if_wpi.c revision 1.50.2.3 1 /* $NetBSD: if_wpi.c,v 1.50.2.3 2012/08/12 18:55:10 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.50.2.3 2012/08/12 18:55:10 martin Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x) if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 { 4, { 2, 4, 11, 22 } };
90
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94 static once_t wpi_firmware_init;
95 static kmutex_t wpi_firmware_mutex;
96 static size_t wpi_firmware_users;
97 static uint8_t *wpi_firmware_image;
98 static size_t wpi_firmware_size;
99
100 static int wpi_match(device_t, cfdata_t, void *);
101 static void wpi_attach(device_t, device_t, void *);
102 static int wpi_detach(device_t , int);
103 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
104 void **, bus_size_t, bus_size_t, int);
105 static void wpi_dma_contig_free(struct wpi_dma_info *);
106 static int wpi_alloc_shared(struct wpi_softc *);
107 static void wpi_free_shared(struct wpi_softc *);
108 static int wpi_alloc_fwmem(struct wpi_softc *);
109 static void wpi_free_fwmem(struct wpi_softc *);
110 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
111 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
112 static int wpi_alloc_rpool(struct wpi_softc *);
113 static void wpi_free_rpool(struct wpi_softc *);
114 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
115 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
116 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
117 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
118 int);
119 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
120 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
121 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
122 static void wpi_newassoc(struct ieee80211_node *, int);
123 static int wpi_media_change(struct ifnet *);
124 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
125 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
126 static void wpi_mem_lock(struct wpi_softc *);
127 static void wpi_mem_unlock(struct wpi_softc *);
128 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
129 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
130 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
131 const uint32_t *, int);
132 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
133 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
134 static int wpi_load_firmware(struct wpi_softc *);
135 static void wpi_calib_timeout(void *);
136 static void wpi_iter_func(void *, struct ieee80211_node *);
137 static void wpi_power_calibration(struct wpi_softc *, int);
138 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
139 struct wpi_rx_data *);
140 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
141 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
142 static void wpi_notif_intr(struct wpi_softc *);
143 static int wpi_intr(void *);
144 static void wpi_read_eeprom(struct wpi_softc *);
145 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
146 static void wpi_read_eeprom_group(struct wpi_softc *, int);
147 static uint8_t wpi_plcp_signal(int);
148 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
149 struct ieee80211_node *, int);
150 static void wpi_start(struct ifnet *);
151 static void wpi_watchdog(struct ifnet *);
152 static int wpi_ioctl(struct ifnet *, u_long, void *);
153 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
154 static int wpi_wme_update(struct ieee80211com *);
155 static int wpi_mrr_setup(struct wpi_softc *);
156 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
157 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
158 static int wpi_set_txpower(struct wpi_softc *,
159 struct ieee80211_channel *, int);
160 static int wpi_get_power_index(struct wpi_softc *,
161 struct wpi_power_group *, struct ieee80211_channel *, int);
162 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
163 static int wpi_auth(struct wpi_softc *);
164 static int wpi_scan(struct wpi_softc *, uint16_t);
165 static int wpi_config(struct wpi_softc *);
166 static void wpi_stop_master(struct wpi_softc *);
167 static int wpi_power_up(struct wpi_softc *);
168 static int wpi_reset(struct wpi_softc *);
169 static void wpi_hw_config(struct wpi_softc *);
170 static int wpi_init(struct ifnet *);
171 static void wpi_stop(struct ifnet *, int);
172 static bool wpi_resume(device_t, const pmf_qual_t *);
173 static int wpi_getrfkill(struct wpi_softc *);
174 static void wpi_sysctlattach(struct wpi_softc *);
175
176 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
177 wpi_detach, NULL);
178
179 static int
180 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
181 {
182 struct pci_attach_args *pa = aux;
183
184 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
185 return 0;
186
187 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
188 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
189 return 1;
190
191 return 0;
192 }
193
194 /* Base Address Register */
195 #define WPI_PCI_BAR0 0x10
196
197 static int
198 wpi_attach_once(void)
199 {
200 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
201 return 0;
202 }
203
204 static void
205 wpi_attach(device_t parent __unused, device_t self, void *aux)
206 {
207 struct wpi_softc *sc = device_private(self);
208 struct ieee80211com *ic = &sc->sc_ic;
209 struct ifnet *ifp = &sc->sc_ec.ec_if;
210 struct pci_attach_args *pa = aux;
211 const char *intrstr;
212 bus_space_tag_t memt;
213 bus_space_handle_t memh;
214 pci_intr_handle_t ih;
215 pcireg_t data;
216 int error, ac;
217
218 RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
219 sc->fw_used = false;
220
221 sc->sc_dev = self;
222 sc->sc_pct = pa->pa_pc;
223 sc->sc_pcitag = pa->pa_tag;
224
225 callout_init(&sc->calib_to, 0);
226 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
227
228 pci_aprint_devinfo(pa, NULL);
229
230 /* enable bus-mastering */
231 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
232 data |= PCI_COMMAND_MASTER_ENABLE;
233 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
234
235 /* map the register window */
236 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
237 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
238 if (error != 0) {
239 aprint_error_dev(self, "could not map memory space\n");
240 return;
241 }
242
243 sc->sc_st = memt;
244 sc->sc_sh = memh;
245 sc->sc_dmat = pa->pa_dmat;
246
247 if (pci_intr_map(pa, &ih) != 0) {
248 aprint_error_dev(self, "could not map interrupt\n");
249 return;
250 }
251
252 intrstr = pci_intr_string(sc->sc_pct, ih);
253 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
254 if (sc->sc_ih == NULL) {
255 aprint_error_dev(self, "could not establish interrupt");
256 if (intrstr != NULL)
257 aprint_error(" at %s", intrstr);
258 aprint_error("\n");
259 return;
260 }
261 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
262
263 if (wpi_reset(sc) != 0) {
264 aprint_error_dev(self, "could not reset adapter\n");
265 return;
266 }
267
268 /*
269 * Allocate DMA memory for firmware transfers.
270 */
271 if ((error = wpi_alloc_fwmem(sc)) != 0)
272 return;
273
274 /*
275 * Allocate shared page and Tx/Rx rings.
276 */
277 if ((error = wpi_alloc_shared(sc)) != 0) {
278 aprint_error_dev(self, "could not allocate shared area\n");
279 goto fail1;
280 }
281
282 if ((error = wpi_alloc_rpool(sc)) != 0) {
283 aprint_error_dev(self, "could not allocate Rx buffers\n");
284 goto fail2;
285 }
286
287 for (ac = 0; ac < 4; ac++) {
288 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
289 if (error != 0) {
290 aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
291 goto fail3;
292 }
293 }
294
295 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
296 if (error != 0) {
297 aprint_error_dev(self, "could not allocate command ring\n");
298 goto fail3;
299 }
300
301 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
302 aprint_error_dev(self, "could not allocate Rx ring\n");
303 goto fail4;
304 }
305
306 ic->ic_ifp = ifp;
307 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
308 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
309 ic->ic_state = IEEE80211_S_INIT;
310
311 /* set device capabilities */
312 ic->ic_caps =
313 #ifdef notyet
314 IEEE80211_C_IBSS | /* IBSS mode support */
315 #endif
316 IEEE80211_C_WPA | /* 802.11i */
317 IEEE80211_C_MONITOR | /* monitor mode supported */
318 IEEE80211_C_TXPMGT | /* tx power management */
319 IEEE80211_C_SHSLOT | /* short slot time supported */
320 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
321 IEEE80211_C_WME; /* 802.11e */
322
323 /* read supported channels and MAC address from EEPROM */
324 wpi_read_eeprom(sc);
325
326 /* set supported .11a, .11b, .11g rates */
327 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
328 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
329 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
330
331 ic->ic_ibss_chan = &ic->ic_channels[0];
332
333 ifp->if_softc = sc;
334 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
335 ifp->if_init = wpi_init;
336 ifp->if_stop = wpi_stop;
337 ifp->if_ioctl = wpi_ioctl;
338 ifp->if_start = wpi_start;
339 ifp->if_watchdog = wpi_watchdog;
340 IFQ_SET_READY(&ifp->if_snd);
341 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
342
343 if_attach(ifp);
344 ieee80211_ifattach(ic);
345 /* override default methods */
346 ic->ic_node_alloc = wpi_node_alloc;
347 ic->ic_newassoc = wpi_newassoc;
348 ic->ic_wme.wme_update = wpi_wme_update;
349
350 /* override state transition machine */
351 sc->sc_newstate = ic->ic_newstate;
352 ic->ic_newstate = wpi_newstate;
353 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
354
355 sc->amrr.amrr_min_success_threshold = 1;
356 sc->amrr.amrr_max_success_threshold = 15;
357
358 wpi_sysctlattach(sc);
359
360 if (pmf_device_register(self, NULL, wpi_resume))
361 pmf_class_network_register(self, ifp);
362 else
363 aprint_error_dev(self, "couldn't establish power handler\n");
364
365 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
366 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
367 &sc->sc_drvbpf);
368
369 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
370 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
371 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
372
373 sc->sc_txtap_len = sizeof sc->sc_txtapu;
374 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
375 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
376
377 ieee80211_announce(ic);
378
379 return;
380
381 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
382 fail3: while (--ac >= 0)
383 wpi_free_tx_ring(sc, &sc->txq[ac]);
384 wpi_free_rpool(sc);
385 fail2: wpi_free_shared(sc);
386 fail1: wpi_free_fwmem(sc);
387 }
388
389 static int
390 wpi_detach(device_t self, int flags __unused)
391 {
392 struct wpi_softc *sc = device_private(self);
393 struct ifnet *ifp = sc->sc_ic.ic_ifp;
394 int ac;
395
396 wpi_stop(ifp, 1);
397
398 if (ifp != NULL)
399 bpf_detach(ifp);
400 ieee80211_ifdetach(&sc->sc_ic);
401 if (ifp != NULL)
402 if_detach(ifp);
403
404 for (ac = 0; ac < 4; ac++)
405 wpi_free_tx_ring(sc, &sc->txq[ac]);
406 wpi_free_tx_ring(sc, &sc->cmdq);
407 wpi_free_rx_ring(sc, &sc->rxq);
408 wpi_free_rpool(sc);
409 wpi_free_shared(sc);
410
411 if (sc->sc_ih != NULL) {
412 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
413 sc->sc_ih = NULL;
414 }
415
416 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
417
418 if (sc->fw_used) {
419 mutex_enter(&wpi_firmware_mutex);
420 if (--wpi_firmware_users == 0)
421 firmware_free(wpi_firmware_image, wpi_firmware_size);
422 mutex_exit(&wpi_firmware_mutex);
423 }
424
425 return 0;
426 }
427
428 static int
429 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
430 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
431 {
432 int nsegs, error;
433
434 dma->tag = tag;
435 dma->size = size;
436
437 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
438 if (error != 0)
439 goto fail;
440
441 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
442 flags);
443 if (error != 0)
444 goto fail;
445
446 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
447 if (error != 0)
448 goto fail;
449
450 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
451 if (error != 0)
452 goto fail;
453
454 memset(dma->vaddr, 0, size);
455
456 dma->paddr = dma->map->dm_segs[0].ds_addr;
457 if (kvap != NULL)
458 *kvap = dma->vaddr;
459
460 return 0;
461
462 fail: wpi_dma_contig_free(dma);
463 return error;
464 }
465
466 static void
467 wpi_dma_contig_free(struct wpi_dma_info *dma)
468 {
469 if (dma->map != NULL) {
470 if (dma->vaddr != NULL) {
471 bus_dmamap_unload(dma->tag, dma->map);
472 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
473 bus_dmamem_free(dma->tag, &dma->seg, 1);
474 dma->vaddr = NULL;
475 }
476 bus_dmamap_destroy(dma->tag, dma->map);
477 dma->map = NULL;
478 }
479 }
480
481 /*
482 * Allocate a shared page between host and NIC.
