if_wpi.c revision 1.47 1 /* $NetBSD: if_wpi.c,v 1.47 2010/04/05 07:20:28 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.47 2010/04/05 07:20:28 joerg Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45
46 #include <dev/pci/pcireg.h>
47 #include <dev/pci/pcivar.h>
48 #include <dev/pci/pcidevs.h>
49
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_ether.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_amrr.h>
60 #include <net80211/ieee80211_radiotap.h>
61
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66
67 #include <dev/firmload.h>
68
69 #include <dev/pci/if_wpireg.h>
70 #include <dev/pci/if_wpivar.h>
71
72 #ifdef WPI_DEBUG
73 #define DPRINTF(x) if (wpi_debug > 0) printf x
74 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
75 int wpi_debug = 1;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80
81 /*
82 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
83 */
84 static const struct ieee80211_rateset wpi_rateset_11a =
85 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
86
87 static const struct ieee80211_rateset wpi_rateset_11b =
88 { 4, { 2, 4, 11, 22 } };
89
90 static const struct ieee80211_rateset wpi_rateset_11g =
91 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
92
93 static once_t wpi_firmware_init;
94 static kmutex_t wpi_firmware_mutex;
95 static size_t wpi_firmware_users;
96 static uint8_t *wpi_firmware_image;
97 static size_t wpi_firmware_size;
98
99 static int wpi_match(device_t, cfdata_t, void *);
100 static void wpi_attach(device_t, device_t, void *);
101 static int wpi_detach(device_t , int);
102 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
103 void **, bus_size_t, bus_size_t, int);
104 static void wpi_dma_contig_free(struct wpi_dma_info *);
105 static int wpi_alloc_shared(struct wpi_softc *);
106 static void wpi_free_shared(struct wpi_softc *);
107 static int wpi_alloc_fwmem(struct wpi_softc *);
108 static void wpi_free_fwmem(struct wpi_softc *);
109 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
110 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
111 static int wpi_alloc_rpool(struct wpi_softc *);
112 static void wpi_free_rpool(struct wpi_softc *);
113 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
114 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
115 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
116 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
117 int);
118 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
119 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
120 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
121 static void wpi_newassoc(struct ieee80211_node *, int);
122 static int wpi_media_change(struct ifnet *);
123 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
124 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
125 static void wpi_mem_lock(struct wpi_softc *);
126 static void wpi_mem_unlock(struct wpi_softc *);
127 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
128 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
129 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
130 const uint32_t *, int);
131 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
132 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
133 static int wpi_load_firmware(struct wpi_softc *);
134 static void wpi_calib_timeout(void *);
135 static void wpi_iter_func(void *, struct ieee80211_node *);
136 static void wpi_power_calibration(struct wpi_softc *, int);
137 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
138 struct wpi_rx_data *);
139 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
140 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
141 static void wpi_notif_intr(struct wpi_softc *);
142 static int wpi_intr(void *);
143 static void wpi_read_eeprom(struct wpi_softc *);
144 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
145 static void wpi_read_eeprom_group(struct wpi_softc *, int);
146 static uint8_t wpi_plcp_signal(int);
147 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
148 struct ieee80211_node *, int);
149 static void wpi_start(struct ifnet *);
150 static void wpi_watchdog(struct ifnet *);
151 static int wpi_ioctl(struct ifnet *, u_long, void *);
152 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
153 static int wpi_wme_update(struct ieee80211com *);
154 static int wpi_mrr_setup(struct wpi_softc *);
155 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
156 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
157 static int wpi_set_txpower(struct wpi_softc *,
158 struct ieee80211_channel *, int);
159 static int wpi_get_power_index(struct wpi_softc *,
160 struct wpi_power_group *, struct ieee80211_channel *, int);
161 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
162 static int wpi_auth(struct wpi_softc *);
163 static int wpi_scan(struct wpi_softc *, uint16_t);
164 static int wpi_config(struct wpi_softc *);
165 static void wpi_stop_master(struct wpi_softc *);
166 static int wpi_power_up(struct wpi_softc *);
167 static int wpi_reset(struct wpi_softc *);
168 static void wpi_hw_config(struct wpi_softc *);
169 static int wpi_init(struct ifnet *);
170 static void wpi_stop(struct ifnet *, int);
171 static bool wpi_resume(device_t, const pmf_qual_t *);
172 static int wpi_getrfkill(struct wpi_softc *);
173 static void wpi_sysctlattach(struct wpi_softc *);
174
175 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
176 wpi_detach, NULL);
177
178 static int
179 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
180 {
181 struct pci_attach_args *pa = aux;
182
183 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
184 return 0;
185
186 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
187 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
188 return 1;
189
190 return 0;
191 }
192
193 /* Base Address Register */
194 #define WPI_PCI_BAR0 0x10
195
196 static int
197 wpi_attach_once(void)
198 {
199 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
200 return 0;
201 }
202
203 static void
204 wpi_attach(device_t parent __unused, device_t self, void *aux)
205 {
206 struct wpi_softc *sc = device_private(self);
207 struct ieee80211com *ic = &sc->sc_ic;
208 struct ifnet *ifp = &sc->sc_ec.ec_if;
209 struct pci_attach_args *pa = aux;
210 const char *intrstr;
211 char devinfo[256];
212 bus_space_tag_t memt;
213 bus_space_handle_t memh;
214 pci_intr_handle_t ih;
215 pcireg_t data;
216 int error, ac, revision;
217
218 RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
219 sc->fw_used = false;
220
221 sc->sc_dev = self;
222 sc->sc_pct = pa->pa_pc;
223 sc->sc_pcitag = pa->pa_tag;
224
225 callout_init(&sc->calib_to, 0);
226 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
227
228 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
229 revision = PCI_REVISION(pa->pa_class);
230 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
231
232 /* enable bus-mastering */
233 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
234 data |= PCI_COMMAND_MASTER_ENABLE;
235 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
236
237 /* map the register window */
238 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
239 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
240 if (error != 0) {
241 aprint_error_dev(self, "could not map memory space\n");
242 return;
243 }
244
245 sc->sc_st = memt;
246 sc->sc_sh = memh;
247 sc->sc_dmat = pa->pa_dmat;
248
249 if (pci_intr_map(pa, &ih) != 0) {
250 aprint_error_dev(self, "could not map interrupt\n");
251 return;
252 }
253
254 intrstr = pci_intr_string(sc->sc_pct, ih);
255 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
256 if (sc->sc_ih == NULL) {
257 aprint_error_dev(self, "could not establish interrupt");
258 if (intrstr != NULL)
259 aprint_error(" at %s", intrstr);
260 aprint_error("\n");
261 return;
262 }
263 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
264
265 if (wpi_reset(sc) != 0) {
266 aprint_error_dev(self, "could not reset adapter\n");
267 return;
268 }
269
270 /*
271 * Allocate DMA memory for firmware transfers.
272 */
273 if ((error = wpi_alloc_fwmem(sc)) != 0)
274 return;
275
276 /*
277 * Allocate shared page and Tx/Rx rings.
278 */
279 if ((error = wpi_alloc_shared(sc)) != 0) {
280 aprint_error_dev(self, "could not allocate shared area\n");
281 goto fail1;
282 }
283
284 if ((error = wpi_alloc_rpool(sc)) != 0) {
285 aprint_error_dev(self, "could not allocate Rx buffers\n");
286 goto fail2;
287 }
288
289 for (ac = 0; ac < 4; ac++) {
290 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
291 if (error != 0) {
292 aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
293 goto fail3;
294 }
295 }
296
297 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
298 if (error != 0) {
299 aprint_error_dev(self, "could not allocate command ring\n");
300 goto fail3;
301 }
302
303 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
304 aprint_error_dev(self, "could not allocate Rx ring\n");
305 goto fail4;
306 }
307
308 ic->ic_ifp = ifp;
309 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
310 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
311 ic->ic_state = IEEE80211_S_INIT;
312
313 /* set device capabilities */
314 ic->ic_caps =
315 IEEE80211_C_IBSS | /* IBSS mode support */
316 IEEE80211_C_WPA | /* 802.11i */
317 IEEE80211_C_MONITOR | /* monitor mode supported */
318 IEEE80211_C_TXPMGT | /* tx power management */
319 IEEE80211_C_SHSLOT | /* short slot time supported */
320 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
321 IEEE80211_C_WME; /* 802.11e */
322
323 /* read supported channels and MAC address from EEPROM */
324 wpi_read_eeprom(sc);
325
326 /* set supported .11a, .11b, .11g rates */
327 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
328 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
329 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
330
331 ic->ic_ibss_chan = &ic->ic_channels[0];
332
333 ifp->if_softc = sc;
334 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
335 ifp->if_init = wpi_init;
336 ifp->if_stop = wpi_stop;
337 ifp->if_ioctl = wpi_ioctl;
338 ifp->if_start = wpi_start;
339 ifp->if_watchdog = wpi_watchdog;
340 IFQ_SET_READY(&ifp->if_snd);
341 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
342
343 if_attach(ifp);
344 ieee80211_ifattach(ic);
345 /* override default methods */
346 ic->ic_node_alloc = wpi_node_alloc;
347 ic->ic_newassoc = wpi_newassoc;
348 ic->ic_wme.wme_update = wpi_wme_update;
349
350 /* override state transition machine */
351 sc->sc_newstate = ic->ic_newstate;
352 ic->ic_newstate = wpi_newstate;
353 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
354
355 sc->amrr.amrr_min_success_threshold = 1;
356 sc->amrr.amrr_max_success_threshold = 15;
357
358 wpi_sysctlattach(sc);
359
360 if (pmf_device_register(self, NULL, wpi_resume))
361 pmf_class_network_register(self, ifp);
362 else
363 aprint_error_dev(self, "couldn't establish power handler\n");
364
365 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
366 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
367 &sc->sc_drvbpf);
368
369 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
370 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
371 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
372
373 sc->sc_txtap_len = sizeof sc->sc_txtapu;
374 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
375 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
376
377 ieee80211_announce(ic);
378
379 return;
380
381 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
382 fail3: while (--ac >= 0)
383 wpi_free_tx_ring(sc, &sc->txq[ac]);
384 wpi_free_rpool(sc);
385 fail2: wpi_free_shared(sc);
386 fail1: wpi_free_fwmem(sc);
387 }
388
389 static int
390 wpi_detach(device_t self, int flags __unused)
391 {
392 struct wpi_softc *sc = device_private(self);
393 struct ifnet *ifp = sc->sc_ic.ic_ifp;
394 int ac;
395
396 wpi_stop(ifp, 1);
397
398 if (ifp != NULL)
399 bpf_detach(ifp);
400 ieee80211_ifdetach(&sc->sc_ic);
401 if (ifp != NULL)
402 if_detach(ifp);
403
404 for (ac = 0; ac < 4; ac++)
405 wpi_free_tx_ring(sc, &sc->txq[ac]);
406 wpi_free_tx_ring(sc, &sc->cmdq);
407 wpi_free_rx_ring(sc, &sc->rxq);
408 wpi_free_rpool(sc);
409 wpi_free_shared(sc);
410
411 if (sc->sc_ih != NULL) {
412 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
413 sc->sc_ih = NULL;
414 }
415
416 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
417
418 if (sc->fw_used) {
419 mutex_enter(&wpi_firmware_mutex);
420 if (--wpi_firmware_users == 0)
421 firmware_free(wpi_firmware_image, wpi_firmware_size);
422 mutex_exit(&wpi_firmware_mutex);
423 }
424
425 return 0;
426 }
427
428 static int
429 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
430 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
431 {
432 int nsegs, error;
433
434 dma->tag = tag;
435 dma->size = size;
436
437 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
438 if (error != 0)
439 goto fail;
440
441 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
442 flags);
443 if (error != 0)
444 goto fail;
445
446 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
447 if (error != 0)
448 goto fail;
449
450 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
451 if (error != 0)
452 goto fail;
453
454 memset(dma->vaddr, 0, size);
455
456 dma->paddr = dma->map->dm_segs[0].ds_addr;
457 if (kvap != NULL)
458 *kvap = dma->vaddr;
459
460 return 0;
461
462 fail: wpi_dma_contig_free(dma);
463 return error;
464 }
465
466 static void
467 wpi_dma_contig_free(struct wpi_dma_info *dma)
468 {
469 if (dma->map != NULL) {
470 if (dma->vaddr != NULL) {
471 bus_dmamap_unload(dma->tag, dma->map);
472 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
473 bus_dmamem_free(dma->tag, &dma->seg, 1);
474 dma->vaddr = NULL;
475 }
476 bus_dmamap_destroy(dma->tag, dma->map);
477 dma->map = NULL;
478 }
479 }
480
481 /*
482 * Allocate a shared page between host and NIC.
