Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.38
      1 /*  $NetBSD: if_wpi.c,v 1.38 2008/04/28 18:33:31 drochner Exp $    */
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007
      5  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.38 2008/04/28 18:33:31 drochner Exp $");
     22 
     23 /*
     24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25  */
     26 
     27 #include "bpfilter.h"
     28 
     29 #include <sys/param.h>
     30 #include <sys/sockio.h>
     31 #include <sys/sysctl.h>
     32 #include <sys/mbuf.h>
     33 #include <sys/kernel.h>
     34 #include <sys/socket.h>
     35 #include <sys/systm.h>
     36 #include <sys/malloc.h>
     37 #include <sys/conf.h>
     38 #include <sys/kauth.h>
     39 #include <sys/callout.h>
     40 
     41 #include <sys/bus.h>
     42 #include <machine/endian.h>
     43 #include <sys/intr.h>
     44 
     45 #include <dev/pci/pcireg.h>
     46 #include <dev/pci/pcivar.h>
     47 #include <dev/pci/pcidevs.h>
     48 
     49 #if NBPFILTER > 0
     50 #include <net/bpf.h>
     51 #endif
     52 #include <net/if.h>
     53 #include <net/if_arp.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_ether.h>
     56 #include <net/if_media.h>
     57 #include <net/if_types.h>
     58 
     59 #include <net80211/ieee80211_var.h>
     60 #include <net80211/ieee80211_amrr.h>
     61 #include <net80211/ieee80211_radiotap.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <netinet/ip.h>
     67 
     68 #include <dev/firmload.h>
     69 
     70 #include <dev/pci/if_wpireg.h>
     71 #include <dev/pci/if_wpivar.h>
     72 
     73 #ifdef WPI_DEBUG
     74 #define DPRINTF(x)	if (wpi_debug > 0) printf x
     75 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
     76 int wpi_debug = 1;
     77 #else
     78 #define DPRINTF(x)
     79 #define DPRINTFN(n, x)
     80 #endif
     81 
     82 /*
     83  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
     84  */
     85 static const struct ieee80211_rateset wpi_rateset_11a =
     86 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
     87 
     88 static const struct ieee80211_rateset wpi_rateset_11b =
     89 	{ 4, { 2, 4, 11, 22 } };
     90 
     91 static const struct ieee80211_rateset wpi_rateset_11g =
     92 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
     93 
     94 static int  wpi_match(device_t, struct cfdata *, void *);
     95 static void wpi_attach(device_t, device_t, void *);
     96 static int  wpi_detach(device_t , int);
     97 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
     98 	void **, bus_size_t, bus_size_t, int);
     99 static void wpi_dma_contig_free(struct wpi_dma_info *);
    100 static int  wpi_alloc_shared(struct wpi_softc *);
    101 static void wpi_free_shared(struct wpi_softc *);
    102 static int  wpi_alloc_fwmem(struct wpi_softc *);
    103 static void wpi_free_fwmem(struct wpi_softc *);
    104 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
    105 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
    106 static int  wpi_alloc_rpool(struct wpi_softc *);
    107 static void wpi_free_rpool(struct wpi_softc *);
    108 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    109 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    110 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    111 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
    112 	int);
    113 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    114 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    115 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    116 static void wpi_newassoc(struct ieee80211_node *, int);
    117 static int  wpi_media_change(struct ifnet *);
    118 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    119 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
    120 static void wpi_mem_lock(struct wpi_softc *);
    121 static void wpi_mem_unlock(struct wpi_softc *);
    122 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
    123 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    124 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    125 								   const uint32_t *, int);
    126 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    127 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    128 static int  wpi_load_firmware(struct wpi_softc *);
    129 static void wpi_calib_timeout(void *);
    130 static void wpi_iter_func(void *, struct ieee80211_node *);
    131 static void wpi_power_calibration(struct wpi_softc *, int);
    132 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    133 	struct wpi_rx_data *);
    134 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    135 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    136 static void wpi_notif_intr(struct wpi_softc *);
    137 static int  wpi_intr(void *);
    138 static void wpi_read_eeprom(struct wpi_softc *);
    139 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
    140 static void wpi_read_eeprom_group(struct wpi_softc *, int);
    141 static uint8_t wpi_plcp_signal(int);
    142 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
    143 	struct ieee80211_node *, int);
    144 static void wpi_start(struct ifnet *);
    145 static void wpi_watchdog(struct ifnet *);
    146 static int  wpi_ioctl(struct ifnet *, u_long, void *);
    147 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    148 static int  wpi_wme_update(struct ieee80211com *);
    149 static int  wpi_mrr_setup(struct wpi_softc *);
    150 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    151 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    152 static int  wpi_set_txpower(struct wpi_softc *,
    153 			    struct ieee80211_channel *, int);
    154 static int  wpi_get_power_index(struct wpi_softc *,
    155 		struct wpi_power_group *, struct ieee80211_channel *, int);
    156 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    157 static int  wpi_auth(struct wpi_softc *);
    158 static int  wpi_scan(struct wpi_softc *, uint16_t);
    159 static int  wpi_config(struct wpi_softc *);
    160 static void wpi_stop_master(struct wpi_softc *);
    161 static int  wpi_power_up(struct wpi_softc *);
    162 static int  wpi_reset(struct wpi_softc *);
    163 static void wpi_hw_config(struct wpi_softc *);
    164 static int  wpi_init(struct ifnet *);
    165 static void wpi_stop(struct ifnet *, int);
    166 static bool wpi_resume(device_t PMF_FN_PROTO);
    167 static int	wpi_getrfkill(struct wpi_softc *);
    168 static void wpi_sysctlattach(struct wpi_softc *);
    169 
    170 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    171 	wpi_detach, NULL);
    172 
    173 static int
    174 wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
    175 {
    176 	struct pci_attach_args *pa = aux;
    177 
    178 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    179 		return 0;
    180 
    181 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    182 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    183 		return 1;
    184 
    185 	return 0;
    186 }
    187 
    188 /* Base Address Register */
    189 #define WPI_PCI_BAR0	0x10
    190 
    191 static void
    192 wpi_attach(device_t parent __unused, device_t self, void *aux)
    193 {
    194 	struct wpi_softc *sc = device_private(self);
    195 	struct ieee80211com *ic = &sc->sc_ic;
    196 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    197 	struct pci_attach_args *pa = aux;
    198 	const char *intrstr;
    199 	char devinfo[256];
    200 	bus_space_tag_t memt;
    201 	bus_space_handle_t memh;
    202 	pci_intr_handle_t ih;
    203 	pcireg_t data;
    204 	int error, ac, revision;
    205 
    206 	sc->sc_dev = self;
    207 	sc->sc_pct = pa->pa_pc;
    208 	sc->sc_pcitag = pa->pa_tag;
    209 
    210 	callout_init(&sc->calib_to, 0);
    211 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    212 
    213 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    214 	revision = PCI_REVISION(pa->pa_class);
    215 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    216 
    217 	/* enable bus-mastering */
    218 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    219 	data |= PCI_COMMAND_MASTER_ENABLE;
    220 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    221 
    222 	/* map the register window */
    223 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    224 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    225 	if (error != 0) {
    226 		aprint_error_dev(self, "could not map memory space\n");
    227 		return;
    228 	}
    229 
    230 	sc->sc_st = memt;
    231 	sc->sc_sh = memh;
    232 	sc->sc_dmat = pa->pa_dmat;
    233 
    234 	if (pci_intr_map(pa, &ih) != 0) {
    235 		aprint_error_dev(self, "could not map interrupt\n");
    236 		return;
    237 	}
    238 
    239 	intrstr = pci_intr_string(sc->sc_pct, ih);
    240 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
    241 	if (sc->sc_ih == NULL) {
    242 		aprint_error_dev(self, "could not establish interrupt");
    243 		if (intrstr != NULL)
    244 			aprint_error(" at %s", intrstr);
    245 		aprint_error("\n");
    246 		return;
    247 	}
    248 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    249 
    250 	if (wpi_reset(sc) != 0) {
    251 		aprint_error_dev(self, "could not reset adapter\n");
    252 		return;
    253 	}
    254 
    255  	/*
    256 	 * Allocate DMA memory for firmware transfers.
    257 	 */
    258 	if ((error = wpi_alloc_fwmem(sc)) != 0)
    259 		return;
    260 
    261 	/*
    262 	 * Allocate shared page and Tx/Rx rings.
    263 	 */
    264 	if ((error = wpi_alloc_shared(sc)) != 0) {
    265 		aprint_error_dev(self, "could not allocate shared area\n");
    266 		goto fail1;
    267 	}
    268 
    269 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    270 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    271 		goto fail2;
    272 	}
    273 
    274 	for (ac = 0; ac < 4; ac++) {
    275 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
    276 		if (error != 0) {
    277 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
    278 			goto fail3;
    279 		}
    280 	}
    281 
    282 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    283 	if (error != 0) {
    284 		aprint_error_dev(self, "could not allocate command ring\n");
    285 		goto fail3;
    286 	}
    287 
    288 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
    289 		aprint_error_dev(self, "could not allocate Rx ring\n");
    290 		goto fail4;
    291 	}
    292 
    293 	ic->ic_ifp = ifp;
    294 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    295 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    296 	ic->ic_state = IEEE80211_S_INIT;
    297 
    298 	/* set device capabilities */
    299 	ic->ic_caps =
    300 		IEEE80211_C_IBSS |       /* IBSS mode support */
    301 		IEEE80211_C_WPA |        /* 802.11i */
    302 		IEEE80211_C_MONITOR |    /* monitor mode supported */
    303 		IEEE80211_C_TXPMGT |     /* tx power management */
    304 		IEEE80211_C_SHSLOT |     /* short slot time supported */
    305 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
    306 		IEEE80211_C_WME;         /* 802.11e */
    307 
    308 	/* read supported channels and MAC address from EEPROM */
    309 	wpi_read_eeprom(sc);
    310 
    311 	/* set supported .11a, .11b, .11g rates */
    312 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
    313 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
    314 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
    315 
    316 	ic->ic_ibss_chan = &ic->ic_channels[0];
    317 
    318 	ifp->if_softc = sc;
    319 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    320 	ifp->if_init = wpi_init;
    321 	ifp->if_stop = wpi_stop;
    322 	ifp->if_ioctl = wpi_ioctl;
    323 	ifp->if_start = wpi_start;
    324 	ifp->if_watchdog = wpi_watchdog;
    325 	IFQ_SET_READY(&ifp->if_snd);
    326 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    327 
    328 	if_attach(ifp);
    329 	ieee80211_ifattach(ic);
    330 	/* override default methods */
    331 	ic->ic_node_alloc = wpi_node_alloc;
    332 	ic->ic_newassoc = wpi_newassoc;
    333 	ic->ic_wme.wme_update = wpi_wme_update;
    334 
    335 	/* override state transition machine */
    336 	sc->sc_newstate = ic->ic_newstate;
    337 	ic->ic_newstate = wpi_newstate;
    338 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
    339 
    340 	sc->amrr.amrr_min_success_threshold = 1;
    341 	sc->amrr.amrr_max_success_threshold = 15;
    342 
    343 	wpi_sysctlattach(sc);
    344 
    345 	if (!pmf_device_register(self, NULL, wpi_resume))
    346 		aprint_error_dev(self, "couldn't establish power handler\n");
    347 	else
    348 		pmf_class_network_register(self, ifp);
    349 
    350 #if NBPFILTER > 0
    351 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    352 		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    353 		&sc->sc_drvbpf);
    354 
    355 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    356 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    357 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    358 
    359 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    360 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    361 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    362 #endif
    363 
    364 	ieee80211_announce(ic);
    365 
    366 	return;
    367 
    368 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
    369 fail3:  while (--ac >= 0)
    370 			wpi_free_tx_ring(sc, &sc->txq[ac]);
    371 	wpi_free_rpool(sc);
    372 fail2:	wpi_free_shared(sc);
    373 fail1:	wpi_free_fwmem(sc);
    374 }
    375 
    376 static int
    377 wpi_detach(device_t self, int flags __unused)
    378 {
    379 	struct wpi_softc *sc = device_private(self);
    380 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    381 	int ac;
    382 
    383 	wpi_stop(ifp, 1);
    384 
    385 #if NBPFILTER > 0
    386 	if (ifp != NULL)
    387 		bpfdetach(ifp);
    388 #endif
    389 	ieee80211_ifdetach(&sc->sc_ic);
    390 	if (ifp != NULL)
    391 		if_detach(ifp);
    392 
    393 	for (ac = 0; ac < 4; ac++)
    394 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    395 	wpi_free_tx_ring(sc, &sc->cmdq);
    396 	wpi_free_rx_ring(sc, &sc->rxq);
    397 	wpi_free_rpool(sc);
    398 	wpi_free_shared(sc);
    399 
    400 	if (sc->sc_ih != NULL) {
    401 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    402 		sc->sc_ih = NULL;
    403 	}
    404 
    405 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    406 
    407 	return 0;
    408 }
    409 
    410 static int
    411 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
    412 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
    413 {
    414 	int nsegs, error;
    415 
    416 	dma->tag = tag;
    417 	dma->size = size;
    418 
    419 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    420 	if (error != 0)
    421 		goto fail;
    422 
    423 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    424 	    flags);
    425 	if (error != 0)
    426 		goto fail;
    427 
    428 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    429 	if (error != 0)
    430 		goto fail;
    431 
    432 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    433 	if (error != 0)
    434 		goto fail;
    435 
    436 	memset(dma->vaddr, 0, size);
    437 
    438 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    439 	if (kvap != NULL)
    440 		*kvap = dma->vaddr;
    441 
    442 	return 0;
    443 
    444 fail:   wpi_dma_contig_free(dma);
    445 	return error;
    446 }
    447 
    448 static void
    449 wpi_dma_contig_free(struct wpi_dma_info *dma)
    450 {
    451 	if (dma->map != NULL) {
    452 		if (dma->vaddr != NULL) {
    453 			bus_dmamap_unload(dma->tag, dma->map);
    454 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    455 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    456 			dma->vaddr = NULL;
    457 		}
    458 		bus_dmamap_destroy(dma->tag, dma->map);
    459 		dma->map = NULL;
    460 	}
    461 }
    462 
    463 /*
    464  * Allocate a shared page between host and NIC.
