if_wpi.c revision 1.58 1 /* $NetBSD: if_wpi.c,v 1.58 2014/03/29 19:28:25 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.58 2014/03/29 19:28:25 christos Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x) if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 { 4, { 2, 4, 11, 22 } };
90
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
95 static once_t wpi_firmware_init;
96 static kmutex_t wpi_firmware_mutex;
97 static size_t wpi_firmware_users;
98 static uint8_t *wpi_firmware_image;
99 static size_t wpi_firmware_size;
100
101 static int wpi_match(device_t, cfdata_t, void *);
102 static void wpi_attach(device_t, device_t, void *);
103 static int wpi_detach(device_t , int);
104 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
105 void **, bus_size_t, bus_size_t, int);
106 static void wpi_dma_contig_free(struct wpi_dma_info *);
107 static int wpi_alloc_shared(struct wpi_softc *);
108 static void wpi_free_shared(struct wpi_softc *);
109 static int wpi_alloc_fwmem(struct wpi_softc *);
110 static void wpi_free_fwmem(struct wpi_softc *);
111 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
112 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
113 static int wpi_alloc_rpool(struct wpi_softc *);
114 static void wpi_free_rpool(struct wpi_softc *);
115 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
116 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
117 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
118 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
119 int);
120 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
121 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
122 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
123 static void wpi_newassoc(struct ieee80211_node *, int);
124 static int wpi_media_change(struct ifnet *);
125 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
126 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
127 static void wpi_mem_lock(struct wpi_softc *);
128 static void wpi_mem_unlock(struct wpi_softc *);
129 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
130 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
131 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
132 const uint32_t *, int);
133 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
134 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
135 static int wpi_cache_firmware(struct wpi_softc *);
136 static void wpi_release_firmware(void);
137 static int wpi_load_firmware(struct wpi_softc *);
138 static void wpi_calib_timeout(void *);
139 static void wpi_iter_func(void *, struct ieee80211_node *);
140 static void wpi_power_calibration(struct wpi_softc *, int);
141 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
142 struct wpi_rx_data *);
143 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
144 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
145 static void wpi_notif_intr(struct wpi_softc *);
146 static int wpi_intr(void *);
147 static void wpi_read_eeprom(struct wpi_softc *);
148 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
149 static void wpi_read_eeprom_group(struct wpi_softc *, int);
150 static uint8_t wpi_plcp_signal(int);
151 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
152 struct ieee80211_node *, int);
153 static void wpi_start(struct ifnet *);
154 static void wpi_watchdog(struct ifnet *);
155 static int wpi_ioctl(struct ifnet *, u_long, void *);
156 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
157 static int wpi_wme_update(struct ieee80211com *);
158 static int wpi_mrr_setup(struct wpi_softc *);
159 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
160 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
161 static int wpi_set_txpower(struct wpi_softc *,
162 struct ieee80211_channel *, int);
163 static int wpi_get_power_index(struct wpi_softc *,
164 struct wpi_power_group *, struct ieee80211_channel *, int);
165 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
166 static int wpi_auth(struct wpi_softc *);
167 static int wpi_scan(struct wpi_softc *, uint16_t);
168 static int wpi_config(struct wpi_softc *);
169 static void wpi_stop_master(struct wpi_softc *);
170 static int wpi_power_up(struct wpi_softc *);
171 static int wpi_reset(struct wpi_softc *);
172 static void wpi_hw_config(struct wpi_softc *);
173 static int wpi_init(struct ifnet *);
174 static void wpi_stop(struct ifnet *, int);
175 static bool wpi_resume(device_t, const pmf_qual_t *);
176 static int wpi_getrfkill(struct wpi_softc *);
177 static void wpi_sysctlattach(struct wpi_softc *);
178
179 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
180 wpi_detach, NULL);
181
182 static int
183 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
184 {
185 struct pci_attach_args *pa = aux;
186
187 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
188 return 0;
189
190 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
191 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
192 return 1;
193
194 return 0;
195 }
196
197 /* Base Address Register */
198 #define WPI_PCI_BAR0 0x10
199
200 static int
201 wpi_attach_once(void)
202 {
203
204 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
205 return 0;
206 }
207
208 static void
209 wpi_attach(device_t parent __unused, device_t self, void *aux)
210 {
211 struct wpi_softc *sc = device_private(self);
212 struct ieee80211com *ic = &sc->sc_ic;
213 struct ifnet *ifp = &sc->sc_ec.ec_if;
214 struct pci_attach_args *pa = aux;
215 const char *intrstr;
216 bus_space_tag_t memt;
217 bus_space_handle_t memh;
218 pci_intr_handle_t ih;
219 pcireg_t data;
220 int error, ac;
221 char intrbuf[PCI_INTRSTR_LEN];
222
223 RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
224 sc->fw_used = false;
225
226 sc->sc_dev = self;
227 sc->sc_pct = pa->pa_pc;
228 sc->sc_pcitag = pa->pa_tag;
229
230 callout_init(&sc->calib_to, 0);
231 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
232
233 pci_aprint_devinfo(pa, NULL);
234
235 /* enable bus-mastering */
236 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
237 data |= PCI_COMMAND_MASTER_ENABLE;
238 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
239
240 /* map the register window */
241 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
242 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
243 if (error != 0) {
244 aprint_error_dev(self, "could not map memory space\n");
245 return;
246 }
247
248 sc->sc_st = memt;
249 sc->sc_sh = memh;
250 sc->sc_dmat = pa->pa_dmat;
251
252 if (pci_intr_map(pa, &ih) != 0) {
253 aprint_error_dev(self, "could not map interrupt\n");
254 return;
255 }
256
257 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
258 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
259 if (sc->sc_ih == NULL) {
260 aprint_error_dev(self, "could not establish interrupt");
261 if (intrstr != NULL)
262 aprint_error(" at %s", intrstr);
263 aprint_error("\n");
264 return;
265 }
266 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
267
268 if (wpi_reset(sc) != 0) {
269 aprint_error_dev(self, "could not reset adapter\n");
270 return;
271 }
272
273 /*
274 * Allocate DMA memory for firmware transfers.
275 */
276 if ((error = wpi_alloc_fwmem(sc)) != 0)
277 return;
278
279 /*
280 * Allocate shared page and Tx/Rx rings.
281 */
282 if ((error = wpi_alloc_shared(sc)) != 0) {
283 aprint_error_dev(self, "could not allocate shared area\n");
284 goto fail1;
285 }
286
287 if ((error = wpi_alloc_rpool(sc)) != 0) {
288 aprint_error_dev(self, "could not allocate Rx buffers\n");
289 goto fail2;
290 }
291
292 for (ac = 0; ac < 4; ac++) {
293 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
294 if (error != 0) {
295 aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
296 goto fail3;
297 }
298 }
299
300 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
301 if (error != 0) {
302 aprint_error_dev(self, "could not allocate command ring\n");
303 goto fail3;
304 }
305
306 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
307 aprint_error_dev(self, "could not allocate Rx ring\n");
308 goto fail4;
309 }
310
311 ic->ic_ifp = ifp;
312 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
313 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
314 ic->ic_state = IEEE80211_S_INIT;
315
316 /* set device capabilities */
317 ic->ic_caps =
318 #ifdef netyet
319 IEEE80211_C_IBSS | /* IBSS mode support */
320 #endif
321 IEEE80211_C_WPA | /* 802.11i */
322 IEEE80211_C_MONITOR | /* monitor mode supported */
323 IEEE80211_C_TXPMGT | /* tx power management */
324 IEEE80211_C_SHSLOT | /* short slot time supported */
325 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
326 IEEE80211_C_WME; /* 802.11e */
327
328 /* read supported channels and MAC address from EEPROM */
329 wpi_read_eeprom(sc);
330
331 /* set supported .11a, .11b, .11g rates */
332 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
333 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
334 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
335
336 ic->ic_ibss_chan = &ic->ic_channels[0];
337
338 ifp->if_softc = sc;
339 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
340 ifp->if_init = wpi_init;
341 ifp->if_stop = wpi_stop;
342 ifp->if_ioctl = wpi_ioctl;
343 ifp->if_start = wpi_start;
344 ifp->if_watchdog = wpi_watchdog;
345 IFQ_SET_READY(&ifp->if_snd);
346 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
347
348 if_attach(ifp);
349 ieee80211_ifattach(ic);
350 /* override default methods */
351 ic->ic_node_alloc = wpi_node_alloc;
352 ic->ic_newassoc = wpi_newassoc;
353 ic->ic_wme.wme_update = wpi_wme_update;
354
355 /* override state transition machine */
356 sc->sc_newstate = ic->ic_newstate;
357 ic->ic_newstate = wpi_newstate;
358 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
359
360 sc->amrr.amrr_min_success_threshold = 1;
361 sc->amrr.amrr_max_success_threshold = 15;
362
363 wpi_sysctlattach(sc);
364
365 if (pmf_device_register(self, NULL, wpi_resume))
366 pmf_class_network_register(self, ifp);
367 else
368 aprint_error_dev(self, "couldn't establish power handler\n");
369
370 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
371 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
372 &sc->sc_drvbpf);
373
374 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
375 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
376 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
377
378 sc->sc_txtap_len = sizeof sc->sc_txtapu;
379 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
380 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
381
382 ieee80211_announce(ic);
383
384 return;
385
386 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
387 fail3: while (--ac >= 0)
388 wpi_free_tx_ring(sc, &sc->txq[ac]);
389 wpi_free_rpool(sc);
390 fail2: wpi_free_shared(sc);
391 fail1: wpi_free_fwmem(sc);
392 }
393
394 static int
395 wpi_detach(device_t self, int flags __unused)
396 {
397 struct wpi_softc *sc = device_private(self);
398 struct ifnet *ifp = sc->sc_ic.ic_ifp;
399 int ac;
400
401 wpi_stop(ifp, 1);
402
403 if (ifp != NULL)
404 bpf_detach(ifp);
405 ieee80211_ifdetach(&sc->sc_ic);
406 if (ifp != NULL)
407 if_detach(ifp);
408
409 for (ac = 0; ac < 4; ac++)
410 wpi_free_tx_ring(sc, &sc->txq[ac]);
411 wpi_free_tx_ring(sc, &sc->cmdq);
412 wpi_free_rx_ring(sc, &sc->rxq);
413 wpi_free_rpool(sc);
414 wpi_free_shared(sc);
415
416 if (sc->sc_ih != NULL) {
417 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
418 sc->sc_ih = NULL;
419 }
420
421 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
422
423 if (sc->fw_used) {
424 sc->fw_used = false;
425 wpi_release_firmware();
426 }
427
428 return 0;
429 }
430
431 static int
432 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
433 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
434 {
435 int nsegs, error;
436
437 dma->tag = tag;
438 dma->size = size;
439
440 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
441 if (error != 0)
442 goto fail;
443
444 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
445 flags);
446 if (error != 0)
447 goto fail;
448
449 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
450 if (error != 0)
451 goto fail;
452
453 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
454 if (error != 0)
455 goto fail;
456
457 memset(dma->vaddr, 0, size);
458
459 dma->paddr = dma->map->dm_segs[0].ds_addr;
460 if (kvap != NULL)
461 *kvap = dma->vaddr;
462
463 return 0;
464
465 fail: wpi_dma_contig_free(dma);
466 return error;
467 }
468
469 static void
470 wpi_dma_contig_free(struct wpi_dma_info *dma)
471 {
472 if (dma->map != NULL) {
473 if (dma->vaddr != NULL) {
474 bus_dmamap_unload(dma->tag, dma->map);
475 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
476 bus_dmamem_free(dma->tag, &dma->seg, 1);
477 dma->vaddr = NULL;
478 }
479 bus_dmamap_destroy(dma->tag, dma->map);
480 dma->map = NULL;
481 }
482 }
483
484 /*
485 * Allocate a shared page between host and NIC.
