if_wpi.c revision 1.49.8.1 1 /* $NetBSD: if_wpi.c,v 1.49.8.1 2012/02/18 07:34:43 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.49.8.1 2012/02/18 07:34:43 mrg Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x) if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 { 4, { 2, 4, 11, 22 } };
90
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94 static once_t wpi_firmware_init;
95 static kmutex_t wpi_firmware_mutex;
96 static size_t wpi_firmware_users;
97 static uint8_t *wpi_firmware_image;
98 static size_t wpi_firmware_size;
99
100 static int wpi_match(device_t, cfdata_t, void *);
101 static void wpi_attach(device_t, device_t, void *);
102 static int wpi_detach(device_t , int);
103 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
104 void **, bus_size_t, bus_size_t, int);
105 static void wpi_dma_contig_free(struct wpi_dma_info *);
106 static int wpi_alloc_shared(struct wpi_softc *);
107 static void wpi_free_shared(struct wpi_softc *);
108 static int wpi_alloc_fwmem(struct wpi_softc *);
109 static void wpi_free_fwmem(struct wpi_softc *);
110 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
111 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
112 static int wpi_alloc_rpool(struct wpi_softc *);
113 static void wpi_free_rpool(struct wpi_softc *);
114 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
115 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
116 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
117 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
118 int);
119 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
120 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
121 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
122 static void wpi_newassoc(struct ieee80211_node *, int);
123 static int wpi_media_change(struct ifnet *);
124 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
125 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
126 static void wpi_mem_lock(struct wpi_softc *);
127 static void wpi_mem_unlock(struct wpi_softc *);
128 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
129 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
130 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
131 const uint32_t *, int);
132 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
133 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
134 static int wpi_load_firmware(struct wpi_softc *);
135 static void wpi_calib_timeout(void *);
136 static void wpi_iter_func(void *, struct ieee80211_node *);
137 static void wpi_power_calibration(struct wpi_softc *, int);
138 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
139 struct wpi_rx_data *);
140 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
141 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
142 static void wpi_notif_intr(struct wpi_softc *);
143 static int wpi_intr(void *);
144 static void wpi_read_eeprom(struct wpi_softc *);
145 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
146 static void wpi_read_eeprom_group(struct wpi_softc *, int);
147 static uint8_t wpi_plcp_signal(int);
148 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
149 struct ieee80211_node *, int);
150 static void wpi_start(struct ifnet *);
151 static void wpi_watchdog(struct ifnet *);
152 static int wpi_ioctl(struct ifnet *, u_long, void *);
153 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
154 static int wpi_wme_update(struct ieee80211com *);
155 static int wpi_mrr_setup(struct wpi_softc *);
156 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
157 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
158 static int wpi_set_txpower(struct wpi_softc *,
159 struct ieee80211_channel *, int);
160 static int wpi_get_power_index(struct wpi_softc *,
161 struct wpi_power_group *, struct ieee80211_channel *, int);
162 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
163 static int wpi_auth(struct wpi_softc *);
164 static int wpi_scan(struct wpi_softc *, uint16_t);
165 static int wpi_config(struct wpi_softc *);
166 static void wpi_stop_master(struct wpi_softc *);
167 static int wpi_power_up(struct wpi_softc *);
168 static int wpi_reset(struct wpi_softc *);
169 static void wpi_hw_config(struct wpi_softc *);
170 static int wpi_init(struct ifnet *);
171 static void wpi_stop(struct ifnet *, int);
172 static bool wpi_resume(device_t, const pmf_qual_t *);
173 static int wpi_getrfkill(struct wpi_softc *);
174 static void wpi_sysctlattach(struct wpi_softc *);
175
176 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
177 wpi_detach, NULL);
178
179 static int
180 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
181 {
182 struct pci_attach_args *pa = aux;
183
184 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
185 return 0;
186
187 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
188 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
189 return 1;
190
191 return 0;
192 }
193
194 /* Base Address Register */
195 #define WPI_PCI_BAR0 0x10
196
197 static int
198 wpi_attach_once(void)
199 {
200 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
201 return 0;
202 }
203
204 static void
205 wpi_attach(device_t parent __unused, device_t self, void *aux)
206 {
207 struct wpi_softc *sc = device_private(self);
208 struct ieee80211com *ic = &sc->sc_ic;
209 struct ifnet *ifp = &sc->sc_ec.ec_if;
210 struct pci_attach_args *pa = aux;
211 const char *intrstr;
212 bus_space_tag_t memt;
213 bus_space_handle_t memh;
214 pci_intr_handle_t ih;
215 pcireg_t data;
216 int error, ac;
217
218 RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
219 sc->fw_used = false;
220
221 sc->sc_dev = self;
222 sc->sc_pct = pa->pa_pc;
223 sc->sc_pcitag = pa->pa_tag;
224
225 callout_init(&sc->calib_to, 0);
226 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
227
228 pci_aprint_devinfo(pa, NULL);
229
230 /* enable bus-mastering */
231 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
232 data |= PCI_COMMAND_MASTER_ENABLE;
233 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
234
235 /* map the register window */
236 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
237 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
238 if (error != 0) {
239 aprint_error_dev(self, "could not map memory space\n");
240 return;
241 }
242
243 sc->sc_st = memt;
244 sc->sc_sh = memh;
245 sc->sc_dmat = pa->pa_dmat;
246
247 if (pci_intr_map(pa, &ih) != 0) {
248 aprint_error_dev(self, "could not map interrupt\n");
249 return;
250 }
251
252 intrstr = pci_intr_string(sc->sc_pct, ih);
253 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
254 if (sc->sc_ih == NULL) {
255 aprint_error_dev(self, "could not establish interrupt");
256 if (intrstr != NULL)
257 aprint_error(" at %s", intrstr);
258 aprint_error("\n");
259 return;
260 }
261 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
262
263 if (wpi_reset(sc) != 0) {
264 aprint_error_dev(self, "could not reset adapter\n");
265 return;
266 }
267
268 /*
269 * Allocate DMA memory for firmware transfers.
270 */
271 if ((error = wpi_alloc_fwmem(sc)) != 0)
272 return;
273
274 /*
275 * Allocate shared page and Tx/Rx rings.
276 */
277 if ((error = wpi_alloc_shared(sc)) != 0) {
278 aprint_error_dev(self, "could not allocate shared area\n");
279 goto fail1;
280 }
281
282 if ((error = wpi_alloc_rpool(sc)) != 0) {
283 aprint_error_dev(self, "could not allocate Rx buffers\n");
284 goto fail2;
285 }
286
287 for (ac = 0; ac < 4; ac++) {
288 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
289 if (error != 0) {
290 aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
291 goto fail3;
292 }
293 }
294
295 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
296 if (error != 0) {
297 aprint_error_dev(self, "could not allocate command ring\n");
298 goto fail3;
299 }
300
301 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
302 aprint_error_dev(self, "could not allocate Rx ring\n");
303 goto fail4;
304 }
305
306 ic->ic_ifp = ifp;
307 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
308 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
309 ic->ic_state = IEEE80211_S_INIT;
310
311 /* set device capabilities */
312 ic->ic_caps =
313 IEEE80211_C_IBSS | /* IBSS mode support */
314 IEEE80211_C_WPA | /* 802.11i */
315 IEEE80211_C_MONITOR | /* monitor mode supported */
316 IEEE80211_C_TXPMGT | /* tx power management */
317 IEEE80211_C_SHSLOT | /* short slot time supported */
318 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
319 IEEE80211_C_WME; /* 802.11e */
320
321 /* read supported channels and MAC address from EEPROM */
322 wpi_read_eeprom(sc);
323
324 /* set supported .11a, .11b, .11g rates */
325 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
326 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
327 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
328
329 ic->ic_ibss_chan = &ic->ic_channels[0];
330
331 ifp->if_softc = sc;
332 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
333 ifp->if_init = wpi_init;
334 ifp->if_stop = wpi_stop;
335 ifp->if_ioctl = wpi_ioctl;
336 ifp->if_start = wpi_start;
337 ifp->if_watchdog = wpi_watchdog;
338 IFQ_SET_READY(&ifp->if_snd);
339 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
340
341 if_attach(ifp);
342 ieee80211_ifattach(ic);
343 /* override default methods */
344 ic->ic_node_alloc = wpi_node_alloc;
345 ic->ic_newassoc = wpi_newassoc;
346 ic->ic_wme.wme_update = wpi_wme_update;
347
348 /* override state transition machine */
349 sc->sc_newstate = ic->ic_newstate;
350 ic->ic_newstate = wpi_newstate;
351 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
352
353 sc->amrr.amrr_min_success_threshold = 1;
354 sc->amrr.amrr_max_success_threshold = 15;
355
356 wpi_sysctlattach(sc);
357
358 if (pmf_device_register(self, NULL, wpi_resume))
359 pmf_class_network_register(self, ifp);
360 else
361 aprint_error_dev(self, "couldn't establish power handler\n");
362
363 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
364 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
365 &sc->sc_drvbpf);
366
367 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
368 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
369 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
370
371 sc->sc_txtap_len = sizeof sc->sc_txtapu;
372 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
373 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
374
375 ieee80211_announce(ic);
376
377 return;
378
379 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
380 fail3: while (--ac >= 0)
381 wpi_free_tx_ring(sc, &sc->txq[ac]);
382 wpi_free_rpool(sc);
383 fail2: wpi_free_shared(sc);
384 fail1: wpi_free_fwmem(sc);
385 }
386
387 static int
388 wpi_detach(device_t self, int flags __unused)
389 {
390 struct wpi_softc *sc = device_private(self);
391 struct ifnet *ifp = sc->sc_ic.ic_ifp;
392 int ac;
393
394 wpi_stop(ifp, 1);
395
396 if (ifp != NULL)
397 bpf_detach(ifp);
398 ieee80211_ifdetach(&sc->sc_ic);
399 if (ifp != NULL)
400 if_detach(ifp);
401
402 for (ac = 0; ac < 4; ac++)
403 wpi_free_tx_ring(sc, &sc->txq[ac]);
404 wpi_free_tx_ring(sc, &sc->cmdq);
405 wpi_free_rx_ring(sc, &sc->rxq);
406 wpi_free_rpool(sc);
407 wpi_free_shared(sc);
408
409 if (sc->sc_ih != NULL) {
410 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
411 sc->sc_ih = NULL;
412 }
413
414 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
415
416 if (sc->fw_used) {
417 mutex_enter(&wpi_firmware_mutex);
418 if (--wpi_firmware_users == 0)
419 firmware_free(wpi_firmware_image, wpi_firmware_size);
420 mutex_exit(&wpi_firmware_mutex);
421 }
422
423 return 0;
424 }
425
426 static int
427 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
428 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
429 {
430 int nsegs, error;
431
432 dma->tag = tag;
433 dma->size = size;
434
435 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
436 if (error != 0)
437 goto fail;
438
439 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
440 flags);
441 if (error != 0)
442 goto fail;
443
444 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
445 if (error != 0)
446 goto fail;
447
448 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
449 if (error != 0)
450 goto fail;
451
452 memset(dma->vaddr, 0, size);
453
454 dma->paddr = dma->map->dm_segs[0].ds_addr;
455 if (kvap != NULL)
456 *kvap = dma->vaddr;
457
458 return 0;
459
460 fail: wpi_dma_contig_free(dma);
461 return error;
462 }
463
464 static void
465 wpi_dma_contig_free(struct wpi_dma_info *dma)
466 {
467 if (dma->map != NULL) {
468 if (dma->vaddr != NULL) {
469 bus_dmamap_unload(dma->tag, dma->map);
470 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
471 bus_dmamem_free(dma->tag, &dma->seg, 1);
472 dma->vaddr = NULL;
473 }
474 bus_dmamap_destroy(dma->tag, dma->map);
475 dma->map = NULL;
476 }
477 }
478
479 /*
480 * Allocate a shared page between host and NIC.