    465  */
    466 static int
    467 wpi_alloc_shared(struct wpi_softc *sc)
    468 {
    469 	int error;
    470 	/* must be aligned on a 4K-page boundary */
    471 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    472 			(void **)&sc->shared, sizeof (struct wpi_shared),
    473 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
    474 	if (error != 0)
    475 		aprint_error_dev(sc->sc_dev,
    476 				"could not allocate shared area DMA memory\n");
    477 
    478 	return error;
    479 }
    480 
    481 static void
    482 wpi_free_shared(struct wpi_softc *sc)
    483 {
    484 	wpi_dma_contig_free(&sc->shared_dma);
    485 }
    486 
    487 /*
    488  * Allocate DMA-safe memory for firmware transfer.
    489  */
    490 static int
    491 wpi_alloc_fwmem(struct wpi_softc *sc)
    492 {
    493 	int error;
    494 	/* allocate enough contiguous space to store text and data */
    495 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    496 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    497 	    BUS_DMA_NOWAIT);
    498 
    499 	if (error != 0)
    500 		aprint_error_dev(sc->sc_dev,
    501 			"could not allocate firmware transfer area"
    502 			"DMA memory\n");
    503 	return error;
    504 }
    505 
    506 static void
    507 wpi_free_fwmem(struct wpi_softc *sc)
    508 {
    509 	wpi_dma_contig_free(&sc->fw_dma);
    510 }
    511 
    512 
    513 static struct wpi_rbuf *
    514 wpi_alloc_rbuf(struct wpi_softc *sc)
    515 {
    516 	struct wpi_rbuf *rbuf;
    517 
    518 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    519 	if (rbuf == NULL)
    520 		return NULL;
    521 	SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    522 	sc->rxq.nb_free_entries --;
    523 
    524 	return rbuf;
    525 }
    526 
    527 /*
    528  * This is called automatically by the network stack when the mbuf to which our
    529  * Rx buffer is attached is freed.
    530  */
    531 static void
    532 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    533 {
    534 	struct wpi_rbuf *rbuf = arg;
    535 	struct wpi_softc *sc = rbuf->sc;
    536 
    537 	/* put the buffer back in the free list */
    538 
    539 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    540 	sc->rxq.nb_free_entries ++;
    541 
    542 	if (__predict_true(m != NULL))
    543 		pool_cache_put(mb_cache, m);
    544 }
    545 
    546 static int
    547 wpi_alloc_rpool(struct wpi_softc *sc)
    548 {
    549 	struct wpi_rx_ring *ring = &sc->rxq;
    550 	struct wpi_rbuf *rbuf;
    551 	int i, error;
    552 
    553 	/* allocate a big chunk of DMA'able memory.. */
    554 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    555 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    556 	if (error != 0) {
    557 		aprint_normal_dev(sc->sc_dev,
    558 						  "could not allocate Rx buffers DMA memory\n");
    559 		return error;
    560 	}
    561 
    562 	/* ..and split it into 3KB chunks */
    563 	SLIST_INIT(&ring->freelist);
    564 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    565 		rbuf = &ring->rbuf[i];
    566 		rbuf->sc = sc;	/* backpointer for callbacks */
    567 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    568 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    569 
    570 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    571 	}
    572 
    573 	ring->nb_free_entries = WPI_RBUF_COUNT;
    574 	return 0;
    575 }
    576 
    577 static void
    578 wpi_free_rpool(struct wpi_softc *sc)
    579 {
    580 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    581 }
    582 
    583 static int
    584 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    585 {
    586 	struct wpi_rx_data *data;
    587 	struct wpi_rbuf *rbuf;
    588 	int i, error;
    589 
    590 	ring->cur = 0;
    591 
    592 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    593 		(void **)&ring->desc,
    594 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
    595 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    596 	if (error != 0) {
    597 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
    598 		goto fail;
    599 	}
    600 
    601 	/*
    602 	 * Setup Rx buffers.
    603 	 */
    604 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    605 		data = &ring->data[i];
    606 
    607 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    608 		if (data->m == NULL) {
    609 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
    610 			error = ENOMEM;
    611 			goto fail;
    612 		}
    613 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    614 			m_freem(data->m);
    615 			data->m = NULL;
    616 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
    617 			error = ENOMEM;
    618 			goto fail;
    619 		}
    620 		/* attach Rx buffer to mbuf */
    621 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    622 		    rbuf);
    623 		data->m->m_flags |= M_EXT_RW;
    624 
    625 		ring->desc[i] = htole32(rbuf->paddr);
    626 	}
    627 
    628 	return 0;
    629 
    630 fail:	wpi_free_rx_ring(sc, ring);
    631 	return error;
    632 }
    633 
    634 static void
    635 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    636 {
    637 	int ntries;
    638 
    639 	wpi_mem_lock(sc);
    640 
    641 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    642 	for (ntries = 0; ntries < 100; ntries++) {
    643 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    644 			break;
    645 		DELAY(10);
    646 	}
    647 #ifdef WPI_DEBUG
    648 	if (ntries == 100 && wpi_debug > 0)
    649 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    650 #endif
    651 	wpi_mem_unlock(sc);
    652 
    653 	ring->cur = 0;
    654 }
    655 
    656 static void
    657 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    658 {
    659 	int i;
    660 
    661 	wpi_dma_contig_free(&ring->desc_dma);
    662 
    663 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    664 		if (ring->data[i].m != NULL)
    665 			m_freem(ring->data[i].m);
    666 	}
    667 }
    668 
    669 static int
    670 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    671 	int qid)
    672 {
    673 	struct wpi_tx_data *data;
    674 	int i, error;
    675 
    676 	ring->qid = qid;
    677 	ring->count = count;
    678 	ring->queued = 0;
    679 	ring->cur = 0;
    680 
    681 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    682 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    683 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    684 	if (error != 0) {
    685 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
    686 		goto fail;
    687 	}
    688 
    689 	/* update shared page with ring's base address */
    690 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    691 
    692 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    693 		(void **)&ring->cmd,
    694 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
    695 	if (error != 0) {
    696 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
    697 		goto fail;
    698 	}
    699 
    700 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    701 		M_NOWAIT);
    702 	if (ring->data == NULL) {
    703 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
    704 		goto fail;
    705 	}
    706 
    707 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
    708 
    709 	for (i = 0; i < count; i++) {
    710 		data = &ring->data[i];
    711 
    712 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    713 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    714 			&data->map);
    715 		if (error != 0) {
    716 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
    717 			goto fail;
    718 		}
    719 	}
    720 
    721 	return 0;
    722 
    723 fail:	wpi_free_tx_ring(sc, ring);
    724 	return error;
    725 }
    726 
    727 static void
    728 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    729 {
    730 	struct wpi_tx_data *data;
    731 	int i, ntries;
    732 
    733 	wpi_mem_lock(sc);
    734 
    735 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    736 	for (ntries = 0; ntries < 100; ntries++) {
    737 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    738 			break;
    739 		DELAY(10);
    740 	}
    741 #ifdef WPI_DEBUG
    742 	if (ntries == 100 && wpi_debug > 0) {
    743 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    744 									   ring->qid);
    745 	}
    746 #endif
    747 	wpi_mem_unlock(sc);
    748 
    749 	for (i = 0; i < ring->count; i++) {
    750 		data = &ring->data[i];
    751 
    752 		if (data->m != NULL) {
    753 			bus_dmamap_unload(sc->sc_dmat, data->map);
    754 			m_freem(data->m);
    755 			data->m = NULL;
    756 		}
    757 	}
    758 
    759 	ring->queued = 0;
    760 	ring->cur = 0;
    761 }
    762 
    763 static void
    764 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    765 {
    766 	struct wpi_tx_data *data;
    767 	int i;
    768 
    769 	wpi_dma_contig_free(&ring->desc_dma);
    770 	wpi_dma_contig_free(&ring->cmd_dma);
    771 
    772 	if (ring->data != NULL) {
    773 		for (i = 0; i < ring->count; i++) {
    774 			data = &ring->data[i];
    775 
    776 			if (data->m != NULL) {
    777 				bus_dmamap_unload(sc->sc_dmat, data->map);
    778 				m_freem(data->m);
    779 			}
    780 		}
    781 		free(ring->data, M_DEVBUF);
    782 	}
    783 }
    784 
    785 /*ARGUSED*/
    786 static struct ieee80211_node *
    787 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    788 {
    789 	struct wpi_node *wn;
    790 
    791 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
    792 
    793 	return (struct ieee80211_node *)wn;
    794 }
    795 
    796 static void
    797 wpi_newassoc(struct ieee80211_node *ni, int isnew)
    798 {
    799 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    800 	int i;
    801 
    802 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    803 
    804 	/* set rate to some reasonable initial value */
    805 	for (i = ni->ni_rates.rs_nrates - 1;
    806 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    807 	     i--);
    808 	ni->ni_txrate = i;
    809 }
    810 
    811 static int
    812 wpi_media_change(struct ifnet *ifp)
    813 {
    814 	int error;
    815 
    816 	error = ieee80211_media_change(ifp);
    817 	if (error != ENETRESET)
    818 		return error;
    819 
    820 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    821 		wpi_init(ifp);
    822 
    823 	return 0;
    824 }
    825 
    826 static int
    827 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    828 {
    829 	struct ifnet *ifp = ic->ic_ifp;
    830 	struct wpi_softc *sc = ifp->if_softc;
    831 	struct ieee80211_node *ni;
    832 	int error;
    833 
    834 	callout_stop(&sc->calib_to);
    835 
    836 	switch (nstate) {
    837 	case IEEE80211_S_SCAN:
    838 
    839 		if (sc->is_scanning)
    840 			break;
    841 
    842 		sc->is_scanning = true;
    843 		ieee80211_node_table_reset(&ic->ic_scan);
    844 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
    845 
    846 		/* make the link LED blink while we're scanning */
    847 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    848 
    849 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
    850 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
    851 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
    852 			return error;
    853 		}
    854 
    855 		ic->ic_state = nstate;
    856 		return 0;
    857 
    858 	case IEEE80211_S_ASSOC:
    859 		if (ic->ic_state != IEEE80211_S_RUN)
    860 			break;
    861 		/* FALLTHROUGH */
    862 	case IEEE80211_S_AUTH:
    863 		sc->config.associd = 0;
    864 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    865 		if ((error = wpi_auth(sc)) != 0) {
    866 			aprint_error_dev(sc->sc_dev,
    867 							"could not send authentication request\n");
    868 			return error;
    869 		}
    870 		break;
    871 
    872 	case IEEE80211_S_RUN:
    873 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    874 			/* link LED blinks while monitoring */
    875 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    876 			break;
    877 		}
    878 
    879 		ni = ic->ic_bss;
    880 
    881 		if (ic->ic_opmode != IEEE80211_M_STA) {
    882 			(void) wpi_auth(sc);    /* XXX */
    883 			wpi_setup_beacon(sc, ni);
    884 		}
    885 
    886 		wpi_enable_tsf(sc, ni);
    887 
    888 		/* update adapter's configuration */
    889 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    890 		/* short preamble/slot time are negotiated when associating */
    891 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
    892 			WPI_CONFIG_SHSLOT);
    893 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
    894 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
    895 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
    896 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
    897 		sc->config.filter |= htole32(WPI_FILTER_BSS);
    898 		if (ic->ic_opmode != IEEE80211_M_STA)
    899 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
    900 
    901 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
    902 
    903 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
    904 			sc->config.flags));
    905 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
    906 			sizeof (struct wpi_config), 1);
    907 		if (error != 0) {
    908 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
    909 			return error;
    910 		}
    911 
    912 		/* configuration has changed, set Tx power accordingly */
    913 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
    914 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
    915 			return error;
    916 		}
    917 
    918 		if (ic->ic_opmode == IEEE80211_M_STA) {
    919 			/* fake a join to init the tx rate */
    920 			wpi_newassoc(ni, 1);
    921 		}
    922 
    923 		/* start periodic calibration timer */
    924 		sc->calib_cnt = 0;
    925 		callout_schedule(&sc->calib_to, hz/2);
    926 
    927 		/* link LED always on while associated */
    928 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
    929 		break;
    930 
    931 	case IEEE80211_S_INIT:
    932 		sc->is_scanning = false;
    933 		break;
    934 	}
    935 
    936 	return sc->sc_newstate(ic, nstate, arg);
    937 }
    938 
    939 /*
    940  * XXX: Hack to set the current channel to the value advertised in beacons or
    941  * probe responses. Only used during AP detection.
