   1901 
   1902 	/*
   1903 	 * net80211 may still try to send management frames even if the
   1904 	 * IFF_RUNNING flag is not set...
   1905 	 */
   1906 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1907 		return;
   1908 
   1909 	for (;;) {
   1910 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   1911 		if (m0 != NULL) {
   1912 
   1913 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   1914 			m0->m_pkthdr.rcvif = NULL;
   1915 
   1916 			/* management frames go into ring 0 */
   1917 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   1918 				ifp->if_oerrors++;
   1919 				continue;
   1920 			}
   1921 #if NBPFILTER > 0
   1922 			if (ic->ic_rawbpf != NULL)
   1923 				bpf_mtap(ic->ic_rawbpf, m0);
   1924 #endif
   1925 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   1926 				ifp->if_oerrors++;
   1927 				break;
   1928 			}
   1929 		} else {
   1930 			if (ic->ic_state != IEEE80211_S_RUN)
   1931 				break;
   1932 			IFQ_POLL(&ifp->if_snd, m0);
   1933 			if (m0 == NULL)
   1934 				break;
   1935 
   1936 			if (m0->m_len < sizeof (*eh) &&
   1937 			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
   1938 				ifp->if_oerrors++;
   1939 				continue;
   1940 			}
   1941 			eh = mtod(m0, struct ether_header *);
   1942 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1943 			if (ni == NULL) {
   1944 				m_freem(m0);
   1945 				ifp->if_oerrors++;
   1946 				continue;
   1947 			}
   1948 
   1949 			/* classify mbuf so we can find which tx ring to use */
   1950 			if (ieee80211_classify(ic, m0, ni) != 0) {
   1951 				m_freem(m0);
   1952 				ieee80211_free_node(ni);
   1953 				ifp->if_oerrors++;
   1954 				continue;
   1955 			}
   1956 
   1957 			/* no QoS encapsulation for EAPOL frames */
   1958 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   1959 			    M_WME_GETAC(m0) : WME_AC_BE;
   1960 
   1961 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   1962 				/* there is no place left in this ring */
   1963 				ifp->if_flags |= IFF_OACTIVE;
   1964 				break;
   1965 			}
   1966 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1967 #if NBPFILTER > 0
   1968 			if (ifp->if_bpf != NULL)
   1969 				bpf_mtap(ifp->if_bpf, m0);
   1970 #endif
   1971 			m0 = ieee80211_encap(ic, m0, ni);
   1972 			if (m0 == NULL) {
   1973 				ieee80211_free_node(ni);
   1974 				ifp->if_oerrors++;
   1975 				continue;
   1976 			}
   1977 #if NBPFILTER > 0
   1978 			if (ic->ic_rawbpf != NULL)
   1979 				bpf_mtap(ic->ic_rawbpf, m0);
   1980 #endif
   1981 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   1982 				ieee80211_free_node(ni);
   1983 				ifp->if_oerrors++;
   1984 				break;
   1985 			}
   1986 		}
   1987 
   1988 		sc->sc_tx_timer = 5;
   1989 		ifp->if_timer = 1;
   1990 	}
   1991 }
   1992 
   1993 static void
   1994 wpi_watchdog(struct ifnet *ifp)
   1995 {
   1996 	struct wpi_softc *sc = ifp->if_softc;
   1997 
   1998 	ifp->if_timer = 0;
   1999 
   2000 	if (sc->sc_tx_timer > 0) {
   2001 		if (--sc->sc_tx_timer == 0) {
   2002 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2003 			ifp->if_oerrors++;
   2004 			ifp->if_flags &= ~IFF_UP;
   2005 			wpi_stop(ifp, 1);
   2006 			return;
   2007 		}
   2008 		ifp->if_timer = 1;
   2009 	}
   2010 
   2011 	ieee80211_watchdog(&sc->sc_ic);
   2012 }
   2013 
   2014 static int
   2015 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2016 {
   2017 #define IS_RUNNING(ifp) \
   2018 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2019 
   2020 	struct wpi_softc *sc = ifp->if_softc;
   2021 	struct ieee80211com *ic = &sc->sc_ic;
   2022 	int s, error = 0;
   2023 
   2024 	s = splnet();
   2025 
   2026 	switch (cmd) {
   2027 	case SIOCSIFFLAGS:
   2028 		if (ifp->if_flags & IFF_UP) {
   2029 			if (!(ifp->if_flags & IFF_RUNNING))
   2030 				wpi_init(ifp);
   2031 		} else {
   2032 			if (ifp->if_flags & IFF_RUNNING)
   2033 				wpi_stop(ifp, 1);
   2034 		}
   2035 		break;
   2036 
   2037 	case SIOCADDMULTI:
   2038 	case SIOCDELMULTI:
   2039 		/* XXX no h/w multicast filter? --dyoung */
   2040 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2041 			/* setup multicast filter, etc */
   2042 			error = 0;
   2043 		}
   2044 		break;
   2045 
   2046 	default:
   2047 		error = ieee80211_ioctl(ic, cmd, data);
   2048 	}
   2049 
   2050 	if (error == ENETRESET) {
   2051 		if (IS_RUNNING(ifp) &&
   2052 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2053 			wpi_init(ifp);
   2054 		error = 0;
   2055 	}
   2056 
   2057 	splx(s);
   2058 	return error;
   2059 
   2060 #undef IS_RUNNING
   2061 }
   2062 
   2063 /*
   2064  * Extract various information from EEPROM.
