Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.57
      1 /*  $NetBSD: if_wpi.c,v 1.57 2014/02/25 18:30:10 pooka Exp $    */
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007
      5  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.57 2014/02/25 18:30:10 pooka Exp $");
     22 
     23 /*
     24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25  */
     26 
     27 
     28 #include <sys/param.h>
     29 #include <sys/sockio.h>
     30 #include <sys/sysctl.h>
     31 #include <sys/mbuf.h>
     32 #include <sys/kernel.h>
     33 #include <sys/socket.h>
     34 #include <sys/systm.h>
     35 #include <sys/malloc.h>
     36 #include <sys/mutex.h>
     37 #include <sys/once.h>
     38 #include <sys/conf.h>
     39 #include <sys/kauth.h>
     40 #include <sys/callout.h>
     41 #include <sys/proc.h>
     42 
     43 #include <sys/bus.h>
     44 #include <machine/endian.h>
     45 #include <sys/intr.h>
     46 
     47 #include <dev/pci/pcireg.h>
     48 #include <dev/pci/pcivar.h>
     49 #include <dev/pci/pcidevs.h>
     50 
     51 #include <net/bpf.h>
     52 #include <net/if.h>
     53 #include <net/if_arp.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_ether.h>
     56 #include <net/if_media.h>
     57 #include <net/if_types.h>
     58 
     59 #include <net80211/ieee80211_var.h>
     60 #include <net80211/ieee80211_amrr.h>
     61 #include <net80211/ieee80211_radiotap.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <netinet/ip.h>
     67 
     68 #include <dev/firmload.h>
     69 
     70 #include <dev/pci/if_wpireg.h>
     71 #include <dev/pci/if_wpivar.h>
     72 
     73 #ifdef WPI_DEBUG
     74 #define DPRINTF(x)	if (wpi_debug > 0) printf x
     75 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
     76 int wpi_debug = 1;
     77 #else
     78 #define DPRINTF(x)
     79 #define DPRINTFN(n, x)
     80 #endif
     81 
     82 /*
     83  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
     84  */
     85 static const struct ieee80211_rateset wpi_rateset_11a =
     86 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
     87 
     88 static const struct ieee80211_rateset wpi_rateset_11b =
     89 	{ 4, { 2, 4, 11, 22 } };
     90 
     91 static const struct ieee80211_rateset wpi_rateset_11g =
     92 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
     93 
     94 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
     95 static once_t wpi_firmware_init;
     96 static kmutex_t wpi_firmware_mutex;
     97 static size_t wpi_firmware_users;
     98 static uint8_t *wpi_firmware_image;
     99 static size_t wpi_firmware_size;
    100 
    101 static int  wpi_match(device_t, cfdata_t, void *);
    102 static void wpi_attach(device_t, device_t, void *);
    103 static int  wpi_detach(device_t , int);
    104 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
    105 	void **, bus_size_t, bus_size_t, int);
    106 static void wpi_dma_contig_free(struct wpi_dma_info *);
    107 static int  wpi_alloc_shared(struct wpi_softc *);
    108 static void wpi_free_shared(struct wpi_softc *);
    109 static int  wpi_alloc_fwmem(struct wpi_softc *);
    110 static void wpi_free_fwmem(struct wpi_softc *);
    111 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
    112 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
    113 static int  wpi_alloc_rpool(struct wpi_softc *);
    114 static void wpi_free_rpool(struct wpi_softc *);
    115 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    116 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    117 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    118 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
    119 	int);
    120 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    121 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    122 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    123 static void wpi_newassoc(struct ieee80211_node *, int);
    124 static int  wpi_media_change(struct ifnet *);
    125 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    126 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
    127 static void wpi_mem_lock(struct wpi_softc *);
    128 static void wpi_mem_unlock(struct wpi_softc *);
    129 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
    130 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    131 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    132 								   const uint32_t *, int);
    133 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    134 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    135 static int  wpi_cache_firmware(struct wpi_softc *);
    136 static void wpi_release_firmware(void);
    137 static int  wpi_load_firmware(struct wpi_softc *);
    138 static void wpi_calib_timeout(void *);
    139 static void wpi_iter_func(void *, struct ieee80211_node *);
    140 static void wpi_power_calibration(struct wpi_softc *, int);
    141 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    142 	struct wpi_rx_data *);
    143 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    144 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    145 static void wpi_notif_intr(struct wpi_softc *);
    146 static int  wpi_intr(void *);
    147 static void wpi_read_eeprom(struct wpi_softc *);
    148 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
    149 static void wpi_read_eeprom_group(struct wpi_softc *, int);
    150 static uint8_t wpi_plcp_signal(int);
    151 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
    152 	struct ieee80211_node *, int);
    153 static void wpi_start(struct ifnet *);
    154 static void wpi_watchdog(struct ifnet *);
    155 static int  wpi_ioctl(struct ifnet *, u_long, void *);
    156 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    157 static int  wpi_wme_update(struct ieee80211com *);
    158 static int  wpi_mrr_setup(struct wpi_softc *);
    159 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    160 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    161 static int  wpi_set_txpower(struct wpi_softc *,
    162 			    struct ieee80211_channel *, int);
    163 static int  wpi_get_power_index(struct wpi_softc *,
    164 		struct wpi_power_group *, struct ieee80211_channel *, int);
    165 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    166 static int  wpi_auth(struct wpi_softc *);
    167 static int  wpi_scan(struct wpi_softc *, uint16_t);
    168 static int  wpi_config(struct wpi_softc *);
    169 static void wpi_stop_master(struct wpi_softc *);
    170 static int  wpi_power_up(struct wpi_softc *);
    171 static int  wpi_reset(struct wpi_softc *);
    172 static void wpi_hw_config(struct wpi_softc *);
    173 static int  wpi_init(struct ifnet *);
    174 static void wpi_stop(struct ifnet *, int);
    175 static bool wpi_resume(device_t, const pmf_qual_t *);
    176 static int	wpi_getrfkill(struct wpi_softc *);
    177 static void wpi_sysctlattach(struct wpi_softc *);
    178 
    179 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    180 	wpi_detach, NULL);
    181 
    182 static int
    183 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
    184 {
    185 	struct pci_attach_args *pa = aux;
    186 
    187 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    188 		return 0;
    189 
    190 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    191 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    192 		return 1;
    193 
    194 	return 0;
    195 }
    196 
    197 /* Base Address Register */
    198 #define WPI_PCI_BAR0	0x10
    199 
    200 static int
    201 wpi_attach_once(void)
    202 {
    203 
    204 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
    205 	return 0;
    206 }
    207 
    208 static void
    209 wpi_attach(device_t parent __unused, device_t self, void *aux)
    210 {
    211 	struct wpi_softc *sc = device_private(self);
    212 	struct ieee80211com *ic = &sc->sc_ic;
    213 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    214 	struct pci_attach_args *pa = aux;
    215 	const char *intrstr;
    216 	bus_space_tag_t memt;
    217 	bus_space_handle_t memh;
    218 	pci_intr_handle_t ih;
    219 	pcireg_t data;
    220 	int error, ac;
    221 
    222 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
    223 	sc->fw_used = false;
    224 
    225 	sc->sc_dev = self;
    226 	sc->sc_pct = pa->pa_pc;
    227 	sc->sc_pcitag = pa->pa_tag;
    228 
    229 	callout_init(&sc->calib_to, 0);
    230 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    231 
    232 	pci_aprint_devinfo(pa, NULL);
    233 
    234 	/* enable bus-mastering */
    235 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    236 	data |= PCI_COMMAND_MASTER_ENABLE;
    237 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    238 
    239 	/* map the register window */
    240 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    241 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    242 	if (error != 0) {
    243 		aprint_error_dev(self, "could not map memory space\n");
    244 		return;
    245 	}
    246 
    247 	sc->sc_st = memt;
    248 	sc->sc_sh = memh;
    249 	sc->sc_dmat = pa->pa_dmat;
    250 
    251 	if (pci_intr_map(pa, &ih) != 0) {
    252 		aprint_error_dev(self, "could not map interrupt\n");
    253 		return;
    254 	}
    255 
    256 	intrstr = pci_intr_string(sc->sc_pct, ih);
    257 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
    258 	if (sc->sc_ih == NULL) {
    259 		aprint_error_dev(self, "could not establish interrupt");
    260 		if (intrstr != NULL)
    261 			aprint_error(" at %s", intrstr);
    262 		aprint_error("\n");
    263 		return;
    264 	}
    265 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    266 
    267 	if (wpi_reset(sc) != 0) {
    268 		aprint_error_dev(self, "could not reset adapter\n");
    269 		return;
    270 	}
    271 
    272  	/*
    273 	 * Allocate DMA memory for firmware transfers.
    274 	 */
    275 	if ((error = wpi_alloc_fwmem(sc)) != 0)
    276 		return;
    277 
    278 	/*
    279 	 * Allocate shared page and Tx/Rx rings.
    280 	 */
    281 	if ((error = wpi_alloc_shared(sc)) != 0) {
    282 		aprint_error_dev(self, "could not allocate shared area\n");
    283 		goto fail1;
    284 	}
    285 
    286 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    287 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    288 		goto fail2;
    289 	}
    290 
    291 	for (ac = 0; ac < 4; ac++) {
    292 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
    293 		if (error != 0) {
    294 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
    295 			goto fail3;
    296 		}
    297 	}
    298 
    299 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    300 	if (error != 0) {
    301 		aprint_error_dev(self, "could not allocate command ring\n");
    302 		goto fail3;
    303 	}
    304 
    305 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
    306 		aprint_error_dev(self, "could not allocate Rx ring\n");
    307 		goto fail4;
    308 	}
    309 
    310 	ic->ic_ifp = ifp;
    311 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    312 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    313 	ic->ic_state = IEEE80211_S_INIT;
    314 
    315 	/* set device capabilities */
    316 	ic->ic_caps =
    317 #ifdef netyet
    318 		IEEE80211_C_IBSS |       /* IBSS mode support */
    319 #endif
    320 		IEEE80211_C_WPA |        /* 802.11i */
    321 		IEEE80211_C_MONITOR |    /* monitor mode supported */
    322 		IEEE80211_C_TXPMGT |     /* tx power management */
    323 		IEEE80211_C_SHSLOT |     /* short slot time supported */
    324 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
    325 		IEEE80211_C_WME;         /* 802.11e */
    326 
    327 	/* read supported channels and MAC address from EEPROM */
    328 	wpi_read_eeprom(sc);
    329 
    330 	/* set supported .11a, .11b, .11g rates */
    331 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
    332 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
    333 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
    334 
    335 	ic->ic_ibss_chan = &ic->ic_channels[0];
    336 
    337 	ifp->if_softc = sc;
    338 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    339 	ifp->if_init = wpi_init;
    340 	ifp->if_stop = wpi_stop;
    341 	ifp->if_ioctl = wpi_ioctl;
    342 	ifp->if_start = wpi_start;
    343 	ifp->if_watchdog = wpi_watchdog;
    344 	IFQ_SET_READY(&ifp->if_snd);
    345 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    346 
    347 	if_attach(ifp);
    348 	ieee80211_ifattach(ic);
    349 	/* override default methods */
    350 	ic->ic_node_alloc = wpi_node_alloc;
    351 	ic->ic_newassoc = wpi_newassoc;
    352 	ic->ic_wme.wme_update = wpi_wme_update;
    353 
    354 	/* override state transition machine */
    355 	sc->sc_newstate = ic->ic_newstate;
    356 	ic->ic_newstate = wpi_newstate;
    357 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
    358 
    359 	sc->amrr.amrr_min_success_threshold = 1;
    360 	sc->amrr.amrr_max_success_threshold = 15;
    361 
    362 	wpi_sysctlattach(sc);
    363 
    364 	if (pmf_device_register(self, NULL, wpi_resume))
    365 		pmf_class_network_register(self, ifp);
    366 	else
    367 		aprint_error_dev(self, "couldn't establish power handler\n");
    368 
    369 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    370 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    371 	    &sc->sc_drvbpf);
    372 
    373 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    374 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    375 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    376 
    377 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    378 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    379 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    380 
    381 	ieee80211_announce(ic);
    382 
    383 	return;
    384 
    385 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
    386 fail3:  while (--ac >= 0)
    387 			wpi_free_tx_ring(sc, &sc->txq[ac]);
    388 	wpi_free_rpool(sc);
    389 fail2:	wpi_free_shared(sc);
    390 fail1:	wpi_free_fwmem(sc);
    391 }
    392 
    393 static int
    394 wpi_detach(device_t self, int flags __unused)
    395 {
    396 	struct wpi_softc *sc = device_private(self);
    397 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    398 	int ac;
    399 
    400 	wpi_stop(ifp, 1);
    401 
    402 	if (ifp != NULL)
    403 		bpf_detach(ifp);
    404 	ieee80211_ifdetach(&sc->sc_ic);
    405 	if (ifp != NULL)
    406 		if_detach(ifp);
    407 
    408 	for (ac = 0; ac < 4; ac++)
    409 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    410 	wpi_free_tx_ring(sc, &sc->cmdq);
    411 	wpi_free_rx_ring(sc, &sc->rxq);
    412 	wpi_free_rpool(sc);
    413 	wpi_free_shared(sc);
    414 
    415 	if (sc->sc_ih != NULL) {
    416 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    417 		sc->sc_ih = NULL;
    418 	}
    419 
    420 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    421 
    422 	if (sc->fw_used) {
    423 		sc->fw_used = false;
    424 		wpi_release_firmware();
    425 	}
    426 
    427 	return 0;
    428 }
    429 
    430 static int
    431 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
    432 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
    433 {
    434 	int nsegs, error;
    435 
    436 	dma->tag = tag;
    437 	dma->size = size;
    438 
    439 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    440 	if (error != 0)
    441 		goto fail;
    442 
    443 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    444 	    flags);
    445 	if (error != 0)
    446 		goto fail;
    447 
    448 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    449 	if (error != 0)
    450 		goto fail;
    451 
    452 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    453 	if (error != 0)
    454 		goto fail;
    455 
    456 	memset(dma->vaddr, 0, size);
    457 
    458 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    459 	if (kvap != NULL)
    460 		*kvap = dma->vaddr;
    461 
    462 	return 0;
    463 
    464 fail:   wpi_dma_contig_free(dma);
    465 	return error;
    466 }
    467 
    468 static void
    469 wpi_dma_contig_free(struct wpi_dma_info *dma)
    470 {
    471 	if (dma->map != NULL) {
    472 		if (dma->vaddr != NULL) {
    473 			bus_dmamap_unload(dma->tag, dma->map);
    474 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    475 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    476 			dma->vaddr = NULL;
    477 		}
    478 		bus_dmamap_destroy(dma->tag, dma->map);
    479 		dma->map = NULL;
    480 	}
    481 }
    482 
    483 /*
    484  * Allocate a shared page between host and NIC.