    942  * XXX: Duplicated from if_iwi.c
    943  */
    944 static void
    945 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
    946 {
    947 	struct ieee80211_frame *wh;
    948 	uint8_t subtype;
    949 	uint8_t *frm, *efrm;
    950 
    951 	wh = mtod(m, struct ieee80211_frame *);
    952 
    953 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
    954 		return;
    955 
    956 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
    957 
    958 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
    959 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
    960 		return;
    961 
    962 	frm = (uint8_t *)(wh + 1);
    963 	efrm = mtod(m, uint8_t *) + m->m_len;
    964 
    965 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
    966 	while (frm < efrm) {
    967 		if (*frm == IEEE80211_ELEMID_DSPARMS)
    968 #if IEEE80211_CHAN_MAX < 255
    969 		if (frm[2] <= IEEE80211_CHAN_MAX)
    970 #endif
    971 			ic->ic_curchan = &ic->ic_channels[frm[2]];
    972 
    973 		frm += frm[1] + 2;
    974 	}
    975 }
    976 
    977 /*
    978  * Grab exclusive access to NIC memory.
    979  */
    980 static void
    981 wpi_mem_lock(struct wpi_softc *sc)
    982 {
    983 	uint32_t tmp;
    984 	int ntries;
    985 
    986 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
    987 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
    988 
    989 	/* spin until we actually get the lock */
    990 	for (ntries = 0; ntries < 1000; ntries++) {
    991 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
    992 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
    993 			break;
    994 		DELAY(10);
    995 	}
    996 	if (ntries == 1000)
    997 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
    998 }
    999 
   1000 /*
   1001  * Release lock on NIC memory.
   1002  */
   1003 static void
   1004 wpi_mem_unlock(struct wpi_softc *sc)
   1005 {
   1006 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1007 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1008 }
   1009 
   1010 static uint32_t
   1011 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1012 {
   1013 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1014 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1015 }
   1016 
   1017 static void
   1018 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1019 {
   1020 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1021 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1022 }
   1023 
   1024 static void
   1025 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1026 						const uint32_t *data, int wlen)
   1027 {
   1028 	for (; wlen > 0; wlen--, data++, addr += 4)
   1029 		wpi_mem_write(sc, addr, *data);
   1030 }
   1031 
   1032 
   1033 /*
   1034  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1035  * instead of using the traditional bit-bang method.
   1036  */
   1037 static int
   1038 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1039 {
   1040 	uint8_t *out = data;
   1041 	uint32_t val;
   1042 	int ntries;
   1043 
   1044 	wpi_mem_lock(sc);
   1045 	for (; len > 0; len -= 2, addr++) {
   1046 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1047 
   1048 		for (ntries = 0; ntries < 10; ntries++) {
   1049 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1050 			    WPI_EEPROM_READY)
   1051 				break;
   1052 			DELAY(5);
   1053 		}
   1054 		if (ntries == 10) {
   1055 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1056 			return ETIMEDOUT;
   1057 		}
   1058 		*out++ = val >> 16;
   1059 		if (len > 1)
   1060 			*out++ = val >> 24;
   1061 	}
   1062 	wpi_mem_unlock(sc);
   1063 
   1064 	return 0;
   1065 }
   1066 
   1067 /*
   1068  * The firmware boot code is small and is intended to be copied directly into
   1069  * the NIC internal memory.
   1070  */
   1071 int
   1072 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1073 {
   1074 	int ntries;
   1075 
   1076 	size /= sizeof (uint32_t);
   1077 
   1078 	wpi_mem_lock(sc);
   1079 
   1080 	/* copy microcode image into NIC memory */
   1081 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1082 	    (const uint32_t *)ucode, size);
   1083 
   1084 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1085 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1086 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1087 
   1088 	/* run microcode */
   1089 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1090 
   1091 	/* wait for transfer to complete */
   1092 	for (ntries = 0; ntries < 1000; ntries++) {
   1093 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1094 			break;
   1095 		DELAY(10);
   1096 	}
   1097 	if (ntries == 1000) {
   1098 		wpi_mem_unlock(sc);
   1099 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1100 		return ETIMEDOUT;
   1101 	}
   1102 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1103 
   1104 	wpi_mem_unlock(sc);
   1105 
   1106 	return 0;
   1107 }
   1108 
   1109 static int
   1110 wpi_load_firmware(struct wpi_softc *sc)
   1111 {
   1112 	struct wpi_dma_info *dma = &sc->fw_dma;
   1113 	struct wpi_firmware_hdr hdr;
   1114 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1115 	const uint8_t *boot_text;
   1116 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1117 	uint32_t boot_textsz;
   1118 	firmware_handle_t fw;
   1119 	u_char *dfw;
   1120 	size_t size;
   1121 	int error;
   1122 
   1123 	/* load firmware image from disk */
   1124 	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
   1125 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
   1126 		goto fail1;
   1127 	}
   1128 
   1129 	size = firmware_get_size(fw);
   1130 
   1131 	/* extract firmware header information */
   1132 	if (size < sizeof (struct wpi_firmware_hdr)) {
   1133 		aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
   1134 		    			 size);
   1135 		error = EINVAL;
   1136 		goto fail2;
   1137 	}
   1138 
   1139 	if ((error = firmware_read(fw, 0, &hdr,
   1140 		sizeof (struct wpi_firmware_hdr))) != 0) {
   1141 		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
   1142 		goto fail2;
   1143 	}
   1144 
   1145 	main_textsz = le32toh(hdr.main_textsz);
   1146 	main_datasz = le32toh(hdr.main_datasz);
   1147 	init_textsz = le32toh(hdr.init_textsz);
   1148 	init_datasz = le32toh(hdr.init_datasz);
   1149 	boot_textsz = le32toh(hdr.boot_textsz);
   1150 
   1151 	/* sanity-check firmware segments sizes */
   1152 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1153 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1154 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1155 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1156 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1157 	    (boot_textsz & 3) != 0) {
   1158 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1159 		error = EINVAL;
   1160 		goto fail2;
   1161 	}
   1162 
   1163 	/* check that all firmware segments are present */
   1164 	if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
   1165 		main_datasz + init_textsz + init_datasz + boot_textsz) {
   1166 		aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
   1167 		    			 size);
   1168 		error = EINVAL;
   1169 		goto fail2;
   1170 	}
   1171 
   1172 	dfw = firmware_malloc(size);
   1173 	if (dfw == NULL) {
   1174 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
   1175 		error = ENOMEM;
   1176 		goto fail2;
   1177 	}
   1178 
   1179 	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
   1180 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
   1181 		goto fail2;
   1182 	}
   1183 
   1184 	/* get pointers to firmware segments */
   1185 	main_text = dfw + sizeof (struct wpi_firmware_hdr);
   1186 	main_data = main_text + main_textsz;
   1187 	init_text = main_data + main_datasz;
   1188 	init_data = init_text + init_textsz;
   1189 	boot_text = init_data + init_datasz;
   1190 
   1191 	/* copy initialization images into pre-allocated DMA-safe memory */
   1192 	memcpy(dma->vaddr, init_data, init_datasz);
   1193 	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
   1194 
   1195 	/* tell adapter where to find initialization images */
   1196 	wpi_mem_lock(sc);
   1197 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1198 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1199 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1200 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1201 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1202 	wpi_mem_unlock(sc);
   1203 
   1204 	/* load firmware boot code */
   1205 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1206 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1207 		goto fail3;
   1208 	}
   1209 
   1210 	/* now press "execute" ;-) */
   1211 	WPI_WRITE(sc, WPI_RESET, 0);
   1212 
   1213 	/* ..and wait at most one second for adapter to initialize */
   1214 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1215 		/* this isn't what was supposed to happen.. */
   1216 		aprint_error_dev(sc->sc_dev,
   1217 					"timeout waiting for adapter to initialize\n");
   1218 	}
   1219 
   1220 	/* copy runtime images into pre-allocated DMA-safe memory */
   1221 	memcpy(dma->vaddr, main_data, main_datasz);
   1222 	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
   1223 
   1224 	/* tell adapter where to find runtime images */
   1225 	wpi_mem_lock(sc);
   1226 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1227 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1228 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1229 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1230 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1231 	wpi_mem_unlock(sc);
   1232 
   1233 	/* wait at most one second for second alive notification */
   1234 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1235 		/* this isn't what was supposed to happen.. */
   1236 		aprint_error_dev(sc->sc_dev,
   1237 						"timeout waiting for adapter to initialize\n");
   1238 	}
   1239 
   1240 
   1241 fail3: 	firmware_free(dfw,size);
   1242 fail2:	firmware_close(fw);
   1243 fail1:	return error;
   1244 }
   1245 
   1246 static void
   1247 wpi_calib_timeout(void *arg)
   1248 {
   1249 	struct wpi_softc *sc = arg;
   1250 	struct ieee80211com *ic = &sc->sc_ic;
   1251 	int temp, s;
   1252 
   1253 	/* automatic rate control triggered every 500ms */
   1254 	if (ic->ic_fixed_rate == -1) {
   1255 		s = splnet();
   1256 		if (ic->ic_opmode == IEEE80211_M_STA)
   1257 			wpi_iter_func(sc, ic->ic_bss);
   1258 		else
   1259                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1260 		splx(s);
   1261 	}
   1262 
   1263 	/* update sensor data */
   1264 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1265 
   1266 	/* automatic power calibration every 60s */
   1267 	if (++sc->calib_cnt >= 120) {
   1268 		wpi_power_calibration(sc, temp);
   1269 		sc->calib_cnt = 0;
   1270 	}
   1271 
   1272 	callout_schedule(&sc->calib_to, hz/2);
   1273 }
   1274 
   1275 static void
   1276 wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1277 {
   1278 	struct wpi_softc *sc = arg;
   1279 	struct wpi_node *wn = (struct wpi_node *)ni;
   1280 
   1281 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1282 }
   1283 
   1284 /*
   1285  * This function is called periodically (every 60 seconds) to adjust output
   1286  * power to temperature changes.