   2065  */
   2066 static void
   2067 wpi_read_eeprom(struct wpi_softc *sc)
   2068 {
   2069 	struct ieee80211com *ic = &sc->sc_ic;
   2070 	char domain[4];
   2071 	int i;
   2072 
   2073 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2074 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2075 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2076 
   2077 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2078 	    sc->type));
   2079 
   2080 	/* read and print regulatory domain */
   2081 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2082 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
   2083 
   2084 	/* read and print MAC address */
   2085 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2086 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2087 
   2088 	/* read the list of authorized channels */
   2089 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2090 		wpi_read_eeprom_channels(sc, i);
   2091 
   2092 	/* read the list of power groups */
   2093 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2094 		wpi_read_eeprom_group(sc, i);
   2095 }
   2096 
   2097 static void
   2098 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2099 {
   2100 	struct ieee80211com *ic = &sc->sc_ic;
   2101 	const struct wpi_chan_band *band = &wpi_bands[n];
   2102 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2103 	int chan, i;
   2104 
   2105 	wpi_read_prom_data(sc, band->addr, channels,
   2106 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2107 
   2108 	for (i = 0; i < band->nchan; i++) {
   2109 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2110 			continue;
   2111 
   2112 		chan = band->chan[i];
   2113 
   2114 		if (n == 0) {	/* 2GHz band */
   2115 			ic->ic_channels[chan].ic_freq =
   2116 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2117 			ic->ic_channels[chan].ic_flags =
   2118 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2119 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2120 
   2121 		} else {	/* 5GHz band */
   2122 			/*
   2123 			 * Some 3945abg adapters support channels 7, 8, 11
   2124 			 * and 12 in the 2GHz *and* 5GHz bands.
   2125 			 * Because of limitations in our net80211(9) stack,
   2126 			 * we can't support these channels in 5GHz band.
   2127 			 */
   2128 			if (chan <= 14)
   2129 				continue;
   2130 
   2131 			ic->ic_channels[chan].ic_freq =
   2132 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2133 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2134 		}
   2135 
   2136 		/* is active scan allowed on this channel? */
   2137 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2138 			ic->ic_channels[chan].ic_flags |=
   2139 			    IEEE80211_CHAN_PASSIVE;
   2140 		}
   2141 
   2142 		/* save maximum allowed power for this channel */
   2143 		sc->maxpwr[chan] = channels[i].maxpwr;
   2144 
   2145 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2146 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2147 	}
   2148 }
   2149 
   2150 static void
   2151 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2152 {
   2153 	struct wpi_power_group *group = &sc->groups[n];
   2154 	struct wpi_eeprom_group rgroup;
   2155 	int i;
   2156 
   2157 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2158 	    sizeof rgroup);
   2159 
   2160 	/* save power group information */
   2161 	group->chan   = rgroup.chan;
   2162 	group->maxpwr = rgroup.maxpwr;
   2163 	/* temperature at which the samples were taken */
   2164 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2165 
   2166 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2167 	    group->chan, group->maxpwr, group->temp));
   2168 
   2169 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2170 		group->samples[i].index = rgroup.samples[i].index;
   2171 		group->samples[i].power = rgroup.samples[i].power;
   2172 
   2173 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2174 		    group->samples[i].index, group->samples[i].power));
   2175 	}
   2176 }
   2177 
   2178 /*
   2179  * Send a command to the firmware.
   2180  */
   2181 static int
   2182 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2183 {
   2184 	struct wpi_tx_ring *ring = &sc->cmdq;
   2185 	struct wpi_tx_desc *desc;
   2186 	struct wpi_tx_cmd *cmd;
   2187 
   2188 	KASSERT(size <= sizeof cmd->data);
   2189 
   2190 	desc = &ring->desc[ring->cur];
   2191 	cmd = &ring->cmd[ring->cur];
   2192 
   2193 	cmd->code = code;
   2194 	cmd->flags = 0;
   2195 	cmd->qid = ring->qid;
   2196 	cmd->idx = ring->cur;
   2197 	memcpy(cmd->data, buf, size);
   2198 
   2199 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2200 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2201 		ring->cur * sizeof (struct wpi_tx_cmd));
   2202 	desc->segs[0].len  = htole32(4 + size);
   2203 
   2204 	/* kick cmd ring */
   2205 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2206 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2207 
   2208 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2209 }
   2210 
   2211 static int
   2212 wpi_wme_update(struct ieee80211com *ic)
   2213 {
   2214 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2215 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2216 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2217 	const struct wmeParams *wmep;
   2218 	struct wpi_wme_setup wme;
   2219 	int ac;
   2220 
   2221 	/* don't override default WME values if WME is not actually enabled */
   2222 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2223 		return 0;
   2224 
   2225 	wme.flags = 0;
   2226 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2227 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2228 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2229 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2230 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2231 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2232 
   2233 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2234 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2235 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2236 	}
   2237 
   2238 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2239 #undef WPI_USEC
   2240 #undef WPI_EXP2
   2241 }
   2242 
   2243 /*
   2244  * Configure h/w multi-rate retries.