483 */
484 static int
485 wpi_alloc_shared(struct wpi_softc *sc)
486 {
487 int error;
488 /* must be aligned on a 4K-page boundary */
489 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
490 (void **)&sc->shared, sizeof (struct wpi_shared),
491 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
492 if (error != 0)
493 aprint_error_dev(sc->sc_dev,
494 "could not allocate shared area DMA memory\n");
495
496 return error;
497 }
498
499 static void
500 wpi_free_shared(struct wpi_softc *sc)
501 {
502 wpi_dma_contig_free(&sc->shared_dma);
503 }
504
505 /*
506 * Allocate DMA-safe memory for firmware transfer.
507 */
508 static int
509 wpi_alloc_fwmem(struct wpi_softc *sc)
510 {
511 int error;
512 /* allocate enough contiguous space to store text and data */
513 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
514 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
515 BUS_DMA_NOWAIT);
516
517 if (error != 0)
518 aprint_error_dev(sc->sc_dev,
519 "could not allocate firmware transfer area"
520 "DMA memory\n");
521 return error;
522 }
523
524 static void
525 wpi_free_fwmem(struct wpi_softc *sc)
526 {
527 wpi_dma_contig_free(&sc->fw_dma);
528 }
529
530
531 static struct wpi_rbuf *
532 wpi_alloc_rbuf(struct wpi_softc *sc)
533 {
534 struct wpi_rbuf *rbuf;
535
536 mutex_enter(&sc->rxq.freelist_mtx);
537 rbuf = SLIST_FIRST(&sc->rxq.freelist);
538 if (rbuf != NULL) {
539 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
540 sc->rxq.nb_free_entries --;
541 }
542 mutex_exit(&sc->rxq.freelist_mtx);
543
544 return rbuf;
545 }
546
547 /*
548 * This is called automatically by the network stack when the mbuf to which our
549 * Rx buffer is attached is freed.
550 */
551 static void
552 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
553 {
554 struct wpi_rbuf *rbuf = arg;
555 struct wpi_softc *sc = rbuf->sc;
556
557 /* put the buffer back in the free list */
558
559 mutex_enter(&sc->rxq.freelist_mtx);
560 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
561 mutex_exit(&sc->rxq.freelist_mtx);
562 /* No need to protect this with a mutex, see wpi_rx_intr */
563 sc->rxq.nb_free_entries ++;
564
565 if (__predict_true(m != NULL))
566 pool_cache_put(mb_cache, m);
567 }
568
569 static int
570 wpi_alloc_rpool(struct wpi_softc *sc)
571 {
572 struct wpi_rx_ring *ring = &sc->rxq;
573 struct wpi_rbuf *rbuf;
574 int i, error;
575
576 /* allocate a big chunk of DMA'able memory.. */
577 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
578 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
579 if (error != 0) {
580 aprint_normal_dev(sc->sc_dev,
581 "could not allocate Rx buffers DMA memory\n");
582 return error;
583 }
584
585 /* ..and split it into 3KB chunks */
586 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
587 SLIST_INIT(&ring->freelist);
588 for (i = 0; i < WPI_RBUF_COUNT; i++) {
589 rbuf = &ring->rbuf[i];
590 rbuf->sc = sc; /* backpointer for callbacks */
591 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
592 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
593
594 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
595 }
596
597 ring->nb_free_entries = WPI_RBUF_COUNT;
598 return 0;
599 }
600
601 static void
602 wpi_free_rpool(struct wpi_softc *sc)
603 {
604 wpi_dma_contig_free(&sc->rxq.buf_dma);
605 }
606
607 static int
608 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
609 {
610 struct wpi_rx_data *data;
611 struct wpi_rbuf *rbuf;
612 int i, error;
613
614 ring->cur = 0;
615
616 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
617 (void **)&ring->desc,
618 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
619 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
620 if (error != 0) {
621 aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
622 goto fail;
623 }
624
625 /*
626 * Setup Rx buffers.
627 */
628 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
629 data = &ring->data[i];
630
631 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
632 if (data->m == NULL) {
633 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
634 error = ENOMEM;
635 goto fail;
636 }
637 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
638 m_freem(data->m);
639 data->m = NULL;
640 aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
641 error = ENOMEM;
642 goto fail;
643 }
644 /* attach Rx buffer to mbuf */
645 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
646 rbuf);
647 data->m->m_flags |= M_EXT_RW;
648
649 ring->desc[i] = htole32(rbuf->paddr);
650 }
651
652 return 0;
653
654 fail: wpi_free_rx_ring(sc, ring);
655 return error;
656 }
657
658 static void
659 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
660 {
661 int ntries;
662
663 wpi_mem_lock(sc);
664
665 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
666 for (ntries = 0; ntries < 100; ntries++) {
667 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
668 break;
669 DELAY(10);
670 }
671 #ifdef WPI_DEBUG
672 if (ntries == 100 && wpi_debug > 0)
673 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
674 #endif
675 wpi_mem_unlock(sc);
676
677 ring->cur = 0;
678 }
679
680 static void
681 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
682 {
683 int i;
684
685 wpi_dma_contig_free(&ring->desc_dma);
686
687 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
688 if (ring->data[i].m != NULL)
689 m_freem(ring->data[i].m);
690 }
691 }
692
693 static int
694 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
695 int qid)
696 {
697 struct wpi_tx_data *data;
698 int i, error;
699
700 ring->qid = qid;
701 ring->count = count;
702 ring->queued = 0;
703 ring->cur = 0;
704
705 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
706 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
707 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
708 if (error != 0) {
709 aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
710 goto fail;
711 }
712
713 /* update shared page with ring's base address */
714 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
715
716 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
717 (void **)&ring->cmd,
718 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
719 if (error != 0) {
720 aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
721 goto fail;
722 }
723
724 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
725 M_NOWAIT);
726 if (ring->data == NULL) {
727 aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
728 goto fail;
729 }
730
731 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
732
733 for (i = 0; i < count; i++) {
734 data = &ring->data[i];
735
736 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
737 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
738 &data->map);
739 if (error != 0) {
740 aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
741 goto fail;
742 }
743 }
744
745 return 0;
746
747 fail: wpi_free_tx_ring(sc, ring);
748 return error;
749 }
750
751 static void
752 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
753 {
754 struct wpi_tx_data *data;
755 int i, ntries;
756
757 wpi_mem_lock(sc);
758
759 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
760 for (ntries = 0; ntries < 100; ntries++) {
761 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
762 break;
763 DELAY(10);
764 }
765 #ifdef WPI_DEBUG
766 if (ntries == 100 && wpi_debug > 0) {
767 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
768 ring->qid);
769 }
770 #endif
771 wpi_mem_unlock(sc);
772
773 for (i = 0; i < ring->count; i++) {
774 data = &ring->data[i];
775
776 if (data->m != NULL) {
777 bus_dmamap_unload(sc->sc_dmat, data->map);
778 m_freem(data->m);
779 data->m = NULL;
780 }
781 }
782
783 ring->queued = 0;
784 ring->cur = 0;
785 }
786
787 static void
788 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
789 {
790 struct wpi_tx_data *data;
791 int i;
792
793 wpi_dma_contig_free(&ring->desc_dma);
794 wpi_dma_contig_free(&ring->cmd_dma);
795
796 if (ring->data != NULL) {
797 for (i = 0; i < ring->count; i++) {
798 data = &ring->data[i];
799
800 if (data->m != NULL) {
801 bus_dmamap_unload(sc->sc_dmat, data->map);
802 m_freem(data->m);
803 }
804 }
805 free(ring->data, M_DEVBUF);
806 }
807 }
808
809 /*ARGUSED*/
810 static struct ieee80211_node *
811 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
812 {
813 struct wpi_node *wn;
814
815 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
816
817 return (struct ieee80211_node *)wn;
818 }
819
820 static void
821 wpi_newassoc(struct ieee80211_node *ni, int isnew)
822 {
823 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
824 int i;
825
826 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
827
828 /* set rate to some reasonable initial value */
829 for (i = ni->ni_rates.rs_nrates - 1;
830 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
831 i--);
832 ni->ni_txrate = i;
833 }
834
835 static int
836 wpi_media_change(struct ifnet *ifp)
837 {
838 int error;
839
840 error = ieee80211_media_change(ifp);
841 if (error != ENETRESET)
842 return error;
843
844 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
845 wpi_init(ifp);
846
847 return 0;
848 }
849
850 static int
851 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
852 {
853 struct ifnet *ifp = ic->ic_ifp;
854 struct wpi_softc *sc = ifp->if_softc;
855 struct ieee80211_node *ni;
856 int error;
857
858 callout_stop(&sc->calib_to);
859
860 switch (nstate) {
861 case IEEE80211_S_SCAN:
862
863 if (sc->is_scanning)
864 break;
865
866 sc->is_scanning = true;
867 ieee80211_node_table_reset(&ic->ic_scan);
868 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
869
870 /* make the link LED blink while we're scanning */
871 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
872
873 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
874 aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
875 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
876 return error;
877 }
878
879 ic->ic_state = nstate;
880 return 0;
881
882 case IEEE80211_S_ASSOC:
883 if (ic->ic_state != IEEE80211_S_RUN)
884 break;
885 /* FALLTHROUGH */
886 case IEEE80211_S_AUTH:
887 sc->config.associd = 0;
888 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
889 if ((error = wpi_auth(sc)) != 0) {
890 aprint_error_dev(sc->sc_dev,
891 "could not send authentication request\n");
892 return error;
893 }
894 break;
895
896 case IEEE80211_S_RUN:
897 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
898 /* link LED blinks while monitoring */
899 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
900 break;
901 }
902
903 ni = ic->ic_bss;
904
905 if (ic->ic_opmode != IEEE80211_M_STA) {
906 (void) wpi_auth(sc); /* XXX */
907 wpi_setup_beacon(sc, ni);
908 }
909
910 wpi_enable_tsf(sc, ni);
911
912 /* update adapter's configuration */
913 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
914 /* short preamble/slot time are negotiated when associating */
915 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
916 WPI_CONFIG_SHSLOT);
917 if (ic->ic_flags & IEEE80211_F_SHSLOT)
918 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
919 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
920 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
921 sc->config.filter |= htole32(WPI_FILTER_BSS);
922 if (ic->ic_opmode != IEEE80211_M_STA)
923 sc->config.filter |= htole32(WPI_FILTER_BEACON);
924
925 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
926
927 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
928 sc->config.flags));
929 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
930 sizeof (struct wpi_config), 1);
931 if (error != 0) {
932 aprint_error_dev(sc->sc_dev, "could not update configuration\n");
933 return error;
934 }
935
936 /* configuration has changed, set Tx power accordingly */
937 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
938 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
939 return error;
940 }
941
942 if (ic->ic_opmode == IEEE80211_M_STA) {
943 /* fake a join to init the tx rate */
944 wpi_newassoc(ni, 1);
945 }
946
947 /* start periodic calibration timer */
948 sc->calib_cnt = 0;
949 callout_schedule(&sc->calib_to, hz/2);
950
951 /* link LED always on while associated */
952 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
953 break;
954
955 case IEEE80211_S_INIT:
956 sc->is_scanning = false;
957 break;
958 }
959
960 return sc->sc_newstate(ic, nstate, arg);
961 }
962
963 /*
964 * XXX: Hack to set the current channel to the value advertised in beacons or
965 * probe responses. Only used during AP detection.
