Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.43
      1 /*  $NetBSD: if_wpi.c,v 1.43 2009/09/05 14:09:55 tsutsui Exp $    */
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007
      5  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.43 2009/09/05 14:09:55 tsutsui Exp $");
     22 
     23 /*
     24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25  */
     26 
     27 #include "bpfilter.h"
     28 
     29 #include <sys/param.h>
     30 #include <sys/sockio.h>
     31 #include <sys/sysctl.h>
     32 #include <sys/mbuf.h>
     33 #include <sys/kernel.h>
     34 #include <sys/socket.h>
     35 #include <sys/systm.h>
     36 #include <sys/malloc.h>
     37 #include <sys/mutex.h>
     38 #include <sys/once.h>
     39 #include <sys/conf.h>
     40 #include <sys/kauth.h>
     41 #include <sys/callout.h>
     42 
     43 #include <sys/bus.h>
     44 #include <machine/endian.h>
     45 #include <sys/intr.h>
     46 
     47 #include <dev/pci/pcireg.h>
     48 #include <dev/pci/pcivar.h>
     49 #include <dev/pci/pcidevs.h>
     50 
     51 #if NBPFILTER > 0
     52 #include <net/bpf.h>
     53 #endif
     54 #include <net/if.h>
     55 #include <net/if_arp.h>
     56 #include <net/if_dl.h>
     57 #include <net/if_ether.h>
     58 #include <net/if_media.h>
     59 #include <net/if_types.h>
     60 
     61 #include <net80211/ieee80211_var.h>
     62 #include <net80211/ieee80211_amrr.h>
     63 #include <net80211/ieee80211_radiotap.h>
     64 
     65 #include <netinet/in.h>
     66 #include <netinet/in_systm.h>
     67 #include <netinet/in_var.h>
     68 #include <netinet/ip.h>
     69 
     70 #include <dev/firmload.h>
     71 
     72 #include <dev/pci/if_wpireg.h>
     73 #include <dev/pci/if_wpivar.h>
     74 
     75 #ifdef WPI_DEBUG
     76 #define DPRINTF(x)	if (wpi_debug > 0) printf x
     77 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
     78 int wpi_debug = 1;
     79 #else
     80 #define DPRINTF(x)
     81 #define DPRINTFN(n, x)
     82 #endif
     83 
     84 /*
     85  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
     86  */
     87 static const struct ieee80211_rateset wpi_rateset_11a =
     88 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
     89 
     90 static const struct ieee80211_rateset wpi_rateset_11b =
     91 	{ 4, { 2, 4, 11, 22 } };
     92 
     93 static const struct ieee80211_rateset wpi_rateset_11g =
     94 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
     95 
     96 static once_t wpi_firmware_init;
     97 static kmutex_t wpi_firmware_mutex;
     98 static size_t wpi_firmware_users;
     99 static uint8_t *wpi_firmware_image;
    100 static size_t wpi_firmware_size;
    101 
    102 static int  wpi_match(device_t, cfdata_t, void *);
    103 static void wpi_attach(device_t, device_t, void *);
    104 static int  wpi_detach(device_t , int);
    105 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
    106 	void **, bus_size_t, bus_size_t, int);
    107 static void wpi_dma_contig_free(struct wpi_dma_info *);
    108 static int  wpi_alloc_shared(struct wpi_softc *);
    109 static void wpi_free_shared(struct wpi_softc *);
    110 static int  wpi_alloc_fwmem(struct wpi_softc *);
    111 static void wpi_free_fwmem(struct wpi_softc *);
    112 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
    113 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
    114 static int  wpi_alloc_rpool(struct wpi_softc *);
    115 static void wpi_free_rpool(struct wpi_softc *);
    116 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    117 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    118 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    119 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
    120 	int);
    121 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    122 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    123 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    124 static void wpi_newassoc(struct ieee80211_node *, int);
    125 static int  wpi_media_change(struct ifnet *);
    126 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    127 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
    128 static void wpi_mem_lock(struct wpi_softc *);
    129 static void wpi_mem_unlock(struct wpi_softc *);
    130 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
    131 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    132 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    133 								   const uint32_t *, int);
    134 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    135 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    136 static int  wpi_load_firmware(struct wpi_softc *);
    137 static void wpi_calib_timeout(void *);
    138 static void wpi_iter_func(void *, struct ieee80211_node *);
    139 static void wpi_power_calibration(struct wpi_softc *, int);
    140 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    141 	struct wpi_rx_data *);
    142 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    143 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    144 static void wpi_notif_intr(struct wpi_softc *);
    145 static int  wpi_intr(void *);
    146 static void wpi_read_eeprom(struct wpi_softc *);
    147 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
    148 static void wpi_read_eeprom_group(struct wpi_softc *, int);
    149 static uint8_t wpi_plcp_signal(int);
    150 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
    151 	struct ieee80211_node *, int);
    152 static void wpi_start(struct ifnet *);
    153 static void wpi_watchdog(struct ifnet *);
    154 static int  wpi_ioctl(struct ifnet *, u_long, void *);
    155 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    156 static int  wpi_wme_update(struct ieee80211com *);
    157 static int  wpi_mrr_setup(struct wpi_softc *);
    158 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    159 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    160 static int  wpi_set_txpower(struct wpi_softc *,
    161 			    struct ieee80211_channel *, int);
    162 static int  wpi_get_power_index(struct wpi_softc *,
    163 		struct wpi_power_group *, struct ieee80211_channel *, int);
    164 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    165 static int  wpi_auth(struct wpi_softc *);
    166 static int  wpi_scan(struct wpi_softc *, uint16_t);
    167 static int  wpi_config(struct wpi_softc *);
    168 static void wpi_stop_master(struct wpi_softc *);
    169 static int  wpi_power_up(struct wpi_softc *);
    170 static int  wpi_reset(struct wpi_softc *);
    171 static void wpi_hw_config(struct wpi_softc *);
    172 static int  wpi_init(struct ifnet *);
    173 static void wpi_stop(struct ifnet *, int);
    174 static bool wpi_resume(device_t PMF_FN_PROTO);
    175 static int	wpi_getrfkill(struct wpi_softc *);
    176 static void wpi_sysctlattach(struct wpi_softc *);
    177 
    178 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    179 	wpi_detach, NULL);
    180 
    181 static int
    182 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
    183 {
    184 	struct pci_attach_args *pa = aux;
    185 
    186 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    187 		return 0;
    188 
    189 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    190 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    191 		return 1;
    192 
    193 	return 0;
    194 }
    195 
    196 /* Base Address Register */
    197 #define WPI_PCI_BAR0	0x10
    198 
    199 static int
    200 wpi_attach_once(void)
    201 {
    202 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
    203 	return 0;
    204 }
    205 
    206 static void
    207 wpi_attach(device_t parent __unused, device_t self, void *aux)
    208 {
    209 	struct wpi_softc *sc = device_private(self);
    210 	struct ieee80211com *ic = &sc->sc_ic;
    211 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    212 	struct pci_attach_args *pa = aux;
    213 	const char *intrstr;
    214 	char devinfo[256];
    215 	bus_space_tag_t memt;
    216 	bus_space_handle_t memh;
    217 	pci_intr_handle_t ih;
    218 	pcireg_t data;
    219 	int error, ac, revision;
    220 
    221 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
    222 	sc->fw_used = false;
    223 
    224 	sc->sc_dev = self;
    225 	sc->sc_pct = pa->pa_pc;
    226 	sc->sc_pcitag = pa->pa_tag;
    227 
    228 	callout_init(&sc->calib_to, 0);
    229 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    230 
    231 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    232 	revision = PCI_REVISION(pa->pa_class);
    233 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    234 
    235 	/* enable bus-mastering */
    236 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    237 	data |= PCI_COMMAND_MASTER_ENABLE;
    238 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    239 
    240 	/* map the register window */
    241 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    242 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    243 	if (error != 0) {
    244 		aprint_error_dev(self, "could not map memory space\n");
    245 		return;
    246 	}
    247 
    248 	sc->sc_st = memt;
    249 	sc->sc_sh = memh;
    250 	sc->sc_dmat = pa->pa_dmat;
    251 
    252 	if (pci_intr_map(pa, &ih) != 0) {
    253 		aprint_error_dev(self, "could not map interrupt\n");
    254 		return;
    255 	}
    256 
    257 	intrstr = pci_intr_string(sc->sc_pct, ih);
    258 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
    259 	if (sc->sc_ih == NULL) {
    260 		aprint_error_dev(self, "could not establish interrupt");
    261 		if (intrstr != NULL)
    262 			aprint_error(" at %s", intrstr);
    263 		aprint_error("\n");
    264 		return;
    265 	}
    266 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    267 
    268 	if (wpi_reset(sc) != 0) {
    269 		aprint_error_dev(self, "could not reset adapter\n");
    270 		return;
    271 	}
    272 
    273  	/*
    274 	 * Allocate DMA memory for firmware transfers.
    275 	 */
    276 	if ((error = wpi_alloc_fwmem(sc)) != 0)
    277 		return;
    278 
    279 	/*
    280 	 * Allocate shared page and Tx/Rx rings.
    281 	 */
    282 	if ((error = wpi_alloc_shared(sc)) != 0) {
    283 		aprint_error_dev(self, "could not allocate shared area\n");
    284 		goto fail1;
    285 	}
    286 
    287 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    288 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    289 		goto fail2;
    290 	}
    291 
    292 	for (ac = 0; ac < 4; ac++) {
    293 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
    294 		if (error != 0) {
    295 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
    296 			goto fail3;
    297 		}
    298 	}
    299 
    300 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    301 	if (error != 0) {
    302 		aprint_error_dev(self, "could not allocate command ring\n");
    303 		goto fail3;
    304 	}
    305 
    306 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
    307 		aprint_error_dev(self, "could not allocate Rx ring\n");
    308 		goto fail4;
    309 	}
    310 
    311 	ic->ic_ifp = ifp;
    312 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    313 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    314 	ic->ic_state = IEEE80211_S_INIT;
    315 
    316 	/* set device capabilities */
    317 	ic->ic_caps =
    318 		IEEE80211_C_IBSS |       /* IBSS mode support */
    319 		IEEE80211_C_WPA |        /* 802.11i */
    320 		IEEE80211_C_MONITOR |    /* monitor mode supported */
    321 		IEEE80211_C_TXPMGT |     /* tx power management */
    322 		IEEE80211_C_SHSLOT |     /* short slot time supported */
    323 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
    324 		IEEE80211_C_WME;         /* 802.11e */
    325 
    326 	/* read supported channels and MAC address from EEPROM */
    327 	wpi_read_eeprom(sc);
    328 
    329 	/* set supported .11a, .11b, .11g rates */
    330 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
    331 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
    332 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
    333 
    334 	ic->ic_ibss_chan = &ic->ic_channels[0];
    335 
    336 	ifp->if_softc = sc;
    337 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    338 	ifp->if_init = wpi_init;
    339 	ifp->if_stop = wpi_stop;
    340 	ifp->if_ioctl = wpi_ioctl;
    341 	ifp->if_start = wpi_start;
    342 	ifp->if_watchdog = wpi_watchdog;
    343 	IFQ_SET_READY(&ifp->if_snd);
    344 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    345 
    346 	if_attach(ifp);
    347 	ieee80211_ifattach(ic);
    348 	/* override default methods */
    349 	ic->ic_node_alloc = wpi_node_alloc;
    350 	ic->ic_newassoc = wpi_newassoc;
    351 	ic->ic_wme.wme_update = wpi_wme_update;
    352 
    353 	/* override state transition machine */
    354 	sc->sc_newstate = ic->ic_newstate;
    355 	ic->ic_newstate = wpi_newstate;
    356 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
    357 
    358 	sc->amrr.amrr_min_success_threshold = 1;
    359 	sc->amrr.amrr_max_success_threshold = 15;
    360 
    361 	wpi_sysctlattach(sc);
    362 
    363 	if (pmf_device_register(self, NULL, wpi_resume))
    364 		pmf_class_network_register(self, ifp);
    365 	else
    366 		aprint_error_dev(self, "couldn't establish power handler\n");
    367 
    368 #if NBPFILTER > 0
    369 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
    370 		sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    371 		&sc->sc_drvbpf);
    372 
    373 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    374 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    375 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    376 
    377 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    378 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    379 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    380 #endif
    381 
    382 	ieee80211_announce(ic);
    383 
    384 	return;
    385 
    386 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
    387 fail3:  while (--ac >= 0)
    388 			wpi_free_tx_ring(sc, &sc->txq[ac]);
    389 	wpi_free_rpool(sc);
    390 fail2:	wpi_free_shared(sc);
    391 fail1:	wpi_free_fwmem(sc);
    392 }
    393 
    394 static int
    395 wpi_detach(device_t self, int flags __unused)
    396 {
    397 	struct wpi_softc *sc = device_private(self);
    398 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    399 	int ac;
    400 
    401 	wpi_stop(ifp, 1);
    402 
    403 #if NBPFILTER > 0
    404 	if (ifp != NULL)
    405 		bpfdetach(ifp);
    406 #endif
    407 	ieee80211_ifdetach(&sc->sc_ic);
    408 	if (ifp != NULL)
    409 		if_detach(ifp);
    410 
    411 	for (ac = 0; ac < 4; ac++)
    412 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    413 	wpi_free_tx_ring(sc, &sc->cmdq);
    414 	wpi_free_rx_ring(sc, &sc->rxq);
    415 	wpi_free_rpool(sc);
    416 	wpi_free_shared(sc);
    417 
    418 	if (sc->sc_ih != NULL) {
    419 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    420 		sc->sc_ih = NULL;
    421 	}
    422 
    423 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    424 
    425 	if (sc->fw_used) {
    426 		mutex_enter(&wpi_firmware_mutex);
    427 		if (--wpi_firmware_users == 0)
    428 			firmware_free(wpi_firmware_image, wpi_firmware_size);
    429 		mutex_exit(&wpi_firmware_mutex);
    430 	}
    431 
    432 	return 0;
    433 }
    434 
    435 static int
    436 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
    437 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
    438 {
    439 	int nsegs, error;
    440 
    441 	dma->tag = tag;
    442 	dma->size = size;
    443 
    444 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    445 	if (error != 0)
    446 		goto fail;
    447 
    448 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    449 	    flags);
    450 	if (error != 0)
    451 		goto fail;
    452 
    453 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    454 	if (error != 0)
    455 		goto fail;
    456 
    457 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    458 	if (error != 0)
    459 		goto fail;
    460 
    461 	memset(dma->vaddr, 0, size);
    462 
    463 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    464 	if (kvap != NULL)
    465 		*kvap = dma->vaddr;
    466 
    467 	return 0;
    468 
    469 fail:   wpi_dma_contig_free(dma);
    470 	return error;
    471 }
    472 
    473 static void
    474 wpi_dma_contig_free(struct wpi_dma_info *dma)
    475 {
    476 	if (dma->map != NULL) {
    477 		if (dma->vaddr != NULL) {
    478 			bus_dmamap_unload(dma->tag, dma->map);
    479 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    480 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    481 			dma->vaddr = NULL;
    482 		}
    483 		bus_dmamap_destroy(dma->tag, dma->map);
    484 		dma->map = NULL;
    485 	}
    486 }
    487 
    488 /*
    489  * Allocate a shared page between host and NIC.