   2245  */
   2246 static int
   2247 wpi_mrr_setup(struct wpi_softc *sc)
   2248 {
   2249 	struct ieee80211com *ic = &sc->sc_ic;
   2250 	struct wpi_mrr_setup mrr;
   2251 	int i, error;
   2252 
   2253 	/* CCK rates (not used with 802.11a) */
   2254 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2255 		mrr.rates[i].flags = 0;
   2256 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2257 		/* fallback to the immediate lower CCK rate (if any) */
   2258 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2259 		/* try one time at this rate before falling back to "next" */
   2260 		mrr.rates[i].ntries = 1;
   2261 	}
   2262 
   2263 	/* OFDM rates (not used with 802.11b) */
   2264 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2265 		mrr.rates[i].flags = 0;
   2266 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2267 		/* fallback to the immediate lower rate (if any) */
   2268 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2269 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2270 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2271 			WPI_OFDM6 : WPI_CCK2) :
   2272 		    i - 1;
   2273 		/* try one time at this rate before falling back to "next" */
   2274 		mrr.rates[i].ntries = 1;
   2275 	}
   2276 
   2277 	/* setup MRR for control frames */
   2278 	mrr.which = htole32(WPI_MRR_CTL);
   2279 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2280 	if (error != 0) {
   2281 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
   2282 		return error;
   2283 	}
   2284 
   2285 	/* setup MRR for data frames */
   2286 	mrr.which = htole32(WPI_MRR_DATA);
   2287 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2288 	if (error != 0) {
   2289 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
   2290 		return error;
   2291 	}
   2292 
   2293 	return 0;
   2294 }
   2295 
   2296 static void
   2297 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2298 {
   2299 	struct wpi_cmd_led led;
   2300 
   2301 	led.which = which;
   2302 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2303 	led.off = off;
   2304 	led.on = on;
   2305 
   2306 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2307 }
   2308 
   2309 static void
   2310 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2311 {
   2312 	struct wpi_cmd_tsf tsf;
   2313 	uint64_t val, mod;
   2314 
   2315 	memset(&tsf, 0, sizeof tsf);
   2316 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
   2317 	tsf.bintval = htole16(ni->ni_intval);
   2318 	tsf.lintval = htole16(10);
   2319 
   2320 	/* compute remaining time until next beacon */
   2321 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
   2322 	mod = le64toh(tsf.tstamp) % val;
   2323 	tsf.binitval = htole32((uint32_t)(val - mod));
   2324 
   2325 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
   2326 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2327 
   2328 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2329 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2330 }
   2331 
   2332 /*
   2333  * Update Tx power to match what is defined for channel `c'.
   2334  */
   2335 static int
   2336 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2337 {
   2338 	struct ieee80211com *ic = &sc->sc_ic;
   2339 	struct wpi_power_group *group;
   2340 	struct wpi_cmd_txpower txpower;
   2341 	u_int chan;
   2342 	int i;
   2343 
   2344 	/* get channel number */
   2345 	chan = ieee80211_chan2ieee(ic, c);
   2346 
   2347 	/* find the power group to which this channel belongs */
   2348 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2349 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2350 			if (chan <= group->chan)
   2351 				break;
   2352 	} else
   2353 		group = &sc->groups[0];
   2354 
   2355 	memset(&txpower, 0, sizeof txpower);
   2356 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2357 	txpower.chan = htole16(chan);
   2358 
   2359 	/* set Tx power for all OFDM and CCK rates */
   2360 	for (i = 0; i <= 11 ; i++) {
   2361 		/* retrieve Tx power for this channel/rate combination */
   2362 		int idx = wpi_get_power_index(sc, group, c,
   2363 		    wpi_ridx_to_rate[i]);
   2364 
   2365 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2366 
   2367 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2368 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2369 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2370 		} else {
   2371 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2372 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2373 		}
   2374 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2375 		    wpi_ridx_to_rate[i], idx));
   2376 	}
   2377 
   2378 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2379 }
   2380 
   2381 /*
   2382  * Determine Tx power index for a given channel/rate combination.
   2383  * This takes into account the regulatory information from EEPROM and the
   2384  * current temperature.