966 * XXX: Duplicated from if_iwi.c
967 */
968 static void
969 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
970 {
971 struct ieee80211_frame *wh;
972 uint8_t subtype;
973 uint8_t *frm, *efrm;
974
975 wh = mtod(m, struct ieee80211_frame *);
976
977 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
978 return;
979
980 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
981
982 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
983 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
984 return;
985
986 frm = (uint8_t *)(wh + 1);
987 efrm = mtod(m, uint8_t *) + m->m_len;
988
989 frm += 12; /* skip tstamp, bintval and capinfo fields */
990 while (frm < efrm) {
991 if (*frm == IEEE80211_ELEMID_DSPARMS)
992 #if IEEE80211_CHAN_MAX < 255
993 if (frm[2] <= IEEE80211_CHAN_MAX)
994 #endif
995 ic->ic_curchan = &ic->ic_channels[frm[2]];
996
997 frm += frm[1] + 2;
998 }
999 }
1000
1001 /*
1002 * Grab exclusive access to NIC memory.
1003 */
1004 static void
1005 wpi_mem_lock(struct wpi_softc *sc)
1006 {
1007 uint32_t tmp;
1008 int ntries;
1009
1010 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1011 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1012
1013 /* spin until we actually get the lock */
1014 for (ntries = 0; ntries < 1000; ntries++) {
1015 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1016 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1017 break;
1018 DELAY(10);
1019 }
1020 if (ntries == 1000)
1021 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1022 }
1023
1024 /*
1025 * Release lock on NIC memory.
1026 */
1027 static void
1028 wpi_mem_unlock(struct wpi_softc *sc)
1029 {
1030 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1031 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1032 }
1033
1034 static uint32_t
1035 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1036 {
1037 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1038 return WPI_READ(sc, WPI_READ_MEM_DATA);
1039 }
1040
1041 static void
1042 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1043 {
1044 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1045 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1046 }
1047
1048 static void
1049 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1050 const uint32_t *data, int wlen)
1051 {
1052 for (; wlen > 0; wlen--, data++, addr += 4)
1053 wpi_mem_write(sc, addr, *data);
1054 }
1055
1056
1057 /*
1058 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1059 * instead of using the traditional bit-bang method.
1060 */
1061 static int
1062 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1063 {
1064 uint8_t *out = data;
1065 uint32_t val;
1066 int ntries;
1067
1068 wpi_mem_lock(sc);
1069 for (; len > 0; len -= 2, addr++) {
1070 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1071
1072 for (ntries = 0; ntries < 10; ntries++) {
1073 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1074 WPI_EEPROM_READY)
1075 break;
1076 DELAY(5);
1077 }
1078 if (ntries == 10) {
1079 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1080 return ETIMEDOUT;
1081 }
1082 *out++ = val >> 16;
1083 if (len > 1)
1084 *out++ = val >> 24;
1085 }
1086 wpi_mem_unlock(sc);
1087
1088 return 0;
1089 }
1090
1091 /*
1092 * The firmware boot code is small and is intended to be copied directly into
1093 * the NIC internal memory.
1094 */
1095 int
1096 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1097 {
1098 int ntries;
1099
1100 size /= sizeof (uint32_t);
1101
1102 wpi_mem_lock(sc);
1103
1104 /* copy microcode image into NIC memory */
1105 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1106 (const uint32_t *)ucode, size);
1107
1108 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1109 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1110 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1111
1112 /* run microcode */
1113 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1114
1115 /* wait for transfer to complete */
1116 for (ntries = 0; ntries < 1000; ntries++) {
1117 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1118 break;
1119 DELAY(10);
1120 }
1121 if (ntries == 1000) {
1122 wpi_mem_unlock(sc);
1123 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1124 return ETIMEDOUT;
1125 }
1126 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1127
1128 wpi_mem_unlock(sc);
1129
1130 return 0;
1131 }
1132
1133 static int
1134 wpi_cache_firmware(struct wpi_softc *sc)
1135 {
1136 firmware_handle_t fw;
1137 int error;
1138
1139 if (sc->fw_used)
1140 return 0;
1141
1142 mutex_enter(&wpi_firmware_mutex);
1143 if (wpi_firmware_users++) {
1144 mutex_exit(&wpi_firmware_mutex);
1145 return 0;
1146 }
1147
1148 /* load firmware image from disk */
1149 if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1150 aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1151 goto fail1;
1152 }
1153
1154 wpi_firmware_size = firmware_get_size(fw);
1155
1156 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1157 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1158 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1159 WPI_FW_BOOT_TEXT_MAXSZ) {
1160 aprint_error_dev(sc->sc_dev, "invalid firmware file\n");
1161 error = EFBIG;
1162 goto fail1;
1163 }
1164
1165 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1166 aprint_error_dev(sc->sc_dev,
1167 "truncated firmware header: %zu bytes\n",
1168 wpi_firmware_size);
1169 error = EINVAL;
1170 goto fail2;
1171 }
1172
1173 wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1174 if (wpi_firmware_image == NULL) {
1175 aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1176 error = ENOMEM;
1177 goto fail1;
1178 }
1179
1180 if ((error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size)) != 0) {
1181 aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1182 goto fail2;
1183 }
1184
1185 sc->fw_used = true;
1186 firmware_close(fw);
1187 mutex_exit(&wpi_firmware_mutex);
1188
1189 return 0;
1190
1191 fail2:
1192 firmware_free(wpi_firmware_image, wpi_firmware_size);
1193 fail1:
1194 firmware_close(fw);
1195 if (--wpi_firmware_users == 0)
1196 firmware_free(wpi_firmware_image, wpi_firmware_size);
1197 mutex_exit(&wpi_firmware_mutex);
1198 return error;
1199 }
1200
1201 static int
1202 wpi_load_firmware(struct wpi_softc *sc)
1203 {
1204 struct wpi_dma_info *dma = &sc->fw_dma;
1205 struct wpi_firmware_hdr hdr;
1206 const uint8_t *init_text, *init_data, *main_text, *main_data;
1207 const uint8_t *boot_text;
1208 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1209 uint32_t boot_textsz;
1210 int error;
1211
1212 if ((error = wpi_cache_firmware(sc)) != 0)
1213 return error;
1214
1215 memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1216
1217 main_textsz = le32toh(hdr.main_textsz);
1218 main_datasz = le32toh(hdr.main_datasz);
1219 init_textsz = le32toh(hdr.init_textsz);
1220 init_datasz = le32toh(hdr.init_datasz);
1221 boot_textsz = le32toh(hdr.boot_textsz);
1222
1223 /* sanity-check firmware segments sizes */
1224 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1225 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1226 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1227 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1228 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1229 (boot_textsz & 3) != 0) {
1230 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1231 error = EINVAL;
1232 goto free_firmware;
1233 }
1234
1235 /* check that all firmware segments are present */
1236 if (wpi_firmware_size <
1237 sizeof (struct wpi_firmware_hdr) + main_textsz +
1238 main_datasz + init_textsz + init_datasz + boot_textsz) {
1239 aprint_error_dev(sc->sc_dev,
1240 "firmware file too short: %zu bytes\n", wpi_firmware_size);
1241 error = EINVAL;
1242 goto free_firmware;
1243 }
1244
1245 /* get pointers to firmware segments */
1246 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1247 main_data = main_text + main_textsz;
1248 init_text = main_data + main_datasz;
1249 init_data = init_text + init_textsz;
1250 boot_text = init_data + init_datasz;
1251
1252 /* copy initialization images into pre-allocated DMA-safe memory */
1253 memcpy(dma->vaddr, init_data, init_datasz);
1254 memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1255
1256 /* tell adapter where to find initialization images */
1257 wpi_mem_lock(sc);
1258 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1259 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1260 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1261 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1262 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1263 wpi_mem_unlock(sc);
1264
1265 /* load firmware boot code */
1266 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1267 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1268 return error;
1269 }
1270
1271 /* now press "execute" ;-) */
1272 WPI_WRITE(sc, WPI_RESET, 0);
1273
1274 /* ..and wait at most one second for adapter to initialize */
1275 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1276 /* this isn't what was supposed to happen.. */
1277 aprint_error_dev(sc->sc_dev,
1278 "timeout waiting for adapter to initialize\n");
1279 }
1280
1281 /* copy runtime images into pre-allocated DMA-safe memory */
1282 memcpy(dma->vaddr, main_data, main_datasz);
1283 memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1284
1285 /* tell adapter where to find runtime images */
1286 wpi_mem_lock(sc);
1287 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1288 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1289 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1290 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1291 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1292 wpi_mem_unlock(sc);
1293
1294 /* wait at most one second for second alive notification */
1295 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1296 /* this isn't what was supposed to happen.. */
1297 aprint_error_dev(sc->sc_dev,
1298 "timeout waiting for adapter to initialize\n");
1299 }
1300
1301 return error;
1302
1303 free_firmware:
1304 mutex_enter(&wpi_firmware_mutex);
1305 sc->fw_used = false;
1306 --wpi_firmware_users;
1307 mutex_exit(&wpi_firmware_mutex);
1308 return error;
1309 }
1310
1311 static void
1312 wpi_calib_timeout(void *arg)
1313 {
1314 struct wpi_softc *sc = arg;
1315 struct ieee80211com *ic = &sc->sc_ic;
1316 int temp, s;
1317
1318 /* automatic rate control triggered every 500ms */
1319 if (ic->ic_fixed_rate == -1) {
1320 s = splnet();
1321 if (ic->ic_opmode == IEEE80211_M_STA)
1322 wpi_iter_func(sc, ic->ic_bss);
1323 else
1324 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1325 splx(s);
1326 }
1327
1328 /* update sensor data */
1329 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1330
1331 /* automatic power calibration every 60s */
1332 if (++sc->calib_cnt >= 120) {
1333 wpi_power_calibration(sc, temp);
1334 sc->calib_cnt = 0;
1335 }
1336
1337 callout_schedule(&sc->calib_to, hz/2);
1338 }
1339
1340 static void
1341 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1342 {
1343 struct wpi_softc *sc = arg;
1344 struct wpi_node *wn = (struct wpi_node *)ni;
1345
1346 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1347 }
1348
1349 /*
1350 * This function is called periodically (every 60 seconds) to adjust output
1351 * power to temperature changes.
