Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.47
      1 /*  $NetBSD: if_wpi.c,v 1.47 2010/04/05 07:20:28 joerg Exp $    */
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007
      5  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.47 2010/04/05 07:20:28 joerg Exp $");
     22 
     23 /*
     24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25  */
     26 
     27 
     28 #include <sys/param.h>
     29 #include <sys/sockio.h>
     30 #include <sys/sysctl.h>
     31 #include <sys/mbuf.h>
     32 #include <sys/kernel.h>
     33 #include <sys/socket.h>
     34 #include <sys/systm.h>
     35 #include <sys/malloc.h>
     36 #include <sys/mutex.h>
     37 #include <sys/once.h>
     38 #include <sys/conf.h>
     39 #include <sys/kauth.h>
     40 #include <sys/callout.h>
     41 
     42 #include <sys/bus.h>
     43 #include <machine/endian.h>
     44 #include <sys/intr.h>
     45 
     46 #include <dev/pci/pcireg.h>
     47 #include <dev/pci/pcivar.h>
     48 #include <dev/pci/pcidevs.h>
     49 
     50 #include <net/bpf.h>
     51 #include <net/if.h>
     52 #include <net/if_arp.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_ether.h>
     55 #include <net/if_media.h>
     56 #include <net/if_types.h>
     57 
     58 #include <net80211/ieee80211_var.h>
     59 #include <net80211/ieee80211_amrr.h>
     60 #include <net80211/ieee80211_radiotap.h>
     61 
     62 #include <netinet/in.h>
     63 #include <netinet/in_systm.h>
     64 #include <netinet/in_var.h>
     65 #include <netinet/ip.h>
     66 
     67 #include <dev/firmload.h>
     68 
     69 #include <dev/pci/if_wpireg.h>
     70 #include <dev/pci/if_wpivar.h>
     71 
     72 #ifdef WPI_DEBUG
     73 #define DPRINTF(x)	if (wpi_debug > 0) printf x
     74 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
     75 int wpi_debug = 1;
     76 #else
     77 #define DPRINTF(x)
     78 #define DPRINTFN(n, x)
     79 #endif
     80 
     81 /*
     82  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
     83  */
     84 static const struct ieee80211_rateset wpi_rateset_11a =
     85 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
     86 
     87 static const struct ieee80211_rateset wpi_rateset_11b =
     88 	{ 4, { 2, 4, 11, 22 } };
     89 
     90 static const struct ieee80211_rateset wpi_rateset_11g =
     91 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
     92 
     93 static once_t wpi_firmware_init;
     94 static kmutex_t wpi_firmware_mutex;
     95 static size_t wpi_firmware_users;
     96 static uint8_t *wpi_firmware_image;
     97 static size_t wpi_firmware_size;
     98 
     99 static int  wpi_match(device_t, cfdata_t, void *);
    100 static void wpi_attach(device_t, device_t, void *);
    101 static int  wpi_detach(device_t , int);
    102 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
    103 	void **, bus_size_t, bus_size_t, int);
    104 static void wpi_dma_contig_free(struct wpi_dma_info *);
    105 static int  wpi_alloc_shared(struct wpi_softc *);
    106 static void wpi_free_shared(struct wpi_softc *);
    107 static int  wpi_alloc_fwmem(struct wpi_softc *);
    108 static void wpi_free_fwmem(struct wpi_softc *);
    109 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
    110 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
    111 static int  wpi_alloc_rpool(struct wpi_softc *);
    112 static void wpi_free_rpool(struct wpi_softc *);
    113 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    114 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    115 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    116 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
    117 	int);
    118 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    119 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    120 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    121 static void wpi_newassoc(struct ieee80211_node *, int);
    122 static int  wpi_media_change(struct ifnet *);
    123 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    124 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
    125 static void wpi_mem_lock(struct wpi_softc *);
    126 static void wpi_mem_unlock(struct wpi_softc *);
    127 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
    128 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    129 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    130 								   const uint32_t *, int);
    131 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    132 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    133 static int  wpi_load_firmware(struct wpi_softc *);
    134 static void wpi_calib_timeout(void *);
    135 static void wpi_iter_func(void *, struct ieee80211_node *);
    136 static void wpi_power_calibration(struct wpi_softc *, int);
    137 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    138 	struct wpi_rx_data *);
    139 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    140 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    141 static void wpi_notif_intr(struct wpi_softc *);
    142 static int  wpi_intr(void *);
    143 static void wpi_read_eeprom(struct wpi_softc *);
    144 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
    145 static void wpi_read_eeprom_group(struct wpi_softc *, int);
    146 static uint8_t wpi_plcp_signal(int);
    147 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
    148 	struct ieee80211_node *, int);
    149 static void wpi_start(struct ifnet *);
    150 static void wpi_watchdog(struct ifnet *);
    151 static int  wpi_ioctl(struct ifnet *, u_long, void *);
    152 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    153 static int  wpi_wme_update(struct ieee80211com *);
    154 static int  wpi_mrr_setup(struct wpi_softc *);
    155 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    156 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    157 static int  wpi_set_txpower(struct wpi_softc *,
    158 			    struct ieee80211_channel *, int);
    159 static int  wpi_get_power_index(struct wpi_softc *,
    160 		struct wpi_power_group *, struct ieee80211_channel *, int);
    161 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    162 static int  wpi_auth(struct wpi_softc *);
    163 static int  wpi_scan(struct wpi_softc *, uint16_t);
    164 static int  wpi_config(struct wpi_softc *);
    165 static void wpi_stop_master(struct wpi_softc *);
    166 static int  wpi_power_up(struct wpi_softc *);
    167 static int  wpi_reset(struct wpi_softc *);
    168 static void wpi_hw_config(struct wpi_softc *);
    169 static int  wpi_init(struct ifnet *);
    170 static void wpi_stop(struct ifnet *, int);
    171 static bool wpi_resume(device_t, const pmf_qual_t *);
    172 static int	wpi_getrfkill(struct wpi_softc *);
    173 static void wpi_sysctlattach(struct wpi_softc *);
    174 
    175 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    176 	wpi_detach, NULL);
    177 
    178 static int
    179 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
    180 {
    181 	struct pci_attach_args *pa = aux;
    182 
    183 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    184 		return 0;
    185 
    186 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    187 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    188 		return 1;
    189 
    190 	return 0;
    191 }
    192 
    193 /* Base Address Register */
    194 #define WPI_PCI_BAR0	0x10
    195 
    196 static int
    197 wpi_attach_once(void)
    198 {
    199 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
    200 	return 0;
    201 }
    202 
    203 static void
    204 wpi_attach(device_t parent __unused, device_t self, void *aux)
    205 {
    206 	struct wpi_softc *sc = device_private(self);
    207 	struct ieee80211com *ic = &sc->sc_ic;
    208 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    209 	struct pci_attach_args *pa = aux;
    210 	const char *intrstr;
    211 	char devinfo[256];
    212 	bus_space_tag_t memt;
    213 	bus_space_handle_t memh;
    214 	pci_intr_handle_t ih;
    215 	pcireg_t data;
    216 	int error, ac, revision;
    217 
    218 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
    219 	sc->fw_used = false;
    220 
    221 	sc->sc_dev = self;
    222 	sc->sc_pct = pa->pa_pc;
    223 	sc->sc_pcitag = pa->pa_tag;
    224 
    225 	callout_init(&sc->calib_to, 0);
    226 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    227 
    228 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
    229 	revision = PCI_REVISION(pa->pa_class);
    230 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
    231 
    232 	/* enable bus-mastering */
    233 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    234 	data |= PCI_COMMAND_MASTER_ENABLE;
    235 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    236 
    237 	/* map the register window */
    238 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    239 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    240 	if (error != 0) {
    241 		aprint_error_dev(self, "could not map memory space\n");
    242 		return;
    243 	}
    244 
    245 	sc->sc_st = memt;
    246 	sc->sc_sh = memh;
    247 	sc->sc_dmat = pa->pa_dmat;
    248 
    249 	if (pci_intr_map(pa, &ih) != 0) {
    250 		aprint_error_dev(self, "could not map interrupt\n");
    251 		return;
    252 	}
    253 
    254 	intrstr = pci_intr_string(sc->sc_pct, ih);
    255 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
    256 	if (sc->sc_ih == NULL) {
    257 		aprint_error_dev(self, "could not establish interrupt");
    258 		if (intrstr != NULL)
    259 			aprint_error(" at %s", intrstr);
    260 		aprint_error("\n");
    261 		return;
    262 	}
    263 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    264 
    265 	if (wpi_reset(sc) != 0) {
    266 		aprint_error_dev(self, "could not reset adapter\n");
    267 		return;
    268 	}
    269 
    270  	/*
    271 	 * Allocate DMA memory for firmware transfers.
    272 	 */
    273 	if ((error = wpi_alloc_fwmem(sc)) != 0)
    274 		return;
    275 
    276 	/*
    277 	 * Allocate shared page and Tx/Rx rings.
    278 	 */
    279 	if ((error = wpi_alloc_shared(sc)) != 0) {
    280 		aprint_error_dev(self, "could not allocate shared area\n");
    281 		goto fail1;
    282 	}
    283 
    284 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    285 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    286 		goto fail2;
    287 	}
    288 
    289 	for (ac = 0; ac < 4; ac++) {
    290 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
    291 		if (error != 0) {
    292 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
    293 			goto fail3;
    294 		}
    295 	}
    296 
    297 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    298 	if (error != 0) {
    299 		aprint_error_dev(self, "could not allocate command ring\n");
    300 		goto fail3;
    301 	}
    302 
    303 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
    304 		aprint_error_dev(self, "could not allocate Rx ring\n");
    305 		goto fail4;
    306 	}
    307 
    308 	ic->ic_ifp = ifp;
    309 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    310 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    311 	ic->ic_state = IEEE80211_S_INIT;
    312 
    313 	/* set device capabilities */
    314 	ic->ic_caps =
    315 		IEEE80211_C_IBSS |       /* IBSS mode support */
    316 		IEEE80211_C_WPA |        /* 802.11i */
    317 		IEEE80211_C_MONITOR |    /* monitor mode supported */
    318 		IEEE80211_C_TXPMGT |     /* tx power management */
    319 		IEEE80211_C_SHSLOT |     /* short slot time supported */
    320 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
    321 		IEEE80211_C_WME;         /* 802.11e */
    322 
    323 	/* read supported channels and MAC address from EEPROM */
    324 	wpi_read_eeprom(sc);
    325 
    326 	/* set supported .11a, .11b, .11g rates */
    327 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
    328 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
    329 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
    330 
    331 	ic->ic_ibss_chan = &ic->ic_channels[0];
    332 
    333 	ifp->if_softc = sc;
    334 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    335 	ifp->if_init = wpi_init;
    336 	ifp->if_stop = wpi_stop;
    337 	ifp->if_ioctl = wpi_ioctl;
    338 	ifp->if_start = wpi_start;
    339 	ifp->if_watchdog = wpi_watchdog;
    340 	IFQ_SET_READY(&ifp->if_snd);
    341 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    342 
    343 	if_attach(ifp);
    344 	ieee80211_ifattach(ic);
    345 	/* override default methods */
    346 	ic->ic_node_alloc = wpi_node_alloc;
    347 	ic->ic_newassoc = wpi_newassoc;
    348 	ic->ic_wme.wme_update = wpi_wme_update;
    349 
    350 	/* override state transition machine */
    351 	sc->sc_newstate = ic->ic_newstate;
    352 	ic->ic_newstate = wpi_newstate;
    353 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
    354 
    355 	sc->amrr.amrr_min_success_threshold = 1;
    356 	sc->amrr.amrr_max_success_threshold = 15;
    357 
    358 	wpi_sysctlattach(sc);
    359 
    360 	if (pmf_device_register(self, NULL, wpi_resume))
    361 		pmf_class_network_register(self, ifp);
    362 	else
    363 		aprint_error_dev(self, "couldn't establish power handler\n");
    364 
    365 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    366 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    367 	    &sc->sc_drvbpf);
    368 
    369 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    370 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    371 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    372 
    373 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    374 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    375 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    376 
    377 	ieee80211_announce(ic);
    378 
    379 	return;
    380 
    381 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
    382 fail3:  while (--ac >= 0)
    383 			wpi_free_tx_ring(sc, &sc->txq[ac]);
    384 	wpi_free_rpool(sc);
    385 fail2:	wpi_free_shared(sc);
    386 fail1:	wpi_free_fwmem(sc);
    387 }
    388 
    389 static int
    390 wpi_detach(device_t self, int flags __unused)
    391 {
    392 	struct wpi_softc *sc = device_private(self);
    393 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    394 	int ac;
    395 
    396 	wpi_stop(ifp, 1);
    397 
    398 	if (ifp != NULL)
    399 		bpf_detach(ifp);
    400 	ieee80211_ifdetach(&sc->sc_ic);
    401 	if (ifp != NULL)
    402 		if_detach(ifp);
    403 
    404 	for (ac = 0; ac < 4; ac++)
    405 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    406 	wpi_free_tx_ring(sc, &sc->cmdq);
    407 	wpi_free_rx_ring(sc, &sc->rxq);
    408 	wpi_free_rpool(sc);
    409 	wpi_free_shared(sc);
    410 
    411 	if (sc->sc_ih != NULL) {
    412 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    413 		sc->sc_ih = NULL;
    414 	}
    415 
    416 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    417 
    418 	if (sc->fw_used) {
    419 		mutex_enter(&wpi_firmware_mutex);
    420 		if (--wpi_firmware_users == 0)
    421 			firmware_free(wpi_firmware_image, wpi_firmware_size);
    422 		mutex_exit(&wpi_firmware_mutex);
    423 	}
    424 
    425 	return 0;
    426 }
    427 
    428 static int
    429 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
    430 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
    431 {
    432 	int nsegs, error;
    433 
    434 	dma->tag = tag;
    435 	dma->size = size;
    436 
    437 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    438 	if (error != 0)
    439 		goto fail;
    440 
    441 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    442 	    flags);
    443 	if (error != 0)
    444 		goto fail;
    445 
    446 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    447 	if (error != 0)
    448 		goto fail;
    449 
    450 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    451 	if (error != 0)
    452 		goto fail;
    453 
    454 	memset(dma->vaddr, 0, size);
    455 
    456 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    457 	if (kvap != NULL)
    458 		*kvap = dma->vaddr;
    459 
    460 	return 0;
    461 
    462 fail:   wpi_dma_contig_free(dma);
    463 	return error;
    464 }
    465 
    466 static void
    467 wpi_dma_contig_free(struct wpi_dma_info *dma)
    468 {
    469 	if (dma->map != NULL) {
    470 		if (dma->vaddr != NULL) {
    471 			bus_dmamap_unload(dma->tag, dma->map);
    472 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    473 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    474 			dma->vaddr = NULL;
    475 		}
    476 		bus_dmamap_destroy(dma->tag, dma->map);
    477 		dma->map = NULL;
    478 	}
    479 }
    480 
    481 /*
    482  * Allocate a shared page between host and NIC.
