if_wpi.c revision 1.43 1 /* $NetBSD: if_wpi.c,v 1.43 2009/09/05 14:09:55 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.43 2009/09/05 14:09:55 tsutsui Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/mutex.h>
38 #include <sys/once.h>
39 #include <sys/conf.h>
40 #include <sys/kauth.h>
41 #include <sys/callout.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50
51 #if NBPFILTER > 0
52 #include <net/bpf.h>
53 #endif
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/if_dl.h>
57 #include <net/if_ether.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip.h>
69
70 #include <dev/firmload.h>
71
72 #include <dev/pci/if_wpireg.h>
73 #include <dev/pci/if_wpivar.h>
74
75 #ifdef WPI_DEBUG
76 #define DPRINTF(x) if (wpi_debug > 0) printf x
77 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
78 int wpi_debug = 1;
79 #else
80 #define DPRINTF(x)
81 #define DPRINTFN(n, x)
82 #endif
83
84 /*
85 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
86 */
87 static const struct ieee80211_rateset wpi_rateset_11a =
88 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
89
90 static const struct ieee80211_rateset wpi_rateset_11b =
91 { 4, { 2, 4, 11, 22 } };
92
93 static const struct ieee80211_rateset wpi_rateset_11g =
94 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
95
96 static once_t wpi_firmware_init;
97 static kmutex_t wpi_firmware_mutex;
98 static size_t wpi_firmware_users;
99 static uint8_t *wpi_firmware_image;
100 static size_t wpi_firmware_size;
101
102 static int wpi_match(device_t, cfdata_t, void *);
103 static void wpi_attach(device_t, device_t, void *);
104 static int wpi_detach(device_t , int);
105 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
106 void **, bus_size_t, bus_size_t, int);
107 static void wpi_dma_contig_free(struct wpi_dma_info *);
108 static int wpi_alloc_shared(struct wpi_softc *);
109 static void wpi_free_shared(struct wpi_softc *);
110 static int wpi_alloc_fwmem(struct wpi_softc *);
111 static void wpi_free_fwmem(struct wpi_softc *);
112 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
113 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
114 static int wpi_alloc_rpool(struct wpi_softc *);
115 static void wpi_free_rpool(struct wpi_softc *);
116 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
117 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
118 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
119 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
120 int);
121 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
122 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
123 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
124 static void wpi_newassoc(struct ieee80211_node *, int);
125 static int wpi_media_change(struct ifnet *);
126 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
127 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
128 static void wpi_mem_lock(struct wpi_softc *);
129 static void wpi_mem_unlock(struct wpi_softc *);
130 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
131 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
132 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
133 const uint32_t *, int);
134 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
135 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
136 static int wpi_load_firmware(struct wpi_softc *);
137 static void wpi_calib_timeout(void *);
138 static void wpi_iter_func(void *, struct ieee80211_node *);
139 static void wpi_power_calibration(struct wpi_softc *, int);
140 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
141 struct wpi_rx_data *);
142 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
143 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
144 static void wpi_notif_intr(struct wpi_softc *);
145 static int wpi_intr(void *);
146 static void wpi_read_eeprom(struct wpi_softc *);
147 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
148 static void wpi_read_eeprom_group(struct wpi_softc *, int);
149 static uint8_t wpi_plcp_signal(int);
150 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
151 struct ieee80211_node *, int);
152 static void wpi_start(struct ifnet *);
153 static void wpi_watchdog(struct ifnet *);
154 static int wpi_ioctl(struct ifnet *, u_long, void *);
155 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
156 static int wpi_wme_update(struct ieee80211com *);
157 static int wpi_mrr_setup(struct wpi_softc *);
158 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
159 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
160 static int wpi_set_txpower(struct wpi_softc *,
161 struct ieee80211_channel *, int);
162 static int wpi_get_power_index(struct wpi_softc *,
163 struct wpi_power_group *, struct ieee80211_channel *, int);
164 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
165 static int wpi_auth(struct wpi_softc *);
166 static int wpi_scan(struct wpi_softc *, uint16_t);
167 static int wpi_config(struct wpi_softc *);
168 static void wpi_stop_master(struct wpi_softc *);
169 static int wpi_power_up(struct wpi_softc *);
170 static int wpi_reset(struct wpi_softc *);
171 static void wpi_hw_config(struct wpi_softc *);
172 static int wpi_init(struct ifnet *);
173 static void wpi_stop(struct ifnet *, int);
174 static bool wpi_resume(device_t PMF_FN_PROTO);
175 static int wpi_getrfkill(struct wpi_softc *);
176 static void wpi_sysctlattach(struct wpi_softc *);
177
178 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
179 wpi_detach, NULL);
180
181 static int
182 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
183 {
184 struct pci_attach_args *pa = aux;
185
186 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
187 return 0;
188
189 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
190 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
191 return 1;
192
193 return 0;
194 }
195
196 /* Base Address Register */
197 #define WPI_PCI_BAR0 0x10
198
199 static int
200 wpi_attach_once(void)
201 {
202 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
203 return 0;
204 }
205
206 static void
207 wpi_attach(device_t parent __unused, device_t self, void *aux)
208 {
209 struct wpi_softc *sc = device_private(self);
210 struct ieee80211com *ic = &sc->sc_ic;
211 struct ifnet *ifp = &sc->sc_ec.ec_if;
212 struct pci_attach_args *pa = aux;
213 const char *intrstr;
214 char devinfo[256];
215 bus_space_tag_t memt;
216 bus_space_handle_t memh;
217 pci_intr_handle_t ih;
218 pcireg_t data;
219 int error, ac, revision;
220
221 RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
222 sc->fw_used = false;
223
224 sc->sc_dev = self;
225 sc->sc_pct = pa->pa_pc;
226 sc->sc_pcitag = pa->pa_tag;
227
228 callout_init(&sc->calib_to, 0);
229 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
230
231 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
232 revision = PCI_REVISION(pa->pa_class);
233 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
234
235 /* enable bus-mastering */
236 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
237 data |= PCI_COMMAND_MASTER_ENABLE;
238 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
239
240 /* map the register window */
241 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
242 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
243 if (error != 0) {
244 aprint_error_dev(self, "could not map memory space\n");
245 return;
246 }
247
248 sc->sc_st = memt;
249 sc->sc_sh = memh;
250 sc->sc_dmat = pa->pa_dmat;
251
252 if (pci_intr_map(pa, &ih) != 0) {
253 aprint_error_dev(self, "could not map interrupt\n");
254 return;
255 }
256
257 intrstr = pci_intr_string(sc->sc_pct, ih);
258 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
259 if (sc->sc_ih == NULL) {
260 aprint_error_dev(self, "could not establish interrupt");
261 if (intrstr != NULL)
262 aprint_error(" at %s", intrstr);
263 aprint_error("\n");
264 return;
265 }
266 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
267
268 if (wpi_reset(sc) != 0) {
269 aprint_error_dev(self, "could not reset adapter\n");
270 return;
271 }
272
273 /*
274 * Allocate DMA memory for firmware transfers.
275 */
276 if ((error = wpi_alloc_fwmem(sc)) != 0)
277 return;
278
279 /*
280 * Allocate shared page and Tx/Rx rings.
281 */
282 if ((error = wpi_alloc_shared(sc)) != 0) {
283 aprint_error_dev(self, "could not allocate shared area\n");
284 goto fail1;
285 }
286
287 if ((error = wpi_alloc_rpool(sc)) != 0) {
288 aprint_error_dev(self, "could not allocate Rx buffers\n");
289 goto fail2;
290 }
291
292 for (ac = 0; ac < 4; ac++) {
293 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
294 if (error != 0) {
295 aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
296 goto fail3;
297 }
298 }
299
300 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
301 if (error != 0) {
302 aprint_error_dev(self, "could not allocate command ring\n");
303 goto fail3;
304 }
305
306 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
307 aprint_error_dev(self, "could not allocate Rx ring\n");
308 goto fail4;
309 }
310
311 ic->ic_ifp = ifp;
312 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
313 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
314 ic->ic_state = IEEE80211_S_INIT;
315
316 /* set device capabilities */
317 ic->ic_caps =
318 IEEE80211_C_IBSS | /* IBSS mode support */
319 IEEE80211_C_WPA | /* 802.11i */
320 IEEE80211_C_MONITOR | /* monitor mode supported */
321 IEEE80211_C_TXPMGT | /* tx power management */
322 IEEE80211_C_SHSLOT | /* short slot time supported */
323 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
324 IEEE80211_C_WME; /* 802.11e */
325
326 /* read supported channels and MAC address from EEPROM */
327 wpi_read_eeprom(sc);
328
329 /* set supported .11a, .11b, .11g rates */
330 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
331 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
332 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
333
334 ic->ic_ibss_chan = &ic->ic_channels[0];
335
336 ifp->if_softc = sc;
337 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
338 ifp->if_init = wpi_init;
339 ifp->if_stop = wpi_stop;
340 ifp->if_ioctl = wpi_ioctl;
341 ifp->if_start = wpi_start;
342 ifp->if_watchdog = wpi_watchdog;
343 IFQ_SET_READY(&ifp->if_snd);
344 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
345
346 if_attach(ifp);
347 ieee80211_ifattach(ic);
348 /* override default methods */
349 ic->ic_node_alloc = wpi_node_alloc;
350 ic->ic_newassoc = wpi_newassoc;
351 ic->ic_wme.wme_update = wpi_wme_update;
352
353 /* override state transition machine */
354 sc->sc_newstate = ic->ic_newstate;
355 ic->ic_newstate = wpi_newstate;
356 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
357
358 sc->amrr.amrr_min_success_threshold = 1;
359 sc->amrr.amrr_max_success_threshold = 15;
360
361 wpi_sysctlattach(sc);
362
363 if (pmf_device_register(self, NULL, wpi_resume))
364 pmf_class_network_register(self, ifp);
365 else
366 aprint_error_dev(self, "couldn't establish power handler\n");
367
368 #if NBPFILTER > 0
369 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
370 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
371 &sc->sc_drvbpf);
372
373 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
374 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
375 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
376
377 sc->sc_txtap_len = sizeof sc->sc_txtapu;
378 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
379 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
380 #endif
381
382 ieee80211_announce(ic);
383
384 return;
385
386 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
387 fail3: while (--ac >= 0)
388 wpi_free_tx_ring(sc, &sc->txq[ac]);
389 wpi_free_rpool(sc);
390 fail2: wpi_free_shared(sc);
391 fail1: wpi_free_fwmem(sc);
392 }
393
394 static int
395 wpi_detach(device_t self, int flags __unused)
396 {
397 struct wpi_softc *sc = device_private(self);
398 struct ifnet *ifp = sc->sc_ic.ic_ifp;
399 int ac;
400
401 wpi_stop(ifp, 1);
402
403 #if NBPFILTER > 0
404 if (ifp != NULL)
405 bpfdetach(ifp);
406 #endif
407 ieee80211_ifdetach(&sc->sc_ic);
408 if (ifp != NULL)
409 if_detach(ifp);
410
411 for (ac = 0; ac < 4; ac++)
412 wpi_free_tx_ring(sc, &sc->txq[ac]);
413 wpi_free_tx_ring(sc, &sc->cmdq);
414 wpi_free_rx_ring(sc, &sc->rxq);
415 wpi_free_rpool(sc);
416 wpi_free_shared(sc);
417
418 if (sc->sc_ih != NULL) {
419 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
420 sc->sc_ih = NULL;
421 }
422
423 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
424
425 if (sc->fw_used) {
426 mutex_enter(&wpi_firmware_mutex);
427 if (--wpi_firmware_users == 0)
428 firmware_free(wpi_firmware_image, wpi_firmware_size);
429 mutex_exit(&wpi_firmware_mutex);
430 }
431
432 return 0;
433 }
434
435 static int
436 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
437 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
438 {
439 int nsegs, error;
440
441 dma->tag = tag;
442 dma->size = size;
443
444 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
445 if (error != 0)
446 goto fail;
447
448 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
449 flags);
450 if (error != 0)
451 goto fail;
452
453 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
454 if (error != 0)
455 goto fail;
456
457 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
458 if (error != 0)
459 goto fail;
460
461 memset(dma->vaddr, 0, size);
462
463 dma->paddr = dma->map->dm_segs[0].ds_addr;
464 if (kvap != NULL)
465 *kvap = dma->vaddr;
466
467 return 0;
468
469 fail: wpi_dma_contig_free(dma);
470 return error;
471 }
472
473 static void
474 wpi_dma_contig_free(struct wpi_dma_info *dma)
475 {
476 if (dma->map != NULL) {
477 if (dma->vaddr != NULL) {
478 bus_dmamap_unload(dma->tag, dma->map);
479 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
480 bus_dmamem_free(dma->tag, &dma->seg, 1);
481 dma->vaddr = NULL;
482 }
483 bus_dmamap_destroy(dma->tag, dma->map);
484 dma->map = NULL;
485 }
486 }
487
488 /*
489 * Allocate a shared page between host and NIC.