    485  */
    486 static int
    487 wpi_alloc_shared(struct wpi_softc *sc)
    488 {
    489 	int error;
    490 	/* must be aligned on a 4K-page boundary */
    491 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    492 			(void **)&sc->shared, sizeof (struct wpi_shared),
    493 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
    494 	if (error != 0)
    495 		aprint_error_dev(sc->sc_dev,
    496 				"could not allocate shared area DMA memory\n");
    497 
    498 	return error;
    499 }
    500 
    501 static void
    502 wpi_free_shared(struct wpi_softc *sc)
    503 {
    504 	wpi_dma_contig_free(&sc->shared_dma);
    505 }
    506 
    507 /*
    508  * Allocate DMA-safe memory for firmware transfer.
    509  */
    510 static int
    511 wpi_alloc_fwmem(struct wpi_softc *sc)
    512 {
    513 	int error;
    514 	/* allocate enough contiguous space to store text and data */
    515 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    516 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    517 	    BUS_DMA_NOWAIT);
    518 
    519 	if (error != 0)
    520 		aprint_error_dev(sc->sc_dev,
    521 			"could not allocate firmware transfer area"
    522 			"DMA memory\n");
    523 	return error;
    524 }
    525 
    526 static void
    527 wpi_free_fwmem(struct wpi_softc *sc)
    528 {
    529 	wpi_dma_contig_free(&sc->fw_dma);
    530 }
    531 
    532 
    533 static struct wpi_rbuf *
    534 wpi_alloc_rbuf(struct wpi_softc *sc)
    535 {
    536 	struct wpi_rbuf *rbuf;
    537 
    538 	mutex_enter(&sc->rxq.freelist_mtx);
    539 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    540 	if (rbuf != NULL) {
    541 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    542 		sc->rxq.nb_free_entries --;
    543 	}
    544 	mutex_exit(&sc->rxq.freelist_mtx);
    545 
    546 	return rbuf;
    547 }
    548 
    549 /*
    550  * This is called automatically by the network stack when the mbuf to which our
    551  * Rx buffer is attached is freed.
    552  */
    553 static void
    554 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    555 {
    556 	struct wpi_rbuf *rbuf = arg;
    557 	struct wpi_softc *sc = rbuf->sc;
    558 
    559 	/* put the buffer back in the free list */
    560 
    561 	mutex_enter(&sc->rxq.freelist_mtx);
    562 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    563 	mutex_exit(&sc->rxq.freelist_mtx);
    564 	/* No need to protect this with a mutex, see wpi_rx_intr */
    565 	sc->rxq.nb_free_entries ++;
    566 
    567 	if (__predict_true(m != NULL))
    568 		pool_cache_put(mb_cache, m);
    569 }
    570 
    571 static int
    572 wpi_alloc_rpool(struct wpi_softc *sc)
    573 {
    574 	struct wpi_rx_ring *ring = &sc->rxq;
    575 	struct wpi_rbuf *rbuf;
    576 	int i, error;
    577 
    578 	/* allocate a big chunk of DMA'able memory.. */
    579 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    580 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    581 	if (error != 0) {
    582 		aprint_normal_dev(sc->sc_dev,
    583 						  "could not allocate Rx buffers DMA memory\n");
    584 		return error;
    585 	}
    586 
    587 	/* ..and split it into 3KB chunks */
    588 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
    589 	SLIST_INIT(&ring->freelist);
    590 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    591 		rbuf = &ring->rbuf[i];
    592 		rbuf->sc = sc;	/* backpointer for callbacks */
    593 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    594 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    595 
    596 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    597 	}
    598 
    599 	ring->nb_free_entries = WPI_RBUF_COUNT;
    600 	return 0;
    601 }
    602 
    603 static void
    604 wpi_free_rpool(struct wpi_softc *sc)
    605 {
    606 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    607 }
    608 
    609 static int
    610 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    611 {
    612 	struct wpi_rx_data *data;
    613 	struct wpi_rbuf *rbuf;
    614 	int i, error;
    615 
    616 	ring->cur = 0;
    617 
    618 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    619 		(void **)&ring->desc,
    620 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
    621 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    622 	if (error != 0) {
    623 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
    624 		goto fail;
    625 	}
    626 
    627 	/*
    628 	 * Setup Rx buffers.
    629 	 */
    630 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    631 		data = &ring->data[i];
    632 
    633 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    634 		if (data->m == NULL) {
    635 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
    636 			error = ENOMEM;
    637 			goto fail;
    638 		}
    639 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    640 			m_freem(data->m);
    641 			data->m = NULL;
    642 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
    643 			error = ENOMEM;
    644 			goto fail;
    645 		}
    646 		/* attach Rx buffer to mbuf */
    647 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    648 		    rbuf);
    649 		data->m->m_flags |= M_EXT_RW;
    650 
    651 		ring->desc[i] = htole32(rbuf->paddr);
    652 	}
    653 
    654 	return 0;
    655 
    656 fail:	wpi_free_rx_ring(sc, ring);
    657 	return error;
    658 }
    659 
    660 static void
    661 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    662 {
    663 	int ntries;
    664 
    665 	wpi_mem_lock(sc);
    666 
    667 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    668 	for (ntries = 0; ntries < 100; ntries++) {
    669 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    670 			break;
    671 		DELAY(10);
    672 	}
    673 #ifdef WPI_DEBUG
    674 	if (ntries == 100 && wpi_debug > 0)
    675 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    676 #endif
    677 	wpi_mem_unlock(sc);
    678 
    679 	ring->cur = 0;
    680 }
    681 
    682 static void
    683 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    684 {
    685 	int i;
    686 
    687 	wpi_dma_contig_free(&ring->desc_dma);
    688 
    689 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    690 		if (ring->data[i].m != NULL)
    691 			m_freem(ring->data[i].m);
    692 	}
    693 }
    694 
    695 static int
    696 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    697 	int qid)
    698 {
    699 	struct wpi_tx_data *data;
    700 	int i, error;
    701 
    702 	ring->qid = qid;
    703 	ring->count = count;
    704 	ring->queued = 0;
    705 	ring->cur = 0;
    706 
    707 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    708 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    709 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    710 	if (error != 0) {
    711 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
    712 		goto fail;
    713 	}
    714 
    715 	/* update shared page with ring's base address */
    716 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    717 
    718 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    719 		(void **)&ring->cmd,
    720 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
    721 	if (error != 0) {
    722 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
    723 		goto fail;
    724 	}
    725 
    726 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    727 		M_NOWAIT);
    728 	if (ring->data == NULL) {
    729 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
    730 		goto fail;
    731 	}
    732 
    733 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
    734 
    735 	for (i = 0; i < count; i++) {
    736 		data = &ring->data[i];
    737 
    738 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    739 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    740 			&data->map);
    741 		if (error != 0) {
    742 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
    743 			goto fail;
    744 		}
    745 	}
    746 
    747 	return 0;
    748 
    749 fail:	wpi_free_tx_ring(sc, ring);
    750 	return error;
    751 }
    752 
    753 static void
    754 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    755 {
    756 	struct wpi_tx_data *data;
    757 	int i, ntries;
    758 
    759 	wpi_mem_lock(sc);
    760 
    761 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    762 	for (ntries = 0; ntries < 100; ntries++) {
    763 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    764 			break;
    765 		DELAY(10);
    766 	}
    767 #ifdef WPI_DEBUG
    768 	if (ntries == 100 && wpi_debug > 0) {
    769 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    770 									   ring->qid);
    771 	}
    772 #endif
    773 	wpi_mem_unlock(sc);
    774 
    775 	for (i = 0; i < ring->count; i++) {
    776 		data = &ring->data[i];
    777 
    778 		if (data->m != NULL) {
    779 			bus_dmamap_unload(sc->sc_dmat, data->map);
    780 			m_freem(data->m);
    781 			data->m = NULL;
    782 		}
    783 	}
    784 
    785 	ring->queued = 0;
    786 	ring->cur = 0;
    787 }
    788 
    789 static void
    790 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    791 {
    792 	struct wpi_tx_data *data;
    793 	int i;
    794 
    795 	wpi_dma_contig_free(&ring->desc_dma);
    796 	wpi_dma_contig_free(&ring->cmd_dma);
    797 
    798 	if (ring->data != NULL) {
    799 		for (i = 0; i < ring->count; i++) {
    800 			data = &ring->data[i];
    801 
    802 			if (data->m != NULL) {
    803 				bus_dmamap_unload(sc->sc_dmat, data->map);
    804 				m_freem(data->m);
    805 			}
    806 		}
    807 		free(ring->data, M_DEVBUF);
    808 	}
    809 }
    810 
    811 /*ARGUSED*/
    812 static struct ieee80211_node *
    813 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    814 {
    815 	struct wpi_node *wn;
    816 
    817 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
    818 
    819 	return (struct ieee80211_node *)wn;
    820 }
    821 
    822 static void
    823 wpi_newassoc(struct ieee80211_node *ni, int isnew)
    824 {
    825 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    826 	int i;
    827 
    828 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    829 
    830 	/* set rate to some reasonable initial value */
    831 	for (i = ni->ni_rates.rs_nrates - 1;
    832 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    833 	     i--);
    834 	ni->ni_txrate = i;
    835 }
    836 
    837 static int
    838 wpi_media_change(struct ifnet *ifp)
    839 {
    840 	int error;
    841 
    842 	error = ieee80211_media_change(ifp);
    843 	if (error != ENETRESET)
    844 		return error;
    845 
    846 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    847 		wpi_init(ifp);
    848 
    849 	return 0;
    850 }
    851 
    852 static int
    853 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    854 {
    855 	struct ifnet *ifp = ic->ic_ifp;
    856 	struct wpi_softc *sc = ifp->if_softc;
    857 	struct ieee80211_node *ni;
    858 	int error;
    859 
    860 	callout_stop(&sc->calib_to);
    861 
    862 	switch (nstate) {
    863 	case IEEE80211_S_SCAN:
    864 
    865 		if (sc->is_scanning)
    866 			break;
    867 
    868 		sc->is_scanning = true;
    869 		ieee80211_node_table_reset(&ic->ic_scan);
    870 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
    871 
    872 		/* make the link LED blink while we're scanning */
    873 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    874 
    875 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
    876 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
    877 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
    878 			return error;
    879 		}
    880 
    881 		ic->ic_state = nstate;
    882 		return 0;
    883 
    884 	case IEEE80211_S_ASSOC:
    885 		if (ic->ic_state != IEEE80211_S_RUN)
    886 			break;
    887 		/* FALLTHROUGH */
    888 	case IEEE80211_S_AUTH:
    889 		sc->config.associd = 0;
    890 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    891 		if ((error = wpi_auth(sc)) != 0) {
    892 			aprint_error_dev(sc->sc_dev,
    893 							"could not send authentication request\n");
    894 			return error;
    895 		}
    896 		break;
    897 
    898 	case IEEE80211_S_RUN:
    899 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    900 			/* link LED blinks while monitoring */
    901 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    902 			break;
    903 		}
    904 
    905 		ni = ic->ic_bss;
    906 
    907 		if (ic->ic_opmode != IEEE80211_M_STA) {
    908 			(void) wpi_auth(sc);    /* XXX */
    909 			wpi_setup_beacon(sc, ni);
    910 		}
    911 
    912 		wpi_enable_tsf(sc, ni);
    913 
    914 		/* update adapter's configuration */
    915 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    916 		/* short preamble/slot time are negotiated when associating */
    917 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
    918 			WPI_CONFIG_SHSLOT);
    919 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
    920 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
    921 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
    922 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
    923 		sc->config.filter |= htole32(WPI_FILTER_BSS);
    924 		if (ic->ic_opmode != IEEE80211_M_STA)
    925 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
    926 
    927 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
    928 
    929 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
    930 			sc->config.flags));
    931 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
    932 			sizeof (struct wpi_config), 1);
    933 		if (error != 0) {
    934 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
    935 			return error;
    936 		}
    937 
    938 		/* configuration has changed, set Tx power accordingly */
    939 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
    940 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
    941 			return error;
    942 		}
    943 
    944 		if (ic->ic_opmode == IEEE80211_M_STA) {
    945 			/* fake a join to init the tx rate */
    946 			wpi_newassoc(ni, 1);
    947 		}
    948 
    949 		/* start periodic calibration timer */
    950 		sc->calib_cnt = 0;
    951 		callout_schedule(&sc->calib_to, hz/2);
    952 
    953 		/* link LED always on while associated */
    954 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
    955 		break;
    956 
    957 	case IEEE80211_S_INIT:
    958 		sc->is_scanning = false;
    959 		break;
    960 	}
    961 
    962 	return sc->sc_newstate(ic, nstate, arg);
    963 }
    964 
    965 /*
    966  * XXX: Hack to set the current channel to the value advertised in beacons or
    967  * probe responses. Only used during AP detection.
