if_wpi.c revision 1.36 1 /* $NetBSD: if_wpi.c,v 1.36 2008/02/29 06:13:39 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.36 2008/02/29 06:13:39 dyoung Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39 #include <sys/callout.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47 #include <dev/pci/pcidevs.h>
48
49 #if NBPFILTER > 0
50 #include <net/bpf.h>
51 #endif
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x) if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 { 4, { 2, 4, 11, 22 } };
90
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94 static int wpi_match(device_t, struct cfdata *, void *);
95 static void wpi_attach(device_t, device_t, void *);
96 static int wpi_detach(device_t , int);
97 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
98 void **, bus_size_t, bus_size_t, int);
99 static void wpi_dma_contig_free(struct wpi_dma_info *);
100 static int wpi_alloc_shared(struct wpi_softc *);
101 static void wpi_free_shared(struct wpi_softc *);
102 static int wpi_alloc_fwmem(struct wpi_softc *);
103 static void wpi_free_fwmem(struct wpi_softc *);
104 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
105 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
106 static int wpi_alloc_rpool(struct wpi_softc *);
107 static void wpi_free_rpool(struct wpi_softc *);
108 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
109 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
112 int);
113 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
114 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
116 static void wpi_newassoc(struct ieee80211_node *, int);
117 static int wpi_media_change(struct ifnet *);
118 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
119 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
120 static void wpi_mem_lock(struct wpi_softc *);
121 static void wpi_mem_unlock(struct wpi_softc *);
122 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
123 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
124 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
125 const uint32_t *, int);
126 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
127 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
128 static int wpi_load_firmware(struct wpi_softc *);
129 static void wpi_calib_timeout(void *);
130 static void wpi_iter_func(void *, struct ieee80211_node *);
131 static void wpi_power_calibration(struct wpi_softc *, int);
132 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
133 struct wpi_rx_data *);
134 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
135 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
136 static void wpi_notif_intr(struct wpi_softc *);
137 static int wpi_intr(void *);
138 static void wpi_read_eeprom(struct wpi_softc *);
139 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
140 static void wpi_read_eeprom_group(struct wpi_softc *, int);
141 static uint8_t wpi_plcp_signal(int);
142 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
143 struct ieee80211_node *, int);
144 static void wpi_start(struct ifnet *);
145 static void wpi_watchdog(struct ifnet *);
146 static int wpi_ioctl(struct ifnet *, u_long, void *);
147 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
148 static int wpi_wme_update(struct ieee80211com *);
149 static int wpi_mrr_setup(struct wpi_softc *);
150 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
151 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
152 static int wpi_set_txpower(struct wpi_softc *,
153 struct ieee80211_channel *, int);
154 static int wpi_get_power_index(struct wpi_softc *,
155 struct wpi_power_group *, struct ieee80211_channel *, int);
156 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
157 static int wpi_auth(struct wpi_softc *);
158 static int wpi_scan(struct wpi_softc *, uint16_t);
159 static int wpi_config(struct wpi_softc *);
160 static void wpi_stop_master(struct wpi_softc *);
161 static int wpi_power_up(struct wpi_softc *);
162 static int wpi_reset(struct wpi_softc *);
163 static void wpi_hw_config(struct wpi_softc *);
164 static int wpi_init(struct ifnet *);
165 static void wpi_stop(struct ifnet *, int);
166 static bool wpi_resume(device_t PMF_FN_PROTO);
167 static int wpi_getrfkill(struct wpi_softc *);
168 static void wpi_sysctlattach(struct wpi_softc *);
169
170 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
171 wpi_detach, NULL);
172
173 static int
174 wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
175 {
176 struct pci_attach_args *pa = aux;
177
178 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
179 return 0;
180
181 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
182 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
183 return 1;
184
185 return 0;
186 }
187
188 /* Base Address Register */
189 #define WPI_PCI_BAR0 0x10
190
191 static void
192 wpi_attach(device_t parent __unused, device_t self, void *aux)
193 {
194 struct wpi_softc *sc = device_private(self);
195 struct ieee80211com *ic = &sc->sc_ic;
196 struct ifnet *ifp = &sc->sc_ec.ec_if;
197 struct pci_attach_args *pa = aux;
198 const char *intrstr;
199 char devinfo[256];
200 bus_space_tag_t memt;
201 bus_space_handle_t memh;
202 pci_intr_handle_t ih;
203 pcireg_t data;
204 int error, ac, revision;
205
206 sc->sc_dev = self;
207 sc->sc_pct = pa->pa_pc;
208 sc->sc_pcitag = pa->pa_tag;
209
210 callout_init(&sc->calib_to, 0);
211 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
212
213 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
214 revision = PCI_REVISION(pa->pa_class);
215 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
216
217 pci_disable_retry(pa->pa_pc, pa->pa_tag);
218
219 /* enable bus-mastering */
220 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
221 data |= PCI_COMMAND_MASTER_ENABLE;
222 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
223
224 /* map the register window */
225 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
226 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
227 if (error != 0) {
228 aprint_error_dev(self, "could not map memory space\n");
229 return;
230 }
231
232 sc->sc_st = memt;
233 sc->sc_sh = memh;
234 sc->sc_dmat = pa->pa_dmat;
235
236 if (pci_intr_map(pa, &ih) != 0) {
237 aprint_error_dev(self, "could not map interrupt\n");
238 return;
239 }
240
241 intrstr = pci_intr_string(sc->sc_pct, ih);
242 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
243 if (sc->sc_ih == NULL) {
244 aprint_error_dev(self, "could not establish interrupt");
245 if (intrstr != NULL)
246 aprint_error(" at %s", intrstr);
247 aprint_error("\n");
248 return;
249 }
250 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
251
252 if (wpi_reset(sc) != 0) {
253 aprint_error_dev(self, "could not reset adapter\n");
254 return;
255 }
256
257 /*
258 * Allocate DMA memory for firmware transfers.
259 */
260 if ((error = wpi_alloc_fwmem(sc)) != 0)
261 return;
262
263 /*
264 * Allocate shared page and Tx/Rx rings.
265 */
266 if ((error = wpi_alloc_shared(sc)) != 0) {
267 aprint_error_dev(self, "could not allocate shared area\n");
268 goto fail1;
269 }
270
271 if ((error = wpi_alloc_rpool(sc)) != 0) {
272 aprint_error_dev(self, "could not allocate Rx buffers\n");
273 goto fail2;
274 }
275
276 for (ac = 0; ac < 4; ac++) {
277 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
278 if (error != 0) {
279 aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
280 goto fail3;
281 }
282 }
283
284 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
285 if (error != 0) {
286 aprint_error_dev(self, "could not allocate command ring\n");
287 goto fail3;
288 }
289
290 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
291 aprint_error_dev(self, "could not allocate Rx ring\n");
292 goto fail4;
293 }
294
295 ic->ic_ifp = ifp;
296 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
297 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
298 ic->ic_state = IEEE80211_S_INIT;
299
300 /* set device capabilities */
301 ic->ic_caps =
302 IEEE80211_C_IBSS | /* IBSS mode support */
303 IEEE80211_C_WPA | /* 802.11i */
304 IEEE80211_C_MONITOR | /* monitor mode supported */
305 IEEE80211_C_TXPMGT | /* tx power management */
306 IEEE80211_C_SHSLOT | /* short slot time supported */
307 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
308 IEEE80211_C_WME; /* 802.11e */
309
310 /* read supported channels and MAC address from EEPROM */
311 wpi_read_eeprom(sc);
312
313 /* set supported .11a, .11b, .11g rates */
314 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
315 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
316 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
317
318 ic->ic_ibss_chan = &ic->ic_channels[0];
319
320 ifp->if_softc = sc;
321 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
322 ifp->if_init = wpi_init;
323 ifp->if_stop = wpi_stop;
324 ifp->if_ioctl = wpi_ioctl;
325 ifp->if_start = wpi_start;
326 ifp->if_watchdog = wpi_watchdog;
327 IFQ_SET_READY(&ifp->if_snd);
328 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
329
330 if_attach(ifp);
331 ieee80211_ifattach(ic);
332 /* override default methods */
333 ic->ic_node_alloc = wpi_node_alloc;
334 ic->ic_newassoc = wpi_newassoc;
335 ic->ic_wme.wme_update = wpi_wme_update;
336
337 /* override state transition machine */
338 sc->sc_newstate = ic->ic_newstate;
339 ic->ic_newstate = wpi_newstate;
340 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
341
342 sc->amrr.amrr_min_success_threshold = 1;
343 sc->amrr.amrr_max_success_threshold = 15;
344
345 wpi_sysctlattach(sc);
346
347 if (!pmf_device_register(self, NULL, wpi_resume))
348 aprint_error_dev(self, "couldn't establish power handler\n");
349 else
350 pmf_class_network_register(self, ifp);
351
352 #if NBPFILTER > 0
353 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
354 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
355 &sc->sc_drvbpf);
356
357 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
358 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
359 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
360
361 sc->sc_txtap_len = sizeof sc->sc_txtapu;
362 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
363 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
364 #endif
365
366 ieee80211_announce(ic);
367
368 return;
369
370 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
371 fail3: while (--ac >= 0)
372 wpi_free_tx_ring(sc, &sc->txq[ac]);
373 wpi_free_rpool(sc);
374 fail2: wpi_free_shared(sc);
375 fail1: wpi_free_fwmem(sc);
376 }
377
378 static int
379 wpi_detach(device_t self, int flags __unused)
380 {
381 struct wpi_softc *sc = device_private(self);
382 struct ifnet *ifp = sc->sc_ic.ic_ifp;
383 int ac;
384
385 wpi_stop(ifp, 1);
386
387 #if NBPFILTER > 0
388 if (ifp != NULL)
389 bpfdetach(ifp);
390 #endif
391 ieee80211_ifdetach(&sc->sc_ic);
392 if (ifp != NULL)
393 if_detach(ifp);
394
395 for (ac = 0; ac < 4; ac++)
396 wpi_free_tx_ring(sc, &sc->txq[ac]);
397 wpi_free_tx_ring(sc, &sc->cmdq);
398 wpi_free_rx_ring(sc, &sc->rxq);
399 wpi_free_rpool(sc);
400 wpi_free_shared(sc);
401
402 if (sc->sc_ih != NULL) {
403 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
404 sc->sc_ih = NULL;
405 }
406
407 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
408
409 return 0;
410 }
411
412 static int
413 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
414 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
415 {
416 int nsegs, error;
417
418 dma->tag = tag;
419 dma->size = size;
420
421 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
422 if (error != 0)
423 goto fail;
424
425 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
426 flags);
427 if (error != 0)
428 goto fail;
429
430 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
431 if (error != 0)
432 goto fail;
433
434 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
435 if (error != 0)
436 goto fail;
437
438 memset(dma->vaddr, 0, size);
439
440 dma->paddr = dma->map->dm_segs[0].ds_addr;
441 if (kvap != NULL)
442 *kvap = dma->vaddr;
443
444 return 0;
445
446 fail: wpi_dma_contig_free(dma);
447 return error;
448 }
449
450 static void
451 wpi_dma_contig_free(struct wpi_dma_info *dma)
452 {
453 if (dma->map != NULL) {
454 if (dma->vaddr != NULL) {
455 bus_dmamap_unload(dma->tag, dma->map);
456 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
457 bus_dmamem_free(dma->tag, &dma->seg, 1);
458 dma->vaddr = NULL;
459 }
460 bus_dmamap_destroy(dma->tag, dma->map);
461 dma->map = NULL;
462 }
463 }
464
465 /*
466 * Allocate a shared page between host and NIC.