490 */
491 static int
492 wpi_alloc_shared(struct wpi_softc *sc)
493 {
494 int error;
495 /* must be aligned on a 4K-page boundary */
496 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
497 (void **)&sc->shared, sizeof (struct wpi_shared),
498 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
499 if (error != 0)
500 aprint_error_dev(sc->sc_dev,
501 "could not allocate shared area DMA memory\n");
502
503 return error;
504 }
505
506 static void
507 wpi_free_shared(struct wpi_softc *sc)
508 {
509 wpi_dma_contig_free(&sc->shared_dma);
510 }
511
512 /*
513 * Allocate DMA-safe memory for firmware transfer.
514 */
515 static int
516 wpi_alloc_fwmem(struct wpi_softc *sc)
517 {
518 int error;
519 /* allocate enough contiguous space to store text and data */
520 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
521 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
522 BUS_DMA_NOWAIT);
523
524 if (error != 0)
525 aprint_error_dev(sc->sc_dev,
526 "could not allocate firmware transfer area"
527 "DMA memory\n");
528 return error;
529 }
530
531 static void
532 wpi_free_fwmem(struct wpi_softc *sc)
533 {
534 wpi_dma_contig_free(&sc->fw_dma);
535 }
536
537
538 static struct wpi_rbuf *
539 wpi_alloc_rbuf(struct wpi_softc *sc)
540 {
541 struct wpi_rbuf *rbuf;
542
543 mutex_enter(&sc->rxq.freelist_mtx);
544 rbuf = SLIST_FIRST(&sc->rxq.freelist);
545 if (rbuf != NULL) {
546 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
547 sc->rxq.nb_free_entries --;
548 }
549 mutex_exit(&sc->rxq.freelist_mtx);
550
551 return rbuf;
552 }
553
554 /*
555 * This is called automatically by the network stack when the mbuf to which our
556 * Rx buffer is attached is freed.
557 */
558 static void
559 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
560 {
561 struct wpi_rbuf *rbuf = arg;
562 struct wpi_softc *sc = rbuf->sc;
563
564 /* put the buffer back in the free list */
565
566 mutex_enter(&sc->rxq.freelist_mtx);
567 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
568 mutex_exit(&sc->rxq.freelist_mtx);
569 /* No need to protect this with a mutex, see wpi_rx_intr */
570 sc->rxq.nb_free_entries ++;
571
572 if (__predict_true(m != NULL))
573 pool_cache_put(mb_cache, m);
574 }
575
576 static int
577 wpi_alloc_rpool(struct wpi_softc *sc)
578 {
579 struct wpi_rx_ring *ring = &sc->rxq;
580 struct wpi_rbuf *rbuf;
581 int i, error;
582
583 /* allocate a big chunk of DMA'able memory.. */
584 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
585 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
586 if (error != 0) {
587 aprint_normal_dev(sc->sc_dev,
588 "could not allocate Rx buffers DMA memory\n");
589 return error;
590 }
591
592 /* ..and split it into 3KB chunks */
593 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
594 SLIST_INIT(&ring->freelist);
595 for (i = 0; i < WPI_RBUF_COUNT; i++) {
596 rbuf = &ring->rbuf[i];
597 rbuf->sc = sc; /* backpointer for callbacks */
598 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
599 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
600
601 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
602 }
603
604 ring->nb_free_entries = WPI_RBUF_COUNT;
605 return 0;
606 }
607
608 static void
609 wpi_free_rpool(struct wpi_softc *sc)
610 {
611 wpi_dma_contig_free(&sc->rxq.buf_dma);
612 }
613
614 static int
615 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
616 {
617 struct wpi_rx_data *data;
618 struct wpi_rbuf *rbuf;
619 int i, error;
620
621 ring->cur = 0;
622
623 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
624 (void **)&ring->desc,
625 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
626 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
627 if (error != 0) {
628 aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
629 goto fail;
630 }
631
632 /*
633 * Setup Rx buffers.
634 */
635 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
636 data = &ring->data[i];
637
638 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
639 if (data->m == NULL) {
640 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
641 error = ENOMEM;
642 goto fail;
643 }
644 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
645 m_freem(data->m);
646 data->m = NULL;
647 aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
648 error = ENOMEM;
649 goto fail;
650 }
651 /* attach Rx buffer to mbuf */
652 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
653 rbuf);
654 data->m->m_flags |= M_EXT_RW;
655
656 ring->desc[i] = htole32(rbuf->paddr);
657 }
658
659 return 0;
660
661 fail: wpi_free_rx_ring(sc, ring);
662 return error;
663 }
664
665 static void
666 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
667 {
668 int ntries;
669
670 wpi_mem_lock(sc);
671
672 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
673 for (ntries = 0; ntries < 100; ntries++) {
674 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
675 break;
676 DELAY(10);
677 }
678 #ifdef WPI_DEBUG
679 if (ntries == 100 && wpi_debug > 0)
680 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
681 #endif
682 wpi_mem_unlock(sc);
683
684 ring->cur = 0;
685 }
686
687 static void
688 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
689 {
690 int i;
691
692 wpi_dma_contig_free(&ring->desc_dma);
693
694 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
695 if (ring->data[i].m != NULL)
696 m_freem(ring->data[i].m);
697 }
698 }
699
700 static int
701 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
702 int qid)
703 {
704 struct wpi_tx_data *data;
705 int i, error;
706
707 ring->qid = qid;
708 ring->count = count;
709 ring->queued = 0;
710 ring->cur = 0;
711
712 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
713 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
714 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
715 if (error != 0) {
716 aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
717 goto fail;
718 }
719
720 /* update shared page with ring's base address */
721 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
722
723 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
724 (void **)&ring->cmd,
725 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
726 if (error != 0) {
727 aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
728 goto fail;
729 }
730
731 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
732 M_NOWAIT);
733 if (ring->data == NULL) {
734 aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
735 goto fail;
736 }
737
738 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
739
740 for (i = 0; i < count; i++) {
741 data = &ring->data[i];
742
743 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
744 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
745 &data->map);
746 if (error != 0) {
747 aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
748 goto fail;
749 }
750 }
751
752 return 0;
753
754 fail: wpi_free_tx_ring(sc, ring);
755 return error;
756 }
757
758 static void
759 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
760 {
761 struct wpi_tx_data *data;
762 int i, ntries;
763
764 wpi_mem_lock(sc);
765
766 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
767 for (ntries = 0; ntries < 100; ntries++) {
768 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
769 break;
770 DELAY(10);
771 }
772 #ifdef WPI_DEBUG
773 if (ntries == 100 && wpi_debug > 0) {
774 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
775 ring->qid);
776 }
777 #endif
778 wpi_mem_unlock(sc);
779
780 for (i = 0; i < ring->count; i++) {
781 data = &ring->data[i];
782
783 if (data->m != NULL) {
784 bus_dmamap_unload(sc->sc_dmat, data->map);
785 m_freem(data->m);
786 data->m = NULL;
787 }
788 }
789
790 ring->queued = 0;
791 ring->cur = 0;
792 }
793
794 static void
795 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
796 {
797 struct wpi_tx_data *data;
798 int i;
799
800 wpi_dma_contig_free(&ring->desc_dma);
801 wpi_dma_contig_free(&ring->cmd_dma);
802
803 if (ring->data != NULL) {
804 for (i = 0; i < ring->count; i++) {
805 data = &ring->data[i];
806
807 if (data->m != NULL) {
808 bus_dmamap_unload(sc->sc_dmat, data->map);
809 m_freem(data->m);
810 }
811 }
812 free(ring->data, M_DEVBUF);
813 }
814 }
815
816 /*ARGUSED*/
817 static struct ieee80211_node *
818 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
819 {
820 struct wpi_node *wn;
821
822 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
823
824 return (struct ieee80211_node *)wn;
825 }
826
827 static void
828 wpi_newassoc(struct ieee80211_node *ni, int isnew)
829 {
830 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
831 int i;
832
833 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
834
835 /* set rate to some reasonable initial value */
836 for (i = ni->ni_rates.rs_nrates - 1;
837 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
838 i--);
839 ni->ni_txrate = i;
840 }
841
842 static int
843 wpi_media_change(struct ifnet *ifp)
844 {
845 int error;
846
847 error = ieee80211_media_change(ifp);
848 if (error != ENETRESET)
849 return error;
850
851 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
852 wpi_init(ifp);
853
854 return 0;
855 }
856
857 static int
858 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
859 {
860 struct ifnet *ifp = ic->ic_ifp;
861 struct wpi_softc *sc = ifp->if_softc;
862 struct ieee80211_node *ni;
863 int error;
864
865 callout_stop(&sc->calib_to);
866
867 switch (nstate) {
868 case IEEE80211_S_SCAN:
869
870 if (sc->is_scanning)
871 break;
872
873 sc->is_scanning = true;
874 ieee80211_node_table_reset(&ic->ic_scan);
875 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
876
877 /* make the link LED blink while we're scanning */
878 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
879
880 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
881 aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
882 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
883 return error;
884 }
885
886 ic->ic_state = nstate;
887 return 0;
888
889 case IEEE80211_S_ASSOC:
890 if (ic->ic_state != IEEE80211_S_RUN)
891 break;
892 /* FALLTHROUGH */
893 case IEEE80211_S_AUTH:
894 sc->config.associd = 0;
895 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
896 if ((error = wpi_auth(sc)) != 0) {
897 aprint_error_dev(sc->sc_dev,
898 "could not send authentication request\n");
899 return error;
900 }
901 break;
902
903 case IEEE80211_S_RUN:
904 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
905 /* link LED blinks while monitoring */
906 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
907 break;
908 }
909
910 ni = ic->ic_bss;
911
912 if (ic->ic_opmode != IEEE80211_M_STA) {
913 (void) wpi_auth(sc); /* XXX */
914 wpi_setup_beacon(sc, ni);
915 }
916
917 wpi_enable_tsf(sc, ni);
918
919 /* update adapter's configuration */
920 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
921 /* short preamble/slot time are negotiated when associating */
922 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
923 WPI_CONFIG_SHSLOT);
924 if (ic->ic_flags & IEEE80211_F_SHSLOT)
925 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
926 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
927 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
928 sc->config.filter |= htole32(WPI_FILTER_BSS);
929 if (ic->ic_opmode != IEEE80211_M_STA)
930 sc->config.filter |= htole32(WPI_FILTER_BEACON);
931
932 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
933
934 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
935 sc->config.flags));
936 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
937 sizeof (struct wpi_config), 1);
938 if (error != 0) {
939 aprint_error_dev(sc->sc_dev, "could not update configuration\n");
940 return error;
941 }
942
943 /* configuration has changed, set Tx power accordingly */
944 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
945 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
946 return error;
947 }
948
949 if (ic->ic_opmode == IEEE80211_M_STA) {
950 /* fake a join to init the tx rate */
951 wpi_newassoc(ni, 1);
952 }
953
954 /* start periodic calibration timer */
955 sc->calib_cnt = 0;
956 callout_schedule(&sc->calib_to, hz/2);
957
958 /* link LED always on while associated */
959 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
960 break;
961
962 case IEEE80211_S_INIT:
963 sc->is_scanning = false;
964 break;
965 }
966
967 return sc->sc_newstate(ic, nstate, arg);
968 }
969
970 /*
971 * XXX: Hack to set the current channel to the value advertised in beacons or
972 * probe responses. Only used during AP detection.