    968  * XXX: Duplicated from if_iwi.c
    969  */
    970 static void
    971 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
    972 {
    973 	struct ieee80211_frame *wh;
    974 	uint8_t subtype;
    975 	uint8_t *frm, *efrm;
    976 
    977 	wh = mtod(m, struct ieee80211_frame *);
    978 
    979 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
    980 		return;
    981 
    982 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
    983 
    984 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
    985 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
    986 		return;
    987 
    988 	frm = (uint8_t *)(wh + 1);
    989 	efrm = mtod(m, uint8_t *) + m->m_len;
    990 
    991 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
    992 	while (frm < efrm) {
    993 		if (*frm == IEEE80211_ELEMID_DSPARMS)
    994 #if IEEE80211_CHAN_MAX < 255
    995 		if (frm[2] <= IEEE80211_CHAN_MAX)
    996 #endif
    997 			ic->ic_curchan = &ic->ic_channels[frm[2]];
    998 
    999 		frm += frm[1] + 2;
   1000 	}
   1001 }
   1002 
   1003 /*
   1004  * Grab exclusive access to NIC memory.
   1005  */
   1006 static void
   1007 wpi_mem_lock(struct wpi_softc *sc)
   1008 {
   1009 	uint32_t tmp;
   1010 	int ntries;
   1011 
   1012 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1013 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
   1014 
   1015 	/* spin until we actually get the lock */
   1016 	for (ntries = 0; ntries < 1000; ntries++) {
   1017 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
   1018 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
   1019 			break;
   1020 		DELAY(10);
   1021 	}
   1022 	if (ntries == 1000)
   1023 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
   1024 }
   1025 
   1026 /*
   1027  * Release lock on NIC memory.
   1028  */
   1029 static void
   1030 wpi_mem_unlock(struct wpi_softc *sc)
   1031 {
   1032 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1033 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1034 }
   1035 
   1036 static uint32_t
   1037 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1038 {
   1039 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1040 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1041 }
   1042 
   1043 static void
   1044 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1045 {
   1046 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1047 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1048 }
   1049 
   1050 static void
   1051 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1052 						const uint32_t *data, int wlen)
   1053 {
   1054 	for (; wlen > 0; wlen--, data++, addr += 4)
   1055 		wpi_mem_write(sc, addr, *data);
   1056 }
   1057 
   1058 
   1059 /*
   1060  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1061  * instead of using the traditional bit-bang method.
   1062  */
   1063 static int
   1064 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1065 {
   1066 	uint8_t *out = data;
   1067 	uint32_t val;
   1068 	int ntries;
   1069 
   1070 	wpi_mem_lock(sc);
   1071 	for (; len > 0; len -= 2, addr++) {
   1072 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1073 
   1074 		for (ntries = 0; ntries < 10; ntries++) {
   1075 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1076 			    WPI_EEPROM_READY)
   1077 				break;
   1078 			DELAY(5);
   1079 		}
   1080 		if (ntries == 10) {
   1081 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1082 			return ETIMEDOUT;
   1083 		}
   1084 		*out++ = val >> 16;
   1085 		if (len > 1)
   1086 			*out++ = val >> 24;
   1087 	}
   1088 	wpi_mem_unlock(sc);
   1089 
   1090 	return 0;
   1091 }
   1092 
   1093 /*
   1094  * The firmware boot code is small and is intended to be copied directly into
   1095  * the NIC internal memory.
   1096  */
   1097 int
   1098 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1099 {
   1100 	int ntries;
   1101 
   1102 	size /= sizeof (uint32_t);
   1103 
   1104 	wpi_mem_lock(sc);
   1105 
   1106 	/* copy microcode image into NIC memory */
   1107 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1108 	    (const uint32_t *)ucode, size);
   1109 
   1110 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1111 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1112 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1113 
   1114 	/* run microcode */
   1115 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1116 
   1117 	/* wait for transfer to complete */
   1118 	for (ntries = 0; ntries < 1000; ntries++) {
   1119 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1120 			break;
   1121 		DELAY(10);
   1122 	}
   1123 	if (ntries == 1000) {
   1124 		wpi_mem_unlock(sc);
   1125 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1126 		return ETIMEDOUT;
   1127 	}
   1128 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1129 
   1130 	wpi_mem_unlock(sc);
   1131 
   1132 	return 0;
   1133 }
   1134 
   1135 static int
   1136 wpi_cache_firmware(struct wpi_softc *sc)
   1137 {
   1138 	const char *const fwname = wpi_firmware_name;
   1139 	firmware_handle_t fw;
   1140 	int error;
   1141 
   1142 	/* sc is used here only to report error messages.  */
   1143 
   1144 	mutex_enter(&wpi_firmware_mutex);
   1145 
   1146 	if (wpi_firmware_users == SIZE_MAX) {
   1147 		mutex_exit(&wpi_firmware_mutex);
   1148 		return ENFILE;	/* Too many of something in the system...  */
   1149 	}
   1150 	if (wpi_firmware_users++) {
   1151 		KASSERT(wpi_firmware_image != NULL);
   1152 		KASSERT(wpi_firmware_size > 0);
   1153 		mutex_exit(&wpi_firmware_mutex);
   1154 		return 0;	/* Already good to go.  */
   1155 	}
   1156 
   1157 	KASSERT(wpi_firmware_image == NULL);
   1158 	KASSERT(wpi_firmware_size == 0);
   1159 
   1160 	/* load firmware image from disk */
   1161 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
   1162 		aprint_error_dev(sc->sc_dev,
   1163 		    "could not open firmware file %s: %d\n", fwname, error);
   1164 		goto fail0;
   1165 	}
   1166 
   1167 	wpi_firmware_size = firmware_get_size(fw);
   1168 
   1169 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
   1170 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
   1171 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
   1172 	    WPI_FW_BOOT_TEXT_MAXSZ) {
   1173 		aprint_error_dev(sc->sc_dev,
   1174 		    "firmware file %s too large: %zu bytes\n",
   1175 		    fwname, wpi_firmware_size);
   1176 		error = EFBIG;
   1177 		goto fail1;
   1178 	}
   1179 
   1180 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
   1181 		aprint_error_dev(sc->sc_dev,
   1182 		    "firmware file %s too small: %zu bytes\n",
   1183 		    fwname, wpi_firmware_size);
   1184 		error = EINVAL;
   1185 		goto fail1;
   1186 	}
   1187 
   1188 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
   1189 	if (wpi_firmware_image == NULL) {
   1190 		aprint_error_dev(sc->sc_dev,
   1191 		    "not enough memory for firmware file %s\n", fwname);
   1192 		error = ENOMEM;
   1193 		goto fail1;
   1194 	}
   1195 
   1196 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
   1197 	if (error != 0) {
   1198 		aprint_error_dev(sc->sc_dev,
   1199 		    "error reading firmware file %s: %d\n", fwname, error);
   1200 		goto fail2;
   1201 	}
   1202 
   1203 	/* Success!  */
   1204 	firmware_close(fw);
   1205 	mutex_exit(&wpi_firmware_mutex);
   1206 	return 0;
   1207 
   1208 fail2:
   1209 	firmware_free(wpi_firmware_image, wpi_firmware_size);
   1210 	wpi_firmware_image = NULL;
   1211 fail1:
   1212 	wpi_firmware_size = 0;
   1213 	firmware_close(fw);
   1214 fail0:
   1215 	KASSERT(wpi_firmware_users == 1);
   1216 	wpi_firmware_users = 0;
   1217 	KASSERT(wpi_firmware_image == NULL);
   1218 	KASSERT(wpi_firmware_size == 0);
   1219 
   1220 	mutex_exit(&wpi_firmware_mutex);
   1221 	return error;
   1222 }
   1223 
   1224 static void
   1225 wpi_release_firmware(void)
   1226 {
   1227 
   1228 	mutex_enter(&wpi_firmware_mutex);
   1229 
   1230 	KASSERT(wpi_firmware_users > 0);
   1231 	KASSERT(wpi_firmware_image != NULL);
   1232 	KASSERT(wpi_firmware_size != 0);
   1233 
   1234 	if (--wpi_firmware_users == 0) {
   1235 		firmware_free(wpi_firmware_image, wpi_firmware_size);
   1236 		wpi_firmware_image = NULL;
   1237 		wpi_firmware_size = 0;
   1238 	}
   1239 
   1240 	mutex_exit(&wpi_firmware_mutex);
   1241 }
   1242 
   1243 static int
   1244 wpi_load_firmware(struct wpi_softc *sc)
   1245 {
   1246 	struct wpi_dma_info *dma = &sc->fw_dma;
   1247 	struct wpi_firmware_hdr hdr;
   1248 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1249 	const uint8_t *boot_text;
   1250 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1251 	uint32_t boot_textsz;
   1252 	size_t size;
   1253 	int error;
   1254 
   1255 	if (!sc->fw_used) {
   1256 		if ((error = wpi_cache_firmware(sc)) != 0)
   1257 			return error;
   1258 		sc->fw_used = true;
   1259 	}
   1260 
   1261 	KASSERT(sc->fw_used);
   1262 	KASSERT(wpi_firmware_image != NULL);
   1263 	KASSERT(wpi_firmware_size > sizeof(hdr));
   1264 
   1265 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
   1266 
   1267 	main_textsz = le32toh(hdr.main_textsz);
   1268 	main_datasz = le32toh(hdr.main_datasz);
   1269 	init_textsz = le32toh(hdr.init_textsz);
   1270 	init_datasz = le32toh(hdr.init_datasz);
   1271 	boot_textsz = le32toh(hdr.boot_textsz);
   1272 
   1273 	/* sanity-check firmware segments sizes */
   1274 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1275 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1276 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1277 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1278 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1279 	    (boot_textsz & 3) != 0) {
   1280 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1281 		error = EINVAL;
   1282 		goto free_firmware;
   1283 	}
   1284 
   1285 	/* check that all firmware segments are present */
   1286 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
   1287 	    main_datasz + init_textsz + init_datasz + boot_textsz;
   1288 	if (wpi_firmware_size < size) {
   1289 		aprint_error_dev(sc->sc_dev,
   1290 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
   1291 		    wpi_firmware_size, size);
   1292 		error = EINVAL;
   1293 		goto free_firmware;
   1294 	}
   1295 
   1296 	/* get pointers to firmware segments */
   1297 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
   1298 	main_data = main_text + main_textsz;
   1299 	init_text = main_data + main_datasz;
   1300 	init_data = init_text + init_textsz;
   1301 	boot_text = init_data + init_datasz;
   1302 
   1303 	/* copy initialization images into pre-allocated DMA-safe memory */
   1304 	memcpy(dma->vaddr, init_data, init_datasz);
   1305 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
   1306 	    init_textsz);
   1307 
   1308 	/* tell adapter where to find initialization images */
   1309 	wpi_mem_lock(sc);
   1310 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1311 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1312 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1313 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1314 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1315 	wpi_mem_unlock(sc);
   1316 
   1317 	/* load firmware boot code */
   1318 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1319 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1320 		return error;
   1321 	}
   1322 
   1323 	/* now press "execute" ;-) */
   1324 	WPI_WRITE(sc, WPI_RESET, 0);
   1325 
   1326 	/* ..and wait at most one second for adapter to initialize */
   1327 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1328 		/* this isn't what was supposed to happen.. */
   1329 		aprint_error_dev(sc->sc_dev,
   1330 		    "timeout waiting for adapter to initialize\n");
   1331 	}
   1332 
   1333 	/* copy runtime images into pre-allocated DMA-safe memory */
   1334 	memcpy(dma->vaddr, main_data, main_datasz);
   1335 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
   1336 	    main_textsz);
   1337 
   1338 	/* tell adapter where to find runtime images */
   1339 	wpi_mem_lock(sc);
   1340 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1341 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1342 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1343 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1344 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1345 	wpi_mem_unlock(sc);
   1346 
   1347 	/* wait at most one second for second alive notification */
   1348 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1349 		/* this isn't what was supposed to happen.. */
   1350 		aprint_error_dev(sc->sc_dev,
   1351 		    "timeout waiting for adapter to initialize\n");
   1352 	}
   1353 
   1354 	return error;
   1355 
   1356 free_firmware:
   1357 	sc->fw_used = false;
   1358 	wpi_release_firmware();
   1359 	return error;
   1360 }
   1361 
   1362 static void
   1363 wpi_calib_timeout(void *arg)
   1364 {
   1365 	struct wpi_softc *sc = arg;
   1366 	struct ieee80211com *ic = &sc->sc_ic;
   1367 	int temp, s;
   1368 
   1369 	/* automatic rate control triggered every 500ms */
   1370 	if (ic->ic_fixed_rate == -1) {
   1371 		s = splnet();
   1372 		if (ic->ic_opmode == IEEE80211_M_STA)
   1373 			wpi_iter_func(sc, ic->ic_bss);
   1374 		else
   1375                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1376 		splx(s);
   1377 	}
   1378 
   1379 	/* update sensor data */
   1380 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1381 
   1382 	/* automatic power calibration every 60s */
   1383 	if (++sc->calib_cnt >= 120) {
   1384 		wpi_power_calibration(sc, temp);
   1385 		sc->calib_cnt = 0;
   1386 	}
   1387 
   1388 	callout_schedule(&sc->calib_to, hz/2);
   1389 }
   1390 
   1391 static void
   1392 wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1393 {
   1394 	struct wpi_softc *sc = arg;
   1395 	struct wpi_node *wn = (struct wpi_node *)ni;
   1396 
   1397 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1398 }
   1399 
   1400 /*
   1401  * This function is called periodically (every 60 seconds) to adjust output
   1402  * power to temperature changes.