    483  */
    484 static int
    485 wpi_alloc_shared(struct wpi_softc *sc)
    486 {
    487 	int error;
    488 	/* must be aligned on a 4K-page boundary */
    489 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    490 			(void **)&sc->shared, sizeof (struct wpi_shared),
    491 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
    492 	if (error != 0)
    493 		aprint_error_dev(sc->sc_dev,
    494 				"could not allocate shared area DMA memory\n");
    495 
    496 	return error;
    497 }
    498 
    499 static void
    500 wpi_free_shared(struct wpi_softc *sc)
    501 {
    502 	wpi_dma_contig_free(&sc->shared_dma);
    503 }
    504 
    505 /*
    506  * Allocate DMA-safe memory for firmware transfer.
    507  */
    508 static int
    509 wpi_alloc_fwmem(struct wpi_softc *sc)
    510 {
    511 	int error;
    512 	/* allocate enough contiguous space to store text and data */
    513 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    514 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    515 	    BUS_DMA_NOWAIT);
    516 
    517 	if (error != 0)
    518 		aprint_error_dev(sc->sc_dev,
    519 			"could not allocate firmware transfer area"
    520 			"DMA memory\n");
    521 	return error;
    522 }
    523 
    524 static void
    525 wpi_free_fwmem(struct wpi_softc *sc)
    526 {
    527 	wpi_dma_contig_free(&sc->fw_dma);
    528 }
    529 
    530 
    531 static struct wpi_rbuf *
    532 wpi_alloc_rbuf(struct wpi_softc *sc)
    533 {
    534 	struct wpi_rbuf *rbuf;
    535 
    536 	mutex_enter(&sc->rxq.freelist_mtx);
    537 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    538 	if (rbuf != NULL) {
    539 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    540 		sc->rxq.nb_free_entries --;
    541 	}
    542 	mutex_exit(&sc->rxq.freelist_mtx);
    543 
    544 	return rbuf;
    545 }
    546 
    547 /*
    548  * This is called automatically by the network stack when the mbuf to which our
    549  * Rx buffer is attached is freed.
    550  */
    551 static void
    552 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    553 {
    554 	struct wpi_rbuf *rbuf = arg;
    555 	struct wpi_softc *sc = rbuf->sc;
    556 
    557 	/* put the buffer back in the free list */
    558 
    559 	mutex_enter(&sc->rxq.freelist_mtx);
    560 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    561 	mutex_exit(&sc->rxq.freelist_mtx);
    562 	/* No need to protect this with a mutex, see wpi_rx_intr */
    563 	sc->rxq.nb_free_entries ++;
    564 
    565 	if (__predict_true(m != NULL))
    566 		pool_cache_put(mb_cache, m);
    567 }
    568 
    569 static int
    570 wpi_alloc_rpool(struct wpi_softc *sc)
    571 {
    572 	struct wpi_rx_ring *ring = &sc->rxq;
    573 	struct wpi_rbuf *rbuf;
    574 	int i, error;
    575 
    576 	/* allocate a big chunk of DMA'able memory.. */
    577 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    578 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    579 	if (error != 0) {
    580 		aprint_normal_dev(sc->sc_dev,
    581 						  "could not allocate Rx buffers DMA memory\n");
    582 		return error;
    583 	}
    584 
    585 	/* ..and split it into 3KB chunks */
    586 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
    587 	SLIST_INIT(&ring->freelist);
    588 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    589 		rbuf = &ring->rbuf[i];
    590 		rbuf->sc = sc;	/* backpointer for callbacks */
    591 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    592 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    593 
    594 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    595 	}
    596 
    597 	ring->nb_free_entries = WPI_RBUF_COUNT;
    598 	return 0;
    599 }
    600 
    601 static void
    602 wpi_free_rpool(struct wpi_softc *sc)
    603 {
    604 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    605 }
    606 
    607 static int
    608 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    609 {
    610 	struct wpi_rx_data *data;
    611 	struct wpi_rbuf *rbuf;
    612 	int i, error;
    613 
    614 	ring->cur = 0;
    615 
    616 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    617 		(void **)&ring->desc,
    618 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
    619 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    620 	if (error != 0) {
    621 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
    622 		goto fail;
    623 	}
    624 
    625 	/*
    626 	 * Setup Rx buffers.
    627 	 */
    628 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    629 		data = &ring->data[i];
    630 
    631 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    632 		if (data->m == NULL) {
    633 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
    634 			error = ENOMEM;
    635 			goto fail;
    636 		}
    637 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    638 			m_freem(data->m);
    639 			data->m = NULL;
    640 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
    641 			error = ENOMEM;
    642 			goto fail;
    643 		}
    644 		/* attach Rx buffer to mbuf */
    645 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    646 		    rbuf);
    647 		data->m->m_flags |= M_EXT_RW;
    648 
    649 		ring->desc[i] = htole32(rbuf->paddr);
    650 	}
    651 
    652 	return 0;
    653 
    654 fail:	wpi_free_rx_ring(sc, ring);
    655 	return error;
    656 }
    657 
    658 static void
    659 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    660 {
    661 	int ntries;
    662 
    663 	wpi_mem_lock(sc);
    664 
    665 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    666 	for (ntries = 0; ntries < 100; ntries++) {
    667 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    668 			break;
    669 		DELAY(10);
    670 	}
    671 #ifdef WPI_DEBUG
    672 	if (ntries == 100 && wpi_debug > 0)
    673 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    674 #endif
    675 	wpi_mem_unlock(sc);
    676 
    677 	ring->cur = 0;
    678 }
    679 
    680 static void
    681 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    682 {
    683 	int i;
    684 
    685 	wpi_dma_contig_free(&ring->desc_dma);
    686 
    687 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    688 		if (ring->data[i].m != NULL)
    689 			m_freem(ring->data[i].m);
    690 	}
    691 }
    692 
    693 static int
    694 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    695 	int qid)
    696 {
    697 	struct wpi_tx_data *data;
    698 	int i, error;
    699 
    700 	ring->qid = qid;
    701 	ring->count = count;
    702 	ring->queued = 0;
    703 	ring->cur = 0;
    704 
    705 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    706 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    707 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    708 	if (error != 0) {
    709 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
    710 		goto fail;
    711 	}
    712 
    713 	/* update shared page with ring's base address */
    714 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    715 
    716 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    717 		(void **)&ring->cmd,
    718 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
    719 	if (error != 0) {
    720 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
    721 		goto fail;
    722 	}
    723 
    724 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    725 		M_NOWAIT);
    726 	if (ring->data == NULL) {
    727 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
    728 		goto fail;
    729 	}
    730 
    731 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
    732 
    733 	for (i = 0; i < count; i++) {
    734 		data = &ring->data[i];
    735 
    736 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    737 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    738 			&data->map);
    739 		if (error != 0) {
    740 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
    741 			goto fail;
    742 		}
    743 	}
    744 
    745 	return 0;
    746 
    747 fail:	wpi_free_tx_ring(sc, ring);
    748 	return error;
    749 }
    750 
    751 static void
    752 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    753 {
    754 	struct wpi_tx_data *data;
    755 	int i, ntries;
    756 
    757 	wpi_mem_lock(sc);
    758 
    759 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    760 	for (ntries = 0; ntries < 100; ntries++) {
    761 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    762 			break;
    763 		DELAY(10);
    764 	}
    765 #ifdef WPI_DEBUG
    766 	if (ntries == 100 && wpi_debug > 0) {
    767 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    768 									   ring->qid);
    769 	}
    770 #endif
    771 	wpi_mem_unlock(sc);
    772 
    773 	for (i = 0; i < ring->count; i++) {
    774 		data = &ring->data[i];
    775 
    776 		if (data->m != NULL) {
    777 			bus_dmamap_unload(sc->sc_dmat, data->map);
    778 			m_freem(data->m);
    779 			data->m = NULL;
    780 		}
    781 	}
    782 
    783 	ring->queued = 0;
    784 	ring->cur = 0;
    785 }
    786 
    787 static void
    788 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    789 {
    790 	struct wpi_tx_data *data;
    791 	int i;
    792 
    793 	wpi_dma_contig_free(&ring->desc_dma);
    794 	wpi_dma_contig_free(&ring->cmd_dma);
    795 
    796 	if (ring->data != NULL) {
    797 		for (i = 0; i < ring->count; i++) {
    798 			data = &ring->data[i];
    799 
    800 			if (data->m != NULL) {
    801 				bus_dmamap_unload(sc->sc_dmat, data->map);
    802 				m_freem(data->m);
    803 			}
    804 		}
    805 		free(ring->data, M_DEVBUF);
    806 	}
    807 }
    808 
    809 /*ARGUSED*/
    810 static struct ieee80211_node *
    811 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    812 {
    813 	struct wpi_node *wn;
    814 
    815 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
    816 
    817 	return (struct ieee80211_node *)wn;
    818 }
    819 
    820 static void
    821 wpi_newassoc(struct ieee80211_node *ni, int isnew)
    822 {
    823 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    824 	int i;
    825 
    826 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    827 
    828 	/* set rate to some reasonable initial value */
    829 	for (i = ni->ni_rates.rs_nrates - 1;
    830 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    831 	     i--);
    832 	ni->ni_txrate = i;
    833 }
    834 
    835 static int
    836 wpi_media_change(struct ifnet *ifp)
    837 {
    838 	int error;
    839 
    840 	error = ieee80211_media_change(ifp);
    841 	if (error != ENETRESET)
    842 		return error;
    843 
    844 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    845 		wpi_init(ifp);
    846 
    847 	return 0;
    848 }
    849 
    850 static int
    851 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    852 {
    853 	struct ifnet *ifp = ic->ic_ifp;
    854 	struct wpi_softc *sc = ifp->if_softc;
    855 	struct ieee80211_node *ni;
    856 	int error;
    857 
    858 	callout_stop(&sc->calib_to);
    859 
    860 	switch (nstate) {
    861 	case IEEE80211_S_SCAN:
    862 
    863 		if (sc->is_scanning)
    864 			break;
    865 
    866 		sc->is_scanning = true;
    867 		ieee80211_node_table_reset(&ic->ic_scan);
    868 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
    869 
    870 		/* make the link LED blink while we're scanning */
    871 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    872 
    873 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
    874 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
    875 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
    876 			return error;
    877 		}
    878 
    879 		ic->ic_state = nstate;
    880 		return 0;
    881 
    882 	case IEEE80211_S_ASSOC:
    883 		if (ic->ic_state != IEEE80211_S_RUN)
    884 			break;
    885 		/* FALLTHROUGH */
    886 	case IEEE80211_S_AUTH:
    887 		sc->config.associd = 0;
    888 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    889 		if ((error = wpi_auth(sc)) != 0) {
    890 			aprint_error_dev(sc->sc_dev,
    891 							"could not send authentication request\n");
    892 			return error;
    893 		}
    894 		break;
    895 
    896 	case IEEE80211_S_RUN:
    897 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    898 			/* link LED blinks while monitoring */
    899 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    900 			break;
    901 		}
    902 
    903 		ni = ic->ic_bss;
    904 
    905 		if (ic->ic_opmode != IEEE80211_M_STA) {
    906 			(void) wpi_auth(sc);    /* XXX */
    907 			wpi_setup_beacon(sc, ni);
    908 		}
    909 
    910 		wpi_enable_tsf(sc, ni);
    911 
    912 		/* update adapter's configuration */
    913 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    914 		/* short preamble/slot time are negotiated when associating */
    915 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
    916 			WPI_CONFIG_SHSLOT);
    917 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
    918 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
    919 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
    920 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
    921 		sc->config.filter |= htole32(WPI_FILTER_BSS);
    922 		if (ic->ic_opmode != IEEE80211_M_STA)
    923 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
    924 
    925 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
    926 
    927 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
    928 			sc->config.flags));
    929 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
    930 			sizeof (struct wpi_config), 1);
    931 		if (error != 0) {
    932 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
    933 			return error;
    934 		}
    935 
    936 		/* configuration has changed, set Tx power accordingly */
    937 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
    938 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
    939 			return error;
    940 		}
    941 
    942 		if (ic->ic_opmode == IEEE80211_M_STA) {
    943 			/* fake a join to init the tx rate */
    944 			wpi_newassoc(ni, 1);
    945 		}
    946 
    947 		/* start periodic calibration timer */
    948 		sc->calib_cnt = 0;
    949 		callout_schedule(&sc->calib_to, hz/2);
    950 
    951 		/* link LED always on while associated */
    952 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
    953 		break;
    954 
    955 	case IEEE80211_S_INIT:
    956 		sc->is_scanning = false;
    957 		break;
    958 	}
    959 
    960 	return sc->sc_newstate(ic, nstate, arg);
    961 }
    962 
    963 /*
    964  * XXX: Hack to set the current channel to the value advertised in beacons or
    965  * probe responses. Only used during AP detection.