973 * XXX: Duplicated from if_iwi.c
974 */
975 static void
976 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
977 {
978 struct ieee80211_frame *wh;
979 uint8_t subtype;
980 uint8_t *frm, *efrm;
981
982 wh = mtod(m, struct ieee80211_frame *);
983
984 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
985 return;
986
987 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
988
989 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
990 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
991 return;
992
993 frm = (uint8_t *)(wh + 1);
994 efrm = mtod(m, uint8_t *) + m->m_len;
995
996 frm += 12; /* skip tstamp, bintval and capinfo fields */
997 while (frm < efrm) {
998 if (*frm == IEEE80211_ELEMID_DSPARMS)
999 #if IEEE80211_CHAN_MAX < 255
1000 if (frm[2] <= IEEE80211_CHAN_MAX)
1001 #endif
1002 ic->ic_curchan = &ic->ic_channels[frm[2]];
1003
1004 frm += frm[1] + 2;
1005 }
1006 }
1007
1008 /*
1009 * Grab exclusive access to NIC memory.
1010 */
1011 static void
1012 wpi_mem_lock(struct wpi_softc *sc)
1013 {
1014 uint32_t tmp;
1015 int ntries;
1016
1017 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1018 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1019
1020 /* spin until we actually get the lock */
1021 for (ntries = 0; ntries < 1000; ntries++) {
1022 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1023 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1024 break;
1025 DELAY(10);
1026 }
1027 if (ntries == 1000)
1028 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1029 }
1030
1031 /*
1032 * Release lock on NIC memory.
1033 */
1034 static void
1035 wpi_mem_unlock(struct wpi_softc *sc)
1036 {
1037 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1038 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1039 }
1040
1041 static uint32_t
1042 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1043 {
1044 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1045 return WPI_READ(sc, WPI_READ_MEM_DATA);
1046 }
1047
1048 static void
1049 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1050 {
1051 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1052 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1053 }
1054
1055 static void
1056 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1057 const uint32_t *data, int wlen)
1058 {
1059 for (; wlen > 0; wlen--, data++, addr += 4)
1060 wpi_mem_write(sc, addr, *data);
1061 }
1062
1063
1064 /*
1065 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1066 * instead of using the traditional bit-bang method.
1067 */
1068 static int
1069 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1070 {
1071 uint8_t *out = data;
1072 uint32_t val;
1073 int ntries;
1074
1075 wpi_mem_lock(sc);
1076 for (; len > 0; len -= 2, addr++) {
1077 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1078
1079 for (ntries = 0; ntries < 10; ntries++) {
1080 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1081 WPI_EEPROM_READY)
1082 break;
1083 DELAY(5);
1084 }
1085 if (ntries == 10) {
1086 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1087 return ETIMEDOUT;
1088 }
1089 *out++ = val >> 16;
1090 if (len > 1)
1091 *out++ = val >> 24;
1092 }
1093 wpi_mem_unlock(sc);
1094
1095 return 0;
1096 }
1097
1098 /*
1099 * The firmware boot code is small and is intended to be copied directly into
1100 * the NIC internal memory.
1101 */
1102 int
1103 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1104 {
1105 int ntries;
1106
1107 size /= sizeof (uint32_t);
1108
1109 wpi_mem_lock(sc);
1110
1111 /* copy microcode image into NIC memory */
1112 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1113 (const uint32_t *)ucode, size);
1114
1115 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1116 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1117 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1118
1119 /* run microcode */
1120 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1121
1122 /* wait for transfer to complete */
1123 for (ntries = 0; ntries < 1000; ntries++) {
1124 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1125 break;
1126 DELAY(10);
1127 }
1128 if (ntries == 1000) {
1129 wpi_mem_unlock(sc);
1130 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1131 return ETIMEDOUT;
1132 }
1133 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1134
1135 wpi_mem_unlock(sc);
1136
1137 return 0;
1138 }
1139
1140 static int
1141 wpi_cache_firmware(struct wpi_softc *sc)
1142 {
1143 firmware_handle_t fw;
1144 int error;
1145
1146 if (sc->fw_used)
1147 return 0;
1148
1149 mutex_enter(&wpi_firmware_mutex);
1150 if (wpi_firmware_users++) {
1151 mutex_exit(&wpi_firmware_mutex);
1152 return 0;
1153 }
1154
1155 /* load firmware image from disk */
1156 if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1157 aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1158 goto fail1;
1159 }
1160
1161 wpi_firmware_size = firmware_get_size(fw);
1162
1163 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1164 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1165 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1166 WPI_FW_BOOT_TEXT_MAXSZ) {
1167 aprint_error_dev(sc->sc_dev, "invalid firmware file\n");
1168 error = EFBIG;
1169 goto fail1;
1170 }
1171
1172 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1173 aprint_error_dev(sc->sc_dev,
1174 "truncated firmware header: %zu bytes\n",
1175 wpi_firmware_size);
1176 error = EINVAL;
1177 goto fail2;
1178 }
1179
1180 wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1181 if (wpi_firmware_image == NULL) {
1182 aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1183 error = ENOMEM;
1184 goto fail1;
1185 }
1186
1187 if ((error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size)) != 0) {
1188 aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1189 goto fail2;
1190 }
1191
1192 sc->fw_used = true;
1193 firmware_close(fw);
1194 mutex_exit(&wpi_firmware_mutex);
1195
1196 return 0;
1197
1198 fail2:
1199 firmware_free(wpi_firmware_image, wpi_firmware_size);
1200 fail1:
1201 firmware_close(fw);
1202 if (--wpi_firmware_users == 0)
1203 firmware_free(wpi_firmware_image, wpi_firmware_size);
1204 mutex_exit(&wpi_firmware_mutex);
1205 return error;
1206 }
1207
1208 static int
1209 wpi_load_firmware(struct wpi_softc *sc)
1210 {
1211 struct wpi_dma_info *dma = &sc->fw_dma;
1212 struct wpi_firmware_hdr hdr;
1213 const uint8_t *init_text, *init_data, *main_text, *main_data;
1214 const uint8_t *boot_text;
1215 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1216 uint32_t boot_textsz;
1217 int error;
1218
1219 if ((error = wpi_cache_firmware(sc)) != 0)
1220 return error;
1221
1222 memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1223
1224 main_textsz = le32toh(hdr.main_textsz);
1225 main_datasz = le32toh(hdr.main_datasz);
1226 init_textsz = le32toh(hdr.init_textsz);
1227 init_datasz = le32toh(hdr.init_datasz);
1228 boot_textsz = le32toh(hdr.boot_textsz);
1229
1230 /* sanity-check firmware segments sizes */
1231 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1232 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1233 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1234 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1235 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1236 (boot_textsz & 3) != 0) {
1237 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1238 error = EINVAL;
1239 goto free_firmware;
1240 }
1241
1242 /* check that all firmware segments are present */
1243 if (wpi_firmware_size <
1244 sizeof (struct wpi_firmware_hdr) + main_textsz +
1245 main_datasz + init_textsz + init_datasz + boot_textsz) {
1246 aprint_error_dev(sc->sc_dev,
1247 "firmware file too short: %zu bytes\n", wpi_firmware_size);
1248 error = EINVAL;
1249 goto free_firmware;
1250 }
1251
1252 /* get pointers to firmware segments */
1253 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1254 main_data = main_text + main_textsz;
1255 init_text = main_data + main_datasz;
1256 init_data = init_text + init_textsz;
1257 boot_text = init_data + init_datasz;
1258
1259 /* copy initialization images into pre-allocated DMA-safe memory */
1260 memcpy(dma->vaddr, init_data, init_datasz);
1261 memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1262
1263 /* tell adapter where to find initialization images */
1264 wpi_mem_lock(sc);
1265 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1266 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1267 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1268 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1269 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1270 wpi_mem_unlock(sc);
1271
1272 /* load firmware boot code */
1273 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1274 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1275 return error;
1276 }
1277
1278 /* now press "execute" ;-) */
1279 WPI_WRITE(sc, WPI_RESET, 0);
1280
1281 /* ..and wait at most one second for adapter to initialize */
1282 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1283 /* this isn't what was supposed to happen.. */
1284 aprint_error_dev(sc->sc_dev,
1285 "timeout waiting for adapter to initialize\n");
1286 }
1287
1288 /* copy runtime images into pre-allocated DMA-safe memory */
1289 memcpy(dma->vaddr, main_data, main_datasz);
1290 memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1291
1292 /* tell adapter where to find runtime images */
1293 wpi_mem_lock(sc);
1294 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1295 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1296 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1297 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1298 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1299 wpi_mem_unlock(sc);
1300
1301 /* wait at most one second for second alive notification */
1302 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1303 /* this isn't what was supposed to happen.. */
1304 aprint_error_dev(sc->sc_dev,
1305 "timeout waiting for adapter to initialize\n");
1306 }
1307
1308 return error;
1309
1310 free_firmware:
1311 mutex_enter(&wpi_firmware_mutex);
1312 sc->fw_used = false;
1313 --wpi_firmware_users;
1314 mutex_exit(&wpi_firmware_mutex);
1315 return error;
1316 }
1317
1318 static void
1319 wpi_calib_timeout(void *arg)
1320 {
1321 struct wpi_softc *sc = arg;
1322 struct ieee80211com *ic = &sc->sc_ic;
1323 int temp, s;
1324
1325 /* automatic rate control triggered every 500ms */
1326 if (ic->ic_fixed_rate == -1) {
1327 s = splnet();
1328 if (ic->ic_opmode == IEEE80211_M_STA)
1329 wpi_iter_func(sc, ic->ic_bss);
1330 else
1331 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1332 splx(s);
1333 }
1334
1335 /* update sensor data */
1336 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1337
1338 /* automatic power calibration every 60s */
1339 if (++sc->calib_cnt >= 120) {
1340 wpi_power_calibration(sc, temp);
1341 sc->calib_cnt = 0;
1342 }
1343
1344 callout_schedule(&sc->calib_to, hz/2);
1345 }
1346
1347 static void
1348 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1349 {
1350 struct wpi_softc *sc = arg;
1351 struct wpi_node *wn = (struct wpi_node *)ni;
1352
1353 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1354 }
1355
1356 /*
1357 * This function is called periodically (every 60 seconds) to adjust output
1358 * power to temperature changes.