486 */
487 static int
488 wpi_alloc_shared(struct wpi_softc *sc)
489 {
490 int error;
491 /* must be aligned on a 4K-page boundary */
492 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
493 (void **)&sc->shared, sizeof (struct wpi_shared),
494 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
495 if (error != 0)
496 aprint_error_dev(sc->sc_dev,
497 "could not allocate shared area DMA memory\n");
498
499 return error;
500 }
501
502 static void
503 wpi_free_shared(struct wpi_softc *sc)
504 {
505 wpi_dma_contig_free(&sc->shared_dma);
506 }
507
508 /*
509 * Allocate DMA-safe memory for firmware transfer.
510 */
511 static int
512 wpi_alloc_fwmem(struct wpi_softc *sc)
513 {
514 int error;
515 /* allocate enough contiguous space to store text and data */
516 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
517 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
518 BUS_DMA_NOWAIT);
519
520 if (error != 0)
521 aprint_error_dev(sc->sc_dev,
522 "could not allocate firmware transfer area"
523 "DMA memory\n");
524 return error;
525 }
526
527 static void
528 wpi_free_fwmem(struct wpi_softc *sc)
529 {
530 wpi_dma_contig_free(&sc->fw_dma);
531 }
532
533
534 static struct wpi_rbuf *
535 wpi_alloc_rbuf(struct wpi_softc *sc)
536 {
537 struct wpi_rbuf *rbuf;
538
539 mutex_enter(&sc->rxq.freelist_mtx);
540 rbuf = SLIST_FIRST(&sc->rxq.freelist);
541 if (rbuf != NULL) {
542 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
543 sc->rxq.nb_free_entries --;
544 }
545 mutex_exit(&sc->rxq.freelist_mtx);
546
547 return rbuf;
548 }
549
550 /*
551 * This is called automatically by the network stack when the mbuf to which our
552 * Rx buffer is attached is freed.
553 */
554 static void
555 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
556 {
557 struct wpi_rbuf *rbuf = arg;
558 struct wpi_softc *sc = rbuf->sc;
559
560 /* put the buffer back in the free list */
561
562 mutex_enter(&sc->rxq.freelist_mtx);
563 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
564 mutex_exit(&sc->rxq.freelist_mtx);
565 /* No need to protect this with a mutex, see wpi_rx_intr */
566 sc->rxq.nb_free_entries ++;
567
568 if (__predict_true(m != NULL))
569 pool_cache_put(mb_cache, m);
570 }
571
572 static int
573 wpi_alloc_rpool(struct wpi_softc *sc)
574 {
575 struct wpi_rx_ring *ring = &sc->rxq;
576 struct wpi_rbuf *rbuf;
577 int i, error;
578
579 /* allocate a big chunk of DMA'able memory.. */
580 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
581 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
582 if (error != 0) {
583 aprint_normal_dev(sc->sc_dev,
584 "could not allocate Rx buffers DMA memory\n");
585 return error;
586 }
587
588 /* ..and split it into 3KB chunks */
589 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
590 SLIST_INIT(&ring->freelist);
591 for (i = 0; i < WPI_RBUF_COUNT; i++) {
592 rbuf = &ring->rbuf[i];
593 rbuf->sc = sc; /* backpointer for callbacks */
594 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
595 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
596
597 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
598 }
599
600 ring->nb_free_entries = WPI_RBUF_COUNT;
601 return 0;
602 }
603
604 static void
605 wpi_free_rpool(struct wpi_softc *sc)
606 {
607 wpi_dma_contig_free(&sc->rxq.buf_dma);
608 }
609
610 static int
611 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
612 {
613 struct wpi_rx_data *data;
614 struct wpi_rbuf *rbuf;
615 int i, error;
616
617 ring->cur = 0;
618
619 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
620 (void **)&ring->desc,
621 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
622 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
623 if (error != 0) {
624 aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
625 goto fail;
626 }
627
628 /*
629 * Setup Rx buffers.