481 */
482 static int
483 wpi_alloc_shared(struct wpi_softc *sc)
484 {
485 int error;
486 /* must be aligned on a 4K-page boundary */
487 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
488 (void **)&sc->shared, sizeof (struct wpi_shared),
489 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
490 if (error != 0)
491 aprint_error_dev(sc->sc_dev,
492 "could not allocate shared area DMA memory\n");
493
494 return error;
495 }
496
497 static void
498 wpi_free_shared(struct wpi_softc *sc)
499 {
500 wpi_dma_contig_free(&sc->shared_dma);
501 }
502
503 /*
504 * Allocate DMA-safe memory for firmware transfer.
505 */
506 static int
507 wpi_alloc_fwmem(struct wpi_softc *sc)
508 {
509 int error;
510 /* allocate enough contiguous space to store text and data */
511 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
512 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
513 BUS_DMA_NOWAIT);
514
515 if (error != 0)
516 aprint_error_dev(sc->sc_dev,
517 "could not allocate firmware transfer area"
518 "DMA memory\n");
519 return error;
520 }
521
522 static void
523 wpi_free_fwmem(struct wpi_softc *sc)
524 {
525 wpi_dma_contig_free(&sc->fw_dma);
526 }
527
528
529 static struct wpi_rbuf *
530 wpi_alloc_rbuf(struct wpi_softc *sc)
531 {
532 struct wpi_rbuf *rbuf;
533
534 mutex_enter(&sc->rxq.freelist_mtx);
535 rbuf = SLIST_FIRST(&sc->rxq.freelist);
536 if (rbuf != NULL) {
537 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
538 sc->rxq.nb_free_entries --;
539 }
540 mutex_exit(&sc->rxq.freelist_mtx);
541
542 return rbuf;
543 }
544
545 /*
546 * This is called automatically by the network stack when the mbuf to which our
547 * Rx buffer is attached is freed.
548 */
549 static void
550 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
551 {
552 struct wpi_rbuf *rbuf = arg;
553 struct wpi_softc *sc = rbuf->sc;
554
555 /* put the buffer back in the free list */
556
557 mutex_enter(&sc->rxq.freelist_mtx);
558 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
559 mutex_exit(&sc->rxq.freelist_mtx);
560 /* No need to protect this with a mutex, see wpi_rx_intr */
561 sc->rxq.nb_free_entries ++;
562
563 if (__predict_true(m != NULL))
564 pool_cache_put(mb_cache, m);
565 }
566
567 static int
568 wpi_alloc_rpool(struct wpi_softc *sc)
569 {
570 struct wpi_rx_ring *ring = &sc->rxq;
571 struct wpi_rbuf *rbuf;
572 int i, error;
573
574 /* allocate a big chunk of DMA'able memory.. */
575 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
576 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
577 if (error != 0) {
578 aprint_normal_dev(sc->sc_dev,
579 "could not allocate Rx buffers DMA memory\n");
580 return error;
581 }
582
583 /* ..and split it into 3KB chunks */
584 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
585 SLIST_INIT(&ring->freelist);
586 for (i = 0; i < WPI_RBUF_COUNT; i++) {
587 rbuf = &ring->rbuf[i];
588 rbuf->sc = sc; /* backpointer for callbacks */
589 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
590 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
591
592 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
593 }
594
595 ring->nb_free_entries = WPI_RBUF_COUNT;
596 return 0;
597 }
598
599 static void
600 wpi_free_rpool(struct wpi_softc *sc)
601 {
602 wpi_dma_contig_free(&sc->rxq.buf_dma);
603 }
604
605 static int
606 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
607 {
608 struct wpi_rx_data *data;
609 struct wpi_rbuf *rbuf;
610 int i, error;
611
612 ring->cur = 0;
613
614 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
615 (void **)&ring->desc,
616 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
617 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
618 if (error != 0) {
619 aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
620 goto fail;
621 }
622
623 /*
624 * Setup Rx buffers.
625 */
626 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
627 data = &ring->data[i];
628
629 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
630 if (data->m == NULL) {
631 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
632 error = ENOMEM;
633 goto fail;
634 }
635 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
636 m_freem(data->m);
637 data->m = NULL;
638 aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
639 error = ENOMEM;
640 goto fail;
641 }
642 /* attach Rx buffer to mbuf */
643 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
644 rbuf);
645 data->m->m_flags |= M_EXT_RW;
646
647 ring->desc[i] = htole32(rbuf->paddr);
648 }
649
650 return 0;
651
652 fail: wpi_free_rx_ring(sc, ring);
653 return error;
654 }
655
656 static void
657 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
658 {
659 int ntries;
660
661 wpi_mem_lock(sc);
662
663 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
664 for (ntries = 0; ntries < 100; ntries++) {
665 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
666 break;
667 DELAY(10);
668 }
669 #ifdef WPI_DEBUG
670 if (ntries == 100 && wpi_debug > 0)
671 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
672 #endif
673 wpi_mem_unlock(sc);
674
675 ring->cur = 0;
676 }
677
678 static void
679 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
680 {
681 int i;
682
683 wpi_dma_contig_free(&ring->desc_dma);
684
685 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
686 if (ring->data[i].m != NULL)
687 m_freem(ring->data[i].m);
688 }
689 }
690
691 static int
692 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
693 int qid)
694 {
695 struct wpi_tx_data *data;
696 int i, error;
697
698 ring->qid = qid;
699 ring->count = count;
700 ring->queued = 0;
701 ring->cur = 0;
702
703 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
704 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
705 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
706 if (error != 0) {
707 aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
708 goto fail;
709 }
710
711 /* update shared page with ring's base address */
712 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
713
714 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
715 (void **)&ring->cmd,
716 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
717 if (error != 0) {
718 aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
719 goto fail;
720 }
721
722 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
723 M_NOWAIT);
724 if (ring->data == NULL) {
725 aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
726 goto fail;
727 }
728
729 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
730
731 for (i = 0; i < count; i++) {
732 data = &ring->data[i];
733
734 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
735 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
736 &data->map);
737 if (error != 0) {
738 aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
739 goto fail;
740 }
741 }
742
743 return 0;
744
745 fail: wpi_free_tx_ring(sc, ring);
746 return error;
747 }
748
749 static void
750 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
751 {
752 struct wpi_tx_data *data;
753 int i, ntries;
754
755 wpi_mem_lock(sc);
756
757 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
758 for (ntries = 0; ntries < 100; ntries++) {
759 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
760 break;
761 DELAY(10);
762 }
763 #ifdef WPI_DEBUG
764 if (ntries == 100 && wpi_debug > 0) {
765 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
766 ring->qid);
767 }
768 #endif
769 wpi_mem_unlock(sc);
770
771 for (i = 0; i < ring->count; i++) {
772 data = &ring->data[i];
773
774 if (data->m != NULL) {
775 bus_dmamap_unload(sc->sc_dmat, data->map);
776 m_freem(data->m);
777 data->m = NULL;
778 }
779 }
780
781 ring->queued = 0;
782 ring->cur = 0;
783 }
784
785 static void
786 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
787 {
788 struct wpi_tx_data *data;
789 int i;
790
791 wpi_dma_contig_free(&ring->desc_dma);
792 wpi_dma_contig_free(&ring->cmd_dma);
793
794 if (ring->data != NULL) {
795 for (i = 0; i < ring->count; i++) {
796 data = &ring->data[i];
797
798 if (data->m != NULL) {
799 bus_dmamap_unload(sc->sc_dmat, data->map);
800 m_freem(data->m);
801 }
802 }
803 free(ring->data, M_DEVBUF);
804 }
805 }
806
807 /*ARGUSED*/
808 static struct ieee80211_node *
809 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
810 {
811 struct wpi_node *wn;
812
813 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
814
815 return (struct ieee80211_node *)wn;
816 }
817
818 static void
819 wpi_newassoc(struct ieee80211_node *ni, int isnew)
820 {
821 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
822 int i;
823
824 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
825
826 /* set rate to some reasonable initial value */
827 for (i = ni->ni_rates.rs_nrates - 1;
828 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
829 i--);
830 ni->ni_txrate = i;
831 }
832
833 static int
834 wpi_media_change(struct ifnet *ifp)
835 {
836 int error;
837
838 error = ieee80211_media_change(ifp);
839 if (error != ENETRESET)
840 return error;
841
842 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
843 wpi_init(ifp);
844
845 return 0;
846 }
847
848 static int
849 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
850 {
851 struct ifnet *ifp = ic->ic_ifp;
852 struct wpi_softc *sc = ifp->if_softc;
853 struct ieee80211_node *ni;
854 int error;
855
856 callout_stop(&sc->calib_to);
857
858 switch (nstate) {
859 case IEEE80211_S_SCAN:
860
861 if (sc->is_scanning)
862 break;
863
864 sc->is_scanning = true;
865 ieee80211_node_table_reset(&ic->ic_scan);
866 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
867
868 /* make the link LED blink while we're scanning */
869 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
870
871 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
872 aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
873 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
874 return error;
875 }
876
877 ic->ic_state = nstate;
878 return 0;
879
880 case IEEE80211_S_ASSOC:
881 if (ic->ic_state != IEEE80211_S_RUN)
882 break;
883 /* FALLTHROUGH */
884 case IEEE80211_S_AUTH:
885 sc->config.associd = 0;
886 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
887 if ((error = wpi_auth(sc)) != 0) {
888 aprint_error_dev(sc->sc_dev,
889 "could not send authentication request\n");
890 return error;
891 }
892 break;
893
894 case IEEE80211_S_RUN:
895 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
896 /* link LED blinks while monitoring */
897 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
898 break;
899 }
900
901 ni = ic->ic_bss;
902
903 if (ic->ic_opmode != IEEE80211_M_STA) {
904 (void) wpi_auth(sc); /* XXX */
905 wpi_setup_beacon(sc, ni);
906 }
907
908 wpi_enable_tsf(sc, ni);
909
910 /* update adapter's configuration */
911 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
912 /* short preamble/slot time are negotiated when associating */
913 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
914 WPI_CONFIG_SHSLOT);
915 if (ic->ic_flags & IEEE80211_F_SHSLOT)
916 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
917 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
918 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
919 sc->config.filter |= htole32(WPI_FILTER_BSS);
920 if (ic->ic_opmode != IEEE80211_M_STA)
921 sc->config.filter |= htole32(WPI_FILTER_BEACON);
922
923 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
924
925 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
926 sc->config.flags));
927 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
928 sizeof (struct wpi_config), 1);
929 if (error != 0) {
930 aprint_error_dev(sc->sc_dev, "could not update configuration\n");
931 return error;
932 }
933
934 /* configuration has changed, set Tx power accordingly */
935 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
936 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
937 return error;
938 }
939
940 if (ic->ic_opmode == IEEE80211_M_STA) {
941 /* fake a join to init the tx rate */
942 wpi_newassoc(ni, 1);
943 }
944
945 /* start periodic calibration timer */
946 sc->calib_cnt = 0;
947 callout_schedule(&sc->calib_to, hz/2);
948
949 /* link LED always on while associated */
950 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
951 break;
952
953 case IEEE80211_S_INIT:
954 sc->is_scanning = false;
955 break;
956 }
957
958 return sc->sc_newstate(ic, nstate, arg);
959 }
960
961 /*
962 * XXX: Hack to set the current channel to the value advertised in beacons or
963 * probe responses. Only used during AP detection.