1359 */
1360 void
1361 wpi_power_calibration(struct wpi_softc *sc, int temp)
1362 {
1363 /* sanity-check read value */
1364 if (temp < -260 || temp > 25) {
1365 /* this can't be correct, ignore */
1366 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1367 return;
1368 }
1369
1370 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1371
1372 /* adjust Tx power if need be */
1373 if (abs(temp - sc->temp) <= 6)
1374 return;
1375
1376 sc->temp = temp;
1377
1378 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1379 /* just warn, too bad for the automatic calibration... */
1380 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1381 }
1382 }
1383
1384 static void
1385 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1386 struct wpi_rx_data *data)
1387 {
1388 struct ieee80211com *ic = &sc->sc_ic;
1389 struct ifnet *ifp = ic->ic_ifp;
1390 struct wpi_rx_ring *ring = &sc->rxq;
1391 struct wpi_rx_stat *stat;
1392 struct wpi_rx_head *head;
1393 struct wpi_rx_tail *tail;
1394 struct wpi_rbuf *rbuf;
1395 struct ieee80211_frame *wh;
1396 struct ieee80211_node *ni;
1397 struct mbuf *m, *mnew;
1398 int data_off ;
1399
1400 stat = (struct wpi_rx_stat *)(desc + 1);
1401
1402 if (stat->len > WPI_STAT_MAXLEN) {
1403 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1404 ifp->if_ierrors++;
1405 return;
1406 }
1407
1408 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1409 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1410
1411 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1412 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1413 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1414 le64toh(tail->tstamp)));
1415
1416 /*
1417 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1418 * to radiotap in monitor mode).
1419 */
1420 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1421 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1422 ifp->if_ierrors++;
1423 return;
1424 }
1425
1426 /* Compute where are the useful datas */
1427 data_off = (char*)(head + 1) - mtod(data->m, char*);
1428
1429 /*
1430 * If the number of free entry is too low
1431 * just dup the data->m socket and reuse the same rbuf entry
1432 * Note that thi test is not protected by a mutex because the
1433 * only path that causes nb_free_entries to decrease is through
1434 * this interrupt routine, which is not re-entrent.
1435 * What may not be obvious is that the safe path is if that test
1436 * evaluates as true, so nb_free_entries can grow any time.
1437 */
1438 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1439
1440 /* Prepare the mbuf for the m_dup */
1441 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1442 data->m->m_data = (char*) data->m->m_data + data_off;
1443
1444 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1445
1446 /* Restore the m_data pointer for future use */
1447 data->m->m_data = (char*) data->m->m_data - data_off;
1448
1449 if (m == NULL) {
1450 ifp->if_ierrors++;
1451 return;
1452 }
1453 } else {
1454
1455 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1456 if (mnew == NULL) {
1457 ifp->if_ierrors++;
1458 return;
1459 }
1460
1461 rbuf = wpi_alloc_rbuf(sc);
1462 KASSERT(rbuf != NULL);
1463
1464 /* attach Rx buffer to mbuf */
1465 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1466 rbuf);
1467 mnew->m_flags |= M_EXT_RW;
1468
1469 m = data->m;
1470 data->m = mnew;
1471
1472 /* update Rx descriptor */
1473 ring->desc[ring->cur] = htole32(rbuf->paddr);
1474
1475 m->m_data = (char*)m->m_data + data_off;
1476 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1477 }
1478
1479 /* finalize mbuf */
1480 m->m_pkthdr.rcvif = ifp;
1481
1482 if (ic->ic_state == IEEE80211_S_SCAN)
1483 wpi_fix_channel(ic, m);
1484
1485 #if NBPFILTER > 0
1486 if (sc->sc_drvbpf != NULL) {
1487 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1488
1489 tap->wr_flags = 0;
1490 tap->wr_chan_freq =
1491 htole16(ic->ic_channels[head->chan].ic_freq);
1492 tap->wr_chan_flags =
1493 htole16(ic->ic_channels[head->chan].ic_flags);
1494 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1495 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1496 tap->wr_tsft = tail->tstamp;
1497 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1498 switch (head->rate) {
1499 /* CCK rates */
1500 case 10: tap->wr_rate = 2; break;
1501 case 20: tap->wr_rate = 4; break;
1502 case 55: tap->wr_rate = 11; break;
1503 case 110: tap->wr_rate = 22; break;
1504 /* OFDM rates */
1505 case 0xd: tap->wr_rate = 12; break;
1506 case 0xf: tap->wr_rate = 18; break;
1507 case 0x5: tap->wr_rate = 24; break;
1508 case 0x7: tap->wr_rate = 36; break;
1509 case 0x9: tap->wr_rate = 48; break;
1510 case 0xb: tap->wr_rate = 72; break;
1511 case 0x1: tap->wr_rate = 96; break;
1512 case 0x3: tap->wr_rate = 108; break;
1513 /* unknown rate: should not happen */
1514 default: tap->wr_rate = 0;
1515 }
1516 if (le16toh(head->flags) & 0x4)
1517 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1518
1519 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1520 }
1521 #endif
1522
1523 /* grab a reference to the source node */
1524 wh = mtod(m, struct ieee80211_frame *);
1525 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1526
1527 /* send the frame to the 802.11 layer */
1528 ieee80211_input(ic, m, ni, stat->rssi, 0);
1529
1530 /* release node reference */
1531 ieee80211_free_node(ni);
1532 }
1533
1534 static void
1535 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1536 {
1537 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1538 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1539 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1540 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1541 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1542
1543 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1544 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1545 stat->nkill, stat->rate, le32toh(stat->duration),
1546 le32toh(stat->status)));
1547
1548 /*
1549 * Update rate control statistics for the node.
1550 * XXX we should not count mgmt frames since they're always sent at
1551 * the lowest available bit-rate.
1552 */
1553 wn->amn.amn_txcnt++;
1554 if (stat->ntries > 0) {
1555 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1556 wn->amn.amn_retrycnt++;
1557 }
1558
1559 if ((le32toh(stat->status) & 0xff) != 1)
1560 ifp->if_oerrors++;
1561 else
1562 ifp->if_opackets++;
1563
1564 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1565 m_freem(txdata->m);
1566 txdata->m = NULL;
1567 ieee80211_free_node(txdata->ni);
1568 txdata->ni = NULL;
1569
1570 ring->queued--;
1571
1572 sc->sc_tx_timer = 0;
1573 ifp->if_flags &= ~IFF_OACTIVE;
1574 wpi_start(ifp);
1575 }
1576
1577 static void
1578 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1579 {
1580 struct wpi_tx_ring *ring = &sc->cmdq;
1581 struct wpi_tx_data *data;
1582
1583 if ((desc->qid & 7) != 4)
1584 return; /* not a command ack */
1585
1586 data = &ring->data[desc->idx];
1587
1588 /* if the command was mapped in a mbuf, free it */
1589 if (data->m != NULL) {
1590 bus_dmamap_unload(sc->sc_dmat, data->map);
1591 m_freem(data->m);
1592 data->m = NULL;
1593 }
1594
1595 wakeup(&ring->cmd[desc->idx]);
1596 }
1597
1598 static void
1599 wpi_notif_intr(struct wpi_softc *sc)
1600 {
1601 struct ieee80211com *ic = &sc->sc_ic;
1602 struct ifnet *ifp = ic->ic_ifp;
1603 struct wpi_rx_desc *desc;
1604 struct wpi_rx_data *data;
1605 uint32_t hw;
1606
1607 hw = le32toh(sc->shared->next);
1608 while (sc->rxq.cur != hw) {
1609 data = &sc->rxq.data[sc->rxq.cur];
1610
1611 desc = mtod(data->m, struct wpi_rx_desc *);
1612
1613 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1614 "len=%d\n", desc->qid, desc->idx, desc->flags,
1615 desc->type, le32toh(desc->len)));
1616
1617 if (!(desc->qid & 0x80)) /* reply to a command */
1618 wpi_cmd_intr(sc, desc);
1619
1620 switch (desc->type) {
1621 case WPI_RX_DONE:
1622 /* a 802.11 frame was received */
1623 wpi_rx_intr(sc, desc, data);
1624 break;
1625
1626 case WPI_TX_DONE:
1627 /* a 802.11 frame has been transmitted */
1628 wpi_tx_intr(sc, desc);
1629 break;
1630
1631 case WPI_UC_READY:
1632 {
1633 struct wpi_ucode_info *uc =
1634 (struct wpi_ucode_info *)(desc + 1);
1635
1636 /* the microcontroller is ready */
1637 DPRINTF(("microcode alive notification version %x "
1638 "alive %x\n", le32toh(uc->version),
1639 le32toh(uc->valid)));
1640
1641 if (le32toh(uc->valid) != 1) {
1642 aprint_error_dev(sc->sc_dev,
1643 "microcontroller initialization failed\n");
1644 }
1645 break;
1646 }
1647 case WPI_STATE_CHANGED:
1648 {
1649 uint32_t *status = (uint32_t *)(desc + 1);
1650
1651 /* enabled/disabled notification */
1652 DPRINTF(("state changed to %x\n", le32toh(*status)));
1653
1654 if (le32toh(*status) & 1) {
1655 /* the radio button has to be pushed */
1656 aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1657 /* turn the interface down */
1658 ifp->if_flags &= ~IFF_UP;
1659 wpi_stop(ifp, 1);
1660 return; /* no further processing */
1661 }
1662 break;
1663 }
1664 case WPI_START_SCAN:
1665 {
1666 struct wpi_start_scan *scan =
1667 (struct wpi_start_scan *)(desc + 1);
1668
1669 DPRINTFN(2, ("scanning channel %d status %x\n",
1670 scan->chan, le32toh(scan->status)));
1671
1672 /* fix current channel */
1673 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1674 break;
1675 }
1676 case WPI_STOP_SCAN:
1677 {
1678 struct wpi_stop_scan *scan =
1679 (struct wpi_stop_scan *)(desc + 1);
1680
1681 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1682 scan->nchan, scan->status, scan->chan));
1683
1684 if (scan->status == 1 && scan->chan <= 14) {
1685 /*
1686 * We just finished scanning 802.11g channels,
1687 * start scanning 802.11a ones.