    490  */
    491 static int
    492 wpi_alloc_shared(struct wpi_softc *sc)
    493 {
    494 	int error;
    495 	/* must be aligned on a 4K-page boundary */
    496 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    497 			(void **)&sc->shared, sizeof (struct wpi_shared),
    498 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
    499 	if (error != 0)
    500 		aprint_error_dev(sc->sc_dev,
    501 				"could not allocate shared area DMA memory\n");
    502 
    503 	return error;
    504 }
    505 
    506 static void
    507 wpi_free_shared(struct wpi_softc *sc)
    508 {
    509 	wpi_dma_contig_free(&sc->shared_dma);
    510 }
    511 
    512 /*
    513  * Allocate DMA-safe memory for firmware transfer.
    514  */
    515 static int
    516 wpi_alloc_fwmem(struct wpi_softc *sc)
    517 {
    518 	int error;
    519 	/* allocate enough contiguous space to store text and data */
    520 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    521 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    522 	    BUS_DMA_NOWAIT);
    523 
    524 	if (error != 0)
    525 		aprint_error_dev(sc->sc_dev,
    526 			"could not allocate firmware transfer area"
    527 			"DMA memory\n");
    528 	return error;
    529 }
    530 
    531 static void
    532 wpi_free_fwmem(struct wpi_softc *sc)
    533 {
    534 	wpi_dma_contig_free(&sc->fw_dma);
    535 }
    536 
    537 
    538 static struct wpi_rbuf *
    539 wpi_alloc_rbuf(struct wpi_softc *sc)
    540 {
    541 	struct wpi_rbuf *rbuf;
    542 
    543 	mutex_enter(&sc->rxq.freelist_mtx);
    544 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    545 	if (rbuf != NULL) {
    546 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    547 		sc->rxq.nb_free_entries --;
    548 	}
    549 	mutex_exit(&sc->rxq.freelist_mtx);
    550 
    551 	return rbuf;
    552 }
    553 
    554 /*
    555  * This is called automatically by the network stack when the mbuf to which our
    556  * Rx buffer is attached is freed.
    557  */
    558 static void
    559 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    560 {
    561 	struct wpi_rbuf *rbuf = arg;
    562 	struct wpi_softc *sc = rbuf->sc;
    563 
    564 	/* put the buffer back in the free list */
    565 
    566 	mutex_enter(&sc->rxq.freelist_mtx);
    567 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    568 	mutex_exit(&sc->rxq.freelist_mtx);
    569 	/* No need to protect this with a mutex, see wpi_rx_intr */
    570 	sc->rxq.nb_free_entries ++;
    571 
    572 	if (__predict_true(m != NULL))
    573 		pool_cache_put(mb_cache, m);
    574 }
    575 
    576 static int
    577 wpi_alloc_rpool(struct wpi_softc *sc)
    578 {
    579 	struct wpi_rx_ring *ring = &sc->rxq;
    580 	struct wpi_rbuf *rbuf;
    581 	int i, error;
    582 
    583 	/* allocate a big chunk of DMA'able memory.. */
    584 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    585 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    586 	if (error != 0) {
    587 		aprint_normal_dev(sc->sc_dev,
    588 						  "could not allocate Rx buffers DMA memory\n");
    589 		return error;
    590 	}
    591 
    592 	/* ..and split it into 3KB chunks */
    593 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
    594 	SLIST_INIT(&ring->freelist);
    595 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    596 		rbuf = &ring->rbuf[i];
    597 		rbuf->sc = sc;	/* backpointer for callbacks */
    598 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    599 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    600 
    601 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    602 	}
    603 
    604 	ring->nb_free_entries = WPI_RBUF_COUNT;
    605 	return 0;
    606 }
    607 
    608 static void
    609 wpi_free_rpool(struct wpi_softc *sc)
    610 {
    611 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    612 }
    613 
    614 static int
    615 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    616 {
    617 	struct wpi_rx_data *data;
    618 	struct wpi_rbuf *rbuf;
    619 	int i, error;
    620 
    621 	ring->cur = 0;
    622 
    623 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    624 		(void **)&ring->desc,
    625 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
    626 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    627 	if (error != 0) {
    628 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
    629 		goto fail;
    630 	}
    631 
    632 	/*
    633 	 * Setup Rx buffers.
    634 	 */
    635 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    636 		data = &ring->data[i];
    637 
    638 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    639 		if (data->m == NULL) {
    640 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
    641 			error = ENOMEM;
    642 			goto fail;
    643 		}
    644 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    645 			m_freem(data->m);
    646 			data->m = NULL;
    647 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
    648 			error = ENOMEM;
    649 			goto fail;
    650 		}
    651 		/* attach Rx buffer to mbuf */
    652 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    653 		    rbuf);
    654 		data->m->m_flags |= M_EXT_RW;
    655 
    656 		ring->desc[i] = htole32(rbuf->paddr);
    657 	}
    658 
    659 	return 0;
    660 
    661 fail:	wpi_free_rx_ring(sc, ring);
    662 	return error;
    663 }
    664 
    665 static void
    666 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    667 {
    668 	int ntries;
    669 
    670 	wpi_mem_lock(sc);
    671 
    672 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    673 	for (ntries = 0; ntries < 100; ntries++) {
    674 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    675 			break;
    676 		DELAY(10);
    677 	}
    678 #ifdef WPI_DEBUG
    679 	if (ntries == 100 && wpi_debug > 0)
    680 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    681 #endif
    682 	wpi_mem_unlock(sc);
    683 
    684 	ring->cur = 0;
    685 }
    686 
    687 static void
    688 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    689 {
    690 	int i;
    691 
    692 	wpi_dma_contig_free(&ring->desc_dma);
    693 
    694 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    695 		if (ring->data[i].m != NULL)
    696 			m_freem(ring->data[i].m);
    697 	}
    698 }
    699 
    700 static int
    701 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    702 	int qid)
    703 {
    704 	struct wpi_tx_data *data;
    705 	int i, error;
    706 
    707 	ring->qid = qid;
    708 	ring->count = count;
    709 	ring->queued = 0;
    710 	ring->cur = 0;
    711 
    712 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    713 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    714 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    715 	if (error != 0) {
    716 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
    717 		goto fail;
    718 	}
    719 
    720 	/* update shared page with ring's base address */
    721 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    722 
    723 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    724 		(void **)&ring->cmd,
    725 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
    726 	if (error != 0) {
    727 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
    728 		goto fail;
    729 	}
    730 
    731 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    732 		M_NOWAIT);
    733 	if (ring->data == NULL) {
    734 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
    735 		goto fail;
    736 	}
    737 
    738 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
    739 
    740 	for (i = 0; i < count; i++) {
    741 		data = &ring->data[i];
    742 
    743 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    744 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    745 			&data->map);
    746 		if (error != 0) {
    747 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
    748 			goto fail;
    749 		}
    750 	}
    751 
    752 	return 0;
    753 
    754 fail:	wpi_free_tx_ring(sc, ring);
    755 	return error;
    756 }
    757 
    758 static void
    759 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    760 {
    761 	struct wpi_tx_data *data;
    762 	int i, ntries;
    763 
    764 	wpi_mem_lock(sc);
    765 
    766 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    767 	for (ntries = 0; ntries < 100; ntries++) {
    768 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    769 			break;
    770 		DELAY(10);
    771 	}
    772 #ifdef WPI_DEBUG
    773 	if (ntries == 100 && wpi_debug > 0) {
    774 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    775 									   ring->qid);
    776 	}
    777 #endif
    778 	wpi_mem_unlock(sc);
    779 
    780 	for (i = 0; i < ring->count; i++) {
    781 		data = &ring->data[i];
    782 
    783 		if (data->m != NULL) {
    784 			bus_dmamap_unload(sc->sc_dmat, data->map);
    785 			m_freem(data->m);
    786 			data->m = NULL;
    787 		}
    788 	}
    789 
    790 	ring->queued = 0;
    791 	ring->cur = 0;
    792 }
    793 
    794 static void
    795 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    796 {
    797 	struct wpi_tx_data *data;
    798 	int i;
    799 
    800 	wpi_dma_contig_free(&ring->desc_dma);
    801 	wpi_dma_contig_free(&ring->cmd_dma);
    802 
    803 	if (ring->data != NULL) {
    804 		for (i = 0; i < ring->count; i++) {
    805 			data = &ring->data[i];
    806 
    807 			if (data->m != NULL) {
    808 				bus_dmamap_unload(sc->sc_dmat, data->map);
    809 				m_freem(data->m);
    810 			}
    811 		}
    812 		free(ring->data, M_DEVBUF);
    813 	}
    814 }
    815 
    816 /*ARGUSED*/
    817 static struct ieee80211_node *
    818 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    819 {
    820 	struct wpi_node *wn;
    821 
    822 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
    823 
    824 	return (struct ieee80211_node *)wn;
    825 }
    826 
    827 static void
    828 wpi_newassoc(struct ieee80211_node *ni, int isnew)
    829 {
    830 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    831 	int i;
    832 
    833 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    834 
    835 	/* set rate to some reasonable initial value */
    836 	for (i = ni->ni_rates.rs_nrates - 1;
    837 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    838 	     i--);
    839 	ni->ni_txrate = i;
    840 }
    841 
    842 static int
    843 wpi_media_change(struct ifnet *ifp)
    844 {
    845 	int error;
    846 
    847 	error = ieee80211_media_change(ifp);
    848 	if (error != ENETRESET)
    849 		return error;
    850 
    851 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    852 		wpi_init(ifp);
    853 
    854 	return 0;
    855 }
    856 
    857 static int
    858 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    859 {
    860 	struct ifnet *ifp = ic->ic_ifp;
    861 	struct wpi_softc *sc = ifp->if_softc;
    862 	struct ieee80211_node *ni;
    863 	int error;
    864 
    865 	callout_stop(&sc->calib_to);
    866 
    867 	switch (nstate) {
    868 	case IEEE80211_S_SCAN:
    869 
    870 		if (sc->is_scanning)
    871 			break;
    872 
    873 		sc->is_scanning = true;
    874 		ieee80211_node_table_reset(&ic->ic_scan);
    875 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
    876 
    877 		/* make the link LED blink while we're scanning */
    878 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    879 
    880 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
    881 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
    882 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
    883 			return error;
    884 		}
    885 
    886 		ic->ic_state = nstate;
    887 		return 0;
    888 
    889 	case IEEE80211_S_ASSOC:
    890 		if (ic->ic_state != IEEE80211_S_RUN)
    891 			break;
    892 		/* FALLTHROUGH */
    893 	case IEEE80211_S_AUTH:
    894 		sc->config.associd = 0;
    895 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    896 		if ((error = wpi_auth(sc)) != 0) {
    897 			aprint_error_dev(sc->sc_dev,
    898 							"could not send authentication request\n");
    899 			return error;
    900 		}
    901 		break;
    902 
    903 	case IEEE80211_S_RUN:
    904 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    905 			/* link LED blinks while monitoring */
    906 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    907 			break;
    908 		}
    909 
    910 		ni = ic->ic_bss;
    911 
    912 		if (ic->ic_opmode != IEEE80211_M_STA) {
    913 			(void) wpi_auth(sc);    /* XXX */
    914 			wpi_setup_beacon(sc, ni);
    915 		}
    916 
    917 		wpi_enable_tsf(sc, ni);
    918 
    919 		/* update adapter's configuration */
    920 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    921 		/* short preamble/slot time are negotiated when associating */
    922 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
    923 			WPI_CONFIG_SHSLOT);
    924 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
    925 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
    926 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
    927 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
    928 		sc->config.filter |= htole32(WPI_FILTER_BSS);
    929 		if (ic->ic_opmode != IEEE80211_M_STA)
    930 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
    931 
    932 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
    933 
    934 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
    935 			sc->config.flags));
    936 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
    937 			sizeof (struct wpi_config), 1);
    938 		if (error != 0) {
    939 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
    940 			return error;
    941 		}
    942 
    943 		/* configuration has changed, set Tx power accordingly */
    944 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
    945 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
    946 			return error;
    947 		}
    948 
    949 		if (ic->ic_opmode == IEEE80211_M_STA) {
    950 			/* fake a join to init the tx rate */
    951 			wpi_newassoc(ni, 1);
    952 		}
    953 
    954 		/* start periodic calibration timer */
    955 		sc->calib_cnt = 0;
    956 		callout_schedule(&sc->calib_to, hz/2);
    957 
    958 		/* link LED always on while associated */
    959 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
    960 		break;
    961 
    962 	case IEEE80211_S_INIT:
    963 		sc->is_scanning = false;
    964 		break;
    965 	}
    966 
    967 	return sc->sc_newstate(ic, nstate, arg);
    968 }
    969 
    970 /*
    971  * XXX: Hack to set the current channel to the value advertised in beacons or
    972  * probe responses. Only used during AP detection.