1352 */
1353 void
1354 wpi_power_calibration(struct wpi_softc *sc, int temp)
1355 {
1356 /* sanity-check read value */
1357 if (temp < -260 || temp > 25) {
1358 /* this can't be correct, ignore */
1359 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1360 return;
1361 }
1362
1363 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1364
1365 /* adjust Tx power if need be */
1366 if (abs(temp - sc->temp) <= 6)
1367 return;
1368
1369 sc->temp = temp;
1370
1371 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1372 /* just warn, too bad for the automatic calibration... */
1373 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1374 }
1375 }
1376
1377 static void
1378 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1379 struct wpi_rx_data *data)
1380 {
1381 struct ieee80211com *ic = &sc->sc_ic;
1382 struct ifnet *ifp = ic->ic_ifp;
1383 struct wpi_rx_ring *ring = &sc->rxq;
1384 struct wpi_rx_stat *stat;
1385 struct wpi_rx_head *head;
1386 struct wpi_rx_tail *tail;
1387 struct wpi_rbuf *rbuf;
1388 struct ieee80211_frame *wh;
1389 struct ieee80211_node *ni;
1390 struct mbuf *m, *mnew;
1391 int data_off ;
1392
1393 stat = (struct wpi_rx_stat *)(desc + 1);
1394
1395 if (stat->len > WPI_STAT_MAXLEN) {
1396 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1397 ifp->if_ierrors++;
1398 return;
1399 }
1400
1401 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1402 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1403
1404 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1405 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1406 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1407 le64toh(tail->tstamp)));
1408
1409 /*
1410 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1411 * to radiotap in monitor mode).
1412 */
1413 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1414 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1415 ifp->if_ierrors++;
1416 return;
1417 }
1418
1419 /* Compute where are the useful datas */
1420 data_off = (char*)(head + 1) - mtod(data->m, char*);
1421
1422 /*
1423 * If the number of free entry is too low
1424 * just dup the data->m socket and reuse the same rbuf entry
1425 * Note that thi test is not protected by a mutex because the
1426 * only path that causes nb_free_entries to decrease is through
1427 * this interrupt routine, which is not re-entrent.
1428 * What may not be obvious is that the safe path is if that test
1429 * evaluates as true, so nb_free_entries can grow any time.
1430 */
1431 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1432
1433 /* Prepare the mbuf for the m_dup */
1434 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1435 data->m->m_data = (char*) data->m->m_data + data_off;
1436
1437 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1438
1439 /* Restore the m_data pointer for future use */
1440 data->m->m_data = (char*) data->m->m_data - data_off;
1441
1442 if (m == NULL) {
1443 ifp->if_ierrors++;
1444 return;
1445 }
1446 } else {
1447
1448 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1449 if (mnew == NULL) {
1450 ifp->if_ierrors++;
1451 return;
1452 }
1453
1454 rbuf = wpi_alloc_rbuf(sc);
1455 KASSERT(rbuf != NULL);
1456
1457 /* attach Rx buffer to mbuf */
1458 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1459 rbuf);
1460 mnew->m_flags |= M_EXT_RW;
1461
1462 m = data->m;
1463 data->m = mnew;
1464
1465 /* update Rx descriptor */
1466 ring->desc[ring->cur] = htole32(rbuf->paddr);
1467
1468 m->m_data = (char*)m->m_data + data_off;
1469 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1470 }
1471
1472 /* finalize mbuf */
1473 m->m_pkthdr.rcvif = ifp;
1474
1475 if (ic->ic_state == IEEE80211_S_SCAN)
1476 wpi_fix_channel(ic, m);
1477
1478 if (sc->sc_drvbpf != NULL) {
1479 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1480
1481 tap->wr_flags = 0;
1482 tap->wr_chan_freq =
1483 htole16(ic->ic_channels[head->chan].ic_freq);
1484 tap->wr_chan_flags =
1485 htole16(ic->ic_channels[head->chan].ic_flags);
1486 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1487 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1488 tap->wr_tsft = tail->tstamp;
1489 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1490 switch (head->rate) {
1491 /* CCK rates */
1492 case 10: tap->wr_rate = 2; break;
1493 case 20: tap->wr_rate = 4; break;
1494 case 55: tap->wr_rate = 11; break;
1495 case 110: tap->wr_rate = 22; break;
1496 /* OFDM rates */
1497 case 0xd: tap->wr_rate = 12; break;
1498 case 0xf: tap->wr_rate = 18; break;
1499 case 0x5: tap->wr_rate = 24; break;
1500 case 0x7: tap->wr_rate = 36; break;
1501 case 0x9: tap->wr_rate = 48; break;
1502 case 0xb: tap->wr_rate = 72; break;
1503 case 0x1: tap->wr_rate = 96; break;
1504 case 0x3: tap->wr_rate = 108; break;
1505 /* unknown rate: should not happen */
1506 default: tap->wr_rate = 0;
1507 }
1508 if (le16toh(head->flags) & 0x4)
1509 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1510
1511 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1512 }
1513
1514 /* grab a reference to the source node */
1515 wh = mtod(m, struct ieee80211_frame *);
1516 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1517
1518 /* send the frame to the 802.11 layer */
1519 ieee80211_input(ic, m, ni, stat->rssi, 0);
1520
1521 /* release node reference */
1522 ieee80211_free_node(ni);
1523 }
1524
1525 static void
1526 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1527 {
1528 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1529 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1530 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1531 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1532 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1533
1534 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1535 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1536 stat->nkill, stat->rate, le32toh(stat->duration),
1537 le32toh(stat->status)));
1538
1539 /*
1540 * Update rate control statistics for the node.
1541 * XXX we should not count mgmt frames since they're always sent at
1542 * the lowest available bit-rate.
1543 */
1544 wn->amn.amn_txcnt++;
1545 if (stat->ntries > 0) {
1546 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1547 wn->amn.amn_retrycnt++;
1548 }
1549
1550 if ((le32toh(stat->status) & 0xff) != 1)
1551 ifp->if_oerrors++;
1552 else
1553 ifp->if_opackets++;
1554
1555 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1556 m_freem(txdata->m);
1557 txdata->m = NULL;
1558 ieee80211_free_node(txdata->ni);
1559 txdata->ni = NULL;
1560
1561 ring->queued--;
1562
1563 sc->sc_tx_timer = 0;
1564 ifp->if_flags &= ~IFF_OACTIVE;
1565 wpi_start(ifp);
1566 }
1567
1568 static void
1569 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1570 {
1571 struct wpi_tx_ring *ring = &sc->cmdq;
1572 struct wpi_tx_data *data;
1573
1574 if ((desc->qid & 7) != 4)
1575 return; /* not a command ack */
1576
1577 data = &ring->data[desc->idx];
1578
1579 /* if the command was mapped in a mbuf, free it */
1580 if (data->m != NULL) {
1581 bus_dmamap_unload(sc->sc_dmat, data->map);
1582 m_freem(data->m);
1583 data->m = NULL;
1584 }
1585
1586 wakeup(&ring->cmd[desc->idx]);
1587 }
1588
1589 static void
1590 wpi_notif_intr(struct wpi_softc *sc)
1591 {
1592 struct ieee80211com *ic = &sc->sc_ic;
1593 struct ifnet *ifp = ic->ic_ifp;
1594 struct wpi_rx_desc *desc;
1595 struct wpi_rx_data *data;
1596 uint32_t hw;
1597
1598 hw = le32toh(sc->shared->next);
1599 while (sc->rxq.cur != hw) {
1600 data = &sc->rxq.data[sc->rxq.cur];
1601
1602 desc = mtod(data->m, struct wpi_rx_desc *);
1603
1604 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1605 "len=%d\n", desc->qid, desc->idx, desc->flags,
1606 desc->type, le32toh(desc->len)));
1607
1608 if (!(desc->qid & 0x80)) /* reply to a command */
1609 wpi_cmd_intr(sc, desc);
1610
1611 switch (desc->type) {
1612 case WPI_RX_DONE:
1613 /* a 802.11 frame was received */
1614 wpi_rx_intr(sc, desc, data);
1615 break;
1616
1617 case WPI_TX_DONE:
1618 /* a 802.11 frame has been transmitted */
1619 wpi_tx_intr(sc, desc);
1620 break;
1621
1622 case WPI_UC_READY:
1623 {
1624 struct wpi_ucode_info *uc =
1625 (struct wpi_ucode_info *)(desc + 1);
1626
1627 /* the microcontroller is ready */
1628 DPRINTF(("microcode alive notification version %x "
1629 "alive %x\n", le32toh(uc->version),
1630 le32toh(uc->valid)));
1631
1632 if (le32toh(uc->valid) != 1) {
1633 aprint_error_dev(sc->sc_dev,
1634 "microcontroller initialization failed\n");
1635 }
1636 break;
1637 }
1638 case WPI_STATE_CHANGED:
1639 {
1640 uint32_t *status = (uint32_t *)(desc + 1);
1641
1642 /* enabled/disabled notification */
1643 DPRINTF(("state changed to %x\n", le32toh(*status)));
1644
1645 if (le32toh(*status) & 1) {
1646 /* the radio button has to be pushed */
1647 aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1648 /* turn the interface down */
1649 ifp->if_flags &= ~IFF_UP;
1650 wpi_stop(ifp, 1);
1651 return; /* no further processing */
1652 }
1653 break;
1654 }
1655 case WPI_START_SCAN:
1656 {
1657 struct wpi_start_scan *scan =
1658 (struct wpi_start_scan *)(desc + 1);
1659
1660 DPRINTFN(2, ("scanning channel %d status %x\n",
1661 scan->chan, le32toh(scan->status)));
1662
1663 /* fix current channel */
1664 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1665 break;
1666 }
1667 case WPI_STOP_SCAN:
1668 {
1669 struct wpi_stop_scan *scan =
1670 (struct wpi_stop_scan *)(desc + 1);
1671
1672 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1673 scan->nchan, scan->status, scan->chan));
1674
1675 if (scan->status == 1 && scan->chan <= 14) {
1676 /*
1677 * We just finished scanning 802.11g channels,
1678 * start scanning 802.11a ones.