   1403  */
   1404 void
   1405 wpi_power_calibration(struct wpi_softc *sc, int temp)
   1406 {
   1407 	/* sanity-check read value */
   1408 	if (temp < -260 || temp > 25) {
   1409 		/* this can't be correct, ignore */
   1410 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1411 		return;
   1412 	}
   1413 
   1414 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1415 
   1416 	/* adjust Tx power if need be */
   1417 	if (abs(temp - sc->temp) <= 6)
   1418 		return;
   1419 
   1420 	sc->temp = temp;
   1421 
   1422 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
   1423 		/* just warn, too bad for the automatic calibration... */
   1424 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1425 	}
   1426 }
   1427 
   1428 static void
   1429 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1430 	struct wpi_rx_data *data)
   1431 {
   1432 	struct ieee80211com *ic = &sc->sc_ic;
   1433 	struct ifnet *ifp = ic->ic_ifp;
   1434 	struct wpi_rx_ring *ring = &sc->rxq;
   1435 	struct wpi_rx_stat *stat;
   1436 	struct wpi_rx_head *head;
   1437 	struct wpi_rx_tail *tail;
   1438 	struct wpi_rbuf *rbuf;
   1439 	struct ieee80211_frame *wh;
   1440 	struct ieee80211_node *ni;
   1441 	struct mbuf *m, *mnew;
   1442 	int data_off ;
   1443 
   1444 	stat = (struct wpi_rx_stat *)(desc + 1);
   1445 
   1446 	if (stat->len > WPI_STAT_MAXLEN) {
   1447 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1448 		ifp->if_ierrors++;
   1449 		return;
   1450 	}
   1451 
   1452 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1453 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1454 
   1455 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1456 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
   1457 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1458 		le64toh(tail->tstamp)));
   1459 
   1460 	/*
   1461 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1462 	 * to radiotap in monitor mode).
   1463 	 */
   1464 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1465 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
   1466 		ifp->if_ierrors++;
   1467 		return;
   1468 	}
   1469 
   1470 	/* Compute where are the useful datas */
   1471 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1472 
   1473 	/*
   1474 	 * If the number of free entry is too low
   1475 	 * just dup the data->m socket and reuse the same rbuf entry
   1476 	 * Note that thi test is not protected by a mutex because the
   1477 	 * only path that causes nb_free_entries to decrease is through
   1478 	 * this interrupt routine, which is not re-entrent.
   1479 	 * What may not be obvious is that the safe path is if that test
   1480 	 * evaluates as true, so nb_free_entries can grow any time.
   1481 	 */
   1482 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
   1483 
   1484 		/* Prepare the mbuf for the m_dup */
   1485 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
   1486 		data->m->m_data = (char*) data->m->m_data + data_off;
   1487 
   1488 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
   1489 
   1490 		/* Restore the m_data pointer for future use */
   1491 		data->m->m_data = (char*) data->m->m_data - data_off;
   1492 
   1493 		if (m == NULL) {
   1494 			ifp->if_ierrors++;
   1495 			return;
   1496 		}
   1497 	} else {
   1498 
   1499 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1500 		if (mnew == NULL) {
   1501 			ifp->if_ierrors++;
   1502 			return;
   1503 		}
   1504 
   1505 		rbuf = wpi_alloc_rbuf(sc);
   1506 		KASSERT(rbuf != NULL);
   1507 
   1508  		/* attach Rx buffer to mbuf */
   1509 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1510 		 	rbuf);
   1511 		mnew->m_flags |= M_EXT_RW;
   1512 
   1513 		m = data->m;
   1514 		data->m = mnew;
   1515 
   1516 		/* update Rx descriptor */
   1517 		ring->desc[ring->cur] = htole32(rbuf->paddr);
   1518 
   1519 		m->m_data = (char*)m->m_data + data_off;
   1520 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1521 	}
   1522 
   1523 	/* finalize mbuf */
   1524 	m->m_pkthdr.rcvif = ifp;
   1525 
   1526 	if (ic->ic_state == IEEE80211_S_SCAN)
   1527 		wpi_fix_channel(ic, m);
   1528 
   1529 	if (sc->sc_drvbpf != NULL) {
   1530 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1531 
   1532 		tap->wr_flags = 0;
   1533 		tap->wr_chan_freq =
   1534 			htole16(ic->ic_channels[head->chan].ic_freq);
   1535 		tap->wr_chan_flags =
   1536 			htole16(ic->ic_channels[head->chan].ic_flags);
   1537 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1538 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1539 		tap->wr_tsft = tail->tstamp;
   1540 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1541 		switch (head->rate) {
   1542 		/* CCK rates */
   1543 		case  10: tap->wr_rate =   2; break;
   1544 		case  20: tap->wr_rate =   4; break;
   1545 		case  55: tap->wr_rate =  11; break;
   1546 		case 110: tap->wr_rate =  22; break;
   1547 		/* OFDM rates */
   1548 		case 0xd: tap->wr_rate =  12; break;
   1549 		case 0xf: tap->wr_rate =  18; break;
   1550 		case 0x5: tap->wr_rate =  24; break;
   1551 		case 0x7: tap->wr_rate =  36; break;
   1552 		case 0x9: tap->wr_rate =  48; break;
   1553 		case 0xb: tap->wr_rate =  72; break;
   1554 		case 0x1: tap->wr_rate =  96; break;
   1555 		case 0x3: tap->wr_rate = 108; break;
   1556 		/* unknown rate: should not happen */
   1557 		default:  tap->wr_rate =   0;
   1558 		}
   1559 		if (le16toh(head->flags) & 0x4)
   1560 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1561 
   1562 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1563 	}
   1564 
   1565 	/* grab a reference to the source node */
   1566 	wh = mtod(m, struct ieee80211_frame *);
   1567 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1568 
   1569 	/* send the frame to the 802.11 layer */
   1570 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1571 
   1572 	/* release node reference */
   1573 	ieee80211_free_node(ni);
   1574 }
   1575 
   1576 static void
   1577 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1578 {
   1579 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1580 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1581 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
   1582 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1583 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
   1584 
   1585 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1586 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1587 		stat->nkill, stat->rate, le32toh(stat->duration),
   1588 		le32toh(stat->status)));
   1589 
   1590 	/*
   1591 	 * Update rate control statistics for the node.
   1592 	 * XXX we should not count mgmt frames since they're always sent at
   1593 	 * the lowest available bit-rate.
   1594 	 */
   1595 	wn->amn.amn_txcnt++;
   1596 	if (stat->ntries > 0) {
   1597 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1598 		wn->amn.amn_retrycnt++;
   1599 	}
   1600 
   1601 	if ((le32toh(stat->status) & 0xff) != 1)
   1602 		ifp->if_oerrors++;
   1603 	else
   1604 		ifp->if_opackets++;
   1605 
   1606 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
   1607 	m_freem(txdata->m);
   1608 	txdata->m = NULL;
   1609 	ieee80211_free_node(txdata->ni);
   1610 	txdata->ni = NULL;
   1611 
   1612 	ring->queued--;
   1613 
   1614 	sc->sc_tx_timer = 0;
   1615 	ifp->if_flags &= ~IFF_OACTIVE;
   1616 	wpi_start(ifp);
   1617 }
   1618 
   1619 static void
   1620 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1621 {
   1622 	struct wpi_tx_ring *ring = &sc->cmdq;
   1623 	struct wpi_tx_data *data;
   1624 
   1625 	if ((desc->qid & 7) != 4)
   1626 		return;	/* not a command ack */
   1627 
   1628 	data = &ring->data[desc->idx];
   1629 
   1630 	/* if the command was mapped in a mbuf, free it */
   1631 	if (data->m != NULL) {
   1632 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1633 		m_freem(data->m);
   1634 		data->m = NULL;
   1635 	}
   1636 
   1637 	wakeup(&ring->cmd[desc->idx]);
   1638 }
   1639 
   1640 static void
   1641 wpi_notif_intr(struct wpi_softc *sc)
   1642 {
   1643 	struct ieee80211com *ic = &sc->sc_ic;
   1644 	struct ifnet *ifp =  ic->ic_ifp;
   1645 	struct wpi_rx_desc *desc;
   1646 	struct wpi_rx_data *data;
   1647 	uint32_t hw;
   1648 
   1649 	hw = le32toh(sc->shared->next);
   1650 	while (sc->rxq.cur != hw) {
   1651 		data = &sc->rxq.data[sc->rxq.cur];
   1652 
   1653 		desc = mtod(data->m, struct wpi_rx_desc *);
   1654 
   1655 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1656 			"len=%d\n", desc->qid, desc->idx, desc->flags,
   1657 			desc->type, le32toh(desc->len)));
   1658 
   1659 		if (!(desc->qid & 0x80))	/* reply to a command */
   1660 			wpi_cmd_intr(sc, desc);
   1661 
   1662 		switch (desc->type) {
   1663 		case WPI_RX_DONE:
   1664 			/* a 802.11 frame was received */
   1665 			wpi_rx_intr(sc, desc, data);
   1666 			break;
   1667 
   1668 		case WPI_TX_DONE:
   1669 			/* a 802.11 frame has been transmitted */
   1670 			wpi_tx_intr(sc, desc);
   1671 			break;
   1672 
   1673 		case WPI_UC_READY:
   1674 		{
   1675 			struct wpi_ucode_info *uc =
   1676 				(struct wpi_ucode_info *)(desc + 1);
   1677 
   1678 			/* the microcontroller is ready */
   1679 			DPRINTF(("microcode alive notification version %x "
   1680 				"alive %x\n", le32toh(uc->version),
   1681 				le32toh(uc->valid)));
   1682 
   1683 			if (le32toh(uc->valid) != 1) {
   1684 				aprint_error_dev(sc->sc_dev,
   1685 					"microcontroller initialization failed\n");
   1686 			}
   1687 			break;
   1688 		}
   1689 		case WPI_STATE_CHANGED:
   1690 		{
   1691 			uint32_t *status = (uint32_t *)(desc + 1);
   1692 
   1693 			/* enabled/disabled notification */
   1694 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1695 
   1696 			if (le32toh(*status) & 1) {
   1697 				/* the radio button has to be pushed */
   1698 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
   1699 				/* turn the interface down */
   1700 				ifp->if_flags &= ~IFF_UP;
   1701 				wpi_stop(ifp, 1);
   1702 				return;	/* no further processing */
   1703 			}
   1704 			break;
   1705 		}
   1706 		case WPI_START_SCAN:
   1707 		{
   1708 			struct wpi_start_scan *scan =
   1709 				(struct wpi_start_scan *)(desc + 1);
   1710 
   1711 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1712 				scan->chan, le32toh(scan->status)));
   1713 
   1714 			/* fix current channel */
   1715 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   1716 			break;
   1717 		}
   1718 		case WPI_STOP_SCAN:
   1719 		{
   1720 			struct wpi_stop_scan *scan =
   1721 				(struct wpi_stop_scan *)(desc + 1);
   1722 
   1723 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1724 				scan->nchan, scan->status, scan->chan));
   1725 
   1726 			if (scan->status == 1 && scan->chan <= 14) {
   1727 				/*
   1728 				 * We just finished scanning 802.11g channels,
   1729 				 * start scanning 802.11a ones.