    973  * XXX: Duplicated from if_iwi.c
    974  */
    975 static void
    976 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
    977 {
    978 	struct ieee80211_frame *wh;
    979 	uint8_t subtype;
    980 	uint8_t *frm, *efrm;
    981 
    982 	wh = mtod(m, struct ieee80211_frame *);
    983 
    984 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
    985 		return;
    986 
    987 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
    988 
    989 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
    990 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
    991 		return;
    992 
    993 	frm = (uint8_t *)(wh + 1);
    994 	efrm = mtod(m, uint8_t *) + m->m_len;
    995 
    996 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
    997 	while (frm < efrm) {
    998 		if (*frm == IEEE80211_ELEMID_DSPARMS)
    999 #if IEEE80211_CHAN_MAX < 255
   1000 		if (frm[2] <= IEEE80211_CHAN_MAX)
   1001 #endif
   1002 			ic->ic_curchan = &ic->ic_channels[frm[2]];
   1003 
   1004 		frm += frm[1] + 2;
   1005 	}
   1006 }
   1007 
   1008 /*
   1009  * Grab exclusive access to NIC memory.
   1010  */
   1011 static void
   1012 wpi_mem_lock(struct wpi_softc *sc)
   1013 {
   1014 	uint32_t tmp;
   1015 	int ntries;
   1016 
   1017 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1018 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
   1019 
   1020 	/* spin until we actually get the lock */
   1021 	for (ntries = 0; ntries < 1000; ntries++) {
   1022 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
   1023 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
   1024 			break;
   1025 		DELAY(10);
   1026 	}
   1027 	if (ntries == 1000)
   1028 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
   1029 }
   1030 
   1031 /*
   1032  * Release lock on NIC memory.
   1033  */
   1034 static void
   1035 wpi_mem_unlock(struct wpi_softc *sc)
   1036 {
   1037 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1038 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1039 }
   1040 
   1041 static uint32_t
   1042 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1043 {
   1044 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1045 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1046 }
   1047 
   1048 static void
   1049 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1050 {
   1051 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1052 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1053 }
   1054 
   1055 static void
   1056 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1057 						const uint32_t *data, int wlen)
   1058 {
   1059 	for (; wlen > 0; wlen--, data++, addr += 4)
   1060 		wpi_mem_write(sc, addr, *data);
   1061 }
   1062 
   1063 
   1064 /*
   1065  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1066  * instead of using the traditional bit-bang method.
   1067  */
   1068 static int
   1069 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1070 {
   1071 	uint8_t *out = data;
   1072 	uint32_t val;
   1073 	int ntries;
   1074 
   1075 	wpi_mem_lock(sc);
   1076 	for (; len > 0; len -= 2, addr++) {
   1077 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1078 
   1079 		for (ntries = 0; ntries < 10; ntries++) {
   1080 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1081 			    WPI_EEPROM_READY)
   1082 				break;
   1083 			DELAY(5);
   1084 		}
   1085 		if (ntries == 10) {
   1086 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1087 			return ETIMEDOUT;
   1088 		}
   1089 		*out++ = val >> 16;
   1090 		if (len > 1)
   1091 			*out++ = val >> 24;
   1092 	}
   1093 	wpi_mem_unlock(sc);
   1094 
   1095 	return 0;
   1096 }
   1097 
   1098 /*
   1099  * The firmware boot code is small and is intended to be copied directly into
   1100  * the NIC internal memory.
   1101  */
   1102 int
   1103 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1104 {
   1105 	int ntries;
   1106 
   1107 	size /= sizeof (uint32_t);
   1108 
   1109 	wpi_mem_lock(sc);
   1110 
   1111 	/* copy microcode image into NIC memory */
   1112 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1113 	    (const uint32_t *)ucode, size);
   1114 
   1115 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1116 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1117 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1118 
   1119 	/* run microcode */
   1120 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1121 
   1122 	/* wait for transfer to complete */
   1123 	for (ntries = 0; ntries < 1000; ntries++) {
   1124 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1125 			break;
   1126 		DELAY(10);
   1127 	}
   1128 	if (ntries == 1000) {
   1129 		wpi_mem_unlock(sc);
   1130 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1131 		return ETIMEDOUT;
   1132 	}
   1133 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1134 
   1135 	wpi_mem_unlock(sc);
   1136 
   1137 	return 0;
   1138 }
   1139 
   1140 static int
   1141 wpi_cache_firmware(struct wpi_softc *sc)
   1142 {
   1143 	firmware_handle_t fw;
   1144 	int error;
   1145 
   1146 	if (sc->fw_used)
   1147 		return 0;
   1148 
   1149 	mutex_enter(&wpi_firmware_mutex);
   1150 	if (wpi_firmware_users++) {
   1151 		mutex_exit(&wpi_firmware_mutex);
   1152 		return 0;
   1153 	}
   1154 
   1155 	/* load firmware image from disk */
   1156 	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
   1157 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
   1158 		goto fail1;
   1159 	}
   1160 
   1161 	wpi_firmware_size = firmware_get_size(fw);
   1162 
   1163 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
   1164 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
   1165 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
   1166 	    WPI_FW_BOOT_TEXT_MAXSZ) {
   1167 		aprint_error_dev(sc->sc_dev, "invalid firmware file\n");
   1168 		error = EFBIG;
   1169 		goto fail1;
   1170 	}
   1171 
   1172 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
   1173 		aprint_error_dev(sc->sc_dev,
   1174 		    "truncated firmware header: %zu bytes\n",
   1175 		    wpi_firmware_size);
   1176 		error = EINVAL;
   1177 		goto fail2;
   1178 	}
   1179 
   1180 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
   1181 	if (wpi_firmware_image == NULL) {
   1182 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
   1183 		error = ENOMEM;
   1184 		goto fail1;
   1185 	}
   1186 
   1187 	if ((error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size)) != 0) {
   1188 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
   1189 		goto fail2;
   1190 	}
   1191 
   1192 	sc->fw_used = true;
   1193 	firmware_close(fw);
   1194 	mutex_exit(&wpi_firmware_mutex);
   1195 
   1196 	return 0;
   1197 
   1198 fail2:
   1199 	firmware_free(wpi_firmware_image, wpi_firmware_size);
   1200 fail1:
   1201 	firmware_close(fw);
   1202 	if (--wpi_firmware_users == 0)
   1203 		firmware_free(wpi_firmware_image, wpi_firmware_size);
   1204 	mutex_exit(&wpi_firmware_mutex);
   1205 	return error;
   1206 }
   1207 
   1208 static int
   1209 wpi_load_firmware(struct wpi_softc *sc)
   1210 {
   1211 	struct wpi_dma_info *dma = &sc->fw_dma;
   1212 	struct wpi_firmware_hdr hdr;
   1213 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1214 	const uint8_t *boot_text;
   1215 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1216 	uint32_t boot_textsz;
   1217 	int error;
   1218 
   1219 	if ((error = wpi_cache_firmware(sc)) != 0)
   1220 		return error;
   1221 
   1222 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
   1223 
   1224 	main_textsz = le32toh(hdr.main_textsz);
   1225 	main_datasz = le32toh(hdr.main_datasz);
   1226 	init_textsz = le32toh(hdr.init_textsz);
   1227 	init_datasz = le32toh(hdr.init_datasz);
   1228 	boot_textsz = le32toh(hdr.boot_textsz);
   1229 
   1230 	/* sanity-check firmware segments sizes */
   1231 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1232 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1233 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1234 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1235 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1236 	    (boot_textsz & 3) != 0) {
   1237 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1238 		error = EINVAL;
   1239 		goto free_firmware;
   1240 	}
   1241 
   1242 	/* check that all firmware segments are present */
   1243 	if (wpi_firmware_size <
   1244 	    sizeof (struct wpi_firmware_hdr) + main_textsz +
   1245 	    main_datasz + init_textsz + init_datasz + boot_textsz) {
   1246 		aprint_error_dev(sc->sc_dev,
   1247 		    "firmware file too short: %zu bytes\n", wpi_firmware_size);
   1248 		error = EINVAL;
   1249 		goto free_firmware;
   1250 	}
   1251 
   1252 	/* get pointers to firmware segments */
   1253 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
   1254 	main_data = main_text + main_textsz;
   1255 	init_text = main_data + main_datasz;
   1256 	init_data = init_text + init_textsz;
   1257 	boot_text = init_data + init_datasz;
   1258 
   1259 	/* copy initialization images into pre-allocated DMA-safe memory */
   1260 	memcpy(dma->vaddr, init_data, init_datasz);
   1261 	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
   1262 
   1263 	/* tell adapter where to find initialization images */
   1264 	wpi_mem_lock(sc);
   1265 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1266 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1267 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1268 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1269 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1270 	wpi_mem_unlock(sc);
   1271 
   1272 	/* load firmware boot code */
   1273 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1274 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1275 		return error;
   1276 	}
   1277 
   1278 	/* now press "execute" ;-) */
   1279 	WPI_WRITE(sc, WPI_RESET, 0);
   1280 
   1281 	/* ..and wait at most one second for adapter to initialize */
   1282 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1283 		/* this isn't what was supposed to happen.. */
   1284 		aprint_error_dev(sc->sc_dev,
   1285 		    "timeout waiting for adapter to initialize\n");
   1286 	}
   1287 
   1288 	/* copy runtime images into pre-allocated DMA-safe memory */
   1289 	memcpy(dma->vaddr, main_data, main_datasz);
   1290 	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
   1291 
   1292 	/* tell adapter where to find runtime images */
   1293 	wpi_mem_lock(sc);
   1294 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1295 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1296 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1297 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1298 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1299 	wpi_mem_unlock(sc);
   1300 
   1301 	/* wait at most one second for second alive notification */
   1302 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1303 		/* this isn't what was supposed to happen.. */
   1304 		aprint_error_dev(sc->sc_dev,
   1305 		    "timeout waiting for adapter to initialize\n");
   1306 	}
   1307 
   1308 	return error;
   1309 
   1310 free_firmware:
   1311 	mutex_enter(&wpi_firmware_mutex);
   1312 	sc->fw_used = false;
   1313 	--wpi_firmware_users;
   1314 	mutex_exit(&wpi_firmware_mutex);
   1315 	return error;
   1316 }
   1317 
   1318 static void
   1319 wpi_calib_timeout(void *arg)
   1320 {
   1321 	struct wpi_softc *sc = arg;
   1322 	struct ieee80211com *ic = &sc->sc_ic;
   1323 	int temp, s;
   1324 
   1325 	/* automatic rate control triggered every 500ms */
   1326 	if (ic->ic_fixed_rate == -1) {
   1327 		s = splnet();
   1328 		if (ic->ic_opmode == IEEE80211_M_STA)
   1329 			wpi_iter_func(sc, ic->ic_bss);
   1330 		else
   1331                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1332 		splx(s);
   1333 	}
   1334 
   1335 	/* update sensor data */
   1336 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1337 
   1338 	/* automatic power calibration every 60s */
   1339 	if (++sc->calib_cnt >= 120) {
   1340 		wpi_power_calibration(sc, temp);
   1341 		sc->calib_cnt = 0;
   1342 	}
   1343 
   1344 	callout_schedule(&sc->calib_to, hz/2);
   1345 }
   1346 
   1347 static void
   1348 wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1349 {
   1350 	struct wpi_softc *sc = arg;
   1351 	struct wpi_node *wn = (struct wpi_node *)ni;
   1352 
   1353 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1354 }
   1355 
   1356 /*
   1357  * This function is called periodically (every 60 seconds) to adjust output
   1358  * power to temperature changes.