483 */
484 static int
485 wpi_alloc_shared(struct wpi_softc *sc)
486 {
487 int error;
488 /* must be aligned on a 4K-page boundary */
489 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
490 (void **)&sc->shared, sizeof (struct wpi_shared),
491 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
492 if (error != 0)
493 aprint_error_dev(sc->sc_dev,
494 "could not allocate shared area DMA memory\n");
495
496 return error;
497 }
498
499 static void
500 wpi_free_shared(struct wpi_softc *sc)
501 {
502 wpi_dma_contig_free(&sc->shared_dma);
503 }
504
505 /*
506 * Allocate DMA-safe memory for firmware transfer.
507 */
508 static int
509 wpi_alloc_fwmem(struct wpi_softc *sc)
510 {
511 int error;
512 /* allocate enough contiguous space to store text and data */
513 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
514 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
515 BUS_DMA_NOWAIT);
516
517 if (error != 0)
518 aprint_error_dev(sc->sc_dev,
519 "could not allocate firmware transfer area"
520 "DMA memory\n");
521 return error;
522 }
523
524 static void
525 wpi_free_fwmem(struct wpi_softc *sc)
526 {
527 wpi_dma_contig_free(&sc->fw_dma);
528 }
529
530
531 static struct wpi_rbuf *
532 wpi_alloc_rbuf(struct wpi_softc *sc)
533 {
534 struct wpi_rbuf *rbuf;
535
536 mutex_enter(&sc->rxq.freelist_mtx);
537 rbuf = SLIST_FIRST(&sc->rxq.freelist);
538 if (rbuf != NULL) {
539 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
540 sc->rxq.nb_free_entries --;
541 }
542 mutex_exit(&sc->rxq.freelist_mtx);
543
544 return rbuf;
545 }
546
547 /*
548 * This is called automatically by the network stack when the mbuf to which our
549 * Rx buffer is attached is freed.
550 */
551 static void
552 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
553 {
554 struct wpi_rbuf *rbuf = arg;
555 struct wpi_softc *sc = rbuf->sc;
556
557 /* put the buffer back in the free list */
558
559 mutex_enter(&sc->rxq.freelist_mtx);
560 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
561 mutex_exit(&sc->rxq.freelist_mtx);
562 /* No need to protect this with a mutex, see wpi_rx_intr */
563 sc->rxq.nb_free_entries ++;
564
565 if (__predict_true(m != NULL))
566 pool_cache_put(mb_cache, m);
567 }
568
569 static int
570 wpi_alloc_rpool(struct wpi_softc *sc)
571 {
572 struct wpi_rx_ring *ring = &sc->rxq;
573 struct wpi_rbuf *rbuf;
574 int i, error;
575
576 /* allocate a big chunk of DMA'able memory.. */
577 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
578 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
579 if (error != 0) {
580 aprint_normal_dev(sc->sc_dev,
581 "could not allocate Rx buffers DMA memory\n");
582 return error;
583 }
584
585 /* ..and split it into 3KB chunks */
586 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
587 SLIST_INIT(&ring->freelist);
588 for (i = 0; i < WPI_RBUF_COUNT; i++) {
589 rbuf = &ring->rbuf[i];
590 rbuf->sc = sc; /* backpointer for callbacks */
591 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
592 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
593
594 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
595 }
596
597 ring->nb_free_entries = WPI_RBUF_COUNT;
598 return 0;
599 }
600
601 static void
602 wpi_free_rpool(struct wpi_softc *sc)
603 {
604 wpi_dma_contig_free(&sc->rxq.buf_dma);
605 }
606
607 static int
608 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
609 {
610 struct wpi_rx_data *data;
611 struct wpi_rbuf *rbuf;
612 int i, error;
613
614 ring->cur = 0;
615
616 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
617 (void **)&ring->desc,
618 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
619 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
620 if (error != 0) {
621 aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
622 goto fail;
623 }
624
625 /*
626 * Setup Rx buffers.
627 */
628 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
629 data = &ring->data[i];
630
631 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
632 if (data->m == NULL) {
633 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
634 error = ENOMEM;
635 goto fail;
636 }
637 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
638 m_freem(data->m);
639 data->m = NULL;
640 aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
641 error = ENOMEM;
642 goto fail;
643 }
644 /* attach Rx buffer to mbuf */
645 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
646 rbuf);
647 data->m->m_flags |= M_EXT_RW;
648
649 ring->desc[i] = htole32(rbuf->paddr);
650 }
651
652 return 0;
653
654 fail: wpi_free_rx_ring(sc, ring);
655 return error;
656 }
657
658 static void
659 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
660 {
661 int ntries;
662
663 wpi_mem_lock(sc);
664
665 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
666 for (ntries = 0; ntries < 100; ntries++) {
667 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
668 break;
669 DELAY(10);
670 }
671 #ifdef WPI_DEBUG
672 if (ntries == 100 && wpi_debug > 0)
673 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
674 #endif
675 wpi_mem_unlock(sc);
676
677 ring->cur = 0;
678 }
679
680 static void
681 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
682 {
683 int i;
684
685 wpi_dma_contig_free(&ring->desc_dma);
686
687 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
688 if (ring->data[i].m != NULL)
689 m_freem(ring->data[i].m);
690 }
691 }
692
693 static int
694 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
695 int qid)
696 {
697 struct wpi_tx_data *data;
698 int i, error;
699
700 ring->qid = qid;
701 ring->count = count;
702 ring->queued = 0;
703 ring->cur = 0;
704
705 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
706 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
707 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
708 if (error != 0) {
709 aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
710 goto fail;
711 }
712
713 /* update shared page with ring's base address */
714 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
715
716 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
717 (void **)&ring->cmd,
718 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
719 if (error != 0) {
720 aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
721 goto fail;
722 }
723
724 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
725 M_NOWAIT);
726 if (ring->data == NULL) {
727 aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
728 goto fail;
729 }
730
731 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
732
733 for (i = 0; i < count; i++) {
734 data = &ring->data[i];
735
736 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
737 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
738 &data->map);
739 if (error != 0) {
740 aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
741 goto fail;
742 }
743 }
744
745 return 0;
746
747 fail: wpi_free_tx_ring(sc, ring);
748 return error;
749 }
750
751 static void
752 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
753 {
754 struct wpi_tx_data *data;
755 int i, ntries;
756
757 wpi_mem_lock(sc);
758
759 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
760 for (ntries = 0; ntries < 100; ntries++) {
761 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
762 break;
763 DELAY(10);
764 }
765 #ifdef WPI_DEBUG
766 if (ntries == 100 && wpi_debug > 0) {
767 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
768 ring->qid);
769 }
770 #endif
771 wpi_mem_unlock(sc);
772
773 for (i = 0; i < ring->count; i++) {
774 data = &ring->data[i];
775
776 if (data->m != NULL) {
777 bus_dmamap_unload(sc->sc_dmat, data->map);
778 m_freem(data->m);
779 data->m = NULL;
780 }
781 }
782
783 ring->queued = 0;
784 ring->cur = 0;
785 }
786
787 static void
788 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
789 {
790 struct wpi_tx_data *data;
791 int i;
792
793 wpi_dma_contig_free(&ring->desc_dma);
794 wpi_dma_contig_free(&ring->cmd_dma);
795
796 if (ring->data != NULL) {
797 for (i = 0; i < ring->count; i++) {
798 data = &ring->data[i];
799
800 if (data->m != NULL) {
801 bus_dmamap_unload(sc->sc_dmat, data->map);
802 m_freem(data->m);
803 }
804 }
805 free(ring->data, M_DEVBUF);
806 }
807 }
808
809 /*ARGUSED*/
810 static struct ieee80211_node *
811 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
812 {
813 struct wpi_node *wn;
814
815 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
816
817 return (struct ieee80211_node *)wn;
818 }
819
820 static void
821 wpi_newassoc(struct ieee80211_node *ni, int isnew)
822 {
823 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
824 int i;
825
826 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
827
828 /* set rate to some reasonable initial value */
829 for (i = ni->ni_rates.rs_nrates - 1;
830 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
831 i--);
832 ni->ni_txrate = i;
833 }
834
835 static int
836 wpi_media_change(struct ifnet *ifp)
837 {
838 int error;
839
840 error = ieee80211_media_change(ifp);
841 if (error != ENETRESET)
842 return error;
843
844 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
845 wpi_init(ifp);
846
847 return 0;
848 }
849
850 static int
851 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
852 {
853 struct ifnet *ifp = ic->ic_ifp;
854 struct wpi_softc *sc = ifp->if_softc;
855 struct ieee80211_node *ni;
856 int error;
857
858 callout_stop(&sc->calib_to);
859
860 switch (nstate) {
861 case IEEE80211_S_SCAN:
862
863 if (sc->is_scanning)
864 break;
865
866 sc->is_scanning = true;
867 ieee80211_node_table_reset(&ic->ic_scan);
868 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
869
870 /* make the link LED blink while we're scanning */
871 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
872
873 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
874 aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
875 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
876 return error;
877 }
878
879 ic->ic_state = nstate;
880 return 0;
881
882 case IEEE80211_S_ASSOC:
883 if (ic->ic_state != IEEE80211_S_RUN)
884 break;
885 /* FALLTHROUGH */
886 case IEEE80211_S_AUTH:
887 sc->config.associd = 0;
888 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
889 if ((error = wpi_auth(sc)) != 0) {
890 aprint_error_dev(sc->sc_dev,
891 "could not send authentication request\n");
892 return error;
893 }
894 break;
895
896 case IEEE80211_S_RUN:
897 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
898 /* link LED blinks while monitoring */
899 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
900 break;
901 }
902
903 ni = ic->ic_bss;
904
905 if (ic->ic_opmode != IEEE80211_M_STA) {
906 (void) wpi_auth(sc); /* XXX */
907 wpi_setup_beacon(sc, ni);
908 }
909
910 wpi_enable_tsf(sc, ni);
911
912 /* update adapter's configuration */
913 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
914 /* short preamble/slot time are negotiated when associating */
915 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
916 WPI_CONFIG_SHSLOT);
917 if (ic->ic_flags & IEEE80211_F_SHSLOT)
918 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
919 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
920 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
921 sc->config.filter |= htole32(WPI_FILTER_BSS);
922 if (ic->ic_opmode != IEEE80211_M_STA)
923 sc->config.filter |= htole32(WPI_FILTER_BEACON);
924
925 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
926
927 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
928 sc->config.flags));
929 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
930 sizeof (struct wpi_config), 1);
931 if (error != 0) {
932 aprint_error_dev(sc->sc_dev, "could not update configuration\n");
933 return error;
934 }
935
936 /* configuration has changed, set Tx power accordingly */
937 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
938 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
939 return error;
940 }
941
942 if (ic->ic_opmode == IEEE80211_M_STA) {
943 /* fake a join to init the tx rate */
944 wpi_newassoc(ni, 1);
945 }
946
947 /* start periodic calibration timer */
948 sc->calib_cnt = 0;
949 callout_schedule(&sc->calib_to, hz/2);
950
951 /* link LED always on while associated */
952 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
953 break;
954
955 case IEEE80211_S_INIT:
956 sc->is_scanning = false;
957 break;
958 }
959
960 return sc->sc_newstate(ic, nstate, arg);
961 }
962
963 /*
964 * XXX: Hack to set the current channel to the value advertised in beacons or
965 * probe responses. Only used during AP detection.
