Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.39
      1 /*  $NetBSD: if_wpi.c,v 1.39 2008/07/02 03:42:55 cube Exp $    */
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007
      5  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.39 2008/07/02 03:42:55 cube Exp $");
     22 
     23 /*
     24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25  */
     26 
     27 #include "bpfilter.h"
     28 
     29 #include <sys/param.h>
     30 #include <sys/sockio.h>
     31 #include <sys/sysctl.h>
     32 #include <sys/mbuf.h>
     33 #include <sys/kernel.h>
     34 #include <sys/socket.h>
     35 #include <sys/systm.h>
     36 #include <sys/malloc.h>
     37 #include <sys/mutex.h>
     38 #include <sys/conf.h>
     39 #include <sys/kauth.h>
     40 #include <sys/callout.h>
     41 
     42 #include <sys/bus.h>
     43 #include <machine/endian.h>
     44 #include <sys/intr.h>
     45 
     46 #include <dev/pci/pcireg.h>
     47 #include <dev/pci/pcivar.h>
     48 #include <dev/pci/pcidevs.h>
     49 
     50 #if NBPFILTER > 0
     51 #include <net/bpf.h>
     52 #endif
     53 #include <net/if.h>
     54 #include <net/if_arp.h>
     55 #include <net/if_dl.h>
     56 #include <net/if_ether.h>
     57 #include <net/if_media.h>
     58 #include <net/if_types.h>
     59 
     60 #include <net80211/ieee80211_var.h>
     61 #include <net80211/ieee80211_amrr.h>
     62 #include <net80211/ieee80211_radiotap.h>
     63 
     64 #include <netinet/in.h>
     65 #include <netinet/in_systm.h>
     66 #include <netinet/in_var.h>
     67 #include <netinet/ip.h>
     68 
     69 #include <dev/firmload.h>
     70 
     71 #include <dev/pci/if_wpireg.h>
     72 #include <dev/pci/if_wpivar.h>
     73 
     74 #ifdef WPI_DEBUG
     75 #define DPRINTF(x)	if (wpi_debug > 0) printf x
     76 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
     77 int wpi_debug = 1;
     78 #else
     79 #define DPRINTF(x)
     80 #define DPRINTFN(n, x)
     81 #endif
     82 
     83 /*
     84  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
     85  */
     86 static const struct ieee80211_rateset wpi_rateset_11a =
     87 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
     88 
     89 static const struct ieee80211_rateset wpi_rateset_11b =
     90 	{ 4, { 2, 4, 11, 22 } };
     91 
     92 static const struct ieee80211_rateset wpi_rateset_11g =
     93 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
     94 
     95 static int  wpi_match(device_t, struct cfdata *, void *);
     96 static void wpi_attach(device_t, device_t, void *);
     97 static int  wpi_detach(device_t , int);
     98 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
     99 	void **, bus_size_t, bus_size_t, int);
    100 static void wpi_dma_contig_free(struct wpi_dma_info *);
    101 static int  wpi_alloc_shared(struct wpi_softc *);
    102 static void wpi_free_shared(struct wpi_softc *);
    103 static int  wpi_alloc_fwmem(struct wpi_softc *);
    104 static void wpi_free_fwmem(struct wpi_softc *);
    105 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
    106 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
    107 static int  wpi_alloc_rpool(struct wpi_softc *);
    108 static void wpi_free_rpool(struct wpi_softc *);
    109 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    110 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    111 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    112 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
    113 	int);
    114 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    115 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    116 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    117 static void wpi_newassoc(struct ieee80211_node *, int);
    118 static int  wpi_media_change(struct ifnet *);
    119 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    120 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
    121 static void wpi_mem_lock(struct wpi_softc *);
    122 static void wpi_mem_unlock(struct wpi_softc *);
    123 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
    124 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    125 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    126 								   const uint32_t *, int);
    127 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    128 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    129 static int  wpi_load_firmware(struct wpi_softc *);
    130 static void wpi_calib_timeout(void *);
    131 static void wpi_iter_func(void *, struct ieee80211_node *);
    132 static void wpi_power_calibration(struct wpi_softc *, int);
    133 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    134 	struct wpi_rx_data *);
    135 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    136 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    137 static void wpi_notif_intr(struct wpi_softc *);
    138 static int  wpi_intr(void *);
    139 static void wpi_read_eeprom(struct wpi_softc *);
    140 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
    141 static void wpi_read_eeprom_group(struct wpi_softc *, int);
    142 static uint8_t wpi_plcp_signal(int);
    143 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
    144 	struct ieee80211_node *, int);
    145 static void wpi_start(struct ifnet *);
    146 static void wpi_watchdog(struct ifnet *);
    147 static int  wpi_ioctl(struct ifnet *, u_long, void *);
    148 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    149 static int  wpi_wme_update(struct ieee80211com *);
    150 static int  wpi_mrr_setup(struct wpi_softc *);
    151 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    152 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    153 static int  wpi_set_txpower(struct wpi_softc *,
    154 			    struct ieee80211_channel *, int);
    155 static int  wpi_get_power_index(struct wpi_softc *,
    156 		struct wpi_power_group *, struct ieee80211_channel *, int);
    157 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    158 static int  wpi_auth(struct wpi_softc *);
    159 static int  wpi_scan(struct wpi_softc *, uint16_t);
    160 static int  wpi_config(struct wpi_softc *);
    161 static void wpi_stop_master(struct wpi_softc *);
    162 static int  wpi_power_up(struct wpi_softc *);
    163 static int  wpi_reset(struct wpi_softc *);
    164 static void wpi_hw_config(struct wpi_softc *);
    165 static int  wpi_init(struct ifnet *);
    166 static void wpi_stop(struct ifnet *, int);
    167 static bool wpi_resume(device_t PMF_FN_PROTO);
    168 static int	wpi_getrfkill(struct wpi_softc *);
    169 static void wpi_sysctlattach(struct wpi_softc *);
    170 
    171 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    172 	wpi_detach, NULL);
    173 
    174 static int
    175 wpi_match(device_t parent, struct cfdata *match __unused, void *aux)
    176 {
    177 	struct pci_attach_args *pa = aux;
    178 
    179 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    180 		return 0;
    181 
    182 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    183 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    184 		return 1;
    185 
    186 	return 0;
    187 }
    188 
    189 /* Base Address Register */
    190 #define WPI_PCI_BAR0	0x10
    191 
    192 static void
    193 wpi_attach(device_t parent __unused, device_t self, void *aux)
    194 {
    195 	struct wpi_softc *sc = device_private(self);
    196 	struct ieee80211com *ic = &sc->sc_ic;
    197 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    198 	struct pci_attach_args *pa = aux;
    199 	const char *intrstr;
    200 	char devinfo[256];
    201 	bus_space_tag_t memt;
    202 	bus_space_handle_t memh;
    203 	pci_intr_handle_t ih;
    204 	pcireg_t data;
    205 	int error, ac, revision;
    206 
    207 	sc->sc_dev = self;
    208 	sc->sc_pct = pa->pa_pc;
    209 	sc->sc_pcitag = pa->pa_tag;
    210 
    211 	callout_init(&sc->calib_to, 0);
    212 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    213 
    214 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    215 	revision = PCI_REVISION(pa->pa_class);
    216 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    217 
    218 	/* enable bus-mastering */
    219 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    220 	data |= PCI_COMMAND_MASTER_ENABLE;
    221 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    222 
    223 	/* map the register window */
    224 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    225 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    226 	if (error != 0) {
    227 		aprint_error_dev(self, "could not map memory space\n");
    228 		return;
    229 	}
    230 
    231 	sc->sc_st = memt;
    232 	sc->sc_sh = memh;
    233 	sc->sc_dmat = pa->pa_dmat;
    234 
    235 	if (pci_intr_map(pa, &ih) != 0) {
    236 		aprint_error_dev(self, "could not map interrupt\n");
    237 		return;
    238 	}
    239 
    240 	intrstr = pci_intr_string(sc->sc_pct, ih);
    241 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
    242 	if (sc->sc_ih == NULL) {
    243 		aprint_error_dev(self, "could not establish interrupt");
    244 		if (intrstr != NULL)
    245 			aprint_error(" at %s", intrstr);
    246 		aprint_error("\n");
    247 		return;
    248 	}
    249 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    250 
    251 	if (wpi_reset(sc) != 0) {
    252 		aprint_error_dev(self, "could not reset adapter\n");
    253 		return;
    254 	}
    255 
    256  	/*
    257 	 * Allocate DMA memory for firmware transfers.
    258 	 */
    259 	if ((error = wpi_alloc_fwmem(sc)) != 0)
    260 		return;
    261 
    262 	/*
    263 	 * Allocate shared page and Tx/Rx rings.
    264 	 */
    265 	if ((error = wpi_alloc_shared(sc)) != 0) {
    266 		aprint_error_dev(self, "could not allocate shared area\n");
    267 		goto fail1;
    268 	}
    269 
    270 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    271 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    272 		goto fail2;
    273 	}
    274 
    275 	for (ac = 0; ac < 4; ac++) {
    276 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
    277 		if (error != 0) {
    278 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
    279 			goto fail3;
    280 		}
    281 	}
    282 
    283 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    284 	if (error != 0) {
    285 		aprint_error_dev(self, "could not allocate command ring\n");
    286 		goto fail3;
    287 	}
    288 
    289 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
    290 		aprint_error_dev(self, "could not allocate Rx ring\n");
    291 		goto fail4;
    292 	}
    293 
    294 	ic->ic_ifp = ifp;
    295 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    296 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    297 	ic->ic_state = IEEE80211_S_INIT;
    298 
    299 	/* set device capabilities */
    300 	ic->ic_caps =
    301 		IEEE80211_C_IBSS |       /* IBSS mode support */
    302 		IEEE80211_C_WPA |        /* 802.11i */
    303 		IEEE80211_C_MONITOR |    /* monitor mode supported */
    304 		IEEE80211_C_TXPMGT |     /* tx power management */
    305 		IEEE80211_C_SHSLOT |     /* short slot time supported */
    306 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
    307 		IEEE80211_C_WME;         /* 802.11e */
    308 
    309 	/* read supported channels and MAC address from EEPROM */
    310 	wpi_read_eeprom(sc);
    311 
    312 	/* set supported .11a, .11b, .11g rates */
    313 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
    314 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
    315 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
    316 
    317 	ic->ic_ibss_chan = &ic->ic_channels[0];
    318 
    319 	ifp->if_softc = sc;
    320 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    321 	ifp->if_init = wpi_init;
    322 	ifp->if_stop = wpi_stop;
    323 	ifp->if_ioctl = wpi_ioctl;
    324 	ifp->if_start = wpi_start;
    325 	ifp->if_watchdog = wpi_watchdog;
    326 	IFQ_SET_READY(&ifp->if_snd);
    327 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    328 
    329 	if_attach(ifp);
    330 	ieee80211_ifattach(ic);
    331 	/* override default methods */
    332 	ic->ic_node_alloc = wpi_node_alloc;
    333 	ic->ic_newassoc = wpi_newassoc;
    334 	ic->ic_wme.wme_update = wpi_wme_update;
    335 
    336 	/* override state transition machine */
    337 	sc->sc_newstate = ic->ic_newstate;
    338 	ic->ic_newstate = wpi_newstate;
    339 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
    340 
    341 	sc->amrr.amrr_min_success_threshold = 1;
    342 	sc->amrr.amrr_max_success_threshold = 15;
    343 
    344 	wpi_sysctlattach(sc);
    345 
    346 	if (!pmf_device_register(self, NULL, wpi_resume))
    347 		aprint_error_dev(self, "couldn't establish power handler\n");
    348 	else
    349 		pmf_class_network_register(self, ifp);
    350 
    351 #if NBPFILTER > 0
    352 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    353 		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    354 		&sc->sc_drvbpf);
    355 
    356 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    357 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    358 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    359 
    360 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    361 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    362 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    363 #endif
    364 
    365 	ieee80211_announce(ic);
    366 
    367 	return;
    368 
    369 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
    370 fail3:  while (--ac >= 0)
    371 			wpi_free_tx_ring(sc, &sc->txq[ac]);
    372 	wpi_free_rpool(sc);
    373 fail2:	wpi_free_shared(sc);
    374 fail1:	wpi_free_fwmem(sc);
    375 }
    376 
    377 static int
    378 wpi_detach(device_t self, int flags __unused)
    379 {
    380 	struct wpi_softc *sc = device_private(self);
    381 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    382 	int ac;
    383 
    384 	wpi_stop(ifp, 1);
    385 
    386 #if NBPFILTER > 0
    387 	if (ifp != NULL)
    388 		bpfdetach(ifp);
    389 #endif
    390 	ieee80211_ifdetach(&sc->sc_ic);
    391 	if (ifp != NULL)
    392 		if_detach(ifp);
    393 
    394 	for (ac = 0; ac < 4; ac++)
    395 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    396 	wpi_free_tx_ring(sc, &sc->cmdq);
    397 	wpi_free_rx_ring(sc, &sc->rxq);
    398 	wpi_free_rpool(sc);
    399 	wpi_free_shared(sc);
    400 
    401 	if (sc->sc_ih != NULL) {
    402 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    403 		sc->sc_ih = NULL;
    404 	}
    405 
    406 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    407 
    408 	return 0;
    409 }
    410 
    411 static int
    412 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
    413 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
    414 {
    415 	int nsegs, error;
    416 
    417 	dma->tag = tag;
    418 	dma->size = size;
    419 
    420 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    421 	if (error != 0)
    422 		goto fail;
    423 
    424 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    425 	    flags);
    426 	if (error != 0)
    427 		goto fail;
    428 
    429 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    430 	if (error != 0)
    431 		goto fail;
    432 
    433 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    434 	if (error != 0)
    435 		goto fail;
    436 
    437 	memset(dma->vaddr, 0, size);
    438 
    439 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    440 	if (kvap != NULL)
    441 		*kvap = dma->vaddr;
    442 
    443 	return 0;
    444 
    445 fail:   wpi_dma_contig_free(dma);
    446 	return error;
    447 }
    448 
    449 static void
    450 wpi_dma_contig_free(struct wpi_dma_info *dma)
    451 {
    452 	if (dma->map != NULL) {
    453 		if (dma->vaddr != NULL) {
    454 			bus_dmamap_unload(dma->tag, dma->map);
    455 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    456 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    457 			dma->vaddr = NULL;
    458 		}
    459 		bus_dmamap_destroy(dma->tag, dma->map);
    460 		dma->map = NULL;
    461 	}
    462 }
    463 
    464 /*
    465  * Allocate a shared page between host and NIC.