   1359  */
   1360 void
   1361 wpi_power_calibration(struct wpi_softc *sc, int temp)
   1362 {
   1363 	/* sanity-check read value */
   1364 	if (temp < -260 || temp > 25) {
   1365 		/* this can't be correct, ignore */
   1366 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1367 		return;
   1368 	}
   1369 
   1370 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1371 
   1372 	/* adjust Tx power if need be */
   1373 	if (abs(temp - sc->temp) <= 6)
   1374 		return;
   1375 
   1376 	sc->temp = temp;
   1377 
   1378 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
   1379 		/* just warn, too bad for the automatic calibration... */
   1380 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1381 	}
   1382 }
   1383 
   1384 static void
   1385 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1386 	struct wpi_rx_data *data)
   1387 {
   1388 	struct ieee80211com *ic = &sc->sc_ic;
   1389 	struct ifnet *ifp = ic->ic_ifp;
   1390 	struct wpi_rx_ring *ring = &sc->rxq;
   1391 	struct wpi_rx_stat *stat;
   1392 	struct wpi_rx_head *head;
   1393 	struct wpi_rx_tail *tail;
   1394 	struct wpi_rbuf *rbuf;
   1395 	struct ieee80211_frame *wh;
   1396 	struct ieee80211_node *ni;
   1397 	struct mbuf *m, *mnew;
   1398 	int data_off ;
   1399 
   1400 	stat = (struct wpi_rx_stat *)(desc + 1);
   1401 
   1402 	if (stat->len > WPI_STAT_MAXLEN) {
   1403 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1404 		ifp->if_ierrors++;
   1405 		return;
   1406 	}
   1407 
   1408 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1409 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1410 
   1411 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1412 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
   1413 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1414 		le64toh(tail->tstamp)));
   1415 
   1416 	/*
   1417 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1418 	 * to radiotap in monitor mode).
   1419 	 */
   1420 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1421 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
   1422 		ifp->if_ierrors++;
   1423 		return;
   1424 	}
   1425 
   1426 	/* Compute where are the useful datas */
   1427 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1428 
   1429 	/*
   1430 	 * If the number of free entry is too low
   1431 	 * just dup the data->m socket and reuse the same rbuf entry
   1432 	 * Note that thi test is not protected by a mutex because the
   1433 	 * only path that causes nb_free_entries to decrease is through
   1434 	 * this interrupt routine, which is not re-entrent.
   1435 	 * What may not be obvious is that the safe path is if that test
   1436 	 * evaluates as true, so nb_free_entries can grow any time.
   1437 	 */
   1438 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
   1439 
   1440 		/* Prepare the mbuf for the m_dup */
   1441 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
   1442 		data->m->m_data = (char*) data->m->m_data + data_off;
   1443 
   1444 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
   1445 
   1446 		/* Restore the m_data pointer for future use */
   1447 		data->m->m_data = (char*) data->m->m_data - data_off;
   1448 
   1449 		if (m == NULL) {
   1450 			ifp->if_ierrors++;
   1451 			return;
   1452 		}
   1453 	} else {
   1454 
   1455 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1456 		if (mnew == NULL) {
   1457 			ifp->if_ierrors++;
   1458 			return;
   1459 		}
   1460 
   1461 		rbuf = wpi_alloc_rbuf(sc);
   1462 		KASSERT(rbuf != NULL);
   1463 
   1464  		/* attach Rx buffer to mbuf */
   1465 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1466 		 	rbuf);
   1467 		mnew->m_flags |= M_EXT_RW;
   1468 
   1469 		m = data->m;
   1470 		data->m = mnew;
   1471 
   1472 		/* update Rx descriptor */
   1473 		ring->desc[ring->cur] = htole32(rbuf->paddr);
   1474 
   1475 		m->m_data = (char*)m->m_data + data_off;
   1476 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1477 	}
   1478 
   1479 	/* finalize mbuf */
   1480 	m->m_pkthdr.rcvif = ifp;
   1481 
   1482 	if (ic->ic_state == IEEE80211_S_SCAN)
   1483 		wpi_fix_channel(ic, m);
   1484 
   1485 #if NBPFILTER > 0
   1486 	if (sc->sc_drvbpf != NULL) {
   1487 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1488 
   1489 		tap->wr_flags = 0;
   1490 		tap->wr_chan_freq =
   1491 			htole16(ic->ic_channels[head->chan].ic_freq);
   1492 		tap->wr_chan_flags =
   1493 			htole16(ic->ic_channels[head->chan].ic_flags);
   1494 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1495 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1496 		tap->wr_tsft = tail->tstamp;
   1497 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1498 		switch (head->rate) {
   1499 		/* CCK rates */
   1500 		case  10: tap->wr_rate =   2; break;
   1501 		case  20: tap->wr_rate =   4; break;
   1502 		case  55: tap->wr_rate =  11; break;
   1503 		case 110: tap->wr_rate =  22; break;
   1504 		/* OFDM rates */
   1505 		case 0xd: tap->wr_rate =  12; break;
   1506 		case 0xf: tap->wr_rate =  18; break;
   1507 		case 0x5: tap->wr_rate =  24; break;
   1508 		case 0x7: tap->wr_rate =  36; break;
   1509 		case 0x9: tap->wr_rate =  48; break;
   1510 		case 0xb: tap->wr_rate =  72; break;
   1511 		case 0x1: tap->wr_rate =  96; break;
   1512 		case 0x3: tap->wr_rate = 108; break;
   1513 		/* unknown rate: should not happen */
   1514 		default:  tap->wr_rate =   0;
   1515 		}
   1516 		if (le16toh(head->flags) & 0x4)
   1517 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1518 
   1519 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1520 	}
   1521 #endif
   1522 
   1523 	/* grab a reference to the source node */
   1524 	wh = mtod(m, struct ieee80211_frame *);
   1525 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1526 
   1527 	/* send the frame to the 802.11 layer */
   1528 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1529 
   1530 	/* release node reference */
   1531 	ieee80211_free_node(ni);
   1532 }
   1533 
   1534 static void
   1535 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1536 {
   1537 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1538 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1539 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
   1540 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1541 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
   1542 
   1543 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1544 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1545 		stat->nkill, stat->rate, le32toh(stat->duration),
   1546 		le32toh(stat->status)));
   1547 
   1548 	/*
   1549 	 * Update rate control statistics for the node.
   1550 	 * XXX we should not count mgmt frames since they're always sent at
   1551 	 * the lowest available bit-rate.
   1552 	 */
   1553 	wn->amn.amn_txcnt++;
   1554 	if (stat->ntries > 0) {
   1555 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1556 		wn->amn.amn_retrycnt++;
   1557 	}
   1558 
   1559 	if ((le32toh(stat->status) & 0xff) != 1)
   1560 		ifp->if_oerrors++;
   1561 	else
   1562 		ifp->if_opackets++;
   1563 
   1564 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
   1565 	m_freem(txdata->m);
   1566 	txdata->m = NULL;
   1567 	ieee80211_free_node(txdata->ni);
   1568 	txdata->ni = NULL;
   1569 
   1570 	ring->queued--;
   1571 
   1572 	sc->sc_tx_timer = 0;
   1573 	ifp->if_flags &= ~IFF_OACTIVE;
   1574 	wpi_start(ifp);
   1575 }
   1576 
   1577 static void
   1578 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1579 {
   1580 	struct wpi_tx_ring *ring = &sc->cmdq;
   1581 	struct wpi_tx_data *data;
   1582 
   1583 	if ((desc->qid & 7) != 4)
   1584 		return;	/* not a command ack */
   1585 
   1586 	data = &ring->data[desc->idx];
   1587 
   1588 	/* if the command was mapped in a mbuf, free it */
   1589 	if (data->m != NULL) {
   1590 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1591 		m_freem(data->m);
   1592 		data->m = NULL;
   1593 	}
   1594 
   1595 	wakeup(&ring->cmd[desc->idx]);
   1596 }
   1597 
   1598 static void
   1599 wpi_notif_intr(struct wpi_softc *sc)
   1600 {
   1601 	struct ieee80211com *ic = &sc->sc_ic;
   1602 	struct ifnet *ifp =  ic->ic_ifp;
   1603 	struct wpi_rx_desc *desc;
   1604 	struct wpi_rx_data *data;
   1605 	uint32_t hw;
   1606 
   1607 	hw = le32toh(sc->shared->next);
   1608 	while (sc->rxq.cur != hw) {
   1609 		data = &sc->rxq.data[sc->rxq.cur];
   1610 
   1611 		desc = mtod(data->m, struct wpi_rx_desc *);
   1612 
   1613 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1614 			"len=%d\n", desc->qid, desc->idx, desc->flags,
   1615 			desc->type, le32toh(desc->len)));
   1616 
   1617 		if (!(desc->qid & 0x80))	/* reply to a command */
   1618 			wpi_cmd_intr(sc, desc);
   1619 
   1620 		switch (desc->type) {
   1621 		case WPI_RX_DONE:
   1622 			/* a 802.11 frame was received */
   1623 			wpi_rx_intr(sc, desc, data);
   1624 			break;
   1625 
   1626 		case WPI_TX_DONE:
   1627 			/* a 802.11 frame has been transmitted */
   1628 			wpi_tx_intr(sc, desc);
   1629 			break;
   1630 
   1631 		case WPI_UC_READY:
   1632 		{
   1633 			struct wpi_ucode_info *uc =
   1634 				(struct wpi_ucode_info *)(desc + 1);
   1635 
   1636 			/* the microcontroller is ready */
   1637 			DPRINTF(("microcode alive notification version %x "
   1638 				"alive %x\n", le32toh(uc->version),
   1639 				le32toh(uc->valid)));
   1640 
   1641 			if (le32toh(uc->valid) != 1) {
   1642 				aprint_error_dev(sc->sc_dev,
   1643 					"microcontroller initialization failed\n");
   1644 			}
   1645 			break;
   1646 		}
   1647 		case WPI_STATE_CHANGED:
   1648 		{
   1649 			uint32_t *status = (uint32_t *)(desc + 1);
   1650 
   1651 			/* enabled/disabled notification */
   1652 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1653 
   1654 			if (le32toh(*status) & 1) {
   1655 				/* the radio button has to be pushed */
   1656 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
   1657 				/* turn the interface down */
   1658 				ifp->if_flags &= ~IFF_UP;
   1659 				wpi_stop(ifp, 1);
   1660 				return;	/* no further processing */
   1661 			}
   1662 			break;
   1663 		}
   1664 		case WPI_START_SCAN:
   1665 		{
   1666 			struct wpi_start_scan *scan =
   1667 				(struct wpi_start_scan *)(desc + 1);
   1668 
   1669 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1670 				scan->chan, le32toh(scan->status)));
   1671 
   1672 			/* fix current channel */
   1673 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   1674 			break;
   1675 		}
   1676 		case WPI_STOP_SCAN:
   1677 		{
   1678 			struct wpi_stop_scan *scan =
   1679 				(struct wpi_stop_scan *)(desc + 1);
   1680 
   1681 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1682 				scan->nchan, scan->status, scan->chan));
   1683 
   1684 			if (scan->status == 1 && scan->chan <= 14) {
   1685 				/*
   1686 				 * We just finished scanning 802.11g channels,
   1687 				 * start scanning 802.11a ones.