964 * XXX: Duplicated from if_iwi.c
965 */
966 static void
967 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
968 {
969 struct ieee80211_frame *wh;
970 uint8_t subtype;
971 uint8_t *frm, *efrm;
972
973 wh = mtod(m, struct ieee80211_frame *);
974
975 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
976 return;
977
978 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
979
980 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
981 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
982 return;
983
984 frm = (uint8_t *)(wh + 1);
985 efrm = mtod(m, uint8_t *) + m->m_len;
986
987 frm += 12; /* skip tstamp, bintval and capinfo fields */
988 while (frm < efrm) {
989 if (*frm == IEEE80211_ELEMID_DSPARMS)
990 #if IEEE80211_CHAN_MAX < 255
991 if (frm[2] <= IEEE80211_CHAN_MAX)
992 #endif
993 ic->ic_curchan = &ic->ic_channels[frm[2]];
994
995 frm += frm[1] + 2;
996 }
997 }
998
999 /*
1000 * Grab exclusive access to NIC memory.
1001 */
1002 static void
1003 wpi_mem_lock(struct wpi_softc *sc)
1004 {
1005 uint32_t tmp;
1006 int ntries;
1007
1008 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1009 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1010
1011 /* spin until we actually get the lock */
1012 for (ntries = 0; ntries < 1000; ntries++) {
1013 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1014 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1015 break;
1016 DELAY(10);
1017 }
1018 if (ntries == 1000)
1019 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1020 }
1021
1022 /*
1023 * Release lock on NIC memory.
1024 */
1025 static void
1026 wpi_mem_unlock(struct wpi_softc *sc)
1027 {
1028 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1029 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1030 }
1031
1032 static uint32_t
1033 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1034 {
1035 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1036 return WPI_READ(sc, WPI_READ_MEM_DATA);
1037 }
1038
1039 static void
1040 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1041 {
1042 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1043 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1044 }
1045
1046 static void
1047 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1048 const uint32_t *data, int wlen)
1049 {
1050 for (; wlen > 0; wlen--, data++, addr += 4)
1051 wpi_mem_write(sc, addr, *data);
1052 }
1053
1054
1055 /*
1056 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1057 * instead of using the traditional bit-bang method.
1058 */
1059 static int
1060 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1061 {
1062 uint8_t *out = data;
1063 uint32_t val;
1064 int ntries;
1065
1066 wpi_mem_lock(sc);
1067 for (; len > 0; len -= 2, addr++) {
1068 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1069
1070 for (ntries = 0; ntries < 10; ntries++) {
1071 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1072 WPI_EEPROM_READY)
1073 break;
1074 DELAY(5);
1075 }
1076 if (ntries == 10) {
1077 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1078 return ETIMEDOUT;
1079 }
1080 *out++ = val >> 16;
1081 if (len > 1)
1082 *out++ = val >> 24;
1083 }
1084 wpi_mem_unlock(sc);
1085
1086 return 0;
1087 }
1088
1089 /*
1090 * The firmware boot code is small and is intended to be copied directly into
1091 * the NIC internal memory.
1092 */
1093 int
1094 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1095 {
1096 int ntries;
1097
1098 size /= sizeof (uint32_t);
1099
1100 wpi_mem_lock(sc);
1101
1102 /* copy microcode image into NIC memory */
1103 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1104 (const uint32_t *)ucode, size);
1105
1106 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1107 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1108 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1109
1110 /* run microcode */
1111 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1112
1113 /* wait for transfer to complete */
1114 for (ntries = 0; ntries < 1000; ntries++) {
1115 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1116 break;
1117 DELAY(10);
1118 }
1119 if (ntries == 1000) {
1120 wpi_mem_unlock(sc);
1121 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1122 return ETIMEDOUT;
1123 }
1124 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1125
1126 wpi_mem_unlock(sc);
1127
1128 return 0;
1129 }
1130
1131 static int
1132 wpi_cache_firmware(struct wpi_softc *sc)
1133 {
1134 firmware_handle_t fw;
1135 int error;
1136
1137 if (sc->fw_used)
1138 return 0;
1139
1140 mutex_enter(&wpi_firmware_mutex);
1141 if (wpi_firmware_users++) {
1142 mutex_exit(&wpi_firmware_mutex);
1143 return 0;
1144 }
1145
1146 /* load firmware image from disk */
1147 if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw)) != 0) {
1148 aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1149 goto fail1;
1150 }
1151
1152 wpi_firmware_size = firmware_get_size(fw);
1153
1154 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1155 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1156 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1157 WPI_FW_BOOT_TEXT_MAXSZ) {
1158 aprint_error_dev(sc->sc_dev, "invalid firmware file\n");
1159 error = EFBIG;
1160 goto fail1;
1161 }
1162
1163 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1164 aprint_error_dev(sc->sc_dev,
1165 "truncated firmware header: %zu bytes\n",
1166 wpi_firmware_size);
1167 error = EINVAL;
1168 goto fail2;
1169 }
1170
1171 wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1172 if (wpi_firmware_image == NULL) {
1173 aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1174 error = ENOMEM;
1175 goto fail1;
1176 }
1177
1178 if ((error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size)) != 0) {
1179 aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1180 goto fail2;
1181 }
1182
1183 sc->fw_used = true;
1184 firmware_close(fw);
1185 mutex_exit(&wpi_firmware_mutex);
1186
1187 return 0;
1188
1189 fail2:
1190 firmware_free(wpi_firmware_image, wpi_firmware_size);
1191 fail1:
1192 firmware_close(fw);
1193 if (--wpi_firmware_users == 0)
1194 firmware_free(wpi_firmware_image, wpi_firmware_size);
1195 mutex_exit(&wpi_firmware_mutex);
1196 return error;
1197 }
1198
1199 static int
1200 wpi_load_firmware(struct wpi_softc *sc)
1201 {
1202 struct wpi_dma_info *dma = &sc->fw_dma;
1203 struct wpi_firmware_hdr hdr;
1204 const uint8_t *init_text, *init_data, *main_text, *main_data;
1205 const uint8_t *boot_text;
1206 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1207 uint32_t boot_textsz;
1208 int error;
1209
1210 if ((error = wpi_cache_firmware(sc)) != 0)
1211 return error;
1212
1213 memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1214
1215 main_textsz = le32toh(hdr.main_textsz);
1216 main_datasz = le32toh(hdr.main_datasz);
1217 init_textsz = le32toh(hdr.init_textsz);
1218 init_datasz = le32toh(hdr.init_datasz);
1219 boot_textsz = le32toh(hdr.boot_textsz);
1220
1221 /* sanity-check firmware segments sizes */
1222 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1223 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1224 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1225 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1226 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1227 (boot_textsz & 3) != 0) {
1228 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1229 error = EINVAL;
1230 goto free_firmware;
1231 }
1232
1233 /* check that all firmware segments are present */
1234 if (wpi_firmware_size <
1235 sizeof (struct wpi_firmware_hdr) + main_textsz +
1236 main_datasz + init_textsz + init_datasz + boot_textsz) {
1237 aprint_error_dev(sc->sc_dev,
1238 "firmware file too short: %zu bytes\n", wpi_firmware_size);
1239 error = EINVAL;
1240 goto free_firmware;
1241 }
1242
1243 /* get pointers to firmware segments */
1244 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1245 main_data = main_text + main_textsz;
1246 init_text = main_data + main_datasz;
1247 init_data = init_text + init_textsz;
1248 boot_text = init_data + init_datasz;
1249
1250 /* copy initialization images into pre-allocated DMA-safe memory */
1251 memcpy(dma->vaddr, init_data, init_datasz);
1252 memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1253
1254 /* tell adapter where to find initialization images */
1255 wpi_mem_lock(sc);
1256 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1257 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1258 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1259 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1260 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1261 wpi_mem_unlock(sc);
1262
1263 /* load firmware boot code */
1264 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1265 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1266 return error;
1267 }
1268
1269 /* now press "execute" ;-) */
1270 WPI_WRITE(sc, WPI_RESET, 0);
1271
1272 /* ..and wait at most one second for adapter to initialize */
1273 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1274 /* this isn't what was supposed to happen.. */
1275 aprint_error_dev(sc->sc_dev,
1276 "timeout waiting for adapter to initialize\n");
1277 }
1278
1279 /* copy runtime images into pre-allocated DMA-safe memory */
1280 memcpy(dma->vaddr, main_data, main_datasz);
1281 memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1282
1283 /* tell adapter where to find runtime images */
1284 wpi_mem_lock(sc);
1285 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1286 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1287 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1288 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1289 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1290 wpi_mem_unlock(sc);
1291
1292 /* wait at most one second for second alive notification */
1293 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1294 /* this isn't what was supposed to happen.. */
1295 aprint_error_dev(sc->sc_dev,
1296 "timeout waiting for adapter to initialize\n");
1297 }
1298
1299 return error;
1300
1301 free_firmware:
1302 mutex_enter(&wpi_firmware_mutex);
1303 sc->fw_used = false;
1304 --wpi_firmware_users;
1305 mutex_exit(&wpi_firmware_mutex);
1306 return error;
1307 }
1308
1309 static void
1310 wpi_calib_timeout(void *arg)
1311 {
1312 struct wpi_softc *sc = arg;
1313 struct ieee80211com *ic = &sc->sc_ic;
1314 int temp, s;
1315
1316 /* automatic rate control triggered every 500ms */
1317 if (ic->ic_fixed_rate == -1) {
1318 s = splnet();
1319 if (ic->ic_opmode == IEEE80211_M_STA)
1320 wpi_iter_func(sc, ic->ic_bss);
1321 else
1322 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1323 splx(s);
1324 }
1325
1326 /* update sensor data */
1327 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1328
1329 /* automatic power calibration every 60s */
1330 if (++sc->calib_cnt >= 120) {
1331 wpi_power_calibration(sc, temp);
1332 sc->calib_cnt = 0;
1333 }
1334
1335 callout_schedule(&sc->calib_to, hz/2);
1336 }
1337
1338 static void
1339 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1340 {
1341 struct wpi_softc *sc = arg;
1342 struct wpi_node *wn = (struct wpi_node *)ni;
1343
1344 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1345 }
1346
1347 /*
1348 * This function is called periodically (every 60 seconds) to adjust output
1349 * power to temperature changes.