467 */
468 static int
469 wpi_alloc_shared(struct wpi_softc *sc)
470 {
471 int error;
472 /* must be aligned on a 4K-page boundary */
473 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
474 (void **)&sc->shared, sizeof (struct wpi_shared),
475 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
476 if (error != 0)
477 aprint_error_dev(sc->sc_dev,
478 "could not allocate shared area DMA memory\n");
479
480 return error;
481 }
482
483 static void
484 wpi_free_shared(struct wpi_softc *sc)
485 {
486 wpi_dma_contig_free(&sc->shared_dma);
487 }
488
489 /*
490 * Allocate DMA-safe memory for firmware transfer.
491 */
492 static int
493 wpi_alloc_fwmem(struct wpi_softc *sc)
494 {
495 int error;
496 /* allocate enough contiguous space to store text and data */
497 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
498 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
499 BUS_DMA_NOWAIT);
500
501 if (error != 0)
502 aprint_error_dev(sc->sc_dev,
503 "could not allocate firmware transfer area"
504 "DMA memory\n");
505 return error;
506 }
507
508 static void
509 wpi_free_fwmem(struct wpi_softc *sc)
510 {
511 wpi_dma_contig_free(&sc->fw_dma);
512 }
513
514
515 static struct wpi_rbuf *
516 wpi_alloc_rbuf(struct wpi_softc *sc)
517 {
518 struct wpi_rbuf *rbuf;
519
520 rbuf = SLIST_FIRST(&sc->rxq.freelist);
521 if (rbuf == NULL)
522 return NULL;
523 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
524 sc->rxq.nb_free_entries --;
525
526 return rbuf;
527 }
528
529 /*
530 * This is called automatically by the network stack when the mbuf to which our
531 * Rx buffer is attached is freed.
532 */
533 static void
534 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
535 {
536 struct wpi_rbuf *rbuf = arg;
537 struct wpi_softc *sc = rbuf->sc;
538
539 /* put the buffer back in the free list */
540
541 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
542 sc->rxq.nb_free_entries ++;
543
544 if (__predict_true(m != NULL))
545 pool_cache_put(mb_cache, m);
546 }
547
548 static int
549 wpi_alloc_rpool(struct wpi_softc *sc)
550 {
551 struct wpi_rx_ring *ring = &sc->rxq;
552 struct wpi_rbuf *rbuf;
553 int i, error;
554
555 /* allocate a big chunk of DMA'able memory.. */
556 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
557 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
558 if (error != 0) {
559 aprint_normal_dev(sc->sc_dev,
560 "could not allocate Rx buffers DMA memory\n");
561 return error;
562 }
563
564 /* ..and split it into 3KB chunks */
565 SLIST_INIT(&ring->freelist);
566 for (i = 0; i < WPI_RBUF_COUNT; i++) {
567 rbuf = &ring->rbuf[i];
568 rbuf->sc = sc; /* backpointer for callbacks */
569 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
570 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
571
572 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
573 }
574
575 ring->nb_free_entries = WPI_RBUF_COUNT;
576 return 0;
577 }
578
579 static void
580 wpi_free_rpool(struct wpi_softc *sc)
581 {
582 wpi_dma_contig_free(&sc->rxq.buf_dma);
583 }
584
585 static int
586 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
587 {
588 struct wpi_rx_data *data;
589 struct wpi_rbuf *rbuf;
590 int i, error;
591
592 ring->cur = 0;
593
594 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
595 (void **)&ring->desc,
596 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
597 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
598 if (error != 0) {
599 aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
600 goto fail;
601 }
602
603 /*
604 * Setup Rx buffers.
605 */
606 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
607 data = &ring->data[i];
608
609 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
610 if (data->m == NULL) {
611 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
612 error = ENOMEM;
613 goto fail;
614 }
615 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
616 m_freem(data->m);
617 data->m = NULL;
618 aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
619 error = ENOMEM;
620 goto fail;
621 }
622 /* attach Rx buffer to mbuf */
623 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
624 rbuf);
625 data->m->m_flags |= M_EXT_RW;
626
627 ring->desc[i] = htole32(rbuf->paddr);
628 }
629
630 return 0;
631
632 fail: wpi_free_rx_ring(sc, ring);
633 return error;
634 }
635
636 static void
637 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
638 {
639 int ntries;
640
641 wpi_mem_lock(sc);
642
643 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
644 for (ntries = 0; ntries < 100; ntries++) {
645 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
646 break;
647 DELAY(10);
648 }
649 #ifdef WPI_DEBUG
650 if (ntries == 100 && wpi_debug > 0)
651 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
652 #endif
653 wpi_mem_unlock(sc);
654
655 ring->cur = 0;
656 }
657
658 static void
659 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
660 {
661 int i;
662
663 wpi_dma_contig_free(&ring->desc_dma);
664
665 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
666 if (ring->data[i].m != NULL)
667 m_freem(ring->data[i].m);
668 }
669 }
670
671 static int
672 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
673 int qid)
674 {
675 struct wpi_tx_data *data;
676 int i, error;
677
678 ring->qid = qid;
679 ring->count = count;
680 ring->queued = 0;
681 ring->cur = 0;
682
683 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
684 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
685 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
686 if (error != 0) {
687 aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
688 goto fail;
689 }
690
691 /* update shared page with ring's base address */
692 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
693
694 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
695 (void **)&ring->cmd,
696 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
697 if (error != 0) {
698 aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
699 goto fail;
700 }
701
702 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
703 M_NOWAIT);
704 if (ring->data == NULL) {
705 aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
706 goto fail;
707 }
708
709 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
710
711 for (i = 0; i < count; i++) {
712 data = &ring->data[i];
713
714 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
715 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
716 &data->map);
717 if (error != 0) {
718 aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
719 goto fail;
720 }
721 }
722
723 return 0;
724
725 fail: wpi_free_tx_ring(sc, ring);
726 return error;
727 }
728
729 static void
730 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
731 {
732 struct wpi_tx_data *data;
733 int i, ntries;
734
735 wpi_mem_lock(sc);
736
737 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
738 for (ntries = 0; ntries < 100; ntries++) {
739 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
740 break;
741 DELAY(10);
742 }
743 #ifdef WPI_DEBUG
744 if (ntries == 100 && wpi_debug > 0) {
745 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
746 ring->qid);
747 }
748 #endif
749 wpi_mem_unlock(sc);
750
751 for (i = 0; i < ring->count; i++) {
752 data = &ring->data[i];
753
754 if (data->m != NULL) {
755 bus_dmamap_unload(sc->sc_dmat, data->map);
756 m_freem(data->m);
757 data->m = NULL;
758 }
759 }
760
761 ring->queued = 0;
762 ring->cur = 0;
763 }
764
765 static void
766 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
767 {
768 struct wpi_tx_data *data;
769 int i;
770
771 wpi_dma_contig_free(&ring->desc_dma);
772 wpi_dma_contig_free(&ring->cmd_dma);
773
774 if (ring->data != NULL) {
775 for (i = 0; i < ring->count; i++) {
776 data = &ring->data[i];
777
778 if (data->m != NULL) {
779 bus_dmamap_unload(sc->sc_dmat, data->map);
780 m_freem(data->m);
781 }
782 }
783 free(ring->data, M_DEVBUF);
784 }
785 }
786
787 /*ARGUSED*/
788 static struct ieee80211_node *
789 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
790 {
791 struct wpi_node *wn;
792
793 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
794
795 return (struct ieee80211_node *)wn;
796 }
797
798 static void
799 wpi_newassoc(struct ieee80211_node *ni, int isnew)
800 {
801 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
802 int i;
803
804 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
805
806 /* set rate to some reasonable initial value */
807 for (i = ni->ni_rates.rs_nrates - 1;
808 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
809 i--);
810 ni->ni_txrate = i;
811 }
812
813 static int
814 wpi_media_change(struct ifnet *ifp)
815 {
816 int error;
817
818 error = ieee80211_media_change(ifp);
819 if (error != ENETRESET)
820 return error;
821
822 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
823 wpi_init(ifp);
824
825 return 0;
826 }
827
828 static int
829 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
830 {
831 struct ifnet *ifp = ic->ic_ifp;
832 struct wpi_softc *sc = ifp->if_softc;
833 struct ieee80211_node *ni;
834 int error;
835
836 callout_stop(&sc->calib_to);
837
838 switch (nstate) {
839 case IEEE80211_S_SCAN:
840
841 if (sc->is_scanning)
842 break;
843
844 sc->is_scanning = true;
845 ieee80211_node_table_reset(&ic->ic_scan);
846 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
847
848 /* make the link LED blink while we're scanning */
849 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
850
851 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
852 aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
853 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
854 return error;
855 }
856
857 ic->ic_state = nstate;
858 return 0;
859
860 case IEEE80211_S_ASSOC:
861 if (ic->ic_state != IEEE80211_S_RUN)
862 break;
863 /* FALLTHROUGH */
864 case IEEE80211_S_AUTH:
865 sc->config.associd = 0;
866 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
867 if ((error = wpi_auth(sc)) != 0) {
868 aprint_error_dev(sc->sc_dev,
869 "could not send authentication request\n");
870 return error;
871 }
872 break;
873
874 case IEEE80211_S_RUN:
875 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
876 /* link LED blinks while monitoring */
877 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
878 break;
879 }
880
881 ni = ic->ic_bss;
882
883 if (ic->ic_opmode != IEEE80211_M_STA) {
884 (void) wpi_auth(sc); /* XXX */
885 wpi_setup_beacon(sc, ni);
886 }
887
888 wpi_enable_tsf(sc, ni);
889
890 /* update adapter's configuration */
891 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
892 /* short preamble/slot time are negotiated when associating */
893 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
894 WPI_CONFIG_SHSLOT);
895 if (ic->ic_flags & IEEE80211_F_SHSLOT)
896 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
897 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
898 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
899 sc->config.filter |= htole32(WPI_FILTER_BSS);
900 if (ic->ic_opmode != IEEE80211_M_STA)
901 sc->config.filter |= htole32(WPI_FILTER_BEACON);
902
903 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
904
905 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
906 sc->config.flags));
907 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
908 sizeof (struct wpi_config), 1);
909 if (error != 0) {
910 aprint_error_dev(sc->sc_dev, "could not update configuration\n");
911 return error;
912 }
913
914 /* configuration has changed, set Tx power accordingly */
915 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
916 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
917 return error;
918 }
919
920 if (ic->ic_opmode == IEEE80211_M_STA) {
921 /* fake a join to init the tx rate */
922 wpi_newassoc(ni, 1);
923 }
924
925 /* start periodic calibration timer */
926 sc->calib_cnt = 0;
927 callout_schedule(&sc->calib_to, hz/2);
928
929 /* link LED always on while associated */
930 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
931 break;
932
933 case IEEE80211_S_INIT:
934 sc->is_scanning = false;
935 break;
936 }
937
938 return sc->sc_newstate(ic, nstate, arg);
939 }
940
941 /*
942 * XXX: Hack to set the current channel to the value advertised in beacons or
943 * probe responses. Only used during AP detection.