1679 */
1680 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1681 break;
1682 }
1683 sc->is_scanning = false;
1684 ieee80211_end_scan(ic);
1685 break;
1686 }
1687 }
1688
1689 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1690 }
1691
1692 /* tell the firmware what we have processed */
1693 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1694 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1695 }
1696
1697 static int
1698 wpi_intr(void *arg)
1699 {
1700 struct wpi_softc *sc = arg;
1701 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1702 uint32_t r;
1703
1704 r = WPI_READ(sc, WPI_INTR);
1705 if (r == 0 || r == 0xffffffff)
1706 return 0; /* not for us */
1707
1708 DPRINTFN(5, ("interrupt reg %x\n", r));
1709
1710 /* disable interrupts */
1711 WPI_WRITE(sc, WPI_MASK, 0);
1712 /* ack interrupts */
1713 WPI_WRITE(sc, WPI_INTR, r);
1714
1715 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1716 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1717 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1718 wpi_stop(sc->sc_ic.ic_ifp, 1);
1719 return 1;
1720 }
1721
1722 if (r & WPI_RX_INTR)
1723 wpi_notif_intr(sc);
1724
1725 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1726 wakeup(sc);
1727
1728 /* re-enable interrupts */
1729 if (ifp->if_flags & IFF_UP)
1730 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1731
1732 return 1;
1733 }
1734
1735 static uint8_t
1736 wpi_plcp_signal(int rate)
1737 {
1738 switch (rate) {
1739 /* CCK rates (returned values are device-dependent) */
1740 case 2: return 10;
1741 case 4: return 20;
1742 case 11: return 55;
1743 case 22: return 110;
1744
1745 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1746 /* R1-R4, (u)ral is R4-R1 */
1747 case 12: return 0xd;
1748 case 18: return 0xf;
1749 case 24: return 0x5;
1750 case 36: return 0x7;
1751 case 48: return 0x9;
1752 case 72: return 0xb;
1753 case 96: return 0x1;
1754 case 108: return 0x3;
1755
1756 /* unsupported rates (should not get there) */
1757 default: return 0;
1758 }
1759 }
1760
1761 /* quickly determine if a given rate is CCK or OFDM */
1762 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1763
1764 static int
1765 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1766 int ac)
1767 {
1768 struct ieee80211com *ic = &sc->sc_ic;
1769 struct wpi_tx_ring *ring = &sc->txq[ac];
1770 struct wpi_tx_desc *desc;
1771 struct wpi_tx_data *data;
1772 struct wpi_tx_cmd *cmd;
1773 struct wpi_cmd_data *tx;
1774 struct ieee80211_frame *wh;
1775 struct ieee80211_key *k;
1776 const struct chanAccParams *cap;
1777 struct mbuf *mnew;
1778 int i, error, rate, hdrlen, noack = 0;
1779
1780 desc = &ring->desc[ring->cur];
1781 data = &ring->data[ring->cur];
1782
1783 wh = mtod(m0, struct ieee80211_frame *);
1784
1785 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1786 cap = &ic->ic_wme.wme_chanParams;
1787 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1788 }
1789
1790 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1791 k = ieee80211_crypto_encap(ic, ni, m0);
1792 if (k == NULL) {
1793 m_freem(m0);
1794 return ENOBUFS;
1795 }
1796
1797 /* packet header may have moved, reset our local pointer */
1798 wh = mtod(m0, struct ieee80211_frame *);
1799 }
1800
1801 hdrlen = ieee80211_anyhdrsize(wh);
1802
1803 /* pickup a rate */
1804 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1805 IEEE80211_FC0_TYPE_MGT) {
1806 /* mgmt frames are sent at the lowest available bit-rate */
1807 rate = ni->ni_rates.rs_rates[0];
1808 } else {
1809 if (ic->ic_fixed_rate != -1) {
1810 rate = ic->ic_sup_rates[ic->ic_curmode].
1811 rs_rates[ic->ic_fixed_rate];
1812 } else
1813 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1814 }
1815 rate &= IEEE80211_RATE_VAL;
1816
1817
1818 if (sc->sc_drvbpf != NULL) {
1819 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1820
1821 tap->wt_flags = 0;
1822 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1823 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1824 tap->wt_rate = rate;
1825 tap->wt_hwqueue = ac;
1826 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1827 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1828
1829 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1830 }
1831
1832 cmd = &ring->cmd[ring->cur];
1833 cmd->code = WPI_CMD_TX_DATA;
1834 cmd->flags = 0;
1835 cmd->qid = ring->qid;
1836 cmd->idx = ring->cur;
1837
1838 tx = (struct wpi_cmd_data *)cmd->data;
1839 tx->flags = 0;
1840
1841 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1842 tx->flags |= htole32(WPI_TX_NEED_ACK);
1843 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1844 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1845
1846 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1847
1848 /* retrieve destination node's id */
1849 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1850 WPI_ID_BSS;
1851
1852 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1853 IEEE80211_FC0_TYPE_MGT) {
1854 /* tell h/w to set timestamp in probe responses */
1855 if ((wh->i_fc[0] &
1856 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1857 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1858 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1859
1860 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1861 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1862 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1863 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1864 tx->timeout = htole16(3);
1865 else
1866 tx->timeout = htole16(2);
1867 } else
1868 tx->timeout = htole16(0);
1869
1870 tx->rate = wpi_plcp_signal(rate);
1871
1872 /* be very persistant at sending frames out */
1873 tx->rts_ntries = 7;
1874 tx->data_ntries = 15;
1875
1876 tx->ofdm_mask = 0xff;
1877 tx->cck_mask = 0xf;
1878 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1879
1880 tx->len = htole16(m0->m_pkthdr.len);
1881
1882 /* save and trim IEEE802.11 header */
1883 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1884 m_adj(m0, hdrlen);
1885
1886 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1887 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1888 if (error != 0 && error != EFBIG) {
1889 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1890 m_freem(m0);
1891 return error;
1892 }
1893 if (error != 0) {
1894 /* too many fragments, linearize */
1895 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1896 if (mnew == NULL) {
1897 m_freem(m0);
1898 return ENOMEM;
1899 }
1900
1901 M_COPY_PKTHDR(mnew, m0);
1902 if (m0->m_pkthdr.len > MHLEN) {
1903 MCLGET(mnew, M_DONTWAIT);
1904 if (!(mnew->m_flags & M_EXT)) {
1905 m_freem(m0);
1906 m_freem(mnew);
1907 return ENOMEM;
1908 }
1909 }
1910
1911 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1912 m_freem(m0);
1913 mnew->m_len = mnew->m_pkthdr.len;
1914 m0 = mnew;
1915
1916 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1917 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1918 if (error != 0) {
1919 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1920 error);
1921 m_freem(m0);
1922 return error;
1923 }
1924 }
1925
1926 data->m = m0;
1927 data->ni = ni;
1928
1929 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1930 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1931
1932 /* first scatter/gather segment is used by the tx data command */
1933 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1934 (1 + data->map->dm_nsegs) << 24);
1935 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1936 ring->cur * sizeof (struct wpi_tx_cmd));
1937 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1938 ((hdrlen + 3) & ~3));
1939
1940 for (i = 1; i <= data->map->dm_nsegs; i++) {
1941 desc->segs[i].addr =
1942 htole32(data->map->dm_segs[i - 1].ds_addr);
1943 desc->segs[i].len =
1944 htole32(data->map->dm_segs[i - 1].ds_len);
1945 }
1946
1947 ring->queued++;
1948
1949 /* kick ring */
1950 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1951 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1952
1953 return 0;
1954 }
1955
1956 static void
1957 wpi_start(struct ifnet *ifp)
1958 {
1959 struct wpi_softc *sc = ifp->if_softc;
1960 struct ieee80211com *ic = &sc->sc_ic;
1961 struct ieee80211_node *ni;
1962 struct ether_header *eh;
1963 struct mbuf *m0;
1964 int ac;
1965
1966 /*
1967 * net80211 may still try to send management frames even if the
1968 * IFF_RUNNING flag is not set...
1969 */
1970 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1971 return;
1972
1973 for (;;) {
1974 IF_DEQUEUE(&ic->ic_mgtq, m0);
1975 if (m0 != NULL) {
1976
1977 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1978 m0->m_pkthdr.rcvif = NULL;
1979
1980 /* management frames go into ring 0 */
1981 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1982 ifp->if_oerrors++;
1983 continue;
1984 }
1985 bpf_mtap3(ic->ic_rawbpf, m0);
1986 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1987 ifp->if_oerrors++;
1988 break;
1989 }
1990 } else {
1991 if (ic->ic_state != IEEE80211_S_RUN)
1992 break;
1993 IFQ_POLL(&ifp->if_snd, m0);
1994 if (m0 == NULL)
1995 break;
1996
1997 if (m0->m_len < sizeof (*eh) &&
1998 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
1999 ifp->if_oerrors++;
2000 continue;
2001 }
2002 eh = mtod(m0, struct ether_header *);
2003 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2004 if (ni == NULL) {
2005 m_freem(m0);
2006 ifp->if_oerrors++;
2007 continue;
2008 }
2009
2010 /* classify mbuf so we can find which tx ring to use */
2011 if (ieee80211_classify(ic, m0, ni) != 0) {
2012 m_freem(m0);
2013 ieee80211_free_node(ni);
2014 ifp->if_oerrors++;
2015 continue;
2016 }
2017
2018 /* no QoS encapsulation for EAPOL frames */
2019 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2020 M_WME_GETAC(m0) : WME_AC_BE;
2021
2022 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2023 /* there is no place left in this ring */
2024 ifp->if_flags |= IFF_OACTIVE;
2025 break;
2026 }
2027 IFQ_DEQUEUE(&ifp->if_snd, m0);
2028 bpf_mtap(ifp, m0);
2029 m0 = ieee80211_encap(ic, m0, ni);
2030 if (m0 == NULL) {
2031 ieee80211_free_node(ni);
2032 ifp->if_oerrors++;
2033 continue;
2034 }
2035 bpf_mtap3(ic->ic_rawbpf, m0);
2036 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2037 ieee80211_free_node(ni);
2038 ifp->if_oerrors++;
2039 break;
2040 }
2041 }
2042
2043 sc->sc_tx_timer = 5;
2044 ifp->if_timer = 1;
2045 }
2046 }
2047
2048 static void
2049 wpi_watchdog(struct ifnet *ifp)
2050 {
2051 struct wpi_softc *sc = ifp->if_softc;
2052
2053 ifp->if_timer = 0;
2054
2055 if (sc->sc_tx_timer > 0) {
2056 if (--sc->sc_tx_timer == 0) {
2057 aprint_error_dev(sc->sc_dev, "device timeout\n");
2058 ifp->if_oerrors++;
2059 ifp->if_flags &= ~IFF_UP;
2060 wpi_stop(ifp, 1);
2061 return;
2062 }
2063 ifp->if_timer = 1;
2064 }
2065
2066 ieee80211_watchdog(&sc->sc_ic);
2067 }
2068
2069 static int
2070 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2071 {
2072 #define IS_RUNNING(ifp) \
2073 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2074
2075 struct wpi_softc *sc = ifp->if_softc;
2076 struct ieee80211com *ic = &sc->sc_ic;
2077 int s, error = 0;
2078
2079 s = splnet();
2080
2081 switch (cmd) {
2082 case SIOCSIFFLAGS:
2083 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2084 break;
2085 if (ifp->if_flags & IFF_UP) {
2086 if (!(ifp->if_flags & IFF_RUNNING))
2087 wpi_init(ifp);
2088 } else {
2089 if (ifp->if_flags & IFF_RUNNING)
2090 wpi_stop(ifp, 1);
2091 }
2092 break;
2093
2094 case SIOCADDMULTI:
2095 case SIOCDELMULTI:
2096 /* XXX no h/w multicast filter? --dyoung */
2097 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2098 /* setup multicast filter, etc */
2099 error = 0;
2100 }
2101 break;
2102
2103 default:
2104 error = ieee80211_ioctl(ic, cmd, data);
2105 }
2106
2107 if (error == ENETRESET) {
2108 if (IS_RUNNING(ifp) &&
2109 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2110 wpi_init(ifp);
2111 error = 0;
2112 }
2113
2114 splx(s);
2115 return error;
2116
2117 #undef IS_RUNNING
2118 }
2119
2120 /*
2121 * Extract various information from EEPROM.