    466  */
    467 static int
    468 wpi_alloc_shared(struct wpi_softc *sc)
    469 {
    470 	int error;
    471 	/* must be aligned on a 4K-page boundary */
    472 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    473 			(void **)&sc->shared, sizeof (struct wpi_shared),
    474 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
    475 	if (error != 0)
    476 		aprint_error_dev(sc->sc_dev,
    477 				"could not allocate shared area DMA memory\n");
    478 
    479 	return error;
    480 }
    481 
    482 static void
    483 wpi_free_shared(struct wpi_softc *sc)
    484 {
    485 	wpi_dma_contig_free(&sc->shared_dma);
    486 }
    487 
    488 /*
    489  * Allocate DMA-safe memory for firmware transfer.
    490  */
    491 static int
    492 wpi_alloc_fwmem(struct wpi_softc *sc)
    493 {
    494 	int error;
    495 	/* allocate enough contiguous space to store text and data */
    496 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    497 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    498 	    BUS_DMA_NOWAIT);
    499 
    500 	if (error != 0)
    501 		aprint_error_dev(sc->sc_dev,
    502 			"could not allocate firmware transfer area"
    503 			"DMA memory\n");
    504 	return error;
    505 }
    506 
    507 static void
    508 wpi_free_fwmem(struct wpi_softc *sc)
    509 {
    510 	wpi_dma_contig_free(&sc->fw_dma);
    511 }
    512 
    513 
    514 static struct wpi_rbuf *
    515 wpi_alloc_rbuf(struct wpi_softc *sc)
    516 {
    517 	struct wpi_rbuf *rbuf;
    518 
    519 	mutex_enter(&sc->rxq.freelist_mtx);
    520 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    521 	if (rbuf != NULL) {
    522 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    523 		sc->rxq.nb_free_entries --;
    524 	}
    525 	mutex_exit(&sc->rxq.freelist_mtx);
    526 
    527 	return rbuf;
    528 }
    529 
    530 /*
    531  * This is called automatically by the network stack when the mbuf to which our
    532  * Rx buffer is attached is freed.
    533  */
    534 static void
    535 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    536 {
    537 	struct wpi_rbuf *rbuf = arg;
    538 	struct wpi_softc *sc = rbuf->sc;
    539 
    540 	/* put the buffer back in the free list */
    541 
    542 	mutex_enter(&sc->rxq.freelist_mtx);
    543 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    544 	mutex_exit(&sc->rxq.freelist_mtx);
    545 	/* No need to protect this with a mutex, see wpi_rx_intr */
    546 	sc->rxq.nb_free_entries ++;
    547 
    548 	if (__predict_true(m != NULL))
    549 		pool_cache_put(mb_cache, m);
    550 }
    551 
    552 static int
    553 wpi_alloc_rpool(struct wpi_softc *sc)
    554 {
    555 	struct wpi_rx_ring *ring = &sc->rxq;
    556 	struct wpi_rbuf *rbuf;
    557 	int i, error;
    558 
    559 	/* allocate a big chunk of DMA'able memory.. */
    560 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    561 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    562 	if (error != 0) {
    563 		aprint_normal_dev(sc->sc_dev,
    564 						  "could not allocate Rx buffers DMA memory\n");
    565 		return error;
    566 	}
    567 
    568 	/* ..and split it into 3KB chunks */
    569 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
    570 	SLIST_INIT(&ring->freelist);
    571 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    572 		rbuf = &ring->rbuf[i];
    573 		rbuf->sc = sc;	/* backpointer for callbacks */
    574 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    575 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    576 
    577 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    578 	}
    579 
    580 	ring->nb_free_entries = WPI_RBUF_COUNT;
    581 	return 0;
    582 }
    583 
    584 static void
    585 wpi_free_rpool(struct wpi_softc *sc)
    586 {
    587 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    588 }
    589 
    590 static int
    591 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    592 {
    593 	struct wpi_rx_data *data;
    594 	struct wpi_rbuf *rbuf;
    595 	int i, error;
    596 
    597 	ring->cur = 0;
    598 
    599 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    600 		(void **)&ring->desc,
    601 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
    602 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    603 	if (error != 0) {
    604 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
    605 		goto fail;
    606 	}
    607 
    608 	/*
    609 	 * Setup Rx buffers.
    610 	 */
    611 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    612 		data = &ring->data[i];
    613 
    614 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    615 		if (data->m == NULL) {
    616 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
    617 			error = ENOMEM;
    618 			goto fail;
    619 		}
    620 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    621 			m_freem(data->m);
    622 			data->m = NULL;
    623 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
    624 			error = ENOMEM;
    625 			goto fail;
    626 		}
    627 		/* attach Rx buffer to mbuf */
    628 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    629 		    rbuf);
    630 		data->m->m_flags |= M_EXT_RW;
    631 
    632 		ring->desc[i] = htole32(rbuf->paddr);
    633 	}
    634 
    635 	return 0;
    636 
    637 fail:	wpi_free_rx_ring(sc, ring);
    638 	return error;
    639 }
    640 
    641 static void
    642 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    643 {
    644 	int ntries;
    645 
    646 	wpi_mem_lock(sc);
    647 
    648 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    649 	for (ntries = 0; ntries < 100; ntries++) {
    650 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    651 			break;
    652 		DELAY(10);
    653 	}
    654 #ifdef WPI_DEBUG
    655 	if (ntries == 100 && wpi_debug > 0)
    656 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    657 #endif
    658 	wpi_mem_unlock(sc);
    659 
    660 	ring->cur = 0;
    661 }
    662 
    663 static void
    664 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    665 {
    666 	int i;
    667 
    668 	wpi_dma_contig_free(&ring->desc_dma);
    669 
    670 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    671 		if (ring->data[i].m != NULL)
    672 			m_freem(ring->data[i].m);
    673 	}
    674 }
    675 
    676 static int
    677 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    678 	int qid)
    679 {
    680 	struct wpi_tx_data *data;
    681 	int i, error;
    682 
    683 	ring->qid = qid;
    684 	ring->count = count;
    685 	ring->queued = 0;
    686 	ring->cur = 0;
    687 
    688 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    689 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    690 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    691 	if (error != 0) {
    692 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
    693 		goto fail;
    694 	}
    695 
    696 	/* update shared page with ring's base address */
    697 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    698 
    699 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    700 		(void **)&ring->cmd,
    701 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
    702 	if (error != 0) {
    703 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
    704 		goto fail;
    705 	}
    706 
    707 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    708 		M_NOWAIT);
    709 	if (ring->data == NULL) {
    710 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
    711 		goto fail;
    712 	}
    713 
    714 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
    715 
    716 	for (i = 0; i < count; i++) {
    717 		data = &ring->data[i];
    718 
    719 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    720 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    721 			&data->map);
    722 		if (error != 0) {
    723 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
    724 			goto fail;
    725 		}
    726 	}
    727 
    728 	return 0;
    729 
    730 fail:	wpi_free_tx_ring(sc, ring);
    731 	return error;
    732 }
    733 
    734 static void
    735 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    736 {
    737 	struct wpi_tx_data *data;
    738 	int i, ntries;
    739 
    740 	wpi_mem_lock(sc);
    741 
    742 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    743 	for (ntries = 0; ntries < 100; ntries++) {
    744 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    745 			break;
    746 		DELAY(10);
    747 	}
    748 #ifdef WPI_DEBUG
    749 	if (ntries == 100 && wpi_debug > 0) {
    750 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    751 									   ring->qid);
    752 	}
    753 #endif
    754 	wpi_mem_unlock(sc);
    755 
    756 	for (i = 0; i < ring->count; i++) {
    757 		data = &ring->data[i];
    758 
    759 		if (data->m != NULL) {
    760 			bus_dmamap_unload(sc->sc_dmat, data->map);
    761 			m_freem(data->m);
    762 			data->m = NULL;
    763 		}
    764 	}
    765 
    766 	ring->queued = 0;
    767 	ring->cur = 0;
    768 }
    769 
    770 static void
    771 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    772 {
    773 	struct wpi_tx_data *data;
    774 	int i;
    775 
    776 	wpi_dma_contig_free(&ring->desc_dma);
    777 	wpi_dma_contig_free(&ring->cmd_dma);
    778 
    779 	if (ring->data != NULL) {
    780 		for (i = 0; i < ring->count; i++) {
    781 			data = &ring->data[i];
    782 
    783 			if (data->m != NULL) {
    784 				bus_dmamap_unload(sc->sc_dmat, data->map);
    785 				m_freem(data->m);
    786 			}
    787 		}
    788 		free(ring->data, M_DEVBUF);
    789 	}
    790 }
    791 
    792 /*ARGUSED*/
    793 static struct ieee80211_node *
    794 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    795 {
    796 	struct wpi_node *wn;
    797 
    798 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
    799 
    800 	return (struct ieee80211_node *)wn;
    801 }
    802 
    803 static void
    804 wpi_newassoc(struct ieee80211_node *ni, int isnew)
    805 {
    806 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    807 	int i;
    808 
    809 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    810 
    811 	/* set rate to some reasonable initial value */
    812 	for (i = ni->ni_rates.rs_nrates - 1;
    813 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    814 	     i--);
    815 	ni->ni_txrate = i;
    816 }
    817 
    818 static int
    819 wpi_media_change(struct ifnet *ifp)
    820 {
    821 	int error;
    822 
    823 	error = ieee80211_media_change(ifp);
    824 	if (error != ENETRESET)
    825 		return error;
    826 
    827 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    828 		wpi_init(ifp);
    829 
    830 	return 0;
    831 }
    832 
    833 static int
    834 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    835 {
    836 	struct ifnet *ifp = ic->ic_ifp;
    837 	struct wpi_softc *sc = ifp->if_softc;
    838 	struct ieee80211_node *ni;
    839 	int error;
    840 
    841 	callout_stop(&sc->calib_to);
    842 
    843 	switch (nstate) {
    844 	case IEEE80211_S_SCAN:
    845 
    846 		if (sc->is_scanning)
    847 			break;
    848 
    849 		sc->is_scanning = true;
    850 		ieee80211_node_table_reset(&ic->ic_scan);
    851 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
    852 
    853 		/* make the link LED blink while we're scanning */
    854 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    855 
    856 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
    857 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
    858 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
    859 			return error;
    860 		}
    861 
    862 		ic->ic_state = nstate;
    863 		return 0;
    864 
    865 	case IEEE80211_S_ASSOC:
    866 		if (ic->ic_state != IEEE80211_S_RUN)
    867 			break;
    868 		/* FALLTHROUGH */
    869 	case IEEE80211_S_AUTH:
    870 		sc->config.associd = 0;
    871 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    872 		if ((error = wpi_auth(sc)) != 0) {
    873 			aprint_error_dev(sc->sc_dev,
    874 							"could not send authentication request\n");
    875 			return error;
    876 		}
    877 		break;
    878 
    879 	case IEEE80211_S_RUN:
    880 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    881 			/* link LED blinks while monitoring */
    882 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    883 			break;
    884 		}
    885 
    886 		ni = ic->ic_bss;
    887 
    888 		if (ic->ic_opmode != IEEE80211_M_STA) {
    889 			(void) wpi_auth(sc);    /* XXX */
    890 			wpi_setup_beacon(sc, ni);
    891 		}
    892 
    893 		wpi_enable_tsf(sc, ni);
    894 
    895 		/* update adapter's configuration */
    896 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    897 		/* short preamble/slot time are negotiated when associating */
    898 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
    899 			WPI_CONFIG_SHSLOT);
    900 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
    901 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
    902 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
    903 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
    904 		sc->config.filter |= htole32(WPI_FILTER_BSS);
    905 		if (ic->ic_opmode != IEEE80211_M_STA)
    906 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
    907 
    908 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
    909 
    910 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
    911 			sc->config.flags));
    912 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
    913 			sizeof (struct wpi_config), 1);
    914 		if (error != 0) {
    915 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
    916 			return error;
    917 		}
    918 
    919 		/* configuration has changed, set Tx power accordingly */
    920 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
    921 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
    922 			return error;
    923 		}
    924 
    925 		if (ic->ic_opmode == IEEE80211_M_STA) {
    926 			/* fake a join to init the tx rate */
    927 			wpi_newassoc(ni, 1);
    928 		}
    929 
    930 		/* start periodic calibration timer */
    931 		sc->calib_cnt = 0;
    932 		callout_schedule(&sc->calib_to, hz/2);
    933 
    934 		/* link LED always on while associated */
    935 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
    936 		break;
    937 
    938 	case IEEE80211_S_INIT:
    939 		sc->is_scanning = false;
    940 		break;
    941 	}
    942 
    943 	return sc->sc_newstate(ic, nstate, arg);
    944 }
    945 
    946 /*
    947  * XXX: Hack to set the current channel to the value advertised in beacons or
    948  * probe responses. Only used during AP detection.