944 * XXX: Duplicated from if_iwi.c
945 */
946 static void
947 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
948 {
949 struct ieee80211_frame *wh;
950 uint8_t subtype;
951 uint8_t *frm, *efrm;
952
953 wh = mtod(m, struct ieee80211_frame *);
954
955 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
956 return;
957
958 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
959
960 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
961 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
962 return;
963
964 frm = (uint8_t *)(wh + 1);
965 efrm = mtod(m, uint8_t *) + m->m_len;
966
967 frm += 12; /* skip tstamp, bintval and capinfo fields */
968 while (frm < efrm) {
969 if (*frm == IEEE80211_ELEMID_DSPARMS)
970 #if IEEE80211_CHAN_MAX < 255
971 if (frm[2] <= IEEE80211_CHAN_MAX)
972 #endif
973 ic->ic_curchan = &ic->ic_channels[frm[2]];
974
975 frm += frm[1] + 2;
976 }
977 }
978
979 /*
980 * Grab exclusive access to NIC memory.
981 */
982 static void
983 wpi_mem_lock(struct wpi_softc *sc)
984 {
985 uint32_t tmp;
986 int ntries;
987
988 tmp = WPI_READ(sc, WPI_GPIO_CTL);
989 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
990
991 /* spin until we actually get the lock */
992 for (ntries = 0; ntries < 1000; ntries++) {
993 if ((WPI_READ(sc, WPI_GPIO_CTL) &
994 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
995 break;
996 DELAY(10);
997 }
998 if (ntries == 1000)
999 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1000 }
1001
1002 /*
1003 * Release lock on NIC memory.
1004 */
1005 static void
1006 wpi_mem_unlock(struct wpi_softc *sc)
1007 {
1008 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1009 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1010 }
1011
1012 static uint32_t
1013 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1014 {
1015 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1016 return WPI_READ(sc, WPI_READ_MEM_DATA);
1017 }
1018
1019 static void
1020 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1021 {
1022 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1023 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1024 }
1025
1026 static void
1027 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1028 const uint32_t *data, int wlen)
1029 {
1030 for (; wlen > 0; wlen--, data++, addr += 4)
1031 wpi_mem_write(sc, addr, *data);
1032 }
1033
1034
1035 /*
1036 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1037 * instead of using the traditional bit-bang method.
1038 */
1039 static int
1040 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1041 {
1042 uint8_t *out = data;
1043 uint32_t val;
1044 int ntries;
1045
1046 wpi_mem_lock(sc);
1047 for (; len > 0; len -= 2, addr++) {
1048 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1049
1050 for (ntries = 0; ntries < 10; ntries++) {
1051 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1052 WPI_EEPROM_READY)
1053 break;
1054 DELAY(5);
1055 }
1056 if (ntries == 10) {
1057 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1058 return ETIMEDOUT;
1059 }
1060 *out++ = val >> 16;
1061 if (len > 1)
1062 *out++ = val >> 24;
1063 }
1064 wpi_mem_unlock(sc);
1065
1066 return 0;
1067 }
1068
1069 /*
1070 * The firmware boot code is small and is intended to be copied directly into
1071 * the NIC internal memory.
1072 */
1073 int
1074 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1075 {
1076 int ntries;
1077
1078 size /= sizeof (uint32_t);
1079
1080 wpi_mem_lock(sc);
1081
1082 /* copy microcode image into NIC memory */
1083 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1084 (const uint32_t *)ucode, size);
1085
1086 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1087 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1088 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1089
1090 /* run microcode */
1091 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1092
1093 /* wait for transfer to complete */
1094 for (ntries = 0; ntries < 1000; ntries++) {
1095 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1096 break;
1097 DELAY(10);
1098 }
1099 if (ntries == 1000) {
1100 wpi_mem_unlock(sc);
1101 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1102 return ETIMEDOUT;
1103 }
1104 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1105
1106 wpi_mem_unlock(sc);
1107
1108 return 0;
1109 }
1110
1111 static int
1112 wpi_load_firmware(struct wpi_softc *sc)
1113 {
1114 struct wpi_dma_info *dma = &sc->fw_dma;
1115 struct wpi_firmware_hdr hdr;
1116 const uint8_t *init_text, *init_data, *main_text, *main_data;
1117 const uint8_t *boot_text;
1118 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1119 uint32_t boot_textsz;
1120 firmware_handle_t fw;
1121 u_char *dfw;
1122 size_t size;
1123 int error;
1124
1125 /* load firmware image from disk */
1126 if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1127 aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1128 goto fail1;
1129 }
1130
1131 size = firmware_get_size(fw);
1132
1133 /* extract firmware header information */
1134 if (size < sizeof (struct wpi_firmware_hdr)) {
1135 aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
1136 size);
1137 error = EINVAL;
1138 goto fail2;
1139 }
1140
1141 if ((error = firmware_read(fw, 0, &hdr,
1142 sizeof (struct wpi_firmware_hdr))) != 0) {
1143 aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
1144 goto fail2;
1145 }
1146
1147 main_textsz = le32toh(hdr.main_textsz);
1148 main_datasz = le32toh(hdr.main_datasz);
1149 init_textsz = le32toh(hdr.init_textsz);
1150 init_datasz = le32toh(hdr.init_datasz);
1151 boot_textsz = le32toh(hdr.boot_textsz);
1152
1153 /* sanity-check firmware segments sizes */
1154 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1155 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1156 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1157 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1158 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1159 (boot_textsz & 3) != 0) {
1160 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1161 error = EINVAL;
1162 goto fail2;
1163 }
1164
1165 /* check that all firmware segments are present */
1166 if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1167 main_datasz + init_textsz + init_datasz + boot_textsz) {
1168 aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
1169 size);
1170 error = EINVAL;
1171 goto fail2;
1172 }
1173
1174 dfw = firmware_malloc(size);
1175 if (dfw == NULL) {
1176 aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1177 error = ENOMEM;
1178 goto fail2;
1179 }
1180
1181 if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1182 aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1183 goto fail2;
1184 }
1185
1186 /* get pointers to firmware segments */
1187 main_text = dfw + sizeof (struct wpi_firmware_hdr);
1188 main_data = main_text + main_textsz;
1189 init_text = main_data + main_datasz;
1190 init_data = init_text + init_textsz;
1191 boot_text = init_data + init_datasz;
1192
1193 /* copy initialization images into pre-allocated DMA-safe memory */
1194 memcpy(dma->vaddr, init_data, init_datasz);
1195 memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1196
1197 /* tell adapter where to find initialization images */
1198 wpi_mem_lock(sc);
1199 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1200 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1201 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1202 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1203 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1204 wpi_mem_unlock(sc);
1205
1206 /* load firmware boot code */
1207 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1208 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1209 goto fail3;
1210 }
1211
1212 /* now press "execute" ;-) */
1213 WPI_WRITE(sc, WPI_RESET, 0);
1214
1215 /* ..and wait at most one second for adapter to initialize */
1216 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1217 /* this isn't what was supposed to happen.. */
1218 aprint_error_dev(sc->sc_dev,
1219 "timeout waiting for adapter to initialize\n");
1220 }
1221
1222 /* copy runtime images into pre-allocated DMA-safe memory */
1223 memcpy(dma->vaddr, main_data, main_datasz);
1224 memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1225
1226 /* tell adapter where to find runtime images */
1227 wpi_mem_lock(sc);
1228 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1229 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1230 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1231 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1232 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1233 wpi_mem_unlock(sc);
1234
1235 /* wait at most one second for second alive notification */
1236 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1237 /* this isn't what was supposed to happen.. */
1238 aprint_error_dev(sc->sc_dev,
1239 "timeout waiting for adapter to initialize\n");
1240 }
1241
1242
1243 fail3: firmware_free(dfw,size);
1244 fail2: firmware_close(fw);
1245 fail1: return error;
1246 }
1247
1248 static void
1249 wpi_calib_timeout(void *arg)
1250 {
1251 struct wpi_softc *sc = arg;
1252 struct ieee80211com *ic = &sc->sc_ic;
1253 int temp, s;
1254
1255 /* automatic rate control triggered every 500ms */
1256 if (ic->ic_fixed_rate == -1) {
1257 s = splnet();
1258 if (ic->ic_opmode == IEEE80211_M_STA)
1259 wpi_iter_func(sc, ic->ic_bss);
1260 else
1261 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1262 splx(s);
1263 }
1264
1265 /* update sensor data */
1266 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1267
1268 /* automatic power calibration every 60s */
1269 if (++sc->calib_cnt >= 120) {
1270 wpi_power_calibration(sc, temp);
1271 sc->calib_cnt = 0;
1272 }
1273
1274 callout_schedule(&sc->calib_to, hz/2);
1275 }
1276
1277 static void
1278 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1279 {
1280 struct wpi_softc *sc = arg;
1281 struct wpi_node *wn = (struct wpi_node *)ni;
1282
1283 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1284 }
1285
1286 /*
1287 * This function is called periodically (every 60 seconds) to adjust output
1288 * power to temperature changes.