630 */
631 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
632 data = &ring->data[i];
633
634 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
635 if (data->m == NULL) {
636 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
637 error = ENOMEM;
638 goto fail;
639 }
640 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
641 m_freem(data->m);
642 data->m = NULL;
643 aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
644 error = ENOMEM;
645 goto fail;
646 }
647 /* attach Rx buffer to mbuf */
648 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
649 rbuf);
650 data->m->m_flags |= M_EXT_RW;
651
652 ring->desc[i] = htole32(rbuf->paddr);
653 }
654
655 return 0;
656
657 fail: wpi_free_rx_ring(sc, ring);
658 return error;
659 }
660
661 static void
662 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
663 {
664 int ntries;
665
666 wpi_mem_lock(sc);
667
668 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
669 for (ntries = 0; ntries < 100; ntries++) {
670 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
671 break;
672 DELAY(10);
673 }
674 #ifdef WPI_DEBUG
675 if (ntries == 100 && wpi_debug > 0)
676 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
677 #endif
678 wpi_mem_unlock(sc);
679
680 ring->cur = 0;
681 }
682
683 static void
684 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
685 {
686 int i;
687
688 wpi_dma_contig_free(&ring->desc_dma);
689
690 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
691 if (ring->data[i].m != NULL)
692 m_freem(ring->data[i].m);
693 }
694 }
695
696 static int
697 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
698 int qid)
699 {
700 struct wpi_tx_data *data;
701 int i, error;
702
703 ring->qid = qid;
704 ring->count = count;
705 ring->queued = 0;
706 ring->cur = 0;
707
708 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
709 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
710 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
711 if (error != 0) {
712 aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
713 goto fail;
714 }
715
716 /* update shared page with ring's base address */
717 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
718
719 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
720 (void **)&ring->cmd,
721 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
722 if (error != 0) {
723 aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
724 goto fail;
725 }
726
727 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
728 M_NOWAIT);
729 if (ring->data == NULL) {
730 aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
731 goto fail;
732 }
733
734 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
735
736 for (i = 0; i < count; i++) {
737 data = &ring->data[i];
738
739 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
740 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
741 &data->map);
742 if (error != 0) {
743 aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
744 goto fail;
745 }
746 }
747
748 return 0;
749
750 fail: wpi_free_tx_ring(sc, ring);
751 return error;
752 }
753
754 static void
755 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
756 {
757 struct wpi_tx_data *data;
758 int i, ntries;
759
760 wpi_mem_lock(sc);
761
762 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
763 for (ntries = 0; ntries < 100; ntries++) {
764 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
765 break;
766 DELAY(10);
767 }
768 #ifdef WPI_DEBUG
769 if (ntries == 100 && wpi_debug > 0) {
770 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
771 ring->qid);
772 }
773 #endif
774 wpi_mem_unlock(sc);
775
776 for (i = 0; i < ring->count; i++) {
777 data = &ring->data[i];
778
779 if (data->m != NULL) {
780 bus_dmamap_unload(sc->sc_dmat, data->map);
781 m_freem(data->m);
782 data->m = NULL;
783 }
784 }
785
786 ring->queued = 0;
787 ring->cur = 0;
788 }
789
790 static void
791 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
792 {
793 struct wpi_tx_data *data;
794 int i;
795
796 wpi_dma_contig_free(&ring->desc_dma);
797 wpi_dma_contig_free(&ring->cmd_dma);
798
799 if (ring->data != NULL) {
800 for (i = 0; i < ring->count; i++) {
801 data = &ring->data[i];
802
803 if (data->m != NULL) {
804 bus_dmamap_unload(sc->sc_dmat, data->map);
805 m_freem(data->m);
806 }
807 }
808 free(ring->data, M_DEVBUF);
809 }
810 }
811
812 /*ARGUSED*/
813 static struct ieee80211_node *
814 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
815 {
816 struct wpi_node *wn;
817
818 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
819
820 return (struct ieee80211_node *)wn;
821 }
822
823 static void
824 wpi_newassoc(struct ieee80211_node *ni, int isnew)
825 {
826 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
827 int i;
828
829 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
830
831 /* set rate to some reasonable initial value */
832 for (i = ni->ni_rates.rs_nrates - 1;
833 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
834 i--);
835 ni->ni_txrate = i;
836 }
837
838 static int
839 wpi_media_change(struct ifnet *ifp)
840 {
841 int error;
842
843 error = ieee80211_media_change(ifp);
844 if (error != ENETRESET)
845 return error;
846
847 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
848 wpi_init(ifp);
849
850 return 0;
851 }
852
853 static int
854 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
855 {
856 struct ifnet *ifp = ic->ic_ifp;
857 struct wpi_softc *sc = ifp->if_softc;
858 struct ieee80211_node *ni;
859 int error;
860
861 callout_stop(&sc->calib_to);
862
863 switch (nstate) {
864 case IEEE80211_S_SCAN:
865
866 if (sc->is_scanning)
867 break;
868
869 sc->is_scanning = true;
870 ieee80211_node_table_reset(&ic->ic_scan);
871 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
872
873 /* make the link LED blink while we're scanning */
874 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
875
876 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
877 aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
878 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
879 return error;
880 }
881
882 ic->ic_state = nstate;
883 return 0;
884
885 case IEEE80211_S_ASSOC:
886 if (ic->ic_state != IEEE80211_S_RUN)
887 break;
888 /* FALLTHROUGH */
889 case IEEE80211_S_AUTH:
890 sc->config.associd = 0;
891 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
892 if ((error = wpi_auth(sc)) != 0) {
893 aprint_error_dev(sc->sc_dev,
894 "could not send authentication request\n");
895 return error;
896 }
897 break;
898
899 case IEEE80211_S_RUN:
900 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
901 /* link LED blinks while monitoring */
902 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
903 break;
904 }
905
906 ni = ic->ic_bss;
907
908 if (ic->ic_opmode != IEEE80211_M_STA) {
909 (void) wpi_auth(sc); /* XXX */
910 wpi_setup_beacon(sc, ni);
911 }
912
913 wpi_enable_tsf(sc, ni);
914
915 /* update adapter's configuration */
916 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
917 /* short preamble/slot time are negotiated when associating */
918 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
919 WPI_CONFIG_SHSLOT);
920 if (ic->ic_flags & IEEE80211_F_SHSLOT)
921 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
922 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
923 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
924 sc->config.filter |= htole32(WPI_FILTER_BSS);
925 if (ic->ic_opmode != IEEE80211_M_STA)
926 sc->config.filter |= htole32(WPI_FILTER_BEACON);
927
928 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
929
930 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
931 sc->config.flags));
932 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
933 sizeof (struct wpi_config), 1);
934 if (error != 0) {
935 aprint_error_dev(sc->sc_dev, "could not update configuration\n");
936 return error;
937 }
938
939 /* configuration has changed, set Tx power accordingly */
940 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
941 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
942 return error;
943 }
944
945 if (ic->ic_opmode == IEEE80211_M_STA) {
946 /* fake a join to init the tx rate */
947 wpi_newassoc(ni, 1);
948 }
949
950 /* start periodic calibration timer */
951 sc->calib_cnt = 0;
952 callout_schedule(&sc->calib_to, hz/2);
953
954 /* link LED always on while associated */
955 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
956 break;
957
958 case IEEE80211_S_INIT:
959 sc->is_scanning = false;
960 break;
961 }
962
963 return sc->sc_newstate(ic, nstate, arg);
964 }
965
966 /*
967 * XXX: Hack to set the current channel to the value advertised in beacons or
968 * probe responses. Only used during AP detection.
969 * XXX: Duplicated from if_iwi.c
970 */
971 static void
972 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
973 {
974 struct ieee80211_frame *wh;
975 uint8_t subtype;
976 uint8_t *frm, *efrm;
977
978 wh = mtod(m, struct ieee80211_frame *);
979
980 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
981 return;
982
983 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
984
985 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
986 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
987 return;
988
989 frm = (uint8_t *)(wh + 1);
990 efrm = mtod(m, uint8_t *) + m->m_len;
991
992 frm += 12; /* skip tstamp, bintval and capinfo fields */
993 while (frm < efrm) {
994 if (*frm == IEEE80211_ELEMID_DSPARMS)
995 #if IEEE80211_CHAN_MAX < 255
996 if (frm[2] <= IEEE80211_CHAN_MAX)
997 #endif
998 ic->ic_curchan = &ic->ic_channels[frm[2]];
999
1000 frm += frm[1] + 2;
1001 }
1002 }
1003
1004 /*
1005 * Grab exclusive access to NIC memory.
1006 */
1007 static void
1008 wpi_mem_lock(struct wpi_softc *sc)
1009 {
1010 uint32_t tmp;
1011 int ntries;
1012
1013 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1014 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1015
1016 /* spin until we actually get the lock */
1017 for (ntries = 0; ntries < 1000; ntries++) {
1018 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1019 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1020 break;
1021 DELAY(10);
1022 }
1023 if (ntries == 1000)
1024 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1025 }
1026
1027 /*
1028 * Release lock on NIC memory.
1029 */
1030 static void
1031 wpi_mem_unlock(struct wpi_softc *sc)
1032 {
1033 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1034 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1035 }
1036
1037 static uint32_t
1038 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1039 {
1040 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1041 return WPI_READ(sc, WPI_READ_MEM_DATA);
1042 }
1043
1044 static void
1045 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1046 {
1047 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1048 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1049 }
1050
1051 static void
1052 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1053 const uint32_t *data, int wlen)
1054 {
1055 for (; wlen > 0; wlen--, data++, addr += 4)
1056 wpi_mem_write(sc, addr, *data);
1057 }
1058
1059
1060 /*
1061 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1062 * instead of using the traditional bit-bang method.
1063 */
1064 static int
1065 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1066 {
1067 uint8_t *out = data;
1068 uint32_t val;
1069 int ntries;
1070
1071 wpi_mem_lock(sc);
1072 for (; len > 0; len -= 2, addr++) {
1073 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1074
1075 for (ntries = 0; ntries < 10; ntries++) {
1076 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1077 WPI_EEPROM_READY)
1078 break;
1079 DELAY(5);
1080 }
1081 if (ntries == 10) {
1082 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1083 return ETIMEDOUT;
1084 }
1085 *out++ = val >> 16;
1086 if (len > 1)
1087 *out++ = val >> 24;
1088 }
1089 wpi_mem_unlock(sc);
1090
1091 return 0;
1092 }
1093
1094 /*
1095 * The firmware boot code is small and is intended to be copied directly into
1096 * the NIC internal memory.