1350 */
1351 void
1352 wpi_power_calibration(struct wpi_softc *sc, int temp)
1353 {
1354 /* sanity-check read value */
1355 if (temp < -260 || temp > 25) {
1356 /* this can't be correct, ignore */
1357 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1358 return;
1359 }
1360
1361 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1362
1363 /* adjust Tx power if need be */
1364 if (abs(temp - sc->temp) <= 6)
1365 return;
1366
1367 sc->temp = temp;
1368
1369 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1370 /* just warn, too bad for the automatic calibration... */
1371 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1372 }
1373 }
1374
1375 static void
1376 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1377 struct wpi_rx_data *data)
1378 {
1379 struct ieee80211com *ic = &sc->sc_ic;
1380 struct ifnet *ifp = ic->ic_ifp;
1381 struct wpi_rx_ring *ring = &sc->rxq;
1382 struct wpi_rx_stat *stat;
1383 struct wpi_rx_head *head;
1384 struct wpi_rx_tail *tail;
1385 struct wpi_rbuf *rbuf;
1386 struct ieee80211_frame *wh;
1387 struct ieee80211_node *ni;
1388 struct mbuf *m, *mnew;
1389 int data_off ;
1390
1391 stat = (struct wpi_rx_stat *)(desc + 1);
1392
1393 if (stat->len > WPI_STAT_MAXLEN) {
1394 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1395 ifp->if_ierrors++;
1396 return;
1397 }
1398
1399 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1400 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1401
1402 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1403 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1404 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1405 le64toh(tail->tstamp)));
1406
1407 /*
1408 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1409 * to radiotap in monitor mode).
1410 */
1411 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1412 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1413 ifp->if_ierrors++;
1414 return;
1415 }
1416
1417 /* Compute where are the useful datas */
1418 data_off = (char*)(head + 1) - mtod(data->m, char*);
1419
1420 /*
1421 * If the number of free entry is too low
1422 * just dup the data->m socket and reuse the same rbuf entry
1423 * Note that thi test is not protected by a mutex because the
1424 * only path that causes nb_free_entries to decrease is through
1425 * this interrupt routine, which is not re-entrent.
1426 * What may not be obvious is that the safe path is if that test
1427 * evaluates as true, so nb_free_entries can grow any time.
1428 */
1429 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1430
1431 /* Prepare the mbuf for the m_dup */
1432 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1433 data->m->m_data = (char*) data->m->m_data + data_off;
1434
1435 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1436
1437 /* Restore the m_data pointer for future use */
1438 data->m->m_data = (char*) data->m->m_data - data_off;
1439
1440 if (m == NULL) {
1441 ifp->if_ierrors++;
1442 return;
1443 }
1444 } else {
1445
1446 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1447 if (mnew == NULL) {
1448 ifp->if_ierrors++;
1449 return;
1450 }
1451
1452 rbuf = wpi_alloc_rbuf(sc);
1453 KASSERT(rbuf != NULL);
1454
1455 /* attach Rx buffer to mbuf */
1456 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1457 rbuf);
1458 mnew->m_flags |= M_EXT_RW;
1459
1460 m = data->m;
1461 data->m = mnew;
1462
1463 /* update Rx descriptor */
1464 ring->desc[ring->cur] = htole32(rbuf->paddr);
1465
1466 m->m_data = (char*)m->m_data + data_off;
1467 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1468 }
1469
1470 /* finalize mbuf */
1471 m->m_pkthdr.rcvif = ifp;
1472
1473 if (ic->ic_state == IEEE80211_S_SCAN)
1474 wpi_fix_channel(ic, m);
1475
1476 if (sc->sc_drvbpf != NULL) {
1477 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1478
1479 tap->wr_flags = 0;
1480 tap->wr_chan_freq =
1481 htole16(ic->ic_channels[head->chan].ic_freq);
1482 tap->wr_chan_flags =
1483 htole16(ic->ic_channels[head->chan].ic_flags);
1484 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1485 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1486 tap->wr_tsft = tail->tstamp;
1487 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1488 switch (head->rate) {
1489 /* CCK rates */
1490 case 10: tap->wr_rate = 2; break;
1491 case 20: tap->wr_rate = 4; break;
1492 case 55: tap->wr_rate = 11; break;
1493 case 110: tap->wr_rate = 22; break;
1494 /* OFDM rates */
1495 case 0xd: tap->wr_rate = 12; break;
1496 case 0xf: tap->wr_rate = 18; break;
1497 case 0x5: tap->wr_rate = 24; break;
1498 case 0x7: tap->wr_rate = 36; break;
1499 case 0x9: tap->wr_rate = 48; break;
1500 case 0xb: tap->wr_rate = 72; break;
1501 case 0x1: tap->wr_rate = 96; break;
1502 case 0x3: tap->wr_rate = 108; break;
1503 /* unknown rate: should not happen */
1504 default: tap->wr_rate = 0;
1505 }
1506 if (le16toh(head->flags) & 0x4)
1507 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1508
1509 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1510 }
1511
1512 /* grab a reference to the source node */
1513 wh = mtod(m, struct ieee80211_frame *);
1514 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1515
1516 /* send the frame to the 802.11 layer */
1517 ieee80211_input(ic, m, ni, stat->rssi, 0);
1518
1519 /* release node reference */
1520 ieee80211_free_node(ni);
1521 }
1522
1523 static void
1524 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1525 {
1526 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1527 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1528 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1529 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1530 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1531
1532 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1533 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1534 stat->nkill, stat->rate, le32toh(stat->duration),
1535 le32toh(stat->status)));
1536
1537 /*
1538 * Update rate control statistics for the node.
1539 * XXX we should not count mgmt frames since they're always sent at
1540 * the lowest available bit-rate.
1541 */
1542 wn->amn.amn_txcnt++;
1543 if (stat->ntries > 0) {
1544 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1545 wn->amn.amn_retrycnt++;
1546 }
1547
1548 if ((le32toh(stat->status) & 0xff) != 1)
1549 ifp->if_oerrors++;
1550 else
1551 ifp->if_opackets++;
1552
1553 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1554 m_freem(txdata->m);
1555 txdata->m = NULL;
1556 ieee80211_free_node(txdata->ni);
1557 txdata->ni = NULL;
1558
1559 ring->queued--;
1560
1561 sc->sc_tx_timer = 0;
1562 ifp->if_flags &= ~IFF_OACTIVE;
1563 wpi_start(ifp);
1564 }
1565
1566 static void
1567 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1568 {
1569 struct wpi_tx_ring *ring = &sc->cmdq;
1570 struct wpi_tx_data *data;
1571
1572 if ((desc->qid & 7) != 4)
1573 return; /* not a command ack */
1574
1575 data = &ring->data[desc->idx];
1576
1577 /* if the command was mapped in a mbuf, free it */
1578 if (data->m != NULL) {
1579 bus_dmamap_unload(sc->sc_dmat, data->map);
1580 m_freem(data->m);
1581 data->m = NULL;
1582 }
1583
1584 wakeup(&ring->cmd[desc->idx]);
1585 }
1586
1587 static void
1588 wpi_notif_intr(struct wpi_softc *sc)
1589 {
1590 struct ieee80211com *ic = &sc->sc_ic;
1591 struct ifnet *ifp = ic->ic_ifp;
1592 struct wpi_rx_desc *desc;
1593 struct wpi_rx_data *data;
1594 uint32_t hw;
1595
1596 hw = le32toh(sc->shared->next);
1597 while (sc->rxq.cur != hw) {
1598 data = &sc->rxq.data[sc->rxq.cur];
1599
1600 desc = mtod(data->m, struct wpi_rx_desc *);
1601
1602 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1603 "len=%d\n", desc->qid, desc->idx, desc->flags,
1604 desc->type, le32toh(desc->len)));
1605
1606 if (!(desc->qid & 0x80)) /* reply to a command */
1607 wpi_cmd_intr(sc, desc);
1608
1609 switch (desc->type) {
1610 case WPI_RX_DONE:
1611 /* a 802.11 frame was received */
1612 wpi_rx_intr(sc, desc, data);
1613 break;
1614
1615 case WPI_TX_DONE:
1616 /* a 802.11 frame has been transmitted */
1617 wpi_tx_intr(sc, desc);
1618 break;
1619
1620 case WPI_UC_READY:
1621 {
1622 struct wpi_ucode_info *uc =
1623 (struct wpi_ucode_info *)(desc + 1);
1624
1625 /* the microcontroller is ready */
1626 DPRINTF(("microcode alive notification version %x "
1627 "alive %x\n", le32toh(uc->version),
1628 le32toh(uc->valid)));
1629
1630 if (le32toh(uc->valid) != 1) {
1631 aprint_error_dev(sc->sc_dev,
1632 "microcontroller initialization failed\n");
1633 }
1634 break;
1635 }
1636 case WPI_STATE_CHANGED:
1637 {
1638 uint32_t *status = (uint32_t *)(desc + 1);
1639
1640 /* enabled/disabled notification */
1641 DPRINTF(("state changed to %x\n", le32toh(*status)));
1642
1643 if (le32toh(*status) & 1) {
1644 /* the radio button has to be pushed */
1645 aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1646 /* turn the interface down */
1647 ifp->if_flags &= ~IFF_UP;
1648 wpi_stop(ifp, 1);
1649 return; /* no further processing */
1650 }
1651 break;
1652 }
1653 case WPI_START_SCAN:
1654 {
1655 struct wpi_start_scan *scan =
1656 (struct wpi_start_scan *)(desc + 1);
1657
1658 DPRINTFN(2, ("scanning channel %d status %x\n",
1659 scan->chan, le32toh(scan->status)));
1660
1661 /* fix current channel */
1662 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1663 break;
1664 }
1665 case WPI_STOP_SCAN:
1666 {
1667 struct wpi_stop_scan *scan =
1668 (struct wpi_stop_scan *)(desc + 1);
1669
1670 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1671 scan->nchan, scan->status, scan->chan));
1672
1673 if (scan->status == 1 && scan->chan <= 14) {
1674 /*
1675 * We just finished scanning 802.11g channels,
1676 * start scanning 802.11a ones.