1289 */
1290 void
1291 wpi_power_calibration(struct wpi_softc *sc, int temp)
1292 {
1293 /* sanity-check read value */
1294 if (temp < -260 || temp > 25) {
1295 /* this can't be correct, ignore */
1296 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1297 return;
1298 }
1299
1300 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1301
1302 /* adjust Tx power if need be */
1303 if (abs(temp - sc->temp) <= 6)
1304 return;
1305
1306 sc->temp = temp;
1307
1308 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1309 /* just warn, too bad for the automatic calibration... */
1310 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1311 }
1312 }
1313
1314 static void
1315 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1316 struct wpi_rx_data *data)
1317 {
1318 struct ieee80211com *ic = &sc->sc_ic;
1319 struct ifnet *ifp = ic->ic_ifp;
1320 struct wpi_rx_ring *ring = &sc->rxq;
1321 struct wpi_rx_stat *stat;
1322 struct wpi_rx_head *head;
1323 struct wpi_rx_tail *tail;
1324 struct wpi_rbuf *rbuf;
1325 struct ieee80211_frame *wh;
1326 struct ieee80211_node *ni;
1327 struct mbuf *m, *mnew;
1328 int data_off ;
1329
1330 stat = (struct wpi_rx_stat *)(desc + 1);
1331
1332 if (stat->len > WPI_STAT_MAXLEN) {
1333 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1334 ifp->if_ierrors++;
1335 return;
1336 }
1337
1338 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1339 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1340
1341 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1342 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1343 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1344 le64toh(tail->tstamp)));
1345
1346 /*
1347 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1348 * to radiotap in monitor mode).
1349 */
1350 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1351 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1352 ifp->if_ierrors++;
1353 return;
1354 }
1355
1356 /* Compute where are the useful datas */
1357 data_off = (char*)(head + 1) - mtod(data->m, char*);
1358
1359 /*
1360 * If the number of free entry is too low
1361 * just dup the data->m socket and reuse the same rbuf entry
1362 */
1363 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1364
1365 /* Prepare the mbuf for the m_dup */
1366 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1367 data->m->m_data = (char*) data->m->m_data + data_off;
1368
1369 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1370
1371 /* Restore the m_data pointer for future use */
1372 data->m->m_data = (char*) data->m->m_data - data_off;
1373
1374 if (m == NULL) {
1375 ifp->if_ierrors++;
1376 return;
1377 }
1378 } else {
1379
1380 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1381 if (mnew == NULL) {
1382 ifp->if_ierrors++;
1383 return;
1384 }
1385
1386 rbuf = wpi_alloc_rbuf(sc);
1387 KASSERT(rbuf != NULL);
1388
1389 /* attach Rx buffer to mbuf */
1390 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1391 rbuf);
1392 mnew->m_flags |= M_EXT_RW;
1393
1394 m = data->m;
1395 data->m = mnew;
1396
1397 /* update Rx descriptor */
1398 ring->desc[ring->cur] = htole32(rbuf->paddr);
1399
1400 m->m_data = (char*)m->m_data + data_off;
1401 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1402 }
1403
1404 /* finalize mbuf */
1405 m->m_pkthdr.rcvif = ifp;
1406
1407 if (ic->ic_state == IEEE80211_S_SCAN)
1408 wpi_fix_channel(ic, m);
1409
1410 #if NBPFILTER > 0
1411 if (sc->sc_drvbpf != NULL) {
1412 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1413
1414 tap->wr_flags = 0;
1415 tap->wr_chan_freq =
1416 htole16(ic->ic_channels[head->chan].ic_freq);
1417 tap->wr_chan_flags =
1418 htole16(ic->ic_channels[head->chan].ic_flags);
1419 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1420 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1421 tap->wr_tsft = tail->tstamp;
1422 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1423 switch (head->rate) {
1424 /* CCK rates */
1425 case 10: tap->wr_rate = 2; break;
1426 case 20: tap->wr_rate = 4; break;
1427 case 55: tap->wr_rate = 11; break;
1428 case 110: tap->wr_rate = 22; break;
1429 /* OFDM rates */
1430 case 0xd: tap->wr_rate = 12; break;
1431 case 0xf: tap->wr_rate = 18; break;
1432 case 0x5: tap->wr_rate = 24; break;
1433 case 0x7: tap->wr_rate = 36; break;
1434 case 0x9: tap->wr_rate = 48; break;
1435 case 0xb: tap->wr_rate = 72; break;
1436 case 0x1: tap->wr_rate = 96; break;
1437 case 0x3: tap->wr_rate = 108; break;
1438 /* unknown rate: should not happen */
1439 default: tap->wr_rate = 0;
1440 }
1441 if (le16toh(head->flags) & 0x4)
1442 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1443
1444 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1445 }
1446 #endif
1447
1448 /* grab a reference to the source node */
1449 wh = mtod(m, struct ieee80211_frame *);
1450 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1451
1452 /* send the frame to the 802.11 layer */
1453 ieee80211_input(ic, m, ni, stat->rssi, 0);
1454
1455 /* release node reference */
1456 ieee80211_free_node(ni);
1457 }
1458
1459 static void
1460 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1461 {
1462 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1463 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1464 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1465 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1466 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1467
1468 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1469 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1470 stat->nkill, stat->rate, le32toh(stat->duration),
1471 le32toh(stat->status)));
1472
1473 /*
1474 * Update rate control statistics for the node.
1475 * XXX we should not count mgmt frames since they're always sent at
1476 * the lowest available bit-rate.
1477 */
1478 wn->amn.amn_txcnt++;
1479 if (stat->ntries > 0) {
1480 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1481 wn->amn.amn_retrycnt++;
1482 }
1483
1484 if ((le32toh(stat->status) & 0xff) != 1)
1485 ifp->if_oerrors++;
1486 else
1487 ifp->if_opackets++;
1488
1489 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1490 m_freem(txdata->m);
1491 txdata->m = NULL;
1492 ieee80211_free_node(txdata->ni);
1493 txdata->ni = NULL;
1494
1495 ring->queued--;
1496
1497 sc->sc_tx_timer = 0;
1498 ifp->if_flags &= ~IFF_OACTIVE;
1499 wpi_start(ifp);
1500 }
1501
1502 static void
1503 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1504 {
1505 struct wpi_tx_ring *ring = &sc->cmdq;
1506 struct wpi_tx_data *data;
1507
1508 if ((desc->qid & 7) != 4)
1509 return; /* not a command ack */
1510
1511 data = &ring->data[desc->idx];
1512
1513 /* if the command was mapped in a mbuf, free it */
1514 if (data->m != NULL) {
1515 bus_dmamap_unload(sc->sc_dmat, data->map);
1516 m_freem(data->m);
1517 data->m = NULL;
1518 }
1519
1520 wakeup(&ring->cmd[desc->idx]);
1521 }
1522
1523 static void
1524 wpi_notif_intr(struct wpi_softc *sc)
1525 {
1526 struct ieee80211com *ic = &sc->sc_ic;
1527 struct ifnet *ifp = ic->ic_ifp;
1528 struct wpi_rx_desc *desc;
1529 struct wpi_rx_data *data;
1530 uint32_t hw;
1531
1532 hw = le32toh(sc->shared->next);
1533 while (sc->rxq.cur != hw) {
1534 data = &sc->rxq.data[sc->rxq.cur];
1535
1536 desc = mtod(data->m, struct wpi_rx_desc *);
1537
1538 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1539 "len=%d\n", desc->qid, desc->idx, desc->flags,
1540 desc->type, le32toh(desc->len)));
1541
1542 if (!(desc->qid & 0x80)) /* reply to a command */
1543 wpi_cmd_intr(sc, desc);
1544
1545 switch (desc->type) {
1546 case WPI_RX_DONE:
1547 /* a 802.11 frame was received */
1548 wpi_rx_intr(sc, desc, data);
1549 break;
1550
1551 case WPI_TX_DONE:
1552 /* a 802.11 frame has been transmitted */
1553 wpi_tx_intr(sc, desc);
1554 break;
1555
1556 case WPI_UC_READY:
1557 {
1558 struct wpi_ucode_info *uc =
1559 (struct wpi_ucode_info *)(desc + 1);
1560
1561 /* the microcontroller is ready */
1562 DPRINTF(("microcode alive notification version %x "
1563 "alive %x\n", le32toh(uc->version),
1564 le32toh(uc->valid)));
1565
1566 if (le32toh(uc->valid) != 1) {
1567 aprint_error_dev(sc->sc_dev,
1568 "microcontroller initialization failed\n");
1569 }
1570 break;
1571 }
1572 case WPI_STATE_CHANGED:
1573 {
1574 uint32_t *status = (uint32_t *)(desc + 1);
1575
1576 /* enabled/disabled notification */
1577 DPRINTF(("state changed to %x\n", le32toh(*status)));
1578
1579 if (le32toh(*status) & 1) {
1580 /* the radio button has to be pushed */
1581 aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1582 /* turn the interface down */
1583 ifp->if_flags &= ~IFF_UP;
1584 wpi_stop(ifp, 1);
1585 return; /* no further processing */
1586 }
1587 break;
1588 }
1589 case WPI_START_SCAN:
1590 {
1591 struct wpi_start_scan *scan =
1592 (struct wpi_start_scan *)(desc + 1);
1593
1594 DPRINTFN(2, ("scanning channel %d status %x\n",
1595 scan->chan, le32toh(scan->status)));
1596
1597 /* fix current channel */
1598 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1599 break;
1600 }
1601 case WPI_STOP_SCAN:
1602 {
1603 struct wpi_stop_scan *scan =
1604 (struct wpi_stop_scan *)(desc + 1);
1605
1606 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1607 scan->nchan, scan->status, scan->chan));
1608
1609 if (scan->status == 1 && scan->chan <= 14) {
1610 /*
1611 * We just finished scanning 802.11g channels,
1612 * start scanning 802.11a ones.