966 * XXX: Duplicated from if_iwi.c
967 */
968 static void
969 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
970 {
971 struct ieee80211_frame *wh;
972 uint8_t subtype;
973 uint8_t *frm, *efrm;
974
975 wh = mtod(m, struct ieee80211_frame *);
976
977 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
978 return;
979
980 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
981
982 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
983 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
984 return;
985
986 frm = (uint8_t *)(wh + 1);
987 efrm = mtod(m, uint8_t *) + m->m_len;
988
989 frm += 12; /* skip tstamp, bintval and capinfo fields */
990 while (frm < efrm) {
991 if (*frm == IEEE80211_ELEMID_DSPARMS)
992 #if IEEE80211_CHAN_MAX < 255
993 if (frm[2] <= IEEE80211_CHAN_MAX)
994 #endif
995 ic->ic_curchan = &ic->ic_channels[frm[2]];
996
997 frm += frm[1] + 2;
998 }
999 }
1000
1001 /*
1002 * Grab exclusive access to NIC memory.
1003 */
1004 static void
1005 wpi_mem_lock(struct wpi_softc *sc)
1006 {
1007 uint32_t tmp;
1008 int ntries;
1009
1010 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1011 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1012
1013 /* spin until we actually get the lock */
1014 for (ntries = 0; ntries < 1000; ntries++) {
1015 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1016 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1017 break;
1018 DELAY(10);
1019 }
1020 if (ntries == 1000)
1021 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1022 }
1023
1024 /*
1025 * Release lock on NIC memory.
1026 */
1027 static void
1028 wpi_mem_unlock(struct wpi_softc *sc)
1029 {
1030 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1031 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1032 }
1033
1034 static uint32_t
1035 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1036 {
1037 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1038 return WPI_READ(sc, WPI_READ_MEM_DATA);
1039 }
1040
1041 static void
1042 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1043 {
1044 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1045 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1046 }
1047
1048 static void
1049 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1050 const uint32_t *data, int wlen)
1051 {
1052 for (; wlen > 0; wlen--, data++, addr += 4)
1053 wpi_mem_write(sc, addr, *data);
1054 }
1055
1056
1057 /*
1058 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1059 * instead of using the traditional bit-bang method.
1060 */
1061 static int
1062 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1063 {
1064 uint8_t *out = data;
1065 uint32_t val;
1066 int ntries;
1067
1068 wpi_mem_lock(sc);
1069 for (; len > 0; len -= 2, addr++) {
1070 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1071
1072 for (ntries = 0; ntries < 10; ntries++) {
1073 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1074 WPI_EEPROM_READY)
1075 break;
1076 DELAY(5);
1077 }
1078 if (ntries == 10) {
1079 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1080 return ETIMEDOUT;
1081 }
1082 *out++ = val >> 16;
1083 if (len > 1)
1084 *out++ = val >> 24;
1085 }
1086 wpi_mem_unlock(sc);
1087
1088 return 0;
1089 }
1090
1091 /*
1092 * The firmware boot code is small and is intended to be copied directly into
1093 * the NIC internal memory.
1094 */
1095 int
1096 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1097 {
1098 int ntries;
1099
1100 size /= sizeof (uint32_t);
1101
1102 wpi_mem_lock(sc);
1103
1104 /* copy microcode image into NIC memory */
1105 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1106 (const uint32_t *)ucode, size);
1107
1108 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1109 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1110 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1111
1112 /* run microcode */
1113 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1114
1115 /* wait for transfer to complete */
1116 for (ntries = 0; ntries < 1000; ntries++) {
1117 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1118 break;
1119 DELAY(10);
1120 }
1121 if (ntries == 1000) {
1122 wpi_mem_unlock(sc);
1123 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1124 return ETIMEDOUT;
1125 }
1126 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1127
1128 wpi_mem_unlock(sc);
1129
1130 return 0;
1131 }
1132
1133 static int
1134 wpi_cache_firmware(struct wpi_softc *sc)
1135 {
1136 firmware_handle_t fw;
1137 int error;
1138
1139 if (sc->fw_used)
1140 return 0;
1141
1142 mutex_enter(&wpi_firmware_mutex);
1143 if (wpi_firmware_users++) {
1144 mutex_exit(&wpi_firmware_mutex);
1145 return 0;
1146 }
1147
1148 /* load firmware image from disk */
1149 if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw)) != 0) {
1150 aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
1151 goto fail0;
1152 }
1153
1154 wpi_firmware_size = firmware_get_size(fw);
1155
1156 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1157 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1158 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1159 WPI_FW_BOOT_TEXT_MAXSZ) {
1160 aprint_error_dev(sc->sc_dev, "invalid firmware file\n");
1161 error = EFBIG;
1162 goto fail1;
1163 }
1164
1165 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1166 aprint_error_dev(sc->sc_dev,
1167 "truncated firmware header: %zu bytes\n",
1168 wpi_firmware_size);
1169 error = EINVAL;
1170 goto fail2;
1171 }
1172
1173 wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1174 if (wpi_firmware_image == NULL) {
1175 aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
1176 error = ENOMEM;
1177 goto fail1;
1178 }
1179
1180 if ((error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size)) != 0) {
1181 aprint_error_dev(sc->sc_dev, "can't get firmware\n");
1182 goto fail2;
1183 }
1184
1185 sc->fw_used = true;
1186 firmware_close(fw);
1187 mutex_exit(&wpi_firmware_mutex);
1188
1189 return 0;
1190
1191 fail2:
1192 firmware_free(wpi_firmware_image, wpi_firmware_size);
1193 fail1:
1194 firmware_close(fw);
1195 fail0:
1196 wpi_firmware_users--;
1197 KASSERT(wpi_firmware_users == 0);
1198 mutex_exit(&wpi_firmware_mutex);
1199 return error;
1200 }
1201
1202 static int
1203 wpi_load_firmware(struct wpi_softc *sc)
1204 {
1205 struct wpi_dma_info *dma = &sc->fw_dma;
1206 struct wpi_firmware_hdr hdr;
1207 const uint8_t *init_text, *init_data, *main_text, *main_data;
1208 const uint8_t *boot_text;
1209 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1210 uint32_t boot_textsz;
1211 int error;
1212
1213 if ((error = wpi_cache_firmware(sc)) != 0)
1214 return error;
1215
1216 memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1217
1218 main_textsz = le32toh(hdr.main_textsz);
1219 main_datasz = le32toh(hdr.main_datasz);
1220 init_textsz = le32toh(hdr.init_textsz);
1221 init_datasz = le32toh(hdr.init_datasz);
1222 boot_textsz = le32toh(hdr.boot_textsz);
1223
1224 /* sanity-check firmware segments sizes */
1225 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1226 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1227 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1228 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1229 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1230 (boot_textsz & 3) != 0) {
1231 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1232 error = EINVAL;
1233 goto free_firmware;
1234 }
1235
1236 /* check that all firmware segments are present */
1237 if (wpi_firmware_size <
1238 sizeof (struct wpi_firmware_hdr) + main_textsz +
1239 main_datasz + init_textsz + init_datasz + boot_textsz) {
1240 aprint_error_dev(sc->sc_dev,
1241 "firmware file too short: %zu bytes\n", wpi_firmware_size);
1242 error = EINVAL;
1243 goto free_firmware;
1244 }
1245
1246 /* get pointers to firmware segments */
1247 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1248 main_data = main_text + main_textsz;
1249 init_text = main_data + main_datasz;
1250 init_data = init_text + init_textsz;
1251 boot_text = init_data + init_datasz;
1252
1253 /* copy initialization images into pre-allocated DMA-safe memory */
1254 memcpy(dma->vaddr, init_data, init_datasz);
1255 memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1256
1257 /* tell adapter where to find initialization images */
1258 wpi_mem_lock(sc);
1259 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1260 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1261 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1262 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1263 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1264 wpi_mem_unlock(sc);
1265
1266 /* load firmware boot code */
1267 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1268 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1269 return error;
1270 }
1271
1272 /* now press "execute" ;-) */
1273 WPI_WRITE(sc, WPI_RESET, 0);
1274
1275 /* ..and wait at most one second for adapter to initialize */
1276 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1277 /* this isn't what was supposed to happen.. */
1278 aprint_error_dev(sc->sc_dev,
1279 "timeout waiting for adapter to initialize\n");
1280 }
1281
1282 /* copy runtime images into pre-allocated DMA-safe memory */
1283 memcpy(dma->vaddr, main_data, main_datasz);
1284 memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1285
1286 /* tell adapter where to find runtime images */
1287 wpi_mem_lock(sc);
1288 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1289 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1290 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1291 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1292 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1293 wpi_mem_unlock(sc);
1294
1295 /* wait at most one second for second alive notification */
1296 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1297 /* this isn't what was supposed to happen.. */
1298 aprint_error_dev(sc->sc_dev,
1299 "timeout waiting for adapter to initialize\n");
1300 }
1301
1302 return error;
1303
1304 free_firmware:
1305 mutex_enter(&wpi_firmware_mutex);
1306 sc->fw_used = false;
1307 --wpi_firmware_users;
1308 mutex_exit(&wpi_firmware_mutex);
1309 return error;
1310 }
1311
1312 static void
1313 wpi_calib_timeout(void *arg)
1314 {
1315 struct wpi_softc *sc = arg;
1316 struct ieee80211com *ic = &sc->sc_ic;
1317 int temp, s;
1318
1319 /* automatic rate control triggered every 500ms */
1320 if (ic->ic_fixed_rate == -1) {
1321 s = splnet();
1322 if (ic->ic_opmode == IEEE80211_M_STA)
1323 wpi_iter_func(sc, ic->ic_bss);
1324 else
1325 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1326 splx(s);
1327 }
1328
1329 /* update sensor data */
1330 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1331
1332 /* automatic power calibration every 60s */
1333 if (++sc->calib_cnt >= 120) {
1334 wpi_power_calibration(sc, temp);
1335 sc->calib_cnt = 0;
1336 }
1337
1338 callout_schedule(&sc->calib_to, hz/2);
1339 }
1340
1341 static void
1342 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1343 {
1344 struct wpi_softc *sc = arg;
1345 struct wpi_node *wn = (struct wpi_node *)ni;
1346
1347 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1348 }
1349
1350 /*
1351 * This function is called periodically (every 60 seconds) to adjust output
1352 * power to temperature changes.