    949  * XXX: Duplicated from if_iwi.c
    950  */
    951 static void
    952 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
    953 {
    954 	struct ieee80211_frame *wh;
    955 	uint8_t subtype;
    956 	uint8_t *frm, *efrm;
    957 
    958 	wh = mtod(m, struct ieee80211_frame *);
    959 
    960 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
    961 		return;
    962 
    963 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
    964 
    965 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
    966 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
    967 		return;
    968 
    969 	frm = (uint8_t *)(wh + 1);
    970 	efrm = mtod(m, uint8_t *) + m->m_len;
    971 
    972 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
    973 	while (frm < efrm) {
    974 		if (*frm == IEEE80211_ELEMID_DSPARMS)
    975 #if IEEE80211_CHAN_MAX < 255
    976 		if (frm[2] <= IEEE80211_CHAN_MAX)
    977 #endif
    978 			ic->ic_curchan = &ic->ic_channels[frm[2]];
    979 
    980 		frm += frm[1] + 2;
    981 	}
    982 }
    983 
    984 /*
    985  * Grab exclusive access to NIC memory.
    986  */
    987 static void
    988 wpi_mem_lock(struct wpi_softc *sc)
    989 {
    990 	uint32_t tmp;
    991 	int ntries;
    992 
    993 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
    994 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
    995 
    996 	/* spin until we actually get the lock */
    997 	for (ntries = 0; ntries < 1000; ntries++) {
    998 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
    999 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
   1000 			break;
   1001 		DELAY(10);
   1002 	}
   1003 	if (ntries == 1000)
   1004 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
   1005 }
   1006 
   1007 /*
   1008  * Release lock on NIC memory.
   1009  */
   1010 static void
   1011 wpi_mem_unlock(struct wpi_softc *sc)
   1012 {
   1013 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1014 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1015 }
   1016 
   1017 static uint32_t
   1018 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1019 {
   1020 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1021 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1022 }
   1023 
   1024 static void
   1025 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1026 {
   1027 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1028 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1029 }
   1030 
   1031 static void
   1032 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1033 						const uint32_t *data, int wlen)
   1034 {
   1035 	for (; wlen > 0; wlen--, data++, addr += 4)
   1036 		wpi_mem_write(sc, addr, *data);
   1037 }
   1038 
   1039 
   1040 /*
   1041  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1042  * instead of using the traditional bit-bang method.
   1043  */
   1044 static int
   1045 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1046 {
   1047 	uint8_t *out = data;
   1048 	uint32_t val;
   1049 	int ntries;
   1050 
   1051 	wpi_mem_lock(sc);
   1052 	for (; len > 0; len -= 2, addr++) {
   1053 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1054 
   1055 		for (ntries = 0; ntries < 10; ntries++) {
   1056 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1057 			    WPI_EEPROM_READY)
   1058 				break;
   1059 			DELAY(5);
   1060 		}
   1061 		if (ntries == 10) {
   1062 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1063 			return ETIMEDOUT;
   1064 		}
   1065 		*out++ = val >> 16;
   1066 		if (len > 1)
   1067 			*out++ = val >> 24;
   1068 	}
   1069 	wpi_mem_unlock(sc);
   1070 
   1071 	return 0;
   1072 }
   1073 
   1074 /*
   1075  * The firmware boot code is small and is intended to be copied directly into
   1076  * the NIC internal memory.
   1077  */
   1078 int
   1079 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1080 {
   1081 	int ntries;
   1082 
   1083 	size /= sizeof (uint32_t);
   1084 
   1085 	wpi_mem_lock(sc);
   1086 
   1087 	/* copy microcode image into NIC memory */
   1088 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1089 	    (const uint32_t *)ucode, size);
   1090 
   1091 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1092 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1093 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1094 
   1095 	/* run microcode */
   1096 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1097 
   1098 	/* wait for transfer to complete */
   1099 	for (ntries = 0; ntries < 1000; ntries++) {
   1100 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1101 			break;
   1102 		DELAY(10);
   1103 	}
   1104 	if (ntries == 1000) {
   1105 		wpi_mem_unlock(sc);
   1106 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1107 		return ETIMEDOUT;
   1108 	}
   1109 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1110 
   1111 	wpi_mem_unlock(sc);
   1112 
   1113 	return 0;
   1114 }
   1115 
   1116 static int
   1117 wpi_load_firmware(struct wpi_softc *sc)
   1118 {
   1119 	struct wpi_dma_info *dma = &sc->fw_dma;
   1120 	struct wpi_firmware_hdr hdr;
   1121 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1122 	const uint8_t *boot_text;
   1123 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1124 	uint32_t boot_textsz;
   1125 	firmware_handle_t fw;
   1126 	u_char *dfw;
   1127 	size_t size;
   1128 	int error;
   1129 
   1130 	/* load firmware image from disk */
   1131 	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
   1132 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
   1133 		goto fail1;
   1134 	}
   1135 
   1136 	size = firmware_get_size(fw);
   1137 
   1138 	/* extract firmware header information */
   1139 	if (size < sizeof (struct wpi_firmware_hdr)) {
   1140 		aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n",
   1141 		    			 size);
   1142 		error = EINVAL;
   1143 		goto fail2;
   1144 	}
   1145 
   1146 	if ((error = firmware_read(fw, 0, &hdr,
   1147 		sizeof (struct wpi_firmware_hdr))) != 0) {
   1148 		aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
   1149 		goto fail2;
   1150 	}
   1151 
   1152 	main_textsz = le32toh(hdr.main_textsz);
   1153 	main_datasz = le32toh(hdr.main_datasz);
   1154 	init_textsz = le32toh(hdr.init_textsz);
   1155 	init_datasz = le32toh(hdr.init_datasz);
   1156 	boot_textsz = le32toh(hdr.boot_textsz);
   1157 
   1158 	/* sanity-check firmware segments sizes */
   1159 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1160 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1161 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1162 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1163 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1164 	    (boot_textsz & 3) != 0) {
   1165 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1166 		error = EINVAL;
   1167 		goto fail2;
   1168 	}
   1169 
   1170 	/* check that all firmware segments are present */
   1171 	if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
   1172 		main_datasz + init_textsz + init_datasz + boot_textsz) {
   1173 		aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n",
   1174 		    			 size);
   1175 		error = EINVAL;
   1176 		goto fail2;
   1177 	}
   1178 
   1179 	dfw = firmware_malloc(size);
   1180 	if (dfw == NULL) {
   1181 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
   1182 		error = ENOMEM;
   1183 		goto fail2;
   1184 	}
   1185 
   1186 	if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
   1187 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
   1188 		goto fail2;
   1189 	}
   1190 
   1191 	/* get pointers to firmware segments */
   1192 	main_text = dfw + sizeof (struct wpi_firmware_hdr);
   1193 	main_data = main_text + main_textsz;
   1194 	init_text = main_data + main_datasz;
   1195 	init_data = init_text + init_textsz;
   1196 	boot_text = init_data + init_datasz;
   1197 
   1198 	/* copy initialization images into pre-allocated DMA-safe memory */
   1199 	memcpy(dma->vaddr, init_data, init_datasz);
   1200 	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
   1201 
   1202 	/* tell adapter where to find initialization images */
   1203 	wpi_mem_lock(sc);
   1204 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1205 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1206 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1207 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1208 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1209 	wpi_mem_unlock(sc);
   1210 
   1211 	/* load firmware boot code */
   1212 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1213 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1214 		goto fail3;
   1215 	}
   1216 
   1217 	/* now press "execute" ;-) */
   1218 	WPI_WRITE(sc, WPI_RESET, 0);
   1219 
   1220 	/* ..and wait at most one second for adapter to initialize */
   1221 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1222 		/* this isn't what was supposed to happen.. */
   1223 		aprint_error_dev(sc->sc_dev,
   1224 					"timeout waiting for adapter to initialize\n");
   1225 	}
   1226 
   1227 	/* copy runtime images into pre-allocated DMA-safe memory */
   1228 	memcpy(dma->vaddr, main_data, main_datasz);
   1229 	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
   1230 
   1231 	/* tell adapter where to find runtime images */
   1232 	wpi_mem_lock(sc);
   1233 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1234 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1235 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1236 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1237 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1238 	wpi_mem_unlock(sc);
   1239 
   1240 	/* wait at most one second for second alive notification */
   1241 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1242 		/* this isn't what was supposed to happen.. */
   1243 		aprint_error_dev(sc->sc_dev,
   1244 						"timeout waiting for adapter to initialize\n");
   1245 	}
   1246 
   1247 
   1248 fail3: 	firmware_free(dfw,size);
   1249 fail2:	firmware_close(fw);
   1250 fail1:	return error;
   1251 }
   1252 
   1253 static void
   1254 wpi_calib_timeout(void *arg)
   1255 {
   1256 	struct wpi_softc *sc = arg;
   1257 	struct ieee80211com *ic = &sc->sc_ic;
   1258 	int temp, s;
   1259 
   1260 	/* automatic rate control triggered every 500ms */
   1261 	if (ic->ic_fixed_rate == -1) {
   1262 		s = splnet();
   1263 		if (ic->ic_opmode == IEEE80211_M_STA)
   1264 			wpi_iter_func(sc, ic->ic_bss);
   1265 		else
   1266                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1267 		splx(s);
   1268 	}
   1269 
   1270 	/* update sensor data */
   1271 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1272 
   1273 	/* automatic power calibration every 60s */
   1274 	if (++sc->calib_cnt >= 120) {
   1275 		wpi_power_calibration(sc, temp);
   1276 		sc->calib_cnt = 0;
   1277 	}
   1278 
   1279 	callout_schedule(&sc->calib_to, hz/2);
   1280 }
   1281 
   1282 static void
   1283 wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1284 {
   1285 	struct wpi_softc *sc = arg;
   1286 	struct wpi_node *wn = (struct wpi_node *)ni;
   1287 
   1288 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1289 }
   1290 
   1291 /*
   1292  * This function is called periodically (every 60 seconds) to adjust output
   1293  * power to temperature changes.