1677 */
1678 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1679 break;
1680 }
1681 sc->is_scanning = false;
1682 ieee80211_end_scan(ic);
1683 break;
1684 }
1685 }
1686
1687 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1688 }
1689
1690 /* tell the firmware what we have processed */
1691 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1692 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1693 }
1694
1695 static int
1696 wpi_intr(void *arg)
1697 {
1698 struct wpi_softc *sc = arg;
1699 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1700 uint32_t r;
1701
1702 r = WPI_READ(sc, WPI_INTR);
1703 if (r == 0 || r == 0xffffffff)
1704 return 0; /* not for us */
1705
1706 DPRINTFN(5, ("interrupt reg %x\n", r));
1707
1708 /* disable interrupts */
1709 WPI_WRITE(sc, WPI_MASK, 0);
1710 /* ack interrupts */
1711 WPI_WRITE(sc, WPI_INTR, r);
1712
1713 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1714 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1715 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1716 wpi_stop(sc->sc_ic.ic_ifp, 1);
1717 return 1;
1718 }
1719
1720 if (r & WPI_RX_INTR)
1721 wpi_notif_intr(sc);
1722
1723 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1724 wakeup(sc);
1725
1726 /* re-enable interrupts */
1727 if (ifp->if_flags & IFF_UP)
1728 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1729
1730 return 1;
1731 }
1732
1733 static uint8_t
1734 wpi_plcp_signal(int rate)
1735 {
1736 switch (rate) {
1737 /* CCK rates (returned values are device-dependent) */
1738 case 2: return 10;
1739 case 4: return 20;
1740 case 11: return 55;
1741 case 22: return 110;
1742
1743 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1744 /* R1-R4, (u)ral is R4-R1 */
1745 case 12: return 0xd;
1746 case 18: return 0xf;
1747 case 24: return 0x5;
1748 case 36: return 0x7;
1749 case 48: return 0x9;
1750 case 72: return 0xb;
1751 case 96: return 0x1;
1752 case 108: return 0x3;
1753
1754 /* unsupported rates (should not get there) */
1755 default: return 0;
1756 }
1757 }
1758
1759 /* quickly determine if a given rate is CCK or OFDM */
1760 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1761
1762 static int
1763 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1764 int ac)
1765 {
1766 struct ieee80211com *ic = &sc->sc_ic;
1767 struct wpi_tx_ring *ring = &sc->txq[ac];
1768 struct wpi_tx_desc *desc;
1769 struct wpi_tx_data *data;
1770 struct wpi_tx_cmd *cmd;
1771 struct wpi_cmd_data *tx;
1772 struct ieee80211_frame *wh;
1773 struct ieee80211_key *k;
1774 const struct chanAccParams *cap;
1775 struct mbuf *mnew;
1776 int i, error, rate, hdrlen, noack = 0;
1777
1778 desc = &ring->desc[ring->cur];
1779 data = &ring->data[ring->cur];
1780
1781 wh = mtod(m0, struct ieee80211_frame *);
1782
1783 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1784 cap = &ic->ic_wme.wme_chanParams;
1785 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1786 }
1787
1788 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1789 k = ieee80211_crypto_encap(ic, ni, m0);
1790 if (k == NULL) {
1791 m_freem(m0);
1792 return ENOBUFS;
1793 }
1794
1795 /* packet header may have moved, reset our local pointer */
1796 wh = mtod(m0, struct ieee80211_frame *);
1797 }
1798
1799 hdrlen = ieee80211_anyhdrsize(wh);
1800
1801 /* pickup a rate */
1802 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1803 IEEE80211_FC0_TYPE_MGT) {
1804 /* mgmt frames are sent at the lowest available bit-rate */
1805 rate = ni->ni_rates.rs_rates[0];
1806 } else {
1807 if (ic->ic_fixed_rate != -1) {
1808 rate = ic->ic_sup_rates[ic->ic_curmode].
1809 rs_rates[ic->ic_fixed_rate];
1810 } else
1811 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1812 }
1813 rate &= IEEE80211_RATE_VAL;
1814
1815
1816 if (sc->sc_drvbpf != NULL) {
1817 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1818
1819 tap->wt_flags = 0;
1820 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1821 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1822 tap->wt_rate = rate;
1823 tap->wt_hwqueue = ac;
1824 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1825 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1826
1827 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1828 }
1829
1830 cmd = &ring->cmd[ring->cur];
1831 cmd->code = WPI_CMD_TX_DATA;
1832 cmd->flags = 0;
1833 cmd->qid = ring->qid;
1834 cmd->idx = ring->cur;
1835
1836 tx = (struct wpi_cmd_data *)cmd->data;
1837 tx->flags = 0;
1838
1839 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1840 tx->flags |= htole32(WPI_TX_NEED_ACK);
1841 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1842 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1843
1844 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1845
1846 /* retrieve destination node's id */
1847 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1848 WPI_ID_BSS;
1849
1850 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1851 IEEE80211_FC0_TYPE_MGT) {
1852 /* tell h/w to set timestamp in probe responses */
1853 if ((wh->i_fc[0] &
1854 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1855 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1856 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1857
1858 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1859 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1860 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1861 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1862 tx->timeout = htole16(3);
1863 else
1864 tx->timeout = htole16(2);
1865 } else
1866 tx->timeout = htole16(0);
1867
1868 tx->rate = wpi_plcp_signal(rate);
1869
1870 /* be very persistant at sending frames out */
1871 tx->rts_ntries = 7;
1872 tx->data_ntries = 15;
1873
1874 tx->ofdm_mask = 0xff;
1875 tx->cck_mask = 0xf;
1876 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1877
1878 tx->len = htole16(m0->m_pkthdr.len);
1879
1880 /* save and trim IEEE802.11 header */
1881 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1882 m_adj(m0, hdrlen);
1883
1884 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1885 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1886 if (error != 0 && error != EFBIG) {
1887 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1888 m_freem(m0);
1889 return error;
1890 }
1891 if (error != 0) {
1892 /* too many fragments, linearize */
1893 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1894 if (mnew == NULL) {
1895 m_freem(m0);
1896 return ENOMEM;
1897 }
1898
1899 M_COPY_PKTHDR(mnew, m0);
1900 if (m0->m_pkthdr.len > MHLEN) {
1901 MCLGET(mnew, M_DONTWAIT);
1902 if (!(mnew->m_flags & M_EXT)) {
1903 m_freem(m0);
1904 m_freem(mnew);
1905 return ENOMEM;
1906 }
1907 }
1908
1909 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1910 m_freem(m0);
1911 mnew->m_len = mnew->m_pkthdr.len;
1912 m0 = mnew;
1913
1914 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1915 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1916 if (error != 0) {
1917 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1918 error);
1919 m_freem(m0);
1920 return error;
1921 }
1922 }
1923
1924 data->m = m0;
1925 data->ni = ni;
1926
1927 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1928 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1929
1930 /* first scatter/gather segment is used by the tx data command */
1931 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1932 (1 + data->map->dm_nsegs) << 24);
1933 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1934 ring->cur * sizeof (struct wpi_tx_cmd));
1935 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1936 ((hdrlen + 3) & ~3));
1937
1938 for (i = 1; i <= data->map->dm_nsegs; i++) {
1939 desc->segs[i].addr =
1940 htole32(data->map->dm_segs[i - 1].ds_addr);
1941 desc->segs[i].len =
1942 htole32(data->map->dm_segs[i - 1].ds_len);
1943 }
1944
1945 ring->queued++;
1946
1947 /* kick ring */
1948 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1949 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1950
1951 return 0;
1952 }
1953
1954 static void
1955 wpi_start(struct ifnet *ifp)
1956 {
1957 struct wpi_softc *sc = ifp->if_softc;
1958 struct ieee80211com *ic = &sc->sc_ic;
1959 struct ieee80211_node *ni;
1960 struct ether_header *eh;
1961 struct mbuf *m0;
1962 int ac;
1963
1964 /*
1965 * net80211 may still try to send management frames even if the
1966 * IFF_RUNNING flag is not set...
1967 */
1968 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1969 return;
1970
1971 for (;;) {
1972 IF_DEQUEUE(&ic->ic_mgtq, m0);
1973 if (m0 != NULL) {
1974
1975 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1976 m0->m_pkthdr.rcvif = NULL;
1977
1978 /* management frames go into ring 0 */
1979 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1980 ifp->if_oerrors++;
1981 continue;
1982 }
1983 bpf_mtap3(ic->ic_rawbpf, m0);
1984 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1985 ifp->if_oerrors++;
1986 break;
1987 }
1988 } else {
1989 if (ic->ic_state != IEEE80211_S_RUN)
1990 break;
1991 IFQ_POLL(&ifp->if_snd, m0);
1992 if (m0 == NULL)
1993 break;
1994
1995 if (m0->m_len < sizeof (*eh) &&
1996 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
1997 ifp->if_oerrors++;
1998 continue;
1999 }
2000 eh = mtod(m0, struct ether_header *);
2001 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2002 if (ni == NULL) {
2003 m_freem(m0);
2004 ifp->if_oerrors++;
2005 continue;
2006 }
2007
2008 /* classify mbuf so we can find which tx ring to use */
2009 if (ieee80211_classify(ic, m0, ni) != 0) {
2010 m_freem(m0);
2011 ieee80211_free_node(ni);
2012 ifp->if_oerrors++;
2013 continue;
2014 }
2015
2016 /* no QoS encapsulation for EAPOL frames */
2017 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2018 M_WME_GETAC(m0) : WME_AC_BE;
2019
2020 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2021 /* there is no place left in this ring */
2022 ifp->if_flags |= IFF_OACTIVE;
2023 break;
2024 }
2025 IFQ_DEQUEUE(&ifp->if_snd, m0);
2026 bpf_mtap(ifp, m0);
2027 m0 = ieee80211_encap(ic, m0, ni);
2028 if (m0 == NULL) {
2029 ieee80211_free_node(ni);
2030 ifp->if_oerrors++;
2031 continue;
2032 }
2033 bpf_mtap3(ic->ic_rawbpf, m0);
2034 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2035 ieee80211_free_node(ni);
2036 ifp->if_oerrors++;
2037 break;
2038 }
2039 }
2040
2041 sc->sc_tx_timer = 5;
2042 ifp->if_timer = 1;
2043 }
2044 }
2045
2046 static void
2047 wpi_watchdog(struct ifnet *ifp)
2048 {
2049 struct wpi_softc *sc = ifp->if_softc;
2050
2051 ifp->if_timer = 0;
2052
2053 if (sc->sc_tx_timer > 0) {
2054 if (--sc->sc_tx_timer == 0) {
2055 aprint_error_dev(sc->sc_dev, "device timeout\n");
2056 ifp->if_oerrors++;
2057 ifp->if_flags &= ~IFF_UP;
2058 wpi_stop(ifp, 1);
2059 return;
2060 }
2061 ifp->if_timer = 1;
2062 }
2063
2064 ieee80211_watchdog(&sc->sc_ic);
2065 }
2066
2067 static int
2068 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2069 {
2070 #define IS_RUNNING(ifp) \
2071 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2072
2073 struct wpi_softc *sc = ifp->if_softc;
2074 struct ieee80211com *ic = &sc->sc_ic;
2075 int s, error = 0;
2076
2077 s = splnet();
2078
2079 switch (cmd) {
2080 case SIOCSIFFLAGS:
2081 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2082 break;
2083 if (ifp->if_flags & IFF_UP) {
2084 if (!(ifp->if_flags & IFF_RUNNING))
2085 wpi_init(ifp);
2086 } else {
2087 if (ifp->if_flags & IFF_RUNNING)
2088 wpi_stop(ifp, 1);
2089 }
2090 break;
2091
2092 case SIOCADDMULTI:
2093 case SIOCDELMULTI:
2094 /* XXX no h/w multicast filter? --dyoung */
2095 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2096 /* setup multicast filter, etc */
2097 error = 0;
2098 }
2099 break;
2100
2101 default:
2102 error = ieee80211_ioctl(ic, cmd, data);
2103 }
2104
2105 if (error == ENETRESET) {
2106 if (IS_RUNNING(ifp) &&
2107 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2108 wpi_init(ifp);
2109 error = 0;
2110 }
2111
2112 splx(s);
2113 return error;
2114
2115 #undef IS_RUNNING
2116 }
2117
2118 /*
2119 * Extract various information from EEPROM.