   1287  */
   1288 void
   1289 wpi_power_calibration(struct wpi_softc *sc, int temp)
   1290 {
   1291 	/* sanity-check read value */
   1292 	if (temp < -260 || temp > 25) {
   1293 		/* this can't be correct, ignore */
   1294 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1295 		return;
   1296 	}
   1297 
   1298 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1299 
   1300 	/* adjust Tx power if need be */
   1301 	if (abs(temp - sc->temp) <= 6)
   1302 		return;
   1303 
   1304 	sc->temp = temp;
   1305 
   1306 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
   1307 		/* just warn, too bad for the automatic calibration... */
   1308 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1309 	}
   1310 }
   1311 
   1312 static void
   1313 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1314 	struct wpi_rx_data *data)
   1315 {
   1316 	struct ieee80211com *ic = &sc->sc_ic;
   1317 	struct ifnet *ifp = ic->ic_ifp;
   1318 	struct wpi_rx_ring *ring = &sc->rxq;
   1319 	struct wpi_rx_stat *stat;
   1320 	struct wpi_rx_head *head;
   1321 	struct wpi_rx_tail *tail;
   1322 	struct wpi_rbuf *rbuf;
   1323 	struct ieee80211_frame *wh;
   1324 	struct ieee80211_node *ni;
   1325 	struct mbuf *m, *mnew;
   1326 	int data_off ;
   1327 
   1328 	stat = (struct wpi_rx_stat *)(desc + 1);
   1329 
   1330 	if (stat->len > WPI_STAT_MAXLEN) {
   1331 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1332 		ifp->if_ierrors++;
   1333 		return;
   1334 	}
   1335 
   1336 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1337 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1338 
   1339 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1340 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
   1341 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1342 		le64toh(tail->tstamp)));
   1343 
   1344 	/*
   1345 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1346 	 * to radiotap in monitor mode).
   1347 	 */
   1348 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1349 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
   1350 		ifp->if_ierrors++;
   1351 		return;
   1352 	}
   1353 
   1354 	/* Compute where are the useful datas */
   1355 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1356 
   1357 	/*
   1358 	 * If the number of free entry is too low
   1359 	 * just dup the data->m socket and reuse the same rbuf entry
   1360 	 */
   1361 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
   1362 
   1363 		/* Prepare the mbuf for the m_dup */
   1364 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
   1365 		data->m->m_data = (char*) data->m->m_data + data_off;
   1366 
   1367 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
   1368 
   1369 		/* Restore the m_data pointer for future use */
   1370 		data->m->m_data = (char*) data->m->m_data - data_off;
   1371 
   1372 		if (m == NULL) {
   1373 			ifp->if_ierrors++;
   1374 			return;
   1375 		}
   1376 	} else {
   1377 
   1378 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1379 		if (mnew == NULL) {
   1380 			ifp->if_ierrors++;
   1381 			return;
   1382 		}
   1383 
   1384 		rbuf = wpi_alloc_rbuf(sc);
   1385 		KASSERT(rbuf != NULL);
   1386 
   1387  		/* attach Rx buffer to mbuf */
   1388 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1389 		 	rbuf);
   1390 		mnew->m_flags |= M_EXT_RW;
   1391 
   1392 		m = data->m;
   1393 		data->m = mnew;
   1394 
   1395 		/* update Rx descriptor */
   1396 		ring->desc[ring->cur] = htole32(rbuf->paddr);
   1397 
   1398 		m->m_data = (char*)m->m_data + data_off;
   1399 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1400 	}
   1401 
   1402 	/* finalize mbuf */
   1403 	m->m_pkthdr.rcvif = ifp;
   1404 
   1405 	if (ic->ic_state == IEEE80211_S_SCAN)
   1406 		wpi_fix_channel(ic, m);
   1407 
   1408 #if NBPFILTER > 0
   1409 	if (sc->sc_drvbpf != NULL) {
   1410 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1411 
   1412 		tap->wr_flags = 0;
   1413 		tap->wr_chan_freq =
   1414 			htole16(ic->ic_channels[head->chan].ic_freq);
   1415 		tap->wr_chan_flags =
   1416 			htole16(ic->ic_channels[head->chan].ic_flags);
   1417 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1418 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1419 		tap->wr_tsft = tail->tstamp;
   1420 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1421 		switch (head->rate) {
   1422 		/* CCK rates */
   1423 		case  10: tap->wr_rate =   2; break;
   1424 		case  20: tap->wr_rate =   4; break;
   1425 		case  55: tap->wr_rate =  11; break;
   1426 		case 110: tap->wr_rate =  22; break;
   1427 		/* OFDM rates */
   1428 		case 0xd: tap->wr_rate =  12; break;
   1429 		case 0xf: tap->wr_rate =  18; break;
   1430 		case 0x5: tap->wr_rate =  24; break;
   1431 		case 0x7: tap->wr_rate =  36; break;
   1432 		case 0x9: tap->wr_rate =  48; break;
   1433 		case 0xb: tap->wr_rate =  72; break;
   1434 		case 0x1: tap->wr_rate =  96; break;
   1435 		case 0x3: tap->wr_rate = 108; break;
   1436 		/* unknown rate: should not happen */
   1437 		default:  tap->wr_rate =   0;
   1438 		}
   1439 		if (le16toh(head->flags) & 0x4)
   1440 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1441 
   1442 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1443 	}
   1444 #endif
   1445 
   1446 	/* grab a reference to the source node */
   1447 	wh = mtod(m, struct ieee80211_frame *);
   1448 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1449 
   1450 	/* send the frame to the 802.11 layer */
   1451 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1452 
   1453 	/* release node reference */
   1454 	ieee80211_free_node(ni);
   1455 }
   1456 
   1457 static void
   1458 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1459 {
   1460 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1461 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1462 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
   1463 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1464 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
   1465 
   1466 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1467 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1468 		stat->nkill, stat->rate, le32toh(stat->duration),
   1469 		le32toh(stat->status)));
   1470 
   1471 	/*
   1472 	 * Update rate control statistics for the node.
   1473 	 * XXX we should not count mgmt frames since they're always sent at
   1474 	 * the lowest available bit-rate.
   1475 	 */
   1476 	wn->amn.amn_txcnt++;
   1477 	if (stat->ntries > 0) {
   1478 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1479 		wn->amn.amn_retrycnt++;
   1480 	}
   1481 
   1482 	if ((le32toh(stat->status) & 0xff) != 1)
   1483 		ifp->if_oerrors++;
   1484 	else
   1485 		ifp->if_opackets++;
   1486 
   1487 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
   1488 	m_freem(txdata->m);
   1489 	txdata->m = NULL;
   1490 	ieee80211_free_node(txdata->ni);
   1491 	txdata->ni = NULL;
   1492 
   1493 	ring->queued--;
   1494 
   1495 	sc->sc_tx_timer = 0;
   1496 	ifp->if_flags &= ~IFF_OACTIVE;
   1497 	wpi_start(ifp);
   1498 }
   1499 
   1500 static void
   1501 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1502 {
   1503 	struct wpi_tx_ring *ring = &sc->cmdq;
   1504 	struct wpi_tx_data *data;
   1505 
   1506 	if ((desc->qid & 7) != 4)
   1507 		return;	/* not a command ack */
   1508 
   1509 	data = &ring->data[desc->idx];
   1510 
   1511 	/* if the command was mapped in a mbuf, free it */
   1512 	if (data->m != NULL) {
   1513 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1514 		m_freem(data->m);
   1515 		data->m = NULL;
   1516 	}
   1517 
   1518 	wakeup(&ring->cmd[desc->idx]);
   1519 }
   1520 
   1521 static void
   1522 wpi_notif_intr(struct wpi_softc *sc)
   1523 {
   1524 	struct ieee80211com *ic = &sc->sc_ic;
   1525 	struct ifnet *ifp =  ic->ic_ifp;
   1526 	struct wpi_rx_desc *desc;
   1527 	struct wpi_rx_data *data;
   1528 	uint32_t hw;
   1529 
   1530 	hw = le32toh(sc->shared->next);
   1531 	while (sc->rxq.cur != hw) {
   1532 		data = &sc->rxq.data[sc->rxq.cur];
   1533 
   1534 		desc = mtod(data->m, struct wpi_rx_desc *);
   1535 
   1536 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1537 			"len=%d\n", desc->qid, desc->idx, desc->flags,
   1538 			desc->type, le32toh(desc->len)));
   1539 
   1540 		if (!(desc->qid & 0x80))	/* reply to a command */
   1541 			wpi_cmd_intr(sc, desc);
   1542 
   1543 		switch (desc->type) {
   1544 		case WPI_RX_DONE:
   1545 			/* a 802.11 frame was received */
   1546 			wpi_rx_intr(sc, desc, data);
   1547 			break;
   1548 
   1549 		case WPI_TX_DONE:
   1550 			/* a 802.11 frame has been transmitted */
   1551 			wpi_tx_intr(sc, desc);
   1552 			break;
   1553 
   1554 		case WPI_UC_READY:
   1555 		{
   1556 			struct wpi_ucode_info *uc =
   1557 				(struct wpi_ucode_info *)(desc + 1);
   1558 
   1559 			/* the microcontroller is ready */
   1560 			DPRINTF(("microcode alive notification version %x "
   1561 				"alive %x\n", le32toh(uc->version),
   1562 				le32toh(uc->valid)));
   1563 
   1564 			if (le32toh(uc->valid) != 1) {
   1565 				aprint_error_dev(sc->sc_dev,
   1566 					"microcontroller initialization failed\n");
   1567 			}
   1568 			break;
   1569 		}
   1570 		case WPI_STATE_CHANGED:
   1571 		{
   1572 			uint32_t *status = (uint32_t *)(desc + 1);
   1573 
   1574 			/* enabled/disabled notification */
   1575 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1576 
   1577 			if (le32toh(*status) & 1) {
   1578 				/* the radio button has to be pushed */
   1579 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
   1580 				/* turn the interface down */
   1581 				ifp->if_flags &= ~IFF_UP;
   1582 				wpi_stop(ifp, 1);
   1583 				return;	/* no further processing */
   1584 			}
   1585 			break;
   1586 		}
   1587 		case WPI_START_SCAN:
   1588 		{
   1589 			struct wpi_start_scan *scan =
   1590 				(struct wpi_start_scan *)(desc + 1);
   1591 
   1592 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1593 				scan->chan, le32toh(scan->status)));
   1594 
   1595 			/* fix current channel */
   1596 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   1597 			break;
   1598 		}
   1599 		case WPI_STOP_SCAN:
   1600 		{
   1601 			struct wpi_stop_scan *scan =
   1602 				(struct wpi_stop_scan *)(desc + 1);
   1603 
   1604 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1605 				scan->nchan, scan->status, scan->chan));
   1606 
   1607 			if (scan->status == 1 && scan->chan <= 14) {
   1608 				/*
   1609 				 * We just finished scanning 802.11g channels,
   1610 				 * start scanning 802.11a ones.