1097 */
1098 int
1099 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1100 {
1101 int ntries;
1102
1103 size /= sizeof (uint32_t);
1104
1105 wpi_mem_lock(sc);
1106
1107 /* copy microcode image into NIC memory */
1108 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1109 (const uint32_t *)ucode, size);
1110
1111 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1112 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1113 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1114
1115 /* run microcode */
1116 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1117
1118 /* wait for transfer to complete */
1119 for (ntries = 0; ntries < 1000; ntries++) {
1120 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1121 break;
1122 DELAY(10);
1123 }
1124 if (ntries == 1000) {
1125 wpi_mem_unlock(sc);
1126 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1127 return ETIMEDOUT;
1128 }
1129 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1130
1131 wpi_mem_unlock(sc);
1132
1133 return 0;
1134 }
1135
1136 static int
1137 wpi_cache_firmware(struct wpi_softc *sc)
1138 {
1139 const char *const fwname = wpi_firmware_name;
1140 firmware_handle_t fw;
1141 int error;
1142
1143 /* sc is used here only to report error messages. */
1144
1145 mutex_enter(&wpi_firmware_mutex);
1146
1147 if (wpi_firmware_users == SIZE_MAX) {
1148 mutex_exit(&wpi_firmware_mutex);
1149 return ENFILE; /* Too many of something in the system... */
1150 }
1151 if (wpi_firmware_users++) {
1152 KASSERT(wpi_firmware_image != NULL);
1153 KASSERT(wpi_firmware_size > 0);
1154 mutex_exit(&wpi_firmware_mutex);
1155 return 0; /* Already good to go. */
1156 }
1157
1158 KASSERT(wpi_firmware_image == NULL);
1159 KASSERT(wpi_firmware_size == 0);
1160
1161 /* load firmware image from disk */
1162 if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1163 aprint_error_dev(sc->sc_dev,
1164 "could not open firmware file %s: %d\n", fwname, error);
1165 goto fail0;
1166 }
1167
1168 wpi_firmware_size = firmware_get_size(fw);
1169
1170 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1171 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1172 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1173 WPI_FW_BOOT_TEXT_MAXSZ) {
1174 aprint_error_dev(sc->sc_dev,
1175 "firmware file %s too large: %zu bytes\n",
1176 fwname, wpi_firmware_size);
1177 error = EFBIG;
1178 goto fail1;
1179 }
1180
1181 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1182 aprint_error_dev(sc->sc_dev,
1183 "firmware file %s too small: %zu bytes\n",
1184 fwname, wpi_firmware_size);
1185 error = EINVAL;
1186 goto fail1;
1187 }
1188
1189 wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1190 if (wpi_firmware_image == NULL) {
1191 aprint_error_dev(sc->sc_dev,
1192 "not enough memory for firmware file %s\n", fwname);
1193 error = ENOMEM;
1194 goto fail1;
1195 }
1196
1197 error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1198 if (error != 0) {
1199 aprint_error_dev(sc->sc_dev,
1200 "error reading firmware file %s: %d\n", fwname, error);
1201 goto fail2;
1202 }
1203
1204 /* Success! */
1205 firmware_close(fw);
1206 mutex_exit(&wpi_firmware_mutex);
1207 return 0;
1208
1209 fail2:
1210 firmware_free(wpi_firmware_image, wpi_firmware_size);
1211 wpi_firmware_image = NULL;
1212 fail1:
1213 wpi_firmware_size = 0;
1214 firmware_close(fw);
1215 fail0:
1216 KASSERT(wpi_firmware_users == 1);
1217 wpi_firmware_users = 0;
1218 KASSERT(wpi_firmware_image == NULL);
1219 KASSERT(wpi_firmware_size == 0);
1220
1221 mutex_exit(&wpi_firmware_mutex);
1222 return error;
1223 }
1224
1225 static void
1226 wpi_release_firmware(void)
1227 {
1228
1229 mutex_enter(&wpi_firmware_mutex);
1230
1231 KASSERT(wpi_firmware_users > 0);
1232 KASSERT(wpi_firmware_image != NULL);
1233 KASSERT(wpi_firmware_size != 0);
1234
1235 if (--wpi_firmware_users == 0) {
1236 firmware_free(wpi_firmware_image, wpi_firmware_size);
1237 wpi_firmware_image = NULL;
1238 wpi_firmware_size = 0;
1239 }
1240
1241 mutex_exit(&wpi_firmware_mutex);
1242 }
1243
1244 static int
1245 wpi_load_firmware(struct wpi_softc *sc)
1246 {
1247 struct wpi_dma_info *dma = &sc->fw_dma;
1248 struct wpi_firmware_hdr hdr;
1249 const uint8_t *init_text, *init_data, *main_text, *main_data;
1250 const uint8_t *boot_text;
1251 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1252 uint32_t boot_textsz;
1253 size_t size;
1254 int error;
1255
1256 if (!sc->fw_used) {
1257 if ((error = wpi_cache_firmware(sc)) != 0)
1258 return error;
1259 sc->fw_used = true;
1260 }
1261
1262 KASSERT(sc->fw_used);
1263 KASSERT(wpi_firmware_image != NULL);
1264 KASSERT(wpi_firmware_size > sizeof(hdr));
1265
1266 memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1267
1268 main_textsz = le32toh(hdr.main_textsz);
1269 main_datasz = le32toh(hdr.main_datasz);
1270 init_textsz = le32toh(hdr.init_textsz);
1271 init_datasz = le32toh(hdr.init_datasz);
1272 boot_textsz = le32toh(hdr.boot_textsz);
1273
1274 /* sanity-check firmware segments sizes */
1275 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1276 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1277 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1278 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1279 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1280 (boot_textsz & 3) != 0) {
1281 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1282 error = EINVAL;
1283 goto free_firmware;
1284 }
1285
1286 /* check that all firmware segments are present */
1287 size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1288 main_datasz + init_textsz + init_datasz + boot_textsz;
1289 if (wpi_firmware_size < size) {
1290 aprint_error_dev(sc->sc_dev,
1291 "firmware file truncated: %zu bytes, expected %zu bytes\n",
1292 wpi_firmware_size, size);
1293 error = EINVAL;
1294 goto free_firmware;
1295 }
1296
1297 /* get pointers to firmware segments */
1298 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1299 main_data = main_text + main_textsz;
1300 init_text = main_data + main_datasz;
1301 init_data = init_text + init_textsz;
1302 boot_text = init_data + init_datasz;
1303
1304 /* copy initialization images into pre-allocated DMA-safe memory */
1305 memcpy(dma->vaddr, init_data, init_datasz);
1306 memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1307 init_textsz);
1308
1309 /* tell adapter where to find initialization images */
1310 wpi_mem_lock(sc);
1311 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1312 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1313 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1314 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1315 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1316 wpi_mem_unlock(sc);
1317
1318 /* load firmware boot code */
1319 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1320 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1321 return error;
1322 }
1323
1324 /* now press "execute" ;-) */
1325 WPI_WRITE(sc, WPI_RESET, 0);
1326
1327 /* ..and wait at most one second for adapter to initialize */
1328 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1329 /* this isn't what was supposed to happen.. */
1330 aprint_error_dev(sc->sc_dev,
1331 "timeout waiting for adapter to initialize\n");
1332 }
1333
1334 /* copy runtime images into pre-allocated DMA-safe memory */
1335 memcpy(dma->vaddr, main_data, main_datasz);
1336 memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1337 main_textsz);
1338
1339 /* tell adapter where to find runtime images */
1340 wpi_mem_lock(sc);
1341 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1342 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1343 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1344 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1345 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1346 wpi_mem_unlock(sc);
1347
1348 /* wait at most one second for second alive notification */
1349 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1350 /* this isn't what was supposed to happen.. */
1351 aprint_error_dev(sc->sc_dev,
1352 "timeout waiting for adapter to initialize\n");
1353 }
1354
1355 return error;
1356
1357 free_firmware:
1358 sc->fw_used = false;
1359 wpi_release_firmware();
1360 return error;
1361 }
1362
1363 static void
1364 wpi_calib_timeout(void *arg)
1365 {
1366 struct wpi_softc *sc = arg;
1367 struct ieee80211com *ic = &sc->sc_ic;
1368 int temp, s;
1369
1370 /* automatic rate control triggered every 500ms */
1371 if (ic->ic_fixed_rate == -1) {
1372 s = splnet();
1373 if (ic->ic_opmode == IEEE80211_M_STA)
1374 wpi_iter_func(sc, ic->ic_bss);
1375 else
1376 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1377 splx(s);
1378 }
1379
1380 /* update sensor data */
1381 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1382
1383 /* automatic power calibration every 60s */
1384 if (++sc->calib_cnt >= 120) {
1385 wpi_power_calibration(sc, temp);
1386 sc->calib_cnt = 0;
1387 }
1388
1389 callout_schedule(&sc->calib_to, hz/2);
1390 }
1391
1392 static void
1393 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1394 {
1395 struct wpi_softc *sc = arg;
1396 struct wpi_node *wn = (struct wpi_node *)ni;
1397
1398 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1399 }
1400
1401 /*
1402 * This function is called periodically (every 60 seconds) to adjust output
1403 * power to temperature changes.
1404 */
1405 void
1406 wpi_power_calibration(struct wpi_softc *sc, int temp)
1407 {
1408 /* sanity-check read value */
1409 if (temp < -260 || temp > 25) {
1410 /* this can't be correct, ignore */
1411 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1412 return;
1413 }
1414
1415 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1416
1417 /* adjust Tx power if need be */
1418 if (abs(temp - sc->temp) <= 6)
1419 return;
1420
1421 sc->temp = temp;
1422
1423 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1424 /* just warn, too bad for the automatic calibration... */
1425 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1426 }
1427 }
1428
1429 static void
1430 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1431 struct wpi_rx_data *data)
1432 {
1433 struct ieee80211com *ic = &sc->sc_ic;
1434 struct ifnet *ifp = ic->ic_ifp;
1435 struct wpi_rx_ring *ring = &sc->rxq;
1436 struct wpi_rx_stat *stat;
1437 struct wpi_rx_head *head;
1438 struct wpi_rx_tail *tail;
1439 struct wpi_rbuf *rbuf;
1440 struct ieee80211_frame *wh;
1441 struct ieee80211_node *ni;
1442 struct mbuf *m, *mnew;
1443 int data_off ;
1444
1445 stat = (struct wpi_rx_stat *)(desc + 1);
1446
1447 if (stat->len > WPI_STAT_MAXLEN) {
1448 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1449 ifp->if_ierrors++;
1450 return;
1451 }
1452
1453 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1454 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1455
1456 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1457 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1458 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1459 le64toh(tail->tstamp)));
1460
1461 /*
1462 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1463 * to radiotap in monitor mode).