2120 */
2121 static void
2122 wpi_read_eeprom(struct wpi_softc *sc)
2123 {
2124 struct ieee80211com *ic = &sc->sc_ic;
2125 char domain[4];
2126 int i;
2127
2128 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2129 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2130 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2131
2132 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2133 sc->type));
2134
2135 /* read and print regulatory domain */
2136 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2137 aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2138
2139 /* read and print MAC address */
2140 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2141 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2142
2143 /* read the list of authorized channels */
2144 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2145 wpi_read_eeprom_channels(sc, i);
2146
2147 /* read the list of power groups */
2148 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2149 wpi_read_eeprom_group(sc, i);
2150 }
2151
2152 static void
2153 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2154 {
2155 struct ieee80211com *ic = &sc->sc_ic;
2156 const struct wpi_chan_band *band = &wpi_bands[n];
2157 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2158 int chan, i;
2159
2160 wpi_read_prom_data(sc, band->addr, channels,
2161 band->nchan * sizeof (struct wpi_eeprom_chan));
2162
2163 for (i = 0; i < band->nchan; i++) {
2164 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2165 continue;
2166
2167 chan = band->chan[i];
2168
2169 if (n == 0) { /* 2GHz band */
2170 ic->ic_channels[chan].ic_freq =
2171 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2172 ic->ic_channels[chan].ic_flags =
2173 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2174 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2175
2176 } else { /* 5GHz band */
2177 /*
2178 * Some 3945abg adapters support channels 7, 8, 11
2179 * and 12 in the 2GHz *and* 5GHz bands.
2180 * Because of limitations in our net80211(9) stack,
2181 * we can't support these channels in 5GHz band.
2182 */
2183 if (chan <= 14)
2184 continue;
2185
2186 ic->ic_channels[chan].ic_freq =
2187 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2188 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2189 }
2190
2191 /* is active scan allowed on this channel? */
2192 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2193 ic->ic_channels[chan].ic_flags |=
2194 IEEE80211_CHAN_PASSIVE;
2195 }
2196
2197 /* save maximum allowed power for this channel */
2198 sc->maxpwr[chan] = channels[i].maxpwr;
2199
2200 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2201 chan, channels[i].flags, sc->maxpwr[chan]));
2202 }
2203 }
2204
2205 static void
2206 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2207 {
2208 struct wpi_power_group *group = &sc->groups[n];
2209 struct wpi_eeprom_group rgroup;
2210 int i;
2211
2212 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2213 sizeof rgroup);
2214
2215 /* save power group information */
2216 group->chan = rgroup.chan;
2217 group->maxpwr = rgroup.maxpwr;
2218 /* temperature at which the samples were taken */
2219 group->temp = (int16_t)le16toh(rgroup.temp);
2220
2221 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2222 group->chan, group->maxpwr, group->temp));
2223
2224 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2225 group->samples[i].index = rgroup.samples[i].index;
2226 group->samples[i].power = rgroup.samples[i].power;
2227
2228 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2229 group->samples[i].index, group->samples[i].power));
2230 }
2231 }
2232
2233 /*
2234 * Send a command to the firmware.
2235 */
2236 static int
2237 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2238 {
2239 struct wpi_tx_ring *ring = &sc->cmdq;
2240 struct wpi_tx_desc *desc;
2241 struct wpi_tx_cmd *cmd;
2242
2243 KASSERT(size <= sizeof cmd->data);
2244
2245 desc = &ring->desc[ring->cur];
2246 cmd = &ring->cmd[ring->cur];
2247
2248 cmd->code = code;
2249 cmd->flags = 0;
2250 cmd->qid = ring->qid;
2251 cmd->idx = ring->cur;
2252 memcpy(cmd->data, buf, size);
2253
2254 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2255 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2256 ring->cur * sizeof (struct wpi_tx_cmd));
2257 desc->segs[0].len = htole32(4 + size);
2258
2259 /* kick cmd ring */
2260 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2261 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2262
2263 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2264 }
2265
2266 static int
2267 wpi_wme_update(struct ieee80211com *ic)
2268 {
2269 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2270 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2271 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2272 const struct wmeParams *wmep;
2273 struct wpi_wme_setup wme;
2274 int ac;
2275
2276 /* don't override default WME values if WME is not actually enabled */
2277 if (!(ic->ic_flags & IEEE80211_F_WME))
2278 return 0;
2279
2280 wme.flags = 0;
2281 for (ac = 0; ac < WME_NUM_AC; ac++) {
2282 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2283 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2284 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2285 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2286 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2287
2288 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2289 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2290 wme.ac[ac].cwmax, wme.ac[ac].txop));
2291 }
2292
2293 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2294 #undef WPI_USEC
2295 #undef WPI_EXP2
2296 }
2297
2298 /*
2299 * Configure h/w multi-rate retries.
2300 */
2301 static int
2302 wpi_mrr_setup(struct wpi_softc *sc)
2303 {
2304 struct ieee80211com *ic = &sc->sc_ic;
2305 struct wpi_mrr_setup mrr;
2306 int i, error;
2307
2308 /* CCK rates (not used with 802.11a) */
2309 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2310 mrr.rates[i].flags = 0;
2311 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2312 /* fallback to the immediate lower CCK rate (if any) */
2313 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2314 /* try one time at this rate before falling back to "next" */
2315 mrr.rates[i].ntries = 1;
2316 }
2317
2318 /* OFDM rates (not used with 802.11b) */
2319 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2320 mrr.rates[i].flags = 0;
2321 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2322 /* fallback to the immediate lower rate (if any) */
2323 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2324 mrr.rates[i].next = (i == WPI_OFDM6) ?
2325 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2326 WPI_OFDM6 : WPI_CCK2) :
2327 i - 1;
2328 /* try one time at this rate before falling back to "next" */
2329 mrr.rates[i].ntries = 1;
2330 }
2331
2332 /* setup MRR for control frames */
2333 mrr.which = htole32(WPI_MRR_CTL);
2334 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2335 if (error != 0) {
2336 aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2337 return error;
2338 }
2339
2340 /* setup MRR for data frames */
2341 mrr.which = htole32(WPI_MRR_DATA);
2342 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2343 if (error != 0) {
2344 aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2345 return error;
2346 }
2347
2348 return 0;
2349 }
2350
2351 static void
2352 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2353 {
2354 struct wpi_cmd_led led;
2355
2356 led.which = which;
2357 led.unit = htole32(100000); /* on/off in unit of 100ms */
2358 led.off = off;
2359 led.on = on;
2360
2361 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2362 }
2363
2364 static void
2365 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2366 {
2367 struct wpi_cmd_tsf tsf;
2368 uint64_t val, mod;
2369
2370 memset(&tsf, 0, sizeof tsf);
2371 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2372 tsf.bintval = htole16(ni->ni_intval);
2373 tsf.lintval = htole16(10);
2374
2375 /* compute remaining time until next beacon */
2376 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2377 mod = le64toh(tsf.tstamp) % val;
2378 tsf.binitval = htole32((uint32_t)(val - mod));
2379
2380 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2381 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2382
2383 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2384 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2385 }
2386
2387 /*
2388 * Update Tx power to match what is defined for channel `c'.
2389 */
2390 static int
2391 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2392 {
2393 struct ieee80211com *ic = &sc->sc_ic;
2394 struct wpi_power_group *group;
2395 struct wpi_cmd_txpower txpower;
2396 u_int chan;
2397 int i;
2398
2399 /* get channel number */
2400 chan = ieee80211_chan2ieee(ic, c);
2401
2402 /* find the power group to which this channel belongs */
2403 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2404 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2405 if (chan <= group->chan)
2406 break;
2407 } else
2408 group = &sc->groups[0];
2409
2410 memset(&txpower, 0, sizeof txpower);
2411 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2412 txpower.chan = htole16(chan);
2413
2414 /* set Tx power for all OFDM and CCK rates */
2415 for (i = 0; i <= 11 ; i++) {
2416 /* retrieve Tx power for this channel/rate combination */
2417 int idx = wpi_get_power_index(sc, group, c,
2418 wpi_ridx_to_rate[i]);
2419
2420 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2421
2422 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2423 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2424 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2425 } else {
2426 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2427 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2428 }
2429 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2430 wpi_ridx_to_rate[i], idx));
2431 }
2432
2433 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2434 }
2435
2436 /*
2437 * Determine Tx power index for a given channel/rate combination.
2438 * This takes into account the regulatory information from EEPROM and the
2439 * current temperature.
2440 */
2441 static int
2442 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2443 struct ieee80211_channel *c, int rate)
2444 {
2445 /* fixed-point arithmetic division using a n-bit fractional part */
2446 #define fdivround(a, b, n) \
2447 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2448
2449 /* linear interpolation */
2450 #define interpolate(x, x1, y1, x2, y2, n) \
2451 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2452
2453 struct ieee80211com *ic = &sc->sc_ic;
2454 struct wpi_power_sample *sample;
2455 int pwr, idx;
2456 u_int chan;
2457
2458 /* get channel number */
2459 chan = ieee80211_chan2ieee(ic, c);
2460
2461 /* default power is group's maximum power - 3dB */
2462 pwr = group->maxpwr / 2;
2463
2464 /* decrease power for highest OFDM rates to reduce distortion */
2465 switch (rate) {
2466 case 72: /* 36Mb/s */
2467 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2468 break;
2469 case 96: /* 48Mb/s */
2470 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2471 break;
2472 case 108: /* 54Mb/s */
2473 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2474 break;
2475 }
2476
2477 /* never exceed channel's maximum allowed Tx power */
2478 pwr = min(pwr, sc->maxpwr[chan]);
2479
2480 /* retrieve power index into gain tables from samples */
2481 for (sample = group->samples; sample < &group->samples[3]; sample++)
2482 if (pwr > sample[1].power)
2483 break;
2484 /* fixed-point linear interpolation using a 19-bit fractional part */
2485 idx = interpolate(pwr, sample[0].power, sample[0].index,
2486 sample[1].power, sample[1].index, 19);
2487
2488 /*
2489 * Adjust power index based on current temperature:
2490 * - if cooler than factory-calibrated: decrease output power
2491 * - if warmer than factory-calibrated: increase output power
2492 */
2493 idx -= (sc->temp - group->temp) * 11 / 100;
2494
2495 /* decrease power for CCK rates (-5dB) */
2496 if (!WPI_RATE_IS_OFDM(rate))
2497 idx += 10;
2498
2499 /* keep power index in a valid range */
2500 if (idx < 0)
2501 return 0;
2502 if (idx > WPI_MAX_PWR_INDEX)
2503 return WPI_MAX_PWR_INDEX;
2504 return idx;
2505
2506 #undef interpolate
2507 #undef fdivround
2508 }
2509
2510 /*
2511 * Build a beacon frame that the firmware will broadcast periodically in
2512 * IBSS or HostAP modes.