   1730 				 */
   1731 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
   1732 					break;
   1733 			}
   1734 			sc->is_scanning = false;
   1735 			ieee80211_end_scan(ic);
   1736 			break;
   1737 		}
   1738 		}
   1739 
   1740 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1741 	}
   1742 
   1743 	/* tell the firmware what we have processed */
   1744 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1745 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1746 }
   1747 
   1748 static int
   1749 wpi_intr(void *arg)
   1750 {
   1751 	struct wpi_softc *sc = arg;
   1752 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1753 	uint32_t r;
   1754 
   1755 	r = WPI_READ(sc, WPI_INTR);
   1756 	if (r == 0 || r == 0xffffffff)
   1757 		return 0;	/* not for us */
   1758 
   1759 	DPRINTFN(5, ("interrupt reg %x\n", r));
   1760 
   1761 	/* disable interrupts */
   1762 	WPI_WRITE(sc, WPI_MASK, 0);
   1763 	/* ack interrupts */
   1764 	WPI_WRITE(sc, WPI_INTR, r);
   1765 
   1766 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1767 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1768 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
   1769 		wpi_stop(sc->sc_ic.ic_ifp, 1);
   1770 		return 1;
   1771 	}
   1772 
   1773 	if (r & WPI_RX_INTR)
   1774 		wpi_notif_intr(sc);
   1775 
   1776 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1777 		wakeup(sc);
   1778 
   1779 	/* re-enable interrupts */
   1780 	if (ifp->if_flags & IFF_UP)
   1781 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1782 
   1783 	return 1;
   1784 }
   1785 
   1786 static uint8_t
   1787 wpi_plcp_signal(int rate)
   1788 {
   1789 	switch (rate) {
   1790 	/* CCK rates (returned values are device-dependent) */
   1791 	case 2:		return 10;
   1792 	case 4:		return 20;
   1793 	case 11:	return 55;
   1794 	case 22:	return 110;
   1795 
   1796 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1797 	/* R1-R4, (u)ral is R4-R1 */
   1798 	case 12:	return 0xd;
   1799 	case 18:	return 0xf;
   1800 	case 24:	return 0x5;
   1801 	case 36:	return 0x7;
   1802 	case 48:	return 0x9;
   1803 	case 72:	return 0xb;
   1804 	case 96:	return 0x1;
   1805 	case 108:	return 0x3;
   1806 
   1807 	/* unsupported rates (should not get there) */
   1808 	default:	return 0;
   1809 	}
   1810 }
   1811 
   1812 /* quickly determine if a given rate is CCK or OFDM */
   1813 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1814 
   1815 static int
   1816 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1817 	int ac)
   1818 {
   1819 	struct ieee80211com *ic = &sc->sc_ic;
   1820 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1821 	struct wpi_tx_desc *desc;
   1822 	struct wpi_tx_data *data;
   1823 	struct wpi_tx_cmd *cmd;
   1824 	struct wpi_cmd_data *tx;
   1825 	struct ieee80211_frame *wh;
   1826 	struct ieee80211_key *k;
   1827 	const struct chanAccParams *cap;
   1828 	struct mbuf *mnew;
   1829 	int i, error, rate, hdrlen, noack = 0;
   1830 
   1831 	desc = &ring->desc[ring->cur];
   1832 	data = &ring->data[ring->cur];
   1833 
   1834 	wh = mtod(m0, struct ieee80211_frame *);
   1835 
   1836 	if (ieee80211_has_qos(wh)) {
   1837 		cap = &ic->ic_wme.wme_chanParams;
   1838 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1839 	}
   1840 
   1841 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1842 		k = ieee80211_crypto_encap(ic, ni, m0);
   1843 		if (k == NULL) {
   1844 			m_freem(m0);
   1845 			return ENOBUFS;
   1846 		}
   1847 
   1848 		/* packet header may have moved, reset our local pointer */
   1849 		wh = mtod(m0, struct ieee80211_frame *);
   1850 	}
   1851 
   1852 	hdrlen = ieee80211_anyhdrsize(wh);
   1853 
   1854 	/* pickup a rate */
   1855 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1856 		IEEE80211_FC0_TYPE_MGT) {
   1857 		/* mgmt frames are sent at the lowest available bit-rate */
   1858 		rate = ni->ni_rates.rs_rates[0];
   1859 	} else {
   1860 		if (ic->ic_fixed_rate != -1) {
   1861 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1862 				rs_rates[ic->ic_fixed_rate];
   1863 		} else
   1864 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1865 	}
   1866 	rate &= IEEE80211_RATE_VAL;
   1867 
   1868 
   1869 	if (sc->sc_drvbpf != NULL) {
   1870 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1871 
   1872 		tap->wt_flags = 0;
   1873 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1874 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1875 		tap->wt_rate = rate;
   1876 		tap->wt_hwqueue = ac;
   1877 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1878 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1879 
   1880 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1881 	}
   1882 
   1883 	cmd = &ring->cmd[ring->cur];
   1884 	cmd->code = WPI_CMD_TX_DATA;
   1885 	cmd->flags = 0;
   1886 	cmd->qid = ring->qid;
   1887 	cmd->idx = ring->cur;
   1888 
   1889 	tx = (struct wpi_cmd_data *)cmd->data;
   1890 	tx->flags = 0;
   1891 
   1892 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1893 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1894 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1895 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1896 
   1897 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1898 
   1899 	/* retrieve destination node's id */
   1900 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1901 		WPI_ID_BSS;
   1902 
   1903 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1904 		IEEE80211_FC0_TYPE_MGT) {
   1905 		/* tell h/w to set timestamp in probe responses */
   1906 		if ((wh->i_fc[0] &
   1907 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1908 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1909 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1910 
   1911 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1912 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1913 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1914 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1915 			tx->timeout = htole16(3);
   1916 		else
   1917 			tx->timeout = htole16(2);
   1918 	} else
   1919 		tx->timeout = htole16(0);
   1920 
   1921 	tx->rate = wpi_plcp_signal(rate);
   1922 
   1923 	/* be very persistant at sending frames out */
   1924 	tx->rts_ntries = 7;
   1925 	tx->data_ntries = 15;
   1926 
   1927 	tx->ofdm_mask = 0xff;
   1928 	tx->cck_mask = 0xf;
   1929 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   1930 
   1931 	tx->len = htole16(m0->m_pkthdr.len);
   1932 
   1933 	/* save and trim IEEE802.11 header */
   1934 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   1935 	m_adj(m0, hdrlen);
   1936 
   1937 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1938 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1939 	if (error != 0 && error != EFBIG) {
   1940 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
   1941 		m_freem(m0);
   1942 		return error;
   1943 	}
   1944 	if (error != 0) {
   1945 		/* too many fragments, linearize */
   1946 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1947 		if (mnew == NULL) {
   1948 			m_freem(m0);
   1949 			return ENOMEM;
   1950 		}
   1951 
   1952 		M_COPY_PKTHDR(mnew, m0);
   1953 		if (m0->m_pkthdr.len > MHLEN) {
   1954 			MCLGET(mnew, M_DONTWAIT);
   1955 			if (!(mnew->m_flags & M_EXT)) {
   1956 				m_freem(m0);
   1957 				m_freem(mnew);
   1958 				return ENOMEM;
   1959 			}
   1960 		}
   1961 
   1962 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1963 		m_freem(m0);
   1964 		mnew->m_len = mnew->m_pkthdr.len;
   1965 		m0 = mnew;
   1966 
   1967 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1968 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1969 		if (error != 0) {
   1970 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1971 							 error);
   1972 			m_freem(m0);
   1973 			return error;
   1974 		}
   1975 	}
   1976 
   1977 	data->m = m0;
   1978 	data->ni = ni;
   1979 
   1980 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   1981 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   1982 
   1983 	/* first scatter/gather segment is used by the tx data command */
   1984 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   1985 		(1 + data->map->dm_nsegs) << 24);
   1986 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   1987 		ring->cur * sizeof (struct wpi_tx_cmd));
   1988 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   1989 						 ((hdrlen + 3) & ~3));
   1990 
   1991 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   1992 		desc->segs[i].addr =
   1993 			htole32(data->map->dm_segs[i - 1].ds_addr);
   1994 		desc->segs[i].len  =
   1995 			htole32(data->map->dm_segs[i - 1].ds_len);
   1996 	}
   1997 
   1998 	ring->queued++;
   1999 
   2000 	/* kick ring */
   2001 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   2002 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2003 
   2004 	return 0;
   2005 }
   2006 
   2007 static void
   2008 wpi_start(struct ifnet *ifp)
   2009 {
   2010 	struct wpi_softc *sc = ifp->if_softc;
   2011 	struct ieee80211com *ic = &sc->sc_ic;
   2012 	struct ieee80211_node *ni;
   2013 	struct ether_header *eh;
   2014 	struct mbuf *m0;
   2015 	int ac;
   2016 
   2017 	/*
   2018 	 * net80211 may still try to send management frames even if the
   2019 	 * IFF_RUNNING flag is not set...