   2385  */
   2386 static int
   2387 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2388     struct ieee80211_channel *c, int rate)
   2389 {
   2390 /* fixed-point arithmetic division using a n-bit fractional part */
   2391 #define fdivround(a, b, n)	\
   2392 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2393 
   2394 /* linear interpolation */
   2395 #define interpolate(x, x1, y1, x2, y2, n)	\
   2396 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2397 
   2398 	struct ieee80211com *ic = &sc->sc_ic;
   2399 	struct wpi_power_sample *sample;
   2400 	int pwr, idx;
   2401 	u_int chan;
   2402 
   2403 	/* get channel number */
   2404 	chan = ieee80211_chan2ieee(ic, c);
   2405 
   2406 	/* default power is group's maximum power - 3dB */
   2407 	pwr = group->maxpwr / 2;
   2408 
   2409 	/* decrease power for highest OFDM rates to reduce distortion */
   2410 	switch (rate) {
   2411 	case 72:	/* 36Mb/s */
   2412 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2413 		break;
   2414 	case 96:	/* 48Mb/s */
   2415 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2416 		break;
   2417 	case 108:	/* 54Mb/s */
   2418 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2419 		break;
   2420 	}
   2421 
   2422 	/* never exceed channel's maximum allowed Tx power */
   2423 	pwr = min(pwr, sc->maxpwr[chan]);
   2424 
   2425 	/* retrieve power index into gain tables from samples */
   2426 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2427 		if (pwr > sample[1].power)
   2428 			break;
   2429 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2430 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2431 	    sample[1].power, sample[1].index, 19);
   2432 
   2433 	/*
   2434 	 * Adjust power index based on current temperature:
   2435 	 * - if cooler than factory-calibrated: decrease output power
   2436 	 * - if warmer than factory-calibrated: increase output power
   2437 	 */
   2438 	idx -= (sc->temp - group->temp) * 11 / 100;
   2439 
   2440 	/* decrease power for CCK rates (-5dB) */
   2441 	if (!WPI_RATE_IS_OFDM(rate))
   2442 		idx += 10;
   2443 
   2444 	/* keep power index in a valid range */
   2445 	if (idx < 0)
   2446 		return 0;
   2447 	if (idx > WPI_MAX_PWR_INDEX)
   2448 		return WPI_MAX_PWR_INDEX;
   2449 	return idx;
   2450 
   2451 #undef interpolate
   2452 #undef fdivround
   2453 }
   2454 
   2455 /*
   2456  * Build a beacon frame that the firmware will broadcast periodically in
   2457  * IBSS or HostAP modes.
   2458  */
   2459 static int
   2460 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2461 {
   2462 	struct ieee80211com *ic = &sc->sc_ic;
   2463 	struct wpi_tx_ring *ring = &sc->cmdq;
   2464 	struct wpi_tx_desc *desc;
   2465 	struct wpi_tx_data *data;
   2466 	struct wpi_tx_cmd *cmd;
   2467 	struct wpi_cmd_beacon *bcn;
   2468 	struct ieee80211_beacon_offsets bo;
   2469 	struct mbuf *m0;
   2470 	int error;
   2471 
   2472 	desc = &ring->desc[ring->cur];
   2473 	data = &ring->data[ring->cur];
   2474 
   2475 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2476 	if (m0 == NULL) {
   2477 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
   2478 		return ENOMEM;
   2479 	}
   2480 
   2481 	cmd = &ring->cmd[ring->cur];
   2482 	cmd->code = WPI_CMD_SET_BEACON;
   2483 	cmd->flags = 0;
   2484 	cmd->qid = ring->qid;
   2485 	cmd->idx = ring->cur;
   2486 
   2487 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2488 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2489 	bcn->id = WPI_ID_BROADCAST;
   2490 	bcn->ofdm_mask = 0xff;
   2491 	bcn->cck_mask = 0x0f;
   2492 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2493 	bcn->len = htole16(m0->m_pkthdr.len);
   2494 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2495 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2496 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2497 
   2498 	/* save and trim IEEE802.11 header */
   2499 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2500 	m_adj(m0, sizeof (struct ieee80211_frame));
   2501 
   2502 	/* assume beacon frame is contiguous */
   2503 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2504 		BUS_DMA_READ | BUS_DMA_NOWAIT);
   2505 	if (error) {
   2506 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2507 		m_freem(m0);
   2508 		return error;
   2509 	}
   2510 
   2511 	data->m = m0;
   2512 
   2513 	/* first scatter/gather segment is used by the beacon command */
   2514 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2515 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2516 		ring->cur * sizeof (struct wpi_tx_cmd));
   2517 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2518 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2519 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2520 
   2521 	/* kick cmd ring */
   2522 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2523 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2524 
   2525 	return 0;
   2526 }
   2527 
   2528 static int
   2529 wpi_auth(struct wpi_softc *sc)
   2530 {
   2531 	struct ieee80211com *ic = &sc->sc_ic;
   2532 	struct ieee80211_node *ni = ic->ic_bss;
   2533 	struct wpi_node_info node;
   2534 	int error;
   2535 
   2536 	/* update adapter's configuration */
   2537 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2538 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2539 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2540 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2541 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2542 		    WPI_CONFIG_24GHZ);
   2543 	}
   2544 	switch (ic->ic_curmode) {
   2545 	case IEEE80211_MODE_11A:
   2546 		sc->config.cck_mask  = 0;
   2547 		sc->config.ofdm_mask = 0x15;
   2548 		break;
   2549 	case IEEE80211_MODE_11B:
   2550 		sc->config.cck_mask  = 0x03;
   2551 		sc->config.ofdm_mask = 0;
   2552 		break;
   2553 	default:	/* assume 802.11b/g */
   2554 		sc->config.cck_mask  = 0x0f;
   2555 		sc->config.ofdm_mask = 0x15;
   2556 	}
   2557 
   2558 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2559 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2560 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2561 		sizeof (struct wpi_config), 1);
   2562 	if (error != 0) {
   2563 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2564 		return error;
   2565 	}
   2566 
   2567 	/* configuration has changed, set Tx power accordingly */
   2568 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2569 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2570 		return error;
   2571 	}
   2572 
   2573 	/* add default node */
   2574 	memset(&node, 0, sizeof node);
   2575 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2576 	node.id = WPI_ID_BSS;
   2577 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2578 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2579 	node.action = htole32(WPI_ACTION_SET_RATE);
   2580 	node.antenna = WPI_ANTENNA_BOTH;
   2581 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2582 	if (error != 0) {
   2583 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2584 		return error;
   2585 	}
   2586 
   2587 	return 0;
   2588 }
   2589 
   2590 /*
   2591  * Send a scan request to the firmware.  Since this command is huge, we map it
   2592  * into a mbuf instead of using the pre-allocated set of commands.