2513 */
2514 static int
2515 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2516 {
2517 struct ieee80211com *ic = &sc->sc_ic;
2518 struct wpi_tx_ring *ring = &sc->cmdq;
2519 struct wpi_tx_desc *desc;
2520 struct wpi_tx_data *data;
2521 struct wpi_tx_cmd *cmd;
2522 struct wpi_cmd_beacon *bcn;
2523 struct ieee80211_beacon_offsets bo;
2524 struct mbuf *m0;
2525 int error;
2526
2527 desc = &ring->desc[ring->cur];
2528 data = &ring->data[ring->cur];
2529
2530 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2531 if (m0 == NULL) {
2532 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2533 return ENOMEM;
2534 }
2535
2536 cmd = &ring->cmd[ring->cur];
2537 cmd->code = WPI_CMD_SET_BEACON;
2538 cmd->flags = 0;
2539 cmd->qid = ring->qid;
2540 cmd->idx = ring->cur;
2541
2542 bcn = (struct wpi_cmd_beacon *)cmd->data;
2543 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2544 bcn->id = WPI_ID_BROADCAST;
2545 bcn->ofdm_mask = 0xff;
2546 bcn->cck_mask = 0x0f;
2547 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2548 bcn->len = htole16(m0->m_pkthdr.len);
2549 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2550 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2551 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2552
2553 /* save and trim IEEE802.11 header */
2554 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2555 m_adj(m0, sizeof (struct ieee80211_frame));
2556
2557 /* assume beacon frame is contiguous */
2558 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2559 BUS_DMA_READ | BUS_DMA_NOWAIT);
2560 if (error) {
2561 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2562 m_freem(m0);
2563 return error;
2564 }
2565
2566 data->m = m0;
2567
2568 /* first scatter/gather segment is used by the beacon command */
2569 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2570 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2571 ring->cur * sizeof (struct wpi_tx_cmd));
2572 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2573 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2574 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2575
2576 /* kick cmd ring */
2577 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2578 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2579
2580 return 0;
2581 }
2582
2583 static int
2584 wpi_auth(struct wpi_softc *sc)
2585 {
2586 struct ieee80211com *ic = &sc->sc_ic;
2587 struct ieee80211_node *ni = ic->ic_bss;
2588 struct wpi_node_info node;
2589 int error;
2590
2591 /* update adapter's configuration */
2592 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2593 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2594 sc->config.flags = htole32(WPI_CONFIG_TSF);
2595 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2596 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2597 WPI_CONFIG_24GHZ);
2598 }
2599 switch (ic->ic_curmode) {
2600 case IEEE80211_MODE_11A:
2601 sc->config.cck_mask = 0;
2602 sc->config.ofdm_mask = 0x15;
2603 break;
2604 case IEEE80211_MODE_11B:
2605 sc->config.cck_mask = 0x03;
2606 sc->config.ofdm_mask = 0;
2607 break;
2608 default: /* assume 802.11b/g */
2609 sc->config.cck_mask = 0x0f;
2610 sc->config.ofdm_mask = 0x15;
2611 }
2612
2613 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2614 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2615 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2616 sizeof (struct wpi_config), 1);
2617 if (error != 0) {
2618 aprint_error_dev(sc->sc_dev, "could not configure\n");
2619 return error;
2620 }
2621
2622 /* configuration has changed, set Tx power accordingly */
2623 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2624 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2625 return error;
2626 }
2627
2628 /* add default node */
2629 memset(&node, 0, sizeof node);
2630 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2631 node.id = WPI_ID_BSS;
2632 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2633 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2634 node.action = htole32(WPI_ACTION_SET_RATE);
2635 node.antenna = WPI_ANTENNA_BOTH;
2636 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2637 if (error != 0) {
2638 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2639 return error;
2640 }
2641
2642 return 0;
2643 }
2644
2645 /*
2646 * Send a scan request to the firmware. Since this command is huge, we map it
2647 * into a mbuf instead of using the pre-allocated set of commands.
2648 */
2649 static int
2650 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2651 {
2652 struct ieee80211com *ic = &sc->sc_ic;
2653 struct wpi_tx_ring *ring = &sc->cmdq;
2654 struct wpi_tx_desc *desc;
2655 struct wpi_tx_data *data;
2656 struct wpi_tx_cmd *cmd;
2657 struct wpi_scan_hdr *hdr;
2658 struct wpi_scan_chan *chan;
2659 struct ieee80211_frame *wh;
2660 struct ieee80211_rateset *rs;
2661 struct ieee80211_channel *c;
2662 enum ieee80211_phymode mode;
2663 uint8_t *frm;
2664 int nrates, pktlen, error;
2665
2666 desc = &ring->desc[ring->cur];
2667 data = &ring->data[ring->cur];
2668
2669 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2670 if (data->m == NULL) {
2671 aprint_error_dev(sc->sc_dev,
2672 "could not allocate mbuf for scan command\n");
2673 return ENOMEM;
2674 }
2675
2676 MCLGET(data->m, M_DONTWAIT);
2677 if (!(data->m->m_flags & M_EXT)) {
2678 m_freem(data->m);
2679 data->m = NULL;
2680 aprint_error_dev(sc->sc_dev,
2681 "could not allocate mbuf for scan command\n");
2682 return ENOMEM;
2683 }
2684
2685 cmd = mtod(data->m, struct wpi_tx_cmd *);
2686 cmd->code = WPI_CMD_SCAN;
2687 cmd->flags = 0;
2688 cmd->qid = ring->qid;
2689 cmd->idx = ring->cur;
2690
2691 hdr = (struct wpi_scan_hdr *)cmd->data;
2692 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2693 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2694 hdr->id = WPI_ID_BROADCAST;
2695 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2696
2697 /*
2698 * Move to the next channel if no packets are received within 5 msecs
2699 * after sending the probe request (this helps to reduce the duration
2700 * of active scans).
2701 */
2702 hdr->quiet = htole16(5); /* timeout in milliseconds */
2703 hdr->plcp_threshold = htole16(1); /* min # of packets */
2704
2705 if (flags & IEEE80211_CHAN_A) {
2706 hdr->crc_threshold = htole16(1);
2707 /* send probe requests at 6Mbps */
2708 hdr->rate = wpi_plcp_signal(12);
2709 } else {
2710 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2711 /* send probe requests at 1Mbps */
2712 hdr->rate = wpi_plcp_signal(2);
2713 }
2714
2715 /* for directed scans, firmware inserts the essid IE itself */
2716 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2717 hdr->essid[0].len = ic->ic_des_esslen;
2718 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2719
2720 /*
2721 * Build a probe request frame. Most of the following code is a
2722 * copy & paste of what is done in net80211.
2723 */
2724 wh = (struct ieee80211_frame *)(hdr + 1);
2725 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2726 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2727 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2728 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2729 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2730 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2731 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2732 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2733
2734 frm = (uint8_t *)(wh + 1);
2735
2736 /* add empty essid IE (firmware generates it for directed scans) */
2737 *frm++ = IEEE80211_ELEMID_SSID;
2738 *frm++ = 0;
2739
2740 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2741 rs = &ic->ic_sup_rates[mode];
2742
2743 /* add supported rates IE */
2744 *frm++ = IEEE80211_ELEMID_RATES;
2745 nrates = rs->rs_nrates;
2746 if (nrates > IEEE80211_RATE_SIZE)
2747 nrates = IEEE80211_RATE_SIZE;
2748 *frm++ = nrates;
2749 memcpy(frm, rs->rs_rates, nrates);
2750 frm += nrates;
2751
2752 /* add supported xrates IE */
2753 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2754 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2755 *frm++ = IEEE80211_ELEMID_XRATES;
2756 *frm++ = nrates;
2757 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2758 frm += nrates;
2759 }
2760
2761 /* setup length of probe request */
2762 hdr->paylen = htole16(frm - (uint8_t *)wh);
2763
2764 chan = (struct wpi_scan_chan *)frm;
2765 for (c = &ic->ic_channels[1];
2766 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2767 if ((c->ic_flags & flags) != flags)
2768 continue;
2769
2770 chan->chan = ieee80211_chan2ieee(ic, c);
2771 chan->flags = 0;
2772 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2773 chan->flags |= WPI_CHAN_ACTIVE;
2774 if (ic->ic_des_esslen != 0)
2775 chan->flags |= WPI_CHAN_DIRECT;
2776 }
2777 chan->dsp_gain = 0x6e;
2778 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2779 chan->rf_gain = 0x3b;
2780 chan->active = htole16(10);
2781 chan->passive = htole16(110);
2782 } else {
2783 chan->rf_gain = 0x28;
2784 chan->active = htole16(20);
2785 chan->passive = htole16(120);
2786 }
2787 hdr->nchan++;
2788 chan++;
2789
2790 frm += sizeof (struct wpi_scan_chan);
2791 }
2792 hdr->len = htole16(frm - (uint8_t *)hdr);
2793 pktlen = frm - (uint8_t *)cmd;
2794
2795 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2796 NULL, BUS_DMA_NOWAIT);
2797 if (error) {
2798 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2799 m_freem(data->m);
2800 data->m = NULL;
2801 return error;
2802 }
2803
2804 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2805 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2806 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2807
2808 /* kick cmd ring */
2809 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2810 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2811
2812 return 0; /* will be notified async. of failure/success */
2813 }
2814
2815 static int
2816 wpi_config(struct wpi_softc *sc)
2817 {
2818 struct ieee80211com *ic = &sc->sc_ic;
2819 struct ifnet *ifp = ic->ic_ifp;
2820 struct wpi_power power;
2821 struct wpi_bluetooth bluetooth;
2822 struct wpi_node_info node;
2823 int error;
2824
2825 memset(&power, 0, sizeof power);
2826 power.flags = htole32(WPI_POWER_CAM | 0x8);
2827 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2828 if (error != 0) {
2829 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2830 return error;
2831 }
2832
2833 /* configure bluetooth coexistence */
2834 memset(&bluetooth, 0, sizeof bluetooth);
2835 bluetooth.flags = 3;
2836 bluetooth.lead = 0xaa;
2837 bluetooth.kill = 1;
2838 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2839 0);
2840 if (error != 0) {
2841 aprint_error_dev(sc->sc_dev,
2842 "could not configure bluetooth coexistence\n");
2843 return error;
2844 }
2845
2846 /* configure adapter */
2847 memset(&sc->config, 0, sizeof (struct wpi_config));
2848 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2849 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2850 /*set default channel*/
2851 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2852 sc->config.flags = htole32(WPI_CONFIG_TSF);
2853 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2854 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2855 WPI_CONFIG_24GHZ);
2856 }
2857 sc->config.filter = 0;
2858 switch (ic->ic_opmode) {
2859 case IEEE80211_M_STA:
2860 sc->config.mode = WPI_MODE_STA;
2861 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2862 break;
2863 case IEEE80211_M_IBSS:
2864 case IEEE80211_M_AHDEMO:
2865 sc->config.mode = WPI_MODE_IBSS;
2866 break;