1688 */
1689 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1690 break;
1691 }
1692 sc->is_scanning = false;
1693 ieee80211_end_scan(ic);
1694 break;
1695 }
1696 }
1697
1698 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1699 }
1700
1701 /* tell the firmware what we have processed */
1702 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1703 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1704 }
1705
1706 static int
1707 wpi_intr(void *arg)
1708 {
1709 struct wpi_softc *sc = arg;
1710 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1711 uint32_t r;
1712
1713 r = WPI_READ(sc, WPI_INTR);
1714 if (r == 0 || r == 0xffffffff)
1715 return 0; /* not for us */
1716
1717 DPRINTFN(5, ("interrupt reg %x\n", r));
1718
1719 /* disable interrupts */
1720 WPI_WRITE(sc, WPI_MASK, 0);
1721 /* ack interrupts */
1722 WPI_WRITE(sc, WPI_INTR, r);
1723
1724 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1725 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1726 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1727 wpi_stop(sc->sc_ic.ic_ifp, 1);
1728 return 1;
1729 }
1730
1731 if (r & WPI_RX_INTR)
1732 wpi_notif_intr(sc);
1733
1734 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1735 wakeup(sc);
1736
1737 /* re-enable interrupts */
1738 if (ifp->if_flags & IFF_UP)
1739 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1740
1741 return 1;
1742 }
1743
1744 static uint8_t
1745 wpi_plcp_signal(int rate)
1746 {
1747 switch (rate) {
1748 /* CCK rates (returned values are device-dependent) */
1749 case 2: return 10;
1750 case 4: return 20;
1751 case 11: return 55;
1752 case 22: return 110;
1753
1754 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1755 /* R1-R4, (u)ral is R4-R1 */
1756 case 12: return 0xd;
1757 case 18: return 0xf;
1758 case 24: return 0x5;
1759 case 36: return 0x7;
1760 case 48: return 0x9;
1761 case 72: return 0xb;
1762 case 96: return 0x1;
1763 case 108: return 0x3;
1764
1765 /* unsupported rates (should not get there) */
1766 default: return 0;
1767 }
1768 }
1769
1770 /* quickly determine if a given rate is CCK or OFDM */
1771 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1772
1773 static int
1774 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1775 int ac)
1776 {
1777 struct ieee80211com *ic = &sc->sc_ic;
1778 struct wpi_tx_ring *ring = &sc->txq[ac];
1779 struct wpi_tx_desc *desc;
1780 struct wpi_tx_data *data;
1781 struct wpi_tx_cmd *cmd;
1782 struct wpi_cmd_data *tx;
1783 struct ieee80211_frame *wh;
1784 struct ieee80211_key *k;
1785 const struct chanAccParams *cap;
1786 struct mbuf *mnew;
1787 int i, error, rate, hdrlen, noack = 0;
1788
1789 desc = &ring->desc[ring->cur];
1790 data = &ring->data[ring->cur];
1791
1792 wh = mtod(m0, struct ieee80211_frame *);
1793
1794 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1795 cap = &ic->ic_wme.wme_chanParams;
1796 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1797 }
1798
1799 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1800 k = ieee80211_crypto_encap(ic, ni, m0);
1801 if (k == NULL) {
1802 m_freem(m0);
1803 return ENOBUFS;
1804 }
1805
1806 /* packet header may have moved, reset our local pointer */
1807 wh = mtod(m0, struct ieee80211_frame *);
1808 }
1809
1810 hdrlen = ieee80211_anyhdrsize(wh);
1811
1812 /* pickup a rate */
1813 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1814 IEEE80211_FC0_TYPE_MGT) {
1815 /* mgmt frames are sent at the lowest available bit-rate */
1816 rate = ni->ni_rates.rs_rates[0];
1817 } else {
1818 if (ic->ic_fixed_rate != -1) {
1819 rate = ic->ic_sup_rates[ic->ic_curmode].
1820 rs_rates[ic->ic_fixed_rate];
1821 } else
1822 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1823 }
1824 rate &= IEEE80211_RATE_VAL;
1825
1826
1827 #if NBPFILTER > 0
1828 if (sc->sc_drvbpf != NULL) {
1829 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1830
1831 tap->wt_flags = 0;
1832 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1833 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1834 tap->wt_rate = rate;
1835 tap->wt_hwqueue = ac;
1836 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1837 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1838
1839 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1840 }
1841 #endif
1842
1843 cmd = &ring->cmd[ring->cur];
1844 cmd->code = WPI_CMD_TX_DATA;
1845 cmd->flags = 0;
1846 cmd->qid = ring->qid;
1847 cmd->idx = ring->cur;
1848
1849 tx = (struct wpi_cmd_data *)cmd->data;
1850 tx->flags = 0;
1851
1852 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1853 tx->flags |= htole32(WPI_TX_NEED_ACK);
1854 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1855 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1856
1857 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1858
1859 /* retrieve destination node's id */
1860 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1861 WPI_ID_BSS;
1862
1863 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1864 IEEE80211_FC0_TYPE_MGT) {
1865 /* tell h/w to set timestamp in probe responses */
1866 if ((wh->i_fc[0] &
1867 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1868 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1869 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1870
1871 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1872 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1873 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1874 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1875 tx->timeout = htole16(3);
1876 else
1877 tx->timeout = htole16(2);
1878 } else
1879 tx->timeout = htole16(0);
1880
1881 tx->rate = wpi_plcp_signal(rate);
1882
1883 /* be very persistant at sending frames out */
1884 tx->rts_ntries = 7;
1885 tx->data_ntries = 15;
1886
1887 tx->ofdm_mask = 0xff;
1888 tx->cck_mask = 0xf;
1889 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1890
1891 tx->len = htole16(m0->m_pkthdr.len);
1892
1893 /* save and trim IEEE802.11 header */
1894 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1895 m_adj(m0, hdrlen);
1896
1897 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1898 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1899 if (error != 0 && error != EFBIG) {
1900 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1901 m_freem(m0);
1902 return error;
1903 }
1904 if (error != 0) {
1905 /* too many fragments, linearize */
1906 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1907 if (mnew == NULL) {
1908 m_freem(m0);
1909 return ENOMEM;
1910 }
1911
1912 M_COPY_PKTHDR(mnew, m0);
1913 if (m0->m_pkthdr.len > MHLEN) {
1914 MCLGET(mnew, M_DONTWAIT);
1915 if (!(mnew->m_flags & M_EXT)) {
1916 m_freem(m0);
1917 m_freem(mnew);
1918 return ENOMEM;
1919 }
1920 }
1921
1922 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1923 m_freem(m0);
1924 mnew->m_len = mnew->m_pkthdr.len;
1925 m0 = mnew;
1926
1927 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1928 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1929 if (error != 0) {
1930 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1931 error);
1932 m_freem(m0);
1933 return error;
1934 }
1935 }
1936
1937 data->m = m0;
1938 data->ni = ni;
1939
1940 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1941 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1942
1943 /* first scatter/gather segment is used by the tx data command */
1944 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1945 (1 + data->map->dm_nsegs) << 24);
1946 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1947 ring->cur * sizeof (struct wpi_tx_cmd));
1948 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1949 ((hdrlen + 3) & ~3));
1950
1951 for (i = 1; i <= data->map->dm_nsegs; i++) {
1952 desc->segs[i].addr =
1953 htole32(data->map->dm_segs[i - 1].ds_addr);
1954 desc->segs[i].len =
1955 htole32(data->map->dm_segs[i - 1].ds_len);
1956 }
1957
1958 ring->queued++;
1959
1960 /* kick ring */
1961 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1962 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1963
1964 return 0;
1965 }
1966
1967 static void
1968 wpi_start(struct ifnet *ifp)
1969 {
1970 struct wpi_softc *sc = ifp->if_softc;
1971 struct ieee80211com *ic = &sc->sc_ic;
1972 struct ieee80211_node *ni;
1973 struct ether_header *eh;
1974 struct mbuf *m0;
1975 int ac;
1976
1977 /*
1978 * net80211 may still try to send management frames even if the
1979 * IFF_RUNNING flag is not set...
1980 */
1981 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1982 return;
1983
1984 for (;;) {
1985 IF_DEQUEUE(&ic->ic_mgtq, m0);
1986 if (m0 != NULL) {
1987
1988 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1989 m0->m_pkthdr.rcvif = NULL;
1990
1991 /* management frames go into ring 0 */
1992 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1993 ifp->if_oerrors++;
1994 continue;
1995 }
1996 #if NBPFILTER > 0
1997 if (ic->ic_rawbpf != NULL)
1998 bpf_mtap(ic->ic_rawbpf, m0);
1999 #endif
2000 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2001 ifp->if_oerrors++;
2002 break;
2003 }
2004 } else {
2005 if (ic->ic_state != IEEE80211_S_RUN)
2006 break;
2007 IFQ_POLL(&ifp->if_snd, m0);
2008 if (m0 == NULL)
2009 break;
2010
2011 if (m0->m_len < sizeof (*eh) &&
2012 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2013 ifp->if_oerrors++;
2014 continue;
2015 }
2016 eh = mtod(m0, struct ether_header *);
2017 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2018 if (ni == NULL) {
2019 m_freem(m0);
2020 ifp->if_oerrors++;
2021 continue;
2022 }
2023
2024 /* classify mbuf so we can find which tx ring to use */
2025 if (ieee80211_classify(ic, m0, ni) != 0) {
2026 m_freem(m0);
2027 ieee80211_free_node(ni);
2028 ifp->if_oerrors++;
2029 continue;
2030 }
2031
2032 /* no QoS encapsulation for EAPOL frames */
2033 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2034 M_WME_GETAC(m0) : WME_AC_BE;
2035
2036 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2037 /* there is no place left in this ring */
2038 ifp->if_flags |= IFF_OACTIVE;
2039 break;
2040 }
2041 IFQ_DEQUEUE(&ifp->if_snd, m0);
2042 #if NBPFILTER > 0
2043 if (ifp->if_bpf != NULL)
2044 bpf_mtap(ifp->if_bpf, m0);
2045 #endif
2046 m0 = ieee80211_encap(ic, m0, ni);
2047 if (m0 == NULL) {
2048 ieee80211_free_node(ni);
2049 ifp->if_oerrors++;
2050 continue;
2051 }
2052 #if NBPFILTER > 0
2053 if (ic->ic_rawbpf != NULL)
2054 bpf_mtap(ic->ic_rawbpf, m0);
2055 #endif
2056 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2057 ieee80211_free_node(ni);
2058 ifp->if_oerrors++;
2059 break;
2060 }
2061 }
2062
2063 sc->sc_tx_timer = 5;
2064 ifp->if_timer = 1;
2065 }
2066 }
2067
2068 static void
2069 wpi_watchdog(struct ifnet *ifp)
2070 {
2071 struct wpi_softc *sc = ifp->if_softc;
2072
2073 ifp->if_timer = 0;
2074
2075 if (sc->sc_tx_timer > 0) {
2076 if (--sc->sc_tx_timer == 0) {
2077 aprint_error_dev(sc->sc_dev, "device timeout\n");
2078 ifp->if_oerrors++;
2079 ifp->if_flags &= ~IFF_UP;
2080 wpi_stop(ifp, 1);
2081 return;
2082 }
2083 ifp->if_timer = 1;
2084 }
2085
2086 ieee80211_watchdog(&sc->sc_ic);
2087 }
2088
2089 static int
2090 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2091 {
2092 #define IS_RUNNING(ifp) \
2093 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2094
2095 struct wpi_softc *sc = ifp->if_softc;
2096 struct ieee80211com *ic = &sc->sc_ic;
2097 int s, error = 0;
2098
2099 s = splnet();
2100
2101 switch (cmd) {
2102 case SIOCSIFFLAGS:
2103 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2104 break;
2105 if (ifp->if_flags & IFF_UP) {
2106 if (!(ifp->if_flags & IFF_RUNNING))
2107 wpi_init(ifp);
2108 } else {
2109 if (ifp->if_flags & IFF_RUNNING)
2110 wpi_stop(ifp, 1);
2111 }
2112 break;
2113
2114 case SIOCADDMULTI:
2115 case SIOCDELMULTI:
2116 /* XXX no h/w multicast filter? --dyoung */
2117 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2118 /* setup multicast filter, etc */
2119 error = 0;
2120 }
2121 break;
2122
2123 default:
2124 error = ieee80211_ioctl(ic, cmd, data);
2125 }
2126
2127 if (error == ENETRESET) {
2128 if (IS_RUNNING(ifp) &&
2129 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2130 wpi_init(ifp);
2131 error = 0;
2132 }
2133
2134 splx(s);
2135 return error;
2136
2137 #undef IS_RUNNING
2138 }
2139
2140 /*
2141 * Extract various information from EEPROM.