2122 */
2123 static void
2124 wpi_read_eeprom(struct wpi_softc *sc)
2125 {
2126 struct ieee80211com *ic = &sc->sc_ic;
2127 char domain[4];
2128 int i;
2129
2130 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2131 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2132 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2133
2134 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2135 sc->type));
2136
2137 /* read and print regulatory domain */
2138 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2139 aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2140
2141 /* read and print MAC address */
2142 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2143 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2144
2145 /* read the list of authorized channels */
2146 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2147 wpi_read_eeprom_channels(sc, i);
2148
2149 /* read the list of power groups */
2150 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2151 wpi_read_eeprom_group(sc, i);
2152 }
2153
2154 static void
2155 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2156 {
2157 struct ieee80211com *ic = &sc->sc_ic;
2158 const struct wpi_chan_band *band = &wpi_bands[n];
2159 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2160 int chan, i;
2161
2162 wpi_read_prom_data(sc, band->addr, channels,
2163 band->nchan * sizeof (struct wpi_eeprom_chan));
2164
2165 for (i = 0; i < band->nchan; i++) {
2166 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2167 continue;
2168
2169 chan = band->chan[i];
2170
2171 if (n == 0) { /* 2GHz band */
2172 ic->ic_channels[chan].ic_freq =
2173 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2174 ic->ic_channels[chan].ic_flags =
2175 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2176 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2177
2178 } else { /* 5GHz band */
2179 /*
2180 * Some 3945abg adapters support channels 7, 8, 11
2181 * and 12 in the 2GHz *and* 5GHz bands.
2182 * Because of limitations in our net80211(9) stack,
2183 * we can't support these channels in 5GHz band.
2184 */
2185 if (chan <= 14)
2186 continue;
2187
2188 ic->ic_channels[chan].ic_freq =
2189 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2190 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2191 }
2192
2193 /* is active scan allowed on this channel? */
2194 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2195 ic->ic_channels[chan].ic_flags |=
2196 IEEE80211_CHAN_PASSIVE;
2197 }
2198
2199 /* save maximum allowed power for this channel */
2200 sc->maxpwr[chan] = channels[i].maxpwr;
2201
2202 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2203 chan, channels[i].flags, sc->maxpwr[chan]));
2204 }
2205 }
2206
2207 static void
2208 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2209 {
2210 struct wpi_power_group *group = &sc->groups[n];
2211 struct wpi_eeprom_group rgroup;
2212 int i;
2213
2214 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2215 sizeof rgroup);
2216
2217 /* save power group information */
2218 group->chan = rgroup.chan;
2219 group->maxpwr = rgroup.maxpwr;
2220 /* temperature at which the samples were taken */
2221 group->temp = (int16_t)le16toh(rgroup.temp);
2222
2223 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2224 group->chan, group->maxpwr, group->temp));
2225
2226 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2227 group->samples[i].index = rgroup.samples[i].index;
2228 group->samples[i].power = rgroup.samples[i].power;
2229
2230 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2231 group->samples[i].index, group->samples[i].power));
2232 }
2233 }
2234
2235 /*
2236 * Send a command to the firmware.
2237 */
2238 static int
2239 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2240 {
2241 struct wpi_tx_ring *ring = &sc->cmdq;
2242 struct wpi_tx_desc *desc;
2243 struct wpi_tx_cmd *cmd;
2244
2245 KASSERT(size <= sizeof cmd->data);
2246
2247 desc = &ring->desc[ring->cur];
2248 cmd = &ring->cmd[ring->cur];
2249
2250 cmd->code = code;
2251 cmd->flags = 0;
2252 cmd->qid = ring->qid;
2253 cmd->idx = ring->cur;
2254 memcpy(cmd->data, buf, size);
2255
2256 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2257 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2258 ring->cur * sizeof (struct wpi_tx_cmd));
2259 desc->segs[0].len = htole32(4 + size);
2260
2261 /* kick cmd ring */
2262 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2263 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2264
2265 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2266 }
2267
2268 static int
2269 wpi_wme_update(struct ieee80211com *ic)
2270 {
2271 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2272 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2273 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2274 const struct wmeParams *wmep;
2275 struct wpi_wme_setup wme;
2276 int ac;
2277
2278 /* don't override default WME values if WME is not actually enabled */
2279 if (!(ic->ic_flags & IEEE80211_F_WME))
2280 return 0;
2281
2282 wme.flags = 0;
2283 for (ac = 0; ac < WME_NUM_AC; ac++) {
2284 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2285 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2286 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2287 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2288 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2289
2290 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2291 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2292 wme.ac[ac].cwmax, wme.ac[ac].txop));
2293 }
2294
2295 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2296 #undef WPI_USEC
2297 #undef WPI_EXP2
2298 }
2299
2300 /*
2301 * Configure h/w multi-rate retries.
2302 */
2303 static int
2304 wpi_mrr_setup(struct wpi_softc *sc)
2305 {
2306 struct ieee80211com *ic = &sc->sc_ic;
2307 struct wpi_mrr_setup mrr;
2308 int i, error;
2309
2310 /* CCK rates (not used with 802.11a) */
2311 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2312 mrr.rates[i].flags = 0;
2313 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2314 /* fallback to the immediate lower CCK rate (if any) */
2315 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2316 /* try one time at this rate before falling back to "next" */
2317 mrr.rates[i].ntries = 1;
2318 }
2319
2320 /* OFDM rates (not used with 802.11b) */
2321 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2322 mrr.rates[i].flags = 0;
2323 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2324 /* fallback to the immediate lower rate (if any) */
2325 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2326 mrr.rates[i].next = (i == WPI_OFDM6) ?
2327 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2328 WPI_OFDM6 : WPI_CCK2) :
2329 i - 1;
2330 /* try one time at this rate before falling back to "next" */
2331 mrr.rates[i].ntries = 1;
2332 }
2333
2334 /* setup MRR for control frames */
2335 mrr.which = htole32(WPI_MRR_CTL);
2336 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2337 if (error != 0) {
2338 aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2339 return error;
2340 }
2341
2342 /* setup MRR for data frames */
2343 mrr.which = htole32(WPI_MRR_DATA);
2344 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2345 if (error != 0) {
2346 aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2347 return error;
2348 }
2349
2350 return 0;
2351 }
2352
2353 static void
2354 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2355 {
2356 struct wpi_cmd_led led;
2357
2358 led.which = which;
2359 led.unit = htole32(100000); /* on/off in unit of 100ms */
2360 led.off = off;
2361 led.on = on;
2362
2363 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2364 }
2365
2366 static void
2367 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2368 {
2369 struct wpi_cmd_tsf tsf;
2370 uint64_t val, mod;
2371
2372 memset(&tsf, 0, sizeof tsf);
2373 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2374 tsf.bintval = htole16(ni->ni_intval);
2375 tsf.lintval = htole16(10);
2376
2377 /* compute remaining time until next beacon */
2378 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2379 mod = le64toh(tsf.tstamp) % val;
2380 tsf.binitval = htole32((uint32_t)(val - mod));
2381
2382 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2383 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2384
2385 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2386 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2387 }
2388
2389 /*
2390 * Update Tx power to match what is defined for channel `c'.
2391 */
2392 static int
2393 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2394 {
2395 struct ieee80211com *ic = &sc->sc_ic;
2396 struct wpi_power_group *group;
2397 struct wpi_cmd_txpower txpower;
2398 u_int chan;
2399 int i;
2400
2401 /* get channel number */
2402 chan = ieee80211_chan2ieee(ic, c);
2403
2404 /* find the power group to which this channel belongs */
2405 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2406 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2407 if (chan <= group->chan)
2408 break;
2409 } else
2410 group = &sc->groups[0];
2411
2412 memset(&txpower, 0, sizeof txpower);
2413 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2414 txpower.chan = htole16(chan);
2415
2416 /* set Tx power for all OFDM and CCK rates */
2417 for (i = 0; i <= 11 ; i++) {
2418 /* retrieve Tx power for this channel/rate combination */
2419 int idx = wpi_get_power_index(sc, group, c,
2420 wpi_ridx_to_rate[i]);
2421
2422 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2423
2424 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2425 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2426 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2427 } else {
2428 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2429 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2430 }
2431 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2432 wpi_ridx_to_rate[i], idx));
2433 }
2434
2435 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2436 }
2437
2438 /*
2439 * Determine Tx power index for a given channel/rate combination.
2440 * This takes into account the regulatory information from EEPROM and the
2441 * current temperature.