2867 case IEEE80211_M_HOSTAP:
2868 sc->config.mode = WPI_MODE_HOSTAP;
2869 break;
2870 case IEEE80211_M_MONITOR:
2871 sc->config.mode = WPI_MODE_MONITOR;
2872 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2873 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2874 break;
2875 }
2876 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2877 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2878 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2879 sizeof (struct wpi_config), 0);
2880 if (error != 0) {
2881 aprint_error_dev(sc->sc_dev, "configure command failed\n");
2882 return error;
2883 }
2884
2885 /* configuration has changed, set Tx power accordingly */
2886 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2887 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2888 return error;
2889 }
2890
2891 /* add broadcast node */
2892 memset(&node, 0, sizeof node);
2893 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2894 node.id = WPI_ID_BROADCAST;
2895 node.rate = wpi_plcp_signal(2);
2896 node.action = htole32(WPI_ACTION_SET_RATE);
2897 node.antenna = WPI_ANTENNA_BOTH;
2898 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2899 if (error != 0) {
2900 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2901 return error;
2902 }
2903
2904 if ((error = wpi_mrr_setup(sc)) != 0) {
2905 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2906 return error;
2907 }
2908
2909 return 0;
2910 }
2911
2912 static void
2913 wpi_stop_master(struct wpi_softc *sc)
2914 {
2915 uint32_t tmp;
2916 int ntries;
2917
2918 tmp = WPI_READ(sc, WPI_RESET);
2919 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2920
2921 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2922 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2923 return; /* already asleep */
2924
2925 for (ntries = 0; ntries < 100; ntries++) {
2926 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2927 break;
2928 DELAY(10);
2929 }
2930 if (ntries == 100) {
2931 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2932 }
2933 }
2934
2935 static int
2936 wpi_power_up(struct wpi_softc *sc)
2937 {
2938 uint32_t tmp;
2939 int ntries;
2940
2941 wpi_mem_lock(sc);
2942 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2943 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2944 wpi_mem_unlock(sc);
2945
2946 for (ntries = 0; ntries < 5000; ntries++) {
2947 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2948 break;
2949 DELAY(10);
2950 }
2951 if (ntries == 5000) {
2952 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2953 return ETIMEDOUT;
2954 }
2955 return 0;
2956 }
2957
2958 static int
2959 wpi_reset(struct wpi_softc *sc)
2960 {
2961 uint32_t tmp;
2962 int ntries;
2963
2964 /* clear any pending interrupts */
2965 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2966
2967 tmp = WPI_READ(sc, WPI_PLL_CTL);
2968 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2969
2970 tmp = WPI_READ(sc, WPI_CHICKEN);
2971 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2972
2973 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2974 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2975
2976 /* wait for clock stabilization */
2977 for (ntries = 0; ntries < 1000; ntries++) {
2978 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2979 break;
2980 DELAY(10);
2981 }
2982 if (ntries == 1000) {
2983 aprint_error_dev(sc->sc_dev,
2984 "timeout waiting for clock stabilization\n");
2985 return ETIMEDOUT;
2986 }
2987
2988 /* initialize EEPROM */
2989 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2990 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2991 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2992 return EIO;
2993 }
2994 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2995
2996 return 0;
2997 }
2998
2999 static void
3000 wpi_hw_config(struct wpi_softc *sc)
3001 {
3002 uint32_t rev, hw;
3003
3004 /* voodoo from the reference driver */
3005 hw = WPI_READ(sc, WPI_HWCONFIG);
3006
3007 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3008 rev = PCI_REVISION(rev);
3009 if ((rev & 0xc0) == 0x40)
3010 hw |= WPI_HW_ALM_MB;
3011 else if (!(rev & 0x80))
3012 hw |= WPI_HW_ALM_MM;
3013
3014 if (sc->cap == 0x80)
3015 hw |= WPI_HW_SKU_MRC;
3016
3017 hw &= ~WPI_HW_REV_D;
3018 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3019 hw |= WPI_HW_REV_D;
3020
3021 if (sc->type > 1)
3022 hw |= WPI_HW_TYPE_B;
3023
3024 DPRINTF(("setting h/w config %x\n", hw));
3025 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3026 }
3027
3028 static int
3029 wpi_init(struct ifnet *ifp)
3030 {
3031 struct wpi_softc *sc = ifp->if_softc;
3032 struct ieee80211com *ic = &sc->sc_ic;
3033 uint32_t tmp;
3034 int qid, ntries, error;
3035
3036 wpi_stop(ifp,1);
3037 (void)wpi_reset(sc);
3038
3039 wpi_mem_lock(sc);
3040 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3041 DELAY(20);
3042 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3043 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3044 wpi_mem_unlock(sc);
3045
3046 (void)wpi_power_up(sc);
3047 wpi_hw_config(sc);
3048
3049 /* init Rx ring */
3050 wpi_mem_lock(sc);
3051 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3052 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3053 offsetof(struct wpi_shared, next));
3054 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3055 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3056 wpi_mem_unlock(sc);
3057
3058 /* init Tx rings */
3059 wpi_mem_lock(sc);
3060 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3061 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3062 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3063 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3064 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3065 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3066 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3067
3068 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3069 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3070
3071 for (qid = 0; qid < 6; qid++) {
3072 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3073 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3074 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3075 }
3076 wpi_mem_unlock(sc);
3077
3078 /* clear "radio off" and "disable command" bits (reversed logic) */
3079 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3080 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3081
3082 /* clear any pending interrupts */
3083 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3084 /* enable interrupts */
3085 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3086
3087 /* not sure why/if this is necessary... */
3088 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3089 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3090
3091 if ((error = wpi_load_firmware(sc)) != 0) {
3092 aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3093 goto fail1;
3094 }
3095
3096 /* Check the status of the radio switch */
3097 if (wpi_getrfkill(sc)) {
3098 aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3099 error = EBUSY;
3100 goto fail1;
3101 }
3102
3103 /* wait for thermal sensors to calibrate */
3104 for (ntries = 0; ntries < 1000; ntries++) {
3105 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3106 break;
3107 DELAY(10);
3108 }
3109 if (ntries == 1000) {
3110 aprint_error_dev(sc->sc_dev,
3111 "timeout waiting for thermal sensors calibration\n");
3112 error = ETIMEDOUT;
3113 goto fail1;
3114 }
3115
3116 DPRINTF(("temperature %d\n", sc->temp));
3117
3118 if ((error = wpi_config(sc)) != 0) {
3119 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3120 goto fail1;
3121 }
3122
3123 ifp->if_flags &= ~IFF_OACTIVE;
3124 ifp->if_flags |= IFF_RUNNING;
3125
3126 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3127 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3128 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3129 }
3130 else
3131 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3132
3133 return 0;
3134
3135 fail1: wpi_stop(ifp, 1);
3136 return error;
3137 }
3138
3139
3140 static void
3141 wpi_stop(struct ifnet *ifp, int disable)
3142 {
3143 struct wpi_softc *sc = ifp->if_softc;
3144 struct ieee80211com *ic = &sc->sc_ic;
3145 uint32_t tmp;
3146 int ac;
3147
3148 ifp->if_timer = sc->sc_tx_timer = 0;
3149 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3150
3151 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3152
3153 /* disable interrupts */
3154 WPI_WRITE(sc, WPI_MASK, 0);
3155 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3156 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3157 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3158
3159 wpi_mem_lock(sc);
3160 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3161 wpi_mem_unlock(sc);
3162
3163 /* reset all Tx rings */
3164 for (ac = 0; ac < 4; ac++)
3165 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3166 wpi_reset_tx_ring(sc, &sc->cmdq);
3167
3168 /* reset Rx ring */
3169 wpi_reset_rx_ring(sc, &sc->rxq);
3170
3171 wpi_mem_lock(sc);
3172 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3173 wpi_mem_unlock(sc);
3174
3175 DELAY(5);
3176
3177 wpi_stop_master(sc);
3178
3179 tmp = WPI_READ(sc, WPI_RESET);
3180 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3181 }
3182
3183 static bool
3184 wpi_resume(device_t dv, const pmf_qual_t *qual)
3185 {
3186 struct wpi_softc *sc = device_private(dv);
3187
3188 (void)wpi_reset(sc);
3189
3190 return true;
3191 }
3192
3193 /*
3194 * Return whether or not the radio is enabled in hardware
3195 * (i.e. the rfkill switch is "off").
3196 */
3197 static int
3198 wpi_getrfkill(struct wpi_softc *sc)
3199 {
3200 uint32_t tmp;
3201
3202 wpi_mem_lock(sc);
3203 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3204 wpi_mem_unlock(sc);
3205
3206 return !(tmp & 0x01);
3207 }
3208
3209 static int
3210 wpi_sysctl_radio(SYSCTLFN_ARGS)
3211 {
3212 struct sysctlnode node;
3213 struct wpi_softc *sc;
3214 int val, error;
3215
3216 node = *rnode;
3217 sc = (struct wpi_softc *)node.sysctl_data;
3218
3219 val = !wpi_getrfkill(sc);
3220
3221 node.sysctl_data = &val;
3222 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3223
3224 if (error || newp == NULL)
3225 return error;
3226
3227 return 0;
3228 }
3229
3230 static void
3231 wpi_sysctlattach(struct wpi_softc *sc)
3232 {
3233 int rc;
3234 const struct sysctlnode *rnode;
3235 const struct sysctlnode *cnode;
3236
3237 struct sysctllog **clog = &sc->sc_sysctllog;
3238
3239 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3240 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3241 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3242 goto err;
3243
3244 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3245 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3246 SYSCTL_DESCR("wpi controls and statistics"),
3247 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3248 goto err;
3249
3250 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3251 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3252 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3253 wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3254 goto err;
3255
3256 #ifdef WPI_DEBUG
3257 /* control debugging printfs */
3258 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3259 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3260 "debug", SYSCTL_DESCR("Enable debugging output"),
3261 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3262 goto err;
3263 #endif
3264
3265 return;
3266 err:
3267 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3268 }
3269