   1294  */
   1295 void
   1296 wpi_power_calibration(struct wpi_softc *sc, int temp)
   1297 {
   1298 	/* sanity-check read value */
   1299 	if (temp < -260 || temp > 25) {
   1300 		/* this can't be correct, ignore */
   1301 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1302 		return;
   1303 	}
   1304 
   1305 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1306 
   1307 	/* adjust Tx power if need be */
   1308 	if (abs(temp - sc->temp) <= 6)
   1309 		return;
   1310 
   1311 	sc->temp = temp;
   1312 
   1313 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
   1314 		/* just warn, too bad for the automatic calibration... */
   1315 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1316 	}
   1317 }
   1318 
   1319 static void
   1320 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1321 	struct wpi_rx_data *data)
   1322 {
   1323 	struct ieee80211com *ic = &sc->sc_ic;
   1324 	struct ifnet *ifp = ic->ic_ifp;
   1325 	struct wpi_rx_ring *ring = &sc->rxq;
   1326 	struct wpi_rx_stat *stat;
   1327 	struct wpi_rx_head *head;
   1328 	struct wpi_rx_tail *tail;
   1329 	struct wpi_rbuf *rbuf;
   1330 	struct ieee80211_frame *wh;
   1331 	struct ieee80211_node *ni;
   1332 	struct mbuf *m, *mnew;
   1333 	int data_off ;
   1334 
   1335 	stat = (struct wpi_rx_stat *)(desc + 1);
   1336 
   1337 	if (stat->len > WPI_STAT_MAXLEN) {
   1338 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1339 		ifp->if_ierrors++;
   1340 		return;
   1341 	}
   1342 
   1343 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1344 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1345 
   1346 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1347 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
   1348 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1349 		le64toh(tail->tstamp)));
   1350 
   1351 	/*
   1352 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1353 	 * to radiotap in monitor mode).
   1354 	 */
   1355 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1356 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
   1357 		ifp->if_ierrors++;
   1358 		return;
   1359 	}
   1360 
   1361 	/* Compute where are the useful datas */
   1362 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1363 
   1364 	/*
   1365 	 * If the number of free entry is too low
   1366 	 * just dup the data->m socket and reuse the same rbuf entry
   1367 	 * Note that thi test is not protected by a mutex because the
   1368 	 * only path that causes nb_free_entries to decrease is through
   1369 	 * this interrupt routine, which is not re-entrent.
   1370 	 * What may not be obvious is that the safe path is if that test
   1371 	 * evaluates as true, so nb_free_entries can grow any time.
   1372 	 */
   1373 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
   1374 
   1375 		/* Prepare the mbuf for the m_dup */
   1376 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
   1377 		data->m->m_data = (char*) data->m->m_data + data_off;
   1378 
   1379 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
   1380 
   1381 		/* Restore the m_data pointer for future use */
   1382 		data->m->m_data = (char*) data->m->m_data - data_off;
   1383 
   1384 		if (m == NULL) {
   1385 			ifp->if_ierrors++;
   1386 			return;
   1387 		}
   1388 	} else {
   1389 
   1390 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1391 		if (mnew == NULL) {
   1392 			ifp->if_ierrors++;
   1393 			return;
   1394 		}
   1395 
   1396 		rbuf = wpi_alloc_rbuf(sc);
   1397 		KASSERT(rbuf != NULL);
   1398 
   1399  		/* attach Rx buffer to mbuf */
   1400 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1401 		 	rbuf);
   1402 		mnew->m_flags |= M_EXT_RW;
   1403 
   1404 		m = data->m;
   1405 		data->m = mnew;
   1406 
   1407 		/* update Rx descriptor */
   1408 		ring->desc[ring->cur] = htole32(rbuf->paddr);
   1409 
   1410 		m->m_data = (char*)m->m_data + data_off;
   1411 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1412 	}
   1413 
   1414 	/* finalize mbuf */
   1415 	m->m_pkthdr.rcvif = ifp;
   1416 
   1417 	if (ic->ic_state == IEEE80211_S_SCAN)
   1418 		wpi_fix_channel(ic, m);
   1419 
   1420 #if NBPFILTER > 0
   1421 	if (sc->sc_drvbpf != NULL) {
   1422 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1423 
   1424 		tap->wr_flags = 0;
   1425 		tap->wr_chan_freq =
   1426 			htole16(ic->ic_channels[head->chan].ic_freq);
   1427 		tap->wr_chan_flags =
   1428 			htole16(ic->ic_channels[head->chan].ic_flags);
   1429 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1430 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1431 		tap->wr_tsft = tail->tstamp;
   1432 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1433 		switch (head->rate) {
   1434 		/* CCK rates */
   1435 		case  10: tap->wr_rate =   2; break;
   1436 		case  20: tap->wr_rate =   4; break;
   1437 		case  55: tap->wr_rate =  11; break;
   1438 		case 110: tap->wr_rate =  22; break;
   1439 		/* OFDM rates */
   1440 		case 0xd: tap->wr_rate =  12; break;
   1441 		case 0xf: tap->wr_rate =  18; break;
   1442 		case 0x5: tap->wr_rate =  24; break;
   1443 		case 0x7: tap->wr_rate =  36; break;
   1444 		case 0x9: tap->wr_rate =  48; break;
   1445 		case 0xb: tap->wr_rate =  72; break;
   1446 		case 0x1: tap->wr_rate =  96; break;
   1447 		case 0x3: tap->wr_rate = 108; break;
   1448 		/* unknown rate: should not happen */
   1449 		default:  tap->wr_rate =   0;
   1450 		}
   1451 		if (le16toh(head->flags) & 0x4)
   1452 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1453 
   1454 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1455 	}
   1456 #endif
   1457 
   1458 	/* grab a reference to the source node */
   1459 	wh = mtod(m, struct ieee80211_frame *);
   1460 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1461 
   1462 	/* send the frame to the 802.11 layer */
   1463 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1464 
   1465 	/* release node reference */
   1466 	ieee80211_free_node(ni);
   1467 }
   1468 
   1469 static void
   1470 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1471 {
   1472 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1473 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1474 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
   1475 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1476 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
   1477 
   1478 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1479 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1480 		stat->nkill, stat->rate, le32toh(stat->duration),
   1481 		le32toh(stat->status)));
   1482 
   1483 	/*
   1484 	 * Update rate control statistics for the node.
   1485 	 * XXX we should not count mgmt frames since they're always sent at
   1486 	 * the lowest available bit-rate.
   1487 	 */
   1488 	wn->amn.amn_txcnt++;
   1489 	if (stat->ntries > 0) {
   1490 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1491 		wn->amn.amn_retrycnt++;
   1492 	}
   1493 
   1494 	if ((le32toh(stat->status) & 0xff) != 1)
   1495 		ifp->if_oerrors++;
   1496 	else
   1497 		ifp->if_opackets++;
   1498 
   1499 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
   1500 	m_freem(txdata->m);
   1501 	txdata->m = NULL;
   1502 	ieee80211_free_node(txdata->ni);
   1503 	txdata->ni = NULL;
   1504 
   1505 	ring->queued--;
   1506 
   1507 	sc->sc_tx_timer = 0;
   1508 	ifp->if_flags &= ~IFF_OACTIVE;
   1509 	wpi_start(ifp);
   1510 }
   1511 
   1512 static void
   1513 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1514 {
   1515 	struct wpi_tx_ring *ring = &sc->cmdq;
   1516 	struct wpi_tx_data *data;
   1517 
   1518 	if ((desc->qid & 7) != 4)
   1519 		return;	/* not a command ack */
   1520 
   1521 	data = &ring->data[desc->idx];
   1522 
   1523 	/* if the command was mapped in a mbuf, free it */
   1524 	if (data->m != NULL) {
   1525 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1526 		m_freem(data->m);
   1527 		data->m = NULL;
   1528 	}
   1529 
   1530 	wakeup(&ring->cmd[desc->idx]);
   1531 }
   1532 
   1533 static void
   1534 wpi_notif_intr(struct wpi_softc *sc)
   1535 {
   1536 	struct ieee80211com *ic = &sc->sc_ic;
   1537 	struct ifnet *ifp =  ic->ic_ifp;
   1538 	struct wpi_rx_desc *desc;
   1539 	struct wpi_rx_data *data;
   1540 	uint32_t hw;
   1541 
   1542 	hw = le32toh(sc->shared->next);
   1543 	while (sc->rxq.cur != hw) {
   1544 		data = &sc->rxq.data[sc->rxq.cur];
   1545 
   1546 		desc = mtod(data->m, struct wpi_rx_desc *);
   1547 
   1548 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1549 			"len=%d\n", desc->qid, desc->idx, desc->flags,
   1550 			desc->type, le32toh(desc->len)));
   1551 
   1552 		if (!(desc->qid & 0x80))	/* reply to a command */
   1553 			wpi_cmd_intr(sc, desc);
   1554 
   1555 		switch (desc->type) {
   1556 		case WPI_RX_DONE:
   1557 			/* a 802.11 frame was received */
   1558 			wpi_rx_intr(sc, desc, data);
   1559 			break;
   1560 
   1561 		case WPI_TX_DONE:
   1562 			/* a 802.11 frame has been transmitted */
   1563 			wpi_tx_intr(sc, desc);
   1564 			break;
   1565 
   1566 		case WPI_UC_READY:
   1567 		{
   1568 			struct wpi_ucode_info *uc =
   1569 				(struct wpi_ucode_info *)(desc + 1);
   1570 
   1571 			/* the microcontroller is ready */
   1572 			DPRINTF(("microcode alive notification version %x "
   1573 				"alive %x\n", le32toh(uc->version),
   1574 				le32toh(uc->valid)));
   1575 
   1576 			if (le32toh(uc->valid) != 1) {
   1577 				aprint_error_dev(sc->sc_dev,
   1578 					"microcontroller initialization failed\n");
   1579 			}
   1580 			break;
   1581 		}
   1582 		case WPI_STATE_CHANGED:
   1583 		{
   1584 			uint32_t *status = (uint32_t *)(desc + 1);
   1585 
   1586 			/* enabled/disabled notification */
   1587 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1588 
   1589 			if (le32toh(*status) & 1) {
   1590 				/* the radio button has to be pushed */
   1591 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
   1592 				/* turn the interface down */
   1593 				ifp->if_flags &= ~IFF_UP;
   1594 				wpi_stop(ifp, 1);
   1595 				return;	/* no further processing */
   1596 			}
   1597 			break;
   1598 		}
   1599 		case WPI_START_SCAN:
   1600 		{
   1601 			struct wpi_start_scan *scan =
   1602 				(struct wpi_start_scan *)(desc + 1);
   1603 
   1604 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1605 				scan->chan, le32toh(scan->status)));
   1606 
   1607 			/* fix current channel */
   1608 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   1609 			break;
   1610 		}
   1611 		case WPI_STOP_SCAN:
   1612 		{
   1613 			struct wpi_stop_scan *scan =
   1614 				(struct wpi_stop_scan *)(desc + 1);
   1615 
   1616 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1617 				scan->nchan, scan->status, scan->chan));
   1618 
   1619 			if (scan->status == 1 && scan->chan <= 14) {
   1620 				/*
   1621 				 * We just finished scanning 802.11g channels,
   1622 				 * start scanning 802.11a ones.