1353 */
1354 void
1355 wpi_power_calibration(struct wpi_softc *sc, int temp)
1356 {
1357 /* sanity-check read value */
1358 if (temp < -260 || temp > 25) {
1359 /* this can't be correct, ignore */
1360 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1361 return;
1362 }
1363
1364 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1365
1366 /* adjust Tx power if need be */
1367 if (abs(temp - sc->temp) <= 6)
1368 return;
1369
1370 sc->temp = temp;
1371
1372 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1373 /* just warn, too bad for the automatic calibration... */
1374 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1375 }
1376 }
1377
1378 static void
1379 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1380 struct wpi_rx_data *data)
1381 {
1382 struct ieee80211com *ic = &sc->sc_ic;
1383 struct ifnet *ifp = ic->ic_ifp;
1384 struct wpi_rx_ring *ring = &sc->rxq;
1385 struct wpi_rx_stat *stat;
1386 struct wpi_rx_head *head;
1387 struct wpi_rx_tail *tail;
1388 struct wpi_rbuf *rbuf;
1389 struct ieee80211_frame *wh;
1390 struct ieee80211_node *ni;
1391 struct mbuf *m, *mnew;
1392 int data_off ;
1393
1394 stat = (struct wpi_rx_stat *)(desc + 1);
1395
1396 if (stat->len > WPI_STAT_MAXLEN) {
1397 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1398 ifp->if_ierrors++;
1399 return;
1400 }
1401
1402 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1403 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1404
1405 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1406 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1407 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1408 le64toh(tail->tstamp)));
1409
1410 /*
1411 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1412 * to radiotap in monitor mode).
1413 */
1414 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1415 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1416 ifp->if_ierrors++;
1417 return;
1418 }
1419
1420 /* Compute where are the useful datas */
1421 data_off = (char*)(head + 1) - mtod(data->m, char*);
1422
1423 /*
1424 * If the number of free entry is too low
1425 * just dup the data->m socket and reuse the same rbuf entry
1426 * Note that thi test is not protected by a mutex because the
1427 * only path that causes nb_free_entries to decrease is through
1428 * this interrupt routine, which is not re-entrent.
1429 * What may not be obvious is that the safe path is if that test
1430 * evaluates as true, so nb_free_entries can grow any time.
1431 */
1432 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1433
1434 /* Prepare the mbuf for the m_dup */
1435 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1436 data->m->m_data = (char*) data->m->m_data + data_off;
1437
1438 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1439
1440 /* Restore the m_data pointer for future use */
1441 data->m->m_data = (char*) data->m->m_data - data_off;
1442
1443 if (m == NULL) {
1444 ifp->if_ierrors++;
1445 return;
1446 }
1447 } else {
1448
1449 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1450 if (mnew == NULL) {
1451 ifp->if_ierrors++;
1452 return;
1453 }
1454
1455 rbuf = wpi_alloc_rbuf(sc);
1456 KASSERT(rbuf != NULL);
1457
1458 /* attach Rx buffer to mbuf */
1459 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1460 rbuf);
1461 mnew->m_flags |= M_EXT_RW;
1462
1463 m = data->m;
1464 data->m = mnew;
1465
1466 /* update Rx descriptor */
1467 ring->desc[ring->cur] = htole32(rbuf->paddr);
1468
1469 m->m_data = (char*)m->m_data + data_off;
1470 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1471 }
1472
1473 /* finalize mbuf */
1474 m->m_pkthdr.rcvif = ifp;
1475
1476 if (ic->ic_state == IEEE80211_S_SCAN)
1477 wpi_fix_channel(ic, m);
1478
1479 if (sc->sc_drvbpf != NULL) {
1480 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1481
1482 tap->wr_flags = 0;
1483 tap->wr_chan_freq =
1484 htole16(ic->ic_channels[head->chan].ic_freq);
1485 tap->wr_chan_flags =
1486 htole16(ic->ic_channels[head->chan].ic_flags);
1487 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1488 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1489 tap->wr_tsft = tail->tstamp;
1490 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1491 switch (head->rate) {
1492 /* CCK rates */
1493 case 10: tap->wr_rate = 2; break;
1494 case 20: tap->wr_rate = 4; break;
1495 case 55: tap->wr_rate = 11; break;
1496 case 110: tap->wr_rate = 22; break;
1497 /* OFDM rates */
1498 case 0xd: tap->wr_rate = 12; break;
1499 case 0xf: tap->wr_rate = 18; break;
1500 case 0x5: tap->wr_rate = 24; break;
1501 case 0x7: tap->wr_rate = 36; break;
1502 case 0x9: tap->wr_rate = 48; break;
1503 case 0xb: tap->wr_rate = 72; break;
1504 case 0x1: tap->wr_rate = 96; break;
1505 case 0x3: tap->wr_rate = 108; break;
1506 /* unknown rate: should not happen */
1507 default: tap->wr_rate = 0;
1508 }
1509 if (le16toh(head->flags) & 0x4)
1510 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1511
1512 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1513 }
1514
1515 /* grab a reference to the source node */
1516 wh = mtod(m, struct ieee80211_frame *);
1517 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1518
1519 /* send the frame to the 802.11 layer */
1520 ieee80211_input(ic, m, ni, stat->rssi, 0);
1521
1522 /* release node reference */
1523 ieee80211_free_node(ni);
1524 }
1525
1526 static void
1527 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1528 {
1529 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1530 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1531 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1532 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1533 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1534
1535 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1536 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1537 stat->nkill, stat->rate, le32toh(stat->duration),
1538 le32toh(stat->status)));
1539
1540 /*
1541 * Update rate control statistics for the node.
1542 * XXX we should not count mgmt frames since they're always sent at
1543 * the lowest available bit-rate.
1544 */
1545 wn->amn.amn_txcnt++;
1546 if (stat->ntries > 0) {
1547 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1548 wn->amn.amn_retrycnt++;
1549 }
1550
1551 if ((le32toh(stat->status) & 0xff) != 1)
1552 ifp->if_oerrors++;
1553 else
1554 ifp->if_opackets++;
1555
1556 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1557 m_freem(txdata->m);
1558 txdata->m = NULL;
1559 ieee80211_free_node(txdata->ni);
1560 txdata->ni = NULL;
1561
1562 ring->queued--;
1563
1564 sc->sc_tx_timer = 0;
1565 ifp->if_flags &= ~IFF_OACTIVE;
1566 wpi_start(ifp);
1567 }
1568
1569 static void
1570 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1571 {
1572 struct wpi_tx_ring *ring = &sc->cmdq;
1573 struct wpi_tx_data *data;
1574
1575 if ((desc->qid & 7) != 4)
1576 return; /* not a command ack */
1577
1578 data = &ring->data[desc->idx];
1579
1580 /* if the command was mapped in a mbuf, free it */
1581 if (data->m != NULL) {
1582 bus_dmamap_unload(sc->sc_dmat, data->map);
1583 m_freem(data->m);
1584 data->m = NULL;
1585 }
1586
1587 wakeup(&ring->cmd[desc->idx]);
1588 }
1589
1590 static void
1591 wpi_notif_intr(struct wpi_softc *sc)
1592 {
1593 struct ieee80211com *ic = &sc->sc_ic;
1594 struct ifnet *ifp = ic->ic_ifp;
1595 struct wpi_rx_desc *desc;
1596 struct wpi_rx_data *data;
1597 uint32_t hw;
1598
1599 hw = le32toh(sc->shared->next);
1600 while (sc->rxq.cur != hw) {
1601 data = &sc->rxq.data[sc->rxq.cur];
1602
1603 desc = mtod(data->m, struct wpi_rx_desc *);
1604
1605 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1606 "len=%d\n", desc->qid, desc->idx, desc->flags,
1607 desc->type, le32toh(desc->len)));
1608
1609 if (!(desc->qid & 0x80)) /* reply to a command */
1610 wpi_cmd_intr(sc, desc);
1611
1612 switch (desc->type) {
1613 case WPI_RX_DONE:
1614 /* a 802.11 frame was received */
1615 wpi_rx_intr(sc, desc, data);
1616 break;
1617
1618 case WPI_TX_DONE:
1619 /* a 802.11 frame has been transmitted */
1620 wpi_tx_intr(sc, desc);
1621 break;
1622
1623 case WPI_UC_READY:
1624 {
1625 struct wpi_ucode_info *uc =
1626 (struct wpi_ucode_info *)(desc + 1);
1627
1628 /* the microcontroller is ready */
1629 DPRINTF(("microcode alive notification version %x "
1630 "alive %x\n", le32toh(uc->version),
1631 le32toh(uc->valid)));
1632
1633 if (le32toh(uc->valid) != 1) {
1634 aprint_error_dev(sc->sc_dev,
1635 "microcontroller initialization failed\n");
1636 }
1637 break;
1638 }
1639 case WPI_STATE_CHANGED:
1640 {
1641 uint32_t *status = (uint32_t *)(desc + 1);
1642
1643 /* enabled/disabled notification */
1644 DPRINTF(("state changed to %x\n", le32toh(*status)));
1645
1646 if (le32toh(*status) & 1) {
1647 /* the radio button has to be pushed */
1648 aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1649 /* turn the interface down */
1650 ifp->if_flags &= ~IFF_UP;
1651 wpi_stop(ifp, 1);
1652 return; /* no further processing */
1653 }
1654 break;
1655 }
1656 case WPI_START_SCAN:
1657 {
1658 struct wpi_start_scan *scan =
1659 (struct wpi_start_scan *)(desc + 1);
1660
1661 DPRINTFN(2, ("scanning channel %d status %x\n",
1662 scan->chan, le32toh(scan->status)));
1663
1664 /* fix current channel */
1665 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1666 break;
1667 }
1668 case WPI_STOP_SCAN:
1669 {
1670 struct wpi_stop_scan *scan =
1671 (struct wpi_stop_scan *)(desc + 1);
1672
1673 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1674 scan->nchan, scan->status, scan->chan));
1675
1676 if (scan->status == 1 && scan->chan <= 14) {
1677 /*
1678 * We just finished scanning 802.11g channels,
1679 * start scanning 802.11a ones.