   1611 				 */
   1612 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
   1613 					break;
   1614 			}
   1615 			sc->is_scanning = false;
   1616 			ieee80211_end_scan(ic);
   1617 			break;
   1618 		}
   1619 		}
   1620 
   1621 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1622 	}
   1623 
   1624 	/* tell the firmware what we have processed */
   1625 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1626 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1627 }
   1628 
   1629 static int
   1630 wpi_intr(void *arg)
   1631 {
   1632 	struct wpi_softc *sc = arg;
   1633 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1634 	uint32_t r;
   1635 
   1636 	r = WPI_READ(sc, WPI_INTR);
   1637 	if (r == 0 || r == 0xffffffff)
   1638 		return 0;	/* not for us */
   1639 
   1640 	DPRINTFN(5, ("interrupt reg %x\n", r));
   1641 
   1642 	/* disable interrupts */
   1643 	WPI_WRITE(sc, WPI_MASK, 0);
   1644 	/* ack interrupts */
   1645 	WPI_WRITE(sc, WPI_INTR, r);
   1646 
   1647 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1648 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1649 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
   1650 		wpi_stop(sc->sc_ic.ic_ifp, 1);
   1651 		return 1;
   1652 	}
   1653 
   1654 	if (r & WPI_RX_INTR)
   1655 		wpi_notif_intr(sc);
   1656 
   1657 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1658 		wakeup(sc);
   1659 
   1660 	/* re-enable interrupts */
   1661 	if (ifp->if_flags & IFF_UP)
   1662 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1663 
   1664 	return 1;
   1665 }
   1666 
   1667 static uint8_t
   1668 wpi_plcp_signal(int rate)
   1669 {
   1670 	switch (rate) {
   1671 	/* CCK rates (returned values are device-dependent) */
   1672 	case 2:		return 10;
   1673 	case 4:		return 20;
   1674 	case 11:	return 55;
   1675 	case 22:	return 110;
   1676 
   1677 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1678 	/* R1-R4, (u)ral is R4-R1 */
   1679 	case 12:	return 0xd;
   1680 	case 18:	return 0xf;
   1681 	case 24:	return 0x5;
   1682 	case 36:	return 0x7;
   1683 	case 48:	return 0x9;
   1684 	case 72:	return 0xb;
   1685 	case 96:	return 0x1;
   1686 	case 108:	return 0x3;
   1687 
   1688 	/* unsupported rates (should not get there) */
   1689 	default:	return 0;
   1690 	}
   1691 }
   1692 
   1693 /* quickly determine if a given rate is CCK or OFDM */
   1694 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1695 
   1696 static int
   1697 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1698 	int ac)
   1699 {
   1700 	struct ieee80211com *ic = &sc->sc_ic;
   1701 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1702 	struct wpi_tx_desc *desc;
   1703 	struct wpi_tx_data *data;
   1704 	struct wpi_tx_cmd *cmd;
   1705 	struct wpi_cmd_data *tx;
   1706 	struct ieee80211_frame *wh;
   1707 	struct ieee80211_key *k;
   1708 	const struct chanAccParams *cap;
   1709 	struct mbuf *mnew;
   1710 	int i, error, rate, hdrlen, noack = 0;
   1711 
   1712 	desc = &ring->desc[ring->cur];
   1713 	data = &ring->data[ring->cur];
   1714 
   1715 	wh = mtod(m0, struct ieee80211_frame *);
   1716 
   1717 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   1718 		cap = &ic->ic_wme.wme_chanParams;
   1719 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1720 	}
   1721 
   1722 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1723 		k = ieee80211_crypto_encap(ic, ni, m0);
   1724 		if (k == NULL) {
   1725 			m_freem(m0);
   1726 			return ENOBUFS;
   1727 		}
   1728 
   1729 		/* packet header may have moved, reset our local pointer */
   1730 		wh = mtod(m0, struct ieee80211_frame *);
   1731 	}
   1732 
   1733 	hdrlen = ieee80211_anyhdrsize(wh);
   1734 
   1735 	/* pickup a rate */
   1736 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1737 		IEEE80211_FC0_TYPE_MGT) {
   1738 		/* mgmt frames are sent at the lowest available bit-rate */
   1739 		rate = ni->ni_rates.rs_rates[0];
   1740 	} else {
   1741 		if (ic->ic_fixed_rate != -1) {
   1742 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1743 				rs_rates[ic->ic_fixed_rate];
   1744 		} else
   1745 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1746 	}
   1747 	rate &= IEEE80211_RATE_VAL;
   1748 
   1749 
   1750 #if NBPFILTER > 0
   1751 	if (sc->sc_drvbpf != NULL) {
   1752 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1753 
   1754 		tap->wt_flags = 0;
   1755 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1756 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1757 		tap->wt_rate = rate;
   1758 		tap->wt_hwqueue = ac;
   1759 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1760 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1761 
   1762 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1763 	}
   1764 #endif
   1765 
   1766 	cmd = &ring->cmd[ring->cur];
   1767 	cmd->code = WPI_CMD_TX_DATA;
   1768 	cmd->flags = 0;
   1769 	cmd->qid = ring->qid;
   1770 	cmd->idx = ring->cur;
   1771 
   1772 	tx = (struct wpi_cmd_data *)cmd->data;
   1773 	tx->flags = 0;
   1774 
   1775 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1776 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1777 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1778 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1779 
   1780 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1781 
   1782 	/* retrieve destination node's id */
   1783 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1784 		WPI_ID_BSS;
   1785 
   1786 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1787 		IEEE80211_FC0_TYPE_MGT) {
   1788 		/* tell h/w to set timestamp in probe responses */
   1789 		if ((wh->i_fc[0] &
   1790 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1791 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1792 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1793 
   1794 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1795 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1796 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1797 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1798 			tx->timeout = htole16(3);
   1799 		else
   1800 			tx->timeout = htole16(2);
   1801 	} else
   1802 		tx->timeout = htole16(0);
   1803 
   1804 	tx->rate = wpi_plcp_signal(rate);
   1805 
   1806 	/* be very persistant at sending frames out */
   1807 	tx->rts_ntries = 7;
   1808 	tx->data_ntries = 15;
   1809 
   1810 	tx->ofdm_mask = 0xff;
   1811 	tx->cck_mask = 0xf;
   1812 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   1813 
   1814 	tx->len = htole16(m0->m_pkthdr.len);
   1815 
   1816 	/* save and trim IEEE802.11 header */
   1817 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   1818 	m_adj(m0, hdrlen);
   1819 
   1820 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1821 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1822 	if (error != 0 && error != EFBIG) {
   1823 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
   1824 		m_freem(m0);
   1825 		return error;
   1826 	}
   1827 	if (error != 0) {
   1828 		/* too many fragments, linearize */
   1829 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1830 		if (mnew == NULL) {
   1831 			m_freem(m0);
   1832 			return ENOMEM;
   1833 		}
   1834 
   1835 		M_COPY_PKTHDR(mnew, m0);
   1836 		if (m0->m_pkthdr.len > MHLEN) {
   1837 			MCLGET(mnew, M_DONTWAIT);
   1838 			if (!(mnew->m_flags & M_EXT)) {
   1839 				m_freem(m0);
   1840 				m_freem(mnew);
   1841 				return ENOMEM;
   1842 			}
   1843 		}
   1844 
   1845 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1846 		m_freem(m0);
   1847 		mnew->m_len = mnew->m_pkthdr.len;
   1848 		m0 = mnew;
   1849 
   1850 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1851 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1852 		if (error != 0) {
   1853 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1854 							 error);
   1855 			m_freem(m0);
   1856 			return error;
   1857 		}
   1858 	}
   1859 
   1860 	data->m = m0;
   1861 	data->ni = ni;
   1862 
   1863 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   1864 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   1865 
   1866 	/* first scatter/gather segment is used by the tx data command */
   1867 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   1868 		(1 + data->map->dm_nsegs) << 24);
   1869 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   1870 		ring->cur * sizeof (struct wpi_tx_cmd));
   1871 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   1872 						 ((hdrlen + 3) & ~3));
   1873 
   1874 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   1875 		desc->segs[i].addr =
   1876 			htole32(data->map->dm_segs[i - 1].ds_addr);
   1877 		desc->segs[i].len  =
   1878 			htole32(data->map->dm_segs[i - 1].ds_len);
   1879 	}
   1880 
   1881 	ring->queued++;
   1882 
   1883 	/* kick ring */
   1884 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   1885 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   1886 
   1887 	return 0;
   1888 }
   1889 
   1890 static void
   1891 wpi_start(struct ifnet *ifp)
   1892 {
   1893 	struct wpi_softc *sc = ifp->if_softc;
   1894 	struct ieee80211com *ic = &sc->sc_ic;
   1895 	struct ieee80211_node *ni;
   1896 	struct ether_header *eh;
   1897 	struct mbuf *m0;
   1898 	int ac;
   1899 
   1900 	/*
   1901 	 * net80211 may still try to send management frames even if the
   1902 	 * IFF_RUNNING flag is not set...
   1903 	 */
   1904 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1905 		return;
   1906 
   1907 	for (;;) {
   1908 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   1909 		if (m0 != NULL) {
   1910 
   1911 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   1912 			m0->m_pkthdr.rcvif = NULL;
   1913 
   1914 			/* management frames go into ring 0 */
   1915 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   1916 				ifp->if_oerrors++;
   1917 				continue;
   1918 			}
   1919 #if NBPFILTER > 0
   1920 			if (ic->ic_rawbpf != NULL)
   1921 				bpf_mtap(ic->ic_rawbpf, m0);
   1922 #endif
   1923 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   1924 				ifp->if_oerrors++;
   1925 				break;
   1926 			}
   1927 		} else {
   1928 			if (ic->ic_state != IEEE80211_S_RUN)
   1929 				break;
   1930 			IFQ_POLL(&ifp->if_snd, m0);
   1931 			if (m0 == NULL)
   1932 				break;
   1933 
   1934 			if (m0->m_len < sizeof (*eh) &&
   1935 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
   1936 				ifp->if_oerrors++;
   1937 				continue;
   1938 			}
   1939 			eh = mtod(m0, struct ether_header *);
   1940 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1941 			if (ni == NULL) {
   1942 				m_freem(m0);
   1943 				ifp->if_oerrors++;
   1944 				continue;
   1945 			}
   1946 
   1947 			/* classify mbuf so we can find which tx ring to use */
   1948 			if (ieee80211_classify(ic, m0, ni) != 0) {
   1949 				m_freem(m0);
   1950 				ieee80211_free_node(ni);
   1951 				ifp->if_oerrors++;
   1952 				continue;
   1953 			}
   1954 
   1955 			/* no QoS encapsulation for EAPOL frames */
   1956 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   1957 			    M_WME_GETAC(m0) : WME_AC_BE;
   1958 
   1959 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   1960 				/* there is no place left in this ring */
   1961 				ifp->if_flags |= IFF_OACTIVE;
   1962 				break;
   1963 			}
   1964 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1965 #if NBPFILTER > 0
   1966 			if (ifp->if_bpf != NULL)
   1967 				bpf_mtap(ifp->if_bpf, m0);
   1968 #endif
   1969 			m0 = ieee80211_encap(ic, m0, ni);
   1970 			if (m0 == NULL) {
   1971 				ieee80211_free_node(ni);
   1972 				ifp->if_oerrors++;
   1973 				continue;
   1974 			}
   1975 #if NBPFILTER > 0
   1976 			if (ic->ic_rawbpf != NULL)
   1977 				bpf_mtap(ic->ic_rawbpf, m0);
   1978 #endif
   1979 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   1980 				ieee80211_free_node(ni);
   1981 				ifp->if_oerrors++;
   1982 				break;
   1983 			}
   1984 		}
   1985 
   1986 		sc->sc_tx_timer = 5;
   1987 		ifp->if_timer = 1;
   1988 	}
   1989 }
   1990 
   1991 static void
   1992 wpi_watchdog(struct ifnet *ifp)
   1993 {
   1994 	struct wpi_softc *sc = ifp->if_softc;
   1995 
   1996 	ifp->if_timer = 0;
   1997 
   1998 	if (sc->sc_tx_timer > 0) {
   1999 		if (--sc->sc_tx_timer == 0) {
   2000 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2001 			ifp->if_oerrors++;
   2002 			ifp->if_flags &= ~IFF_UP;
   2003 			wpi_stop(ifp, 1);
   2004 			return;
   2005 		}
   2006 		ifp->if_timer = 1;
   2007 	}
   2008 
   2009 	ieee80211_watchdog(&sc->sc_ic);
   2010 }
   2011 
   2012 static int
   2013 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2014 {
   2015 #define IS_RUNNING(ifp) \
   2016 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2017 
   2018 	struct wpi_softc *sc = ifp->if_softc;
   2019 	struct ieee80211com *ic = &sc->sc_ic;
   2020 	int s, error = 0;
   2021 
   2022 	s = splnet();
   2023 
   2024 	switch (cmd) {
   2025 	case SIOCSIFFLAGS:
   2026 		if (ifp->if_flags & IFF_UP) {
   2027 			if (!(ifp->if_flags & IFF_RUNNING))
   2028 				wpi_init(ifp);
   2029 		} else {
   2030 			if (ifp->if_flags & IFF_RUNNING)
   2031 				wpi_stop(ifp, 1);
   2032 		}
   2033 		break;
   2034 
   2035 	case SIOCADDMULTI:
   2036 	case SIOCDELMULTI:
   2037 		/* XXX no h/w multicast filter? --dyoung */
   2038 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2039 			/* setup multicast filter, etc */
   2040 			error = 0;
   2041 		}
   2042 		break;
   2043 
   2044 	default:
   2045 		error = ieee80211_ioctl(ic, cmd, data);
   2046 	}
   2047 
   2048 	if (error == ENETRESET) {
   2049 		if (IS_RUNNING(ifp) &&
   2050 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2051 			wpi_init(ifp);
   2052 		error = 0;
   2053 	}
   2054 
   2055 	splx(s);
   2056 	return error;
   2057 
   2058 #undef IS_RUNNING
   2059 }
   2060 
   2061 /*
   2062  * Extract various information from EEPROM.