   1623 				 */
   1624 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
   1625 					break;
   1626 			}
   1627 			sc->is_scanning = false;
   1628 			ieee80211_end_scan(ic);
   1629 			break;
   1630 		}
   1631 		}
   1632 
   1633 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1634 	}
   1635 
   1636 	/* tell the firmware what we have processed */
   1637 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1638 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1639 }
   1640 
   1641 static int
   1642 wpi_intr(void *arg)
   1643 {
   1644 	struct wpi_softc *sc = arg;
   1645 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1646 	uint32_t r;
   1647 
   1648 	r = WPI_READ(sc, WPI_INTR);
   1649 	if (r == 0 || r == 0xffffffff)
   1650 		return 0;	/* not for us */
   1651 
   1652 	DPRINTFN(5, ("interrupt reg %x\n", r));
   1653 
   1654 	/* disable interrupts */
   1655 	WPI_WRITE(sc, WPI_MASK, 0);
   1656 	/* ack interrupts */
   1657 	WPI_WRITE(sc, WPI_INTR, r);
   1658 
   1659 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1660 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1661 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
   1662 		wpi_stop(sc->sc_ic.ic_ifp, 1);
   1663 		return 1;
   1664 	}
   1665 
   1666 	if (r & WPI_RX_INTR)
   1667 		wpi_notif_intr(sc);
   1668 
   1669 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1670 		wakeup(sc);
   1671 
   1672 	/* re-enable interrupts */
   1673 	if (ifp->if_flags & IFF_UP)
   1674 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1675 
   1676 	return 1;
   1677 }
   1678 
   1679 static uint8_t
   1680 wpi_plcp_signal(int rate)
   1681 {
   1682 	switch (rate) {
   1683 	/* CCK rates (returned values are device-dependent) */
   1684 	case 2:		return 10;
   1685 	case 4:		return 20;
   1686 	case 11:	return 55;
   1687 	case 22:	return 110;
   1688 
   1689 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1690 	/* R1-R4, (u)ral is R4-R1 */
   1691 	case 12:	return 0xd;
   1692 	case 18:	return 0xf;
   1693 	case 24:	return 0x5;
   1694 	case 36:	return 0x7;
   1695 	case 48:	return 0x9;
   1696 	case 72:	return 0xb;
   1697 	case 96:	return 0x1;
   1698 	case 108:	return 0x3;
   1699 
   1700 	/* unsupported rates (should not get there) */
   1701 	default:	return 0;
   1702 	}
   1703 }
   1704 
   1705 /* quickly determine if a given rate is CCK or OFDM */
   1706 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1707 
   1708 static int
   1709 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1710 	int ac)
   1711 {
   1712 	struct ieee80211com *ic = &sc->sc_ic;
   1713 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1714 	struct wpi_tx_desc *desc;
   1715 	struct wpi_tx_data *data;
   1716 	struct wpi_tx_cmd *cmd;
   1717 	struct wpi_cmd_data *tx;
   1718 	struct ieee80211_frame *wh;
   1719 	struct ieee80211_key *k;
   1720 	const struct chanAccParams *cap;
   1721 	struct mbuf *mnew;
   1722 	int i, error, rate, hdrlen, noack = 0;
   1723 
   1724 	desc = &ring->desc[ring->cur];
   1725 	data = &ring->data[ring->cur];
   1726 
   1727 	wh = mtod(m0, struct ieee80211_frame *);
   1728 
   1729 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   1730 		cap = &ic->ic_wme.wme_chanParams;
   1731 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1732 	}
   1733 
   1734 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1735 		k = ieee80211_crypto_encap(ic, ni, m0);
   1736 		if (k == NULL) {
   1737 			m_freem(m0);
   1738 			return ENOBUFS;
   1739 		}
   1740 
   1741 		/* packet header may have moved, reset our local pointer */
   1742 		wh = mtod(m0, struct ieee80211_frame *);
   1743 	}
   1744 
   1745 	hdrlen = ieee80211_anyhdrsize(wh);
   1746 
   1747 	/* pickup a rate */
   1748 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1749 		IEEE80211_FC0_TYPE_MGT) {
   1750 		/* mgmt frames are sent at the lowest available bit-rate */
   1751 		rate = ni->ni_rates.rs_rates[0];
   1752 	} else {
   1753 		if (ic->ic_fixed_rate != -1) {
   1754 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1755 				rs_rates[ic->ic_fixed_rate];
   1756 		} else
   1757 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1758 	}
   1759 	rate &= IEEE80211_RATE_VAL;
   1760 
   1761 
   1762 #if NBPFILTER > 0
   1763 	if (sc->sc_drvbpf != NULL) {
   1764 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1765 
   1766 		tap->wt_flags = 0;
   1767 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1768 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1769 		tap->wt_rate = rate;
   1770 		tap->wt_hwqueue = ac;
   1771 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1772 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1773 
   1774 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1775 	}
   1776 #endif
   1777 
   1778 	cmd = &ring->cmd[ring->cur];
   1779 	cmd->code = WPI_CMD_TX_DATA;
   1780 	cmd->flags = 0;
   1781 	cmd->qid = ring->qid;
   1782 	cmd->idx = ring->cur;
   1783 
   1784 	tx = (struct wpi_cmd_data *)cmd->data;
   1785 	tx->flags = 0;
   1786 
   1787 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1788 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1789 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1790 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1791 
   1792 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1793 
   1794 	/* retrieve destination node's id */
   1795 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1796 		WPI_ID_BSS;
   1797 
   1798 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1799 		IEEE80211_FC0_TYPE_MGT) {
   1800 		/* tell h/w to set timestamp in probe responses */
   1801 		if ((wh->i_fc[0] &
   1802 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1803 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1804 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1805 
   1806 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1807 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1808 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1809 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1810 			tx->timeout = htole16(3);
   1811 		else
   1812 			tx->timeout = htole16(2);
   1813 	} else
   1814 		tx->timeout = htole16(0);
   1815 
   1816 	tx->rate = wpi_plcp_signal(rate);
   1817 
   1818 	/* be very persistant at sending frames out */
   1819 	tx->rts_ntries = 7;
   1820 	tx->data_ntries = 15;
   1821 
   1822 	tx->ofdm_mask = 0xff;
   1823 	tx->cck_mask = 0xf;
   1824 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   1825 
   1826 	tx->len = htole16(m0->m_pkthdr.len);
   1827 
   1828 	/* save and trim IEEE802.11 header */
   1829 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   1830 	m_adj(m0, hdrlen);
   1831 
   1832 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1833 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1834 	if (error != 0 && error != EFBIG) {
   1835 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
   1836 		m_freem(m0);
   1837 		return error;
   1838 	}
   1839 	if (error != 0) {
   1840 		/* too many fragments, linearize */
   1841 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1842 		if (mnew == NULL) {
   1843 			m_freem(m0);
   1844 			return ENOMEM;
   1845 		}
   1846 
   1847 		M_COPY_PKTHDR(mnew, m0);
   1848 		if (m0->m_pkthdr.len > MHLEN) {
   1849 			MCLGET(mnew, M_DONTWAIT);
   1850 			if (!(mnew->m_flags & M_EXT)) {
   1851 				m_freem(m0);
   1852 				m_freem(mnew);
   1853 				return ENOMEM;
   1854 			}
   1855 		}
   1856 
   1857 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1858 		m_freem(m0);
   1859 		mnew->m_len = mnew->m_pkthdr.len;
   1860 		m0 = mnew;
   1861 
   1862 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1863 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1864 		if (error != 0) {
   1865 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1866 							 error);
   1867 			m_freem(m0);
   1868 			return error;
   1869 		}
   1870 	}
   1871 
   1872 	data->m = m0;
   1873 	data->ni = ni;
   1874 
   1875 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   1876 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   1877 
   1878 	/* first scatter/gather segment is used by the tx data command */
   1879 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   1880 		(1 + data->map->dm_nsegs) << 24);
   1881 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   1882 		ring->cur * sizeof (struct wpi_tx_cmd));
   1883 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   1884 						 ((hdrlen + 3) & ~3));
   1885 
   1886 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   1887 		desc->segs[i].addr =
   1888 			htole32(data->map->dm_segs[i - 1].ds_addr);
   1889 		desc->segs[i].len  =
   1890 			htole32(data->map->dm_segs[i - 1].ds_len);
   1891 	}
   1892 
   1893 	ring->queued++;
   1894 
   1895 	/* kick ring */
   1896 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   1897 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   1898 
   1899 	return 0;
   1900 }
   1901 
   1902 static void
   1903 wpi_start(struct ifnet *ifp)
   1904 {
   1905 	struct wpi_softc *sc = ifp->if_softc;
   1906 	struct ieee80211com *ic = &sc->sc_ic;
   1907 	struct ieee80211_node *ni;
   1908 	struct ether_header *eh;
   1909 	struct mbuf *m0;
   1910 	int ac;
   1911 
   1912 	/*
   1913 	 * net80211 may still try to send management frames even if the
   1914 	 * IFF_RUNNING flag is not set...
   1915 	 */
   1916 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1917 		return;
   1918 
   1919 	for (;;) {
   1920 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   1921 		if (m0 != NULL) {
   1922 
   1923 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   1924 			m0->m_pkthdr.rcvif = NULL;
   1925 
   1926 			/* management frames go into ring 0 */
   1927 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   1928 				ifp->if_oerrors++;
   1929 				continue;
   1930 			}
   1931 #if NBPFILTER > 0
   1932 			if (ic->ic_rawbpf != NULL)
   1933 				bpf_mtap(ic->ic_rawbpf, m0);
   1934 #endif
   1935 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   1936 				ifp->if_oerrors++;
   1937 				break;
   1938 			}
   1939 		} else {
   1940 			if (ic->ic_state != IEEE80211_S_RUN)
   1941 				break;
   1942 			IFQ_POLL(&ifp->if_snd, m0);
   1943 			if (m0 == NULL)
   1944 				break;
   1945 
   1946 			if (m0->m_len < sizeof (*eh) &&
   1947 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
   1948 				ifp->if_oerrors++;
   1949 				continue;
   1950 			}
   1951 			eh = mtod(m0, struct ether_header *);
   1952 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1953 			if (ni == NULL) {
   1954 				m_freem(m0);
   1955 				ifp->if_oerrors++;
   1956 				continue;
   1957 			}
   1958 
   1959 			/* classify mbuf so we can find which tx ring to use */
   1960 			if (ieee80211_classify(ic, m0, ni) != 0) {
   1961 				m_freem(m0);
   1962 				ieee80211_free_node(ni);
   1963 				ifp->if_oerrors++;
   1964 				continue;
   1965 			}
   1966 
   1967 			/* no QoS encapsulation for EAPOL frames */
   1968 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   1969 			    M_WME_GETAC(m0) : WME_AC_BE;
   1970 
   1971 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   1972 				/* there is no place left in this ring */
   1973 				ifp->if_flags |= IFF_OACTIVE;
   1974 				break;
   1975 			}
   1976 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1977 #if NBPFILTER > 0
   1978 			if (ifp->if_bpf != NULL)
   1979 				bpf_mtap(ifp->if_bpf, m0);
   1980 #endif
   1981 			m0 = ieee80211_encap(ic, m0, ni);
   1982 			if (m0 == NULL) {
   1983 				ieee80211_free_node(ni);
   1984 				ifp->if_oerrors++;
   1985 				continue;
   1986 			}
   1987 #if NBPFILTER > 0
   1988 			if (ic->ic_rawbpf != NULL)
   1989 				bpf_mtap(ic->ic_rawbpf, m0);
   1990 #endif
   1991 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   1992 				ieee80211_free_node(ni);
   1993 				ifp->if_oerrors++;
   1994 				break;
   1995 			}
   1996 		}
   1997 
   1998 		sc->sc_tx_timer = 5;
   1999 		ifp->if_timer = 1;
   2000 	}
   2001 }
   2002 
   2003 static void
   2004 wpi_watchdog(struct ifnet *ifp)
   2005 {
   2006 	struct wpi_softc *sc = ifp->if_softc;
   2007 
   2008 	ifp->if_timer = 0;
   2009 
   2010 	if (sc->sc_tx_timer > 0) {
   2011 		if (--sc->sc_tx_timer == 0) {
   2012 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2013 			ifp->if_oerrors++;
   2014 			ifp->if_flags &= ~IFF_UP;
   2015 			wpi_stop(ifp, 1);
   2016 			return;
   2017 		}
   2018 		ifp->if_timer = 1;
   2019 	}
   2020 
   2021 	ieee80211_watchdog(&sc->sc_ic);
   2022 }
   2023 
   2024 static int
   2025 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2026 {
   2027 #define IS_RUNNING(ifp) \
   2028 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2029 
   2030 	struct wpi_softc *sc = ifp->if_softc;
   2031 	struct ieee80211com *ic = &sc->sc_ic;
   2032 	int s, error = 0;
   2033 
   2034 	s = splnet();
   2035 
   2036 	switch (cmd) {
   2037 	case SIOCSIFFLAGS:
   2038 		if (ifp->if_flags & IFF_UP) {
   2039 			if (!(ifp->if_flags & IFF_RUNNING))
   2040 				wpi_init(ifp);
   2041 		} else {
   2042 			if (ifp->if_flags & IFF_RUNNING)
   2043 				wpi_stop(ifp, 1);
   2044 		}
   2045 		break;
   2046 
   2047 	case SIOCADDMULTI:
   2048 	case SIOCDELMULTI:
   2049 		/* XXX no h/w multicast filter? --dyoung */
   2050 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2051 			/* setup multicast filter, etc */
   2052 			error = 0;
   2053 		}
   2054 		break;
   2055 
   2056 	default:
   2057 		error = ieee80211_ioctl(ic, cmd, data);
   2058 	}
   2059 
   2060 	if (error == ENETRESET) {
   2061 		if (IS_RUNNING(ifp) &&
   2062 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2063 			wpi_init(ifp);
   2064 		error = 0;
   2065 	}
   2066 
   2067 	splx(s);
   2068 	return error;
   2069 
   2070 #undef IS_RUNNING
   2071 }
   2072 
   2073 /*
   2074  * Extract various information from EEPROM.