   2593  */
   2594 static int
   2595 wpi_scan(struct wpi_softc *sc, uint16_t flags)
   2596 {
   2597 	struct ieee80211com *ic = &sc->sc_ic;
   2598 	struct wpi_tx_ring *ring = &sc->cmdq;
   2599 	struct wpi_tx_desc *desc;
   2600 	struct wpi_tx_data *data;
   2601 	struct wpi_tx_cmd *cmd;
   2602 	struct wpi_scan_hdr *hdr;
   2603 	struct wpi_scan_chan *chan;
   2604 	struct ieee80211_frame *wh;
   2605 	struct ieee80211_rateset *rs;
   2606 	struct ieee80211_channel *c;
   2607 	enum ieee80211_phymode mode;
   2608 	uint8_t *frm;
   2609 	int nrates, pktlen, error;
   2610 
   2611 	desc = &ring->desc[ring->cur];
   2612 	data = &ring->data[ring->cur];
   2613 
   2614 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2615 	if (data->m == NULL) {
   2616 		aprint_error_dev(sc->sc_dev,
   2617 						"could not allocate mbuf for scan command\n");
   2618 		return ENOMEM;
   2619 	}
   2620 
   2621 	MCLGET(data->m, M_DONTWAIT);
   2622 	if (!(data->m->m_flags & M_EXT)) {
   2623 		m_freem(data->m);
   2624 		data->m = NULL;
   2625 		aprint_error_dev(sc->sc_dev,
   2626 						 "could not allocate mbuf for scan command\n");
   2627 		return ENOMEM;
   2628 	}
   2629 
   2630 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2631 	cmd->code = WPI_CMD_SCAN;
   2632 	cmd->flags = 0;
   2633 	cmd->qid = ring->qid;
   2634 	cmd->idx = ring->cur;
   2635 
   2636 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2637 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2638 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
   2639 	hdr->id = WPI_ID_BROADCAST;
   2640 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2641 
   2642 	/*
   2643 	 * Move to the next channel if no packets are received within 5 msecs
   2644 	 * after sending the probe request (this helps to reduce the duration
   2645 	 * of active scans).
   2646 	 */
   2647 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
   2648 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2649 
   2650 	if (flags & IEEE80211_CHAN_A) {
   2651 		hdr->crc_threshold = htole16(1);
   2652 		/* send probe requests at 6Mbps */
   2653 		hdr->rate = wpi_plcp_signal(12);
   2654 	} else {
   2655 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2656 		/* send probe requests at 1Mbps */
   2657 		hdr->rate = wpi_plcp_signal(2);
   2658 	}
   2659 
   2660 	/* for directed scans, firmware inserts the essid IE itself */
   2661 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2662 	hdr->essid[0].len = ic->ic_des_esslen;
   2663 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2664 
   2665 	/*
   2666 	 * Build a probe request frame.  Most of the following code is a
   2667 	 * copy & paste of what is done in net80211.