1680 */
1681 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1682 break;
1683 }
1684 sc->is_scanning = false;
1685 ieee80211_end_scan(ic);
1686 break;
1687 }
1688 }
1689
1690 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1691 }
1692
1693 /* tell the firmware what we have processed */
1694 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1695 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1696 }
1697
1698 static int
1699 wpi_intr(void *arg)
1700 {
1701 struct wpi_softc *sc = arg;
1702 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1703 uint32_t r;
1704
1705 r = WPI_READ(sc, WPI_INTR);
1706 if (r == 0 || r == 0xffffffff)
1707 return 0; /* not for us */
1708
1709 DPRINTFN(5, ("interrupt reg %x\n", r));
1710
1711 /* disable interrupts */
1712 WPI_WRITE(sc, WPI_MASK, 0);
1713 /* ack interrupts */
1714 WPI_WRITE(sc, WPI_INTR, r);
1715
1716 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1717 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1718 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1719 wpi_stop(sc->sc_ic.ic_ifp, 1);
1720 return 1;
1721 }
1722
1723 if (r & WPI_RX_INTR)
1724 wpi_notif_intr(sc);
1725
1726 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1727 wakeup(sc);
1728
1729 /* re-enable interrupts */
1730 if (ifp->if_flags & IFF_UP)
1731 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1732
1733 return 1;
1734 }
1735
1736 static uint8_t
1737 wpi_plcp_signal(int rate)
1738 {
1739 switch (rate) {
1740 /* CCK rates (returned values are device-dependent) */
1741 case 2: return 10;
1742 case 4: return 20;
1743 case 11: return 55;
1744 case 22: return 110;
1745
1746 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1747 /* R1-R4, (u)ral is R4-R1 */
1748 case 12: return 0xd;
1749 case 18: return 0xf;
1750 case 24: return 0x5;
1751 case 36: return 0x7;
1752 case 48: return 0x9;
1753 case 72: return 0xb;
1754 case 96: return 0x1;
1755 case 108: return 0x3;
1756
1757 /* unsupported rates (should not get there) */
1758 default: return 0;
1759 }
1760 }
1761
1762 /* quickly determine if a given rate is CCK or OFDM */
1763 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1764
1765 static int
1766 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1767 int ac)
1768 {
1769 struct ieee80211com *ic = &sc->sc_ic;
1770 struct wpi_tx_ring *ring = &sc->txq[ac];
1771 struct wpi_tx_desc *desc;
1772 struct wpi_tx_data *data;
1773 struct wpi_tx_cmd *cmd;
1774 struct wpi_cmd_data *tx;
1775 struct ieee80211_frame *wh;
1776 struct ieee80211_key *k;
1777 const struct chanAccParams *cap;
1778 struct mbuf *mnew;
1779 int i, error, rate, hdrlen, noack = 0;
1780
1781 desc = &ring->desc[ring->cur];
1782 data = &ring->data[ring->cur];
1783
1784 wh = mtod(m0, struct ieee80211_frame *);
1785
1786 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1787 cap = &ic->ic_wme.wme_chanParams;
1788 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1789 }
1790
1791 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1792 k = ieee80211_crypto_encap(ic, ni, m0);
1793 if (k == NULL) {
1794 m_freem(m0);
1795 return ENOBUFS;
1796 }
1797
1798 /* packet header may have moved, reset our local pointer */
1799 wh = mtod(m0, struct ieee80211_frame *);
1800 }
1801
1802 hdrlen = ieee80211_anyhdrsize(wh);
1803
1804 /* pickup a rate */
1805 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1806 IEEE80211_FC0_TYPE_MGT) {
1807 /* mgmt frames are sent at the lowest available bit-rate */
1808 rate = ni->ni_rates.rs_rates[0];
1809 } else {
1810 if (ic->ic_fixed_rate != -1) {
1811 rate = ic->ic_sup_rates[ic->ic_curmode].
1812 rs_rates[ic->ic_fixed_rate];
1813 } else
1814 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1815 }
1816 rate &= IEEE80211_RATE_VAL;
1817
1818
1819 if (sc->sc_drvbpf != NULL) {
1820 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1821
1822 tap->wt_flags = 0;
1823 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1824 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1825 tap->wt_rate = rate;
1826 tap->wt_hwqueue = ac;
1827 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1828 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1829
1830 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1831 }
1832
1833 cmd = &ring->cmd[ring->cur];
1834 cmd->code = WPI_CMD_TX_DATA;
1835 cmd->flags = 0;
1836 cmd->qid = ring->qid;
1837 cmd->idx = ring->cur;
1838
1839 tx = (struct wpi_cmd_data *)cmd->data;
1840 tx->flags = 0;
1841
1842 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1843 tx->flags |= htole32(WPI_TX_NEED_ACK);
1844 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1845 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1846
1847 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1848
1849 /* retrieve destination node's id */
1850 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1851 WPI_ID_BSS;
1852
1853 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1854 IEEE80211_FC0_TYPE_MGT) {
1855 /* tell h/w to set timestamp in probe responses */
1856 if ((wh->i_fc[0] &
1857 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1858 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1859 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1860
1861 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1862 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1863 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1864 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1865 tx->timeout = htole16(3);
1866 else
1867 tx->timeout = htole16(2);
1868 } else
1869 tx->timeout = htole16(0);
1870
1871 tx->rate = wpi_plcp_signal(rate);
1872
1873 /* be very persistant at sending frames out */
1874 tx->rts_ntries = 7;
1875 tx->data_ntries = 15;
1876
1877 tx->ofdm_mask = 0xff;
1878 tx->cck_mask = 0xf;
1879 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1880
1881 tx->len = htole16(m0->m_pkthdr.len);
1882
1883 /* save and trim IEEE802.11 header */
1884 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1885 m_adj(m0, hdrlen);
1886
1887 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1888 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1889 if (error != 0 && error != EFBIG) {
1890 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1891 m_freem(m0);
1892 return error;
1893 }
1894 if (error != 0) {
1895 /* too many fragments, linearize */
1896 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1897 if (mnew == NULL) {
1898 m_freem(m0);
1899 return ENOMEM;
1900 }
1901
1902 M_COPY_PKTHDR(mnew, m0);
1903 if (m0->m_pkthdr.len > MHLEN) {
1904 MCLGET(mnew, M_DONTWAIT);
1905 if (!(mnew->m_flags & M_EXT)) {
1906 m_freem(m0);
1907 m_freem(mnew);
1908 return ENOMEM;
1909 }
1910 }
1911
1912 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1913 m_freem(m0);
1914 mnew->m_len = mnew->m_pkthdr.len;
1915 m0 = mnew;
1916
1917 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1918 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1919 if (error != 0) {
1920 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1921 error);
1922 m_freem(m0);
1923 return error;
1924 }
1925 }
1926
1927 data->m = m0;
1928 data->ni = ni;
1929
1930 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1931 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1932
1933 /* first scatter/gather segment is used by the tx data command */
1934 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1935 (1 + data->map->dm_nsegs) << 24);
1936 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1937 ring->cur * sizeof (struct wpi_tx_cmd));
1938 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1939 ((hdrlen + 3) & ~3));
1940
1941 for (i = 1; i <= data->map->dm_nsegs; i++) {
1942 desc->segs[i].addr =
1943 htole32(data->map->dm_segs[i - 1].ds_addr);
1944 desc->segs[i].len =
1945 htole32(data->map->dm_segs[i - 1].ds_len);
1946 }
1947
1948 ring->queued++;
1949
1950 /* kick ring */
1951 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1952 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1953
1954 return 0;
1955 }
1956
1957 static void
1958 wpi_start(struct ifnet *ifp)
1959 {
1960 struct wpi_softc *sc = ifp->if_softc;
1961 struct ieee80211com *ic = &sc->sc_ic;
1962 struct ieee80211_node *ni;
1963 struct ether_header *eh;
1964 struct mbuf *m0;
1965 int ac;
1966
1967 /*
1968 * net80211 may still try to send management frames even if the
1969 * IFF_RUNNING flag is not set...
1970 */
1971 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1972 return;
1973
1974 for (;;) {
1975 IF_DEQUEUE(&ic->ic_mgtq, m0);
1976 if (m0 != NULL) {
1977
1978 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1979 m0->m_pkthdr.rcvif = NULL;
1980
1981 /* management frames go into ring 0 */
1982 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1983 ifp->if_oerrors++;
1984 continue;
1985 }
1986 bpf_mtap3(ic->ic_rawbpf, m0);
1987 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1988 ifp->if_oerrors++;
1989 break;
1990 }
1991 } else {
1992 if (ic->ic_state != IEEE80211_S_RUN)
1993 break;
1994 IFQ_POLL(&ifp->if_snd, m0);
1995 if (m0 == NULL)
1996 break;
1997
1998 if (m0->m_len < sizeof (*eh) &&
1999 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2000 ifp->if_oerrors++;
2001 continue;
2002 }
2003 eh = mtod(m0, struct ether_header *);
2004 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2005 if (ni == NULL) {
2006 m_freem(m0);
2007 ifp->if_oerrors++;
2008 continue;
2009 }
2010
2011 /* classify mbuf so we can find which tx ring to use */
2012 if (ieee80211_classify(ic, m0, ni) != 0) {
2013 m_freem(m0);
2014 ieee80211_free_node(ni);
2015 ifp->if_oerrors++;
2016 continue;
2017 }
2018
2019 /* no QoS encapsulation for EAPOL frames */
2020 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2021 M_WME_GETAC(m0) : WME_AC_BE;
2022
2023 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2024 /* there is no place left in this ring */
2025 ifp->if_flags |= IFF_OACTIVE;
2026 break;
2027 }
2028 IFQ_DEQUEUE(&ifp->if_snd, m0);
2029 bpf_mtap(ifp, m0);
2030 m0 = ieee80211_encap(ic, m0, ni);
2031 if (m0 == NULL) {
2032 ieee80211_free_node(ni);
2033 ifp->if_oerrors++;
2034 continue;
2035 }
2036 bpf_mtap3(ic->ic_rawbpf, m0);
2037 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2038 ieee80211_free_node(ni);
2039 ifp->if_oerrors++;
2040 break;
2041 }
2042 }
2043
2044 sc->sc_tx_timer = 5;
2045 ifp->if_timer = 1;
2046 }
2047 }
2048
2049 static void
2050 wpi_watchdog(struct ifnet *ifp)
2051 {
2052 struct wpi_softc *sc = ifp->if_softc;
2053
2054 ifp->if_timer = 0;
2055
2056 if (sc->sc_tx_timer > 0) {
2057 if (--sc->sc_tx_timer == 0) {
2058 aprint_error_dev(sc->sc_dev, "device timeout\n");
2059 ifp->if_oerrors++;
2060 ifp->if_flags &= ~IFF_UP;
2061 wpi_stop(ifp, 1);
2062 return;
2063 }
2064 ifp->if_timer = 1;
2065 }
2066
2067 ieee80211_watchdog(&sc->sc_ic);
2068 }
2069
2070 static int
2071 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2072 {
2073 #define IS_RUNNING(ifp) \
2074 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2075
2076 struct wpi_softc *sc = ifp->if_softc;
2077 struct ieee80211com *ic = &sc->sc_ic;
2078 int s, error = 0;
2079
2080 s = splnet();
2081
2082 switch (cmd) {
2083 case SIOCSIFFLAGS:
2084 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2085 break;
2086 if (ifp->if_flags & IFF_UP) {
2087 if (!(ifp->if_flags & IFF_RUNNING))
2088 wpi_init(ifp);
2089 } else {
2090 if (ifp->if_flags & IFF_RUNNING)
2091 wpi_stop(ifp, 1);
2092 }
2093 break;
2094
2095 case SIOCADDMULTI:
2096 case SIOCDELMULTI:
2097 /* XXX no h/w multicast filter? --dyoung */
2098 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2099 /* setup multicast filter, etc */
2100 error = 0;
2101 }
2102 break;
2103
2104 default:
2105 error = ieee80211_ioctl(ic, cmd, data);
2106 }
2107
2108 if (error == ENETRESET) {
2109 if (IS_RUNNING(ifp) &&
2110 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2111 wpi_init(ifp);
2112 error = 0;
2113 }
2114
2115 splx(s);
2116 return error;
2117
2118 #undef IS_RUNNING
2119 }
2120
2121 /*
2122 * Extract various information from EEPROM.