   2020 	 */
   2021 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   2022 		return;
   2023 
   2024 	for (;;) {
   2025 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   2026 		if (m0 != NULL) {
   2027 
   2028 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   2029 			m0->m_pkthdr.rcvif = NULL;
   2030 
   2031 			/* management frames go into ring 0 */
   2032 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   2033 				ifp->if_oerrors++;
   2034 				continue;
   2035 			}
   2036 			bpf_mtap3(ic->ic_rawbpf, m0);
   2037 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   2038 				ifp->if_oerrors++;
   2039 				break;
   2040 			}
   2041 		} else {
   2042 			if (ic->ic_state != IEEE80211_S_RUN)
   2043 				break;
   2044 			IFQ_POLL(&ifp->if_snd, m0);
   2045 			if (m0 == NULL)
   2046 				break;
   2047 
   2048 			if (m0->m_len < sizeof (*eh) &&
   2049 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
   2050 				ifp->if_oerrors++;
   2051 				continue;
   2052 			}
   2053 			eh = mtod(m0, struct ether_header *);
   2054 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   2055 			if (ni == NULL) {
   2056 				m_freem(m0);
   2057 				ifp->if_oerrors++;
   2058 				continue;
   2059 			}
   2060 
   2061 			/* classify mbuf so we can find which tx ring to use */
   2062 			if (ieee80211_classify(ic, m0, ni) != 0) {
   2063 				m_freem(m0);
   2064 				ieee80211_free_node(ni);
   2065 				ifp->if_oerrors++;
   2066 				continue;
   2067 			}
   2068 
   2069 			/* no QoS encapsulation for EAPOL frames */
   2070 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   2071 			    M_WME_GETAC(m0) : WME_AC_BE;
   2072 
   2073 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   2074 				/* there is no place left in this ring */
   2075 				ifp->if_flags |= IFF_OACTIVE;
   2076 				break;
   2077 			}
   2078 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   2079 			bpf_mtap(ifp, m0);
   2080 			m0 = ieee80211_encap(ic, m0, ni);
   2081 			if (m0 == NULL) {
   2082 				ieee80211_free_node(ni);
   2083 				ifp->if_oerrors++;
   2084 				continue;
   2085 			}
   2086 			bpf_mtap3(ic->ic_rawbpf, m0);
   2087 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   2088 				ieee80211_free_node(ni);
   2089 				ifp->if_oerrors++;
   2090 				break;
   2091 			}
   2092 		}
   2093 
   2094 		sc->sc_tx_timer = 5;
   2095 		ifp->if_timer = 1;
   2096 	}
   2097 }
   2098 
   2099 static void
   2100 wpi_watchdog(struct ifnet *ifp)
   2101 {
   2102 	struct wpi_softc *sc = ifp->if_softc;
   2103 
   2104 	ifp->if_timer = 0;
   2105 
   2106 	if (sc->sc_tx_timer > 0) {
   2107 		if (--sc->sc_tx_timer == 0) {
   2108 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2109 			ifp->if_oerrors++;
   2110 			ifp->if_flags &= ~IFF_UP;
   2111 			wpi_stop(ifp, 1);
   2112 			return;
   2113 		}
   2114 		ifp->if_timer = 1;
   2115 	}
   2116 
   2117 	ieee80211_watchdog(&sc->sc_ic);
   2118 }
   2119 
   2120 static int
   2121 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2122 {
   2123 #define IS_RUNNING(ifp) \
   2124 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2125 
   2126 	struct wpi_softc *sc = ifp->if_softc;
   2127 	struct ieee80211com *ic = &sc->sc_ic;
   2128 	int s, error = 0;
   2129 
   2130 	s = splnet();
   2131 
   2132 	switch (cmd) {
   2133 	case SIOCSIFFLAGS:
   2134 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2135 			break;
   2136 		if (ifp->if_flags & IFF_UP) {
   2137 			if (!(ifp->if_flags & IFF_RUNNING))
   2138 				wpi_init(ifp);
   2139 		} else {
   2140 			if (ifp->if_flags & IFF_RUNNING)
   2141 				wpi_stop(ifp, 1);
   2142 		}
   2143 		break;
   2144 
   2145 	case SIOCADDMULTI:
   2146 	case SIOCDELMULTI:
   2147 		/* XXX no h/w multicast filter? --dyoung */
   2148 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2149 			/* setup multicast filter, etc */
   2150 			error = 0;
   2151 		}
   2152 		break;
   2153 
   2154 	default:
   2155 		error = ieee80211_ioctl(ic, cmd, data);
   2156 	}
   2157 
   2158 	if (error == ENETRESET) {
   2159 		if (IS_RUNNING(ifp) &&
   2160 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2161 			wpi_init(ifp);
   2162 		error = 0;
   2163 	}
   2164 
   2165 	splx(s);
   2166 	return error;
   2167 
   2168 #undef IS_RUNNING
   2169 }
   2170 
   2171 /*
   2172  * Extract various information from EEPROM.
   2173  */
   2174 static void
   2175 wpi_read_eeprom(struct wpi_softc *sc)
   2176 {
   2177 	struct ieee80211com *ic = &sc->sc_ic;
   2178 	char domain[4];
   2179 	int i;
   2180 
   2181 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2182 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2183 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2184 
   2185 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2186 	    sc->type));
   2187 
   2188 	/* read and print regulatory domain */
   2189 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2190 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
   2191 
   2192 	/* read and print MAC address */
   2193 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2194 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2195 
   2196 	/* read the list of authorized channels */
   2197 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2198 		wpi_read_eeprom_channels(sc, i);
   2199 
   2200 	/* read the list of power groups */
   2201 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2202 		wpi_read_eeprom_group(sc, i);
   2203 }
   2204 
   2205 static void
   2206 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2207 {
   2208 	struct ieee80211com *ic = &sc->sc_ic;
   2209 	const struct wpi_chan_band *band = &wpi_bands[n];
   2210 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2211 	int chan, i;
   2212 
   2213 	wpi_read_prom_data(sc, band->addr, channels,
   2214 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2215 
   2216 	for (i = 0; i < band->nchan; i++) {
   2217 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2218 			continue;
   2219 
   2220 		chan = band->chan[i];
   2221 
   2222 		if (n == 0) {	/* 2GHz band */
   2223 			ic->ic_channels[chan].ic_freq =
   2224 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2225 			ic->ic_channels[chan].ic_flags =
   2226 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2227 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2228 
   2229 		} else {	/* 5GHz band */
   2230 			/*
   2231 			 * Some 3945abg adapters support channels 7, 8, 11
   2232 			 * and 12 in the 2GHz *and* 5GHz bands.
   2233 			 * Because of limitations in our net80211(9) stack,
   2234 			 * we can't support these channels in 5GHz band.
   2235 			 */
   2236 			if (chan <= 14)
   2237 				continue;
   2238 
   2239 			ic->ic_channels[chan].ic_freq =
   2240 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2241 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2242 		}
   2243 
   2244 		/* is active scan allowed on this channel? */
   2245 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2246 			ic->ic_channels[chan].ic_flags |=
   2247 			    IEEE80211_CHAN_PASSIVE;
   2248 		}
   2249 
   2250 		/* save maximum allowed power for this channel */
   2251 		sc->maxpwr[chan] = channels[i].maxpwr;
   2252 
   2253 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2254 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2255 	}
   2256 }
   2257 
   2258 static void
   2259 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2260 {
   2261 	struct wpi_power_group *group = &sc->groups[n];
   2262 	struct wpi_eeprom_group rgroup;
   2263 	int i;
   2264 
   2265 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2266 	    sizeof rgroup);
   2267 
   2268 	/* save power group information */
   2269 	group->chan   = rgroup.chan;
   2270 	group->maxpwr = rgroup.maxpwr;
   2271 	/* temperature at which the samples were taken */
   2272 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2273 
   2274 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2275 	    group->chan, group->maxpwr, group->temp));
   2276 
   2277 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2278 		group->samples[i].index = rgroup.samples[i].index;
   2279 		group->samples[i].power = rgroup.samples[i].power;
   2280 
   2281 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2282 		    group->samples[i].index, group->samples[i].power));
   2283 	}
   2284 }
   2285 
   2286 /*
   2287  * Send a command to the firmware.
   2288  */
   2289 static int
   2290 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2291 {
   2292 	struct wpi_tx_ring *ring = &sc->cmdq;
   2293 	struct wpi_tx_desc *desc;
   2294 	struct wpi_tx_cmd *cmd;
   2295 
   2296 	KASSERT(size <= sizeof cmd->data);
   2297 
   2298 	desc = &ring->desc[ring->cur];
   2299 	cmd = &ring->cmd[ring->cur];
   2300 
   2301 	cmd->code = code;
   2302 	cmd->flags = 0;
   2303 	cmd->qid = ring->qid;
   2304 	cmd->idx = ring->cur;
   2305 	memcpy(cmd->data, buf, size);
   2306 
   2307 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2308 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2309 		ring->cur * sizeof (struct wpi_tx_cmd));
   2310 	desc->segs[0].len  = htole32(4 + size);
   2311 
   2312 	/* kick cmd ring */
   2313 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2314 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2315 
   2316 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2317 }
   2318 
   2319 static int
   2320 wpi_wme_update(struct ieee80211com *ic)
   2321 {
   2322 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2323 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2324 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2325 	const struct wmeParams *wmep;
   2326 	struct wpi_wme_setup wme;
   2327 	int ac;
   2328 
   2329 	/* don't override default WME values if WME is not actually enabled */
   2330 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2331 		return 0;
   2332 
   2333 	wme.flags = 0;
   2334 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2335 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2336 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2337 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2338 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2339 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2340 
   2341 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2342 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2343 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2344 	}
   2345 
   2346 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2347 #undef WPI_USEC
   2348 #undef WPI_EXP2
   2349 }
   2350 
   2351 /*
   2352  * Configure h/w multi-rate retries.
   2353  */
   2354 static int
   2355 wpi_mrr_setup(struct wpi_softc *sc)
   2356 {
   2357 	struct ieee80211com *ic = &sc->sc_ic;
   2358 	struct wpi_mrr_setup mrr;
   2359 	int i, error;
   2360 
   2361 	/* CCK rates (not used with 802.11a) */
   2362 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2363 		mrr.rates[i].flags = 0;
   2364 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2365 		/* fallback to the immediate lower CCK rate (if any) */
   2366 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2367 		/* try one time at this rate before falling back to "next" */
   2368 		mrr.rates[i].ntries = 1;
   2369 	}
   2370 
   2371 	/* OFDM rates (not used with 802.11b) */
   2372 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2373 		mrr.rates[i].flags = 0;
   2374 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2375 		/* fallback to the immediate lower rate (if any) */
   2376 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2377 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2378 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2379 			WPI_OFDM6 : WPI_CCK2) :
   2380 		    i - 1;
   2381 		/* try one time at this rate before falling back to "next" */
   2382 		mrr.rates[i].ntries = 1;
   2383 	}
   2384 
   2385 	/* setup MRR for control frames */
   2386 	mrr.which = htole32(WPI_MRR_CTL);
   2387 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2388 	if (error != 0) {
   2389 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
   2390 		return error;
   2391 	}
   2392 
   2393 	/* setup MRR for data frames */
   2394 	mrr.which = htole32(WPI_MRR_DATA);
   2395 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2396 	if (error != 0) {
   2397 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
   2398 		return error;
   2399 	}
   2400 
   2401 	return 0;
   2402 }
   2403 
   2404 static void
   2405 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2406 {
   2407 	struct wpi_cmd_led led;
   2408 
   2409 	led.which = which;
   2410 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2411 	led.off = off;
   2412 	led.on = on;
   2413 
   2414 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2415 }
   2416 
   2417 static void
   2418 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2419 {
   2420 	struct wpi_cmd_tsf tsf;
   2421 	uint64_t val, mod;
   2422 
   2423 	memset(&tsf, 0, sizeof tsf);
   2424 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
   2425 	tsf.bintval = htole16(ni->ni_intval);
   2426 	tsf.lintval = htole16(10);
   2427 
   2428 	/* compute remaining time until next beacon */
   2429 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
   2430 	mod = le64toh(tsf.tstamp) % val;
   2431 	tsf.binitval = htole32((uint32_t)(val - mod));
   2432 
   2433 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
   2434 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2435 
   2436 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2437 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2438 }
   2439 
   2440 /*
   2441  * Update Tx power to match what is defined for channel `c'.
   2442  */
   2443 static int
   2444 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2445 {
   2446 	struct ieee80211com *ic = &sc->sc_ic;
   2447 	struct wpi_power_group *group;
   2448 	struct wpi_cmd_txpower txpower;
   2449 	u_int chan;
   2450 	int i;
   2451 
   2452 	/* get channel number */
   2453 	chan = ieee80211_chan2ieee(ic, c);
   2454 
   2455 	/* find the power group to which this channel belongs */
   2456 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2457 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2458 			if (chan <= group->chan)
   2459 				break;
   2460 	} else
   2461 		group = &sc->groups[0];
   2462 
   2463 	memset(&txpower, 0, sizeof txpower);
   2464 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2465 	txpower.chan = htole16(chan);
   2466 
   2467 	/* set Tx power for all OFDM and CCK rates */
   2468 	for (i = 0; i <= 11 ; i++) {
   2469 		/* retrieve Tx power for this channel/rate combination */
   2470 		int idx = wpi_get_power_index(sc, group, c,
   2471 		    wpi_ridx_to_rate[i]);
   2472 
   2473 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2474 
   2475 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2476 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2477 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2478 		} else {
   2479 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2480 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2481 		}
   2482 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2483 		    wpi_ridx_to_rate[i], idx));
   2484 	}
   2485 
   2486 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2487 }
   2488 
   2489 /*
   2490  * Determine Tx power index for a given channel/rate combination.
   2491  * This takes into account the regulatory information from EEPROM and the
   2492  * current temperature.