    966  * XXX: Duplicated from if_iwi.c
    967  */
    968 static void
    969 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
    970 {
    971 	struct ieee80211_frame *wh;
    972 	uint8_t subtype;
    973 	uint8_t *frm, *efrm;
    974 
    975 	wh = mtod(m, struct ieee80211_frame *);
    976 
    977 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
    978 		return;
    979 
    980 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
    981 
    982 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
    983 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
    984 		return;
    985 
    986 	frm = (uint8_t *)(wh + 1);
    987 	efrm = mtod(m, uint8_t *) + m->m_len;
    988 
    989 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
    990 	while (frm < efrm) {
    991 		if (*frm == IEEE80211_ELEMID_DSPARMS)
    992 #if IEEE80211_CHAN_MAX < 255
    993 		if (frm[2] <= IEEE80211_CHAN_MAX)
    994 #endif
    995 			ic->ic_curchan = &ic->ic_channels[frm[2]];
    996 
    997 		frm += frm[1] + 2;
    998 	}
    999 }
   1000 
   1001 /*
   1002  * Grab exclusive access to NIC memory.
   1003  */
   1004 static void
   1005 wpi_mem_lock(struct wpi_softc *sc)
   1006 {
   1007 	uint32_t tmp;
   1008 	int ntries;
   1009 
   1010 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1011 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
   1012 
   1013 	/* spin until we actually get the lock */
   1014 	for (ntries = 0; ntries < 1000; ntries++) {
   1015 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
   1016 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
   1017 			break;
   1018 		DELAY(10);
   1019 	}
   1020 	if (ntries == 1000)
   1021 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
   1022 }
   1023 
   1024 /*
   1025  * Release lock on NIC memory.
   1026  */
   1027 static void
   1028 wpi_mem_unlock(struct wpi_softc *sc)
   1029 {
   1030 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1031 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1032 }
   1033 
   1034 static uint32_t
   1035 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1036 {
   1037 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1038 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1039 }
   1040 
   1041 static void
   1042 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1043 {
   1044 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1045 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1046 }
   1047 
   1048 static void
   1049 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1050 						const uint32_t *data, int wlen)
   1051 {
   1052 	for (; wlen > 0; wlen--, data++, addr += 4)
   1053 		wpi_mem_write(sc, addr, *data);
   1054 }
   1055 
   1056 
   1057 /*
   1058  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1059  * instead of using the traditional bit-bang method.
   1060  */
   1061 static int
   1062 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1063 {
   1064 	uint8_t *out = data;
   1065 	uint32_t val;
   1066 	int ntries;
   1067 
   1068 	wpi_mem_lock(sc);
   1069 	for (; len > 0; len -= 2, addr++) {
   1070 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1071 
   1072 		for (ntries = 0; ntries < 10; ntries++) {
   1073 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1074 			    WPI_EEPROM_READY)
   1075 				break;
   1076 			DELAY(5);
   1077 		}
   1078 		if (ntries == 10) {
   1079 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1080 			return ETIMEDOUT;
   1081 		}
   1082 		*out++ = val >> 16;
   1083 		if (len > 1)
   1084 			*out++ = val >> 24;
   1085 	}
   1086 	wpi_mem_unlock(sc);
   1087 
   1088 	return 0;
   1089 }
   1090 
   1091 /*
   1092  * The firmware boot code is small and is intended to be copied directly into
   1093  * the NIC internal memory.
   1094  */
   1095 int
   1096 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1097 {
   1098 	int ntries;
   1099 
   1100 	size /= sizeof (uint32_t);
   1101 
   1102 	wpi_mem_lock(sc);
   1103 
   1104 	/* copy microcode image into NIC memory */
   1105 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1106 	    (const uint32_t *)ucode, size);
   1107 
   1108 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1109 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1110 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1111 
   1112 	/* run microcode */
   1113 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1114 
   1115 	/* wait for transfer to complete */
   1116 	for (ntries = 0; ntries < 1000; ntries++) {
   1117 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1118 			break;
   1119 		DELAY(10);
   1120 	}
   1121 	if (ntries == 1000) {
   1122 		wpi_mem_unlock(sc);
   1123 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1124 		return ETIMEDOUT;
   1125 	}
   1126 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1127 
   1128 	wpi_mem_unlock(sc);
   1129 
   1130 	return 0;
   1131 }
   1132 
   1133 static int
   1134 wpi_cache_firmware(struct wpi_softc *sc)
   1135 {
   1136 	firmware_handle_t fw;
   1137 	int error;
   1138 
   1139 	if (sc->fw_used)
   1140 		return 0;
   1141 
   1142 	mutex_enter(&wpi_firmware_mutex);
   1143 	if (wpi_firmware_users++) {
   1144 		mutex_exit(&wpi_firmware_mutex);
   1145 		return 0;
   1146 	}
   1147 
   1148 	/* load firmware image from disk */
   1149 	if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
   1150 		aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
   1151 		goto fail1;
   1152 	}
   1153 
   1154 	wpi_firmware_size = firmware_get_size(fw);
   1155 
   1156 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
   1157 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
   1158 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
   1159 	    WPI_FW_BOOT_TEXT_MAXSZ) {
   1160 		aprint_error_dev(sc->sc_dev, "invalid firmware file\n");
   1161 		error = EFBIG;
   1162 		goto fail1;
   1163 	}
   1164 
   1165 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
   1166 		aprint_error_dev(sc->sc_dev,
   1167 		    "truncated firmware header: %zu bytes\n",
   1168 		    wpi_firmware_size);
   1169 		error = EINVAL;
   1170 		goto fail2;
   1171 	}
   1172 
   1173 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
   1174 	if (wpi_firmware_image == NULL) {
   1175 		aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
   1176 		error = ENOMEM;
   1177 		goto fail1;
   1178 	}
   1179 
   1180 	if ((error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size)) != 0) {
   1181 		aprint_error_dev(sc->sc_dev, "can't get firmware\n");
   1182 		goto fail2;
   1183 	}
   1184 
   1185 	sc->fw_used = true;
   1186 	firmware_close(fw);
   1187 	mutex_exit(&wpi_firmware_mutex);
   1188 
   1189 	return 0;
   1190 
   1191 fail2:
   1192 	firmware_free(wpi_firmware_image, wpi_firmware_size);
   1193 fail1:
   1194 	firmware_close(fw);
   1195 	if (--wpi_firmware_users == 0)
   1196 		firmware_free(wpi_firmware_image, wpi_firmware_size);
   1197 	mutex_exit(&wpi_firmware_mutex);
   1198 	return error;
   1199 }
   1200 
   1201 static int
   1202 wpi_load_firmware(struct wpi_softc *sc)
   1203 {
   1204 	struct wpi_dma_info *dma = &sc->fw_dma;
   1205 	struct wpi_firmware_hdr hdr;
   1206 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1207 	const uint8_t *boot_text;
   1208 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1209 	uint32_t boot_textsz;
   1210 	int error;
   1211 
   1212 	if ((error = wpi_cache_firmware(sc)) != 0)
   1213 		return error;
   1214 
   1215 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
   1216 
   1217 	main_textsz = le32toh(hdr.main_textsz);
   1218 	main_datasz = le32toh(hdr.main_datasz);
   1219 	init_textsz = le32toh(hdr.init_textsz);
   1220 	init_datasz = le32toh(hdr.init_datasz);
   1221 	boot_textsz = le32toh(hdr.boot_textsz);
   1222 
   1223 	/* sanity-check firmware segments sizes */
   1224 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1225 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1226 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1227 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1228 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1229 	    (boot_textsz & 3) != 0) {
   1230 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1231 		error = EINVAL;
   1232 		goto free_firmware;
   1233 	}
   1234 
   1235 	/* check that all firmware segments are present */
   1236 	if (wpi_firmware_size <
   1237 	    sizeof (struct wpi_firmware_hdr) + main_textsz +
   1238 	    main_datasz + init_textsz + init_datasz + boot_textsz) {
   1239 		aprint_error_dev(sc->sc_dev,
   1240 		    "firmware file too short: %zu bytes\n", wpi_firmware_size);
   1241 		error = EINVAL;
   1242 		goto free_firmware;
   1243 	}
   1244 
   1245 	/* get pointers to firmware segments */
   1246 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
   1247 	main_data = main_text + main_textsz;
   1248 	init_text = main_data + main_datasz;
   1249 	init_data = init_text + init_textsz;
   1250 	boot_text = init_data + init_datasz;
   1251 
   1252 	/* copy initialization images into pre-allocated DMA-safe memory */
   1253 	memcpy(dma->vaddr, init_data, init_datasz);
   1254 	memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
   1255 
   1256 	/* tell adapter where to find initialization images */
   1257 	wpi_mem_lock(sc);
   1258 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1259 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1260 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1261 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1262 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1263 	wpi_mem_unlock(sc);
   1264 
   1265 	/* load firmware boot code */
   1266 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1267 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1268 		return error;
   1269 	}
   1270 
   1271 	/* now press "execute" ;-) */
   1272 	WPI_WRITE(sc, WPI_RESET, 0);
   1273 
   1274 	/* ..and wait at most one second for adapter to initialize */
   1275 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1276 		/* this isn't what was supposed to happen.. */
   1277 		aprint_error_dev(sc->sc_dev,
   1278 		    "timeout waiting for adapter to initialize\n");
   1279 	}
   1280 
   1281 	/* copy runtime images into pre-allocated DMA-safe memory */
   1282 	memcpy(dma->vaddr, main_data, main_datasz);
   1283 	memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
   1284 
   1285 	/* tell adapter where to find runtime images */
   1286 	wpi_mem_lock(sc);
   1287 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1288 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1289 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1290 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1291 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1292 	wpi_mem_unlock(sc);
   1293 
   1294 	/* wait at most one second for second alive notification */
   1295 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1296 		/* this isn't what was supposed to happen.. */
   1297 		aprint_error_dev(sc->sc_dev,
   1298 		    "timeout waiting for adapter to initialize\n");
   1299 	}
   1300 
   1301 	return error;
   1302 
   1303 free_firmware:
   1304 	mutex_enter(&wpi_firmware_mutex);
   1305 	sc->fw_used = false;
   1306 	--wpi_firmware_users;
   1307 	mutex_exit(&wpi_firmware_mutex);
   1308 	return error;
   1309 }
   1310 
   1311 static void
   1312 wpi_calib_timeout(void *arg)
   1313 {
   1314 	struct wpi_softc *sc = arg;
   1315 	struct ieee80211com *ic = &sc->sc_ic;
   1316 	int temp, s;
   1317 
   1318 	/* automatic rate control triggered every 500ms */
   1319 	if (ic->ic_fixed_rate == -1) {
   1320 		s = splnet();
   1321 		if (ic->ic_opmode == IEEE80211_M_STA)
   1322 			wpi_iter_func(sc, ic->ic_bss);
   1323 		else
   1324                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1325 		splx(s);
   1326 	}
   1327 
   1328 	/* update sensor data */
   1329 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1330 
   1331 	/* automatic power calibration every 60s */
   1332 	if (++sc->calib_cnt >= 120) {
   1333 		wpi_power_calibration(sc, temp);
   1334 		sc->calib_cnt = 0;
   1335 	}
   1336 
   1337 	callout_schedule(&sc->calib_to, hz/2);
   1338 }
   1339 
   1340 static void
   1341 wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1342 {
   1343 	struct wpi_softc *sc = arg;
   1344 	struct wpi_node *wn = (struct wpi_node *)ni;
   1345 
   1346 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1347 }
   1348 
   1349 /*
   1350  * This function is called periodically (every 60 seconds) to adjust output
   1351  * power to temperature changes.