2123 */
2124 static void
2125 wpi_read_eeprom(struct wpi_softc *sc)
2126 {
2127 struct ieee80211com *ic = &sc->sc_ic;
2128 char domain[4];
2129 int i;
2130
2131 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2132 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2133 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2134
2135 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2136 sc->type));
2137
2138 /* read and print regulatory domain */
2139 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2140 aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2141
2142 /* read and print MAC address */
2143 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2144 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2145
2146 /* read the list of authorized channels */
2147 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2148 wpi_read_eeprom_channels(sc, i);
2149
2150 /* read the list of power groups */
2151 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2152 wpi_read_eeprom_group(sc, i);
2153 }
2154
2155 static void
2156 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2157 {
2158 struct ieee80211com *ic = &sc->sc_ic;
2159 const struct wpi_chan_band *band = &wpi_bands[n];
2160 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2161 int chan, i;
2162
2163 wpi_read_prom_data(sc, band->addr, channels,
2164 band->nchan * sizeof (struct wpi_eeprom_chan));
2165
2166 for (i = 0; i < band->nchan; i++) {
2167 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2168 continue;
2169
2170 chan = band->chan[i];
2171
2172 if (n == 0) { /* 2GHz band */
2173 ic->ic_channels[chan].ic_freq =
2174 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2175 ic->ic_channels[chan].ic_flags =
2176 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2177 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2178
2179 } else { /* 5GHz band */
2180 /*
2181 * Some 3945abg adapters support channels 7, 8, 11
2182 * and 12 in the 2GHz *and* 5GHz bands.
2183 * Because of limitations in our net80211(9) stack,
2184 * we can't support these channels in 5GHz band.
2185 */
2186 if (chan <= 14)
2187 continue;
2188
2189 ic->ic_channels[chan].ic_freq =
2190 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2191 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2192 }
2193
2194 /* is active scan allowed on this channel? */
2195 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2196 ic->ic_channels[chan].ic_flags |=
2197 IEEE80211_CHAN_PASSIVE;
2198 }
2199
2200 /* save maximum allowed power for this channel */
2201 sc->maxpwr[chan] = channels[i].maxpwr;
2202
2203 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2204 chan, channels[i].flags, sc->maxpwr[chan]));
2205 }
2206 }
2207
2208 static void
2209 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2210 {
2211 struct wpi_power_group *group = &sc->groups[n];
2212 struct wpi_eeprom_group rgroup;
2213 int i;
2214
2215 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2216 sizeof rgroup);
2217
2218 /* save power group information */
2219 group->chan = rgroup.chan;
2220 group->maxpwr = rgroup.maxpwr;
2221 /* temperature at which the samples were taken */
2222 group->temp = (int16_t)le16toh(rgroup.temp);
2223
2224 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2225 group->chan, group->maxpwr, group->temp));
2226
2227 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2228 group->samples[i].index = rgroup.samples[i].index;
2229 group->samples[i].power = rgroup.samples[i].power;
2230
2231 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2232 group->samples[i].index, group->samples[i].power));
2233 }
2234 }
2235
2236 /*
2237 * Send a command to the firmware.
2238 */
2239 static int
2240 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2241 {
2242 struct wpi_tx_ring *ring = &sc->cmdq;
2243 struct wpi_tx_desc *desc;
2244 struct wpi_tx_cmd *cmd;
2245
2246 KASSERT(size <= sizeof cmd->data);
2247
2248 desc = &ring->desc[ring->cur];
2249 cmd = &ring->cmd[ring->cur];
2250
2251 cmd->code = code;
2252 cmd->flags = 0;
2253 cmd->qid = ring->qid;
2254 cmd->idx = ring->cur;
2255 memcpy(cmd->data, buf, size);
2256
2257 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2258 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2259 ring->cur * sizeof (struct wpi_tx_cmd));
2260 desc->segs[0].len = htole32(4 + size);
2261
2262 /* kick cmd ring */
2263 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2264 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2265
2266 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2267 }
2268
2269 static int
2270 wpi_wme_update(struct ieee80211com *ic)
2271 {
2272 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2273 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2274 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2275 const struct wmeParams *wmep;
2276 struct wpi_wme_setup wme;
2277 int ac;
2278
2279 /* don't override default WME values if WME is not actually enabled */
2280 if (!(ic->ic_flags & IEEE80211_F_WME))
2281 return 0;
2282
2283 wme.flags = 0;
2284 for (ac = 0; ac < WME_NUM_AC; ac++) {
2285 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2286 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2287 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2288 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2289 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2290
2291 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2292 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2293 wme.ac[ac].cwmax, wme.ac[ac].txop));
2294 }
2295
2296 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2297 #undef WPI_USEC
2298 #undef WPI_EXP2
2299 }
2300
2301 /*
2302 * Configure h/w multi-rate retries.
2303 */
2304 static int
2305 wpi_mrr_setup(struct wpi_softc *sc)
2306 {
2307 struct ieee80211com *ic = &sc->sc_ic;
2308 struct wpi_mrr_setup mrr;
2309 int i, error;
2310
2311 /* CCK rates (not used with 802.11a) */
2312 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2313 mrr.rates[i].flags = 0;
2314 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2315 /* fallback to the immediate lower CCK rate (if any) */
2316 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2317 /* try one time at this rate before falling back to "next" */
2318 mrr.rates[i].ntries = 1;
2319 }
2320
2321 /* OFDM rates (not used with 802.11b) */
2322 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2323 mrr.rates[i].flags = 0;
2324 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2325 /* fallback to the immediate lower rate (if any) */
2326 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2327 mrr.rates[i].next = (i == WPI_OFDM6) ?
2328 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2329 WPI_OFDM6 : WPI_CCK2) :
2330 i - 1;
2331 /* try one time at this rate before falling back to "next" */
2332 mrr.rates[i].ntries = 1;
2333 }
2334
2335 /* setup MRR for control frames */
2336 mrr.which = htole32(WPI_MRR_CTL);
2337 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2338 if (error != 0) {
2339 aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2340 return error;
2341 }
2342
2343 /* setup MRR for data frames */
2344 mrr.which = htole32(WPI_MRR_DATA);
2345 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2346 if (error != 0) {
2347 aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2348 return error;
2349 }
2350
2351 return 0;
2352 }
2353
2354 static void
2355 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2356 {
2357 struct wpi_cmd_led led;
2358
2359 led.which = which;
2360 led.unit = htole32(100000); /* on/off in unit of 100ms */
2361 led.off = off;
2362 led.on = on;
2363
2364 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2365 }
2366
2367 static void
2368 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2369 {
2370 struct wpi_cmd_tsf tsf;
2371 uint64_t val, mod;
2372
2373 memset(&tsf, 0, sizeof tsf);
2374 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2375 tsf.bintval = htole16(ni->ni_intval);
2376 tsf.lintval = htole16(10);
2377
2378 /* compute remaining time until next beacon */
2379 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2380 mod = le64toh(tsf.tstamp) % val;
2381 tsf.binitval = htole32((uint32_t)(val - mod));
2382
2383 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2384 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2385
2386 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2387 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2388 }
2389
2390 /*
2391 * Update Tx power to match what is defined for channel `c'.
2392 */
2393 static int
2394 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2395 {
2396 struct ieee80211com *ic = &sc->sc_ic;
2397 struct wpi_power_group *group;
2398 struct wpi_cmd_txpower txpower;
2399 u_int chan;
2400 int i;
2401
2402 /* get channel number */
2403 chan = ieee80211_chan2ieee(ic, c);
2404
2405 /* find the power group to which this channel belongs */
2406 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2407 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2408 if (chan <= group->chan)
2409 break;
2410 } else
2411 group = &sc->groups[0];
2412
2413 memset(&txpower, 0, sizeof txpower);
2414 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2415 txpower.chan = htole16(chan);
2416
2417 /* set Tx power for all OFDM and CCK rates */
2418 for (i = 0; i <= 11 ; i++) {
2419 /* retrieve Tx power for this channel/rate combination */
2420 int idx = wpi_get_power_index(sc, group, c,
2421 wpi_ridx_to_rate[i]);
2422
2423 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2424
2425 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2426 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2427 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2428 } else {
2429 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2430 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2431 }
2432 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2433 wpi_ridx_to_rate[i], idx));
2434 }
2435
2436 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2437 }
2438
2439 /*
2440 * Determine Tx power index for a given channel/rate combination.
2441 * This takes into account the regulatory information from EEPROM and the
2442 * current temperature.
2443 */
2444 static int
2445 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2446 struct ieee80211_channel *c, int rate)
2447 {
2448 /* fixed-point arithmetic division using a n-bit fractional part */
2449 #define fdivround(a, b, n) \
2450 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2451
2452 /* linear interpolation */
2453 #define interpolate(x, x1, y1, x2, y2, n) \
2454 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2455
2456 struct ieee80211com *ic = &sc->sc_ic;
2457 struct wpi_power_sample *sample;
2458 int pwr, idx;
2459 u_int chan;
2460
2461 /* get channel number */
2462 chan = ieee80211_chan2ieee(ic, c);
2463
2464 /* default power is group's maximum power - 3dB */
2465 pwr = group->maxpwr / 2;
2466
2467 /* decrease power for highest OFDM rates to reduce distortion */
2468 switch (rate) {
2469 case 72: /* 36Mb/s */
2470 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2471 break;
2472 case 96: /* 48Mb/s */
2473 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2474 break;
2475 case 108: /* 54Mb/s */
2476 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2477 break;
2478 }
2479
2480 /* never exceed channel's maximum allowed Tx power */
2481 pwr = min(pwr, sc->maxpwr[chan]);
2482
2483 /* retrieve power index into gain tables from samples */
2484 for (sample = group->samples; sample < &group->samples[3]; sample++)
2485 if (pwr > sample[1].power)
2486 break;
2487 /* fixed-point linear interpolation using a 19-bit fractional part */
2488 idx = interpolate(pwr, sample[0].power, sample[0].index,
2489 sample[1].power, sample[1].index, 19);
2490
2491 /*
2492 * Adjust power index based on current temperature:
2493 * - if cooler than factory-calibrated: decrease output power
2494 * - if warmer than factory-calibrated: increase output power
2495 */
2496 idx -= (sc->temp - group->temp) * 11 / 100;
2497
2498 /* decrease power for CCK rates (-5dB) */
2499 if (!WPI_RATE_IS_OFDM(rate))
2500 idx += 10;
2501
2502 /* keep power index in a valid range */
2503 if (idx < 0)
2504 return 0;
2505 if (idx > WPI_MAX_PWR_INDEX)
2506 return WPI_MAX_PWR_INDEX;
2507 return idx;
2508
2509 #undef interpolate
2510 #undef fdivround
2511 }
2512
2513 /*
2514 * Build a beacon frame that the firmware will broadcast periodically in
2515 * IBSS or HostAP modes.