   2668 	 */
   2669 	wh = (struct ieee80211_frame *)(hdr + 1);
   2670 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2671 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2672 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2673 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2674 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2675 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2676 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2677 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2678 
   2679 	frm = (uint8_t *)(wh + 1);
   2680 
   2681 	/* add empty essid IE (firmware generates it for directed scans) */
   2682 	*frm++ = IEEE80211_ELEMID_SSID;
   2683 	*frm++ = 0;
   2684 
   2685 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
   2686 	rs = &ic->ic_sup_rates[mode];
   2687 
   2688 	/* add supported rates IE */
   2689 	*frm++ = IEEE80211_ELEMID_RATES;
   2690 	nrates = rs->rs_nrates;
   2691 	if (nrates > IEEE80211_RATE_SIZE)
   2692 		nrates = IEEE80211_RATE_SIZE;
   2693 	*frm++ = nrates;
   2694 	memcpy(frm, rs->rs_rates, nrates);
   2695 	frm += nrates;
   2696 
   2697 	/* add supported xrates IE */
   2698 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2699 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2700 		*frm++ = IEEE80211_ELEMID_XRATES;
   2701 		*frm++ = nrates;
   2702 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2703 		frm += nrates;
   2704 	}
   2705 
   2706 	/* setup length of probe request */
   2707 	hdr->paylen = htole16(frm - (uint8_t *)wh);
   2708 
   2709 	chan = (struct wpi_scan_chan *)frm;
   2710 	for (c  = &ic->ic_channels[1];
   2711 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   2712 		if ((c->ic_flags & flags) != flags)
   2713 			continue;
   2714 
   2715 		chan->chan = ieee80211_chan2ieee(ic, c);
   2716 		chan->flags = 0;
   2717 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2718 			chan->flags |= WPI_CHAN_ACTIVE;
   2719 			if (ic->ic_des_esslen != 0)
   2720 				chan->flags |= WPI_CHAN_DIRECT;
   2721 		}
   2722 		chan->dsp_gain = 0x6e;
   2723 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2724 			chan->rf_gain = 0x3b;
   2725 			chan->active = htole16(10);
   2726 			chan->passive = htole16(110);
   2727 		} else {
   2728 			chan->rf_gain = 0x28;
   2729 			chan->active = htole16(20);
   2730 			chan->passive = htole16(120);
   2731 		}
   2732 		hdr->nchan++;
   2733 		chan++;
   2734 
   2735 		frm += sizeof (struct wpi_scan_chan);
   2736 	}
   2737 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2738 	pktlen = frm - (uint8_t *)cmd;
   2739 
   2740 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
   2741 		NULL, BUS_DMA_NOWAIT);
   2742 	if (error) {
   2743 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2744 		m_freem(data->m);
   2745 		data->m = NULL;
   2746 		return error;
   2747 	}
   2748 
   2749 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2750 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2751 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2752 
   2753 	/* kick cmd ring */
   2754 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2755 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2756 
   2757 	return 0;	/* will be notified async. of failure/success */
   2758 }
   2759 
   2760 static int
   2761 wpi_config(struct wpi_softc *sc)
   2762 {
   2763 	struct ieee80211com *ic = &sc->sc_ic;
   2764 	struct ifnet *ifp = ic->ic_ifp;
   2765 	struct wpi_power power;
   2766 	struct wpi_bluetooth bluetooth;
   2767 	struct wpi_node_info node;
   2768 	int error;
   2769 
   2770 	memset(&power, 0, sizeof power);
   2771 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2772 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2773 	if (error != 0) {
   2774 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2775 		return error;
   2776 	}
   2777 
   2778 	/* configure bluetooth coexistence */
   2779 	memset(&bluetooth, 0, sizeof bluetooth);
   2780 	bluetooth.flags = 3;
   2781 	bluetooth.lead = 0xaa;
   2782 	bluetooth.kill = 1;
   2783 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   2784 		0);
   2785 	if (error != 0) {
   2786 		aprint_error_dev(sc->sc_dev,
   2787 			"could not configure bluetooth coexistence\n");
   2788 		return error;
   2789 	}
   2790 
   2791 	/* configure adapter */
   2792 	memset(&sc->config, 0, sizeof (struct wpi_config));
   2793 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2794 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   2795 	/*set default channel*/
   2796 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   2797 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2798 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
   2799 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2800 		    WPI_CONFIG_24GHZ);
   2801 	}
   2802 	sc->config.filter = 0;
   2803 	switch (ic->ic_opmode) {
   2804 	case IEEE80211_M_STA:
   2805 		sc->config.mode = WPI_MODE_STA;
   2806 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   2807 		break;
   2808 	case IEEE80211_M_IBSS:
   2809 	case IEEE80211_M_AHDEMO:
   2810 		sc->config.mode = WPI_MODE_IBSS;
   2811 		break;
   2812 	case IEEE80211_M_HOSTAP:
   2813 		sc->config.mode = WPI_MODE_HOSTAP;
   2814 		break;
   2815 	case IEEE80211_M_MONITOR:
   2816 		sc->config.mode = WPI_MODE_MONITOR;
   2817 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   2818 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   2819 		break;
   2820 	}
   2821 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   2822 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   2823 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2824 		sizeof (struct wpi_config), 0);
   2825 	if (error != 0) {
   2826 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   2827 		return error;
   2828 	}
   2829 
   2830 	/* configuration has changed, set Tx power accordingly */
   2831 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
   2832 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2833 		return error;