   1352  */
   1353 void
   1354 wpi_power_calibration(struct wpi_softc *sc, int temp)
   1355 {
   1356 	/* sanity-check read value */
   1357 	if (temp < -260 || temp > 25) {
   1358 		/* this can't be correct, ignore */
   1359 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1360 		return;
   1361 	}
   1362 
   1363 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1364 
   1365 	/* adjust Tx power if need be */
   1366 	if (abs(temp - sc->temp) <= 6)
   1367 		return;
   1368 
   1369 	sc->temp = temp;
   1370 
   1371 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
   1372 		/* just warn, too bad for the automatic calibration... */
   1373 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1374 	}
   1375 }
   1376 
   1377 static void
   1378 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1379 	struct wpi_rx_data *data)
   1380 {
   1381 	struct ieee80211com *ic = &sc->sc_ic;
   1382 	struct ifnet *ifp = ic->ic_ifp;
   1383 	struct wpi_rx_ring *ring = &sc->rxq;
   1384 	struct wpi_rx_stat *stat;
   1385 	struct wpi_rx_head *head;
   1386 	struct wpi_rx_tail *tail;
   1387 	struct wpi_rbuf *rbuf;
   1388 	struct ieee80211_frame *wh;
   1389 	struct ieee80211_node *ni;
   1390 	struct mbuf *m, *mnew;
   1391 	int data_off ;
   1392 
   1393 	stat = (struct wpi_rx_stat *)(desc + 1);
   1394 
   1395 	if (stat->len > WPI_STAT_MAXLEN) {
   1396 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1397 		ifp->if_ierrors++;
   1398 		return;
   1399 	}
   1400 
   1401 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1402 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1403 
   1404 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1405 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
   1406 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1407 		le64toh(tail->tstamp)));
   1408 
   1409 	/*
   1410 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1411 	 * to radiotap in monitor mode).
   1412 	 */
   1413 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1414 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
   1415 		ifp->if_ierrors++;
   1416 		return;
   1417 	}
   1418 
   1419 	/* Compute where are the useful datas */
   1420 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1421 
   1422 	/*
   1423 	 * If the number of free entry is too low
   1424 	 * just dup the data->m socket and reuse the same rbuf entry
   1425 	 * Note that thi test is not protected by a mutex because the
   1426 	 * only path that causes nb_free_entries to decrease is through
   1427 	 * this interrupt routine, which is not re-entrent.
   1428 	 * What may not be obvious is that the safe path is if that test
   1429 	 * evaluates as true, so nb_free_entries can grow any time.
   1430 	 */
   1431 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
   1432 
   1433 		/* Prepare the mbuf for the m_dup */
   1434 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
   1435 		data->m->m_data = (char*) data->m->m_data + data_off;
   1436 
   1437 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
   1438 
   1439 		/* Restore the m_data pointer for future use */
   1440 		data->m->m_data = (char*) data->m->m_data - data_off;
   1441 
   1442 		if (m == NULL) {
   1443 			ifp->if_ierrors++;
   1444 			return;
   1445 		}
   1446 	} else {
   1447 
   1448 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1449 		if (mnew == NULL) {
   1450 			ifp->if_ierrors++;
   1451 			return;
   1452 		}
   1453 
   1454 		rbuf = wpi_alloc_rbuf(sc);
   1455 		KASSERT(rbuf != NULL);
   1456 
   1457  		/* attach Rx buffer to mbuf */
   1458 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1459 		 	rbuf);
   1460 		mnew->m_flags |= M_EXT_RW;
   1461 
   1462 		m = data->m;
   1463 		data->m = mnew;
   1464 
   1465 		/* update Rx descriptor */
   1466 		ring->desc[ring->cur] = htole32(rbuf->paddr);
   1467 
   1468 		m->m_data = (char*)m->m_data + data_off;
   1469 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1470 	}
   1471 
   1472 	/* finalize mbuf */
   1473 	m->m_pkthdr.rcvif = ifp;
   1474 
   1475 	if (ic->ic_state == IEEE80211_S_SCAN)
   1476 		wpi_fix_channel(ic, m);
   1477 
   1478 	if (sc->sc_drvbpf != NULL) {
   1479 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1480 
   1481 		tap->wr_flags = 0;
   1482 		tap->wr_chan_freq =
   1483 			htole16(ic->ic_channels[head->chan].ic_freq);
   1484 		tap->wr_chan_flags =
   1485 			htole16(ic->ic_channels[head->chan].ic_flags);
   1486 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1487 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1488 		tap->wr_tsft = tail->tstamp;
   1489 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1490 		switch (head->rate) {
   1491 		/* CCK rates */
   1492 		case  10: tap->wr_rate =   2; break;
   1493 		case  20: tap->wr_rate =   4; break;
   1494 		case  55: tap->wr_rate =  11; break;
   1495 		case 110: tap->wr_rate =  22; break;
   1496 		/* OFDM rates */
   1497 		case 0xd: tap->wr_rate =  12; break;
   1498 		case 0xf: tap->wr_rate =  18; break;
   1499 		case 0x5: tap->wr_rate =  24; break;
   1500 		case 0x7: tap->wr_rate =  36; break;
   1501 		case 0x9: tap->wr_rate =  48; break;
   1502 		case 0xb: tap->wr_rate =  72; break;
   1503 		case 0x1: tap->wr_rate =  96; break;
   1504 		case 0x3: tap->wr_rate = 108; break;
   1505 		/* unknown rate: should not happen */
   1506 		default:  tap->wr_rate =   0;
   1507 		}
   1508 		if (le16toh(head->flags) & 0x4)
   1509 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1510 
   1511 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1512 	}
   1513 
   1514 	/* grab a reference to the source node */
   1515 	wh = mtod(m, struct ieee80211_frame *);
   1516 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1517 
   1518 	/* send the frame to the 802.11 layer */
   1519 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1520 
   1521 	/* release node reference */
   1522 	ieee80211_free_node(ni);
   1523 }
   1524 
   1525 static void
   1526 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1527 {
   1528 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1529 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1530 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
   1531 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1532 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
   1533 
   1534 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1535 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1536 		stat->nkill, stat->rate, le32toh(stat->duration),
   1537 		le32toh(stat->status)));
   1538 
   1539 	/*
   1540 	 * Update rate control statistics for the node.
   1541 	 * XXX we should not count mgmt frames since they're always sent at
   1542 	 * the lowest available bit-rate.
   1543 	 */
   1544 	wn->amn.amn_txcnt++;
   1545 	if (stat->ntries > 0) {
   1546 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1547 		wn->amn.amn_retrycnt++;
   1548 	}
   1549 
   1550 	if ((le32toh(stat->status) & 0xff) != 1)
   1551 		ifp->if_oerrors++;
   1552 	else
   1553 		ifp->if_opackets++;
   1554 
   1555 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
   1556 	m_freem(txdata->m);
   1557 	txdata->m = NULL;
   1558 	ieee80211_free_node(txdata->ni);
   1559 	txdata->ni = NULL;
   1560 
   1561 	ring->queued--;
   1562 
   1563 	sc->sc_tx_timer = 0;
   1564 	ifp->if_flags &= ~IFF_OACTIVE;
   1565 	wpi_start(ifp);
   1566 }
   1567 
   1568 static void
   1569 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1570 {
   1571 	struct wpi_tx_ring *ring = &sc->cmdq;
   1572 	struct wpi_tx_data *data;
   1573 
   1574 	if ((desc->qid & 7) != 4)
   1575 		return;	/* not a command ack */
   1576 
   1577 	data = &ring->data[desc->idx];
   1578 
   1579 	/* if the command was mapped in a mbuf, free it */
   1580 	if (data->m != NULL) {
   1581 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1582 		m_freem(data->m);
   1583 		data->m = NULL;
   1584 	}
   1585 
   1586 	wakeup(&ring->cmd[desc->idx]);
   1587 }
   1588 
   1589 static void
   1590 wpi_notif_intr(struct wpi_softc *sc)
   1591 {
   1592 	struct ieee80211com *ic = &sc->sc_ic;
   1593 	struct ifnet *ifp =  ic->ic_ifp;
   1594 	struct wpi_rx_desc *desc;
   1595 	struct wpi_rx_data *data;
   1596 	uint32_t hw;
   1597 
   1598 	hw = le32toh(sc->shared->next);
   1599 	while (sc->rxq.cur != hw) {
   1600 		data = &sc->rxq.data[sc->rxq.cur];
   1601 
   1602 		desc = mtod(data->m, struct wpi_rx_desc *);
   1603 
   1604 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1605 			"len=%d\n", desc->qid, desc->idx, desc->flags,
   1606 			desc->type, le32toh(desc->len)));
   1607 
   1608 		if (!(desc->qid & 0x80))	/* reply to a command */
   1609 			wpi_cmd_intr(sc, desc);
   1610 
   1611 		switch (desc->type) {
   1612 		case WPI_RX_DONE:
   1613 			/* a 802.11 frame was received */
   1614 			wpi_rx_intr(sc, desc, data);
   1615 			break;
   1616 
   1617 		case WPI_TX_DONE:
   1618 			/* a 802.11 frame has been transmitted */
   1619 			wpi_tx_intr(sc, desc);
   1620 			break;
   1621 
   1622 		case WPI_UC_READY:
   1623 		{
   1624 			struct wpi_ucode_info *uc =
   1625 				(struct wpi_ucode_info *)(desc + 1);
   1626 
   1627 			/* the microcontroller is ready */
   1628 			DPRINTF(("microcode alive notification version %x "
   1629 				"alive %x\n", le32toh(uc->version),
   1630 				le32toh(uc->valid)));
   1631 
   1632 			if (le32toh(uc->valid) != 1) {
   1633 				aprint_error_dev(sc->sc_dev,
   1634 					"microcontroller initialization failed\n");
   1635 			}
   1636 			break;
   1637 		}
   1638 		case WPI_STATE_CHANGED:
   1639 		{
   1640 			uint32_t *status = (uint32_t *)(desc + 1);
   1641 
   1642 			/* enabled/disabled notification */
   1643 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1644 
   1645 			if (le32toh(*status) & 1) {
   1646 				/* the radio button has to be pushed */
   1647 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
   1648 				/* turn the interface down */
   1649 				ifp->if_flags &= ~IFF_UP;
   1650 				wpi_stop(ifp, 1);
   1651 				return;	/* no further processing */
   1652 			}
   1653 			break;
   1654 		}
   1655 		case WPI_START_SCAN:
   1656 		{
   1657 			struct wpi_start_scan *scan =
   1658 				(struct wpi_start_scan *)(desc + 1);
   1659 
   1660 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1661 				scan->chan, le32toh(scan->status)));
   1662 
   1663 			/* fix current channel */
   1664 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   1665 			break;
   1666 		}
   1667 		case WPI_STOP_SCAN:
   1668 		{
   1669 			struct wpi_stop_scan *scan =
   1670 				(struct wpi_stop_scan *)(desc + 1);
   1671 
   1672 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1673 				scan->nchan, scan->status, scan->chan));
   1674 
   1675 			if (scan->status == 1 && scan->chan <= 14) {
   1676 				/*
   1677 				 * We just finished scanning 802.11g channels,
   1678 				 * start scanning 802.11a ones.