2142 */
2143 static void
2144 wpi_read_eeprom(struct wpi_softc *sc)
2145 {
2146 struct ieee80211com *ic = &sc->sc_ic;
2147 char domain[4];
2148 int i;
2149
2150 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2151 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2152 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2153
2154 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2155 sc->type));
2156
2157 /* read and print regulatory domain */
2158 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2159 aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2160
2161 /* read and print MAC address */
2162 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2163 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2164
2165 /* read the list of authorized channels */
2166 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2167 wpi_read_eeprom_channels(sc, i);
2168
2169 /* read the list of power groups */
2170 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2171 wpi_read_eeprom_group(sc, i);
2172 }
2173
2174 static void
2175 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2176 {
2177 struct ieee80211com *ic = &sc->sc_ic;
2178 const struct wpi_chan_band *band = &wpi_bands[n];
2179 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2180 int chan, i;
2181
2182 wpi_read_prom_data(sc, band->addr, channels,
2183 band->nchan * sizeof (struct wpi_eeprom_chan));
2184
2185 for (i = 0; i < band->nchan; i++) {
2186 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2187 continue;
2188
2189 chan = band->chan[i];
2190
2191 if (n == 0) { /* 2GHz band */
2192 ic->ic_channels[chan].ic_freq =
2193 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2194 ic->ic_channels[chan].ic_flags =
2195 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2196 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2197
2198 } else { /* 5GHz band */
2199 /*
2200 * Some 3945abg adapters support channels 7, 8, 11
2201 * and 12 in the 2GHz *and* 5GHz bands.
2202 * Because of limitations in our net80211(9) stack,
2203 * we can't support these channels in 5GHz band.
2204 */
2205 if (chan <= 14)
2206 continue;
2207
2208 ic->ic_channels[chan].ic_freq =
2209 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2210 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2211 }
2212
2213 /* is active scan allowed on this channel? */
2214 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2215 ic->ic_channels[chan].ic_flags |=
2216 IEEE80211_CHAN_PASSIVE;
2217 }
2218
2219 /* save maximum allowed power for this channel */
2220 sc->maxpwr[chan] = channels[i].maxpwr;
2221
2222 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2223 chan, channels[i].flags, sc->maxpwr[chan]));
2224 }
2225 }
2226
2227 static void
2228 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2229 {
2230 struct wpi_power_group *group = &sc->groups[n];
2231 struct wpi_eeprom_group rgroup;
2232 int i;
2233
2234 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2235 sizeof rgroup);
2236
2237 /* save power group information */
2238 group->chan = rgroup.chan;
2239 group->maxpwr = rgroup.maxpwr;
2240 /* temperature at which the samples were taken */
2241 group->temp = (int16_t)le16toh(rgroup.temp);
2242
2243 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2244 group->chan, group->maxpwr, group->temp));
2245
2246 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2247 group->samples[i].index = rgroup.samples[i].index;
2248 group->samples[i].power = rgroup.samples[i].power;
2249
2250 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2251 group->samples[i].index, group->samples[i].power));
2252 }
2253 }
2254
2255 /*
2256 * Send a command to the firmware.
2257 */
2258 static int
2259 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2260 {
2261 struct wpi_tx_ring *ring = &sc->cmdq;
2262 struct wpi_tx_desc *desc;
2263 struct wpi_tx_cmd *cmd;
2264
2265 KASSERT(size <= sizeof cmd->data);
2266
2267 desc = &ring->desc[ring->cur];
2268 cmd = &ring->cmd[ring->cur];
2269
2270 cmd->code = code;
2271 cmd->flags = 0;
2272 cmd->qid = ring->qid;
2273 cmd->idx = ring->cur;
2274 memcpy(cmd->data, buf, size);
2275
2276 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2277 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2278 ring->cur * sizeof (struct wpi_tx_cmd));
2279 desc->segs[0].len = htole32(4 + size);
2280
2281 /* kick cmd ring */
2282 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2283 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2284
2285 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2286 }
2287
2288 static int
2289 wpi_wme_update(struct ieee80211com *ic)
2290 {
2291 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2292 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2293 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2294 const struct wmeParams *wmep;
2295 struct wpi_wme_setup wme;
2296 int ac;
2297
2298 /* don't override default WME values if WME is not actually enabled */
2299 if (!(ic->ic_flags & IEEE80211_F_WME))
2300 return 0;
2301
2302 wme.flags = 0;
2303 for (ac = 0; ac < WME_NUM_AC; ac++) {
2304 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2305 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2306 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2307 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2308 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2309
2310 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2311 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2312 wme.ac[ac].cwmax, wme.ac[ac].txop));
2313 }
2314
2315 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2316 #undef WPI_USEC
2317 #undef WPI_EXP2
2318 }
2319
2320 /*
2321 * Configure h/w multi-rate retries.
2322 */
2323 static int
2324 wpi_mrr_setup(struct wpi_softc *sc)
2325 {
2326 struct ieee80211com *ic = &sc->sc_ic;
2327 struct wpi_mrr_setup mrr;
2328 int i, error;
2329
2330 /* CCK rates (not used with 802.11a) */
2331 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2332 mrr.rates[i].flags = 0;
2333 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2334 /* fallback to the immediate lower CCK rate (if any) */
2335 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2336 /* try one time at this rate before falling back to "next" */
2337 mrr.rates[i].ntries = 1;
2338 }
2339
2340 /* OFDM rates (not used with 802.11b) */
2341 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2342 mrr.rates[i].flags = 0;
2343 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2344 /* fallback to the immediate lower rate (if any) */
2345 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2346 mrr.rates[i].next = (i == WPI_OFDM6) ?
2347 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2348 WPI_OFDM6 : WPI_CCK2) :
2349 i - 1;
2350 /* try one time at this rate before falling back to "next" */
2351 mrr.rates[i].ntries = 1;
2352 }
2353
2354 /* setup MRR for control frames */
2355 mrr.which = htole32(WPI_MRR_CTL);
2356 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2357 if (error != 0) {
2358 aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2359 return error;
2360 }
2361
2362 /* setup MRR for data frames */
2363 mrr.which = htole32(WPI_MRR_DATA);
2364 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2365 if (error != 0) {
2366 aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2367 return error;
2368 }
2369
2370 return 0;
2371 }
2372
2373 static void
2374 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2375 {
2376 struct wpi_cmd_led led;
2377
2378 led.which = which;
2379 led.unit = htole32(100000); /* on/off in unit of 100ms */
2380 led.off = off;
2381 led.on = on;
2382
2383 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2384 }
2385
2386 static void
2387 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2388 {
2389 struct wpi_cmd_tsf tsf;
2390 uint64_t val, mod;
2391
2392 memset(&tsf, 0, sizeof tsf);
2393 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2394 tsf.bintval = htole16(ni->ni_intval);
2395 tsf.lintval = htole16(10);
2396
2397 /* compute remaining time until next beacon */
2398 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2399 mod = le64toh(tsf.tstamp) % val;
2400 tsf.binitval = htole32((uint32_t)(val - mod));
2401
2402 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2403 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2404
2405 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2406 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2407 }
2408
2409 /*
2410 * Update Tx power to match what is defined for channel `c'.
2411 */
2412 static int
2413 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2414 {
2415 struct ieee80211com *ic = &sc->sc_ic;
2416 struct wpi_power_group *group;
2417 struct wpi_cmd_txpower txpower;
2418 u_int chan;
2419 int i;
2420
2421 /* get channel number */
2422 chan = ieee80211_chan2ieee(ic, c);
2423
2424 /* find the power group to which this channel belongs */
2425 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2426 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2427 if (chan <= group->chan)
2428 break;
2429 } else
2430 group = &sc->groups[0];
2431
2432 memset(&txpower, 0, sizeof txpower);
2433 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2434 txpower.chan = htole16(chan);
2435
2436 /* set Tx power for all OFDM and CCK rates */
2437 for (i = 0; i <= 11 ; i++) {
2438 /* retrieve Tx power for this channel/rate combination */
2439 int idx = wpi_get_power_index(sc, group, c,
2440 wpi_ridx_to_rate[i]);
2441
2442 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2443
2444 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2445 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2446 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2447 } else {
2448 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2449 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2450 }
2451 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2452 wpi_ridx_to_rate[i], idx));
2453 }
2454
2455 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2456 }
2457
2458 /*
2459 * Determine Tx power index for a given channel/rate combination.
2460 * This takes into account the regulatory information from EEPROM and the
2461 * current temperature.