   2063  */
   2064 static void
   2065 wpi_read_eeprom(struct wpi_softc *sc)
   2066 {
   2067 	struct ieee80211com *ic = &sc->sc_ic;
   2068 	char domain[4];
   2069 	int i;
   2070 
   2071 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2072 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2073 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2074 
   2075 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2076 	    sc->type));
   2077 
   2078 	/* read and print regulatory domain */
   2079 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2080 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
   2081 
   2082 	/* read and print MAC address */
   2083 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2084 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2085 
   2086 	/* read the list of authorized channels */
   2087 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2088 		wpi_read_eeprom_channels(sc, i);
   2089 
   2090 	/* read the list of power groups */
   2091 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2092 		wpi_read_eeprom_group(sc, i);
   2093 }
   2094 
   2095 static void
   2096 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2097 {
   2098 	struct ieee80211com *ic = &sc->sc_ic;
   2099 	const struct wpi_chan_band *band = &wpi_bands[n];
   2100 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2101 	int chan, i;
   2102 
   2103 	wpi_read_prom_data(sc, band->addr, channels,
   2104 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2105 
   2106 	for (i = 0; i < band->nchan; i++) {
   2107 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2108 			continue;
   2109 
   2110 		chan = band->chan[i];
   2111 
   2112 		if (n == 0) {	/* 2GHz band */
   2113 			ic->ic_channels[chan].ic_freq =
   2114 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2115 			ic->ic_channels[chan].ic_flags =
   2116 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2117 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2118 
   2119 		} else {	/* 5GHz band */
   2120 			/*
   2121 			 * Some 3945abg adapters support channels 7, 8, 11
   2122 			 * and 12 in the 2GHz *and* 5GHz bands.
   2123 			 * Because of limitations in our net80211(9) stack,
   2124 			 * we can't support these channels in 5GHz band.
   2125 			 */
   2126 			if (chan <= 14)
   2127 				continue;
   2128 
   2129 			ic->ic_channels[chan].ic_freq =
   2130 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2131 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2132 		}
   2133 
   2134 		/* is active scan allowed on this channel? */
   2135 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2136 			ic->ic_channels[chan].ic_flags |=
   2137 			    IEEE80211_CHAN_PASSIVE;
   2138 		}
   2139 
   2140 		/* save maximum allowed power for this channel */
   2141 		sc->maxpwr[chan] = channels[i].maxpwr;
   2142 
   2143 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2144 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2145 	}
   2146 }
   2147 
   2148 static void
   2149 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2150 {
   2151 	struct wpi_power_group *group = &sc->groups[n];
   2152 	struct wpi_eeprom_group rgroup;
   2153 	int i;
   2154 
   2155 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2156 	    sizeof rgroup);
   2157 
   2158 	/* save power group information */
   2159 	group->chan   = rgroup.chan;
   2160 	group->maxpwr = rgroup.maxpwr;
   2161 	/* temperature at which the samples were taken */
   2162 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2163 
   2164 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2165 	    group->chan, group->maxpwr, group->temp));
   2166 
   2167 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2168 		group->samples[i].index = rgroup.samples[i].index;
   2169 		group->samples[i].power = rgroup.samples[i].power;
   2170 
   2171 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2172 		    group->samples[i].index, group->samples[i].power));
   2173 	}
   2174 }
   2175 
   2176 /*
   2177  * Send a command to the firmware.
   2178  */
   2179 static int
   2180 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2181 {
   2182 	struct wpi_tx_ring *ring = &sc->cmdq;
   2183 	struct wpi_tx_desc *desc;
   2184 	struct wpi_tx_cmd *cmd;
   2185 
   2186 	KASSERT(size <= sizeof cmd->data);
   2187 
   2188 	desc = &ring->desc[ring->cur];
   2189 	cmd = &ring->cmd[ring->cur];
   2190 
   2191 	cmd->code = code;
   2192 	cmd->flags = 0;
   2193 	cmd->qid = ring->qid;
   2194 	cmd->idx = ring->cur;
   2195 	memcpy(cmd->data, buf, size);
   2196 
   2197 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2198 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2199 		ring->cur * sizeof (struct wpi_tx_cmd));
   2200 	desc->segs[0].len  = htole32(4 + size);
   2201 
   2202 	/* kick cmd ring */
   2203 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2204 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2205 
   2206 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2207 }
   2208 
   2209 static int
   2210 wpi_wme_update(struct ieee80211com *ic)
   2211 {
   2212 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2213 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2214 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2215 	const struct wmeParams *wmep;
   2216 	struct wpi_wme_setup wme;
   2217 	int ac;
   2218 
   2219 	/* don't override default WME values if WME is not actually enabled */
   2220 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2221 		return 0;
   2222 
   2223 	wme.flags = 0;
   2224 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2225 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2226 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2227 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2228 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2229 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2230 
   2231 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2232 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2233 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2234 	}
   2235 
   2236 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2237 #undef WPI_USEC
   2238 #undef WPI_EXP2
   2239 }
   2240 
   2241 /*
   2242  * Configure h/w multi-rate retries.
   2243  */
   2244 static int
   2245 wpi_mrr_setup(struct wpi_softc *sc)
   2246 {
   2247 	struct ieee80211com *ic = &sc->sc_ic;
   2248 	struct wpi_mrr_setup mrr;
   2249 	int i, error;
   2250 
   2251 	/* CCK rates (not used with 802.11a) */
   2252 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2253 		mrr.rates[i].flags = 0;
   2254 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2255 		/* fallback to the immediate lower CCK rate (if any) */
   2256 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2257 		/* try one time at this rate before falling back to "next" */
   2258 		mrr.rates[i].ntries = 1;
   2259 	}
   2260 
   2261 	/* OFDM rates (not used with 802.11b) */
   2262 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2263 		mrr.rates[i].flags = 0;
   2264 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2265 		/* fallback to the immediate lower rate (if any) */
   2266 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2267 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2268 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2269 			WPI_OFDM6 : WPI_CCK2) :
   2270 		    i - 1;
   2271 		/* try one time at this rate before falling back to "next" */
   2272 		mrr.rates[i].ntries = 1;
   2273 	}
   2274 
   2275 	/* setup MRR for control frames */
   2276 	mrr.which = htole32(WPI_MRR_CTL);
   2277 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2278 	if (error != 0) {
   2279 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
   2280 		return error;
   2281 	}
   2282 
   2283 	/* setup MRR for data frames */
   2284 	mrr.which = htole32(WPI_MRR_DATA);
   2285 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2286 	if (error != 0) {
   2287 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
   2288 		return error;
   2289 	}
   2290 
   2291 	return 0;
   2292 }
   2293 
   2294 static void
   2295 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2296 {
   2297 	struct wpi_cmd_led led;
   2298 
   2299 	led.which = which;
   2300 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2301 	led.off = off;
   2302 	led.on = on;
   2303 
   2304 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2305 }
   2306 
   2307 static void
   2308 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2309 {
   2310 	struct wpi_cmd_tsf tsf;
   2311 	uint64_t val, mod;
   2312 
   2313 	memset(&tsf, 0, sizeof tsf);
   2314 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
   2315 	tsf.bintval = htole16(ni->ni_intval);
   2316 	tsf.lintval = htole16(10);
   2317 
   2318 	/* compute remaining time until next beacon */
   2319 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
   2320 	mod = le64toh(tsf.tstamp) % val;
   2321 	tsf.binitval = htole32((uint32_t)(val - mod));
   2322 
   2323 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
   2324 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2325 
   2326 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2327 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2328 }
   2329 
   2330 /*
   2331  * Update Tx power to match what is defined for channel `c'.
   2332  */
   2333 static int
   2334 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2335 {
   2336 	struct ieee80211com *ic = &sc->sc_ic;
   2337 	struct wpi_power_group *group;
   2338 	struct wpi_cmd_txpower txpower;
   2339 	u_int chan;
   2340 	int i;
   2341 
   2342 	/* get channel number */
   2343 	chan = ieee80211_chan2ieee(ic, c);
   2344 
   2345 	/* find the power group to which this channel belongs */
   2346 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2347 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2348 			if (chan <= group->chan)
   2349 				break;
   2350 	} else
   2351 		group = &sc->groups[0];
   2352 
   2353 	memset(&txpower, 0, sizeof txpower);
   2354 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2355 	txpower.chan = htole16(chan);
   2356 
   2357 	/* set Tx power for all OFDM and CCK rates */
   2358 	for (i = 0; i <= 11 ; i++) {
   2359 		/* retrieve Tx power for this channel/rate combination */
   2360 		int idx = wpi_get_power_index(sc, group, c,
   2361 		    wpi_ridx_to_rate[i]);
   2362 
   2363 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2364 
   2365 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2366 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2367 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2368 		} else {
   2369 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2370 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2371 		}
   2372 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2373 		    wpi_ridx_to_rate[i], idx));
   2374 	}
   2375 
   2376 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2377 }
   2378 
   2379 /*
   2380  * Determine Tx power index for a given channel/rate combination.
   2381  * This takes into account the regulatory information from EEPROM and the
   2382  * current temperature.
   2383  */
   2384 static int
   2385 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2386     struct ieee80211_channel *c, int rate)
   2387 {
   2388 /* fixed-point arithmetic division using a n-bit fractional part */
   2389 #define fdivround(a, b, n)	\
   2390 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2391 
   2392 /* linear interpolation */
   2393 #define interpolate(x, x1, y1, x2, y2, n)	\
   2394 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2395 
   2396 	struct ieee80211com *ic = &sc->sc_ic;
   2397 	struct wpi_power_sample *sample;
   2398 	int pwr, idx;
   2399 	u_int chan;
   2400 
   2401 	/* get channel number */
   2402 	chan = ieee80211_chan2ieee(ic, c);
   2403 
   2404 	/* default power is group's maximum power - 3dB */
   2405 	pwr = group->maxpwr / 2;
   2406 
   2407 	/* decrease power for highest OFDM rates to reduce distortion */
   2408 	switch (rate) {
   2409 	case 72:	/* 36Mb/s */
   2410 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2411 		break;
   2412 	case 96:	/* 48Mb/s */
   2413 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2414 		break;
   2415 	case 108:	/* 54Mb/s */
   2416 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2417 		break;
   2418 	}
   2419 
   2420 	/* never exceed channel's maximum allowed Tx power */
   2421 	pwr = min(pwr, sc->maxpwr[chan]);
   2422 
   2423 	/* retrieve power index into gain tables from samples */
   2424 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2425 		if (pwr > sample[1].power)
   2426 			break;
   2427 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2428 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2429 	    sample[1].power, sample[1].index, 19);
   2430 
   2431 	/*
   2432 	 * Adjust power index based on current temperature:
   2433 	 * - if cooler than factory-calibrated: decrease output power
   2434 	 * - if warmer than factory-calibrated: increase output power
   2435 	 */
   2436 	idx -= (sc->temp - group->temp) * 11 / 100;
   2437 
   2438 	/* decrease power for CCK rates (-5dB) */
   2439 	if (!WPI_RATE_IS_OFDM(rate))
   2440 		idx += 10;
   2441 
   2442 	/* keep power index in a valid range */
   2443 	if (idx < 0)
   2444 		return 0;
   2445 	if (idx > WPI_MAX_PWR_INDEX)
   2446 		return WPI_MAX_PWR_INDEX;
   2447 	return idx;
   2448 
   2449 #undef interpolate
   2450 #undef fdivround
   2451 }
   2452 
   2453 /*
   2454  * Build a beacon frame that the firmware will broadcast periodically in
   2455  * IBSS or HostAP modes.