   1688 				 */
   1689 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
   1690 					break;
   1691 			}
   1692 			sc->is_scanning = false;
   1693 			ieee80211_end_scan(ic);
   1694 			break;
   1695 		}
   1696 		}
   1697 
   1698 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1699 	}
   1700 
   1701 	/* tell the firmware what we have processed */
   1702 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1703 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1704 }
   1705 
   1706 static int
   1707 wpi_intr(void *arg)
   1708 {
   1709 	struct wpi_softc *sc = arg;
   1710 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1711 	uint32_t r;
   1712 
   1713 	r = WPI_READ(sc, WPI_INTR);
   1714 	if (r == 0 || r == 0xffffffff)
   1715 		return 0;	/* not for us */
   1716 
   1717 	DPRINTFN(5, ("interrupt reg %x\n", r));
   1718 
   1719 	/* disable interrupts */
   1720 	WPI_WRITE(sc, WPI_MASK, 0);
   1721 	/* ack interrupts */
   1722 	WPI_WRITE(sc, WPI_INTR, r);
   1723 
   1724 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1725 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1726 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
   1727 		wpi_stop(sc->sc_ic.ic_ifp, 1);
   1728 		return 1;
   1729 	}
   1730 
   1731 	if (r & WPI_RX_INTR)
   1732 		wpi_notif_intr(sc);
   1733 
   1734 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1735 		wakeup(sc);
   1736 
   1737 	/* re-enable interrupts */
   1738 	if (ifp->if_flags & IFF_UP)
   1739 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1740 
   1741 	return 1;
   1742 }
   1743 
   1744 static uint8_t
   1745 wpi_plcp_signal(int rate)
   1746 {
   1747 	switch (rate) {
   1748 	/* CCK rates (returned values are device-dependent) */
   1749 	case 2:		return 10;
   1750 	case 4:		return 20;
   1751 	case 11:	return 55;
   1752 	case 22:	return 110;
   1753 
   1754 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1755 	/* R1-R4, (u)ral is R4-R1 */
   1756 	case 12:	return 0xd;
   1757 	case 18:	return 0xf;
   1758 	case 24:	return 0x5;
   1759 	case 36:	return 0x7;
   1760 	case 48:	return 0x9;
   1761 	case 72:	return 0xb;
   1762 	case 96:	return 0x1;
   1763 	case 108:	return 0x3;
   1764 
   1765 	/* unsupported rates (should not get there) */
   1766 	default:	return 0;
   1767 	}
   1768 }
   1769 
   1770 /* quickly determine if a given rate is CCK or OFDM */
   1771 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1772 
   1773 static int
   1774 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1775 	int ac)
   1776 {
   1777 	struct ieee80211com *ic = &sc->sc_ic;
   1778 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1779 	struct wpi_tx_desc *desc;
   1780 	struct wpi_tx_data *data;
   1781 	struct wpi_tx_cmd *cmd;
   1782 	struct wpi_cmd_data *tx;
   1783 	struct ieee80211_frame *wh;
   1784 	struct ieee80211_key *k;
   1785 	const struct chanAccParams *cap;
   1786 	struct mbuf *mnew;
   1787 	int i, error, rate, hdrlen, noack = 0;
   1788 
   1789 	desc = &ring->desc[ring->cur];
   1790 	data = &ring->data[ring->cur];
   1791 
   1792 	wh = mtod(m0, struct ieee80211_frame *);
   1793 
   1794 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   1795 		cap = &ic->ic_wme.wme_chanParams;
   1796 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1797 	}
   1798 
   1799 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1800 		k = ieee80211_crypto_encap(ic, ni, m0);
   1801 		if (k == NULL) {
   1802 			m_freem(m0);
   1803 			return ENOBUFS;
   1804 		}
   1805 
   1806 		/* packet header may have moved, reset our local pointer */
   1807 		wh = mtod(m0, struct ieee80211_frame *);
   1808 	}
   1809 
   1810 	hdrlen = ieee80211_anyhdrsize(wh);
   1811 
   1812 	/* pickup a rate */
   1813 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1814 		IEEE80211_FC0_TYPE_MGT) {
   1815 		/* mgmt frames are sent at the lowest available bit-rate */
   1816 		rate = ni->ni_rates.rs_rates[0];
   1817 	} else {
   1818 		if (ic->ic_fixed_rate != -1) {
   1819 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1820 				rs_rates[ic->ic_fixed_rate];
   1821 		} else
   1822 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1823 	}
   1824 	rate &= IEEE80211_RATE_VAL;
   1825 
   1826 
   1827 #if NBPFILTER > 0
   1828 	if (sc->sc_drvbpf != NULL) {
   1829 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1830 
   1831 		tap->wt_flags = 0;
   1832 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1833 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1834 		tap->wt_rate = rate;
   1835 		tap->wt_hwqueue = ac;
   1836 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1837 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1838 
   1839 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1840 	}
   1841 #endif
   1842 
   1843 	cmd = &ring->cmd[ring->cur];
   1844 	cmd->code = WPI_CMD_TX_DATA;
   1845 	cmd->flags = 0;
   1846 	cmd->qid = ring->qid;
   1847 	cmd->idx = ring->cur;
   1848 
   1849 	tx = (struct wpi_cmd_data *)cmd->data;
   1850 	tx->flags = 0;
   1851 
   1852 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1853 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1854 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1855 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1856 
   1857 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1858 
   1859 	/* retrieve destination node's id */
   1860 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1861 		WPI_ID_BSS;
   1862 
   1863 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1864 		IEEE80211_FC0_TYPE_MGT) {
   1865 		/* tell h/w to set timestamp in probe responses */
   1866 		if ((wh->i_fc[0] &
   1867 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1868 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1869 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1870 
   1871 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1872 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1873 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1874 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1875 			tx->timeout = htole16(3);
   1876 		else
   1877 			tx->timeout = htole16(2);
   1878 	} else
   1879 		tx->timeout = htole16(0);
   1880 
   1881 	tx->rate = wpi_plcp_signal(rate);
   1882 
   1883 	/* be very persistant at sending frames out */
   1884 	tx->rts_ntries = 7;
   1885 	tx->data_ntries = 15;
   1886 
   1887 	tx->ofdm_mask = 0xff;
   1888 	tx->cck_mask = 0xf;
   1889 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   1890 
   1891 	tx->len = htole16(m0->m_pkthdr.len);
   1892 
   1893 	/* save and trim IEEE802.11 header */
   1894 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   1895 	m_adj(m0, hdrlen);
   1896 
   1897 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1898 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1899 	if (error != 0 && error != EFBIG) {
   1900 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
   1901 		m_freem(m0);
   1902 		return error;
   1903 	}
   1904 	if (error != 0) {
   1905 		/* too many fragments, linearize */
   1906 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1907 		if (mnew == NULL) {
   1908 			m_freem(m0);
   1909 			return ENOMEM;
   1910 		}
   1911 
   1912 		M_COPY_PKTHDR(mnew, m0);
   1913 		if (m0->m_pkthdr.len > MHLEN) {
   1914 			MCLGET(mnew, M_DONTWAIT);
   1915 			if (!(mnew->m_flags & M_EXT)) {
   1916 				m_freem(m0);
   1917 				m_freem(mnew);
   1918 				return ENOMEM;
   1919 			}
   1920 		}
   1921 
   1922 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1923 		m_freem(m0);
   1924 		mnew->m_len = mnew->m_pkthdr.len;
   1925 		m0 = mnew;
   1926 
   1927 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1928 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1929 		if (error != 0) {
   1930 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1931 							 error);
   1932 			m_freem(m0);
   1933 			return error;
   1934 		}
   1935 	}
   1936 
   1937 	data->m = m0;
   1938 	data->ni = ni;
   1939 
   1940 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   1941 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   1942 
   1943 	/* first scatter/gather segment is used by the tx data command */
   1944 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   1945 		(1 + data->map->dm_nsegs) << 24);
   1946 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   1947 		ring->cur * sizeof (struct wpi_tx_cmd));
   1948 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   1949 						 ((hdrlen + 3) & ~3));
   1950 
   1951 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   1952 		desc->segs[i].addr =
   1953 			htole32(data->map->dm_segs[i - 1].ds_addr);
   1954 		desc->segs[i].len  =
   1955 			htole32(data->map->dm_segs[i - 1].ds_len);
   1956 	}
   1957 
   1958 	ring->queued++;
   1959 
   1960 	/* kick ring */
   1961 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   1962 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   1963 
   1964 	return 0;
   1965 }
   1966 
   1967 static void
   1968 wpi_start(struct ifnet *ifp)
   1969 {
   1970 	struct wpi_softc *sc = ifp->if_softc;
   1971 	struct ieee80211com *ic = &sc->sc_ic;
   1972 	struct ieee80211_node *ni;
   1973 	struct ether_header *eh;
   1974 	struct mbuf *m0;
   1975 	int ac;
   1976 
   1977 	/*
   1978 	 * net80211 may still try to send management frames even if the
   1979 	 * IFF_RUNNING flag is not set...