1464 */
1465 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1466 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1467 ifp->if_ierrors++;
1468 return;
1469 }
1470
1471 /* Compute where are the useful datas */
1472 data_off = (char*)(head + 1) - mtod(data->m, char*);
1473
1474 /*
1475 * If the number of free entry is too low
1476 * just dup the data->m socket and reuse the same rbuf entry
1477 * Note that thi test is not protected by a mutex because the
1478 * only path that causes nb_free_entries to decrease is through
1479 * this interrupt routine, which is not re-entrent.
1480 * What may not be obvious is that the safe path is if that test
1481 * evaluates as true, so nb_free_entries can grow any time.
1482 */
1483 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1484
1485 /* Prepare the mbuf for the m_dup */
1486 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1487 data->m->m_data = (char*) data->m->m_data + data_off;
1488
1489 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1490
1491 /* Restore the m_data pointer for future use */
1492 data->m->m_data = (char*) data->m->m_data - data_off;
1493
1494 if (m == NULL) {
1495 ifp->if_ierrors++;
1496 return;
1497 }
1498 } else {
1499
1500 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1501 if (mnew == NULL) {
1502 ifp->if_ierrors++;
1503 return;
1504 }
1505
1506 rbuf = wpi_alloc_rbuf(sc);
1507 KASSERT(rbuf != NULL);
1508
1509 /* attach Rx buffer to mbuf */
1510 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1511 rbuf);
1512 mnew->m_flags |= M_EXT_RW;
1513
1514 m = data->m;
1515 data->m = mnew;
1516
1517 /* update Rx descriptor */
1518 ring->desc[ring->cur] = htole32(rbuf->paddr);
1519
1520 m->m_data = (char*)m->m_data + data_off;
1521 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1522 }
1523
1524 /* finalize mbuf */
1525 m->m_pkthdr.rcvif = ifp;
1526
1527 if (ic->ic_state == IEEE80211_S_SCAN)
1528 wpi_fix_channel(ic, m);
1529
1530 if (sc->sc_drvbpf != NULL) {
1531 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1532
1533 tap->wr_flags = 0;
1534 tap->wr_chan_freq =
1535 htole16(ic->ic_channels[head->chan].ic_freq);
1536 tap->wr_chan_flags =
1537 htole16(ic->ic_channels[head->chan].ic_flags);
1538 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1539 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1540 tap->wr_tsft = tail->tstamp;
1541 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1542 switch (head->rate) {
1543 /* CCK rates */
1544 case 10: tap->wr_rate = 2; break;
1545 case 20: tap->wr_rate = 4; break;
1546 case 55: tap->wr_rate = 11; break;
1547 case 110: tap->wr_rate = 22; break;
1548 /* OFDM rates */
1549 case 0xd: tap->wr_rate = 12; break;
1550 case 0xf: tap->wr_rate = 18; break;
1551 case 0x5: tap->wr_rate = 24; break;
1552 case 0x7: tap->wr_rate = 36; break;
1553 case 0x9: tap->wr_rate = 48; break;
1554 case 0xb: tap->wr_rate = 72; break;
1555 case 0x1: tap->wr_rate = 96; break;
1556 case 0x3: tap->wr_rate = 108; break;
1557 /* unknown rate: should not happen */
1558 default: tap->wr_rate = 0;
1559 }
1560 if (le16toh(head->flags) & 0x4)
1561 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1562
1563 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1564 }
1565
1566 /* grab a reference to the source node */
1567 wh = mtod(m, struct ieee80211_frame *);
1568 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1569
1570 /* send the frame to the 802.11 layer */
1571 ieee80211_input(ic, m, ni, stat->rssi, 0);
1572
1573 /* release node reference */
1574 ieee80211_free_node(ni);
1575 }
1576
1577 static void
1578 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1579 {
1580 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1581 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1582 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1583 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1584 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1585
1586 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1587 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1588 stat->nkill, stat->rate, le32toh(stat->duration),
1589 le32toh(stat->status)));
1590
1591 /*
1592 * Update rate control statistics for the node.
1593 * XXX we should not count mgmt frames since they're always sent at
1594 * the lowest available bit-rate.
1595 */
1596 wn->amn.amn_txcnt++;
1597 if (stat->ntries > 0) {
1598 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1599 wn->amn.amn_retrycnt++;
1600 }
1601
1602 if ((le32toh(stat->status) & 0xff) != 1)
1603 ifp->if_oerrors++;
1604 else
1605 ifp->if_opackets++;
1606
1607 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1608 m_freem(txdata->m);
1609 txdata->m = NULL;
1610 ieee80211_free_node(txdata->ni);
1611 txdata->ni = NULL;
1612
1613 ring->queued--;
1614
1615 sc->sc_tx_timer = 0;
1616 ifp->if_flags &= ~IFF_OACTIVE;
1617 wpi_start(ifp);
1618 }
1619
1620 static void
1621 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1622 {
1623 struct wpi_tx_ring *ring = &sc->cmdq;
1624 struct wpi_tx_data *data;
1625
1626 if ((desc->qid & 7) != 4)
1627 return; /* not a command ack */
1628
1629 data = &ring->data[desc->idx];
1630
1631 /* if the command was mapped in a mbuf, free it */
1632 if (data->m != NULL) {
1633 bus_dmamap_unload(sc->sc_dmat, data->map);
1634 m_freem(data->m);
1635 data->m = NULL;
1636 }
1637
1638 wakeup(&ring->cmd[desc->idx]);
1639 }
1640
1641 static void
1642 wpi_notif_intr(struct wpi_softc *sc)
1643 {
1644 struct ieee80211com *ic = &sc->sc_ic;
1645 struct ifnet *ifp = ic->ic_ifp;
1646 struct wpi_rx_desc *desc;
1647 struct wpi_rx_data *data;
1648 uint32_t hw;
1649
1650 hw = le32toh(sc->shared->next);
1651 while (sc->rxq.cur != hw) {
1652 data = &sc->rxq.data[sc->rxq.cur];
1653
1654 desc = mtod(data->m, struct wpi_rx_desc *);
1655
1656 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1657 "len=%d\n", desc->qid, desc->idx, desc->flags,
1658 desc->type, le32toh(desc->len)));
1659
1660 if (!(desc->qid & 0x80)) /* reply to a command */
1661 wpi_cmd_intr(sc, desc);
1662
1663 switch (desc->type) {
1664 case WPI_RX_DONE:
1665 /* a 802.11 frame was received */
1666 wpi_rx_intr(sc, desc, data);
1667 break;
1668
1669 case WPI_TX_DONE:
1670 /* a 802.11 frame has been transmitted */
1671 wpi_tx_intr(sc, desc);
1672 break;
1673
1674 case WPI_UC_READY:
1675 {
1676 struct wpi_ucode_info *uc =
1677 (struct wpi_ucode_info *)(desc + 1);
1678
1679 /* the microcontroller is ready */
1680 DPRINTF(("microcode alive notification version %x "
1681 "alive %x\n", le32toh(uc->version),
1682 le32toh(uc->valid)));
1683
1684 if (le32toh(uc->valid) != 1) {
1685 aprint_error_dev(sc->sc_dev,
1686 "microcontroller initialization failed\n");
1687 }
1688 break;
1689 }
1690 case WPI_STATE_CHANGED:
1691 {
1692 uint32_t *status = (uint32_t *)(desc + 1);
1693
1694 /* enabled/disabled notification */
1695 DPRINTF(("state changed to %x\n", le32toh(*status)));
1696
1697 if (le32toh(*status) & 1) {
1698 /* the radio button has to be pushed */
1699 aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1700 /* turn the interface down */
1701 ifp->if_flags &= ~IFF_UP;
1702 wpi_stop(ifp, 1);
1703 return; /* no further processing */
1704 }
1705 break;
1706 }
1707 case WPI_START_SCAN:
1708 {
1709 struct wpi_start_scan *scan =
1710 (struct wpi_start_scan *)(desc + 1);
1711
1712 DPRINTFN(2, ("scanning channel %d status %x\n",
1713 scan->chan, le32toh(scan->status)));
1714
1715 /* fix current channel */
1716 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1717 break;
1718 }
1719 case WPI_STOP_SCAN:
1720 {
1721 struct wpi_stop_scan *scan =
1722 (struct wpi_stop_scan *)(desc + 1);
1723
1724 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1725 scan->nchan, scan->status, scan->chan));
1726
1727 if (scan->status == 1 && scan->chan <= 14) {
1728 /*
1729 * We just finished scanning 802.11g channels,
1730 * start scanning 802.11a ones.