   1679 				 */
   1680 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
   1681 					break;
   1682 			}
   1683 			sc->is_scanning = false;
   1684 			ieee80211_end_scan(ic);
   1685 			break;
   1686 		}
   1687 		}
   1688 
   1689 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1690 	}
   1691 
   1692 	/* tell the firmware what we have processed */
   1693 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1694 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1695 }
   1696 
   1697 static int
   1698 wpi_intr(void *arg)
   1699 {
   1700 	struct wpi_softc *sc = arg;
   1701 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1702 	uint32_t r;
   1703 
   1704 	r = WPI_READ(sc, WPI_INTR);
   1705 	if (r == 0 || r == 0xffffffff)
   1706 		return 0;	/* not for us */
   1707 
   1708 	DPRINTFN(5, ("interrupt reg %x\n", r));
   1709 
   1710 	/* disable interrupts */
   1711 	WPI_WRITE(sc, WPI_MASK, 0);
   1712 	/* ack interrupts */
   1713 	WPI_WRITE(sc, WPI_INTR, r);
   1714 
   1715 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1716 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1717 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
   1718 		wpi_stop(sc->sc_ic.ic_ifp, 1);
   1719 		return 1;
   1720 	}
   1721 
   1722 	if (r & WPI_RX_INTR)
   1723 		wpi_notif_intr(sc);
   1724 
   1725 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1726 		wakeup(sc);
   1727 
   1728 	/* re-enable interrupts */
   1729 	if (ifp->if_flags & IFF_UP)
   1730 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1731 
   1732 	return 1;
   1733 }
   1734 
   1735 static uint8_t
   1736 wpi_plcp_signal(int rate)
   1737 {
   1738 	switch (rate) {
   1739 	/* CCK rates (returned values are device-dependent) */
   1740 	case 2:		return 10;
   1741 	case 4:		return 20;
   1742 	case 11:	return 55;
   1743 	case 22:	return 110;
   1744 
   1745 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1746 	/* R1-R4, (u)ral is R4-R1 */
   1747 	case 12:	return 0xd;
   1748 	case 18:	return 0xf;
   1749 	case 24:	return 0x5;
   1750 	case 36:	return 0x7;
   1751 	case 48:	return 0x9;
   1752 	case 72:	return 0xb;
   1753 	case 96:	return 0x1;
   1754 	case 108:	return 0x3;
   1755 
   1756 	/* unsupported rates (should not get there) */
   1757 	default:	return 0;
   1758 	}
   1759 }
   1760 
   1761 /* quickly determine if a given rate is CCK or OFDM */
   1762 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1763 
   1764 static int
   1765 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1766 	int ac)
   1767 {
   1768 	struct ieee80211com *ic = &sc->sc_ic;
   1769 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1770 	struct wpi_tx_desc *desc;
   1771 	struct wpi_tx_data *data;
   1772 	struct wpi_tx_cmd *cmd;
   1773 	struct wpi_cmd_data *tx;
   1774 	struct ieee80211_frame *wh;
   1775 	struct ieee80211_key *k;
   1776 	const struct chanAccParams *cap;
   1777 	struct mbuf *mnew;
   1778 	int i, error, rate, hdrlen, noack = 0;
   1779 
   1780 	desc = &ring->desc[ring->cur];
   1781 	data = &ring->data[ring->cur];
   1782 
   1783 	wh = mtod(m0, struct ieee80211_frame *);
   1784 
   1785 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
   1786 		cap = &ic->ic_wme.wme_chanParams;
   1787 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1788 	}
   1789 
   1790 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1791 		k = ieee80211_crypto_encap(ic, ni, m0);
   1792 		if (k == NULL) {
   1793 			m_freem(m0);
   1794 			return ENOBUFS;
   1795 		}
   1796 
   1797 		/* packet header may have moved, reset our local pointer */
   1798 		wh = mtod(m0, struct ieee80211_frame *);
   1799 	}
   1800 
   1801 	hdrlen = ieee80211_anyhdrsize(wh);
   1802 
   1803 	/* pickup a rate */
   1804 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1805 		IEEE80211_FC0_TYPE_MGT) {
   1806 		/* mgmt frames are sent at the lowest available bit-rate */
   1807 		rate = ni->ni_rates.rs_rates[0];
   1808 	} else {
   1809 		if (ic->ic_fixed_rate != -1) {
   1810 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1811 				rs_rates[ic->ic_fixed_rate];
   1812 		} else
   1813 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1814 	}
   1815 	rate &= IEEE80211_RATE_VAL;
   1816 
   1817 
   1818 	if (sc->sc_drvbpf != NULL) {
   1819 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1820 
   1821 		tap->wt_flags = 0;
   1822 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1823 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1824 		tap->wt_rate = rate;
   1825 		tap->wt_hwqueue = ac;
   1826 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1827 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1828 
   1829 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1830 	}
   1831 
   1832 	cmd = &ring->cmd[ring->cur];
   1833 	cmd->code = WPI_CMD_TX_DATA;
   1834 	cmd->flags = 0;
   1835 	cmd->qid = ring->qid;
   1836 	cmd->idx = ring->cur;
   1837 
   1838 	tx = (struct wpi_cmd_data *)cmd->data;
   1839 	tx->flags = 0;
   1840 
   1841 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1842 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1843 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1844 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1845 
   1846 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1847 
   1848 	/* retrieve destination node's id */
   1849 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1850 		WPI_ID_BSS;
   1851 
   1852 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1853 		IEEE80211_FC0_TYPE_MGT) {
   1854 		/* tell h/w to set timestamp in probe responses */
   1855 		if ((wh->i_fc[0] &
   1856 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1857 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1858 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1859 
   1860 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1861 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1862 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1863 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1864 			tx->timeout = htole16(3);
   1865 		else
   1866 			tx->timeout = htole16(2);
   1867 	} else
   1868 		tx->timeout = htole16(0);
   1869 
   1870 	tx->rate = wpi_plcp_signal(rate);
   1871 
   1872 	/* be very persistant at sending frames out */
   1873 	tx->rts_ntries = 7;
   1874 	tx->data_ntries = 15;
   1875 
   1876 	tx->ofdm_mask = 0xff;
   1877 	tx->cck_mask = 0xf;
   1878 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   1879 
   1880 	tx->len = htole16(m0->m_pkthdr.len);
   1881 
   1882 	/* save and trim IEEE802.11 header */
   1883 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   1884 	m_adj(m0, hdrlen);
   1885 
   1886 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1887 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1888 	if (error != 0 && error != EFBIG) {
   1889 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
   1890 		m_freem(m0);
   1891 		return error;
   1892 	}
   1893 	if (error != 0) {
   1894 		/* too many fragments, linearize */
   1895 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1896 		if (mnew == NULL) {
   1897 			m_freem(m0);
   1898 			return ENOMEM;
   1899 		}
   1900 
   1901 		M_COPY_PKTHDR(mnew, m0);
   1902 		if (m0->m_pkthdr.len > MHLEN) {
   1903 			MCLGET(mnew, M_DONTWAIT);
   1904 			if (!(mnew->m_flags & M_EXT)) {
   1905 				m_freem(m0);
   1906 				m_freem(mnew);
   1907 				return ENOMEM;
   1908 			}
   1909 		}
   1910 
   1911 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1912 		m_freem(m0);
   1913 		mnew->m_len = mnew->m_pkthdr.len;
   1914 		m0 = mnew;
   1915 
   1916 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1917 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1918 		if (error != 0) {
   1919 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1920 							 error);
   1921 			m_freem(m0);
   1922 			return error;
   1923 		}
   1924 	}
   1925 
   1926 	data->m = m0;
   1927 	data->ni = ni;
   1928 
   1929 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   1930 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   1931 
   1932 	/* first scatter/gather segment is used by the tx data command */
   1933 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   1934 		(1 + data->map->dm_nsegs) << 24);
   1935 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   1936 		ring->cur * sizeof (struct wpi_tx_cmd));
   1937 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   1938 						 ((hdrlen + 3) & ~3));
   1939 
   1940 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   1941 		desc->segs[i].addr =
   1942 			htole32(data->map->dm_segs[i - 1].ds_addr);
   1943 		desc->segs[i].len  =
   1944 			htole32(data->map->dm_segs[i - 1].ds_len);
   1945 	}
   1946 
   1947 	ring->queued++;
   1948 
   1949 	/* kick ring */
   1950 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   1951 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   1952 
   1953 	return 0;
   1954 }
   1955 
   1956 static void
   1957 wpi_start(struct ifnet *ifp)
   1958 {
   1959 	struct wpi_softc *sc = ifp->if_softc;
   1960 	struct ieee80211com *ic = &sc->sc_ic;
   1961 	struct ieee80211_node *ni;
   1962 	struct ether_header *eh;
   1963 	struct mbuf *m0;
   1964 	int ac;
   1965 
   1966 	/*
   1967 	 * net80211 may still try to send management frames even if the
   1968 	 * IFF_RUNNING flag is not set...