   1980 	 */
   1981 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1982 		return;
   1983 
   1984 	for (;;) {
   1985 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   1986 		if (m0 != NULL) {
   1987 
   1988 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   1989 			m0->m_pkthdr.rcvif = NULL;
   1990 
   1991 			/* management frames go into ring 0 */
   1992 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   1993 				ifp->if_oerrors++;
   1994 				continue;
   1995 			}
   1996 #if NBPFILTER > 0
   1997 			if (ic->ic_rawbpf != NULL)
   1998 				bpf_mtap(ic->ic_rawbpf, m0);
   1999 #endif
   2000 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   2001 				ifp->if_oerrors++;
   2002 				break;
   2003 			}
   2004 		} else {
   2005 			if (ic->ic_state != IEEE80211_S_RUN)
   2006 				break;
   2007 			IFQ_POLL(&ifp->if_snd, m0);
   2008 			if (m0 == NULL)
   2009 				break;
   2010 
   2011 			if (m0->m_len < sizeof (*eh) &&
   2012 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
   2013 				ifp->if_oerrors++;
   2014 				continue;
   2015 			}
   2016 			eh = mtod(m0, struct ether_header *);
   2017 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   2018 			if (ni == NULL) {
   2019 				m_freem(m0);
   2020 				ifp->if_oerrors++;
   2021 				continue;
   2022 			}
   2023 
   2024 			/* classify mbuf so we can find which tx ring to use */
   2025 			if (ieee80211_classify(ic, m0, ni) != 0) {
   2026 				m_freem(m0);
   2027 				ieee80211_free_node(ni);
   2028 				ifp->if_oerrors++;
   2029 				continue;
   2030 			}
   2031 
   2032 			/* no QoS encapsulation for EAPOL frames */
   2033 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   2034 			    M_WME_GETAC(m0) : WME_AC_BE;
   2035 
   2036 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   2037 				/* there is no place left in this ring */
   2038 				ifp->if_flags |= IFF_OACTIVE;
   2039 				break;
   2040 			}
   2041 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   2042 #if NBPFILTER > 0
   2043 			if (ifp->if_bpf != NULL)
   2044 				bpf_mtap(ifp->if_bpf, m0);
   2045 #endif
   2046 			m0 = ieee80211_encap(ic, m0, ni);
   2047 			if (m0 == NULL) {
   2048 				ieee80211_free_node(ni);
   2049 				ifp->if_oerrors++;
   2050 				continue;
   2051 			}
   2052 #if NBPFILTER > 0
   2053 			if (ic->ic_rawbpf != NULL)
   2054 				bpf_mtap(ic->ic_rawbpf, m0);
   2055 #endif
   2056 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   2057 				ieee80211_free_node(ni);
   2058 				ifp->if_oerrors++;
   2059 				break;
   2060 			}
   2061 		}
   2062 
   2063 		sc->sc_tx_timer = 5;
   2064 		ifp->if_timer = 1;
   2065 	}
   2066 }
   2067 
   2068 static void
   2069 wpi_watchdog(struct ifnet *ifp)
   2070 {
   2071 	struct wpi_softc *sc = ifp->if_softc;
   2072 
   2073 	ifp->if_timer = 0;
   2074 
   2075 	if (sc->sc_tx_timer > 0) {
   2076 		if (--sc->sc_tx_timer == 0) {
   2077 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2078 			ifp->if_oerrors++;
   2079 			ifp->if_flags &= ~IFF_UP;
   2080 			wpi_stop(ifp, 1);
   2081 			return;
   2082 		}
   2083 		ifp->if_timer = 1;
   2084 	}
   2085 
   2086 	ieee80211_watchdog(&sc->sc_ic);
   2087 }
   2088 
   2089 static int
   2090 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2091 {
   2092 #define IS_RUNNING(ifp) \
   2093 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2094 
   2095 	struct wpi_softc *sc = ifp->if_softc;
   2096 	struct ieee80211com *ic = &sc->sc_ic;
   2097 	int s, error = 0;
   2098 
   2099 	s = splnet();
   2100 
   2101 	switch (cmd) {
   2102 	case SIOCSIFFLAGS:
   2103 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2104 			break;
   2105 		if (ifp->if_flags & IFF_UP) {
   2106 			if (!(ifp->if_flags & IFF_RUNNING))
   2107 				wpi_init(ifp);
   2108 		} else {
   2109 			if (ifp->if_flags & IFF_RUNNING)
   2110 				wpi_stop(ifp, 1);
   2111 		}
   2112 		break;
   2113 
   2114 	case SIOCADDMULTI:
   2115 	case SIOCDELMULTI:
   2116 		/* XXX no h/w multicast filter? --dyoung */
   2117 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2118 			/* setup multicast filter, etc */
   2119 			error = 0;
   2120 		}
   2121 		break;
   2122 
   2123 	default:
   2124 		error = ieee80211_ioctl(ic, cmd, data);
   2125 	}
   2126 
   2127 	if (error == ENETRESET) {
   2128 		if (IS_RUNNING(ifp) &&
   2129 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2130 			wpi_init(ifp);
   2131 		error = 0;
   2132 	}
   2133 
   2134 	splx(s);
   2135 	return error;
   2136 
   2137 #undef IS_RUNNING
   2138 }
   2139 
   2140 /*
   2141  * Extract various information from EEPROM.
   2142  */
   2143 static void
   2144 wpi_read_eeprom(struct wpi_softc *sc)
   2145 {
   2146 	struct ieee80211com *ic = &sc->sc_ic;
   2147 	char domain[4];
   2148 	int i;
   2149 
   2150 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2151 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2152 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2153 
   2154 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2155 	    sc->type));
   2156 
   2157 	/* read and print regulatory domain */
   2158 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2159 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
   2160 
   2161 	/* read and print MAC address */
   2162 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2163 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2164 
   2165 	/* read the list of authorized channels */
   2166 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2167 		wpi_read_eeprom_channels(sc, i);
   2168 
   2169 	/* read the list of power groups */
   2170 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2171 		wpi_read_eeprom_group(sc, i);
   2172 }
   2173 
   2174 static void
   2175 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2176 {
   2177 	struct ieee80211com *ic = &sc->sc_ic;
   2178 	const struct wpi_chan_band *band = &wpi_bands[n];
   2179 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2180 	int chan, i;
   2181 
   2182 	wpi_read_prom_data(sc, band->addr, channels,
   2183 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2184 
   2185 	for (i = 0; i < band->nchan; i++) {
   2186 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2187 			continue;
   2188 
   2189 		chan = band->chan[i];
   2190 
   2191 		if (n == 0) {	/* 2GHz band */
   2192 			ic->ic_channels[chan].ic_freq =
   2193 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2194 			ic->ic_channels[chan].ic_flags =
   2195 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2196 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2197 
   2198 		} else {	/* 5GHz band */
   2199 			/*
   2200 			 * Some 3945abg adapters support channels 7, 8, 11
   2201 			 * and 12 in the 2GHz *and* 5GHz bands.
   2202 			 * Because of limitations in our net80211(9) stack,
   2203 			 * we can't support these channels in 5GHz band.
   2204 			 */
   2205 			if (chan <= 14)
   2206 				continue;
   2207 
   2208 			ic->ic_channels[chan].ic_freq =
   2209 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2210 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2211 		}
   2212 
   2213 		/* is active scan allowed on this channel? */
   2214 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2215 			ic->ic_channels[chan].ic_flags |=
   2216 			    IEEE80211_CHAN_PASSIVE;
   2217 		}
   2218 
   2219 		/* save maximum allowed power for this channel */
   2220 		sc->maxpwr[chan] = channels[i].maxpwr;
   2221 
   2222 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2223 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2224 	}
   2225 }
   2226 
   2227 static void
   2228 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2229 {
   2230 	struct wpi_power_group *group = &sc->groups[n];
   2231 	struct wpi_eeprom_group rgroup;
   2232 	int i;
   2233 
   2234 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2235 	    sizeof rgroup);
   2236 
   2237 	/* save power group information */
   2238 	group->chan   = rgroup.chan;
   2239 	group->maxpwr = rgroup.maxpwr;
   2240 	/* temperature at which the samples were taken */
   2241 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2242 
   2243 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2244 	    group->chan, group->maxpwr, group->temp));
   2245 
   2246 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2247 		group->samples[i].index = rgroup.samples[i].index;
   2248 		group->samples[i].power = rgroup.samples[i].power;
   2249 
   2250 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2251 		    group->samples[i].index, group->samples[i].power));
   2252 	}
   2253 }
   2254 
   2255 /*
   2256  * Send a command to the firmware.
   2257  */
   2258 static int
   2259 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2260 {
   2261 	struct wpi_tx_ring *ring = &sc->cmdq;
   2262 	struct wpi_tx_desc *desc;
   2263 	struct wpi_tx_cmd *cmd;
   2264 
   2265 	KASSERT(size <= sizeof cmd->data);
   2266 
   2267 	desc = &ring->desc[ring->cur];
   2268 	cmd = &ring->cmd[ring->cur];
   2269 
   2270 	cmd->code = code;
   2271 	cmd->flags = 0;
   2272 	cmd->qid = ring->qid;
   2273 	cmd->idx = ring->cur;
   2274 	memcpy(cmd->data, buf, size);
   2275 
   2276 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2277 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2278 		ring->cur * sizeof (struct wpi_tx_cmd));
   2279 	desc->segs[0].len  = htole32(4 + size);
   2280 
   2281 	/* kick cmd ring */
   2282 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2283 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2284 
   2285 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2286 }
   2287 
   2288 static int
   2289 wpi_wme_update(struct ieee80211com *ic)
   2290 {
   2291 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2292 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2293 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2294 	const struct wmeParams *wmep;
   2295 	struct wpi_wme_setup wme;
   2296 	int ac;
   2297 
   2298 	/* don't override default WME values if WME is not actually enabled */
   2299 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2300 		return 0;
   2301 
   2302 	wme.flags = 0;
   2303 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2304 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2305 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2306 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2307 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2308 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2309 
   2310 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2311 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2312 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2313 	}
   2314 
   2315 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2316 #undef WPI_USEC
   2317 #undef WPI_EXP2
   2318 }
   2319 
   2320 /*
   2321  * Configure h/w multi-rate retries.
   2322  */
   2323 static int
   2324 wpi_mrr_setup(struct wpi_softc *sc)
   2325 {
   2326 	struct ieee80211com *ic = &sc->sc_ic;
   2327 	struct wpi_mrr_setup mrr;
   2328 	int i, error;
   2329 
   2330 	/* CCK rates (not used with 802.11a) */
   2331 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2332 		mrr.rates[i].flags = 0;
   2333 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2334 		/* fallback to the immediate lower CCK rate (if any) */
   2335 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2336 		/* try one time at this rate before falling back to "next" */
   2337 		mrr.rates[i].ntries = 1;
   2338 	}
   2339 
   2340 	/* OFDM rates (not used with 802.11b) */
   2341 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2342 		mrr.rates[i].flags = 0;
   2343 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2344 		/* fallback to the immediate lower rate (if any) */
   2345 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2346 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2347 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2348 			WPI_OFDM6 : WPI_CCK2) :
   2349 		    i - 1;
   2350 		/* try one time at this rate before falling back to "next" */
   2351 		mrr.rates[i].ntries = 1;
   2352 	}
   2353 
   2354 	/* setup MRR for control frames */
   2355 	mrr.which = htole32(WPI_MRR_CTL);
   2356 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2357 	if (error != 0) {
   2358 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
   2359 		return error;
   2360 	}
   2361 
   2362 	/* setup MRR for data frames */
   2363 	mrr.which = htole32(WPI_MRR_DATA);
   2364 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2365 	if (error != 0) {
   2366 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
   2367 		return error;
   2368 	}
   2369 
   2370 	return 0;
   2371 }
   2372 
   2373 static void
   2374 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2375 {
   2376 	struct wpi_cmd_led led;
   2377 
   2378 	led.which = which;
   2379 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2380 	led.off = off;
   2381 	led.on = on;
   2382 
   2383 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2384 }
   2385 
   2386 static void
   2387 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2388 {
   2389 	struct wpi_cmd_tsf tsf;
   2390 	uint64_t val, mod;
   2391 
   2392 	memset(&tsf, 0, sizeof tsf);
   2393 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
   2394 	tsf.bintval = htole16(ni->ni_intval);
   2395 	tsf.lintval = htole16(10);
   2396 
   2397 	/* compute remaining time until next beacon */
   2398 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
   2399 	mod = le64toh(tsf.tstamp) % val;
   2400 	tsf.binitval = htole32((uint32_t)(val - mod));
   2401 
   2402 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
   2403 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2404 
   2405 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2406 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2407 }
   2408 
   2409 /*
   2410  * Update Tx power to match what is defined for channel `c'.
   2411  */
   2412 static int
   2413 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2414 {
   2415 	struct ieee80211com *ic = &sc->sc_ic;
   2416 	struct wpi_power_group *group;
   2417 	struct wpi_cmd_txpower txpower;
   2418 	u_int chan;
   2419 	int i;
   2420 
   2421 	/* get channel number */
   2422 	chan = ieee80211_chan2ieee(ic, c);
   2423 
   2424 	/* find the power group to which this channel belongs */
   2425 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2426 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2427 			if (chan <= group->chan)
   2428 				break;
   2429 	} else
   2430 		group = &sc->groups[0];
   2431 
   2432 	memset(&txpower, 0, sizeof txpower);
   2433 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2434 	txpower.chan = htole16(chan);
   2435 
   2436 	/* set Tx power for all OFDM and CCK rates */
   2437 	for (i = 0; i <= 11 ; i++) {
   2438 		/* retrieve Tx power for this channel/rate combination */
   2439 		int idx = wpi_get_power_index(sc, group, c,
   2440 		    wpi_ridx_to_rate[i]);
   2441 
   2442 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2443 
   2444 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2445 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2446 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2447 		} else {
   2448 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2449 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2450 		}
   2451 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2452 		    wpi_ridx_to_rate[i], idx));
   2453 	}
   2454 
   2455 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2456 }
   2457 
   2458 /*
   2459  * Determine Tx power index for a given channel/rate combination.
   2460  * This takes into account the regulatory information from EEPROM and the
   2461  * current temperature.