1613 */
1614 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1615 break;
1616 }
1617 sc->is_scanning = false;
1618 ieee80211_end_scan(ic);
1619 break;
1620 }
1621 }
1622
1623 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1624 }
1625
1626 /* tell the firmware what we have processed */
1627 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1628 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1629 }
1630
1631 static int
1632 wpi_intr(void *arg)
1633 {
1634 struct wpi_softc *sc = arg;
1635 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1636 uint32_t r;
1637
1638 r = WPI_READ(sc, WPI_INTR);
1639 if (r == 0 || r == 0xffffffff)
1640 return 0; /* not for us */
1641
1642 DPRINTFN(5, ("interrupt reg %x\n", r));
1643
1644 /* disable interrupts */
1645 WPI_WRITE(sc, WPI_MASK, 0);
1646 /* ack interrupts */
1647 WPI_WRITE(sc, WPI_INTR, r);
1648
1649 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1650 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1651 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1652 wpi_stop(sc->sc_ic.ic_ifp, 1);
1653 return 1;
1654 }
1655
1656 if (r & WPI_RX_INTR)
1657 wpi_notif_intr(sc);
1658
1659 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1660 wakeup(sc);
1661
1662 /* re-enable interrupts */
1663 if (ifp->if_flags & IFF_UP)
1664 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1665
1666 return 1;
1667 }
1668
1669 static uint8_t
1670 wpi_plcp_signal(int rate)
1671 {
1672 switch (rate) {
1673 /* CCK rates (returned values are device-dependent) */
1674 case 2: return 10;
1675 case 4: return 20;
1676 case 11: return 55;
1677 case 22: return 110;
1678
1679 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1680 /* R1-R4, (u)ral is R4-R1 */
1681 case 12: return 0xd;
1682 case 18: return 0xf;
1683 case 24: return 0x5;
1684 case 36: return 0x7;
1685 case 48: return 0x9;
1686 case 72: return 0xb;
1687 case 96: return 0x1;
1688 case 108: return 0x3;
1689
1690 /* unsupported rates (should not get there) */
1691 default: return 0;
1692 }
1693 }
1694
1695 /* quickly determine if a given rate is CCK or OFDM */
1696 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1697
1698 static int
1699 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1700 int ac)
1701 {
1702 struct ieee80211com *ic = &sc->sc_ic;
1703 struct wpi_tx_ring *ring = &sc->txq[ac];
1704 struct wpi_tx_desc *desc;
1705 struct wpi_tx_data *data;
1706 struct wpi_tx_cmd *cmd;
1707 struct wpi_cmd_data *tx;
1708 struct ieee80211_frame *wh;
1709 struct ieee80211_key *k;
1710 const struct chanAccParams *cap;
1711 struct mbuf *mnew;
1712 int i, error, rate, hdrlen, noack = 0;
1713
1714 desc = &ring->desc[ring->cur];
1715 data = &ring->data[ring->cur];
1716
1717 wh = mtod(m0, struct ieee80211_frame *);
1718
1719 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1720 cap = &ic->ic_wme.wme_chanParams;
1721 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1722 }
1723
1724 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1725 k = ieee80211_crypto_encap(ic, ni, m0);
1726 if (k == NULL) {
1727 m_freem(m0);
1728 return ENOBUFS;
1729 }
1730
1731 /* packet header may have moved, reset our local pointer */
1732 wh = mtod(m0, struct ieee80211_frame *);
1733 }
1734
1735 hdrlen = ieee80211_anyhdrsize(wh);
1736
1737 /* pickup a rate */
1738 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1739 IEEE80211_FC0_TYPE_MGT) {
1740 /* mgmt frames are sent at the lowest available bit-rate */
1741 rate = ni->ni_rates.rs_rates[0];
1742 } else {
1743 if (ic->ic_fixed_rate != -1) {
1744 rate = ic->ic_sup_rates[ic->ic_curmode].
1745 rs_rates[ic->ic_fixed_rate];
1746 } else
1747 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1748 }
1749 rate &= IEEE80211_RATE_VAL;
1750
1751
1752 #if NBPFILTER > 0
1753 if (sc->sc_drvbpf != NULL) {
1754 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1755
1756 tap->wt_flags = 0;
1757 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1758 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1759 tap->wt_rate = rate;
1760 tap->wt_hwqueue = ac;
1761 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1762 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1763
1764 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1765 }
1766 #endif
1767
1768 cmd = &ring->cmd[ring->cur];
1769 cmd->code = WPI_CMD_TX_DATA;
1770 cmd->flags = 0;
1771 cmd->qid = ring->qid;
1772 cmd->idx = ring->cur;
1773
1774 tx = (struct wpi_cmd_data *)cmd->data;
1775 tx->flags = 0;
1776
1777 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1778 tx->flags |= htole32(WPI_TX_NEED_ACK);
1779 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1780 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1781
1782 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1783
1784 /* retrieve destination node's id */
1785 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1786 WPI_ID_BSS;
1787
1788 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1789 IEEE80211_FC0_TYPE_MGT) {
1790 /* tell h/w to set timestamp in probe responses */
1791 if ((wh->i_fc[0] &
1792 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1793 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1794 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1795
1796 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1797 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1798 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1799 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1800 tx->timeout = htole16(3);
1801 else
1802 tx->timeout = htole16(2);
1803 } else
1804 tx->timeout = htole16(0);
1805
1806 tx->rate = wpi_plcp_signal(rate);
1807
1808 /* be very persistant at sending frames out */
1809 tx->rts_ntries = 7;
1810 tx->data_ntries = 15;
1811
1812 tx->ofdm_mask = 0xff;
1813 tx->cck_mask = 0xf;
1814 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1815
1816 tx->len = htole16(m0->m_pkthdr.len);
1817
1818 /* save and trim IEEE802.11 header */
1819 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1820 m_adj(m0, hdrlen);
1821
1822 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1823 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1824 if (error != 0 && error != EFBIG) {
1825 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1826 m_freem(m0);
1827 return error;
1828 }
1829 if (error != 0) {
1830 /* too many fragments, linearize */
1831 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1832 if (mnew == NULL) {
1833 m_freem(m0);
1834 return ENOMEM;
1835 }
1836
1837 M_COPY_PKTHDR(mnew, m0);
1838 if (m0->m_pkthdr.len > MHLEN) {
1839 MCLGET(mnew, M_DONTWAIT);
1840 if (!(mnew->m_flags & M_EXT)) {
1841 m_freem(m0);
1842 m_freem(mnew);
1843 return ENOMEM;
1844 }
1845 }
1846
1847 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1848 m_freem(m0);
1849 mnew->m_len = mnew->m_pkthdr.len;
1850 m0 = mnew;
1851
1852 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1853 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1854 if (error != 0) {
1855 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1856 error);
1857 m_freem(m0);
1858 return error;
1859 }
1860 }
1861
1862 data->m = m0;
1863 data->ni = ni;
1864
1865 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1866 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1867
1868 /* first scatter/gather segment is used by the tx data command */
1869 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1870 (1 + data->map->dm_nsegs) << 24);
1871 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1872 ring->cur * sizeof (struct wpi_tx_cmd));
1873 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1874 ((hdrlen + 3) & ~3));
1875
1876 for (i = 1; i <= data->map->dm_nsegs; i++) {
1877 desc->segs[i].addr =
1878 htole32(data->map->dm_segs[i - 1].ds_addr);
1879 desc->segs[i].len =
1880 htole32(data->map->dm_segs[i - 1].ds_len);
1881 }
1882
1883 ring->queued++;
1884
1885 /* kick ring */
1886 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1887 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1888
1889 return 0;
1890 }
1891
1892 static void
1893 wpi_start(struct ifnet *ifp)
1894 {
1895 struct wpi_softc *sc = ifp->if_softc;
1896 struct ieee80211com *ic = &sc->sc_ic;
1897 struct ieee80211_node *ni;
1898 struct ether_header *eh;
1899 struct mbuf *m0;
1900 int ac;
1901
1902 /*
1903 * net80211 may still try to send management frames even if the
1904 * IFF_RUNNING flag is not set...
1905 */
1906 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1907 return;
1908
1909 for (;;) {
1910 IF_DEQUEUE(&ic->ic_mgtq, m0);
1911 if (m0 != NULL) {
1912
1913 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1914 m0->m_pkthdr.rcvif = NULL;
1915
1916 /* management frames go into ring 0 */
1917 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1918 ifp->if_oerrors++;
1919 continue;
1920 }
1921 #if NBPFILTER > 0
1922 if (ic->ic_rawbpf != NULL)
1923 bpf_mtap(ic->ic_rawbpf, m0);
1924 #endif
1925 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1926 ifp->if_oerrors++;
1927 break;
1928 }
1929 } else {
1930 if (ic->ic_state != IEEE80211_S_RUN)
1931 break;
1932 IFQ_POLL(&ifp->if_snd, m0);
1933 if (m0 == NULL)
1934 break;
1935
1936 if (m0->m_len < sizeof (*eh) &&
1937 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1938 ifp->if_oerrors++;
1939 continue;
1940 }
1941 eh = mtod(m0, struct ether_header *);
1942 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1943 if (ni == NULL) {
1944 m_freem(m0);
1945 ifp->if_oerrors++;
1946 continue;
1947 }
1948
1949 /* classify mbuf so we can find which tx ring to use */
1950 if (ieee80211_classify(ic, m0, ni) != 0) {
1951 m_freem(m0);
1952 ieee80211_free_node(ni);
1953 ifp->if_oerrors++;
1954 continue;
1955 }
1956
1957 /* no QoS encapsulation for EAPOL frames */
1958 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1959 M_WME_GETAC(m0) : WME_AC_BE;
1960
1961 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1962 /* there is no place left in this ring */
1963 ifp->if_flags |= IFF_OACTIVE;
1964 break;
1965 }
1966 IFQ_DEQUEUE(&ifp->if_snd, m0);
1967 #if NBPFILTER > 0
1968 if (ifp->if_bpf != NULL)
1969 bpf_mtap(ifp->if_bpf, m0);
1970 #endif
1971 m0 = ieee80211_encap(ic, m0, ni);
1972 if (m0 == NULL) {
1973 ieee80211_free_node(ni);
1974 ifp->if_oerrors++;
1975 continue;
1976 }
1977 #if NBPFILTER > 0
1978 if (ic->ic_rawbpf != NULL)
1979 bpf_mtap(ic->ic_rawbpf, m0);
1980 #endif
1981 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
1982 ieee80211_free_node(ni);
1983 ifp->if_oerrors++;
1984 break;
1985 }
1986 }
1987
1988 sc->sc_tx_timer = 5;
1989 ifp->if_timer = 1;
1990 }
1991 }
1992
1993 static void
1994 wpi_watchdog(struct ifnet *ifp)
1995 {
1996 struct wpi_softc *sc = ifp->if_softc;
1997
1998 ifp->if_timer = 0;
1999
2000 if (sc->sc_tx_timer > 0) {
2001 if (--sc->sc_tx_timer == 0) {
2002 aprint_error_dev(sc->sc_dev, "device timeout\n");
2003 ifp->if_oerrors++;
2004 ifp->if_flags &= ~IFF_UP;
2005 wpi_stop(ifp, 1);
2006 return;
2007 }
2008 ifp->if_timer = 1;
2009 }
2010
2011 ieee80211_watchdog(&sc->sc_ic);
2012 }
2013
2014 static int
2015 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2016 {
2017 #define IS_RUNNING(ifp) \
2018 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2019
2020 struct wpi_softc *sc = ifp->if_softc;
2021 struct ieee80211com *ic = &sc->sc_ic;
2022 int s, error = 0;
2023
2024 s = splnet();
2025
2026 switch (cmd) {
2027 case SIOCSIFFLAGS:
2028 if (ifp->if_flags & IFF_UP) {
2029 if (!(ifp->if_flags & IFF_RUNNING))
2030 wpi_init(ifp);
2031 } else {
2032 if (ifp->if_flags & IFF_RUNNING)
2033 wpi_stop(ifp, 1);
2034 }
2035 break;
2036
2037 case SIOCADDMULTI:
2038 case SIOCDELMULTI:
2039 /* XXX no h/w multicast filter? --dyoung */
2040 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2041 /* setup multicast filter, etc */
2042 error = 0;
2043 }
2044 break;
2045
2046 default:
2047 error = ieee80211_ioctl(ic, cmd, data);
2048 }
2049
2050 if (error == ENETRESET) {
2051 if (IS_RUNNING(ifp) &&
2052 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2053 wpi_init(ifp);
2054 error = 0;
2055 }
2056
2057 splx(s);
2058 return error;
2059
2060 #undef IS_RUNNING
2061 }
2062
2063 /*
2064 * Extract various information from EEPROM.