   1969 	 */
   1970 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1971 		return;
   1972 
   1973 	for (;;) {
   1974 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   1975 		if (m0 != NULL) {
   1976 
   1977 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   1978 			m0->m_pkthdr.rcvif = NULL;
   1979 
   1980 			/* management frames go into ring 0 */
   1981 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   1982 				ifp->if_oerrors++;
   1983 				continue;
   1984 			}
   1985 			bpf_mtap3(ic->ic_rawbpf, m0);
   1986 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   1987 				ifp->if_oerrors++;
   1988 				break;
   1989 			}
   1990 		} else {
   1991 			if (ic->ic_state != IEEE80211_S_RUN)
   1992 				break;
   1993 			IFQ_POLL(&ifp->if_snd, m0);
   1994 			if (m0 == NULL)
   1995 				break;
   1996 
   1997 			if (m0->m_len < sizeof (*eh) &&
   1998 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
   1999 				ifp->if_oerrors++;
   2000 				continue;
   2001 			}
   2002 			eh = mtod(m0, struct ether_header *);
   2003 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   2004 			if (ni == NULL) {
   2005 				m_freem(m0);
   2006 				ifp->if_oerrors++;
   2007 				continue;
   2008 			}
   2009 
   2010 			/* classify mbuf so we can find which tx ring to use */
   2011 			if (ieee80211_classify(ic, m0, ni) != 0) {
   2012 				m_freem(m0);
   2013 				ieee80211_free_node(ni);
   2014 				ifp->if_oerrors++;
   2015 				continue;
   2016 			}
   2017 
   2018 			/* no QoS encapsulation for EAPOL frames */
   2019 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   2020 			    M_WME_GETAC(m0) : WME_AC_BE;
   2021 
   2022 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   2023 				/* there is no place left in this ring */
   2024 				ifp->if_flags |= IFF_OACTIVE;
   2025 				break;
   2026 			}
   2027 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   2028 			bpf_mtap(ifp, m0);
   2029 			m0 = ieee80211_encap(ic, m0, ni);
   2030 			if (m0 == NULL) {
   2031 				ieee80211_free_node(ni);
   2032 				ifp->if_oerrors++;
   2033 				continue;
   2034 			}
   2035 			bpf_mtap3(ic->ic_rawbpf, m0);
   2036 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   2037 				ieee80211_free_node(ni);
   2038 				ifp->if_oerrors++;
   2039 				break;
   2040 			}
   2041 		}
   2042 
   2043 		sc->sc_tx_timer = 5;
   2044 		ifp->if_timer = 1;
   2045 	}
   2046 }
   2047 
   2048 static void
   2049 wpi_watchdog(struct ifnet *ifp)
   2050 {
   2051 	struct wpi_softc *sc = ifp->if_softc;
   2052 
   2053 	ifp->if_timer = 0;
   2054 
   2055 	if (sc->sc_tx_timer > 0) {
   2056 		if (--sc->sc_tx_timer == 0) {
   2057 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2058 			ifp->if_oerrors++;
   2059 			ifp->if_flags &= ~IFF_UP;
   2060 			wpi_stop(ifp, 1);
   2061 			return;
   2062 		}
   2063 		ifp->if_timer = 1;
   2064 	}
   2065 
   2066 	ieee80211_watchdog(&sc->sc_ic);
   2067 }
   2068 
   2069 static int
   2070 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2071 {
   2072 #define IS_RUNNING(ifp) \
   2073 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2074 
   2075 	struct wpi_softc *sc = ifp->if_softc;
   2076 	struct ieee80211com *ic = &sc->sc_ic;
   2077 	int s, error = 0;
   2078 
   2079 	s = splnet();
   2080 
   2081 	switch (cmd) {
   2082 	case SIOCSIFFLAGS:
   2083 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2084 			break;
   2085 		if (ifp->if_flags & IFF_UP) {
   2086 			if (!(ifp->if_flags & IFF_RUNNING))
   2087 				wpi_init(ifp);
   2088 		} else {
   2089 			if (ifp->if_flags & IFF_RUNNING)
   2090 				wpi_stop(ifp, 1);
   2091 		}
   2092 		break;
   2093 
   2094 	case SIOCADDMULTI:
   2095 	case SIOCDELMULTI:
   2096 		/* XXX no h/w multicast filter? --dyoung */
   2097 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2098 			/* setup multicast filter, etc */
   2099 			error = 0;
   2100 		}
   2101 		break;
   2102 
   2103 	default:
   2104 		error = ieee80211_ioctl(ic, cmd, data);
   2105 	}
   2106 
   2107 	if (error == ENETRESET) {
   2108 		if (IS_RUNNING(ifp) &&
   2109 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2110 			wpi_init(ifp);
   2111 		error = 0;
   2112 	}
   2113 
   2114 	splx(s);
   2115 	return error;
   2116 
   2117 #undef IS_RUNNING
   2118 }
   2119 
   2120 /*
   2121  * Extract various information from EEPROM.
   2122  */
   2123 static void
   2124 wpi_read_eeprom(struct wpi_softc *sc)
   2125 {
   2126 	struct ieee80211com *ic = &sc->sc_ic;
   2127 	char domain[4];
   2128 	int i;
   2129 
   2130 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2131 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2132 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2133 
   2134 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2135 	    sc->type));
   2136 
   2137 	/* read and print regulatory domain */
   2138 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2139 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
   2140 
   2141 	/* read and print MAC address */
   2142 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2143 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2144 
   2145 	/* read the list of authorized channels */
   2146 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2147 		wpi_read_eeprom_channels(sc, i);
   2148 
   2149 	/* read the list of power groups */
   2150 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2151 		wpi_read_eeprom_group(sc, i);
   2152 }
   2153 
   2154 static void
   2155 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2156 {
   2157 	struct ieee80211com *ic = &sc->sc_ic;
   2158 	const struct wpi_chan_band *band = &wpi_bands[n];
   2159 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2160 	int chan, i;
   2161 
   2162 	wpi_read_prom_data(sc, band->addr, channels,
   2163 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2164 
   2165 	for (i = 0; i < band->nchan; i++) {
   2166 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2167 			continue;
   2168 
   2169 		chan = band->chan[i];
   2170 
   2171 		if (n == 0) {	/* 2GHz band */
   2172 			ic->ic_channels[chan].ic_freq =
   2173 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2174 			ic->ic_channels[chan].ic_flags =
   2175 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2176 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2177 
   2178 		} else {	/* 5GHz band */
   2179 			/*
   2180 			 * Some 3945abg adapters support channels 7, 8, 11
   2181 			 * and 12 in the 2GHz *and* 5GHz bands.
   2182 			 * Because of limitations in our net80211(9) stack,
   2183 			 * we can't support these channels in 5GHz band.
   2184 			 */
   2185 			if (chan <= 14)
   2186 				continue;
   2187 
   2188 			ic->ic_channels[chan].ic_freq =
   2189 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2190 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2191 		}
   2192 
   2193 		/* is active scan allowed on this channel? */
   2194 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2195 			ic->ic_channels[chan].ic_flags |=
   2196 			    IEEE80211_CHAN_PASSIVE;
   2197 		}
   2198 
   2199 		/* save maximum allowed power for this channel */
   2200 		sc->maxpwr[chan] = channels[i].maxpwr;
   2201 
   2202 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2203 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2204 	}
   2205 }
   2206 
   2207 static void
   2208 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2209 {
   2210 	struct wpi_power_group *group = &sc->groups[n];
   2211 	struct wpi_eeprom_group rgroup;
   2212 	int i;
   2213 
   2214 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2215 	    sizeof rgroup);
   2216 
   2217 	/* save power group information */
   2218 	group->chan   = rgroup.chan;
   2219 	group->maxpwr = rgroup.maxpwr;
   2220 	/* temperature at which the samples were taken */
   2221 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2222 
   2223 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2224 	    group->chan, group->maxpwr, group->temp));
   2225 
   2226 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2227 		group->samples[i].index = rgroup.samples[i].index;
   2228 		group->samples[i].power = rgroup.samples[i].power;
   2229 
   2230 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2231 		    group->samples[i].index, group->samples[i].power));
   2232 	}
   2233 }
   2234 
   2235 /*
   2236  * Send a command to the firmware.
   2237  */
   2238 static int
   2239 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2240 {
   2241 	struct wpi_tx_ring *ring = &sc->cmdq;
   2242 	struct wpi_tx_desc *desc;
   2243 	struct wpi_tx_cmd *cmd;
   2244 
   2245 	KASSERT(size <= sizeof cmd->data);
   2246 
   2247 	desc = &ring->desc[ring->cur];
   2248 	cmd = &ring->cmd[ring->cur];
   2249 
   2250 	cmd->code = code;
   2251 	cmd->flags = 0;
   2252 	cmd->qid = ring->qid;
   2253 	cmd->idx = ring->cur;
   2254 	memcpy(cmd->data, buf, size);
   2255 
   2256 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2257 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2258 		ring->cur * sizeof (struct wpi_tx_cmd));
   2259 	desc->segs[0].len  = htole32(4 + size);
   2260 
   2261 	/* kick cmd ring */
   2262 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2263 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2264 
   2265 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2266 }
   2267 
   2268 static int
   2269 wpi_wme_update(struct ieee80211com *ic)
   2270 {
   2271 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2272 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2273 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2274 	const struct wmeParams *wmep;
   2275 	struct wpi_wme_setup wme;
   2276 	int ac;
   2277 
   2278 	/* don't override default WME values if WME is not actually enabled */
   2279 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2280 		return 0;
   2281 
   2282 	wme.flags = 0;
   2283 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2284 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2285 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2286 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2287 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2288 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2289 
   2290 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2291 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2292 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2293 	}
   2294 
   2295 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2296 #undef WPI_USEC
   2297 #undef WPI_EXP2
   2298 }
   2299 
   2300 /*
   2301  * Configure h/w multi-rate retries.
   2302  */
   2303 static int
   2304 wpi_mrr_setup(struct wpi_softc *sc)
   2305 {
   2306 	struct ieee80211com *ic = &sc->sc_ic;
   2307 	struct wpi_mrr_setup mrr;
   2308 	int i, error;
   2309 
   2310 	/* CCK rates (not used with 802.11a) */
   2311 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2312 		mrr.rates[i].flags = 0;
   2313 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2314 		/* fallback to the immediate lower CCK rate (if any) */
   2315 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2316 		/* try one time at this rate before falling back to "next" */
   2317 		mrr.rates[i].ntries = 1;
   2318 	}
   2319 
   2320 	/* OFDM rates (not used with 802.11b) */
   2321 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2322 		mrr.rates[i].flags = 0;
   2323 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2324 		/* fallback to the immediate lower rate (if any) */
   2325 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2326 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2327 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2328 			WPI_OFDM6 : WPI_CCK2) :
   2329 		    i - 1;
   2330 		/* try one time at this rate before falling back to "next" */
   2331 		mrr.rates[i].ntries = 1;
   2332 	}
   2333 
   2334 	/* setup MRR for control frames */
   2335 	mrr.which = htole32(WPI_MRR_CTL);
   2336 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2337 	if (error != 0) {
   2338 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
   2339 		return error;
   2340 	}
   2341 
   2342 	/* setup MRR for data frames */
   2343 	mrr.which = htole32(WPI_MRR_DATA);
   2344 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2345 	if (error != 0) {
   2346 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
   2347 		return error;
   2348 	}
   2349 
   2350 	return 0;
   2351 }
   2352 
   2353 static void
   2354 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2355 {
   2356 	struct wpi_cmd_led led;
   2357 
   2358 	led.which = which;
   2359 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2360 	led.off = off;
   2361 	led.on = on;
   2362 
   2363 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2364 }
   2365 
   2366 static void
   2367 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2368 {
   2369 	struct wpi_cmd_tsf tsf;
   2370 	uint64_t val, mod;
   2371 
   2372 	memset(&tsf, 0, sizeof tsf);
   2373 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
   2374 	tsf.bintval = htole16(ni->ni_intval);
   2375 	tsf.lintval = htole16(10);
   2376 
   2377 	/* compute remaining time until next beacon */
   2378 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
   2379 	mod = le64toh(tsf.tstamp) % val;
   2380 	tsf.binitval = htole32((uint32_t)(val - mod));
   2381 
   2382 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
   2383 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2384 
   2385 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2386 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2387 }
   2388 
   2389 /*
   2390  * Update Tx power to match what is defined for channel `c'.
   2391  */
   2392 static int
   2393 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2394 {
   2395 	struct ieee80211com *ic = &sc->sc_ic;
   2396 	struct wpi_power_group *group;
   2397 	struct wpi_cmd_txpower txpower;
   2398 	u_int chan;
   2399 	int i;
   2400 
   2401 	/* get channel number */
   2402 	chan = ieee80211_chan2ieee(ic, c);
   2403 
   2404 	/* find the power group to which this channel belongs */
   2405 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2406 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2407 			if (chan <= group->chan)
   2408 				break;
   2409 	} else
   2410 		group = &sc->groups[0];
   2411 
   2412 	memset(&txpower, 0, sizeof txpower);
   2413 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2414 	txpower.chan = htole16(chan);
   2415 
   2416 	/* set Tx power for all OFDM and CCK rates */
   2417 	for (i = 0; i <= 11 ; i++) {
   2418 		/* retrieve Tx power for this channel/rate combination */
   2419 		int idx = wpi_get_power_index(sc, group, c,
   2420 		    wpi_ridx_to_rate[i]);
   2421 
   2422 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2423 
   2424 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2425 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2426 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2427 		} else {
   2428 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2429 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2430 		}
   2431 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2432 		    wpi_ridx_to_rate[i], idx));
   2433 	}
   2434 
   2435 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2436 }
   2437 
   2438 /*
   2439  * Determine Tx power index for a given channel/rate combination.
   2440  * This takes into account the regulatory information from EEPROM and the
   2441  * current temperature.