2462 */
2463 static int
2464 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2465 struct ieee80211_channel *c, int rate)
2466 {
2467 /* fixed-point arithmetic division using a n-bit fractional part */
2468 #define fdivround(a, b, n) \
2469 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2470
2471 /* linear interpolation */
2472 #define interpolate(x, x1, y1, x2, y2, n) \
2473 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2474
2475 struct ieee80211com *ic = &sc->sc_ic;
2476 struct wpi_power_sample *sample;
2477 int pwr, idx;
2478 u_int chan;
2479
2480 /* get channel number */
2481 chan = ieee80211_chan2ieee(ic, c);
2482
2483 /* default power is group's maximum power - 3dB */
2484 pwr = group->maxpwr / 2;
2485
2486 /* decrease power for highest OFDM rates to reduce distortion */
2487 switch (rate) {
2488 case 72: /* 36Mb/s */
2489 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2490 break;
2491 case 96: /* 48Mb/s */
2492 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2493 break;
2494 case 108: /* 54Mb/s */
2495 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2496 break;
2497 }
2498
2499 /* never exceed channel's maximum allowed Tx power */
2500 pwr = min(pwr, sc->maxpwr[chan]);
2501
2502 /* retrieve power index into gain tables from samples */
2503 for (sample = group->samples; sample < &group->samples[3]; sample++)
2504 if (pwr > sample[1].power)
2505 break;
2506 /* fixed-point linear interpolation using a 19-bit fractional part */
2507 idx = interpolate(pwr, sample[0].power, sample[0].index,
2508 sample[1].power, sample[1].index, 19);
2509
2510 /*
2511 * Adjust power index based on current temperature:
2512 * - if cooler than factory-calibrated: decrease output power
2513 * - if warmer than factory-calibrated: increase output power
2514 */
2515 idx -= (sc->temp - group->temp) * 11 / 100;
2516
2517 /* decrease power for CCK rates (-5dB) */
2518 if (!WPI_RATE_IS_OFDM(rate))
2519 idx += 10;
2520
2521 /* keep power index in a valid range */
2522 if (idx < 0)
2523 return 0;
2524 if (idx > WPI_MAX_PWR_INDEX)
2525 return WPI_MAX_PWR_INDEX;
2526 return idx;
2527
2528 #undef interpolate
2529 #undef fdivround
2530 }
2531
2532 /*
2533 * Build a beacon frame that the firmware will broadcast periodically in
2534 * IBSS or HostAP modes.
2535 */
2536 static int
2537 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2538 {
2539 struct ieee80211com *ic = &sc->sc_ic;
2540 struct wpi_tx_ring *ring = &sc->cmdq;
2541 struct wpi_tx_desc *desc;
2542 struct wpi_tx_data *data;
2543 struct wpi_tx_cmd *cmd;
2544 struct wpi_cmd_beacon *bcn;
2545 struct ieee80211_beacon_offsets bo;
2546 struct mbuf *m0;
2547 int error;
2548
2549 desc = &ring->desc[ring->cur];
2550 data = &ring->data[ring->cur];
2551
2552 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2553 if (m0 == NULL) {
2554 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2555 return ENOMEM;
2556 }
2557
2558 cmd = &ring->cmd[ring->cur];
2559 cmd->code = WPI_CMD_SET_BEACON;
2560 cmd->flags = 0;
2561 cmd->qid = ring->qid;
2562 cmd->idx = ring->cur;
2563
2564 bcn = (struct wpi_cmd_beacon *)cmd->data;
2565 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2566 bcn->id = WPI_ID_BROADCAST;
2567 bcn->ofdm_mask = 0xff;
2568 bcn->cck_mask = 0x0f;
2569 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2570 bcn->len = htole16(m0->m_pkthdr.len);
2571 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2572 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2573 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2574
2575 /* save and trim IEEE802.11 header */
2576 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2577 m_adj(m0, sizeof (struct ieee80211_frame));
2578
2579 /* assume beacon frame is contiguous */
2580 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2581 BUS_DMA_READ | BUS_DMA_NOWAIT);
2582 if (error) {
2583 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2584 m_freem(m0);
2585 return error;
2586 }
2587
2588 data->m = m0;
2589
2590 /* first scatter/gather segment is used by the beacon command */
2591 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2592 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2593 ring->cur * sizeof (struct wpi_tx_cmd));
2594 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2595 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2596 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2597
2598 /* kick cmd ring */
2599 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2600 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2601
2602 return 0;
2603 }
2604
2605 static int
2606 wpi_auth(struct wpi_softc *sc)
2607 {
2608 struct ieee80211com *ic = &sc->sc_ic;
2609 struct ieee80211_node *ni = ic->ic_bss;
2610 struct wpi_node_info node;
2611 int error;
2612
2613 /* update adapter's configuration */
2614 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2615 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2616 sc->config.flags = htole32(WPI_CONFIG_TSF);
2617 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2618 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2619 WPI_CONFIG_24GHZ);
2620 }
2621 switch (ic->ic_curmode) {
2622 case IEEE80211_MODE_11A:
2623 sc->config.cck_mask = 0;
2624 sc->config.ofdm_mask = 0x15;
2625 break;
2626 case IEEE80211_MODE_11B:
2627 sc->config.cck_mask = 0x03;
2628 sc->config.ofdm_mask = 0;
2629 break;
2630 default: /* assume 802.11b/g */
2631 sc->config.cck_mask = 0x0f;
2632 sc->config.ofdm_mask = 0x15;
2633 }
2634
2635 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2636 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2637 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2638 sizeof (struct wpi_config), 1);
2639 if (error != 0) {
2640 aprint_error_dev(sc->sc_dev, "could not configure\n");
2641 return error;
2642 }
2643
2644 /* configuration has changed, set Tx power accordingly */
2645 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2646 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2647 return error;
2648 }
2649
2650 /* add default node */
2651 memset(&node, 0, sizeof node);
2652 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2653 node.id = WPI_ID_BSS;
2654 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2655 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2656 node.action = htole32(WPI_ACTION_SET_RATE);
2657 node.antenna = WPI_ANTENNA_BOTH;
2658 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2659 if (error != 0) {
2660 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2661 return error;
2662 }
2663
2664 return 0;
2665 }
2666
2667 /*
2668 * Send a scan request to the firmware. Since this command is huge, we map it
2669 * into a mbuf instead of using the pre-allocated set of commands.
2670 */
2671 static int
2672 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2673 {
2674 struct ieee80211com *ic = &sc->sc_ic;
2675 struct wpi_tx_ring *ring = &sc->cmdq;
2676 struct wpi_tx_desc *desc;
2677 struct wpi_tx_data *data;
2678 struct wpi_tx_cmd *cmd;
2679 struct wpi_scan_hdr *hdr;
2680 struct wpi_scan_chan *chan;
2681 struct ieee80211_frame *wh;
2682 struct ieee80211_rateset *rs;
2683 struct ieee80211_channel *c;
2684 enum ieee80211_phymode mode;
2685 uint8_t *frm;
2686 int nrates, pktlen, error;
2687
2688 desc = &ring->desc[ring->cur];
2689 data = &ring->data[ring->cur];
2690
2691 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2692 if (data->m == NULL) {
2693 aprint_error_dev(sc->sc_dev,
2694 "could not allocate mbuf for scan command\n");
2695 return ENOMEM;
2696 }
2697
2698 MCLGET(data->m, M_DONTWAIT);
2699 if (!(data->m->m_flags & M_EXT)) {
2700 m_freem(data->m);
2701 data->m = NULL;
2702 aprint_error_dev(sc->sc_dev,
2703 "could not allocate mbuf for scan command\n");
2704 return ENOMEM;
2705 }
2706
2707 cmd = mtod(data->m, struct wpi_tx_cmd *);
2708 cmd->code = WPI_CMD_SCAN;
2709 cmd->flags = 0;
2710 cmd->qid = ring->qid;
2711 cmd->idx = ring->cur;
2712
2713 hdr = (struct wpi_scan_hdr *)cmd->data;
2714 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2715 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2716 hdr->id = WPI_ID_BROADCAST;
2717 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2718
2719 /*
2720 * Move to the next channel if no packets are received within 5 msecs
2721 * after sending the probe request (this helps to reduce the duration
2722 * of active scans).
2723 */
2724 hdr->quiet = htole16(5); /* timeout in milliseconds */
2725 hdr->plcp_threshold = htole16(1); /* min # of packets */
2726
2727 if (flags & IEEE80211_CHAN_A) {
2728 hdr->crc_threshold = htole16(1);
2729 /* send probe requests at 6Mbps */
2730 hdr->rate = wpi_plcp_signal(12);
2731 } else {
2732 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2733 /* send probe requests at 1Mbps */
2734 hdr->rate = wpi_plcp_signal(2);
2735 }
2736
2737 /* for directed scans, firmware inserts the essid IE itself */
2738 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2739 hdr->essid[0].len = ic->ic_des_esslen;
2740 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2741
2742 /*
2743 * Build a probe request frame. Most of the following code is a
2744 * copy & paste of what is done in net80211.