2065 */
2066 static void
2067 wpi_read_eeprom(struct wpi_softc *sc)
2068 {
2069 struct ieee80211com *ic = &sc->sc_ic;
2070 char domain[4];
2071 int i;
2072
2073 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2074 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2075 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2076
2077 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2078 sc->type));
2079
2080 /* read and print regulatory domain */
2081 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2082 aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2083
2084 /* read and print MAC address */
2085 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2086 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2087
2088 /* read the list of authorized channels */
2089 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2090 wpi_read_eeprom_channels(sc, i);
2091
2092 /* read the list of power groups */
2093 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2094 wpi_read_eeprom_group(sc, i);
2095 }
2096
2097 static void
2098 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2099 {
2100 struct ieee80211com *ic = &sc->sc_ic;
2101 const struct wpi_chan_band *band = &wpi_bands[n];
2102 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2103 int chan, i;
2104
2105 wpi_read_prom_data(sc, band->addr, channels,
2106 band->nchan * sizeof (struct wpi_eeprom_chan));
2107
2108 for (i = 0; i < band->nchan; i++) {
2109 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2110 continue;
2111
2112 chan = band->chan[i];
2113
2114 if (n == 0) { /* 2GHz band */
2115 ic->ic_channels[chan].ic_freq =
2116 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2117 ic->ic_channels[chan].ic_flags =
2118 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2119 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2120
2121 } else { /* 5GHz band */
2122 /*
2123 * Some 3945abg adapters support channels 7, 8, 11
2124 * and 12 in the 2GHz *and* 5GHz bands.
2125 * Because of limitations in our net80211(9) stack,
2126 * we can't support these channels in 5GHz band.
2127 */
2128 if (chan <= 14)
2129 continue;
2130
2131 ic->ic_channels[chan].ic_freq =
2132 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2133 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2134 }
2135
2136 /* is active scan allowed on this channel? */
2137 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2138 ic->ic_channels[chan].ic_flags |=
2139 IEEE80211_CHAN_PASSIVE;
2140 }
2141
2142 /* save maximum allowed power for this channel */
2143 sc->maxpwr[chan] = channels[i].maxpwr;
2144
2145 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2146 chan, channels[i].flags, sc->maxpwr[chan]));
2147 }
2148 }
2149
2150 static void
2151 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2152 {
2153 struct wpi_power_group *group = &sc->groups[n];
2154 struct wpi_eeprom_group rgroup;
2155 int i;
2156
2157 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2158 sizeof rgroup);
2159
2160 /* save power group information */
2161 group->chan = rgroup.chan;
2162 group->maxpwr = rgroup.maxpwr;
2163 /* temperature at which the samples were taken */
2164 group->temp = (int16_t)le16toh(rgroup.temp);
2165
2166 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2167 group->chan, group->maxpwr, group->temp));
2168
2169 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2170 group->samples[i].index = rgroup.samples[i].index;
2171 group->samples[i].power = rgroup.samples[i].power;
2172
2173 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2174 group->samples[i].index, group->samples[i].power));
2175 }
2176 }
2177
2178 /*
2179 * Send a command to the firmware.
2180 */
2181 static int
2182 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2183 {
2184 struct wpi_tx_ring *ring = &sc->cmdq;
2185 struct wpi_tx_desc *desc;
2186 struct wpi_tx_cmd *cmd;
2187
2188 KASSERT(size <= sizeof cmd->data);
2189
2190 desc = &ring->desc[ring->cur];
2191 cmd = &ring->cmd[ring->cur];
2192
2193 cmd->code = code;
2194 cmd->flags = 0;
2195 cmd->qid = ring->qid;
2196 cmd->idx = ring->cur;
2197 memcpy(cmd->data, buf, size);
2198
2199 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2200 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2201 ring->cur * sizeof (struct wpi_tx_cmd));
2202 desc->segs[0].len = htole32(4 + size);
2203
2204 /* kick cmd ring */
2205 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2206 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2207
2208 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2209 }
2210
2211 static int
2212 wpi_wme_update(struct ieee80211com *ic)
2213 {
2214 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2215 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2216 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2217 const struct wmeParams *wmep;
2218 struct wpi_wme_setup wme;
2219 int ac;
2220
2221 /* don't override default WME values if WME is not actually enabled */
2222 if (!(ic->ic_flags & IEEE80211_F_WME))
2223 return 0;
2224
2225 wme.flags = 0;
2226 for (ac = 0; ac < WME_NUM_AC; ac++) {
2227 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2228 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2229 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2230 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2231 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2232
2233 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2234 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2235 wme.ac[ac].cwmax, wme.ac[ac].txop));
2236 }
2237
2238 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2239 #undef WPI_USEC
2240 #undef WPI_EXP2
2241 }
2242
2243 /*
2244 * Configure h/w multi-rate retries.
2245 */
2246 static int
2247 wpi_mrr_setup(struct wpi_softc *sc)
2248 {
2249 struct ieee80211com *ic = &sc->sc_ic;
2250 struct wpi_mrr_setup mrr;
2251 int i, error;
2252
2253 /* CCK rates (not used with 802.11a) */
2254 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2255 mrr.rates[i].flags = 0;
2256 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2257 /* fallback to the immediate lower CCK rate (if any) */
2258 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2259 /* try one time at this rate before falling back to "next" */
2260 mrr.rates[i].ntries = 1;
2261 }
2262
2263 /* OFDM rates (not used with 802.11b) */
2264 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2265 mrr.rates[i].flags = 0;
2266 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2267 /* fallback to the immediate lower rate (if any) */
2268 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2269 mrr.rates[i].next = (i == WPI_OFDM6) ?
2270 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2271 WPI_OFDM6 : WPI_CCK2) :
2272 i - 1;
2273 /* try one time at this rate before falling back to "next" */
2274 mrr.rates[i].ntries = 1;
2275 }
2276
2277 /* setup MRR for control frames */
2278 mrr.which = htole32(WPI_MRR_CTL);
2279 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2280 if (error != 0) {
2281 aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2282 return error;
2283 }
2284
2285 /* setup MRR for data frames */
2286 mrr.which = htole32(WPI_MRR_DATA);
2287 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2288 if (error != 0) {
2289 aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2290 return error;
2291 }
2292
2293 return 0;
2294 }
2295
2296 static void
2297 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2298 {
2299 struct wpi_cmd_led led;
2300
2301 led.which = which;
2302 led.unit = htole32(100000); /* on/off in unit of 100ms */
2303 led.off = off;
2304 led.on = on;
2305
2306 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2307 }
2308
2309 static void
2310 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2311 {
2312 struct wpi_cmd_tsf tsf;
2313 uint64_t val, mod;
2314
2315 memset(&tsf, 0, sizeof tsf);
2316 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2317 tsf.bintval = htole16(ni->ni_intval);
2318 tsf.lintval = htole16(10);
2319
2320 /* compute remaining time until next beacon */
2321 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2322 mod = le64toh(tsf.tstamp) % val;
2323 tsf.binitval = htole32((uint32_t)(val - mod));
2324
2325 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2326 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2327
2328 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2329 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2330 }
2331
2332 /*
2333 * Update Tx power to match what is defined for channel `c'.
2334 */
2335 static int
2336 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2337 {
2338 struct ieee80211com *ic = &sc->sc_ic;
2339 struct wpi_power_group *group;
2340 struct wpi_cmd_txpower txpower;
2341 u_int chan;
2342 int i;
2343
2344 /* get channel number */
2345 chan = ieee80211_chan2ieee(ic, c);
2346
2347 /* find the power group to which this channel belongs */
2348 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2349 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2350 if (chan <= group->chan)
2351 break;
2352 } else
2353 group = &sc->groups[0];
2354
2355 memset(&txpower, 0, sizeof txpower);
2356 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2357 txpower.chan = htole16(chan);
2358
2359 /* set Tx power for all OFDM and CCK rates */
2360 for (i = 0; i <= 11 ; i++) {
2361 /* retrieve Tx power for this channel/rate combination */
2362 int idx = wpi_get_power_index(sc, group, c,
2363 wpi_ridx_to_rate[i]);
2364
2365 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2366
2367 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2368 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2369 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2370 } else {
2371 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2372 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2373 }
2374 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2375 wpi_ridx_to_rate[i], idx));
2376 }
2377
2378 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2379 }
2380
2381 /*
2382 * Determine Tx power index for a given channel/rate combination.
2383 * This takes into account the regulatory information from EEPROM and the
2384 * current temperature.
2385 */
2386 static int
2387 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2388 struct ieee80211_channel *c, int rate)
2389 {
2390 /* fixed-point arithmetic division using a n-bit fractional part */
2391 #define fdivround(a, b, n) \
2392 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2393
2394 /* linear interpolation */
2395 #define interpolate(x, x1, y1, x2, y2, n) \
2396 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2397
2398 struct ieee80211com *ic = &sc->sc_ic;
2399 struct wpi_power_sample *sample;
2400 int pwr, idx;
2401 u_int chan;
2402
2403 /* get channel number */
2404 chan = ieee80211_chan2ieee(ic, c);
2405
2406 /* default power is group's maximum power - 3dB */
2407 pwr = group->maxpwr / 2;
2408
2409 /* decrease power for highest OFDM rates to reduce distortion */
2410 switch (rate) {
2411 case 72: /* 36Mb/s */
2412 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2413 break;
2414 case 96: /* 48Mb/s */
2415 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2416 break;
2417 case 108: /* 54Mb/s */
2418 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2419 break;
2420 }
2421
2422 /* never exceed channel's maximum allowed Tx power */
2423 pwr = min(pwr, sc->maxpwr[chan]);
2424
2425 /* retrieve power index into gain tables from samples */
2426 for (sample = group->samples; sample < &group->samples[3]; sample++)
2427 if (pwr > sample[1].power)
2428 break;
2429 /* fixed-point linear interpolation using a 19-bit fractional part */
2430 idx = interpolate(pwr, sample[0].power, sample[0].index,
2431 sample[1].power, sample[1].index, 19);
2432
2433 /*
2434 * Adjust power index based on current temperature:
2435 * - if cooler than factory-calibrated: decrease output power
2436 * - if warmer than factory-calibrated: increase output power
2437 */
2438 idx -= (sc->temp - group->temp) * 11 / 100;
2439
2440 /* decrease power for CCK rates (-5dB) */
2441 if (!WPI_RATE_IS_OFDM(rate))
2442 idx += 10;
2443
2444 /* keep power index in a valid range */
2445 if (idx < 0)
2446 return 0;
2447 if (idx > WPI_MAX_PWR_INDEX)
2448 return WPI_MAX_PWR_INDEX;
2449 return idx;
2450
2451 #undef interpolate
2452 #undef fdivround
2453 }
2454
2455 /*
2456 * Build a beacon frame that the firmware will broadcast periodically in
2457 * IBSS or HostAP modes.