   2462  */
   2463 static int
   2464 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2465     struct ieee80211_channel *c, int rate)
   2466 {
   2467 /* fixed-point arithmetic division using a n-bit fractional part */
   2468 #define fdivround(a, b, n)	\
   2469 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2470 
   2471 /* linear interpolation */
   2472 #define interpolate(x, x1, y1, x2, y2, n)	\
   2473 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2474 
   2475 	struct ieee80211com *ic = &sc->sc_ic;
   2476 	struct wpi_power_sample *sample;
   2477 	int pwr, idx;
   2478 	u_int chan;
   2479 
   2480 	/* get channel number */
   2481 	chan = ieee80211_chan2ieee(ic, c);
   2482 
   2483 	/* default power is group's maximum power - 3dB */
   2484 	pwr = group->maxpwr / 2;
   2485 
   2486 	/* decrease power for highest OFDM rates to reduce distortion */
   2487 	switch (rate) {
   2488 	case 72:	/* 36Mb/s */
   2489 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2490 		break;
   2491 	case 96:	/* 48Mb/s */
   2492 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2493 		break;
   2494 	case 108:	/* 54Mb/s */
   2495 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2496 		break;
   2497 	}
   2498 
   2499 	/* never exceed channel's maximum allowed Tx power */
   2500 	pwr = min(pwr, sc->maxpwr[chan]);
   2501 
   2502 	/* retrieve power index into gain tables from samples */
   2503 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2504 		if (pwr > sample[1].power)
   2505 			break;
   2506 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2507 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2508 	    sample[1].power, sample[1].index, 19);
   2509 
   2510 	/*
   2511 	 * Adjust power index based on current temperature:
   2512 	 * - if cooler than factory-calibrated: decrease output power
   2513 	 * - if warmer than factory-calibrated: increase output power
   2514 	 */
   2515 	idx -= (sc->temp - group->temp) * 11 / 100;
   2516 
   2517 	/* decrease power for CCK rates (-5dB) */
   2518 	if (!WPI_RATE_IS_OFDM(rate))
   2519 		idx += 10;
   2520 
   2521 	/* keep power index in a valid range */
   2522 	if (idx < 0)
   2523 		return 0;
   2524 	if (idx > WPI_MAX_PWR_INDEX)
   2525 		return WPI_MAX_PWR_INDEX;
   2526 	return idx;
   2527 
   2528 #undef interpolate
   2529 #undef fdivround
   2530 }
   2531 
   2532 /*
   2533  * Build a beacon frame that the firmware will broadcast periodically in
   2534  * IBSS or HostAP modes.
   2535  */
   2536 static int
   2537 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2538 {
   2539 	struct ieee80211com *ic = &sc->sc_ic;
   2540 	struct wpi_tx_ring *ring = &sc->cmdq;
   2541 	struct wpi_tx_desc *desc;
   2542 	struct wpi_tx_data *data;
   2543 	struct wpi_tx_cmd *cmd;
   2544 	struct wpi_cmd_beacon *bcn;
   2545 	struct ieee80211_beacon_offsets bo;
   2546 	struct mbuf *m0;
   2547 	int error;
   2548 
   2549 	desc = &ring->desc[ring->cur];
   2550 	data = &ring->data[ring->cur];
   2551 
   2552 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2553 	if (m0 == NULL) {
   2554 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
   2555 		return ENOMEM;
   2556 	}
   2557 
   2558 	cmd = &ring->cmd[ring->cur];
   2559 	cmd->code = WPI_CMD_SET_BEACON;
   2560 	cmd->flags = 0;
   2561 	cmd->qid = ring->qid;
   2562 	cmd->idx = ring->cur;
   2563 
   2564 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2565 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2566 	bcn->id = WPI_ID_BROADCAST;
   2567 	bcn->ofdm_mask = 0xff;
   2568 	bcn->cck_mask = 0x0f;
   2569 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2570 	bcn->len = htole16(m0->m_pkthdr.len);
   2571 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2572 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2573 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2574 
   2575 	/* save and trim IEEE802.11 header */
   2576 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2577 	m_adj(m0, sizeof (struct ieee80211_frame));
   2578 
   2579 	/* assume beacon frame is contiguous */
   2580 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2581 		BUS_DMA_READ | BUS_DMA_NOWAIT);
   2582 	if (error) {
   2583 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2584 		m_freem(m0);
   2585 		return error;
   2586 	}
   2587 
   2588 	data->m = m0;
   2589 
   2590 	/* first scatter/gather segment is used by the beacon command */
   2591 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2592 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2593 		ring->cur * sizeof (struct wpi_tx_cmd));
   2594 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2595 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2596 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2597 
   2598 	/* kick cmd ring */
   2599 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2600 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2601 
   2602 	return 0;
   2603 }
   2604 
   2605 static int
   2606 wpi_auth(struct wpi_softc *sc)
   2607 {
   2608 	struct ieee80211com *ic = &sc->sc_ic;
   2609 	struct ieee80211_node *ni = ic->ic_bss;
   2610 	struct wpi_node_info node;
   2611 	int error;
   2612 
   2613 	/* update adapter's configuration */
   2614 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2615 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2616 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2617 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2618 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2619 		    WPI_CONFIG_24GHZ);
   2620 	}
   2621 	switch (ic->ic_curmode) {
   2622 	case IEEE80211_MODE_11A:
   2623 		sc->config.cck_mask  = 0;
   2624 		sc->config.ofdm_mask = 0x15;
   2625 		break;
   2626 	case IEEE80211_MODE_11B:
   2627 		sc->config.cck_mask  = 0x03;
   2628 		sc->config.ofdm_mask = 0;
   2629 		break;
   2630 	default:	/* assume 802.11b/g */
   2631 		sc->config.cck_mask  = 0x0f;
   2632 		sc->config.ofdm_mask = 0x15;
   2633 	}
   2634 
   2635 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2636 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2637 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2638 		sizeof (struct wpi_config), 1);
   2639 	if (error != 0) {
   2640 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2641 		return error;
   2642 	}
   2643 
   2644 	/* configuration has changed, set Tx power accordingly */
   2645 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2646 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2647 		return error;
   2648 	}
   2649 
   2650 	/* add default node */
   2651 	memset(&node, 0, sizeof node);
   2652 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2653 	node.id = WPI_ID_BSS;
   2654 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2655 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2656 	node.action = htole32(WPI_ACTION_SET_RATE);
   2657 	node.antenna = WPI_ANTENNA_BOTH;
   2658 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2659 	if (error != 0) {
   2660 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2661 		return error;
   2662 	}
   2663 
   2664 	return 0;
   2665 }
   2666 
   2667 /*
   2668  * Send a scan request to the firmware.  Since this command is huge, we map it
   2669  * into a mbuf instead of using the pre-allocated set of commands.
   2670  */
   2671 static int
   2672 wpi_scan(struct wpi_softc *sc, uint16_t flags)
   2673 {
   2674 	struct ieee80211com *ic = &sc->sc_ic;
   2675 	struct wpi_tx_ring *ring = &sc->cmdq;
   2676 	struct wpi_tx_desc *desc;
   2677 	struct wpi_tx_data *data;
   2678 	struct wpi_tx_cmd *cmd;
   2679 	struct wpi_scan_hdr *hdr;
   2680 	struct wpi_scan_chan *chan;
   2681 	struct ieee80211_frame *wh;
   2682 	struct ieee80211_rateset *rs;
   2683 	struct ieee80211_channel *c;
   2684 	enum ieee80211_phymode mode;
   2685 	uint8_t *frm;
   2686 	int nrates, pktlen, error;
   2687 
   2688 	desc = &ring->desc[ring->cur];
   2689 	data = &ring->data[ring->cur];
   2690 
   2691 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2692 	if (data->m == NULL) {
   2693 		aprint_error_dev(sc->sc_dev,
   2694 						"could not allocate mbuf for scan command\n");
   2695 		return ENOMEM;
   2696 	}
   2697 
   2698 	MCLGET(data->m, M_DONTWAIT);
   2699 	if (!(data->m->m_flags & M_EXT)) {
   2700 		m_freem(data->m);
   2701 		data->m = NULL;
   2702 		aprint_error_dev(sc->sc_dev,
   2703 						 "could not allocate mbuf for scan command\n");
   2704 		return ENOMEM;
   2705 	}
   2706 
   2707 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2708 	cmd->code = WPI_CMD_SCAN;
   2709 	cmd->flags = 0;
   2710 	cmd->qid = ring->qid;
   2711 	cmd->idx = ring->cur;
   2712 
   2713 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2714 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2715 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
   2716 	hdr->id = WPI_ID_BROADCAST;
   2717 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2718 
   2719 	/*
   2720 	 * Move to the next channel if no packets are received within 5 msecs
   2721 	 * after sending the probe request (this helps to reduce the duration
   2722 	 * of active scans).
   2723 	 */
   2724 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
   2725 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2726 
   2727 	if (flags & IEEE80211_CHAN_A) {
   2728 		hdr->crc_threshold = htole16(1);
   2729 		/* send probe requests at 6Mbps */
   2730 		hdr->rate = wpi_plcp_signal(12);
   2731 	} else {
   2732 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2733 		/* send probe requests at 1Mbps */
   2734 		hdr->rate = wpi_plcp_signal(2);
   2735 	}
   2736 
   2737 	/* for directed scans, firmware inserts the essid IE itself */
   2738 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2739 	hdr->essid[0].len = ic->ic_des_esslen;
   2740 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2741 
   2742 	/*
   2743 	 * Build a probe request frame.  Most of the following code is a
   2744 	 * copy & paste of what is done in net80211.