   2834 	}
   2835 
   2836 	/* add broadcast node */
   2837 	memset(&node, 0, sizeof node);
   2838 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   2839 	node.id = WPI_ID_BROADCAST;
   2840 	node.rate = wpi_plcp_signal(2);
   2841 	node.action = htole32(WPI_ACTION_SET_RATE);
   2842 	node.antenna = WPI_ANTENNA_BOTH;
   2843 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   2844 	if (error != 0) {
   2845 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   2846 		return error;
   2847 	}
   2848 
   2849 	if ((error = wpi_mrr_setup(sc)) != 0) {
   2850 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   2851 		return error;
   2852 	}
   2853 
   2854 	return 0;
   2855 }
   2856 
   2857 static void
   2858 wpi_stop_master(struct wpi_softc *sc)
   2859 {
   2860 	uint32_t tmp;
   2861 	int ntries;
   2862 
   2863 	tmp = WPI_READ(sc, WPI_RESET);
   2864 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   2865 
   2866 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2867 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   2868 		return;	/* already asleep */
   2869 
   2870 	for (ntries = 0; ntries < 100; ntries++) {
   2871 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   2872 			break;
   2873 		DELAY(10);
   2874 	}
   2875 	if (ntries == 100) {
   2876 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   2877 	}
   2878 }
   2879 
   2880 static int
   2881 wpi_power_up(struct wpi_softc *sc)
   2882 {
   2883 	uint32_t tmp;
   2884 	int ntries;
   2885 
   2886 	wpi_mem_lock(sc);
   2887 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   2888 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   2889 	wpi_mem_unlock(sc);
   2890 
   2891 	for (ntries = 0; ntries < 5000; ntries++) {
   2892 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   2893 			break;
   2894 		DELAY(10);
   2895 	}
   2896 	if (ntries == 5000) {
   2897 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
   2898 		return ETIMEDOUT;
   2899 	}
   2900 	return 0;
   2901 }
   2902 
   2903 static int
   2904 wpi_reset(struct wpi_softc *sc)
   2905 {
   2906 	uint32_t tmp;
   2907 	int ntries;
   2908 
   2909 	/* clear any pending interrupts */
   2910 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   2911 
   2912 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   2913 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   2914 
   2915 	tmp = WPI_READ(sc, WPI_CHICKEN);
   2916 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   2917 
   2918 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2919 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   2920 
   2921 	/* wait for clock stabilization */
   2922 	for (ntries = 0; ntries < 1000; ntries++) {
   2923 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   2924 			break;
   2925 		DELAY(10);
   2926 	}
   2927 	if (ntries == 1000) {
   2928 		aprint_error_dev(sc->sc_dev,
   2929 						 "timeout waiting for clock stabilization\n");
   2930 		return ETIMEDOUT;
   2931 	}
   2932 
   2933 	/* initialize EEPROM */
   2934 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   2935 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   2936 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   2937 		return EIO;
   2938 	}
   2939 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   2940 
   2941 	return 0;
   2942 }
   2943 
   2944 static void
   2945 wpi_hw_config(struct wpi_softc *sc)
   2946 {
   2947 	uint32_t rev, hw;
   2948 
   2949 	/* voodoo from the reference driver */
   2950 	hw = WPI_READ(sc, WPI_HWCONFIG);
   2951 
   2952 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   2953 	rev = PCI_REVISION(rev);
   2954 	if ((rev & 0xc0) == 0x40)
   2955 		hw |= WPI_HW_ALM_MB;
   2956 	else if (!(rev & 0x80))
   2957 		hw |= WPI_HW_ALM_MM;
   2958 
   2959 	if (sc->cap == 0x80)
   2960 		hw |= WPI_HW_SKU_MRC;
   2961 
   2962 	hw &= ~WPI_HW_REV_D;
   2963 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   2964 		hw |= WPI_HW_REV_D;
   2965 
   2966 	if (sc->type > 1)
   2967 		hw |= WPI_HW_TYPE_B;
   2968 
   2969 	DPRINTF(("setting h/w config %x\n", hw));
   2970 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   2971 }
   2972 
   2973 static int
   2974 wpi_init(struct ifnet *ifp)
   2975 {
   2976 	struct wpi_softc *sc = ifp->if_softc;
   2977 	struct ieee80211com *ic = &sc->sc_ic;
   2978 	uint32_t tmp;
   2979 	int qid, ntries, error;
   2980 
   2981 	wpi_stop(ifp,1);
   2982 	(void)wpi_reset(sc);
   2983 
   2984 	wpi_mem_lock(sc);
   2985 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   2986 	DELAY(20);
   2987 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   2988 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   2989 	wpi_mem_unlock(sc);
   2990 
   2991 	(void)wpi_power_up(sc);
   2992 	wpi_hw_config(sc);
   2993 
   2994 	/* init Rx ring */
   2995 	wpi_mem_lock(sc);
   2996 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   2997 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   2998 	    offsetof(struct wpi_shared, next));
   2999 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3000 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3001 	wpi_mem_unlock(sc);
   3002 
   3003 	/* init Tx rings */
   3004 	wpi_mem_lock(sc);
   3005 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
   3006 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
   3007 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
   3008 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3009 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3010 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3011 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3012 
   3013 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3014 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3015 
   3016 	for (qid = 0; qid < 6; qid++) {
   3017 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3018 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3019 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3020 	}