1731 */
1732 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1733 break;
1734 }
1735 sc->is_scanning = false;
1736 ieee80211_end_scan(ic);
1737 break;
1738 }
1739 }
1740
1741 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1742 }
1743
1744 /* tell the firmware what we have processed */
1745 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1746 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1747 }
1748
1749 static int
1750 wpi_intr(void *arg)
1751 {
1752 struct wpi_softc *sc = arg;
1753 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1754 uint32_t r;
1755
1756 r = WPI_READ(sc, WPI_INTR);
1757 if (r == 0 || r == 0xffffffff)
1758 return 0; /* not for us */
1759
1760 DPRINTFN(5, ("interrupt reg %x\n", r));
1761
1762 /* disable interrupts */
1763 WPI_WRITE(sc, WPI_MASK, 0);
1764 /* ack interrupts */
1765 WPI_WRITE(sc, WPI_INTR, r);
1766
1767 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1768 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1769 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1770 wpi_stop(sc->sc_ic.ic_ifp, 1);
1771 return 1;
1772 }
1773
1774 if (r & WPI_RX_INTR)
1775 wpi_notif_intr(sc);
1776
1777 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1778 wakeup(sc);
1779
1780 /* re-enable interrupts */
1781 if (ifp->if_flags & IFF_UP)
1782 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1783
1784 return 1;
1785 }
1786
1787 static uint8_t
1788 wpi_plcp_signal(int rate)
1789 {
1790 switch (rate) {
1791 /* CCK rates (returned values are device-dependent) */
1792 case 2: return 10;
1793 case 4: return 20;
1794 case 11: return 55;
1795 case 22: return 110;
1796
1797 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1798 /* R1-R4, (u)ral is R4-R1 */
1799 case 12: return 0xd;
1800 case 18: return 0xf;
1801 case 24: return 0x5;
1802 case 36: return 0x7;
1803 case 48: return 0x9;
1804 case 72: return 0xb;
1805 case 96: return 0x1;
1806 case 108: return 0x3;
1807
1808 /* unsupported rates (should not get there) */
1809 default: return 0;
1810 }
1811 }
1812
1813 /* quickly determine if a given rate is CCK or OFDM */
1814 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1815
1816 static int
1817 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1818 int ac)
1819 {
1820 struct ieee80211com *ic = &sc->sc_ic;
1821 struct wpi_tx_ring *ring = &sc->txq[ac];
1822 struct wpi_tx_desc *desc;
1823 struct wpi_tx_data *data;
1824 struct wpi_tx_cmd *cmd;
1825 struct wpi_cmd_data *tx;
1826 struct ieee80211_frame *wh;
1827 struct ieee80211_key *k;
1828 const struct chanAccParams *cap;
1829 struct mbuf *mnew;
1830 int i, error, rate, hdrlen, noack = 0;
1831
1832 desc = &ring->desc[ring->cur];
1833 data = &ring->data[ring->cur];
1834
1835 wh = mtod(m0, struct ieee80211_frame *);
1836
1837 if (ieee80211_has_qos(wh)) {
1838 cap = &ic->ic_wme.wme_chanParams;
1839 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1840 }
1841
1842 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1843 k = ieee80211_crypto_encap(ic, ni, m0);
1844 if (k == NULL) {
1845 m_freem(m0);
1846 return ENOBUFS;
1847 }
1848
1849 /* packet header may have moved, reset our local pointer */
1850 wh = mtod(m0, struct ieee80211_frame *);
1851 }
1852
1853 hdrlen = ieee80211_anyhdrsize(wh);
1854
1855 /* pickup a rate */
1856 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1857 IEEE80211_FC0_TYPE_MGT) {
1858 /* mgmt frames are sent at the lowest available bit-rate */
1859 rate = ni->ni_rates.rs_rates[0];
1860 } else {
1861 if (ic->ic_fixed_rate != -1) {
1862 rate = ic->ic_sup_rates[ic->ic_curmode].
1863 rs_rates[ic->ic_fixed_rate];
1864 } else
1865 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1866 }
1867 rate &= IEEE80211_RATE_VAL;
1868
1869
1870 if (sc->sc_drvbpf != NULL) {
1871 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1872
1873 tap->wt_flags = 0;
1874 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1875 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1876 tap->wt_rate = rate;
1877 tap->wt_hwqueue = ac;
1878 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1879 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1880
1881 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1882 }
1883
1884 cmd = &ring->cmd[ring->cur];
1885 cmd->code = WPI_CMD_TX_DATA;
1886 cmd->flags = 0;
1887 cmd->qid = ring->qid;
1888 cmd->idx = ring->cur;
1889
1890 tx = (struct wpi_cmd_data *)cmd->data;
1891 tx->flags = 0;
1892
1893 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1894 tx->flags |= htole32(WPI_TX_NEED_ACK);
1895 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1896 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1897
1898 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1899
1900 /* retrieve destination node's id */
1901 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1902 WPI_ID_BSS;
1903
1904 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1905 IEEE80211_FC0_TYPE_MGT) {
1906 /* tell h/w to set timestamp in probe responses */
1907 if ((wh->i_fc[0] &
1908 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1909 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1910 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1911
1912 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1913 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1914 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1915 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1916 tx->timeout = htole16(3);
1917 else
1918 tx->timeout = htole16(2);
1919 } else
1920 tx->timeout = htole16(0);
1921
1922 tx->rate = wpi_plcp_signal(rate);
1923
1924 /* be very persistant at sending frames out */
1925 tx->rts_ntries = 7;
1926 tx->data_ntries = 15;
1927
1928 tx->ofdm_mask = 0xff;
1929 tx->cck_mask = 0xf;
1930 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1931
1932 tx->len = htole16(m0->m_pkthdr.len);
1933
1934 /* save and trim IEEE802.11 header */
1935 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1936 m_adj(m0, hdrlen);
1937
1938 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1939 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1940 if (error != 0 && error != EFBIG) {
1941 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1942 m_freem(m0);
1943 return error;
1944 }
1945 if (error != 0) {
1946 /* too many fragments, linearize */
1947 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1948 if (mnew == NULL) {
1949 m_freem(m0);
1950 return ENOMEM;
1951 }
1952
1953 M_COPY_PKTHDR(mnew, m0);
1954 if (m0->m_pkthdr.len > MHLEN) {
1955 MCLGET(mnew, M_DONTWAIT);
1956 if (!(mnew->m_flags & M_EXT)) {
1957 m_freem(m0);
1958 m_freem(mnew);
1959 return ENOMEM;
1960 }
1961 }
1962
1963 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1964 m_freem(m0);
1965 mnew->m_len = mnew->m_pkthdr.len;
1966 m0 = mnew;
1967
1968 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1969 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1970 if (error != 0) {
1971 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1972 error);
1973 m_freem(m0);
1974 return error;
1975 }
1976 }
1977
1978 data->m = m0;
1979 data->ni = ni;
1980
1981 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1982 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1983
1984 /* first scatter/gather segment is used by the tx data command */
1985 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1986 (1 + data->map->dm_nsegs) << 24);
1987 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1988 ring->cur * sizeof (struct wpi_tx_cmd));
1989 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1990 ((hdrlen + 3) & ~3));
1991
1992 for (i = 1; i <= data->map->dm_nsegs; i++) {
1993 desc->segs[i].addr =
1994 htole32(data->map->dm_segs[i - 1].ds_addr);
1995 desc->segs[i].len =
1996 htole32(data->map->dm_segs[i - 1].ds_len);
1997 }
1998
1999 ring->queued++;
2000
2001 /* kick ring */
2002 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2003 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2004
2005 return 0;
2006 }
2007
2008 static void
2009 wpi_start(struct ifnet *ifp)
2010 {
2011 struct wpi_softc *sc = ifp->if_softc;
2012 struct ieee80211com *ic = &sc->sc_ic;
2013 struct ieee80211_node *ni;
2014 struct ether_header *eh;
2015 struct mbuf *m0;
2016 int ac;
2017
2018 /*
2019 * net80211 may still try to send management frames even if the
2020 * IFF_RUNNING flag is not set...