2516 */
2517 static int
2518 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2519 {
2520 struct ieee80211com *ic = &sc->sc_ic;
2521 struct wpi_tx_ring *ring = &sc->cmdq;
2522 struct wpi_tx_desc *desc;
2523 struct wpi_tx_data *data;
2524 struct wpi_tx_cmd *cmd;
2525 struct wpi_cmd_beacon *bcn;
2526 struct ieee80211_beacon_offsets bo;
2527 struct mbuf *m0;
2528 int error;
2529
2530 desc = &ring->desc[ring->cur];
2531 data = &ring->data[ring->cur];
2532
2533 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2534 if (m0 == NULL) {
2535 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2536 return ENOMEM;
2537 }
2538
2539 cmd = &ring->cmd[ring->cur];
2540 cmd->code = WPI_CMD_SET_BEACON;
2541 cmd->flags = 0;
2542 cmd->qid = ring->qid;
2543 cmd->idx = ring->cur;
2544
2545 bcn = (struct wpi_cmd_beacon *)cmd->data;
2546 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2547 bcn->id = WPI_ID_BROADCAST;
2548 bcn->ofdm_mask = 0xff;
2549 bcn->cck_mask = 0x0f;
2550 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2551 bcn->len = htole16(m0->m_pkthdr.len);
2552 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2553 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2554 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2555
2556 /* save and trim IEEE802.11 header */
2557 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2558 m_adj(m0, sizeof (struct ieee80211_frame));
2559
2560 /* assume beacon frame is contiguous */
2561 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2562 BUS_DMA_READ | BUS_DMA_NOWAIT);
2563 if (error) {
2564 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2565 m_freem(m0);
2566 return error;
2567 }
2568
2569 data->m = m0;
2570
2571 /* first scatter/gather segment is used by the beacon command */
2572 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2573 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2574 ring->cur * sizeof (struct wpi_tx_cmd));
2575 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2576 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2577 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2578
2579 /* kick cmd ring */
2580 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2581 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2582
2583 return 0;
2584 }
2585
2586 static int
2587 wpi_auth(struct wpi_softc *sc)
2588 {
2589 struct ieee80211com *ic = &sc->sc_ic;
2590 struct ieee80211_node *ni = ic->ic_bss;
2591 struct wpi_node_info node;
2592 int error;
2593
2594 /* update adapter's configuration */
2595 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2596 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2597 sc->config.flags = htole32(WPI_CONFIG_TSF);
2598 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2599 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2600 WPI_CONFIG_24GHZ);
2601 }
2602 switch (ic->ic_curmode) {
2603 case IEEE80211_MODE_11A:
2604 sc->config.cck_mask = 0;
2605 sc->config.ofdm_mask = 0x15;
2606 break;
2607 case IEEE80211_MODE_11B:
2608 sc->config.cck_mask = 0x03;
2609 sc->config.ofdm_mask = 0;
2610 break;
2611 default: /* assume 802.11b/g */
2612 sc->config.cck_mask = 0x0f;
2613 sc->config.ofdm_mask = 0x15;
2614 }
2615
2616 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2617 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2618 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2619 sizeof (struct wpi_config), 1);
2620 if (error != 0) {
2621 aprint_error_dev(sc->sc_dev, "could not configure\n");
2622 return error;
2623 }
2624
2625 /* configuration has changed, set Tx power accordingly */
2626 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2627 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2628 return error;
2629 }
2630
2631 /* add default node */
2632 memset(&node, 0, sizeof node);
2633 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2634 node.id = WPI_ID_BSS;
2635 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2636 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2637 node.action = htole32(WPI_ACTION_SET_RATE);
2638 node.antenna = WPI_ANTENNA_BOTH;
2639 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2640 if (error != 0) {
2641 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2642 return error;
2643 }
2644
2645 return 0;
2646 }
2647
2648 /*
2649 * Send a scan request to the firmware. Since this command is huge, we map it
2650 * into a mbuf instead of using the pre-allocated set of commands.
2651 */
2652 static int
2653 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2654 {
2655 struct ieee80211com *ic = &sc->sc_ic;
2656 struct wpi_tx_ring *ring = &sc->cmdq;
2657 struct wpi_tx_desc *desc;
2658 struct wpi_tx_data *data;
2659 struct wpi_tx_cmd *cmd;
2660 struct wpi_scan_hdr *hdr;
2661 struct wpi_scan_chan *chan;
2662 struct ieee80211_frame *wh;
2663 struct ieee80211_rateset *rs;
2664 struct ieee80211_channel *c;
2665 enum ieee80211_phymode mode;
2666 uint8_t *frm;
2667 int nrates, pktlen, error;
2668
2669 desc = &ring->desc[ring->cur];
2670 data = &ring->data[ring->cur];
2671
2672 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2673 if (data->m == NULL) {
2674 aprint_error_dev(sc->sc_dev,
2675 "could not allocate mbuf for scan command\n");
2676 return ENOMEM;
2677 }
2678
2679 MCLGET(data->m, M_DONTWAIT);
2680 if (!(data->m->m_flags & M_EXT)) {
2681 m_freem(data->m);
2682 data->m = NULL;
2683 aprint_error_dev(sc->sc_dev,
2684 "could not allocate mbuf for scan command\n");
2685 return ENOMEM;
2686 }
2687
2688 cmd = mtod(data->m, struct wpi_tx_cmd *);
2689 cmd->code = WPI_CMD_SCAN;
2690 cmd->flags = 0;
2691 cmd->qid = ring->qid;
2692 cmd->idx = ring->cur;
2693
2694 hdr = (struct wpi_scan_hdr *)cmd->data;
2695 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2696 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2697 hdr->id = WPI_ID_BROADCAST;
2698 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2699
2700 /*
2701 * Move to the next channel if no packets are received within 5 msecs
2702 * after sending the probe request (this helps to reduce the duration
2703 * of active scans).
2704 */
2705 hdr->quiet = htole16(5); /* timeout in milliseconds */
2706 hdr->plcp_threshold = htole16(1); /* min # of packets */
2707
2708 if (flags & IEEE80211_CHAN_A) {
2709 hdr->crc_threshold = htole16(1);
2710 /* send probe requests at 6Mbps */
2711 hdr->rate = wpi_plcp_signal(12);
2712 } else {
2713 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2714 /* send probe requests at 1Mbps */
2715 hdr->rate = wpi_plcp_signal(2);
2716 }
2717
2718 /* for directed scans, firmware inserts the essid IE itself */
2719 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2720 hdr->essid[0].len = ic->ic_des_esslen;
2721 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2722
2723 /*
2724 * Build a probe request frame. Most of the following code is a
2725 * copy & paste of what is done in net80211.
2726 */
2727 wh = (struct ieee80211_frame *)(hdr + 1);
2728 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2729 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2730 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2731 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2732 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2733 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2734 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2735 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2736
2737 frm = (uint8_t *)(wh + 1);
2738
2739 /* add empty essid IE (firmware generates it for directed scans) */
2740 *frm++ = IEEE80211_ELEMID_SSID;
2741 *frm++ = 0;
2742
2743 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2744 rs = &ic->ic_sup_rates[mode];
2745
2746 /* add supported rates IE */
2747 *frm++ = IEEE80211_ELEMID_RATES;
2748 nrates = rs->rs_nrates;
2749 if (nrates > IEEE80211_RATE_SIZE)
2750 nrates = IEEE80211_RATE_SIZE;
2751 *frm++ = nrates;
2752 memcpy(frm, rs->rs_rates, nrates);
2753 frm += nrates;
2754
2755 /* add supported xrates IE */
2756 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2757 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2758 *frm++ = IEEE80211_ELEMID_XRATES;
2759 *frm++ = nrates;
2760 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2761 frm += nrates;
2762 }
2763
2764 /* setup length of probe request */
2765 hdr->paylen = htole16(frm - (uint8_t *)wh);
2766
2767 chan = (struct wpi_scan_chan *)frm;
2768 for (c = &ic->ic_channels[1];
2769 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2770 if ((c->ic_flags & flags) != flags)
2771 continue;
2772
2773 chan->chan = ieee80211_chan2ieee(ic, c);
2774 chan->flags = 0;
2775 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2776 chan->flags |= WPI_CHAN_ACTIVE;
2777 if (ic->ic_des_esslen != 0)
2778 chan->flags |= WPI_CHAN_DIRECT;
2779 }
2780 chan->dsp_gain = 0x6e;
2781 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2782 chan->rf_gain = 0x3b;
2783 chan->active = htole16(10);
2784 chan->passive = htole16(110);
2785 } else {
2786 chan->rf_gain = 0x28;
2787 chan->active = htole16(20);
2788 chan->passive = htole16(120);
2789 }
2790 hdr->nchan++;
2791 chan++;
2792
2793 frm += sizeof (struct wpi_scan_chan);
2794 }
2795 hdr->len = htole16(frm - (uint8_t *)hdr);
2796 pktlen = frm - (uint8_t *)cmd;
2797
2798 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2799 NULL, BUS_DMA_NOWAIT);
2800 if (error) {
2801 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2802 m_freem(data->m);
2803 data->m = NULL;
2804 return error;
2805 }
2806
2807 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2808 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2809 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2810
2811 /* kick cmd ring */
2812 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2813 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2814
2815 return 0; /* will be notified async. of failure/success */
2816 }
2817
2818 static int
2819 wpi_config(struct wpi_softc *sc)
2820 {
2821 struct ieee80211com *ic = &sc->sc_ic;
2822 struct ifnet *ifp = ic->ic_ifp;
2823 struct wpi_power power;
2824 struct wpi_bluetooth bluetooth;
2825 struct wpi_node_info node;
2826 int error;
2827
2828 memset(&power, 0, sizeof power);
2829 power.flags = htole32(WPI_POWER_CAM | 0x8);
2830 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2831 if (error != 0) {
2832 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2833 return error;
2834 }
2835
2836 /* configure bluetooth coexistence */
2837 memset(&bluetooth, 0, sizeof bluetooth);
2838 bluetooth.flags = 3;
2839 bluetooth.lead = 0xaa;
2840 bluetooth.kill = 1;
2841 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2842 0);
2843 if (error != 0) {
2844 aprint_error_dev(sc->sc_dev,
2845 "could not configure bluetooth coexistence\n");
2846 return error;
2847 }
2848
2849 /* configure adapter */
2850 memset(&sc->config, 0, sizeof (struct wpi_config));
2851 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2852 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2853 /*set default channel*/
2854 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2855 sc->config.flags = htole32(WPI_CONFIG_TSF);
2856 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2857 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2858 WPI_CONFIG_24GHZ);
2859 }
2860 sc->config.filter = 0;
2861 switch (ic->ic_opmode) {
2862 case IEEE80211_M_STA:
2863 sc->config.mode = WPI_MODE_STA;
2864 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2865 break;
2866 case IEEE80211_M_IBSS:
2867 case IEEE80211_M_AHDEMO:
2868 sc->config.mode = WPI_MODE_IBSS;
2869 break;