   2442  */
   2443 static int
   2444 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2445     struct ieee80211_channel *c, int rate)
   2446 {
   2447 /* fixed-point arithmetic division using a n-bit fractional part */
   2448 #define fdivround(a, b, n)	\
   2449 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2450 
   2451 /* linear interpolation */
   2452 #define interpolate(x, x1, y1, x2, y2, n)	\
   2453 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2454 
   2455 	struct ieee80211com *ic = &sc->sc_ic;
   2456 	struct wpi_power_sample *sample;
   2457 	int pwr, idx;
   2458 	u_int chan;
   2459 
   2460 	/* get channel number */
   2461 	chan = ieee80211_chan2ieee(ic, c);
   2462 
   2463 	/* default power is group's maximum power - 3dB */
   2464 	pwr = group->maxpwr / 2;
   2465 
   2466 	/* decrease power for highest OFDM rates to reduce distortion */
   2467 	switch (rate) {
   2468 	case 72:	/* 36Mb/s */
   2469 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2470 		break;
   2471 	case 96:	/* 48Mb/s */
   2472 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2473 		break;
   2474 	case 108:	/* 54Mb/s */
   2475 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2476 		break;
   2477 	}
   2478 
   2479 	/* never exceed channel's maximum allowed Tx power */
   2480 	pwr = min(pwr, sc->maxpwr[chan]);
   2481 
   2482 	/* retrieve power index into gain tables from samples */
   2483 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2484 		if (pwr > sample[1].power)
   2485 			break;
   2486 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2487 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2488 	    sample[1].power, sample[1].index, 19);
   2489 
   2490 	/*
   2491 	 * Adjust power index based on current temperature:
   2492 	 * - if cooler than factory-calibrated: decrease output power
   2493 	 * - if warmer than factory-calibrated: increase output power
   2494 	 */
   2495 	idx -= (sc->temp - group->temp) * 11 / 100;
   2496 
   2497 	/* decrease power for CCK rates (-5dB) */
   2498 	if (!WPI_RATE_IS_OFDM(rate))
   2499 		idx += 10;
   2500 
   2501 	/* keep power index in a valid range */
   2502 	if (idx < 0)
   2503 		return 0;
   2504 	if (idx > WPI_MAX_PWR_INDEX)
   2505 		return WPI_MAX_PWR_INDEX;
   2506 	return idx;
   2507 
   2508 #undef interpolate
   2509 #undef fdivround
   2510 }
   2511 
   2512 /*
   2513  * Build a beacon frame that the firmware will broadcast periodically in
   2514  * IBSS or HostAP modes.
   2515  */
   2516 static int
   2517 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2518 {
   2519 	struct ieee80211com *ic = &sc->sc_ic;
   2520 	struct wpi_tx_ring *ring = &sc->cmdq;
   2521 	struct wpi_tx_desc *desc;
   2522 	struct wpi_tx_data *data;
   2523 	struct wpi_tx_cmd *cmd;
   2524 	struct wpi_cmd_beacon *bcn;
   2525 	struct ieee80211_beacon_offsets bo;
   2526 	struct mbuf *m0;
   2527 	int error;
   2528 
   2529 	desc = &ring->desc[ring->cur];
   2530 	data = &ring->data[ring->cur];
   2531 
   2532 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2533 	if (m0 == NULL) {
   2534 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
   2535 		return ENOMEM;
   2536 	}
   2537 
   2538 	cmd = &ring->cmd[ring->cur];
   2539 	cmd->code = WPI_CMD_SET_BEACON;
   2540 	cmd->flags = 0;
   2541 	cmd->qid = ring->qid;
   2542 	cmd->idx = ring->cur;
   2543 
   2544 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2545 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2546 	bcn->id = WPI_ID_BROADCAST;
   2547 	bcn->ofdm_mask = 0xff;
   2548 	bcn->cck_mask = 0x0f;
   2549 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2550 	bcn->len = htole16(m0->m_pkthdr.len);
   2551 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2552 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2553 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2554 
   2555 	/* save and trim IEEE802.11 header */
   2556 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2557 	m_adj(m0, sizeof (struct ieee80211_frame));
   2558 
   2559 	/* assume beacon frame is contiguous */
   2560 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2561 		BUS_DMA_READ | BUS_DMA_NOWAIT);
   2562 	if (error) {
   2563 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2564 		m_freem(m0);
   2565 		return error;
   2566 	}
   2567 
   2568 	data->m = m0;
   2569 
   2570 	/* first scatter/gather segment is used by the beacon command */
   2571 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2572 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2573 		ring->cur * sizeof (struct wpi_tx_cmd));
   2574 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2575 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2576 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2577 
   2578 	/* kick cmd ring */
   2579 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2580 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2581 
   2582 	return 0;
   2583 }
   2584 
   2585 static int
   2586 wpi_auth(struct wpi_softc *sc)
   2587 {
   2588 	struct ieee80211com *ic = &sc->sc_ic;
   2589 	struct ieee80211_node *ni = ic->ic_bss;
   2590 	struct wpi_node_info node;
   2591 	int error;
   2592 
   2593 	/* update adapter's configuration */
   2594 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2595 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2596 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2597 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2598 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2599 		    WPI_CONFIG_24GHZ);
   2600 	}
   2601 	switch (ic->ic_curmode) {
   2602 	case IEEE80211_MODE_11A:
   2603 		sc->config.cck_mask  = 0;
   2604 		sc->config.ofdm_mask = 0x15;
   2605 		break;
   2606 	case IEEE80211_MODE_11B:
   2607 		sc->config.cck_mask  = 0x03;
   2608 		sc->config.ofdm_mask = 0;
   2609 		break;
   2610 	default:	/* assume 802.11b/g */
   2611 		sc->config.cck_mask  = 0x0f;
   2612 		sc->config.ofdm_mask = 0x15;
   2613 	}
   2614 
   2615 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2616 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2617 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2618 		sizeof (struct wpi_config), 1);
   2619 	if (error != 0) {
   2620 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2621 		return error;
   2622 	}
   2623 
   2624 	/* configuration has changed, set Tx power accordingly */
   2625 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2626 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2627 		return error;
   2628 	}
   2629 
   2630 	/* add default node */
   2631 	memset(&node, 0, sizeof node);
   2632 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2633 	node.id = WPI_ID_BSS;
   2634 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2635 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2636 	node.action = htole32(WPI_ACTION_SET_RATE);
   2637 	node.antenna = WPI_ANTENNA_BOTH;
   2638 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2639 	if (error != 0) {
   2640 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2641 		return error;
   2642 	}
   2643 
   2644 	return 0;
   2645 }
   2646 
   2647 /*
   2648  * Send a scan request to the firmware.  Since this command is huge, we map it
   2649  * into a mbuf instead of using the pre-allocated set of commands.
   2650  */
   2651 static int
   2652 wpi_scan(struct wpi_softc *sc, uint16_t flags)
   2653 {
   2654 	struct ieee80211com *ic = &sc->sc_ic;
   2655 	struct wpi_tx_ring *ring = &sc->cmdq;
   2656 	struct wpi_tx_desc *desc;
   2657 	struct wpi_tx_data *data;
   2658 	struct wpi_tx_cmd *cmd;
   2659 	struct wpi_scan_hdr *hdr;
   2660 	struct wpi_scan_chan *chan;
   2661 	struct ieee80211_frame *wh;
   2662 	struct ieee80211_rateset *rs;
   2663 	struct ieee80211_channel *c;
   2664 	enum ieee80211_phymode mode;
   2665 	uint8_t *frm;
   2666 	int nrates, pktlen, error;
   2667 
   2668 	desc = &ring->desc[ring->cur];
   2669 	data = &ring->data[ring->cur];
   2670 
   2671 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2672 	if (data->m == NULL) {
   2673 		aprint_error_dev(sc->sc_dev,
   2674 						"could not allocate mbuf for scan command\n");
   2675 		return ENOMEM;
   2676 	}
   2677 
   2678 	MCLGET(data->m, M_DONTWAIT);
   2679 	if (!(data->m->m_flags & M_EXT)) {
   2680 		m_freem(data->m);
   2681 		data->m = NULL;
   2682 		aprint_error_dev(sc->sc_dev,
   2683 						 "could not allocate mbuf for scan command\n");
   2684 		return ENOMEM;
   2685 	}
   2686 
   2687 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2688 	cmd->code = WPI_CMD_SCAN;
   2689 	cmd->flags = 0;
   2690 	cmd->qid = ring->qid;
   2691 	cmd->idx = ring->cur;
   2692 
   2693 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2694 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2695 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
   2696 	hdr->id = WPI_ID_BROADCAST;
   2697 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2698 
   2699 	/*
   2700 	 * Move to the next channel if no packets are received within 5 msecs
   2701 	 * after sending the probe request (this helps to reduce the duration
   2702 	 * of active scans).
   2703 	 */
   2704 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
   2705 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2706 
   2707 	if (flags & IEEE80211_CHAN_A) {
   2708 		hdr->crc_threshold = htole16(1);
   2709 		/* send probe requests at 6Mbps */
   2710 		hdr->rate = wpi_plcp_signal(12);
   2711 	} else {
   2712 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2713 		/* send probe requests at 1Mbps */
   2714 		hdr->rate = wpi_plcp_signal(2);
   2715 	}
   2716 
   2717 	/* for directed scans, firmware inserts the essid IE itself */
   2718 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2719 	hdr->essid[0].len = ic->ic_des_esslen;
   2720 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2721 
   2722 	/*
   2723 	 * Build a probe request frame.  Most of the following code is a
   2724 	 * copy & paste of what is done in net80211.