   2493  */
   2494 static int
   2495 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2496     struct ieee80211_channel *c, int rate)
   2497 {
   2498 /* fixed-point arithmetic division using a n-bit fractional part */
   2499 #define fdivround(a, b, n)	\
   2500 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2501 
   2502 /* linear interpolation */
   2503 #define interpolate(x, x1, y1, x2, y2, n)	\
   2504 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2505 
   2506 	struct ieee80211com *ic = &sc->sc_ic;
   2507 	struct wpi_power_sample *sample;
   2508 	int pwr, idx;
   2509 	u_int chan;
   2510 
   2511 	/* get channel number */
   2512 	chan = ieee80211_chan2ieee(ic, c);
   2513 
   2514 	/* default power is group's maximum power - 3dB */
   2515 	pwr = group->maxpwr / 2;
   2516 
   2517 	/* decrease power for highest OFDM rates to reduce distortion */
   2518 	switch (rate) {
   2519 	case 72:	/* 36Mb/s */
   2520 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2521 		break;
   2522 	case 96:	/* 48Mb/s */
   2523 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2524 		break;
   2525 	case 108:	/* 54Mb/s */
   2526 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2527 		break;
   2528 	}
   2529 
   2530 	/* never exceed channel's maximum allowed Tx power */
   2531 	pwr = min(pwr, sc->maxpwr[chan]);
   2532 
   2533 	/* retrieve power index into gain tables from samples */
   2534 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2535 		if (pwr > sample[1].power)
   2536 			break;
   2537 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2538 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2539 	    sample[1].power, sample[1].index, 19);
   2540 
   2541 	/*
   2542 	 * Adjust power index based on current temperature:
   2543 	 * - if cooler than factory-calibrated: decrease output power
   2544 	 * - if warmer than factory-calibrated: increase output power
   2545 	 */
   2546 	idx -= (sc->temp - group->temp) * 11 / 100;
   2547 
   2548 	/* decrease power for CCK rates (-5dB) */
   2549 	if (!WPI_RATE_IS_OFDM(rate))
   2550 		idx += 10;
   2551 
   2552 	/* keep power index in a valid range */
   2553 	if (idx < 0)
   2554 		return 0;
   2555 	if (idx > WPI_MAX_PWR_INDEX)
   2556 		return WPI_MAX_PWR_INDEX;
   2557 	return idx;
   2558 
   2559 #undef interpolate
   2560 #undef fdivround
   2561 }
   2562 
   2563 /*
   2564  * Build a beacon frame that the firmware will broadcast periodically in
   2565  * IBSS or HostAP modes.
   2566  */
   2567 static int
   2568 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2569 {
   2570 	struct ieee80211com *ic = &sc->sc_ic;
   2571 	struct wpi_tx_ring *ring = &sc->cmdq;
   2572 	struct wpi_tx_desc *desc;
   2573 	struct wpi_tx_data *data;
   2574 	struct wpi_tx_cmd *cmd;
   2575 	struct wpi_cmd_beacon *bcn;
   2576 	struct ieee80211_beacon_offsets bo;
   2577 	struct mbuf *m0;
   2578 	int error;
   2579 
   2580 	desc = &ring->desc[ring->cur];
   2581 	data = &ring->data[ring->cur];
   2582 
   2583 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2584 	if (m0 == NULL) {
   2585 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
   2586 		return ENOMEM;
   2587 	}
   2588 
   2589 	cmd = &ring->cmd[ring->cur];
   2590 	cmd->code = WPI_CMD_SET_BEACON;
   2591 	cmd->flags = 0;
   2592 	cmd->qid = ring->qid;
   2593 	cmd->idx = ring->cur;
   2594 
   2595 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2596 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2597 	bcn->id = WPI_ID_BROADCAST;
   2598 	bcn->ofdm_mask = 0xff;
   2599 	bcn->cck_mask = 0x0f;
   2600 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2601 	bcn->len = htole16(m0->m_pkthdr.len);
   2602 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2603 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2604 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2605 
   2606 	/* save and trim IEEE802.11 header */
   2607 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2608 	m_adj(m0, sizeof (struct ieee80211_frame));
   2609 
   2610 	/* assume beacon frame is contiguous */
   2611 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2612 		BUS_DMA_READ | BUS_DMA_NOWAIT);
   2613 	if (error) {
   2614 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2615 		m_freem(m0);
   2616 		return error;
   2617 	}
   2618 
   2619 	data->m = m0;
   2620 
   2621 	/* first scatter/gather segment is used by the beacon command */
   2622 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2623 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2624 		ring->cur * sizeof (struct wpi_tx_cmd));
   2625 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2626 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2627 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2628 
   2629 	/* kick cmd ring */
   2630 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2631 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2632 
   2633 	return 0;
   2634 }
   2635 
   2636 static int
   2637 wpi_auth(struct wpi_softc *sc)
   2638 {
   2639 	struct ieee80211com *ic = &sc->sc_ic;
   2640 	struct ieee80211_node *ni = ic->ic_bss;
   2641 	struct wpi_node_info node;
   2642 	int error;
   2643 
   2644 	/* update adapter's configuration */
   2645 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2646 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2647 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2648 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2649 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2650 		    WPI_CONFIG_24GHZ);
   2651 	}
   2652 	switch (ic->ic_curmode) {
   2653 	case IEEE80211_MODE_11A:
   2654 		sc->config.cck_mask  = 0;
   2655 		sc->config.ofdm_mask = 0x15;
   2656 		break;
   2657 	case IEEE80211_MODE_11B:
   2658 		sc->config.cck_mask  = 0x03;
   2659 		sc->config.ofdm_mask = 0;
   2660 		break;
   2661 	default:	/* assume 802.11b/g */
   2662 		sc->config.cck_mask  = 0x0f;
   2663 		sc->config.ofdm_mask = 0x15;
   2664 	}
   2665 
   2666 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2667 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2668 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2669 		sizeof (struct wpi_config), 1);
   2670 	if (error != 0) {
   2671 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2672 		return error;
   2673 	}
   2674 
   2675 	/* configuration has changed, set Tx power accordingly */
   2676 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2677 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2678 		return error;
   2679 	}
   2680 
   2681 	/* add default node */
   2682 	memset(&node, 0, sizeof node);
   2683 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2684 	node.id = WPI_ID_BSS;
   2685 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2686 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2687 	node.action = htole32(WPI_ACTION_SET_RATE);
   2688 	node.antenna = WPI_ANTENNA_BOTH;
   2689 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2690 	if (error != 0) {
   2691 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2692 		return error;
   2693 	}
   2694 
   2695 	return 0;
   2696 }
   2697 
   2698 /*
   2699  * Send a scan request to the firmware.  Since this command is huge, we map it
   2700  * into a mbuf instead of using the pre-allocated set of commands.
   2701  */
   2702 static int
   2703 wpi_scan(struct wpi_softc *sc, uint16_t flags)
   2704 {
   2705 	struct ieee80211com *ic = &sc->sc_ic;
   2706 	struct wpi_tx_ring *ring = &sc->cmdq;
   2707 	struct wpi_tx_desc *desc;
   2708 	struct wpi_tx_data *data;
   2709 	struct wpi_tx_cmd *cmd;
   2710 	struct wpi_scan_hdr *hdr;
   2711 	struct wpi_scan_chan *chan;
   2712 	struct ieee80211_frame *wh;
   2713 	struct ieee80211_rateset *rs;
   2714 	struct ieee80211_channel *c;
   2715 	enum ieee80211_phymode mode;
   2716 	uint8_t *frm;
   2717 	int nrates, pktlen, error;
   2718 
   2719 	desc = &ring->desc[ring->cur];
   2720 	data = &ring->data[ring->cur];
   2721 
   2722 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2723 	if (data->m == NULL) {
   2724 		aprint_error_dev(sc->sc_dev,
   2725 						"could not allocate mbuf for scan command\n");
   2726 		return ENOMEM;
   2727 	}
   2728 
   2729 	MCLGET(data->m, M_DONTWAIT);
   2730 	if (!(data->m->m_flags & M_EXT)) {
   2731 		m_freem(data->m);
   2732 		data->m = NULL;
   2733 		aprint_error_dev(sc->sc_dev,
   2734 						 "could not allocate mbuf for scan command\n");
   2735 		return ENOMEM;
   2736 	}
   2737 
   2738 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2739 	cmd->code = WPI_CMD_SCAN;
   2740 	cmd->flags = 0;
   2741 	cmd->qid = ring->qid;
   2742 	cmd->idx = ring->cur;
   2743 
   2744 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2745 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2746 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
   2747 	hdr->id = WPI_ID_BROADCAST;
   2748 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2749 
   2750 	/*
   2751 	 * Move to the next channel if no packets are received within 5 msecs
   2752 	 * after sending the probe request (this helps to reduce the duration
   2753 	 * of active scans).
   2754 	 */
   2755 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
   2756 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2757 
   2758 	if (flags & IEEE80211_CHAN_A) {
   2759 		hdr->crc_threshold = htole16(1);
   2760 		/* send probe requests at 6Mbps */
   2761 		hdr->rate = wpi_plcp_signal(12);
   2762 	} else {
   2763 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2764 		/* send probe requests at 1Mbps */
   2765 		hdr->rate = wpi_plcp_signal(2);
   2766 	}
   2767 
   2768 	/* for directed scans, firmware inserts the essid IE itself */
   2769 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2770 	hdr->essid[0].len = ic->ic_des_esslen;
   2771 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2772 
   2773 	/*
   2774 	 * Build a probe request frame.  Most of the following code is a
   2775 	 * copy & paste of what is done in net80211.