2442 */
2443 static int
2444 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2445 struct ieee80211_channel *c, int rate)
2446 {
2447 /* fixed-point arithmetic division using a n-bit fractional part */
2448 #define fdivround(a, b, n) \
2449 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2450
2451 /* linear interpolation */
2452 #define interpolate(x, x1, y1, x2, y2, n) \
2453 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2454
2455 struct ieee80211com *ic = &sc->sc_ic;
2456 struct wpi_power_sample *sample;
2457 int pwr, idx;
2458 u_int chan;
2459
2460 /* get channel number */
2461 chan = ieee80211_chan2ieee(ic, c);
2462
2463 /* default power is group's maximum power - 3dB */
2464 pwr = group->maxpwr / 2;
2465
2466 /* decrease power for highest OFDM rates to reduce distortion */
2467 switch (rate) {
2468 case 72: /* 36Mb/s */
2469 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2470 break;
2471 case 96: /* 48Mb/s */
2472 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2473 break;
2474 case 108: /* 54Mb/s */
2475 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2476 break;
2477 }
2478
2479 /* never exceed channel's maximum allowed Tx power */
2480 pwr = min(pwr, sc->maxpwr[chan]);
2481
2482 /* retrieve power index into gain tables from samples */
2483 for (sample = group->samples; sample < &group->samples[3]; sample++)
2484 if (pwr > sample[1].power)
2485 break;
2486 /* fixed-point linear interpolation using a 19-bit fractional part */
2487 idx = interpolate(pwr, sample[0].power, sample[0].index,
2488 sample[1].power, sample[1].index, 19);
2489
2490 /*
2491 * Adjust power index based on current temperature:
2492 * - if cooler than factory-calibrated: decrease output power
2493 * - if warmer than factory-calibrated: increase output power
2494 */
2495 idx -= (sc->temp - group->temp) * 11 / 100;
2496
2497 /* decrease power for CCK rates (-5dB) */
2498 if (!WPI_RATE_IS_OFDM(rate))
2499 idx += 10;
2500
2501 /* keep power index in a valid range */
2502 if (idx < 0)
2503 return 0;
2504 if (idx > WPI_MAX_PWR_INDEX)
2505 return WPI_MAX_PWR_INDEX;
2506 return idx;
2507
2508 #undef interpolate
2509 #undef fdivround
2510 }
2511
2512 /*
2513 * Build a beacon frame that the firmware will broadcast periodically in
2514 * IBSS or HostAP modes.
2515 */
2516 static int
2517 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2518 {
2519 struct ieee80211com *ic = &sc->sc_ic;
2520 struct wpi_tx_ring *ring = &sc->cmdq;
2521 struct wpi_tx_desc *desc;
2522 struct wpi_tx_data *data;
2523 struct wpi_tx_cmd *cmd;
2524 struct wpi_cmd_beacon *bcn;
2525 struct ieee80211_beacon_offsets bo;
2526 struct mbuf *m0;
2527 int error;
2528
2529 desc = &ring->desc[ring->cur];
2530 data = &ring->data[ring->cur];
2531
2532 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2533 if (m0 == NULL) {
2534 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2535 return ENOMEM;
2536 }
2537
2538 cmd = &ring->cmd[ring->cur];
2539 cmd->code = WPI_CMD_SET_BEACON;
2540 cmd->flags = 0;
2541 cmd->qid = ring->qid;
2542 cmd->idx = ring->cur;
2543
2544 bcn = (struct wpi_cmd_beacon *)cmd->data;
2545 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2546 bcn->id = WPI_ID_BROADCAST;
2547 bcn->ofdm_mask = 0xff;
2548 bcn->cck_mask = 0x0f;
2549 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2550 bcn->len = htole16(m0->m_pkthdr.len);
2551 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2552 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2553 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2554
2555 /* save and trim IEEE802.11 header */
2556 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2557 m_adj(m0, sizeof (struct ieee80211_frame));
2558
2559 /* assume beacon frame is contiguous */
2560 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2561 BUS_DMA_READ | BUS_DMA_NOWAIT);
2562 if (error) {
2563 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2564 m_freem(m0);
2565 return error;
2566 }
2567
2568 data->m = m0;
2569
2570 /* first scatter/gather segment is used by the beacon command */
2571 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2572 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2573 ring->cur * sizeof (struct wpi_tx_cmd));
2574 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2575 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2576 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2577
2578 /* kick cmd ring */
2579 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2580 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2581
2582 return 0;
2583 }
2584
2585 static int
2586 wpi_auth(struct wpi_softc *sc)
2587 {
2588 struct ieee80211com *ic = &sc->sc_ic;
2589 struct ieee80211_node *ni = ic->ic_bss;
2590 struct wpi_node_info node;
2591 int error;
2592
2593 /* update adapter's configuration */
2594 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2595 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2596 sc->config.flags = htole32(WPI_CONFIG_TSF);
2597 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2598 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2599 WPI_CONFIG_24GHZ);
2600 }
2601 switch (ic->ic_curmode) {
2602 case IEEE80211_MODE_11A:
2603 sc->config.cck_mask = 0;
2604 sc->config.ofdm_mask = 0x15;
2605 break;
2606 case IEEE80211_MODE_11B:
2607 sc->config.cck_mask = 0x03;
2608 sc->config.ofdm_mask = 0;
2609 break;
2610 default: /* assume 802.11b/g */
2611 sc->config.cck_mask = 0x0f;
2612 sc->config.ofdm_mask = 0x15;
2613 }
2614
2615 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2616 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2617 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2618 sizeof (struct wpi_config), 1);
2619 if (error != 0) {
2620 aprint_error_dev(sc->sc_dev, "could not configure\n");
2621 return error;
2622 }
2623
2624 /* configuration has changed, set Tx power accordingly */
2625 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2626 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2627 return error;
2628 }
2629
2630 /* add default node */
2631 memset(&node, 0, sizeof node);
2632 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2633 node.id = WPI_ID_BSS;
2634 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2635 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2636 node.action = htole32(WPI_ACTION_SET_RATE);
2637 node.antenna = WPI_ANTENNA_BOTH;
2638 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2639 if (error != 0) {
2640 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2641 return error;
2642 }
2643
2644 return 0;
2645 }
2646
2647 /*
2648 * Send a scan request to the firmware. Since this command is huge, we map it
2649 * into a mbuf instead of using the pre-allocated set of commands.
2650 */
2651 static int
2652 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2653 {
2654 struct ieee80211com *ic = &sc->sc_ic;
2655 struct wpi_tx_ring *ring = &sc->cmdq;
2656 struct wpi_tx_desc *desc;
2657 struct wpi_tx_data *data;
2658 struct wpi_tx_cmd *cmd;
2659 struct wpi_scan_hdr *hdr;
2660 struct wpi_scan_chan *chan;
2661 struct ieee80211_frame *wh;
2662 struct ieee80211_rateset *rs;
2663 struct ieee80211_channel *c;
2664 enum ieee80211_phymode mode;
2665 uint8_t *frm;
2666 int nrates, pktlen, error;
2667
2668 desc = &ring->desc[ring->cur];
2669 data = &ring->data[ring->cur];
2670
2671 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2672 if (data->m == NULL) {
2673 aprint_error_dev(sc->sc_dev,
2674 "could not allocate mbuf for scan command\n");
2675 return ENOMEM;
2676 }
2677
2678 MCLGET(data->m, M_DONTWAIT);
2679 if (!(data->m->m_flags & M_EXT)) {
2680 m_freem(data->m);
2681 data->m = NULL;
2682 aprint_error_dev(sc->sc_dev,
2683 "could not allocate mbuf for scan command\n");
2684 return ENOMEM;
2685 }
2686
2687 cmd = mtod(data->m, struct wpi_tx_cmd *);
2688 cmd->code = WPI_CMD_SCAN;
2689 cmd->flags = 0;
2690 cmd->qid = ring->qid;
2691 cmd->idx = ring->cur;
2692
2693 hdr = (struct wpi_scan_hdr *)cmd->data;
2694 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2695 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2696 hdr->id = WPI_ID_BROADCAST;
2697 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2698
2699 /*
2700 * Move to the next channel if no packets are received within 5 msecs
2701 * after sending the probe request (this helps to reduce the duration
2702 * of active scans).
2703 */
2704 hdr->quiet = htole16(5); /* timeout in milliseconds */
2705 hdr->plcp_threshold = htole16(1); /* min # of packets */
2706
2707 if (flags & IEEE80211_CHAN_A) {
2708 hdr->crc_threshold = htole16(1);
2709 /* send probe requests at 6Mbps */
2710 hdr->rate = wpi_plcp_signal(12);
2711 } else {
2712 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2713 /* send probe requests at 1Mbps */
2714 hdr->rate = wpi_plcp_signal(2);
2715 }
2716
2717 /* for directed scans, firmware inserts the essid IE itself */
2718 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2719 hdr->essid[0].len = ic->ic_des_esslen;
2720 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2721
2722 /*
2723 * Build a probe request frame. Most of the following code is a
2724 * copy & paste of what is done in net80211.