   2725 	 */
   2726 	wh = (struct ieee80211_frame *)(hdr + 1);
   2727 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2728 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2729 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2730 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2731 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2732 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2733 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2734 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2735 
   2736 	frm = (uint8_t *)(wh + 1);
   2737 
   2738 	/* add empty essid IE (firmware generates it for directed scans) */
   2739 	*frm++ = IEEE80211_ELEMID_SSID;
   2740 	*frm++ = 0;
   2741 
   2742 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
   2743 	rs = &ic->ic_sup_rates[mode];
   2744 
   2745 	/* add supported rates IE */
   2746 	*frm++ = IEEE80211_ELEMID_RATES;
   2747 	nrates = rs->rs_nrates;
   2748 	if (nrates > IEEE80211_RATE_SIZE)
   2749 		nrates = IEEE80211_RATE_SIZE;
   2750 	*frm++ = nrates;
   2751 	memcpy(frm, rs->rs_rates, nrates);
   2752 	frm += nrates;
   2753 
   2754 	/* add supported xrates IE */
   2755 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2756 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2757 		*frm++ = IEEE80211_ELEMID_XRATES;
   2758 		*frm++ = nrates;
   2759 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2760 		frm += nrates;
   2761 	}
   2762 
   2763 	/* setup length of probe request */
   2764 	hdr->paylen = htole16(frm - (uint8_t *)wh);
   2765 
   2766 	chan = (struct wpi_scan_chan *)frm;
   2767 	for (c  = &ic->ic_channels[1];
   2768 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   2769 		if ((c->ic_flags & flags) != flags)
   2770 			continue;
   2771 
   2772 		chan->chan = ieee80211_chan2ieee(ic, c);
   2773 		chan->flags = 0;
   2774 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2775 			chan->flags |= WPI_CHAN_ACTIVE;
   2776 			if (ic->ic_des_esslen != 0)
   2777 				chan->flags |= WPI_CHAN_DIRECT;
   2778 		}
   2779 		chan->dsp_gain = 0x6e;
   2780 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2781 			chan->rf_gain = 0x3b;
   2782 			chan->active = htole16(10);
   2783 			chan->passive = htole16(110);
   2784 		} else {
   2785 			chan->rf_gain = 0x28;
   2786 			chan->active = htole16(20);
   2787 			chan->passive = htole16(120);
   2788 		}
   2789 		hdr->nchan++;
   2790 		chan++;
   2791 
   2792 		frm += sizeof (struct wpi_scan_chan);
   2793 	}
   2794 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2795 	pktlen = frm - (uint8_t *)cmd;
   2796 
   2797 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
   2798 		NULL, BUS_DMA_NOWAIT);
   2799 	if (error) {
   2800 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2801 		m_freem(data->m);
   2802 		data->m = NULL;
   2803 		return error;
   2804 	}
   2805 
   2806 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2807 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2808 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2809 
   2810 	/* kick cmd ring */
   2811 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2812 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2813 
   2814 	return 0;	/* will be notified async. of failure/success */
   2815 }
   2816 
   2817 static int
   2818 wpi_config(struct wpi_softc *sc)
   2819 {
   2820 	struct ieee80211com *ic = &sc->sc_ic;
   2821 	struct ifnet *ifp = ic->ic_ifp;
   2822 	struct wpi_power power;
   2823 	struct wpi_bluetooth bluetooth;
   2824 	struct wpi_node_info node;
   2825 	int error;
   2826 
   2827 	memset(&power, 0, sizeof power);
   2828 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2829 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2830 	if (error != 0) {
   2831 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2832 		return error;
   2833 	}
   2834 
   2835 	/* configure bluetooth coexistence */
   2836 	memset(&bluetooth, 0, sizeof bluetooth);
   2837 	bluetooth.flags = 3;
   2838 	bluetooth.lead = 0xaa;
   2839 	bluetooth.kill = 1;
   2840 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   2841 		0);
   2842 	if (error != 0) {
   2843 		aprint_error_dev(sc->sc_dev,
   2844 			"could not configure bluetooth coexistence\n");
   2845 		return error;
   2846 	}
   2847 
   2848 	/* configure adapter */
   2849 	memset(&sc->config, 0, sizeof (struct wpi_config));
   2850 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2851 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   2852 	/*set default channel*/
   2853 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   2854 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2855 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
   2856 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2857 		    WPI_CONFIG_24GHZ);
   2858 	}
   2859 	sc->config.filter = 0;
   2860 	switch (ic->ic_opmode) {
   2861 	case IEEE80211_M_STA:
   2862 		sc->config.mode = WPI_MODE_STA;
   2863 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   2864 		break;
   2865 	case IEEE80211_M_IBSS:
   2866 	case IEEE80211_M_AHDEMO:
   2867 		sc->config.mode = WPI_MODE_IBSS;
   2868 		break;
   2869 	case IEEE80211_M_HOSTAP:
   2870 		sc->config.mode = WPI_MODE_HOSTAP;
   2871 		break;
   2872 	case IEEE80211_M_MONITOR:
   2873 		sc->config.mode = WPI_MODE_MONITOR;
   2874 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   2875 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   2876 		break;
   2877 	}
   2878 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   2879 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   2880 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2881 		sizeof (struct wpi_config), 0);
   2882 	if (error != 0) {
   2883 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   2884 		return error;
   2885 	}
   2886 
   2887 	/* configuration has changed, set Tx power accordingly */
   2888 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
   2889 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2890 		return error;
   2891 	}
   2892 
   2893 	/* add broadcast node */
   2894 	memset(&node, 0, sizeof node);
   2895 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   2896 	node.id = WPI_ID_BROADCAST;
   2897 	node.rate = wpi_plcp_signal(2);
   2898 	node.action = htole32(WPI_ACTION_SET_RATE);
   2899 	node.antenna = WPI_ANTENNA_BOTH;
   2900 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   2901 	if (error != 0) {
   2902 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   2903 		return error;
   2904 	}
   2905 
   2906 	if ((error = wpi_mrr_setup(sc)) != 0) {
   2907 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   2908 		return error;
   2909 	}
   2910 
   2911 	return 0;
   2912 }
   2913 
   2914 static void
   2915 wpi_stop_master(struct wpi_softc *sc)
   2916 {
   2917 	uint32_t tmp;
   2918 	int ntries;
   2919 
   2920 	tmp = WPI_READ(sc, WPI_RESET);
   2921 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   2922 
   2923 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2924 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   2925 		return;	/* already asleep */
   2926 
   2927 	for (ntries = 0; ntries < 100; ntries++) {
   2928 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   2929 			break;
   2930 		DELAY(10);
   2931 	}
   2932 	if (ntries == 100) {
   2933 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   2934 	}
   2935 }
   2936 
   2937 static int
   2938 wpi_power_up(struct wpi_softc *sc)
   2939 {
   2940 	uint32_t tmp;
   2941 	int ntries;
   2942 
   2943 	wpi_mem_lock(sc);
   2944 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   2945 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   2946 	wpi_mem_unlock(sc);
   2947 
   2948 	for (ntries = 0; ntries < 5000; ntries++) {
   2949 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   2950 			break;
   2951 		DELAY(10);
   2952 	}
   2953 	if (ntries == 5000) {
   2954 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
   2955 		return ETIMEDOUT;
   2956 	}
   2957 	return 0;
   2958 }
   2959 
   2960 static int
   2961 wpi_reset(struct wpi_softc *sc)
   2962 {
   2963 	uint32_t tmp;
   2964 	int ntries;
   2965 
   2966 	/* clear any pending interrupts */
   2967 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   2968 
   2969 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   2970 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   2971 
   2972 	tmp = WPI_READ(sc, WPI_CHICKEN);
   2973 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   2974 
   2975 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2976 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   2977 
   2978 	/* wait for clock stabilization */
   2979 	for (ntries = 0; ntries < 1000; ntries++) {
   2980 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   2981 			break;
   2982 		DELAY(10);
   2983 	}
   2984 	if (ntries == 1000) {
   2985 		aprint_error_dev(sc->sc_dev,
   2986 						 "timeout waiting for clock stabilization\n");
   2987 		return ETIMEDOUT;
   2988 	}
   2989 
   2990 	/* initialize EEPROM */
   2991 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   2992 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   2993 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   2994 		return EIO;
   2995 	}
   2996 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   2997 
   2998 	return 0;
   2999 }
   3000 
   3001 static void
   3002 wpi_hw_config(struct wpi_softc *sc)
   3003 {
   3004 	uint32_t rev, hw;
   3005 
   3006 	/* voodoo from the reference driver */
   3007 	hw = WPI_READ(sc, WPI_HWCONFIG);
   3008 
   3009 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   3010 	rev = PCI_REVISION(rev);
   3011 	if ((rev & 0xc0) == 0x40)
   3012 		hw |= WPI_HW_ALM_MB;
   3013 	else if (!(rev & 0x80))
   3014 		hw |= WPI_HW_ALM_MM;
   3015 
   3016 	if (sc->cap == 0x80)
   3017 		hw |= WPI_HW_SKU_MRC;
   3018 
   3019 	hw &= ~WPI_HW_REV_D;
   3020 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   3021 		hw |= WPI_HW_REV_D;
   3022 
   3023 	if (sc->type > 1)
   3024 		hw |= WPI_HW_TYPE_B;
   3025 
   3026 	DPRINTF(("setting h/w config %x\n", hw));
   3027 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   3028 }
   3029 
   3030 static int
   3031 wpi_init(struct ifnet *ifp)
   3032 {
   3033 	struct wpi_softc *sc = ifp->if_softc;
   3034 	struct ieee80211com *ic = &sc->sc_ic;
   3035 	uint32_t tmp;
   3036 	int qid, ntries, error;
   3037 
   3038 	wpi_stop(ifp,1);
   3039 	(void)wpi_reset(sc);
   3040 
   3041 	wpi_mem_lock(sc);
   3042 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   3043 	DELAY(20);
   3044 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   3045 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   3046 	wpi_mem_unlock(sc);
   3047 
   3048 	(void)wpi_power_up(sc);
   3049 	wpi_hw_config(sc);
   3050 
   3051 	/* init Rx ring */
   3052 	wpi_mem_lock(sc);
   3053 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   3054 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   3055 	    offsetof(struct wpi_shared, next));
   3056 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3057 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3058 	wpi_mem_unlock(sc);
   3059 
   3060 	/* init Tx rings */
   3061 	wpi_mem_lock(sc);
   3062 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
   3063 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
   3064 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
   3065 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3066 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3067 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3068 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3069 
   3070 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3071 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3072 
   3073 	for (qid = 0; qid < 6; qid++) {
   3074 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3075 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3076 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3077 	}
   3078 	wpi_mem_unlock(sc);
   3079 
   3080 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3081 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3082 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3083 
   3084 	/* clear any pending interrupts */
   3085 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3086 	/* enable interrupts */
   3087 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3088 
   3089 	/* not sure why/if this is necessary... */
   3090 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3091 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3092 
   3093 	if ((error = wpi_load_firmware(sc)) != 0) {
   3094 		aprint_error_dev(sc->sc_dev, "could not load firmware\n");
   3095 		goto fail1;
   3096 	}
   3097 
   3098 	/* Check the status of the radio switch */
   3099 	if (wpi_getrfkill(sc)) {
   3100 		aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
   3101 		error = EBUSY;
   3102 		goto fail1;
   3103 	}
   3104 
   3105 	/* wait for thermal sensors to calibrate */
   3106 	for (ntries = 0; ntries < 1000; ntries++) {
   3107 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3108 			break;
   3109 		DELAY(10);
   3110 	}
   3111 	if (ntries == 1000) {
   3112 		aprint_error_dev(sc->sc_dev,
   3113 						 "timeout waiting for thermal sensors calibration\n");
   3114 		error = ETIMEDOUT;
   3115 		goto fail1;
   3116 	}
   3117 
   3118 	DPRINTF(("temperature %d\n", sc->temp));
   3119 
   3120 	if ((error = wpi_config(sc)) != 0) {
   3121 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3122 		goto fail1;
   3123 	}
   3124 
   3125 	ifp->if_flags &= ~IFF_OACTIVE;
   3126 	ifp->if_flags |= IFF_RUNNING;
   3127 
   3128 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3129 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3130 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3131 	}
   3132 	else
   3133 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3134 
   3135 	return 0;
   3136 
   3137 fail1:	wpi_stop(ifp, 1);
   3138 	return error;
   3139 }
   3140 
   3141 
   3142 static void
   3143 wpi_stop(struct ifnet *ifp, int disable)
   3144 {
   3145 	struct wpi_softc *sc = ifp->if_softc;
   3146 	struct ieee80211com *ic = &sc->sc_ic;
   3147 	uint32_t tmp;
   3148 	int ac;
   3149 
   3150 	ifp->if_timer = sc->sc_tx_timer = 0;
   3151 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3152 
   3153 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3154 
   3155 	/* disable interrupts */
   3156 	WPI_WRITE(sc, WPI_MASK, 0);
   3157 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3158 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3159 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3160 
   3161 	wpi_mem_lock(sc);
   3162 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3163 	wpi_mem_unlock(sc);
   3164 
   3165 	/* reset all Tx rings */
   3166 	for (ac = 0; ac < 4; ac++)
   3167 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3168 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3169 
   3170 	/* reset Rx ring */
   3171 	wpi_reset_rx_ring(sc, &sc->rxq);
   3172 
   3173 	wpi_mem_lock(sc);
   3174 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3175 	wpi_mem_unlock(sc);
   3176 
   3177 	DELAY(5);
   3178 
   3179 	wpi_stop_master(sc);
   3180 
   3181 	tmp = WPI_READ(sc, WPI_RESET);
   3182 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3183 }
   3184 
   3185 static bool
   3186 wpi_resume(device_t dv, const pmf_qual_t *qual)
   3187 {
   3188 	struct wpi_softc *sc = device_private(dv);
   3189 
   3190 	(void)wpi_reset(sc);
   3191 
   3192 	return true;
   3193 }
   3194 
   3195 /*
   3196  * Return whether or not the radio is enabled in hardware
   3197  * (i.e. the rfkill switch is "off").
   3198  */
   3199 static int
   3200 wpi_getrfkill(struct wpi_softc *sc)
   3201 {
   3202 	uint32_t tmp;
   3203 
   3204 	wpi_mem_lock(sc);
   3205 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3206 	wpi_mem_unlock(sc);
   3207 
   3208 	return !(tmp & 0x01);
   3209 }
   3210 
   3211 static int
   3212 wpi_sysctl_radio(SYSCTLFN_ARGS)
   3213 {
   3214 	struct sysctlnode node;
   3215 	struct wpi_softc *sc;
   3216 	int val, error;
   3217 
   3218 	node = *rnode;
   3219 	sc = (struct wpi_softc *)node.sysctl_data;
   3220 
   3221 	val = !wpi_getrfkill(sc);
   3222 
   3223 	node.sysctl_data = &val;
   3224 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3225 
   3226 	if (error || newp == NULL)
   3227 		return error;
   3228 
   3229 	return 0;
   3230 }
   3231 
   3232 static void
   3233 wpi_sysctlattach(struct wpi_softc *sc)
   3234 {
   3235 	int rc;
   3236 	const struct sysctlnode *rnode;
   3237 	const struct sysctlnode *cnode;
   3238 
   3239 	struct sysctllog **clog = &sc->sc_sysctllog;
   3240 
   3241 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
   3242 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   3243 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
   3244 		goto err;
   3245 
   3246 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
   3247 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
   3248 	    SYSCTL_DESCR("wpi controls and statistics"),
   3249 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
   3250 		goto err;
   3251 
   3252 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3253 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
   3254 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
   3255 	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
   3256 		goto err;
   3257 
   3258 #ifdef WPI_DEBUG
   3259 	/* control debugging printfs */
   3260 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3261 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
   3262 	    "debug", SYSCTL_DESCR("Enable debugging output"),
   3263 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
   3264 		goto err;
   3265 #endif
   3266 
   3267 	return;
   3268 err:
   3269 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3270 }
   3271