   2075  */
   2076 static void
   2077 wpi_read_eeprom(struct wpi_softc *sc)
   2078 {
   2079 	struct ieee80211com *ic = &sc->sc_ic;
   2080 	char domain[4];
   2081 	int i;
   2082 
   2083 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2084 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2085 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2086 
   2087 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2088 	    sc->type));
   2089 
   2090 	/* read and print regulatory domain */
   2091 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2092 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
   2093 
   2094 	/* read and print MAC address */
   2095 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2096 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2097 
   2098 	/* read the list of authorized channels */
   2099 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2100 		wpi_read_eeprom_channels(sc, i);
   2101 
   2102 	/* read the list of power groups */
   2103 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2104 		wpi_read_eeprom_group(sc, i);
   2105 }
   2106 
   2107 static void
   2108 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2109 {
   2110 	struct ieee80211com *ic = &sc->sc_ic;
   2111 	const struct wpi_chan_band *band = &wpi_bands[n];
   2112 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2113 	int chan, i;
   2114 
   2115 	wpi_read_prom_data(sc, band->addr, channels,
   2116 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2117 
   2118 	for (i = 0; i < band->nchan; i++) {
   2119 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2120 			continue;
   2121 
   2122 		chan = band->chan[i];
   2123 
   2124 		if (n == 0) {	/* 2GHz band */
   2125 			ic->ic_channels[chan].ic_freq =
   2126 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2127 			ic->ic_channels[chan].ic_flags =
   2128 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2129 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2130 
   2131 		} else {	/* 5GHz band */
   2132 			/*
   2133 			 * Some 3945abg adapters support channels 7, 8, 11
   2134 			 * and 12 in the 2GHz *and* 5GHz bands.
   2135 			 * Because of limitations in our net80211(9) stack,
   2136 			 * we can't support these channels in 5GHz band.
   2137 			 */
   2138 			if (chan <= 14)
   2139 				continue;
   2140 
   2141 			ic->ic_channels[chan].ic_freq =
   2142 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2143 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2144 		}
   2145 
   2146 		/* is active scan allowed on this channel? */
   2147 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2148 			ic->ic_channels[chan].ic_flags |=
   2149 			    IEEE80211_CHAN_PASSIVE;
   2150 		}
   2151 
   2152 		/* save maximum allowed power for this channel */
   2153 		sc->maxpwr[chan] = channels[i].maxpwr;
   2154 
   2155 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2156 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2157 	}
   2158 }
   2159 
   2160 static void
   2161 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2162 {
   2163 	struct wpi_power_group *group = &sc->groups[n];
   2164 	struct wpi_eeprom_group rgroup;
   2165 	int i;
   2166 
   2167 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2168 	    sizeof rgroup);
   2169 
   2170 	/* save power group information */
   2171 	group->chan   = rgroup.chan;
   2172 	group->maxpwr = rgroup.maxpwr;
   2173 	/* temperature at which the samples were taken */
   2174 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2175 
   2176 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2177 	    group->chan, group->maxpwr, group->temp));
   2178 
   2179 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2180 		group->samples[i].index = rgroup.samples[i].index;
   2181 		group->samples[i].power = rgroup.samples[i].power;
   2182 
   2183 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2184 		    group->samples[i].index, group->samples[i].power));
   2185 	}
   2186 }
   2187 
   2188 /*
   2189  * Send a command to the firmware.
   2190  */
   2191 static int
   2192 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2193 {
   2194 	struct wpi_tx_ring *ring = &sc->cmdq;
   2195 	struct wpi_tx_desc *desc;
   2196 	struct wpi_tx_cmd *cmd;
   2197 
   2198 	KASSERT(size <= sizeof cmd->data);
   2199 
   2200 	desc = &ring->desc[ring->cur];
   2201 	cmd = &ring->cmd[ring->cur];
   2202 
   2203 	cmd->code = code;
   2204 	cmd->flags = 0;
   2205 	cmd->qid = ring->qid;
   2206 	cmd->idx = ring->cur;
   2207 	memcpy(cmd->data, buf, size);
   2208 
   2209 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2210 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2211 		ring->cur * sizeof (struct wpi_tx_cmd));
   2212 	desc->segs[0].len  = htole32(4 + size);
   2213 
   2214 	/* kick cmd ring */
   2215 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2216 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2217 
   2218 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2219 }
   2220 
   2221 static int
   2222 wpi_wme_update(struct ieee80211com *ic)
   2223 {
   2224 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2225 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2226 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2227 	const struct wmeParams *wmep;
   2228 	struct wpi_wme_setup wme;
   2229 	int ac;
   2230 
   2231 	/* don't override default WME values if WME is not actually enabled */
   2232 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2233 		return 0;
   2234 
   2235 	wme.flags = 0;
   2236 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2237 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2238 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2239 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2240 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2241 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2242 
   2243 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2244 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2245 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2246 	}
   2247 
   2248 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2249 #undef WPI_USEC
   2250 #undef WPI_EXP2
   2251 }
   2252 
   2253 /*
   2254  * Configure h/w multi-rate retries.
   2255  */
   2256 static int
   2257 wpi_mrr_setup(struct wpi_softc *sc)
   2258 {
   2259 	struct ieee80211com *ic = &sc->sc_ic;
   2260 	struct wpi_mrr_setup mrr;
   2261 	int i, error;
   2262 
   2263 	/* CCK rates (not used with 802.11a) */
   2264 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2265 		mrr.rates[i].flags = 0;
   2266 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2267 		/* fallback to the immediate lower CCK rate (if any) */
   2268 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2269 		/* try one time at this rate before falling back to "next" */
   2270 		mrr.rates[i].ntries = 1;
   2271 	}
   2272 
   2273 	/* OFDM rates (not used with 802.11b) */
   2274 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2275 		mrr.rates[i].flags = 0;
   2276 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2277 		/* fallback to the immediate lower rate (if any) */
   2278 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2279 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2280 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2281 			WPI_OFDM6 : WPI_CCK2) :
   2282 		    i - 1;
   2283 		/* try one time at this rate before falling back to "next" */
   2284 		mrr.rates[i].ntries = 1;
   2285 	}
   2286 
   2287 	/* setup MRR for control frames */
   2288 	mrr.which = htole32(WPI_MRR_CTL);
   2289 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2290 	if (error != 0) {
   2291 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
   2292 		return error;
   2293 	}
   2294 
   2295 	/* setup MRR for data frames */
   2296 	mrr.which = htole32(WPI_MRR_DATA);
   2297 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2298 	if (error != 0) {
   2299 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
   2300 		return error;
   2301 	}
   2302 
   2303 	return 0;
   2304 }
   2305 
   2306 static void
   2307 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2308 {
   2309 	struct wpi_cmd_led led;
   2310 
   2311 	led.which = which;
   2312 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2313 	led.off = off;
   2314 	led.on = on;
   2315 
   2316 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2317 }
   2318 
   2319 static void
   2320 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2321 {
   2322 	struct wpi_cmd_tsf tsf;
   2323 	uint64_t val, mod;
   2324 
   2325 	memset(&tsf, 0, sizeof tsf);
   2326 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
   2327 	tsf.bintval = htole16(ni->ni_intval);
   2328 	tsf.lintval = htole16(10);
   2329 
   2330 	/* compute remaining time until next beacon */
   2331 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
   2332 	mod = le64toh(tsf.tstamp) % val;
   2333 	tsf.binitval = htole32((uint32_t)(val - mod));
   2334 
   2335 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
   2336 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2337 
   2338 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2339 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2340 }
   2341 
   2342 /*
   2343  * Update Tx power to match what is defined for channel `c'.
   2344  */
   2345 static int
   2346 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2347 {
   2348 	struct ieee80211com *ic = &sc->sc_ic;
   2349 	struct wpi_power_group *group;
   2350 	struct wpi_cmd_txpower txpower;
   2351 	u_int chan;
   2352 	int i;
   2353 
   2354 	/* get channel number */
   2355 	chan = ieee80211_chan2ieee(ic, c);
   2356 
   2357 	/* find the power group to which this channel belongs */
   2358 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2359 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2360 			if (chan <= group->chan)
   2361 				break;
   2362 	} else
   2363 		group = &sc->groups[0];
   2364 
   2365 	memset(&txpower, 0, sizeof txpower);
   2366 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2367 	txpower.chan = htole16(chan);
   2368 
   2369 	/* set Tx power for all OFDM and CCK rates */
   2370 	for (i = 0; i <= 11 ; i++) {
   2371 		/* retrieve Tx power for this channel/rate combination */
   2372 		int idx = wpi_get_power_index(sc, group, c,
   2373 		    wpi_ridx_to_rate[i]);
   2374 
   2375 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2376 
   2377 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2378 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2379 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2380 		} else {
   2381 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2382 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2383 		}
   2384 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2385 		    wpi_ridx_to_rate[i], idx));
   2386 	}
   2387 
   2388 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2389 }
   2390 
   2391 /*
   2392  * Determine Tx power index for a given channel/rate combination.
   2393  * This takes into account the regulatory information from EEPROM and the
   2394  * current temperature.