   2776 	 */
   2777 	wh = (struct ieee80211_frame *)(hdr + 1);
   2778 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2779 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2780 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2781 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2782 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2783 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2784 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2785 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2786 
   2787 	frm = (uint8_t *)(wh + 1);
   2788 
   2789 	/* add empty essid IE (firmware generates it for directed scans) */
   2790 	*frm++ = IEEE80211_ELEMID_SSID;
   2791 	*frm++ = 0;
   2792 
   2793 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
   2794 	rs = &ic->ic_sup_rates[mode];
   2795 
   2796 	/* add supported rates IE */
   2797 	*frm++ = IEEE80211_ELEMID_RATES;
   2798 	nrates = rs->rs_nrates;
   2799 	if (nrates > IEEE80211_RATE_SIZE)
   2800 		nrates = IEEE80211_RATE_SIZE;
   2801 	*frm++ = nrates;
   2802 	memcpy(frm, rs->rs_rates, nrates);
   2803 	frm += nrates;
   2804 
   2805 	/* add supported xrates IE */
   2806 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2807 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2808 		*frm++ = IEEE80211_ELEMID_XRATES;
   2809 		*frm++ = nrates;
   2810 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2811 		frm += nrates;
   2812 	}
   2813 
   2814 	/* setup length of probe request */
   2815 	hdr->paylen = htole16(frm - (uint8_t *)wh);
   2816 
   2817 	chan = (struct wpi_scan_chan *)frm;
   2818 	for (c  = &ic->ic_channels[1];
   2819 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   2820 		if ((c->ic_flags & flags) != flags)
   2821 			continue;
   2822 
   2823 		chan->chan = ieee80211_chan2ieee(ic, c);
   2824 		chan->flags = 0;
   2825 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2826 			chan->flags |= WPI_CHAN_ACTIVE;
   2827 			if (ic->ic_des_esslen != 0)
   2828 				chan->flags |= WPI_CHAN_DIRECT;
   2829 		}
   2830 		chan->dsp_gain = 0x6e;
   2831 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2832 			chan->rf_gain = 0x3b;
   2833 			chan->active = htole16(10);
   2834 			chan->passive = htole16(110);
   2835 		} else {
   2836 			chan->rf_gain = 0x28;
   2837 			chan->active = htole16(20);
   2838 			chan->passive = htole16(120);
   2839 		}
   2840 		hdr->nchan++;
   2841 		chan++;
   2842 
   2843 		frm += sizeof (struct wpi_scan_chan);
   2844 	}
   2845 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2846 	pktlen = frm - (uint8_t *)cmd;
   2847 
   2848 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
   2849 		NULL, BUS_DMA_NOWAIT);
   2850 	if (error) {
   2851 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2852 		m_freem(data->m);
   2853 		data->m = NULL;
   2854 		return error;
   2855 	}
   2856 
   2857 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2858 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2859 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2860 
   2861 	/* kick cmd ring */
   2862 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2863 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2864 
   2865 	return 0;	/* will be notified async. of failure/success */
   2866 }
   2867 
   2868 static int
   2869 wpi_config(struct wpi_softc *sc)
   2870 {
   2871 	struct ieee80211com *ic = &sc->sc_ic;
   2872 	struct ifnet *ifp = ic->ic_ifp;
   2873 	struct wpi_power power;
   2874 	struct wpi_bluetooth bluetooth;
   2875 	struct wpi_node_info node;
   2876 	int error;
   2877 
   2878 	memset(&power, 0, sizeof power);
   2879 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2880 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2881 	if (error != 0) {
   2882 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2883 		return error;
   2884 	}
   2885 
   2886 	/* configure bluetooth coexistence */
   2887 	memset(&bluetooth, 0, sizeof bluetooth);
   2888 	bluetooth.flags = 3;
   2889 	bluetooth.lead = 0xaa;
   2890 	bluetooth.kill = 1;
   2891 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   2892 		0);
   2893 	if (error != 0) {
   2894 		aprint_error_dev(sc->sc_dev,
   2895 			"could not configure bluetooth coexistence\n");
   2896 		return error;
   2897 	}
   2898 
   2899 	/* configure adapter */
   2900 	memset(&sc->config, 0, sizeof (struct wpi_config));
   2901 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2902 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   2903 	/*set default channel*/
   2904 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   2905 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2906 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
   2907 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2908 		    WPI_CONFIG_24GHZ);
   2909 	}
   2910 	sc->config.filter = 0;
   2911 	switch (ic->ic_opmode) {
   2912 	case IEEE80211_M_STA:
   2913 		sc->config.mode = WPI_MODE_STA;
   2914 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   2915 		break;
   2916 	case IEEE80211_M_IBSS:
   2917 	case IEEE80211_M_AHDEMO:
   2918 		sc->config.mode = WPI_MODE_IBSS;
   2919 		break;
   2920 	case IEEE80211_M_HOSTAP:
   2921 		sc->config.mode = WPI_MODE_HOSTAP;
   2922 		break;
   2923 	case IEEE80211_M_MONITOR:
   2924 		sc->config.mode = WPI_MODE_MONITOR;
   2925 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   2926 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   2927 		break;
   2928 	}
   2929 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   2930 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   2931 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2932 		sizeof (struct wpi_config), 0);
   2933 	if (error != 0) {
   2934 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   2935 		return error;
   2936 	}
   2937 
   2938 	/* configuration has changed, set Tx power accordingly */
   2939 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
   2940 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2941 		return error;
   2942 	}
   2943 
   2944 	/* add broadcast node */
   2945 	memset(&node, 0, sizeof node);
   2946 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   2947 	node.id = WPI_ID_BROADCAST;
   2948 	node.rate = wpi_plcp_signal(2);
   2949 	node.action = htole32(WPI_ACTION_SET_RATE);
   2950 	node.antenna = WPI_ANTENNA_BOTH;
   2951 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   2952 	if (error != 0) {
   2953 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   2954 		return error;
   2955 	}
   2956 
   2957 	if ((error = wpi_mrr_setup(sc)) != 0) {
   2958 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   2959 		return error;
   2960 	}
   2961 
   2962 	return 0;
   2963 }
   2964 
   2965 static void
   2966 wpi_stop_master(struct wpi_softc *sc)
   2967 {
   2968 	uint32_t tmp;
   2969 	int ntries;
   2970 
   2971 	tmp = WPI_READ(sc, WPI_RESET);
   2972 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   2973 
   2974 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2975 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   2976 		return;	/* already asleep */
   2977 
   2978 	for (ntries = 0; ntries < 100; ntries++) {
   2979 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   2980 			break;
   2981 		DELAY(10);
   2982 	}
   2983 	if (ntries == 100) {
   2984 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   2985 	}
   2986 }
   2987 
   2988 static int
   2989 wpi_power_up(struct wpi_softc *sc)
   2990 {
   2991 	uint32_t tmp;
   2992 	int ntries;
   2993 
   2994 	wpi_mem_lock(sc);
   2995 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   2996 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   2997 	wpi_mem_unlock(sc);
   2998 
   2999 	for (ntries = 0; ntries < 5000; ntries++) {
   3000 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   3001 			break;
   3002 		DELAY(10);
   3003 	}
   3004 	if (ntries == 5000) {
   3005 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
   3006 		return ETIMEDOUT;
   3007 	}
   3008 	return 0;
   3009 }
   3010 
   3011 static int
   3012 wpi_reset(struct wpi_softc *sc)
   3013 {
   3014 	uint32_t tmp;
   3015 	int ntries;
   3016 
   3017 	/* clear any pending interrupts */
   3018 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3019 
   3020 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   3021 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   3022 
   3023 	tmp = WPI_READ(sc, WPI_CHICKEN);
   3024 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   3025 
   3026 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   3027 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   3028 
   3029 	/* wait for clock stabilization */
   3030 	for (ntries = 0; ntries < 1000; ntries++) {
   3031 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   3032 			break;
   3033 		DELAY(10);
   3034 	}
   3035 	if (ntries == 1000) {
   3036 		aprint_error_dev(sc->sc_dev,
   3037 						 "timeout waiting for clock stabilization\n");
   3038 		return ETIMEDOUT;
   3039 	}
   3040 
   3041 	/* initialize EEPROM */
   3042 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   3043 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   3044 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   3045 		return EIO;
   3046 	}
   3047 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   3048 
   3049 	return 0;
   3050 }
   3051 
   3052 static void
   3053 wpi_hw_config(struct wpi_softc *sc)
   3054 {
   3055 	uint32_t rev, hw;
   3056 
   3057 	/* voodoo from the reference driver */
   3058 	hw = WPI_READ(sc, WPI_HWCONFIG);
   3059 
   3060 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   3061 	rev = PCI_REVISION(rev);
   3062 	if ((rev & 0xc0) == 0x40)
   3063 		hw |= WPI_HW_ALM_MB;
   3064 	else if (!(rev & 0x80))
   3065 		hw |= WPI_HW_ALM_MM;
   3066 
   3067 	if (sc->cap == 0x80)
   3068 		hw |= WPI_HW_SKU_MRC;
   3069 
   3070 	hw &= ~WPI_HW_REV_D;
   3071 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   3072 		hw |= WPI_HW_REV_D;
   3073 
   3074 	if (sc->type > 1)
   3075 		hw |= WPI_HW_TYPE_B;
   3076 
   3077 	DPRINTF(("setting h/w config %x\n", hw));
   3078 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   3079 }
   3080 
   3081 static int
   3082 wpi_init(struct ifnet *ifp)
   3083 {
   3084 	struct wpi_softc *sc = ifp->if_softc;
   3085 	struct ieee80211com *ic = &sc->sc_ic;
   3086 	uint32_t tmp;
   3087 	int qid, ntries, error;
   3088 
   3089 	wpi_stop(ifp,1);
   3090 	(void)wpi_reset(sc);
   3091 
   3092 	wpi_mem_lock(sc);
   3093 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   3094 	DELAY(20);
   3095 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   3096 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   3097 	wpi_mem_unlock(sc);
   3098 
   3099 	(void)wpi_power_up(sc);
   3100 	wpi_hw_config(sc);
   3101 
   3102 	/* init Rx ring */
   3103 	wpi_mem_lock(sc);
   3104 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   3105 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   3106 	    offsetof(struct wpi_shared, next));
   3107 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3108 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3109 	wpi_mem_unlock(sc);
   3110 
   3111 	/* init Tx rings */
   3112 	wpi_mem_lock(sc);
   3113 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
   3114 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
   3115 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
   3116 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3117 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3118 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3119 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3120 
   3121 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3122 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3123 
   3124 	for (qid = 0; qid < 6; qid++) {
   3125 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3126 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3127 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3128 	}
   3129 	wpi_mem_unlock(sc);
   3130 
   3131 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3132 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3133 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3134 
   3135 	/* clear any pending interrupts */
   3136 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3137 	/* enable interrupts */
   3138 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3139 
   3140 	/* not sure why/if this is necessary... */
   3141 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3142 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3143 
   3144 	if ((error = wpi_load_firmware(sc)) != 0)
   3145 		/* wpi_load_firmware prints error messages for us.  */
   3146 		goto fail1;
   3147 
   3148 	/* Check the status of the radio switch */
   3149 	if (wpi_getrfkill(sc)) {
   3150 		aprint_error_dev(sc->sc_dev,
   3151 		    "radio is disabled by hardware switch\n");
   3152 		error = EBUSY;
   3153 		goto fail1;
   3154 	}
   3155 
   3156 	/* wait for thermal sensors to calibrate */
   3157 	for (ntries = 0; ntries < 1000; ntries++) {
   3158 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3159 			break;
   3160 		DELAY(10);
   3161 	}
   3162 	if (ntries == 1000) {
   3163 		aprint_error_dev(sc->sc_dev,
   3164 		    "timeout waiting for thermal sensors calibration\n");
   3165 		error = ETIMEDOUT;
   3166 		goto fail1;
   3167 	}
   3168 
   3169 	DPRINTF(("temperature %d\n", sc->temp));
   3170 
   3171 	if ((error = wpi_config(sc)) != 0) {
   3172 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3173 		goto fail1;
   3174 	}
   3175 
   3176 	ifp->if_flags &= ~IFF_OACTIVE;
   3177 	ifp->if_flags |= IFF_RUNNING;
   3178 
   3179 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3180 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3181 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3182 	}
   3183 	else
   3184 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3185 
   3186 	return 0;
   3187 
   3188 fail1:	wpi_stop(ifp, 1);
   3189 	return error;
   3190 }
   3191 
   3192 
   3193 static void
   3194 wpi_stop(struct ifnet *ifp, int disable)
   3195 {
   3196 	struct wpi_softc *sc = ifp->if_softc;
   3197 	struct ieee80211com *ic = &sc->sc_ic;
   3198 	uint32_t tmp;
   3199 	int ac;
   3200 
   3201 	ifp->if_timer = sc->sc_tx_timer = 0;
   3202 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3203 
   3204 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3205 
   3206 	/* disable interrupts */
   3207 	WPI_WRITE(sc, WPI_MASK, 0);
   3208 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3209 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3210 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3211 
   3212 	wpi_mem_lock(sc);
   3213 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3214 	wpi_mem_unlock(sc);
   3215 
   3216 	/* reset all Tx rings */
   3217 	for (ac = 0; ac < 4; ac++)
   3218 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3219 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3220 
   3221 	/* reset Rx ring */
   3222 	wpi_reset_rx_ring(sc, &sc->rxq);
   3223 
   3224 	wpi_mem_lock(sc);
   3225 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3226 	wpi_mem_unlock(sc);
   3227 
   3228 	DELAY(5);
   3229 
   3230 	wpi_stop_master(sc);
   3231 
   3232 	tmp = WPI_READ(sc, WPI_RESET);
   3233 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3234 }
   3235 
   3236 static bool
   3237 wpi_resume(device_t dv, const pmf_qual_t *qual)
   3238 {
   3239 	struct wpi_softc *sc = device_private(dv);
   3240 
   3241 	(void)wpi_reset(sc);
   3242 
   3243 	return true;
   3244 }
   3245 
   3246 /*
   3247  * Return whether or not the radio is enabled in hardware
   3248  * (i.e. the rfkill switch is "off").
   3249  */
   3250 static int
   3251 wpi_getrfkill(struct wpi_softc *sc)
   3252 {
   3253 	uint32_t tmp;
   3254 
   3255 	wpi_mem_lock(sc);
   3256 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3257 	wpi_mem_unlock(sc);
   3258 
   3259 	return !(tmp & 0x01);
   3260 }
   3261 
   3262 static int
   3263 wpi_sysctl_radio(SYSCTLFN_ARGS)
   3264 {
   3265 	struct sysctlnode node;
   3266 	struct wpi_softc *sc;
   3267 	int val, error;
   3268 
   3269 	node = *rnode;
   3270 	sc = (struct wpi_softc *)node.sysctl_data;
   3271 
   3272 	val = !wpi_getrfkill(sc);
   3273 
   3274 	node.sysctl_data = &val;
   3275 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3276 
   3277 	if (error || newp == NULL)
   3278 		return error;
   3279 
   3280 	return 0;
   3281 }
   3282 
   3283 static void
   3284 wpi_sysctlattach(struct wpi_softc *sc)
   3285 {
   3286 	int rc;
   3287 	const struct sysctlnode *rnode;
   3288 	const struct sysctlnode *cnode;
   3289 
   3290 	struct sysctllog **clog = &sc->sc_sysctllog;
   3291 
   3292 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
   3293 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
   3294 	    SYSCTL_DESCR("wpi controls and statistics"),
   3295 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
   3296 		goto err;
   3297 
   3298 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3299 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
   3300 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
   3301 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
   3302 		goto err;
   3303 
   3304 #ifdef WPI_DEBUG
   3305 	/* control debugging printfs */
   3306 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3307 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
   3308 	    "debug", SYSCTL_DESCR("Enable debugging output"),
   3309 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
   3310 		goto err;
   3311 #endif
   3312 
   3313 	return;
   3314 err:
   3315 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3316 }
   3317