2021 */
2022 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2023 return;
2024
2025 for (;;) {
2026 IF_DEQUEUE(&ic->ic_mgtq, m0);
2027 if (m0 != NULL) {
2028
2029 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2030 m0->m_pkthdr.rcvif = NULL;
2031
2032 /* management frames go into ring 0 */
2033 if (sc->txq[0].queued > sc->txq[0].count - 8) {
2034 ifp->if_oerrors++;
2035 continue;
2036 }
2037 bpf_mtap3(ic->ic_rawbpf, m0);
2038 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2039 ifp->if_oerrors++;
2040 break;
2041 }
2042 } else {
2043 if (ic->ic_state != IEEE80211_S_RUN)
2044 break;
2045 IFQ_POLL(&ifp->if_snd, m0);
2046 if (m0 == NULL)
2047 break;
2048
2049 if (m0->m_len < sizeof (*eh) &&
2050 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2051 ifp->if_oerrors++;
2052 continue;
2053 }
2054 eh = mtod(m0, struct ether_header *);
2055 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2056 if (ni == NULL) {
2057 m_freem(m0);
2058 ifp->if_oerrors++;
2059 continue;
2060 }
2061
2062 /* classify mbuf so we can find which tx ring to use */
2063 if (ieee80211_classify(ic, m0, ni) != 0) {
2064 m_freem(m0);
2065 ieee80211_free_node(ni);
2066 ifp->if_oerrors++;
2067 continue;
2068 }
2069
2070 /* no QoS encapsulation for EAPOL frames */
2071 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2072 M_WME_GETAC(m0) : WME_AC_BE;
2073
2074 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2075 /* there is no place left in this ring */
2076 ifp->if_flags |= IFF_OACTIVE;
2077 break;
2078 }
2079 IFQ_DEQUEUE(&ifp->if_snd, m0);
2080 bpf_mtap(ifp, m0);
2081 m0 = ieee80211_encap(ic, m0, ni);
2082 if (m0 == NULL) {
2083 ieee80211_free_node(ni);
2084 ifp->if_oerrors++;
2085 continue;
2086 }
2087 bpf_mtap3(ic->ic_rawbpf, m0);
2088 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2089 ieee80211_free_node(ni);
2090 ifp->if_oerrors++;
2091 break;
2092 }
2093 }
2094
2095 sc->sc_tx_timer = 5;
2096 ifp->if_timer = 1;
2097 }
2098 }
2099
2100 static void
2101 wpi_watchdog(struct ifnet *ifp)
2102 {
2103 struct wpi_softc *sc = ifp->if_softc;
2104
2105 ifp->if_timer = 0;
2106
2107 if (sc->sc_tx_timer > 0) {
2108 if (--sc->sc_tx_timer == 0) {
2109 aprint_error_dev(sc->sc_dev, "device timeout\n");
2110 ifp->if_oerrors++;
2111 ifp->if_flags &= ~IFF_UP;
2112 wpi_stop(ifp, 1);
2113 return;
2114 }
2115 ifp->if_timer = 1;
2116 }
2117
2118 ieee80211_watchdog(&sc->sc_ic);
2119 }
2120
2121 static int
2122 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2123 {
2124 #define IS_RUNNING(ifp) \
2125 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2126
2127 struct wpi_softc *sc = ifp->if_softc;
2128 struct ieee80211com *ic = &sc->sc_ic;
2129 int s, error = 0;
2130
2131 s = splnet();
2132
2133 switch (cmd) {
2134 case SIOCSIFFLAGS:
2135 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2136 break;
2137 if (ifp->if_flags & IFF_UP) {
2138 if (!(ifp->if_flags & IFF_RUNNING))
2139 wpi_init(ifp);
2140 } else {
2141 if (ifp->if_flags & IFF_RUNNING)
2142 wpi_stop(ifp, 1);
2143 }
2144 break;
2145
2146 case SIOCADDMULTI:
2147 case SIOCDELMULTI:
2148 /* XXX no h/w multicast filter? --dyoung */
2149 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2150 /* setup multicast filter, etc */
2151 error = 0;
2152 }
2153 break;
2154
2155 default:
2156 error = ieee80211_ioctl(ic, cmd, data);
2157 }
2158
2159 if (error == ENETRESET) {
2160 if (IS_RUNNING(ifp) &&
2161 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2162 wpi_init(ifp);
2163 error = 0;
2164 }
2165
2166 splx(s);
2167 return error;
2168
2169 #undef IS_RUNNING
2170 }
2171
2172 /*
2173 * Extract various information from EEPROM.
2174 */
2175 static void
2176 wpi_read_eeprom(struct wpi_softc *sc)
2177 {
2178 struct ieee80211com *ic = &sc->sc_ic;
2179 char domain[4];
2180 int i;
2181
2182 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2183 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2184 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2185
2186 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2187 sc->type));
2188
2189 /* read and print regulatory domain */
2190 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2191 aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2192
2193 /* read and print MAC address */
2194 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2195 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2196
2197 /* read the list of authorized channels */
2198 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2199 wpi_read_eeprom_channels(sc, i);
2200
2201 /* read the list of power groups */
2202 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2203 wpi_read_eeprom_group(sc, i);
2204 }
2205
2206 static void
2207 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2208 {
2209 struct ieee80211com *ic = &sc->sc_ic;
2210 const struct wpi_chan_band *band = &wpi_bands[n];
2211 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2212 int chan, i;
2213
2214 wpi_read_prom_data(sc, band->addr, channels,
2215 band->nchan * sizeof (struct wpi_eeprom_chan));
2216
2217 for (i = 0; i < band->nchan; i++) {
2218 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2219 continue;
2220
2221 chan = band->chan[i];
2222
2223 if (n == 0) { /* 2GHz band */
2224 ic->ic_channels[chan].ic_freq =
2225 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2226 ic->ic_channels[chan].ic_flags =
2227 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2228 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2229
2230 } else { /* 5GHz band */
2231 /*
2232 * Some 3945abg adapters support channels 7, 8, 11
2233 * and 12 in the 2GHz *and* 5GHz bands.
2234 * Because of limitations in our net80211(9) stack,
2235 * we can't support these channels in 5GHz band.
2236 */
2237 if (chan <= 14)
2238 continue;
2239
2240 ic->ic_channels[chan].ic_freq =
2241 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2242 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2243 }
2244
2245 /* is active scan allowed on this channel? */
2246 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2247 ic->ic_channels[chan].ic_flags |=
2248 IEEE80211_CHAN_PASSIVE;
2249 }
2250
2251 /* save maximum allowed power for this channel */
2252 sc->maxpwr[chan] = channels[i].maxpwr;
2253
2254 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2255 chan, channels[i].flags, sc->maxpwr[chan]));
2256 }
2257 }
2258
2259 static void
2260 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2261 {
2262 struct wpi_power_group *group = &sc->groups[n];
2263 struct wpi_eeprom_group rgroup;
2264 int i;
2265
2266 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2267 sizeof rgroup);
2268
2269 /* save power group information */
2270 group->chan = rgroup.chan;
2271 group->maxpwr = rgroup.maxpwr;
2272 /* temperature at which the samples were taken */
2273 group->temp = (int16_t)le16toh(rgroup.temp);
2274
2275 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2276 group->chan, group->maxpwr, group->temp));
2277
2278 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2279 group->samples[i].index = rgroup.samples[i].index;
2280 group->samples[i].power = rgroup.samples[i].power;
2281
2282 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2283 group->samples[i].index, group->samples[i].power));
2284 }
2285 }
2286
2287 /*
2288 * Send a command to the firmware.
2289 */
2290 static int
2291 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2292 {
2293 struct wpi_tx_ring *ring = &sc->cmdq;
2294 struct wpi_tx_desc *desc;
2295 struct wpi_tx_cmd *cmd;
2296
2297 KASSERT(size <= sizeof cmd->data);
2298
2299 desc = &ring->desc[ring->cur];
2300 cmd = &ring->cmd[ring->cur];
2301
2302 cmd->code = code;
2303 cmd->flags = 0;
2304 cmd->qid = ring->qid;
2305 cmd->idx = ring->cur;
2306 memcpy(cmd->data, buf, size);
2307
2308 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2309 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2310 ring->cur * sizeof (struct wpi_tx_cmd));
2311 desc->segs[0].len = htole32(4 + size);
2312
2313 /* kick cmd ring */
2314 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2315 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2316
2317 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2318 }
2319
2320 static int
2321 wpi_wme_update(struct ieee80211com *ic)
2322 {
2323 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2324 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2325 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2326 const struct wmeParams *wmep;
2327 struct wpi_wme_setup wme;
2328 int ac;
2329
2330 /* don't override default WME values if WME is not actually enabled */
2331 if (!(ic->ic_flags & IEEE80211_F_WME))
2332 return 0;
2333
2334 wme.flags = 0;
2335 for (ac = 0; ac < WME_NUM_AC; ac++) {
2336 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2337 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2338 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2339 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2340 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2341
2342 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2343 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2344 wme.ac[ac].cwmax, wme.ac[ac].txop));
2345 }
2346
2347 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2348 #undef WPI_USEC
2349 #undef WPI_EXP2
2350 }
2351
2352 /*
2353 * Configure h/w multi-rate retries.
2354 */
2355 static int
2356 wpi_mrr_setup(struct wpi_softc *sc)
2357 {
2358 struct ieee80211com *ic = &sc->sc_ic;
2359 struct wpi_mrr_setup mrr;
2360 int i, error;
2361
2362 /* CCK rates (not used with 802.11a) */
2363 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2364 mrr.rates[i].flags = 0;
2365 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2366 /* fallback to the immediate lower CCK rate (if any) */
2367 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2368 /* try one time at this rate before falling back to "next" */
2369 mrr.rates[i].ntries = 1;
2370 }
2371
2372 /* OFDM rates (not used with 802.11b) */
2373 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2374 mrr.rates[i].flags = 0;
2375 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2376 /* fallback to the immediate lower rate (if any) */
2377 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2378 mrr.rates[i].next = (i == WPI_OFDM6) ?
2379 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2380 WPI_OFDM6 : WPI_CCK2) :
2381 i - 1;
2382 /* try one time at this rate before falling back to "next" */
2383 mrr.rates[i].ntries = 1;
2384 }
2385
2386 /* setup MRR for control frames */
2387 mrr.which = htole32(WPI_MRR_CTL);
2388 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2389 if (error != 0) {
2390 aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2391 return error;
2392 }
2393
2394 /* setup MRR for data frames */
2395 mrr.which = htole32(WPI_MRR_DATA);
2396 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2397 if (error != 0) {
2398 aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2399 return error;
2400 }
2401
2402 return 0;
2403 }
2404
2405 static void
2406 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2407 {
2408 struct wpi_cmd_led led;
2409
2410 led.which = which;
2411 led.unit = htole32(100000); /* on/off in unit of 100ms */
2412 led.off = off;
2413 led.on = on;
2414
2415 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2416 }
2417
2418 static void
2419 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2420 {
2421 struct wpi_cmd_tsf tsf;
2422 uint64_t val, mod;
2423
2424 memset(&tsf, 0, sizeof tsf);
2425 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2426 tsf.bintval = htole16(ni->ni_intval);
2427 tsf.lintval = htole16(10);
2428
2429 /* compute remaining time until next beacon */
2430 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2431 mod = le64toh(tsf.tstamp) % val;
2432 tsf.binitval = htole32((uint32_t)(val - mod));
2433
2434 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2435 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2436
2437 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2438 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2439 }
2440
2441 /*
2442 * Update Tx power to match what is defined for channel `c'.