   2456  */
   2457 static int
   2458 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2459 {
   2460 	struct ieee80211com *ic = &sc->sc_ic;
   2461 	struct wpi_tx_ring *ring = &sc->cmdq;
   2462 	struct wpi_tx_desc *desc;
   2463 	struct wpi_tx_data *data;
   2464 	struct wpi_tx_cmd *cmd;
   2465 	struct wpi_cmd_beacon *bcn;
   2466 	struct ieee80211_beacon_offsets bo;
   2467 	struct mbuf *m0;
   2468 	int error;
   2469 
   2470 	desc = &ring->desc[ring->cur];
   2471 	data = &ring->data[ring->cur];
   2472 
   2473 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2474 	if (m0 == NULL) {
   2475 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
   2476 		return ENOMEM;
   2477 	}
   2478 
   2479 	cmd = &ring->cmd[ring->cur];
   2480 	cmd->code = WPI_CMD_SET_BEACON;
   2481 	cmd->flags = 0;
   2482 	cmd->qid = ring->qid;
   2483 	cmd->idx = ring->cur;
   2484 
   2485 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2486 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2487 	bcn->id = WPI_ID_BROADCAST;
   2488 	bcn->ofdm_mask = 0xff;
   2489 	bcn->cck_mask = 0x0f;
   2490 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2491 	bcn->len = htole16(m0->m_pkthdr.len);
   2492 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2493 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2494 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2495 
   2496 	/* save and trim IEEE802.11 header */
   2497 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2498 	m_adj(m0, sizeof (struct ieee80211_frame));
   2499 
   2500 	/* assume beacon frame is contiguous */
   2501 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2502 		BUS_DMA_READ | BUS_DMA_NOWAIT);
   2503 	if (error) {
   2504 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2505 		m_freem(m0);
   2506 		return error;
   2507 	}
   2508 
   2509 	data->m = m0;
   2510 
   2511 	/* first scatter/gather segment is used by the beacon command */
   2512 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2513 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2514 		ring->cur * sizeof (struct wpi_tx_cmd));
   2515 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2516 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2517 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2518 
   2519 	/* kick cmd ring */
   2520 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2521 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2522 
   2523 	return 0;
   2524 }
   2525 
   2526 static int
   2527 wpi_auth(struct wpi_softc *sc)
   2528 {
   2529 	struct ieee80211com *ic = &sc->sc_ic;
   2530 	struct ieee80211_node *ni = ic->ic_bss;
   2531 	struct wpi_node_info node;
   2532 	int error;
   2533 
   2534 	/* update adapter's configuration */
   2535 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2536 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2537 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2538 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2539 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2540 		    WPI_CONFIG_24GHZ);
   2541 	}
   2542 	switch (ic->ic_curmode) {
   2543 	case IEEE80211_MODE_11A:
   2544 		sc->config.cck_mask  = 0;
   2545 		sc->config.ofdm_mask = 0x15;
   2546 		break;
   2547 	case IEEE80211_MODE_11B:
   2548 		sc->config.cck_mask  = 0x03;
   2549 		sc->config.ofdm_mask = 0;
   2550 		break;
   2551 	default:	/* assume 802.11b/g */
   2552 		sc->config.cck_mask  = 0x0f;
   2553 		sc->config.ofdm_mask = 0x15;
   2554 	}
   2555 
   2556 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2557 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2558 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2559 		sizeof (struct wpi_config), 1);
   2560 	if (error != 0) {
   2561 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2562 		return error;
   2563 	}
   2564 
   2565 	/* configuration has changed, set Tx power accordingly */
   2566 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2567 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2568 		return error;
   2569 	}
   2570 
   2571 	/* add default node */
   2572 	memset(&node, 0, sizeof node);
   2573 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2574 	node.id = WPI_ID_BSS;
   2575 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2576 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2577 	node.action = htole32(WPI_ACTION_SET_RATE);
   2578 	node.antenna = WPI_ANTENNA_BOTH;
   2579 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2580 	if (error != 0) {
   2581 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2582 		return error;
   2583 	}
   2584 
   2585 	return 0;
   2586 }
   2587 
   2588 /*
   2589  * Send a scan request to the firmware.  Since this command is huge, we map it
   2590  * into a mbuf instead of using the pre-allocated set of commands.
   2591  */
   2592 static int
   2593 wpi_scan(struct wpi_softc *sc, uint16_t flags)
   2594 {
   2595 	struct ieee80211com *ic = &sc->sc_ic;
   2596 	struct wpi_tx_ring *ring = &sc->cmdq;
   2597 	struct wpi_tx_desc *desc;
   2598 	struct wpi_tx_data *data;
   2599 	struct wpi_tx_cmd *cmd;
   2600 	struct wpi_scan_hdr *hdr;
   2601 	struct wpi_scan_chan *chan;
   2602 	struct ieee80211_frame *wh;
   2603 	struct ieee80211_rateset *rs;
   2604 	struct ieee80211_channel *c;
   2605 	enum ieee80211_phymode mode;
   2606 	uint8_t *frm;
   2607 	int nrates, pktlen, error;
   2608 
   2609 	desc = &ring->desc[ring->cur];
   2610 	data = &ring->data[ring->cur];
   2611 
   2612 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2613 	if (data->m == NULL) {
   2614 		aprint_error_dev(sc->sc_dev,
   2615 						"could not allocate mbuf for scan command\n");
   2616 		return ENOMEM;
   2617 	}
   2618 
   2619 	MCLGET(data->m, M_DONTWAIT);
   2620 	if (!(data->m->m_flags & M_EXT)) {
   2621 		m_freem(data->m);
   2622 		data->m = NULL;
   2623 		aprint_error_dev(sc->sc_dev,
   2624 						 "could not allocate mbuf for scan command\n");
   2625 		return ENOMEM;
   2626 	}
   2627 
   2628 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2629 	cmd->code = WPI_CMD_SCAN;
   2630 	cmd->flags = 0;
   2631 	cmd->qid = ring->qid;
   2632 	cmd->idx = ring->cur;
   2633 
   2634 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2635 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2636 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
   2637 	hdr->id = WPI_ID_BROADCAST;
   2638 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2639 
   2640 	/*
   2641 	 * Move to the next channel if no packets are received within 5 msecs
   2642 	 * after sending the probe request (this helps to reduce the duration
   2643 	 * of active scans).
   2644 	 */
   2645 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
   2646 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2647 
   2648 	if (flags & IEEE80211_CHAN_A) {
   2649 		hdr->crc_threshold = htole16(1);
   2650 		/* send probe requests at 6Mbps */
   2651 		hdr->rate = wpi_plcp_signal(12);
   2652 	} else {
   2653 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2654 		/* send probe requests at 1Mbps */
   2655 		hdr->rate = wpi_plcp_signal(2);
   2656 	}
   2657 
   2658 	/* for directed scans, firmware inserts the essid IE itself */
   2659 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2660 	hdr->essid[0].len = ic->ic_des_esslen;
   2661 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2662 
   2663 	/*
   2664 	 * Build a probe request frame.  Most of the following code is a
   2665 	 * copy & paste of what is done in net80211.
   2666 	 */
   2667 	wh = (struct ieee80211_frame *)(hdr + 1);
   2668 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2669 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2670 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2671 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2672 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2673 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2674 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2675 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2676 
   2677 	frm = (uint8_t *)(wh + 1);
   2678 
   2679 	/* add empty essid IE (firmware generates it for directed scans) */
   2680 	*frm++ = IEEE80211_ELEMID_SSID;
   2681 	*frm++ = 0;
   2682 
   2683 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
   2684 	rs = &ic->ic_sup_rates[mode];
   2685 
   2686 	/* add supported rates IE */
   2687 	*frm++ = IEEE80211_ELEMID_RATES;
   2688 	nrates = rs->rs_nrates;
   2689 	if (nrates > IEEE80211_RATE_SIZE)
   2690 		nrates = IEEE80211_RATE_SIZE;
   2691 	*frm++ = nrates;
   2692 	memcpy(frm, rs->rs_rates, nrates);
   2693 	frm += nrates;
   2694 
   2695 	/* add supported xrates IE */
   2696 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2697 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2698 		*frm++ = IEEE80211_ELEMID_XRATES;
   2699 		*frm++ = nrates;
   2700 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2701 		frm += nrates;
   2702 	}
   2703 
   2704 	/* setup length of probe request */
   2705 	hdr->paylen = htole16(frm - (uint8_t *)wh);
   2706 
   2707 	chan = (struct wpi_scan_chan *)frm;
   2708 	for (c  = &ic->ic_channels[1];
   2709 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   2710 		if ((c->ic_flags & flags) != flags)
   2711 			continue;
   2712 
   2713 		chan->chan = ieee80211_chan2ieee(ic, c);
   2714 		chan->flags = 0;
   2715 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2716 			chan->flags |= WPI_CHAN_ACTIVE;
   2717 			if (ic->ic_des_esslen != 0)
   2718 				chan->flags |= WPI_CHAN_DIRECT;
   2719 		}
   2720 		chan->dsp_gain = 0x6e;
   2721 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2722 			chan->rf_gain = 0x3b;
   2723 			chan->active = htole16(10);
   2724 			chan->passive = htole16(110);
   2725 		} else {
   2726 			chan->rf_gain = 0x28;
   2727 			chan->active = htole16(20);
   2728 			chan->passive = htole16(120);
   2729 		}
   2730 		hdr->nchan++;
   2731 		chan++;
   2732 
   2733 		frm += sizeof (struct wpi_scan_chan);
   2734 	}
   2735 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2736 	pktlen = frm - (uint8_t *)cmd;
   2737 
   2738 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
   2739 		NULL, BUS_DMA_NOWAIT);
   2740 	if (error) {
   2741 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2742 		m_freem(data->m);
   2743 		data->m = NULL;
   2744 		return error;
   2745 	}
   2746 
   2747 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2748 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2749 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2750 
   2751 	/* kick cmd ring */
   2752 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2753 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2754 
   2755 	return 0;	/* will be notified async. of failure/success */
   2756 }
   2757 
   2758 static int
   2759 wpi_config(struct wpi_softc *sc)
   2760 {
   2761 	struct ieee80211com *ic = &sc->sc_ic;
   2762 	struct ifnet *ifp = ic->ic_ifp;
   2763 	struct wpi_power power;
   2764 	struct wpi_bluetooth bluetooth;
   2765 	struct wpi_node_info node;
   2766 	int error;
   2767 
   2768 	memset(&power, 0, sizeof power);
   2769 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2770 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2771 	if (error != 0) {
   2772 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2773 		return error;
   2774 	}
   2775 
   2776 	/* configure bluetooth coexistence */
   2777 	memset(&bluetooth, 0, sizeof bluetooth);
   2778 	bluetooth.flags = 3;
   2779 	bluetooth.lead = 0xaa;
   2780 	bluetooth.kill = 1;
   2781 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   2782 		0);
   2783 	if (error != 0) {
   2784 		aprint_error_dev(sc->sc_dev,
   2785 			"could not configure bluetooth coexistence\n");
   2786 		return error;
   2787 	}
   2788 
   2789 	/* configure adapter */
   2790 	memset(&sc->config, 0, sizeof (struct wpi_config));
   2791 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2792 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   2793 	/*set default channel*/
   2794 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   2795 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2796 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
   2797 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2798 		    WPI_CONFIG_24GHZ);
   2799 	}
   2800 	sc->config.filter = 0;
   2801 	switch (ic->ic_opmode) {
   2802 	case IEEE80211_M_STA:
   2803 		sc->config.mode = WPI_MODE_STA;
   2804 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   2805 		break;
   2806 	case IEEE80211_M_IBSS:
   2807 	case IEEE80211_M_AHDEMO:
   2808 		sc->config.mode = WPI_MODE_IBSS;
   2809 		break;
   2810 	case IEEE80211_M_HOSTAP:
   2811 		sc->config.mode = WPI_MODE_HOSTAP;