   2395  */
   2396 static int
   2397 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2398     struct ieee80211_channel *c, int rate)
   2399 {
   2400 /* fixed-point arithmetic division using a n-bit fractional part */
   2401 #define fdivround(a, b, n)	\
   2402 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2403 
   2404 /* linear interpolation */
   2405 #define interpolate(x, x1, y1, x2, y2, n)	\
   2406 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2407 
   2408 	struct ieee80211com *ic = &sc->sc_ic;
   2409 	struct wpi_power_sample *sample;
   2410 	int pwr, idx;
   2411 	u_int chan;
   2412 
   2413 	/* get channel number */
   2414 	chan = ieee80211_chan2ieee(ic, c);
   2415 
   2416 	/* default power is group's maximum power - 3dB */
   2417 	pwr = group->maxpwr / 2;
   2418 
   2419 	/* decrease power for highest OFDM rates to reduce distortion */
   2420 	switch (rate) {
   2421 	case 72:	/* 36Mb/s */
   2422 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2423 		break;
   2424 	case 96:	/* 48Mb/s */
   2425 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2426 		break;
   2427 	case 108:	/* 54Mb/s */
   2428 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2429 		break;
   2430 	}
   2431 
   2432 	/* never exceed channel's maximum allowed Tx power */
   2433 	pwr = min(pwr, sc->maxpwr[chan]);
   2434 
   2435 	/* retrieve power index into gain tables from samples */
   2436 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2437 		if (pwr > sample[1].power)
   2438 			break;
   2439 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2440 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2441 	    sample[1].power, sample[1].index, 19);
   2442 
   2443 	/*
   2444 	 * Adjust power index based on current temperature:
   2445 	 * - if cooler than factory-calibrated: decrease output power
   2446 	 * - if warmer than factory-calibrated: increase output power
   2447 	 */
   2448 	idx -= (sc->temp - group->temp) * 11 / 100;
   2449 
   2450 	/* decrease power for CCK rates (-5dB) */
   2451 	if (!WPI_RATE_IS_OFDM(rate))
   2452 		idx += 10;
   2453 
   2454 	/* keep power index in a valid range */
   2455 	if (idx < 0)
   2456 		return 0;
   2457 	if (idx > WPI_MAX_PWR_INDEX)
   2458 		return WPI_MAX_PWR_INDEX;
   2459 	return idx;
   2460 
   2461 #undef interpolate
   2462 #undef fdivround
   2463 }
   2464 
   2465 /*
   2466  * Build a beacon frame that the firmware will broadcast periodically in
   2467  * IBSS or HostAP modes.
   2468  */
   2469 static int
   2470 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2471 {
   2472 	struct ieee80211com *ic = &sc->sc_ic;
   2473 	struct wpi_tx_ring *ring = &sc->cmdq;
   2474 	struct wpi_tx_desc *desc;
   2475 	struct wpi_tx_data *data;
   2476 	struct wpi_tx_cmd *cmd;
   2477 	struct wpi_cmd_beacon *bcn;
   2478 	struct ieee80211_beacon_offsets bo;
   2479 	struct mbuf *m0;
   2480 	int error;
   2481 
   2482 	desc = &ring->desc[ring->cur];
   2483 	data = &ring->data[ring->cur];
   2484 
   2485 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2486 	if (m0 == NULL) {
   2487 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
   2488 		return ENOMEM;
   2489 	}
   2490 
   2491 	cmd = &ring->cmd[ring->cur];
   2492 	cmd->code = WPI_CMD_SET_BEACON;
   2493 	cmd->flags = 0;
   2494 	cmd->qid = ring->qid;
   2495 	cmd->idx = ring->cur;
   2496 
   2497 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2498 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2499 	bcn->id = WPI_ID_BROADCAST;
   2500 	bcn->ofdm_mask = 0xff;
   2501 	bcn->cck_mask = 0x0f;
   2502 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2503 	bcn->len = htole16(m0->m_pkthdr.len);
   2504 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2505 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2506 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2507 
   2508 	/* save and trim IEEE802.11 header */
   2509 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2510 	m_adj(m0, sizeof (struct ieee80211_frame));
   2511 
   2512 	/* assume beacon frame is contiguous */
   2513 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2514 		BUS_DMA_READ | BUS_DMA_NOWAIT);
   2515 	if (error) {
   2516 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2517 		m_freem(m0);
   2518 		return error;
   2519 	}
   2520 
   2521 	data->m = m0;
   2522 
   2523 	/* first scatter/gather segment is used by the beacon command */
   2524 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2525 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2526 		ring->cur * sizeof (struct wpi_tx_cmd));
   2527 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2528 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2529 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2530 
   2531 	/* kick cmd ring */
   2532 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2533 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2534 
   2535 	return 0;
   2536 }
   2537 
   2538 static int
   2539 wpi_auth(struct wpi_softc *sc)
   2540 {
   2541 	struct ieee80211com *ic = &sc->sc_ic;
   2542 	struct ieee80211_node *ni = ic->ic_bss;
   2543 	struct wpi_node_info node;
   2544 	int error;
   2545 
   2546 	/* update adapter's configuration */
   2547 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2548 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2549 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2550 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2551 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2552 		    WPI_CONFIG_24GHZ);
   2553 	}
   2554 	switch (ic->ic_curmode) {
   2555 	case IEEE80211_MODE_11A:
   2556 		sc->config.cck_mask  = 0;
   2557 		sc->config.ofdm_mask = 0x15;
   2558 		break;
   2559 	case IEEE80211_MODE_11B:
   2560 		sc->config.cck_mask  = 0x03;
   2561 		sc->config.ofdm_mask = 0;
   2562 		break;
   2563 	default:	/* assume 802.11b/g */
   2564 		sc->config.cck_mask  = 0x0f;
   2565 		sc->config.ofdm_mask = 0x15;
   2566 	}
   2567 
   2568 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2569 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2570 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2571 		sizeof (struct wpi_config), 1);
   2572 	if (error != 0) {
   2573 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2574 		return error;
   2575 	}
   2576 
   2577 	/* configuration has changed, set Tx power accordingly */
   2578 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2579 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2580 		return error;
   2581 	}
   2582 
   2583 	/* add default node */
   2584 	memset(&node, 0, sizeof node);
   2585 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2586 	node.id = WPI_ID_BSS;
   2587 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2588 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2589 	node.action = htole32(WPI_ACTION_SET_RATE);
   2590 	node.antenna = WPI_ANTENNA_BOTH;
   2591 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2592 	if (error != 0) {
   2593 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2594 		return error;
   2595 	}
   2596 
   2597 	return 0;
   2598 }
   2599 
   2600 /*
   2601  * Send a scan request to the firmware.  Since this command is huge, we map it
   2602  * into a mbuf instead of using the pre-allocated set of commands.
   2603  */
   2604 static int
   2605 wpi_scan(struct wpi_softc *sc, uint16_t flags)
   2606 {
   2607 	struct ieee80211com *ic = &sc->sc_ic;
   2608 	struct wpi_tx_ring *ring = &sc->cmdq;
   2609 	struct wpi_tx_desc *desc;
   2610 	struct wpi_tx_data *data;
   2611 	struct wpi_tx_cmd *cmd;
   2612 	struct wpi_scan_hdr *hdr;
   2613 	struct wpi_scan_chan *chan;
   2614 	struct ieee80211_frame *wh;
   2615 	struct ieee80211_rateset *rs;
   2616 	struct ieee80211_channel *c;
   2617 	enum ieee80211_phymode mode;
   2618 	uint8_t *frm;
   2619 	int nrates, pktlen, error;
   2620 
   2621 	desc = &ring->desc[ring->cur];
   2622 	data = &ring->data[ring->cur];
   2623 
   2624 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2625 	if (data->m == NULL) {
   2626 		aprint_error_dev(sc->sc_dev,
   2627 						"could not allocate mbuf for scan command\n");
   2628 		return ENOMEM;
   2629 	}
   2630 
   2631 	MCLGET(data->m, M_DONTWAIT);
   2632 	if (!(data->m->m_flags & M_EXT)) {
   2633 		m_freem(data->m);
   2634 		data->m = NULL;
   2635 		aprint_error_dev(sc->sc_dev,
   2636 						 "could not allocate mbuf for scan command\n");
   2637 		return ENOMEM;
   2638 	}
   2639 
   2640 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2641 	cmd->code = WPI_CMD_SCAN;
   2642 	cmd->flags = 0;
   2643 	cmd->qid = ring->qid;
   2644 	cmd->idx = ring->cur;
   2645 
   2646 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2647 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2648 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
   2649 	hdr->id = WPI_ID_BROADCAST;
   2650 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2651 
   2652 	/*
   2653 	 * Move to the next channel if no packets are received within 5 msecs
   2654 	 * after sending the probe request (this helps to reduce the duration
   2655 	 * of active scans).
   2656 	 */
   2657 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
   2658 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2659 
   2660 	if (flags & IEEE80211_CHAN_A) {
   2661 		hdr->crc_threshold = htole16(1);
   2662 		/* send probe requests at 6Mbps */
   2663 		hdr->rate = wpi_plcp_signal(12);
   2664 	} else {
   2665 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2666 		/* send probe requests at 1Mbps */
   2667 		hdr->rate = wpi_plcp_signal(2);
   2668 	}
   2669 
   2670 	/* for directed scans, firmware inserts the essid IE itself */
   2671 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2672 	hdr->essid[0].len = ic->ic_des_esslen;
   2673 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2674 
   2675 	/*
   2676 	 * Build a probe request frame.  Most of the following code is a
   2677 	 * copy & paste of what is done in net80211.
   2678 	 */
   2679 	wh = (struct ieee80211_frame *)(hdr + 1);
   2680 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2681 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2682 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2683 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2684 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2685 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2686 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2687 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2688 
   2689 	frm = (uint8_t *)(wh + 1);
   2690 
   2691 	/* add empty essid IE (firmware generates it for directed scans) */
   2692 	*frm++ = IEEE80211_ELEMID_SSID;
   2693 	*frm++ = 0;
   2694 
   2695 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
   2696 	rs = &ic->ic_sup_rates[mode];
   2697 
   2698 	/* add supported rates IE */
   2699 	*frm++ = IEEE80211_ELEMID_RATES;
   2700 	nrates = rs->rs_nrates;
   2701 	if (nrates > IEEE80211_RATE_SIZE)
   2702 		nrates = IEEE80211_RATE_SIZE;
   2703 	*frm++ = nrates;
   2704 	memcpy(frm, rs->rs_rates, nrates);
   2705 	frm += nrates;
   2706 
   2707 	/* add supported xrates IE */
   2708 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2709 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2710 		*frm++ = IEEE80211_ELEMID_XRATES;
   2711 		*frm++ = nrates;
   2712 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2713 		frm += nrates;
   2714 	}
   2715 
   2716 	/* setup length of probe request */
   2717 	hdr->paylen = htole16(frm - (uint8_t *)wh);
   2718 
   2719 	chan = (struct wpi_scan_chan *)frm;
   2720 	for (c  = &ic->ic_channels[1];
   2721 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   2722 		if ((c->ic_flags & flags) != flags)
   2723 			continue;
   2724 
   2725 		chan->chan = ieee80211_chan2ieee(ic, c);
   2726 		chan->flags = 0;
   2727 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2728 			chan->flags |= WPI_CHAN_ACTIVE;
   2729 			if (ic->ic_des_esslen != 0)
   2730 				chan->flags |= WPI_CHAN_DIRECT;
   2731 		}
   2732 		chan->dsp_gain = 0x6e;
   2733 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2734 			chan->rf_gain = 0x3b;
   2735 			chan->active = htole16(10);
   2736 			chan->passive = htole16(110);
   2737 		} else {
   2738 			chan->rf_gain = 0x28;
   2739 			chan->active = htole16(20);
   2740 			chan->passive = htole16(120);
   2741 		}
   2742 		hdr->nchan++;
   2743 		chan++;
   2744 
   2745 		frm += sizeof (struct wpi_scan_chan);
   2746 	}
   2747 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2748 	pktlen = frm - (uint8_t *)cmd;
   2749 
   2750 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
   2751 		NULL, BUS_DMA_NOWAIT);
   2752 	if (error) {
   2753 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2754 		m_freem(data->m);
   2755 		data->m = NULL;
   2756 		return error;
   2757 	}
   2758 
   2759 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2760 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2761 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2762 
   2763 	/* kick cmd ring */
   2764 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2765 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2766 
   2767 	return 0;	/* will be notified async. of failure/success */
   2768 }
   2769 
   2770 static int
   2771 wpi_config(struct wpi_softc *sc)
   2772 {
   2773 	struct ieee80211com *ic = &sc->sc_ic;
   2774 	struct ifnet *ifp = ic->ic_ifp;
   2775 	struct wpi_power power;
   2776 	struct wpi_bluetooth bluetooth;
   2777 	struct wpi_node_info node;
   2778 	int error;
   2779 
   2780 	memset(&power, 0, sizeof power);
   2781 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2782 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2783 	if (error != 0) {
   2784 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2785 		return error;
   2786 	}
   2787 
   2788 	/* configure bluetooth coexistence */
   2789 	memset(&bluetooth, 0, sizeof bluetooth);
   2790 	bluetooth.flags = 3;