2870 case IEEE80211_M_HOSTAP:
2871 sc->config.mode = WPI_MODE_HOSTAP;
2872 break;
2873 case IEEE80211_M_MONITOR:
2874 sc->config.mode = WPI_MODE_MONITOR;
2875 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2876 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2877 break;
2878 }
2879 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2880 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2881 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2882 sizeof (struct wpi_config), 0);
2883 if (error != 0) {
2884 aprint_error_dev(sc->sc_dev, "configure command failed\n");
2885 return error;
2886 }
2887
2888 /* configuration has changed, set Tx power accordingly */
2889 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2890 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2891 return error;
2892 }
2893
2894 /* add broadcast node */
2895 memset(&node, 0, sizeof node);
2896 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2897 node.id = WPI_ID_BROADCAST;
2898 node.rate = wpi_plcp_signal(2);
2899 node.action = htole32(WPI_ACTION_SET_RATE);
2900 node.antenna = WPI_ANTENNA_BOTH;
2901 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2902 if (error != 0) {
2903 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2904 return error;
2905 }
2906
2907 if ((error = wpi_mrr_setup(sc)) != 0) {
2908 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2909 return error;
2910 }
2911
2912 return 0;
2913 }
2914
2915 static void
2916 wpi_stop_master(struct wpi_softc *sc)
2917 {
2918 uint32_t tmp;
2919 int ntries;
2920
2921 tmp = WPI_READ(sc, WPI_RESET);
2922 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2923
2924 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2925 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2926 return; /* already asleep */
2927
2928 for (ntries = 0; ntries < 100; ntries++) {
2929 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2930 break;
2931 DELAY(10);
2932 }
2933 if (ntries == 100) {
2934 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2935 }
2936 }
2937
2938 static int
2939 wpi_power_up(struct wpi_softc *sc)
2940 {
2941 uint32_t tmp;
2942 int ntries;
2943
2944 wpi_mem_lock(sc);
2945 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2946 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2947 wpi_mem_unlock(sc);
2948
2949 for (ntries = 0; ntries < 5000; ntries++) {
2950 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2951 break;
2952 DELAY(10);
2953 }
2954 if (ntries == 5000) {
2955 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2956 return ETIMEDOUT;
2957 }
2958 return 0;
2959 }
2960
2961 static int
2962 wpi_reset(struct wpi_softc *sc)
2963 {
2964 uint32_t tmp;
2965 int ntries;
2966
2967 /* clear any pending interrupts */
2968 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2969
2970 tmp = WPI_READ(sc, WPI_PLL_CTL);
2971 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2972
2973 tmp = WPI_READ(sc, WPI_CHICKEN);
2974 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2975
2976 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2977 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2978
2979 /* wait for clock stabilization */
2980 for (ntries = 0; ntries < 1000; ntries++) {
2981 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2982 break;
2983 DELAY(10);
2984 }
2985 if (ntries == 1000) {
2986 aprint_error_dev(sc->sc_dev,
2987 "timeout waiting for clock stabilization\n");
2988 return ETIMEDOUT;
2989 }
2990
2991 /* initialize EEPROM */
2992 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2993 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2994 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
2995 return EIO;
2996 }
2997 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2998
2999 return 0;
3000 }
3001
3002 static void
3003 wpi_hw_config(struct wpi_softc *sc)
3004 {
3005 uint32_t rev, hw;
3006
3007 /* voodoo from the reference driver */
3008 hw = WPI_READ(sc, WPI_HWCONFIG);
3009
3010 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3011 rev = PCI_REVISION(rev);
3012 if ((rev & 0xc0) == 0x40)
3013 hw |= WPI_HW_ALM_MB;
3014 else if (!(rev & 0x80))
3015 hw |= WPI_HW_ALM_MM;
3016
3017 if (sc->cap == 0x80)
3018 hw |= WPI_HW_SKU_MRC;
3019
3020 hw &= ~WPI_HW_REV_D;
3021 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3022 hw |= WPI_HW_REV_D;
3023
3024 if (sc->type > 1)
3025 hw |= WPI_HW_TYPE_B;
3026
3027 DPRINTF(("setting h/w config %x\n", hw));
3028 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3029 }
3030
3031 static int
3032 wpi_init(struct ifnet *ifp)
3033 {
3034 struct wpi_softc *sc = ifp->if_softc;
3035 struct ieee80211com *ic = &sc->sc_ic;
3036 uint32_t tmp;
3037 int qid, ntries, error;
3038
3039 wpi_stop(ifp,1);
3040 (void)wpi_reset(sc);
3041
3042 wpi_mem_lock(sc);
3043 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3044 DELAY(20);
3045 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3046 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3047 wpi_mem_unlock(sc);
3048
3049 (void)wpi_power_up(sc);
3050 wpi_hw_config(sc);
3051
3052 /* init Rx ring */
3053 wpi_mem_lock(sc);
3054 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3055 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3056 offsetof(struct wpi_shared, next));
3057 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3058 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3059 wpi_mem_unlock(sc);
3060
3061 /* init Tx rings */
3062 wpi_mem_lock(sc);
3063 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3064 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3065 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3066 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3067 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3068 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3069 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3070
3071 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3072 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3073
3074 for (qid = 0; qid < 6; qid++) {
3075 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3076 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3077 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3078 }
3079 wpi_mem_unlock(sc);
3080
3081 /* clear "radio off" and "disable command" bits (reversed logic) */
3082 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3083 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3084
3085 /* clear any pending interrupts */
3086 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3087 /* enable interrupts */
3088 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3089
3090 /* not sure why/if this is necessary... */
3091 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3092 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3093
3094 if ((error = wpi_load_firmware(sc)) != 0) {
3095 aprint_error_dev(sc->sc_dev, "could not load firmware\n");
3096 goto fail1;
3097 }
3098
3099 /* Check the status of the radio switch */
3100 if (wpi_getrfkill(sc)) {
3101 aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
3102 error = EBUSY;
3103 goto fail1;
3104 }
3105
3106 /* wait for thermal sensors to calibrate */
3107 for (ntries = 0; ntries < 1000; ntries++) {
3108 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3109 break;
3110 DELAY(10);
3111 }
3112 if (ntries == 1000) {
3113 aprint_error_dev(sc->sc_dev,
3114 "timeout waiting for thermal sensors calibration\n");
3115 error = ETIMEDOUT;
3116 goto fail1;
3117 }
3118
3119 DPRINTF(("temperature %d\n", sc->temp));
3120
3121 if ((error = wpi_config(sc)) != 0) {
3122 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3123 goto fail1;
3124 }
3125
3126 ifp->if_flags &= ~IFF_OACTIVE;
3127 ifp->if_flags |= IFF_RUNNING;
3128
3129 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3130 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3131 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3132 }
3133 else
3134 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3135
3136 return 0;
3137
3138 fail1: wpi_stop(ifp, 1);
3139 return error;
3140 }
3141
3142
3143 static void
3144 wpi_stop(struct ifnet *ifp, int disable)
3145 {
3146 struct wpi_softc *sc = ifp->if_softc;
3147 struct ieee80211com *ic = &sc->sc_ic;
3148 uint32_t tmp;
3149 int ac;
3150
3151 ifp->if_timer = sc->sc_tx_timer = 0;
3152 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3153
3154 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3155
3156 /* disable interrupts */
3157 WPI_WRITE(sc, WPI_MASK, 0);
3158 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3159 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3160 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3161
3162 wpi_mem_lock(sc);
3163 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3164 wpi_mem_unlock(sc);
3165
3166 /* reset all Tx rings */
3167 for (ac = 0; ac < 4; ac++)
3168 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3169 wpi_reset_tx_ring(sc, &sc->cmdq);
3170
3171 /* reset Rx ring */
3172 wpi_reset_rx_ring(sc, &sc->rxq);
3173
3174 wpi_mem_lock(sc);
3175 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3176 wpi_mem_unlock(sc);
3177
3178 DELAY(5);
3179
3180 wpi_stop_master(sc);
3181
3182 tmp = WPI_READ(sc, WPI_RESET);
3183 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3184 }
3185
3186 static bool
3187 wpi_resume(device_t dv, const pmf_qual_t *qual)
3188 {
3189 struct wpi_softc *sc = device_private(dv);
3190
3191 (void)wpi_reset(sc);
3192
3193 return true;
3194 }
3195
3196 /*
3197 * Return whether or not the radio is enabled in hardware
3198 * (i.e. the rfkill switch is "off").
3199 */
3200 static int
3201 wpi_getrfkill(struct wpi_softc *sc)
3202 {
3203 uint32_t tmp;
3204
3205 wpi_mem_lock(sc);
3206 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3207 wpi_mem_unlock(sc);
3208
3209 return !(tmp & 0x01);
3210 }
3211
3212 static int
3213 wpi_sysctl_radio(SYSCTLFN_ARGS)
3214 {
3215 struct sysctlnode node;
3216 struct wpi_softc *sc;
3217 int val, error;
3218
3219 node = *rnode;
3220 sc = (struct wpi_softc *)node.sysctl_data;
3221
3222 val = !wpi_getrfkill(sc);
3223
3224 node.sysctl_data = &val;
3225 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3226
3227 if (error || newp == NULL)
3228 return error;
3229
3230 return 0;
3231 }
3232
3233 static void
3234 wpi_sysctlattach(struct wpi_softc *sc)
3235 {
3236 int rc;
3237 const struct sysctlnode *rnode;
3238 const struct sysctlnode *cnode;
3239
3240 struct sysctllog **clog = &sc->sc_sysctllog;
3241
3242 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3243 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3244 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3245 goto err;
3246
3247 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3248 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3249 SYSCTL_DESCR("wpi controls and statistics"),
3250 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3251 goto err;
3252
3253 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3254 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3255 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3256 wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3257 goto err;
3258
3259 #ifdef WPI_DEBUG
3260 /* control debugging printfs */
3261 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3262 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3263 "debug", SYSCTL_DESCR("Enable debugging output"),
3264 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3265 goto err;
3266 #endif
3267
3268 return;
3269 err:
3270 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3271 }
3272