   2745 	 */
   2746 	wh = (struct ieee80211_frame *)(hdr + 1);
   2747 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2748 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2749 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2750 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2751 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2752 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2753 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2754 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2755 
   2756 	frm = (uint8_t *)(wh + 1);
   2757 
   2758 	/* add empty essid IE (firmware generates it for directed scans) */
   2759 	*frm++ = IEEE80211_ELEMID_SSID;
   2760 	*frm++ = 0;
   2761 
   2762 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
   2763 	rs = &ic->ic_sup_rates[mode];
   2764 
   2765 	/* add supported rates IE */
   2766 	*frm++ = IEEE80211_ELEMID_RATES;
   2767 	nrates = rs->rs_nrates;
   2768 	if (nrates > IEEE80211_RATE_SIZE)
   2769 		nrates = IEEE80211_RATE_SIZE;
   2770 	*frm++ = nrates;
   2771 	memcpy(frm, rs->rs_rates, nrates);
   2772 	frm += nrates;
   2773 
   2774 	/* add supported xrates IE */
   2775 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2776 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2777 		*frm++ = IEEE80211_ELEMID_XRATES;
   2778 		*frm++ = nrates;
   2779 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2780 		frm += nrates;
   2781 	}
   2782 
   2783 	/* setup length of probe request */
   2784 	hdr->paylen = htole16(frm - (uint8_t *)wh);
   2785 
   2786 	chan = (struct wpi_scan_chan *)frm;
   2787 	for (c  = &ic->ic_channels[1];
   2788 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   2789 		if ((c->ic_flags & flags) != flags)
   2790 			continue;
   2791 
   2792 		chan->chan = ieee80211_chan2ieee(ic, c);
   2793 		chan->flags = 0;
   2794 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2795 			chan->flags |= WPI_CHAN_ACTIVE;
   2796 			if (ic->ic_des_esslen != 0)
   2797 				chan->flags |= WPI_CHAN_DIRECT;
   2798 		}
   2799 		chan->dsp_gain = 0x6e;
   2800 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2801 			chan->rf_gain = 0x3b;
   2802 			chan->active = htole16(10);
   2803 			chan->passive = htole16(110);
   2804 		} else {
   2805 			chan->rf_gain = 0x28;
   2806 			chan->active = htole16(20);
   2807 			chan->passive = htole16(120);
   2808 		}
   2809 		hdr->nchan++;
   2810 		chan++;
   2811 
   2812 		frm += sizeof (struct wpi_scan_chan);
   2813 	}
   2814 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2815 	pktlen = frm - (uint8_t *)cmd;
   2816 
   2817 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
   2818 		NULL, BUS_DMA_NOWAIT);
   2819 	if (error) {
   2820 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2821 		m_freem(data->m);
   2822 		data->m = NULL;
   2823 		return error;
   2824 	}
   2825 
   2826 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2827 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2828 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2829 
   2830 	/* kick cmd ring */
   2831 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2832 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2833 
   2834 	return 0;	/* will be notified async. of failure/success */
   2835 }
   2836 
   2837 static int
   2838 wpi_config(struct wpi_softc *sc)
   2839 {
   2840 	struct ieee80211com *ic = &sc->sc_ic;
   2841 	struct ifnet *ifp = ic->ic_ifp;
   2842 	struct wpi_power power;
   2843 	struct wpi_bluetooth bluetooth;
   2844 	struct wpi_node_info node;
   2845 	int error;
   2846 
   2847 	memset(&power, 0, sizeof power);
   2848 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2849 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2850 	if (error != 0) {
   2851 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2852 		return error;
   2853 	}
   2854 
   2855 	/* configure bluetooth coexistence */
   2856 	memset(&bluetooth, 0, sizeof bluetooth);
   2857 	bluetooth.flags = 3;
   2858 	bluetooth.lead = 0xaa;
   2859 	bluetooth.kill = 1;
   2860 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   2861 		0);
   2862 	if (error != 0) {
   2863 		aprint_error_dev(sc->sc_dev,
   2864 			"could not configure bluetooth coexistence\n");
   2865 		return error;
   2866 	}
   2867 
   2868 	/* configure adapter */
   2869 	memset(&sc->config, 0, sizeof (struct wpi_config));
   2870 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2871 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   2872 	/*set default channel*/
   2873 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   2874 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2875 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
   2876 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2877 		    WPI_CONFIG_24GHZ);
   2878 	}
   2879 	sc->config.filter = 0;
   2880 	switch (ic->ic_opmode) {
   2881 	case IEEE80211_M_STA:
   2882 		sc->config.mode = WPI_MODE_STA;
   2883 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   2884 		break;
   2885 	case IEEE80211_M_IBSS:
   2886 	case IEEE80211_M_AHDEMO:
   2887 		sc->config.mode = WPI_MODE_IBSS;
   2888 		break;
   2889 	case IEEE80211_M_HOSTAP:
   2890 		sc->config.mode = WPI_MODE_HOSTAP;
   2891 		break;
   2892 	case IEEE80211_M_MONITOR:
   2893 		sc->config.mode = WPI_MODE_MONITOR;
   2894 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   2895 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   2896 		break;
   2897 	}
   2898 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   2899 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   2900 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2901 		sizeof (struct wpi_config), 0);
   2902 	if (error != 0) {
   2903 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   2904 		return error;
   2905 	}
   2906 
   2907 	/* configuration has changed, set Tx power accordingly */
   2908 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
   2909 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2910 		return error;
   2911 	}
   2912 
   2913 	/* add broadcast node */
   2914 	memset(&node, 0, sizeof node);
   2915 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   2916 	node.id = WPI_ID_BROADCAST;
   2917 	node.rate = wpi_plcp_signal(2);
   2918 	node.action = htole32(WPI_ACTION_SET_RATE);
   2919 	node.antenna = WPI_ANTENNA_BOTH;
   2920 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   2921 	if (error != 0) {
   2922 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   2923 		return error;
   2924 	}
   2925 
   2926 	if ((error = wpi_mrr_setup(sc)) != 0) {
   2927 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   2928 		return error;
   2929 	}
   2930 
   2931 	return 0;
   2932 }
   2933 
   2934 static void
   2935 wpi_stop_master(struct wpi_softc *sc)
   2936 {
   2937 	uint32_t tmp;
   2938 	int ntries;
   2939 
   2940 	tmp = WPI_READ(sc, WPI_RESET);
   2941 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   2942 
   2943 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2944 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   2945 		return;	/* already asleep */
   2946 
   2947 	for (ntries = 0; ntries < 100; ntries++) {
   2948 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   2949 			break;
   2950 		DELAY(10);
   2951 	}
   2952 	if (ntries == 100) {
   2953 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   2954 	}
   2955 }
   2956 
   2957 static int
   2958 wpi_power_up(struct wpi_softc *sc)
   2959 {
   2960 	uint32_t tmp;
   2961 	int ntries;
   2962 
   2963 	wpi_mem_lock(sc);
   2964 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   2965 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   2966 	wpi_mem_unlock(sc);
   2967 
   2968 	for (ntries = 0; ntries < 5000; ntries++) {
   2969 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   2970 			break;
   2971 		DELAY(10);
   2972 	}
   2973 	if (ntries == 5000) {
   2974 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
   2975 		return ETIMEDOUT;
   2976 	}
   2977 	return 0;
   2978 }
   2979 
   2980 static int
   2981 wpi_reset(struct wpi_softc *sc)
   2982 {
   2983 	uint32_t tmp;
   2984 	int ntries;
   2985 
   2986 	/* clear any pending interrupts */
   2987 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   2988 
   2989 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   2990 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   2991 
   2992 	tmp = WPI_READ(sc, WPI_CHICKEN);
   2993 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   2994 
   2995 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2996 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   2997 
   2998 	/* wait for clock stabilization */
   2999 	for (ntries = 0; ntries < 1000; ntries++) {
   3000 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   3001 			break;
   3002 		DELAY(10);
   3003 	}
   3004 	if (ntries == 1000) {
   3005 		aprint_error_dev(sc->sc_dev,
   3006 						 "timeout waiting for clock stabilization\n");
   3007 		return ETIMEDOUT;
   3008 	}
   3009 
   3010 	/* initialize EEPROM */
   3011 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   3012 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   3013 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   3014 		return EIO;
   3015 	}
   3016 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   3017 
   3018 	return 0;
   3019 }
   3020 
   3021 static void
   3022 wpi_hw_config(struct wpi_softc *sc)
   3023 {
   3024 	uint32_t rev, hw;
   3025 
   3026 	/* voodoo from the reference driver */
   3027 	hw = WPI_READ(sc, WPI_HWCONFIG);
   3028 
   3029 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   3030 	rev = PCI_REVISION(rev);
   3031 	if ((rev & 0xc0) == 0x40)
   3032 		hw |= WPI_HW_ALM_MB;
   3033 	else if (!(rev & 0x80))
   3034 		hw |= WPI_HW_ALM_MM;
   3035 
   3036 	if (sc->cap == 0x80)
   3037 		hw |= WPI_HW_SKU_MRC;
   3038 
   3039 	hw &= ~WPI_HW_REV_D;
   3040 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   3041 		hw |= WPI_HW_REV_D;
   3042 
   3043 	if (sc->type > 1)
   3044 		hw |= WPI_HW_TYPE_B;
   3045 
   3046 	DPRINTF(("setting h/w config %x\n", hw));
   3047 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   3048 }
   3049 
   3050 static int
   3051 wpi_init(struct ifnet *ifp)
   3052 {
   3053 	struct wpi_softc *sc = ifp->if_softc;
   3054 	struct ieee80211com *ic = &sc->sc_ic;
   3055 	uint32_t tmp;
   3056 	int qid, ntries, error;
   3057 
   3058 	wpi_stop(ifp,1);
   3059 	(void)wpi_reset(sc);
   3060 
   3061 	wpi_mem_lock(sc);
   3062 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   3063 	DELAY(20);
   3064 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   3065 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   3066 	wpi_mem_unlock(sc);
   3067 
   3068 	(void)wpi_power_up(sc);
   3069 	wpi_hw_config(sc);
   3070 
   3071 	/* init Rx ring */
   3072 	wpi_mem_lock(sc);
   3073 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   3074 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   3075 	    offsetof(struct wpi_shared, next));
   3076 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3077 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3078 	wpi_mem_unlock(sc);
   3079 
   3080 	/* init Tx rings */
   3081 	wpi_mem_lock(sc);
   3082 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
   3083 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
   3084 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
   3085 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3086 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3087 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3088 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3089 
   3090 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3091 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3092 
   3093 	for (qid = 0; qid < 6; qid++) {
   3094 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3095 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3096 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3097 	}
   3098 	wpi_mem_unlock(sc);
   3099 
   3100 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3101 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3102 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3103 
   3104 	/* clear any pending interrupts */
   3105 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3106 	/* enable interrupts */
   3107 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3108 
   3109 	/* not sure why/if this is necessary... */
   3110 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3111 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3112 
   3113 	if ((error = wpi_load_firmware(sc)) != 0) {
   3114 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
   3115 		goto fail1;
   3116 	}
   3117 
   3118 	/* Check the status of the radio switch */
   3119 	if (wpi_getrfkill(sc)) {
   3120 		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
   3121 		error = EBUSY;
   3122 		goto fail1;
   3123 	}
   3124 
   3125 	/* wait for thermal sensors to calibrate */
   3126 	for (ntries = 0; ntries < 1000; ntries++) {
   3127 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3128 			break;
   3129 		DELAY(10);
   3130 	}
   3131 	if (ntries == 1000) {
   3132 		aprint_error_dev(sc->sc_dev,
   3133 						 "timeout waiting for thermal sensors calibration\n");
   3134 		error = ETIMEDOUT;
   3135 		goto fail1;
   3136 	}
   3137 
   3138 	DPRINTF(("temperature %d\n", sc->temp));
   3139 
   3140 	if ((error = wpi_config(sc)) != 0) {
   3141 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3142 		goto fail1;
   3143 	}
   3144 
   3145 	ifp->if_flags &= ~IFF_OACTIVE;
   3146 	ifp->if_flags |= IFF_RUNNING;
   3147 
   3148 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3149 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3150 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3151 	}
   3152 	else
   3153 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3154 
   3155 	return 0;
   3156 
   3157 fail1:	wpi_stop(ifp, 1);
   3158 	return error;
   3159 }
   3160 
   3161 
   3162 static void
   3163 wpi_stop(struct ifnet *ifp, int disable)
   3164 {
   3165 	struct wpi_softc *sc = ifp->if_softc;
   3166 	struct ieee80211com *ic = &sc->sc_ic;
   3167 	uint32_t tmp;
   3168 	int ac;
   3169 
   3170 	ifp->if_timer = sc->sc_tx_timer = 0;
   3171 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3172 
   3173 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3174 
   3175 	/* disable interrupts */
   3176 	WPI_WRITE(sc, WPI_MASK, 0);
   3177 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3178 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3179 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3180 
   3181 	wpi_mem_lock(sc);
   3182 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3183 	wpi_mem_unlock(sc);
   3184 
   3185 	/* reset all Tx rings */
   3186 	for (ac = 0; ac < 4; ac++)
   3187 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3188 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3189 
   3190 	/* reset Rx ring */
   3191 	wpi_reset_rx_ring(sc, &sc->rxq);
   3192 
   3193 	wpi_mem_lock(sc);
   3194 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3195 	wpi_mem_unlock(sc);
   3196 
   3197 	DELAY(5);
   3198 
   3199 	wpi_stop_master(sc);
   3200 
   3201 	tmp = WPI_READ(sc, WPI_RESET);
   3202 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3203 }
   3204 
   3205 static bool
   3206 wpi_resume(device_t dv PMF_FN_ARGS)
   3207 {
   3208 	struct wpi_softc *sc = device_private(dv);
   3209 
   3210 	(void)wpi_reset(sc);
   3211 
   3212 	return true;
   3213 }
   3214 
   3215 /*
   3216  * Return whether or not the radio is enabled in hardware
   3217  * (i.e. the rfkill switch is "off").
   3218  */
   3219 static int
   3220 wpi_getrfkill(struct wpi_softc *sc)
   3221 {
   3222 	uint32_t tmp;
   3223 
   3224 	wpi_mem_lock(sc);
   3225 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3226 	wpi_mem_unlock(sc);
   3227 
   3228 	return !(tmp & 0x01);
   3229 }
   3230 
   3231 static int
   3232 wpi_sysctl_radio(SYSCTLFN_ARGS)
   3233 {
   3234 	struct sysctlnode node;
   3235 	struct wpi_softc *sc;
   3236 	int val, error;
   3237 
   3238 	node = *rnode;
   3239 	sc = (struct wpi_softc *)node.sysctl_data;
   3240 
   3241 	val = !wpi_getrfkill(sc);
   3242 
   3243 	node.sysctl_data = &val;
   3244 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3245 
   3246 	if (error || newp == NULL)
   3247 		return error;
   3248 
   3249 	return 0;
   3250 }
   3251 
   3252 static void
   3253 wpi_sysctlattach(struct wpi_softc *sc)
   3254 {
   3255 	int rc;
   3256 	const struct sysctlnode *rnode;
   3257 	const struct sysctlnode *cnode;
   3258 
   3259 	struct sysctllog **clog = &sc->sc_sysctllog;
   3260 
   3261 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
   3262 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   3263 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
   3264 		goto err;
   3265 
   3266 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
   3267 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
   3268 	    SYSCTL_DESCR("wpi controls and statistics"),
   3269 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
   3270 		goto err;
   3271 
   3272 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3273 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
   3274 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
   3275 	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
   3276 		goto err;
   3277 
   3278 #ifdef WPI_DEBUG
   3279 	/* control debugging printfs */
   3280 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3281 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
   3282 	    "debug", SYSCTL_DESCR("Enable debugging output"),
   3283 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
   3284 		goto err;
   3285 #endif
   3286 
   3287 	return;
   3288 err:
   3289 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3290 }
   3291