2725 */
2726 wh = (struct ieee80211_frame *)(hdr + 1);
2727 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2728 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2729 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2730 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2731 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2732 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2733 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2734 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2735
2736 frm = (uint8_t *)(wh + 1);
2737
2738 /* add empty essid IE (firmware generates it for directed scans) */
2739 *frm++ = IEEE80211_ELEMID_SSID;
2740 *frm++ = 0;
2741
2742 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2743 rs = &ic->ic_sup_rates[mode];
2744
2745 /* add supported rates IE */
2746 *frm++ = IEEE80211_ELEMID_RATES;
2747 nrates = rs->rs_nrates;
2748 if (nrates > IEEE80211_RATE_SIZE)
2749 nrates = IEEE80211_RATE_SIZE;
2750 *frm++ = nrates;
2751 memcpy(frm, rs->rs_rates, nrates);
2752 frm += nrates;
2753
2754 /* add supported xrates IE */
2755 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2756 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2757 *frm++ = IEEE80211_ELEMID_XRATES;
2758 *frm++ = nrates;
2759 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2760 frm += nrates;
2761 }
2762
2763 /* setup length of probe request */
2764 hdr->paylen = htole16(frm - (uint8_t *)wh);
2765
2766 chan = (struct wpi_scan_chan *)frm;
2767 for (c = &ic->ic_channels[1];
2768 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2769 if ((c->ic_flags & flags) != flags)
2770 continue;
2771
2772 chan->chan = ieee80211_chan2ieee(ic, c);
2773 chan->flags = 0;
2774 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2775 chan->flags |= WPI_CHAN_ACTIVE;
2776 if (ic->ic_des_esslen != 0)
2777 chan->flags |= WPI_CHAN_DIRECT;
2778 }
2779 chan->dsp_gain = 0x6e;
2780 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2781 chan->rf_gain = 0x3b;
2782 chan->active = htole16(10);
2783 chan->passive = htole16(110);
2784 } else {
2785 chan->rf_gain = 0x28;
2786 chan->active = htole16(20);
2787 chan->passive = htole16(120);
2788 }
2789 hdr->nchan++;
2790 chan++;
2791
2792 frm += sizeof (struct wpi_scan_chan);
2793 }
2794 hdr->len = htole16(frm - (uint8_t *)hdr);
2795 pktlen = frm - (uint8_t *)cmd;
2796
2797 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2798 NULL, BUS_DMA_NOWAIT);
2799 if (error) {
2800 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2801 m_freem(data->m);
2802 data->m = NULL;
2803 return error;
2804 }
2805
2806 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2807 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2808 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2809
2810 /* kick cmd ring */
2811 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2812 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2813
2814 return 0; /* will be notified async. of failure/success */
2815 }
2816
2817 static int
2818 wpi_config(struct wpi_softc *sc)
2819 {
2820 struct ieee80211com *ic = &sc->sc_ic;
2821 struct ifnet *ifp = ic->ic_ifp;
2822 struct wpi_power power;
2823 struct wpi_bluetooth bluetooth;
2824 struct wpi_node_info node;
2825 int error;
2826
2827 memset(&power, 0, sizeof power);
2828 power.flags = htole32(WPI_POWER_CAM | 0x8);
2829 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2830 if (error != 0) {
2831 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2832 return error;
2833 }
2834
2835 /* configure bluetooth coexistence */
2836 memset(&bluetooth, 0, sizeof bluetooth);
2837 bluetooth.flags = 3;
2838 bluetooth.lead = 0xaa;
2839 bluetooth.kill = 1;
2840 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2841 0);
2842 if (error != 0) {
2843 aprint_error_dev(sc->sc_dev,
2844 "could not configure bluetooth coexistence\n");
2845 return error;
2846 }
2847
2848 /* configure adapter */
2849 memset(&sc->config, 0, sizeof (struct wpi_config));
2850 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2851 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2852 /*set default channel*/
2853 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2854 sc->config.flags = htole32(WPI_CONFIG_TSF);
2855 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2856 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2857 WPI_CONFIG_24GHZ);
2858 }
2859 sc->config.filter = 0;
2860 switch (ic->ic_opmode) {
2861 case IEEE80211_M_STA:
2862 sc->config.mode = WPI_MODE_STA;
2863 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2864 break;
2865 case IEEE80211_M_IBSS:
2866 case IEEE80211_M_AHDEMO:
2867 sc->config.mode = WPI_MODE_IBSS;
2868 break;
2869 case IEEE80211_M_HOSTAP:
2870 sc->config.mode = WPI_MODE_HOSTAP;
2871 break;
2872 case IEEE80211_M_MONITOR:
2873 sc->config.mode = WPI_MODE_MONITOR;
2874 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2875 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2876 break;
2877 }
2878 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2879 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2880 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2881 sizeof (struct wpi_config), 0);
2882 if (error != 0) {
2883 aprint_error_dev(sc->sc_dev, "configure command failed\n");
2884 return error;
2885 }
2886
2887 /* configuration has changed, set Tx power accordingly */
2888 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2889 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2890 return error;
2891 }
2892
2893 /* add broadcast node */
2894 memset(&node, 0, sizeof node);
2895 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2896 node.id = WPI_ID_BROADCAST;
2897 node.rate = wpi_plcp_signal(2);
2898 node.action = htole32(WPI_ACTION_SET_RATE);
2899 node.antenna = WPI_ANTENNA_BOTH;
2900 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2901 if (error != 0) {
2902 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2903 return error;
2904 }
2905
2906 if ((error = wpi_mrr_setup(sc)) != 0) {
2907 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2908 return error;
2909 }
2910
2911 return 0;
2912 }
2913
2914 static void
2915 wpi_stop_master(struct wpi_softc *sc)
2916 {
2917 uint32_t tmp;
2918 int ntries;
2919
2920 tmp = WPI_READ(sc, WPI_RESET);
2921 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2922
2923 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2924 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2925 return; /* already asleep */
2926
2927 for (ntries = 0; ntries < 100; ntries++) {
2928 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2929 break;
2930 DELAY(10);
2931 }
2932 if (ntries == 100) {
2933 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2934 }
2935 }
2936
2937 static int
2938 wpi_power_up(struct wpi_softc *sc)
2939 {
2940 uint32_t tmp;
2941 int ntries;
2942
2943 wpi_mem_lock(sc);
2944 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2945 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2946 wpi_mem_unlock(sc);
2947
2948 for (ntries = 0; ntries < 5000; ntries++) {
2949 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2950 break;
2951 DELAY(10);
2952 }
2953 if (ntries == 5000) {
2954 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2955 return ETIMEDOUT;
2956 }
2957 return 0;
2958 }
2959
2960 static int
2961 wpi_reset(struct wpi_softc *sc)
2962 {
2963 uint32_t tmp;
2964 int ntries;
2965
2966 /* clear any pending interrupts */
2967 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2968
2969 tmp = WPI_READ(sc, WPI_PLL_CTL);
2970 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2971
2972 tmp = WPI_READ(sc, WPI_CHICKEN);
2973 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2974
2975 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2976 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2977
2978 /* wait for clock stabilization */
2979 for (ntries = 0; ntries < 1000; ntries++) {
2980 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2981 break;
2982 DELAY(10);
2983 }
2984 if (ntries == 1000) {
2985 aprint_error_dev(sc->sc_dev,
2986 "timeout waiting for clock stabilization\n");
2987 return ETIMEDOUT;
2988 }
2989
2990 /* initialize EEPROM */
2991 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2992 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2993 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2994 return EIO;
2995 }
2996 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2997
2998 return 0;
2999 }
3000
3001 static void
3002 wpi_hw_config(struct wpi_softc *sc)
3003 {
3004 uint32_t rev, hw;
3005
3006 /* voodoo from the reference driver */
3007 hw = WPI_READ(sc, WPI_HWCONFIG);
3008
3009 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3010 rev = PCI_REVISION(rev);
3011 if ((rev & 0xc0) == 0x40)
3012 hw |= WPI_HW_ALM_MB;
3013 else if (!(rev & 0x80))
3014 hw |= WPI_HW_ALM_MM;
3015
3016 if (sc->cap == 0x80)
3017 hw |= WPI_HW_SKU_MRC;
3018
3019 hw &= ~WPI_HW_REV_D;
3020 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3021 hw |= WPI_HW_REV_D;
3022
3023 if (sc->type > 1)
3024 hw |= WPI_HW_TYPE_B;
3025
3026 DPRINTF(("setting h/w config %x\n", hw));
3027 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3028 }
3029
3030 static int
3031 wpi_init(struct ifnet *ifp)
3032 {
3033 struct wpi_softc *sc = ifp->if_softc;
3034 struct ieee80211com *ic = &sc->sc_ic;
3035 uint32_t tmp;
3036 int qid, ntries, error;
3037
3038 wpi_stop(ifp,1);
3039 (void)wpi_reset(sc);
3040
3041 wpi_mem_lock(sc);
3042 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3043 DELAY(20);
3044 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3045 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3046 wpi_mem_unlock(sc);
3047
3048 (void)wpi_power_up(sc);
3049 wpi_hw_config(sc);
3050
3051 /* init Rx ring */
3052 wpi_mem_lock(sc);
3053 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3054 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3055 offsetof(struct wpi_shared, next));
3056 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3057 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3058 wpi_mem_unlock(sc);
3059
3060 /* init Tx rings */
3061 wpi_mem_lock(sc);
3062 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3063 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3064 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3065 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3066 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3067 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3068 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3069
3070 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3071 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3072
3073 for (qid = 0; qid < 6; qid++) {
3074 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3075 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3076 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3077 }
3078 wpi_mem_unlock(sc);
3079
3080 /* clear "radio off" and "disable command" bits (reversed logic) */
3081 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3082 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3083
3084 /* clear any pending interrupts */
3085 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3086 /* enable interrupts */
3087 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3088
3089 /* not sure why/if this is necessary... */
3090 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3091 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3092
3093 if ((error = wpi_load_firmware(sc)) != 0) {
3094 aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3095 goto fail1;
3096 }
3097
3098 /* Check the status of the radio switch */
3099 if (wpi_getrfkill(sc)) {
3100 aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3101 error = EBUSY;
3102 goto fail1;
3103 }
3104
3105 /* wait for thermal sensors to calibrate */
3106 for (ntries = 0; ntries < 1000; ntries++) {
3107 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3108 break;
3109 DELAY(10);
3110 }
3111 if (ntries == 1000) {
3112 aprint_error_dev(sc->sc_dev,
3113 "timeout waiting for thermal sensors calibration\n");
3114 error = ETIMEDOUT;
3115 goto fail1;
3116 }
3117
3118 DPRINTF(("temperature %d\n", sc->temp));
3119
3120 if ((error = wpi_config(sc)) != 0) {
3121 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3122 goto fail1;
3123 }
3124
3125 ifp->if_flags &= ~IFF_OACTIVE;
3126 ifp->if_flags |= IFF_RUNNING;
3127
3128 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3129 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3130 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3131 }
3132 else
3133 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3134
3135 return 0;
3136
3137 fail1: wpi_stop(ifp, 1);
3138 return error;
3139 }
3140
3141
3142 static void
3143 wpi_stop(struct ifnet *ifp, int disable)
3144 {
3145 struct wpi_softc *sc = ifp->if_softc;
3146 struct ieee80211com *ic = &sc->sc_ic;
3147 uint32_t tmp;
3148 int ac;
3149
3150 ifp->if_timer = sc->sc_tx_timer = 0;
3151 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3152
3153 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3154
3155 /* disable interrupts */
3156 WPI_WRITE(sc, WPI_MASK, 0);
3157 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3158 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3159 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3160
3161 wpi_mem_lock(sc);
3162 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3163 wpi_mem_unlock(sc);
3164
3165 /* reset all Tx rings */
3166 for (ac = 0; ac < 4; ac++)
3167 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3168 wpi_reset_tx_ring(sc, &sc->cmdq);
3169
3170 /* reset Rx ring */
3171 wpi_reset_rx_ring(sc, &sc->rxq);
3172
3173 wpi_mem_lock(sc);
3174 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3175 wpi_mem_unlock(sc);
3176
3177 DELAY(5);
3178
3179 wpi_stop_master(sc);
3180
3181 tmp = WPI_READ(sc, WPI_RESET);
3182 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3183 }
3184
3185 static bool
3186 wpi_resume(device_t dv, const pmf_qual_t *qual)
3187 {
3188 struct wpi_softc *sc = device_private(dv);
3189
3190 (void)wpi_reset(sc);
3191
3192 return true;
3193 }
3194
3195 /*
3196 * Return whether or not the radio is enabled in hardware
3197 * (i.e. the rfkill switch is "off").
3198 */
3199 static int
3200 wpi_getrfkill(struct wpi_softc *sc)
3201 {
3202 uint32_t tmp;
3203
3204 wpi_mem_lock(sc);
3205 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3206 wpi_mem_unlock(sc);
3207
3208 return !(tmp & 0x01);
3209 }
3210
3211 static int
3212 wpi_sysctl_radio(SYSCTLFN_ARGS)
3213 {
3214 struct sysctlnode node;
3215 struct wpi_softc *sc;
3216 int val, error;
3217
3218 node = *rnode;
3219 sc = (struct wpi_softc *)node.sysctl_data;
3220
3221 val = !wpi_getrfkill(sc);
3222
3223 node.sysctl_data = &val;
3224 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3225
3226 if (error || newp == NULL)
3227 return error;
3228
3229 return 0;
3230 }
3231
3232 static void
3233 wpi_sysctlattach(struct wpi_softc *sc)
3234 {
3235 int rc;
3236 const struct sysctlnode *rnode;
3237 const struct sysctlnode *cnode;
3238
3239 struct sysctllog **clog = &sc->sc_sysctllog;
3240
3241 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3242 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3243 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3244 goto err;
3245
3246 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3247 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3248 SYSCTL_DESCR("wpi controls and statistics"),
3249 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3250 goto err;
3251
3252 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3253 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3254 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3255 wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3256 goto err;
3257
3258 #ifdef WPI_DEBUG
3259 /* control debugging printfs */
3260 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3261 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3262 "debug", SYSCTL_DESCR("Enable debugging output"),
3263 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3264 goto err;
3265 #endif
3266
3267 return;
3268 err:
3269 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3270 }
3271