   2812 		break;
   2813 	case IEEE80211_M_MONITOR:
   2814 		sc->config.mode = WPI_MODE_MONITOR;
   2815 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   2816 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   2817 		break;
   2818 	}
   2819 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   2820 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   2821 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2822 		sizeof (struct wpi_config), 0);
   2823 	if (error != 0) {
   2824 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   2825 		return error;
   2826 	}
   2827 
   2828 	/* configuration has changed, set Tx power accordingly */
   2829 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
   2830 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2831 		return error;
   2832 	}
   2833 
   2834 	/* add broadcast node */
   2835 	memset(&node, 0, sizeof node);
   2836 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   2837 	node.id = WPI_ID_BROADCAST;
   2838 	node.rate = wpi_plcp_signal(2);
   2839 	node.action = htole32(WPI_ACTION_SET_RATE);
   2840 	node.antenna = WPI_ANTENNA_BOTH;
   2841 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   2842 	if (error != 0) {
   2843 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   2844 		return error;
   2845 	}
   2846 
   2847 	if ((error = wpi_mrr_setup(sc)) != 0) {
   2848 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   2849 		return error;
   2850 	}
   2851 
   2852 	return 0;
   2853 }
   2854 
   2855 static void
   2856 wpi_stop_master(struct wpi_softc *sc)
   2857 {
   2858 	uint32_t tmp;
   2859 	int ntries;
   2860 
   2861 	tmp = WPI_READ(sc, WPI_RESET);
   2862 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   2863 
   2864 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2865 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   2866 		return;	/* already asleep */
   2867 
   2868 	for (ntries = 0; ntries < 100; ntries++) {
   2869 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   2870 			break;
   2871 		DELAY(10);
   2872 	}
   2873 	if (ntries == 100) {
   2874 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   2875 	}
   2876 }
   2877 
   2878 static int
   2879 wpi_power_up(struct wpi_softc *sc)
   2880 {
   2881 	uint32_t tmp;
   2882 	int ntries;
   2883 
   2884 	wpi_mem_lock(sc);
   2885 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   2886 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   2887 	wpi_mem_unlock(sc);
   2888 
   2889 	for (ntries = 0; ntries < 5000; ntries++) {
   2890 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   2891 			break;
   2892 		DELAY(10);
   2893 	}
   2894 	if (ntries == 5000) {
   2895 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
   2896 		return ETIMEDOUT;
   2897 	}
   2898 	return 0;
   2899 }
   2900 
   2901 static int
   2902 wpi_reset(struct wpi_softc *sc)
   2903 {
   2904 	uint32_t tmp;
   2905 	int ntries;
   2906 
   2907 	/* clear any pending interrupts */
   2908 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   2909 
   2910 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   2911 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   2912 
   2913 	tmp = WPI_READ(sc, WPI_CHICKEN);
   2914 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   2915 
   2916 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2917 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   2918 
   2919 	/* wait for clock stabilization */
   2920 	for (ntries = 0; ntries < 1000; ntries++) {
   2921 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   2922 			break;
   2923 		DELAY(10);
   2924 	}
   2925 	if (ntries == 1000) {
   2926 		aprint_error_dev(sc->sc_dev,
   2927 						 "timeout waiting for clock stabilization\n");
   2928 		return ETIMEDOUT;
   2929 	}
   2930 
   2931 	/* initialize EEPROM */
   2932 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   2933 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   2934 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   2935 		return EIO;
   2936 	}
   2937 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   2938 
   2939 	return 0;
   2940 }
   2941 
   2942 static void
   2943 wpi_hw_config(struct wpi_softc *sc)
   2944 {
   2945 	uint32_t rev, hw;
   2946 
   2947 	/* voodoo from the reference driver */
   2948 	hw = WPI_READ(sc, WPI_HWCONFIG);
   2949 
   2950 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   2951 	rev = PCI_REVISION(rev);
   2952 	if ((rev & 0xc0) == 0x40)
   2953 		hw |= WPI_HW_ALM_MB;
   2954 	else if (!(rev & 0x80))
   2955 		hw |= WPI_HW_ALM_MM;
   2956 
   2957 	if (sc->cap == 0x80)
   2958 		hw |= WPI_HW_SKU_MRC;
   2959 
   2960 	hw &= ~WPI_HW_REV_D;
   2961 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   2962 		hw |= WPI_HW_REV_D;
   2963 
   2964 	if (sc->type > 1)
   2965 		hw |= WPI_HW_TYPE_B;
   2966 
   2967 	DPRINTF(("setting h/w config %x\n", hw));
   2968 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   2969 }
   2970 
   2971 static int
   2972 wpi_init(struct ifnet *ifp)
   2973 {
   2974 	struct wpi_softc *sc = ifp->if_softc;
   2975 	struct ieee80211com *ic = &sc->sc_ic;
   2976 	uint32_t tmp;
   2977 	int qid, ntries, error;
   2978 
   2979 	wpi_stop(ifp,1);
   2980 	(void)wpi_reset(sc);
   2981 
   2982 	wpi_mem_lock(sc);
   2983 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   2984 	DELAY(20);
   2985 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   2986 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   2987 	wpi_mem_unlock(sc);
   2988 
   2989 	(void)wpi_power_up(sc);
   2990 	wpi_hw_config(sc);
   2991 
   2992 	/* init Rx ring */
   2993 	wpi_mem_lock(sc);
   2994 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   2995 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   2996 	    offsetof(struct wpi_shared, next));
   2997 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   2998 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   2999 	wpi_mem_unlock(sc);
   3000 
   3001 	/* init Tx rings */
   3002 	wpi_mem_lock(sc);
   3003 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
   3004 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
   3005 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
   3006 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3007 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3008 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3009 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3010 
   3011 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3012 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3013 
   3014 	for (qid = 0; qid < 6; qid++) {
   3015 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3016 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3017 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3018 	}
   3019 	wpi_mem_unlock(sc);
   3020 
   3021 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3022 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3023 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3024 
   3025 	/* clear any pending interrupts */
   3026 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3027 	/* enable interrupts */
   3028 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3029 
   3030 	/* not sure why/if this is necessary... */
   3031 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3032 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3033 
   3034 	if ((error = wpi_load_firmware(sc)) != 0) {
   3035 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
   3036 		goto fail1;
   3037 	}
   3038 
   3039 	/* Check the status of the radio switch */
   3040 	if (wpi_getrfkill(sc)) {
   3041 		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
   3042 		error = EBUSY;
   3043 		goto fail1;
   3044 	}
   3045 
   3046 	/* wait for thermal sensors to calibrate */
   3047 	for (ntries = 0; ntries < 1000; ntries++) {
   3048 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3049 			break;
   3050 		DELAY(10);
   3051 	}
   3052 	if (ntries == 1000) {
   3053 		aprint_error_dev(sc->sc_dev,
   3054 						 "timeout waiting for thermal sensors calibration\n");
   3055 		error = ETIMEDOUT;
   3056 		goto fail1;
   3057 	}
   3058 
   3059 	DPRINTF(("temperature %d\n", sc->temp));
   3060 
   3061 	if ((error = wpi_config(sc)) != 0) {
   3062 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3063 		goto fail1;
   3064 	}
   3065 
   3066 	ifp->if_flags &= ~IFF_OACTIVE;
   3067 	ifp->if_flags |= IFF_RUNNING;
   3068 
   3069 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3070 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3071 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3072 	}
   3073 	else
   3074 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3075 
   3076 	return 0;
   3077 
   3078 fail1:	wpi_stop(ifp, 1);
   3079 	return error;
   3080 }
   3081 
   3082 
   3083 static void
   3084 wpi_stop(struct ifnet *ifp, int disable)
   3085 {
   3086 	struct wpi_softc *sc = ifp->if_softc;
   3087 	struct ieee80211com *ic = &sc->sc_ic;
   3088 	uint32_t tmp;
   3089 	int ac;
   3090 
   3091 	ifp->if_timer = sc->sc_tx_timer = 0;
   3092 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3093 
   3094 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3095 
   3096 	/* disable interrupts */
   3097 	WPI_WRITE(sc, WPI_MASK, 0);
   3098 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3099 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3100 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3101 
   3102 	wpi_mem_lock(sc);
   3103 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3104 	wpi_mem_unlock(sc);
   3105 
   3106 	/* reset all Tx rings */
   3107 	for (ac = 0; ac < 4; ac++)
   3108 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3109 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3110 
   3111 	/* reset Rx ring */
   3112 	wpi_reset_rx_ring(sc, &sc->rxq);
   3113 
   3114 	wpi_mem_lock(sc);
   3115 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3116 	wpi_mem_unlock(sc);
   3117 
   3118 	DELAY(5);
   3119 
   3120 	wpi_stop_master(sc);
   3121 
   3122 	tmp = WPI_READ(sc, WPI_RESET);
   3123 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3124 }
   3125 
   3126 static bool
   3127 wpi_resume(device_t dv PMF_FN_ARGS)
   3128 {
   3129 	struct wpi_softc *sc = device_private(dv);
   3130 
   3131 	(void)wpi_reset(sc);
   3132 
   3133 	return true;
   3134 }
   3135 
   3136 /*
   3137  * Return whether or not the radio is enabled in hardware
   3138  * (i.e. the rfkill switch is "off").
   3139  */
   3140 static int
   3141 wpi_getrfkill(struct wpi_softc *sc)
   3142 {
   3143 	uint32_t tmp;
   3144 
   3145 	wpi_mem_lock(sc);
   3146 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3147 	wpi_mem_unlock(sc);
   3148 
   3149 	return !(tmp & 0x01);
   3150 }
   3151 
   3152 static int
   3153 wpi_sysctl_radio(SYSCTLFN_ARGS)
   3154 {
   3155 	struct sysctlnode node;
   3156 	struct wpi_softc *sc;
   3157 	int val, error;
   3158 
   3159 	node = *rnode;
   3160 	sc = (struct wpi_softc *)node.sysctl_data;
   3161 
   3162 	val = !wpi_getrfkill(sc);
   3163 
   3164 	node.sysctl_data = &val;
   3165 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3166 
   3167 	if (error || newp == NULL)
   3168 		return error;
   3169 
   3170 	return 0;
   3171 }
   3172 
   3173 static void
   3174 wpi_sysctlattach(struct wpi_softc *sc)
   3175 {
   3176 	int rc;
   3177 	const struct sysctlnode *rnode;
   3178 	const struct sysctlnode *cnode;
   3179 
   3180 	struct sysctllog **clog = &sc->sc_sysctllog;
   3181 
   3182 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
   3183 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   3184 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
   3185 		goto err;
   3186 
   3187 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
   3188 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
   3189 	    SYSCTL_DESCR("wpi controls and statistics"),
   3190 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
   3191 		goto err;
   3192 
   3193 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3194 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
   3195 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
   3196 	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
   3197 		goto err;
   3198 
   3199 #ifdef WPI_DEBUG
   3200 	/* control debugging printfs */
   3201 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3202 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
   3203 	    "debug", SYSCTL_DESCR("Enable debugging output"),
   3204 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
   3205 		goto err;
   3206 #endif
   3207 
   3208 	return;
   3209 err:
   3210 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3211 }
   3212