   3021 	wpi_mem_unlock(sc);
   3022 
   3023 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3024 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3025 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3026 
   3027 	/* clear any pending interrupts */
   3028 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3029 	/* enable interrupts */
   3030 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3031 
   3032 	/* not sure why/if this is necessary... */
   3033 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3034 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3035 
   3036 	if ((error = wpi_load_firmware(sc)) != 0) {
   3037 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
   3038 		goto fail1;
   3039 	}
   3040 
   3041 	/* Check the status of the radio switch */
   3042 	if (wpi_getrfkill(sc)) {
   3043 		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
   3044 		error = EBUSY;
   3045 		goto fail1;
   3046 	}
   3047 
   3048 	/* wait for thermal sensors to calibrate */
   3049 	for (ntries = 0; ntries < 1000; ntries++) {
   3050 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3051 			break;
   3052 		DELAY(10);
   3053 	}
   3054 	if (ntries == 1000) {
   3055 		aprint_error_dev(sc->sc_dev,
   3056 						 "timeout waiting for thermal sensors calibration\n");
   3057 		error = ETIMEDOUT;
   3058 		goto fail1;
   3059 	}
   3060 
   3061 	DPRINTF(("temperature %d\n", sc->temp));
   3062 
   3063 	if ((error = wpi_config(sc)) != 0) {
   3064 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3065 		goto fail1;
   3066 	}
   3067 
   3068 	ifp->if_flags &= ~IFF_OACTIVE;
   3069 	ifp->if_flags |= IFF_RUNNING;
   3070 
   3071 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3072 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3073 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3074 	}
   3075 	else
   3076 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3077 
   3078 	return 0;
   3079 
   3080 fail1:	wpi_stop(ifp, 1);
   3081 	return error;
   3082 }
   3083 
   3084 
   3085 static void
   3086 wpi_stop(struct ifnet *ifp, int disable)
   3087 {
   3088 	struct wpi_softc *sc = ifp->if_softc;
   3089 	struct ieee80211com *ic = &sc->sc_ic;
   3090 	uint32_t tmp;
   3091 	int ac;
   3092 
   3093 	ifp->if_timer = sc->sc_tx_timer = 0;
   3094 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3095 
   3096 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3097 
   3098 	/* disable interrupts */
   3099 	WPI_WRITE(sc, WPI_MASK, 0);
   3100 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3101 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3102 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3103 
   3104 	wpi_mem_lock(sc);
   3105 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3106 	wpi_mem_unlock(sc);
   3107 
   3108 	/* reset all Tx rings */
   3109 	for (ac = 0; ac < 4; ac++)
   3110 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3111 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3112 
   3113 	/* reset Rx ring */
   3114 	wpi_reset_rx_ring(sc, &sc->rxq);
   3115 
   3116 	wpi_mem_lock(sc);
   3117 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3118 	wpi_mem_unlock(sc);
   3119 
   3120 	DELAY(5);
   3121 
   3122 	wpi_stop_master(sc);
   3123 
   3124 	tmp = WPI_READ(sc, WPI_RESET);
   3125 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3126 }
   3127 
   3128 static bool
   3129 wpi_resume(device_t dv PMF_FN_ARGS)
   3130 {
   3131 	struct wpi_softc *sc = device_private(dv);
   3132 
   3133 	pci_disable_retry(sc->sc_pct, sc->sc_pcitag);
   3134 	(void)wpi_reset(sc);
   3135 
   3136 	return true;
   3137 }
   3138 
   3139 /*
   3140  * Return whether or not the radio is enabled in hardware
   3141  * (i.e. the rfkill switch is "off").
   3142  */
   3143 static int
   3144 wpi_getrfkill(struct wpi_softc *sc)
   3145 {
   3146 	uint32_t tmp;
   3147 
   3148 	wpi_mem_lock(sc);
   3149 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3150 	wpi_mem_unlock(sc);
   3151 
   3152 	return !(tmp & 0x01);
   3153 }
   3154 
   3155 static int
   3156 wpi_sysctl_radio(SYSCTLFN_ARGS)
   3157 {
   3158 	struct sysctlnode node;
   3159 	struct wpi_softc *sc;
   3160 	int val, error;
   3161 
   3162 	node = *rnode;
   3163 	sc = (struct wpi_softc *)node.sysctl_data;
   3164 
   3165 	val = !wpi_getrfkill(sc);
   3166 
   3167 	node.sysctl_data = &val;
   3168 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3169 
   3170 	if (error || newp == NULL)
   3171 		return error;
   3172 
   3173 	return 0;
   3174 }
   3175 
   3176 static void
   3177 wpi_sysctlattach(struct wpi_softc *sc)
   3178 {
   3179 	int rc;
   3180 	const struct sysctlnode *rnode;
   3181 	const struct sysctlnode *cnode;
   3182 
   3183 	struct sysctllog **clog = &sc->sc_sysctllog;
   3184 
   3185 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
   3186 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   3187 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
   3188 		goto err;
   3189 
   3190 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
   3191 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
   3192 	    SYSCTL_DESCR("wpi controls and statistics"),
   3193 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
   3194 		goto err;
   3195 
   3196 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3197 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
   3198 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
   3199 	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
   3200 		goto err;
   3201 
   3202 #ifdef WPI_DEBUG
   3203 	/* control debugging printfs */
   3204 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3205 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
   3206 	    "debug", SYSCTL_DESCR("Enable debugging output"),
   3207 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
   3208 		goto err;
   3209 #endif
   3210 
   3211 	return;
   3212 err:
   3213 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3214 }
   3215