2745 */
2746 wh = (struct ieee80211_frame *)(hdr + 1);
2747 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2748 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2749 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2750 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2751 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2752 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2753 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2754 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2755
2756 frm = (uint8_t *)(wh + 1);
2757
2758 /* add empty essid IE (firmware generates it for directed scans) */
2759 *frm++ = IEEE80211_ELEMID_SSID;
2760 *frm++ = 0;
2761
2762 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2763 rs = &ic->ic_sup_rates[mode];
2764
2765 /* add supported rates IE */
2766 *frm++ = IEEE80211_ELEMID_RATES;
2767 nrates = rs->rs_nrates;
2768 if (nrates > IEEE80211_RATE_SIZE)
2769 nrates = IEEE80211_RATE_SIZE;
2770 *frm++ = nrates;
2771 memcpy(frm, rs->rs_rates, nrates);
2772 frm += nrates;
2773
2774 /* add supported xrates IE */
2775 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2776 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2777 *frm++ = IEEE80211_ELEMID_XRATES;
2778 *frm++ = nrates;
2779 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2780 frm += nrates;
2781 }
2782
2783 /* setup length of probe request */
2784 hdr->paylen = htole16(frm - (uint8_t *)wh);
2785
2786 chan = (struct wpi_scan_chan *)frm;
2787 for (c = &ic->ic_channels[1];
2788 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2789 if ((c->ic_flags & flags) != flags)
2790 continue;
2791
2792 chan->chan = ieee80211_chan2ieee(ic, c);
2793 chan->flags = 0;
2794 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2795 chan->flags |= WPI_CHAN_ACTIVE;
2796 if (ic->ic_des_esslen != 0)
2797 chan->flags |= WPI_CHAN_DIRECT;
2798 }
2799 chan->dsp_gain = 0x6e;
2800 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2801 chan->rf_gain = 0x3b;
2802 chan->active = htole16(10);
2803 chan->passive = htole16(110);
2804 } else {
2805 chan->rf_gain = 0x28;
2806 chan->active = htole16(20);
2807 chan->passive = htole16(120);
2808 }
2809 hdr->nchan++;
2810 chan++;
2811
2812 frm += sizeof (struct wpi_scan_chan);
2813 }
2814 hdr->len = htole16(frm - (uint8_t *)hdr);
2815 pktlen = frm - (uint8_t *)cmd;
2816
2817 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2818 NULL, BUS_DMA_NOWAIT);
2819 if (error) {
2820 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2821 m_freem(data->m);
2822 data->m = NULL;
2823 return error;
2824 }
2825
2826 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2827 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2828 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2829
2830 /* kick cmd ring */
2831 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2832 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2833
2834 return 0; /* will be notified async. of failure/success */
2835 }
2836
2837 static int
2838 wpi_config(struct wpi_softc *sc)
2839 {
2840 struct ieee80211com *ic = &sc->sc_ic;
2841 struct ifnet *ifp = ic->ic_ifp;
2842 struct wpi_power power;
2843 struct wpi_bluetooth bluetooth;
2844 struct wpi_node_info node;
2845 int error;
2846
2847 memset(&power, 0, sizeof power);
2848 power.flags = htole32(WPI_POWER_CAM | 0x8);
2849 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2850 if (error != 0) {
2851 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2852 return error;
2853 }
2854
2855 /* configure bluetooth coexistence */
2856 memset(&bluetooth, 0, sizeof bluetooth);
2857 bluetooth.flags = 3;
2858 bluetooth.lead = 0xaa;
2859 bluetooth.kill = 1;
2860 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2861 0);
2862 if (error != 0) {
2863 aprint_error_dev(sc->sc_dev,
2864 "could not configure bluetooth coexistence\n");
2865 return error;
2866 }
2867
2868 /* configure adapter */
2869 memset(&sc->config, 0, sizeof (struct wpi_config));
2870 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2871 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2872 /*set default channel*/
2873 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2874 sc->config.flags = htole32(WPI_CONFIG_TSF);
2875 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2876 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2877 WPI_CONFIG_24GHZ);
2878 }
2879 sc->config.filter = 0;
2880 switch (ic->ic_opmode) {
2881 case IEEE80211_M_STA:
2882 sc->config.mode = WPI_MODE_STA;
2883 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2884 break;
2885 case IEEE80211_M_IBSS:
2886 case IEEE80211_M_AHDEMO:
2887 sc->config.mode = WPI_MODE_IBSS;
2888 break;
2889 case IEEE80211_M_HOSTAP:
2890 sc->config.mode = WPI_MODE_HOSTAP;
2891 break;
2892 case IEEE80211_M_MONITOR:
2893 sc->config.mode = WPI_MODE_MONITOR;
2894 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2895 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2896 break;
2897 }
2898 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2899 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2900 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2901 sizeof (struct wpi_config), 0);
2902 if (error != 0) {
2903 aprint_error_dev(sc->sc_dev, "configure command failed\n");
2904 return error;
2905 }
2906
2907 /* configuration has changed, set Tx power accordingly */
2908 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2909 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2910 return error;
2911 }
2912
2913 /* add broadcast node */
2914 memset(&node, 0, sizeof node);
2915 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2916 node.id = WPI_ID_BROADCAST;
2917 node.rate = wpi_plcp_signal(2);
2918 node.action = htole32(WPI_ACTION_SET_RATE);
2919 node.antenna = WPI_ANTENNA_BOTH;
2920 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2921 if (error != 0) {
2922 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2923 return error;
2924 }
2925
2926 if ((error = wpi_mrr_setup(sc)) != 0) {
2927 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2928 return error;
2929 }
2930
2931 return 0;
2932 }
2933
2934 static void
2935 wpi_stop_master(struct wpi_softc *sc)
2936 {
2937 uint32_t tmp;
2938 int ntries;
2939
2940 tmp = WPI_READ(sc, WPI_RESET);
2941 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2942
2943 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2944 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2945 return; /* already asleep */
2946
2947 for (ntries = 0; ntries < 100; ntries++) {
2948 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2949 break;
2950 DELAY(10);
2951 }
2952 if (ntries == 100) {
2953 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2954 }
2955 }
2956
2957 static int
2958 wpi_power_up(struct wpi_softc *sc)
2959 {
2960 uint32_t tmp;
2961 int ntries;
2962
2963 wpi_mem_lock(sc);
2964 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2965 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2966 wpi_mem_unlock(sc);
2967
2968 for (ntries = 0; ntries < 5000; ntries++) {
2969 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2970 break;
2971 DELAY(10);
2972 }
2973 if (ntries == 5000) {
2974 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2975 return ETIMEDOUT;
2976 }
2977 return 0;
2978 }
2979
2980 static int
2981 wpi_reset(struct wpi_softc *sc)
2982 {
2983 uint32_t tmp;
2984 int ntries;
2985
2986 /* clear any pending interrupts */
2987 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2988
2989 tmp = WPI_READ(sc, WPI_PLL_CTL);
2990 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2991
2992 tmp = WPI_READ(sc, WPI_CHICKEN);
2993 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2994
2995 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2996 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2997
2998 /* wait for clock stabilization */
2999 for (ntries = 0; ntries < 1000; ntries++) {
3000 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3001 break;
3002 DELAY(10);
3003 }
3004 if (ntries == 1000) {
3005 aprint_error_dev(sc->sc_dev,
3006 "timeout waiting for clock stabilization\n");
3007 return ETIMEDOUT;
3008 }
3009
3010 /* initialize EEPROM */
3011 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3012 if ((tmp & WPI_EEPROM_VERSION) == 0) {
3013 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3014 return EIO;
3015 }
3016 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3017
3018 return 0;
3019 }
3020
3021 static void
3022 wpi_hw_config(struct wpi_softc *sc)
3023 {
3024 uint32_t rev, hw;
3025
3026 /* voodoo from the reference driver */
3027 hw = WPI_READ(sc, WPI_HWCONFIG);
3028
3029 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3030 rev = PCI_REVISION(rev);
3031 if ((rev & 0xc0) == 0x40)
3032 hw |= WPI_HW_ALM_MB;
3033 else if (!(rev & 0x80))
3034 hw |= WPI_HW_ALM_MM;
3035
3036 if (sc->cap == 0x80)
3037 hw |= WPI_HW_SKU_MRC;
3038
3039 hw &= ~WPI_HW_REV_D;
3040 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3041 hw |= WPI_HW_REV_D;
3042
3043 if (sc->type > 1)
3044 hw |= WPI_HW_TYPE_B;
3045
3046 DPRINTF(("setting h/w config %x\n", hw));
3047 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3048 }
3049
3050 static int
3051 wpi_init(struct ifnet *ifp)
3052 {
3053 struct wpi_softc *sc = ifp->if_softc;
3054 struct ieee80211com *ic = &sc->sc_ic;
3055 uint32_t tmp;
3056 int qid, ntries, error;
3057
3058 wpi_stop(ifp,1);
3059 (void)wpi_reset(sc);
3060
3061 wpi_mem_lock(sc);
3062 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3063 DELAY(20);
3064 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3065 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3066 wpi_mem_unlock(sc);
3067
3068 (void)wpi_power_up(sc);
3069 wpi_hw_config(sc);
3070
3071 /* init Rx ring */
3072 wpi_mem_lock(sc);
3073 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3074 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3075 offsetof(struct wpi_shared, next));
3076 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3077 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3078 wpi_mem_unlock(sc);
3079
3080 /* init Tx rings */
3081 wpi_mem_lock(sc);
3082 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3083 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3084 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3085 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3086 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3087 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3088 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3089
3090 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3091 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3092
3093 for (qid = 0; qid < 6; qid++) {
3094 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3095 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3096 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3097 }
3098 wpi_mem_unlock(sc);
3099
3100 /* clear "radio off" and "disable command" bits (reversed logic) */
3101 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3102 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3103
3104 /* clear any pending interrupts */
3105 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3106 /* enable interrupts */
3107 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3108
3109 /* not sure why/if this is necessary... */
3110 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3111 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3112
3113 if ((error = wpi_load_firmware(sc)) != 0) {
3114 aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3115 goto fail1;
3116 }
3117
3118 /* Check the status of the radio switch */
3119 if (wpi_getrfkill(sc)) {
3120 aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3121 error = EBUSY;
3122 goto fail1;
3123 }
3124
3125 /* wait for thermal sensors to calibrate */
3126 for (ntries = 0; ntries < 1000; ntries++) {
3127 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3128 break;
3129 DELAY(10);
3130 }
3131 if (ntries == 1000) {
3132 aprint_error_dev(sc->sc_dev,
3133 "timeout waiting for thermal sensors calibration\n");
3134 error = ETIMEDOUT;
3135 goto fail1;
3136 }
3137
3138 DPRINTF(("temperature %d\n", sc->temp));
3139
3140 if ((error = wpi_config(sc)) != 0) {
3141 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3142 goto fail1;
3143 }
3144
3145 ifp->if_flags &= ~IFF_OACTIVE;
3146 ifp->if_flags |= IFF_RUNNING;
3147
3148 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3149 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3150 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3151 }
3152 else
3153 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3154
3155 return 0;
3156
3157 fail1: wpi_stop(ifp, 1);
3158 return error;
3159 }
3160
3161
3162 static void
3163 wpi_stop(struct ifnet *ifp, int disable)
3164 {
3165 struct wpi_softc *sc = ifp->if_softc;
3166 struct ieee80211com *ic = &sc->sc_ic;
3167 uint32_t tmp;
3168 int ac;
3169
3170 ifp->if_timer = sc->sc_tx_timer = 0;
3171 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3172
3173 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3174
3175 /* disable interrupts */
3176 WPI_WRITE(sc, WPI_MASK, 0);
3177 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3178 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3179 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3180
3181 wpi_mem_lock(sc);
3182 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3183 wpi_mem_unlock(sc);
3184
3185 /* reset all Tx rings */
3186 for (ac = 0; ac < 4; ac++)
3187 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3188 wpi_reset_tx_ring(sc, &sc->cmdq);
3189
3190 /* reset Rx ring */
3191 wpi_reset_rx_ring(sc, &sc->rxq);
3192
3193 wpi_mem_lock(sc);
3194 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3195 wpi_mem_unlock(sc);
3196
3197 DELAY(5);
3198
3199 wpi_stop_master(sc);
3200
3201 tmp = WPI_READ(sc, WPI_RESET);
3202 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3203 }
3204
3205 static bool
3206 wpi_resume(device_t dv PMF_FN_ARGS)
3207 {
3208 struct wpi_softc *sc = device_private(dv);
3209
3210 (void)wpi_reset(sc);
3211
3212 return true;
3213 }
3214
3215 /*
3216 * Return whether or not the radio is enabled in hardware
3217 * (i.e. the rfkill switch is "off").
3218 */
3219 static int
3220 wpi_getrfkill(struct wpi_softc *sc)
3221 {
3222 uint32_t tmp;
3223
3224 wpi_mem_lock(sc);
3225 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3226 wpi_mem_unlock(sc);
3227
3228 return !(tmp & 0x01);
3229 }
3230
3231 static int
3232 wpi_sysctl_radio(SYSCTLFN_ARGS)
3233 {
3234 struct sysctlnode node;
3235 struct wpi_softc *sc;
3236 int val, error;
3237
3238 node = *rnode;
3239 sc = (struct wpi_softc *)node.sysctl_data;
3240
3241 val = !wpi_getrfkill(sc);
3242
3243 node.sysctl_data = &val;
3244 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3245
3246 if (error || newp == NULL)
3247 return error;
3248
3249 return 0;
3250 }
3251
3252 static void
3253 wpi_sysctlattach(struct wpi_softc *sc)
3254 {
3255 int rc;
3256 const struct sysctlnode *rnode;
3257 const struct sysctlnode *cnode;
3258
3259 struct sysctllog **clog = &sc->sc_sysctllog;
3260
3261 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3262 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3263 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3264 goto err;
3265
3266 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3267 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3268 SYSCTL_DESCR("wpi controls and statistics"),
3269 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3270 goto err;
3271
3272 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3273 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3274 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3275 wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3276 goto err;
3277
3278 #ifdef WPI_DEBUG
3279 /* control debugging printfs */
3280 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3281 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3282 "debug", SYSCTL_DESCR("Enable debugging output"),
3283 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3284 goto err;
3285 #endif
3286
3287 return;
3288 err:
3289 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3290 }
3291