   2791 	bluetooth.lead = 0xaa;
   2792 	bluetooth.kill = 1;
   2793 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   2794 		0);
   2795 	if (error != 0) {
   2796 		aprint_error_dev(sc->sc_dev,
   2797 			"could not configure bluetooth coexistence\n");
   2798 		return error;
   2799 	}
   2800 
   2801 	/* configure adapter */
   2802 	memset(&sc->config, 0, sizeof (struct wpi_config));
   2803 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2804 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   2805 	/*set default channel*/
   2806 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   2807 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2808 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
   2809 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2810 		    WPI_CONFIG_24GHZ);
   2811 	}
   2812 	sc->config.filter = 0;
   2813 	switch (ic->ic_opmode) {
   2814 	case IEEE80211_M_STA:
   2815 		sc->config.mode = WPI_MODE_STA;
   2816 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   2817 		break;
   2818 	case IEEE80211_M_IBSS:
   2819 	case IEEE80211_M_AHDEMO:
   2820 		sc->config.mode = WPI_MODE_IBSS;
   2821 		break;
   2822 	case IEEE80211_M_HOSTAP:
   2823 		sc->config.mode = WPI_MODE_HOSTAP;
   2824 		break;
   2825 	case IEEE80211_M_MONITOR:
   2826 		sc->config.mode = WPI_MODE_MONITOR;
   2827 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   2828 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   2829 		break;
   2830 	}
   2831 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   2832 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   2833 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2834 		sizeof (struct wpi_config), 0);
   2835 	if (error != 0) {
   2836 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   2837 		return error;
   2838 	}
   2839 
   2840 	/* configuration has changed, set Tx power accordingly */
   2841 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
   2842 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2843 		return error;
   2844 	}
   2845 
   2846 	/* add broadcast node */
   2847 	memset(&node, 0, sizeof node);
   2848 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   2849 	node.id = WPI_ID_BROADCAST;
   2850 	node.rate = wpi_plcp_signal(2);
   2851 	node.action = htole32(WPI_ACTION_SET_RATE);
   2852 	node.antenna = WPI_ANTENNA_BOTH;
   2853 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   2854 	if (error != 0) {
   2855 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   2856 		return error;
   2857 	}
   2858 
   2859 	if ((error = wpi_mrr_setup(sc)) != 0) {
   2860 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   2861 		return error;
   2862 	}
   2863 
   2864 	return 0;
   2865 }
   2866 
   2867 static void
   2868 wpi_stop_master(struct wpi_softc *sc)
   2869 {
   2870 	uint32_t tmp;
   2871 	int ntries;
   2872 
   2873 	tmp = WPI_READ(sc, WPI_RESET);
   2874 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   2875 
   2876 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2877 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   2878 		return;	/* already asleep */
   2879 
   2880 	for (ntries = 0; ntries < 100; ntries++) {
   2881 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   2882 			break;
   2883 		DELAY(10);
   2884 	}
   2885 	if (ntries == 100) {
   2886 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   2887 	}
   2888 }
   2889 
   2890 static int
   2891 wpi_power_up(struct wpi_softc *sc)
   2892 {
   2893 	uint32_t tmp;
   2894 	int ntries;
   2895 
   2896 	wpi_mem_lock(sc);
   2897 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   2898 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   2899 	wpi_mem_unlock(sc);
   2900 
   2901 	for (ntries = 0; ntries < 5000; ntries++) {
   2902 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   2903 			break;
   2904 		DELAY(10);
   2905 	}
   2906 	if (ntries == 5000) {
   2907 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
   2908 		return ETIMEDOUT;
   2909 	}
   2910 	return 0;
   2911 }
   2912 
   2913 static int
   2914 wpi_reset(struct wpi_softc *sc)
   2915 {
   2916 	uint32_t tmp;
   2917 	int ntries;
   2918 
   2919 	/* clear any pending interrupts */
   2920 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   2921 
   2922 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   2923 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   2924 
   2925 	tmp = WPI_READ(sc, WPI_CHICKEN);
   2926 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   2927 
   2928 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2929 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   2930 
   2931 	/* wait for clock stabilization */
   2932 	for (ntries = 0; ntries < 1000; ntries++) {
   2933 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   2934 			break;
   2935 		DELAY(10);
   2936 	}
   2937 	if (ntries == 1000) {
   2938 		aprint_error_dev(sc->sc_dev,
   2939 						 "timeout waiting for clock stabilization\n");
   2940 		return ETIMEDOUT;
   2941 	}
   2942 
   2943 	/* initialize EEPROM */
   2944 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   2945 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   2946 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   2947 		return EIO;
   2948 	}
   2949 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   2950 
   2951 	return 0;
   2952 }
   2953 
   2954 static void
   2955 wpi_hw_config(struct wpi_softc *sc)
   2956 {
   2957 	uint32_t rev, hw;
   2958 
   2959 	/* voodoo from the reference driver */
   2960 	hw = WPI_READ(sc, WPI_HWCONFIG);
   2961 
   2962 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   2963 	rev = PCI_REVISION(rev);
   2964 	if ((rev & 0xc0) == 0x40)
   2965 		hw |= WPI_HW_ALM_MB;
   2966 	else if (!(rev & 0x80))
   2967 		hw |= WPI_HW_ALM_MM;
   2968 
   2969 	if (sc->cap == 0x80)
   2970 		hw |= WPI_HW_SKU_MRC;
   2971 
   2972 	hw &= ~WPI_HW_REV_D;
   2973 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   2974 		hw |= WPI_HW_REV_D;
   2975 
   2976 	if (sc->type > 1)
   2977 		hw |= WPI_HW_TYPE_B;
   2978 
   2979 	DPRINTF(("setting h/w config %x\n", hw));
   2980 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   2981 }
   2982 
   2983 static int
   2984 wpi_init(struct ifnet *ifp)
   2985 {
   2986 	struct wpi_softc *sc = ifp->if_softc;
   2987 	struct ieee80211com *ic = &sc->sc_ic;
   2988 	uint32_t tmp;
   2989 	int qid, ntries, error;
   2990 
   2991 	wpi_stop(ifp,1);
   2992 	(void)wpi_reset(sc);
   2993 
   2994 	wpi_mem_lock(sc);
   2995 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   2996 	DELAY(20);
   2997 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   2998 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   2999 	wpi_mem_unlock(sc);
   3000 
   3001 	(void)wpi_power_up(sc);
   3002 	wpi_hw_config(sc);
   3003 
   3004 	/* init Rx ring */
   3005 	wpi_mem_lock(sc);
   3006 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   3007 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   3008 	    offsetof(struct wpi_shared, next));
   3009 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3010 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3011 	wpi_mem_unlock(sc);
   3012 
   3013 	/* init Tx rings */
   3014 	wpi_mem_lock(sc);
   3015 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
   3016 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
   3017 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
   3018 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3019 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3020 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3021 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3022 
   3023 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3024 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3025 
   3026 	for (qid = 0; qid < 6; qid++) {
   3027 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3028 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3029 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3030 	}
   3031 	wpi_mem_unlock(sc);
   3032 
   3033 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3034 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3035 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3036 
   3037 	/* clear any pending interrupts */
   3038 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3039 	/* enable interrupts */
   3040 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3041 
   3042 	/* not sure why/if this is necessary... */
   3043 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3044 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3045 
   3046 	if ((error = wpi_load_firmware(sc)) != 0) {
   3047 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
   3048 		goto fail1;
   3049 	}
   3050 
   3051 	/* Check the status of the radio switch */
   3052 	if (wpi_getrfkill(sc)) {
   3053 		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
   3054 		error = EBUSY;
   3055 		goto fail1;
   3056 	}
   3057 
   3058 	/* wait for thermal sensors to calibrate */
   3059 	for (ntries = 0; ntries < 1000; ntries++) {
   3060 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3061 			break;
   3062 		DELAY(10);
   3063 	}
   3064 	if (ntries == 1000) {
   3065 		aprint_error_dev(sc->sc_dev,
   3066 						 "timeout waiting for thermal sensors calibration\n");
   3067 		error = ETIMEDOUT;
   3068 		goto fail1;
   3069 	}
   3070 
   3071 	DPRINTF(("temperature %d\n", sc->temp));
   3072 
   3073 	if ((error = wpi_config(sc)) != 0) {
   3074 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3075 		goto fail1;
   3076 	}
   3077 
   3078 	ifp->if_flags &= ~IFF_OACTIVE;
   3079 	ifp->if_flags |= IFF_RUNNING;
   3080 
   3081 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3082 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3083 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3084 	}
   3085 	else
   3086 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3087 
   3088 	return 0;
   3089 
   3090 fail1:	wpi_stop(ifp, 1);
   3091 	return error;
   3092 }
   3093 
   3094 
   3095 static void
   3096 wpi_stop(struct ifnet *ifp, int disable)
   3097 {
   3098 	struct wpi_softc *sc = ifp->if_softc;
   3099 	struct ieee80211com *ic = &sc->sc_ic;
   3100 	uint32_t tmp;
   3101 	int ac;
   3102 
   3103 	ifp->if_timer = sc->sc_tx_timer = 0;
   3104 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3105 
   3106 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3107 
   3108 	/* disable interrupts */
   3109 	WPI_WRITE(sc, WPI_MASK, 0);
   3110 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3111 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3112 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3113 
   3114 	wpi_mem_lock(sc);
   3115 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3116 	wpi_mem_unlock(sc);
   3117 
   3118 	/* reset all Tx rings */
   3119 	for (ac = 0; ac < 4; ac++)
   3120 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3121 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3122 
   3123 	/* reset Rx ring */
   3124 	wpi_reset_rx_ring(sc, &sc->rxq);
   3125 
   3126 	wpi_mem_lock(sc);
   3127 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3128 	wpi_mem_unlock(sc);
   3129 
   3130 	DELAY(5);
   3131 
   3132 	wpi_stop_master(sc);
   3133 
   3134 	tmp = WPI_READ(sc, WPI_RESET);
   3135 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3136 }
   3137 
   3138 static bool
   3139 wpi_resume(device_t dv PMF_FN_ARGS)
   3140 {
   3141 	struct wpi_softc *sc = device_private(dv);
   3142 
   3143 	(void)wpi_reset(sc);
   3144 
   3145 	return true;
   3146 }
   3147 
   3148 /*
   3149  * Return whether or not the radio is enabled in hardware
   3150  * (i.e. the rfkill switch is "off").
   3151  */
   3152 static int
   3153 wpi_getrfkill(struct wpi_softc *sc)
   3154 {
   3155 	uint32_t tmp;
   3156 
   3157 	wpi_mem_lock(sc);
   3158 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3159 	wpi_mem_unlock(sc);
   3160 
   3161 	return !(tmp & 0x01);
   3162 }
   3163 
   3164 static int
   3165 wpi_sysctl_radio(SYSCTLFN_ARGS)
   3166 {
   3167 	struct sysctlnode node;
   3168 	struct wpi_softc *sc;
   3169 	int val, error;
   3170 
   3171 	node = *rnode;
   3172 	sc = (struct wpi_softc *)node.sysctl_data;
   3173 
   3174 	val = !wpi_getrfkill(sc);
   3175 
   3176 	node.sysctl_data = &val;
   3177 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3178 
   3179 	if (error || newp == NULL)
   3180 		return error;
   3181 
   3182 	return 0;
   3183 }
   3184 
   3185 static void
   3186 wpi_sysctlattach(struct wpi_softc *sc)
   3187 {
   3188 	int rc;
   3189 	const struct sysctlnode *rnode;
   3190 	const struct sysctlnode *cnode;
   3191 
   3192 	struct sysctllog **clog = &sc->sc_sysctllog;
   3193 
   3194 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
   3195 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   3196 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
   3197 		goto err;
   3198 
   3199 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
   3200 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
   3201 	    SYSCTL_DESCR("wpi controls and statistics"),
   3202 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
   3203 		goto err;
   3204 
   3205 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3206 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
   3207 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
   3208 	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
   3209 		goto err;
   3210 
   3211 #ifdef WPI_DEBUG
   3212 	/* control debugging printfs */
   3213 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3214 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
   3215 	    "debug", SYSCTL_DESCR("Enable debugging output"),
   3216 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
   3217 		goto err;
   3218 #endif
   3219 
   3220 	return;
   3221 err:
   3222 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3223 }
   3224