2458 */
2459 static int
2460 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2461 {
2462 struct ieee80211com *ic = &sc->sc_ic;
2463 struct wpi_tx_ring *ring = &sc->cmdq;
2464 struct wpi_tx_desc *desc;
2465 struct wpi_tx_data *data;
2466 struct wpi_tx_cmd *cmd;
2467 struct wpi_cmd_beacon *bcn;
2468 struct ieee80211_beacon_offsets bo;
2469 struct mbuf *m0;
2470 int error;
2471
2472 desc = &ring->desc[ring->cur];
2473 data = &ring->data[ring->cur];
2474
2475 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2476 if (m0 == NULL) {
2477 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2478 return ENOMEM;
2479 }
2480
2481 cmd = &ring->cmd[ring->cur];
2482 cmd->code = WPI_CMD_SET_BEACON;
2483 cmd->flags = 0;
2484 cmd->qid = ring->qid;
2485 cmd->idx = ring->cur;
2486
2487 bcn = (struct wpi_cmd_beacon *)cmd->data;
2488 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2489 bcn->id = WPI_ID_BROADCAST;
2490 bcn->ofdm_mask = 0xff;
2491 bcn->cck_mask = 0x0f;
2492 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2493 bcn->len = htole16(m0->m_pkthdr.len);
2494 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2495 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2496 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2497
2498 /* save and trim IEEE802.11 header */
2499 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2500 m_adj(m0, sizeof (struct ieee80211_frame));
2501
2502 /* assume beacon frame is contiguous */
2503 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2504 BUS_DMA_READ | BUS_DMA_NOWAIT);
2505 if (error) {
2506 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2507 m_freem(m0);
2508 return error;
2509 }
2510
2511 data->m = m0;
2512
2513 /* first scatter/gather segment is used by the beacon command */
2514 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2515 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2516 ring->cur * sizeof (struct wpi_tx_cmd));
2517 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2518 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2519 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2520
2521 /* kick cmd ring */
2522 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2523 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2524
2525 return 0;
2526 }
2527
2528 static int
2529 wpi_auth(struct wpi_softc *sc)
2530 {
2531 struct ieee80211com *ic = &sc->sc_ic;
2532 struct ieee80211_node *ni = ic->ic_bss;
2533 struct wpi_node_info node;
2534 int error;
2535
2536 /* update adapter's configuration */
2537 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2538 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2539 sc->config.flags = htole32(WPI_CONFIG_TSF);
2540 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2541 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2542 WPI_CONFIG_24GHZ);
2543 }
2544 switch (ic->ic_curmode) {
2545 case IEEE80211_MODE_11A:
2546 sc->config.cck_mask = 0;
2547 sc->config.ofdm_mask = 0x15;
2548 break;
2549 case IEEE80211_MODE_11B:
2550 sc->config.cck_mask = 0x03;
2551 sc->config.ofdm_mask = 0;
2552 break;
2553 default: /* assume 802.11b/g */
2554 sc->config.cck_mask = 0x0f;
2555 sc->config.ofdm_mask = 0x15;
2556 }
2557
2558 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2559 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2560 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2561 sizeof (struct wpi_config), 1);
2562 if (error != 0) {
2563 aprint_error_dev(sc->sc_dev, "could not configure\n");
2564 return error;
2565 }
2566
2567 /* configuration has changed, set Tx power accordingly */
2568 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2569 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2570 return error;
2571 }
2572
2573 /* add default node */
2574 memset(&node, 0, sizeof node);
2575 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2576 node.id = WPI_ID_BSS;
2577 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2578 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2579 node.action = htole32(WPI_ACTION_SET_RATE);
2580 node.antenna = WPI_ANTENNA_BOTH;
2581 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2582 if (error != 0) {
2583 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2584 return error;
2585 }
2586
2587 return 0;
2588 }
2589
2590 /*
2591 * Send a scan request to the firmware. Since this command is huge, we map it
2592 * into a mbuf instead of using the pre-allocated set of commands.
2593 */
2594 static int
2595 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2596 {
2597 struct ieee80211com *ic = &sc->sc_ic;
2598 struct wpi_tx_ring *ring = &sc->cmdq;
2599 struct wpi_tx_desc *desc;
2600 struct wpi_tx_data *data;
2601 struct wpi_tx_cmd *cmd;
2602 struct wpi_scan_hdr *hdr;
2603 struct wpi_scan_chan *chan;
2604 struct ieee80211_frame *wh;
2605 struct ieee80211_rateset *rs;
2606 struct ieee80211_channel *c;
2607 enum ieee80211_phymode mode;
2608 uint8_t *frm;
2609 int nrates, pktlen, error;
2610
2611 desc = &ring->desc[ring->cur];
2612 data = &ring->data[ring->cur];
2613
2614 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2615 if (data->m == NULL) {
2616 aprint_error_dev(sc->sc_dev,
2617 "could not allocate mbuf for scan command\n");
2618 return ENOMEM;
2619 }
2620
2621 MCLGET(data->m, M_DONTWAIT);
2622 if (!(data->m->m_flags & M_EXT)) {
2623 m_freem(data->m);
2624 data->m = NULL;
2625 aprint_error_dev(sc->sc_dev,
2626 "could not allocate mbuf for scan command\n");
2627 return ENOMEM;
2628 }
2629
2630 cmd = mtod(data->m, struct wpi_tx_cmd *);
2631 cmd->code = WPI_CMD_SCAN;
2632 cmd->flags = 0;
2633 cmd->qid = ring->qid;
2634 cmd->idx = ring->cur;
2635
2636 hdr = (struct wpi_scan_hdr *)cmd->data;
2637 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2638 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2639 hdr->id = WPI_ID_BROADCAST;
2640 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2641
2642 /*
2643 * Move to the next channel if no packets are received within 5 msecs
2644 * after sending the probe request (this helps to reduce the duration
2645 * of active scans).
2646 */
2647 hdr->quiet = htole16(5); /* timeout in milliseconds */
2648 hdr->plcp_threshold = htole16(1); /* min # of packets */
2649
2650 if (flags & IEEE80211_CHAN_A) {
2651 hdr->crc_threshold = htole16(1);
2652 /* send probe requests at 6Mbps */
2653 hdr->rate = wpi_plcp_signal(12);
2654 } else {
2655 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2656 /* send probe requests at 1Mbps */
2657 hdr->rate = wpi_plcp_signal(2);
2658 }
2659
2660 /* for directed scans, firmware inserts the essid IE itself */
2661 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2662 hdr->essid[0].len = ic->ic_des_esslen;
2663 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2664
2665 /*
2666 * Build a probe request frame. Most of the following code is a
2667 * copy & paste of what is done in net80211.
2668 */
2669 wh = (struct ieee80211_frame *)(hdr + 1);
2670 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2671 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2672 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2673 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2674 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2675 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2676 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2677 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2678
2679 frm = (uint8_t *)(wh + 1);
2680
2681 /* add empty essid IE (firmware generates it for directed scans) */
2682 *frm++ = IEEE80211_ELEMID_SSID;
2683 *frm++ = 0;
2684
2685 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2686 rs = &ic->ic_sup_rates[mode];
2687
2688 /* add supported rates IE */
2689 *frm++ = IEEE80211_ELEMID_RATES;
2690 nrates = rs->rs_nrates;
2691 if (nrates > IEEE80211_RATE_SIZE)
2692 nrates = IEEE80211_RATE_SIZE;
2693 *frm++ = nrates;
2694 memcpy(frm, rs->rs_rates, nrates);
2695 frm += nrates;
2696
2697 /* add supported xrates IE */
2698 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2699 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2700 *frm++ = IEEE80211_ELEMID_XRATES;
2701 *frm++ = nrates;
2702 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2703 frm += nrates;
2704 }
2705
2706 /* setup length of probe request */
2707 hdr->paylen = htole16(frm - (uint8_t *)wh);
2708
2709 chan = (struct wpi_scan_chan *)frm;
2710 for (c = &ic->ic_channels[1];
2711 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2712 if ((c->ic_flags & flags) != flags)
2713 continue;
2714
2715 chan->chan = ieee80211_chan2ieee(ic, c);
2716 chan->flags = 0;
2717 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2718 chan->flags |= WPI_CHAN_ACTIVE;
2719 if (ic->ic_des_esslen != 0)
2720 chan->flags |= WPI_CHAN_DIRECT;
2721 }
2722 chan->dsp_gain = 0x6e;
2723 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2724 chan->rf_gain = 0x3b;
2725 chan->active = htole16(10);
2726 chan->passive = htole16(110);
2727 } else {
2728 chan->rf_gain = 0x28;
2729 chan->active = htole16(20);
2730 chan->passive = htole16(120);
2731 }
2732 hdr->nchan++;
2733 chan++;
2734
2735 frm += sizeof (struct wpi_scan_chan);
2736 }
2737 hdr->len = htole16(frm - (uint8_t *)hdr);
2738 pktlen = frm - (uint8_t *)cmd;
2739
2740 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2741 NULL, BUS_DMA_NOWAIT);
2742 if (error) {
2743 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2744 m_freem(data->m);
2745 data->m = NULL;
2746 return error;
2747 }
2748
2749 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2750 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2751 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2752
2753 /* kick cmd ring */
2754 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2755 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2756
2757 return 0; /* will be notified async. of failure/success */
2758 }
2759
2760 static int
2761 wpi_config(struct wpi_softc *sc)
2762 {
2763 struct ieee80211com *ic = &sc->sc_ic;
2764 struct ifnet *ifp = ic->ic_ifp;
2765 struct wpi_power power;
2766 struct wpi_bluetooth bluetooth;
2767 struct wpi_node_info node;
2768 int error;
2769
2770 memset(&power, 0, sizeof power);
2771 power.flags = htole32(WPI_POWER_CAM | 0x8);
2772 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2773 if (error != 0) {
2774 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2775 return error;
2776 }
2777
2778 /* configure bluetooth coexistence */
2779 memset(&bluetooth, 0, sizeof bluetooth);
2780 bluetooth.flags = 3;
2781 bluetooth.lead = 0xaa;
2782 bluetooth.kill = 1;
2783 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2784 0);
2785 if (error != 0) {
2786 aprint_error_dev(sc->sc_dev,
2787 "could not configure bluetooth coexistence\n");
2788 return error;
2789 }
2790
2791 /* configure adapter */
2792 memset(&sc->config, 0, sizeof (struct wpi_config));
2793 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2794 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2795 /*set default channel*/
2796 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2797 sc->config.flags = htole32(WPI_CONFIG_TSF);
2798 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2799 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2800 WPI_CONFIG_24GHZ);
2801 }
2802 sc->config.filter = 0;
2803 switch (ic->ic_opmode) {
2804 case IEEE80211_M_STA:
2805 sc->config.mode = WPI_MODE_STA;
2806 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2807 break;
2808 case IEEE80211_M_IBSS:
2809 case IEEE80211_M_AHDEMO:
2810 sc->config.mode = WPI_MODE_IBSS;
2811 break;
2812 case IEEE80211_M_HOSTAP:
2813 sc->config.mode = WPI_MODE_HOSTAP;
2814 break;
2815 case IEEE80211_M_MONITOR:
2816 sc->config.mode = WPI_MODE_MONITOR;
2817 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2818 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2819 break;
2820 }
2821 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2822 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2823 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2824 sizeof (struct wpi_config), 0);
2825 if (error != 0) {
2826 aprint_error_dev(sc->sc_dev, "configure command failed\n");
2827 return error;
2828 }
2829
2830 /* configuration has changed, set Tx power accordingly */
2831 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2832 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2833 return error;
2834 }
2835
2836 /* add broadcast node */
2837 memset(&node, 0, sizeof node);
2838 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2839 node.id = WPI_ID_BROADCAST;
2840 node.rate = wpi_plcp_signal(2);
2841 node.action = htole32(WPI_ACTION_SET_RATE);
2842 node.antenna = WPI_ANTENNA_BOTH;
2843 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2844 if (error != 0) {
2845 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2846 return error;
2847 }
2848
2849 if ((error = wpi_mrr_setup(sc)) != 0) {
2850 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2851 return error;
2852 }
2853
2854 return 0;
2855 }
2856
2857 static void
2858 wpi_stop_master(struct wpi_softc *sc)
2859 {
2860 uint32_t tmp;
2861 int ntries;
2862
2863 tmp = WPI_READ(sc, WPI_RESET);
2864 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2865
2866 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2867 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2868 return; /* already asleep */
2869
2870 for (ntries = 0; ntries < 100; ntries++) {
2871 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2872 break;
2873 DELAY(10);
2874 }
2875 if (ntries == 100) {
2876 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2877 }
2878 }
2879
2880 static int
2881 wpi_power_up(struct wpi_softc *sc)
2882 {
2883 uint32_t tmp;
2884 int ntries;
2885
2886 wpi_mem_lock(sc);
2887 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2888 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2889 wpi_mem_unlock(sc);
2890
2891 for (ntries = 0; ntries < 5000; ntries++) {
2892 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2893 break;
2894 DELAY(10);
2895 }
2896 if (ntries == 5000) {
2897 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2898 return ETIMEDOUT;
2899 }
2900 return 0;
2901 }
2902
2903 static int
2904 wpi_reset(struct wpi_softc *sc)
2905 {
2906 uint32_t tmp;
2907 int ntries;
2908
2909 /* clear any pending interrupts */
2910 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2911
2912 tmp = WPI_READ(sc, WPI_PLL_CTL);
2913 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2914
2915 tmp = WPI_READ(sc, WPI_CHICKEN);
2916 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2917
2918 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2919 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2920
2921 /* wait for clock stabilization */
2922 for (ntries = 0; ntries < 1000; ntries++) {
2923 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2924 break;
2925 DELAY(10);
2926 }
2927 if (ntries == 1000) {
2928 aprint_error_dev(sc->sc_dev,
2929 "timeout waiting for clock stabilization\n");
2930 return ETIMEDOUT;
2931 }
2932
2933 /* initialize EEPROM */
2934 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2935 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2936 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2937 return EIO;
2938 }
2939 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2940
2941 return 0;
2942 }
2943
2944 static void
2945 wpi_hw_config(struct wpi_softc *sc)
2946 {
2947 uint32_t rev, hw;
2948
2949 /* voodoo from the reference driver */
2950 hw = WPI_READ(sc, WPI_HWCONFIG);
2951
2952 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2953 rev = PCI_REVISION(rev);
2954 if ((rev & 0xc0) == 0x40)
2955 hw |= WPI_HW_ALM_MB;
2956 else if (!(rev & 0x80))
2957 hw |= WPI_HW_ALM_MM;
2958
2959 if (sc->cap == 0x80)
2960 hw |= WPI_HW_SKU_MRC;
2961
2962 hw &= ~WPI_HW_REV_D;
2963 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2964 hw |= WPI_HW_REV_D;
2965
2966 if (sc->type > 1)
2967 hw |= WPI_HW_TYPE_B;
2968
2969 DPRINTF(("setting h/w config %x\n", hw));
2970 WPI_WRITE(sc, WPI_HWCONFIG, hw);
2971 }
2972
2973 static int
2974 wpi_init(struct ifnet *ifp)
2975 {
2976 struct wpi_softc *sc = ifp->if_softc;
2977 struct ieee80211com *ic = &sc->sc_ic;
2978 uint32_t tmp;
2979 int qid, ntries, error;
2980
2981 wpi_stop(ifp,1);
2982 (void)wpi_reset(sc);
2983
2984 wpi_mem_lock(sc);
2985 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2986 DELAY(20);
2987 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
2988 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
2989 wpi_mem_unlock(sc);
2990
2991 (void)wpi_power_up(sc);
2992 wpi_hw_config(sc);
2993
2994 /* init Rx ring */
2995 wpi_mem_lock(sc);
2996 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
2997 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
2998 offsetof(struct wpi_shared, next));
2999 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3000 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3001 wpi_mem_unlock(sc);
3002
3003 /* init Tx rings */
3004 wpi_mem_lock(sc);
3005 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3006 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3007 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3008 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3009 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3010 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3011 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3012
3013 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3014 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3015
3016 for (qid = 0; qid < 6; qid++) {
3017 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3018 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3019 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3020 }
3021 wpi_mem_unlock(sc);
3022
3023 /* clear "radio off" and "disable command" bits (reversed logic) */
3024 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3025 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3026
3027 /* clear any pending interrupts */
3028 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3029 /* enable interrupts */
3030 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3031
3032 /* not sure why/if this is necessary... */
3033 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3034 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3035
3036 if ((error = wpi_load_firmware(sc)) != 0) {
3037 aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3038 goto fail1;
3039 }
3040
3041 /* Check the status of the radio switch */
3042 if (wpi_getrfkill(sc)) {
3043 aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3044 error = EBUSY;
3045 goto fail1;
3046 }
3047
3048 /* wait for thermal sensors to calibrate */
3049 for (ntries = 0; ntries < 1000; ntries++) {
3050 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3051 break;
3052 DELAY(10);
3053 }
3054 if (ntries == 1000) {
3055 aprint_error_dev(sc->sc_dev,
3056 "timeout waiting for thermal sensors calibration\n");
3057 error = ETIMEDOUT;
3058 goto fail1;
3059 }
3060
3061 DPRINTF(("temperature %d\n", sc->temp));
3062
3063 if ((error = wpi_config(sc)) != 0) {
3064 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3065 goto fail1;
3066 }
3067
3068 ifp->if_flags &= ~IFF_OACTIVE;
3069 ifp->if_flags |= IFF_RUNNING;
3070
3071 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3072 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3073 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3074 }
3075 else
3076 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3077
3078 return 0;
3079
3080 fail1: wpi_stop(ifp, 1);
3081 return error;
3082 }
3083
3084
3085 static void
3086 wpi_stop(struct ifnet *ifp, int disable)
3087 {
3088 struct wpi_softc *sc = ifp->if_softc;
3089 struct ieee80211com *ic = &sc->sc_ic;
3090 uint32_t tmp;
3091 int ac;
3092
3093 ifp->if_timer = sc->sc_tx_timer = 0;
3094 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3095
3096 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3097
3098 /* disable interrupts */
3099 WPI_WRITE(sc, WPI_MASK, 0);
3100 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3101 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3102 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3103
3104 wpi_mem_lock(sc);
3105 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3106 wpi_mem_unlock(sc);
3107
3108 /* reset all Tx rings */
3109 for (ac = 0; ac < 4; ac++)
3110 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3111 wpi_reset_tx_ring(sc, &sc->cmdq);
3112
3113 /* reset Rx ring */
3114 wpi_reset_rx_ring(sc, &sc->rxq);
3115
3116 wpi_mem_lock(sc);
3117 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3118 wpi_mem_unlock(sc);
3119
3120 DELAY(5);
3121
3122 wpi_stop_master(sc);
3123
3124 tmp = WPI_READ(sc, WPI_RESET);
3125 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3126 }
3127
3128 static bool
3129 wpi_resume(device_t dv PMF_FN_ARGS)
3130 {
3131 struct wpi_softc *sc = device_private(dv);
3132
3133 pci_disable_retry(sc->sc_pct, sc->sc_pcitag);
3134 (void)wpi_reset(sc);
3135
3136 return true;
3137 }
3138
3139 /*
3140 * Return whether or not the radio is enabled in hardware
3141 * (i.e. the rfkill switch is "off").
3142 */
3143 static int
3144 wpi_getrfkill(struct wpi_softc *sc)
3145 {
3146 uint32_t tmp;
3147
3148 wpi_mem_lock(sc);
3149 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3150 wpi_mem_unlock(sc);
3151
3152 return !(tmp & 0x01);
3153 }
3154
3155 static int
3156 wpi_sysctl_radio(SYSCTLFN_ARGS)
3157 {
3158 struct sysctlnode node;
3159 struct wpi_softc *sc;
3160 int val, error;
3161
3162 node = *rnode;
3163 sc = (struct wpi_softc *)node.sysctl_data;
3164
3165 val = !wpi_getrfkill(sc);
3166
3167 node.sysctl_data = &val;
3168 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3169
3170 if (error || newp == NULL)
3171 return error;
3172
3173 return 0;
3174 }
3175
3176 static void
3177 wpi_sysctlattach(struct wpi_softc *sc)
3178 {
3179 int rc;
3180 const struct sysctlnode *rnode;
3181 const struct sysctlnode *cnode;
3182
3183 struct sysctllog **clog = &sc->sc_sysctllog;
3184
3185 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3186 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3187 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3188 goto err;
3189
3190 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3191 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3192 SYSCTL_DESCR("wpi controls and statistics"),
3193 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3194 goto err;
3195
3196 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3197 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3198 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3199 wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3200 goto err;
3201
3202 #ifdef WPI_DEBUG
3203 /* control debugging printfs */
3204 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3205 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3206 "debug", SYSCTL_DESCR("Enable debugging output"),
3207 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3208 goto err;
3209 #endif
3210
3211 return;
3212 err:
3213 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3214 }
3215