2443 */
2444 static int
2445 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2446 {
2447 struct ieee80211com *ic = &sc->sc_ic;
2448 struct wpi_power_group *group;
2449 struct wpi_cmd_txpower txpower;
2450 u_int chan;
2451 int i;
2452
2453 /* get channel number */
2454 chan = ieee80211_chan2ieee(ic, c);
2455
2456 /* find the power group to which this channel belongs */
2457 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2458 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2459 if (chan <= group->chan)
2460 break;
2461 } else
2462 group = &sc->groups[0];
2463
2464 memset(&txpower, 0, sizeof txpower);
2465 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2466 txpower.chan = htole16(chan);
2467
2468 /* set Tx power for all OFDM and CCK rates */
2469 for (i = 0; i <= 11 ; i++) {
2470 /* retrieve Tx power for this channel/rate combination */
2471 int idx = wpi_get_power_index(sc, group, c,
2472 wpi_ridx_to_rate[i]);
2473
2474 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2475
2476 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2477 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2478 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2479 } else {
2480 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2481 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2482 }
2483 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2484 wpi_ridx_to_rate[i], idx));
2485 }
2486
2487 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2488 }
2489
2490 /*
2491 * Determine Tx power index for a given channel/rate combination.
2492 * This takes into account the regulatory information from EEPROM and the
2493 * current temperature.
2494 */
2495 static int
2496 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2497 struct ieee80211_channel *c, int rate)
2498 {
2499 /* fixed-point arithmetic division using a n-bit fractional part */
2500 #define fdivround(a, b, n) \
2501 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2502
2503 /* linear interpolation */
2504 #define interpolate(x, x1, y1, x2, y2, n) \
2505 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2506
2507 struct ieee80211com *ic = &sc->sc_ic;
2508 struct wpi_power_sample *sample;
2509 int pwr, idx;
2510 u_int chan;
2511
2512 /* get channel number */
2513 chan = ieee80211_chan2ieee(ic, c);
2514
2515 /* default power is group's maximum power - 3dB */
2516 pwr = group->maxpwr / 2;
2517
2518 /* decrease power for highest OFDM rates to reduce distortion */
2519 switch (rate) {
2520 case 72: /* 36Mb/s */
2521 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2522 break;
2523 case 96: /* 48Mb/s */
2524 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2525 break;
2526 case 108: /* 54Mb/s */
2527 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2528 break;
2529 }
2530
2531 /* never exceed channel's maximum allowed Tx power */
2532 pwr = min(pwr, sc->maxpwr[chan]);
2533
2534 /* retrieve power index into gain tables from samples */
2535 for (sample = group->samples; sample < &group->samples[3]; sample++)
2536 if (pwr > sample[1].power)
2537 break;
2538 /* fixed-point linear interpolation using a 19-bit fractional part */
2539 idx = interpolate(pwr, sample[0].power, sample[0].index,
2540 sample[1].power, sample[1].index, 19);
2541
2542 /*
2543 * Adjust power index based on current temperature:
2544 * - if cooler than factory-calibrated: decrease output power
2545 * - if warmer than factory-calibrated: increase output power
2546 */
2547 idx -= (sc->temp - group->temp) * 11 / 100;
2548
2549 /* decrease power for CCK rates (-5dB) */
2550 if (!WPI_RATE_IS_OFDM(rate))
2551 idx += 10;
2552
2553 /* keep power index in a valid range */
2554 if (idx < 0)
2555 return 0;
2556 if (idx > WPI_MAX_PWR_INDEX)
2557 return WPI_MAX_PWR_INDEX;
2558 return idx;
2559
2560 #undef interpolate
2561 #undef fdivround
2562 }
2563
2564 /*
2565 * Build a beacon frame that the firmware will broadcast periodically in
2566 * IBSS or HostAP modes.
2567 */
2568 static int
2569 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2570 {
2571 struct ieee80211com *ic = &sc->sc_ic;
2572 struct wpi_tx_ring *ring = &sc->cmdq;
2573 struct wpi_tx_desc *desc;
2574 struct wpi_tx_data *data;
2575 struct wpi_tx_cmd *cmd;
2576 struct wpi_cmd_beacon *bcn;
2577 struct ieee80211_beacon_offsets bo;
2578 struct mbuf *m0;
2579 int error;
2580
2581 desc = &ring->desc[ring->cur];
2582 data = &ring->data[ring->cur];
2583
2584 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2585 if (m0 == NULL) {
2586 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2587 return ENOMEM;
2588 }
2589
2590 cmd = &ring->cmd[ring->cur];
2591 cmd->code = WPI_CMD_SET_BEACON;
2592 cmd->flags = 0;
2593 cmd->qid = ring->qid;
2594 cmd->idx = ring->cur;
2595
2596 bcn = (struct wpi_cmd_beacon *)cmd->data;
2597 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2598 bcn->id = WPI_ID_BROADCAST;
2599 bcn->ofdm_mask = 0xff;
2600 bcn->cck_mask = 0x0f;
2601 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2602 bcn->len = htole16(m0->m_pkthdr.len);
2603 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2604 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2605 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2606
2607 /* save and trim IEEE802.11 header */
2608 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2609 m_adj(m0, sizeof (struct ieee80211_frame));
2610
2611 /* assume beacon frame is contiguous */
2612 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2613 BUS_DMA_READ | BUS_DMA_NOWAIT);
2614 if (error) {
2615 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2616 m_freem(m0);
2617 return error;
2618 }
2619
2620 data->m = m0;
2621
2622 /* first scatter/gather segment is used by the beacon command */
2623 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2624 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2625 ring->cur * sizeof (struct wpi_tx_cmd));
2626 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2627 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2628 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2629
2630 /* kick cmd ring */
2631 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2632 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2633
2634 return 0;
2635 }
2636
2637 static int
2638 wpi_auth(struct wpi_softc *sc)
2639 {
2640 struct ieee80211com *ic = &sc->sc_ic;
2641 struct ieee80211_node *ni = ic->ic_bss;
2642 struct wpi_node_info node;
2643 int error;
2644
2645 /* update adapter's configuration */
2646 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2647 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2648 sc->config.flags = htole32(WPI_CONFIG_TSF);
2649 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2650 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2651 WPI_CONFIG_24GHZ);
2652 }
2653 switch (ic->ic_curmode) {
2654 case IEEE80211_MODE_11A:
2655 sc->config.cck_mask = 0;
2656 sc->config.ofdm_mask = 0x15;
2657 break;
2658 case IEEE80211_MODE_11B:
2659 sc->config.cck_mask = 0x03;
2660 sc->config.ofdm_mask = 0;
2661 break;
2662 default: /* assume 802.11b/g */
2663 sc->config.cck_mask = 0x0f;
2664 sc->config.ofdm_mask = 0x15;
2665 }
2666
2667 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2668 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2669 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2670 sizeof (struct wpi_config), 1);
2671 if (error != 0) {
2672 aprint_error_dev(sc->sc_dev, "could not configure\n");
2673 return error;
2674 }
2675
2676 /* configuration has changed, set Tx power accordingly */
2677 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2678 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2679 return error;
2680 }
2681
2682 /* add default node */
2683 memset(&node, 0, sizeof node);
2684 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2685 node.id = WPI_ID_BSS;
2686 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2687 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2688 node.action = htole32(WPI_ACTION_SET_RATE);
2689 node.antenna = WPI_ANTENNA_BOTH;
2690 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2691 if (error != 0) {
2692 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2693 return error;
2694 }
2695
2696 return 0;
2697 }
2698
2699 /*
2700 * Send a scan request to the firmware. Since this command is huge, we map it
2701 * into a mbuf instead of using the pre-allocated set of commands.
2702 */
2703 static int
2704 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2705 {
2706 struct ieee80211com *ic = &sc->sc_ic;
2707 struct wpi_tx_ring *ring = &sc->cmdq;
2708 struct wpi_tx_desc *desc;
2709 struct wpi_tx_data *data;
2710 struct wpi_tx_cmd *cmd;
2711 struct wpi_scan_hdr *hdr;
2712 struct wpi_scan_chan *chan;
2713 struct ieee80211_frame *wh;
2714 struct ieee80211_rateset *rs;
2715 struct ieee80211_channel *c;
2716 enum ieee80211_phymode mode;
2717 uint8_t *frm;
2718 int nrates, pktlen, error;
2719
2720 desc = &ring->desc[ring->cur];
2721 data = &ring->data[ring->cur];
2722
2723 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2724 if (data->m == NULL) {
2725 aprint_error_dev(sc->sc_dev,
2726 "could not allocate mbuf for scan command\n");
2727 return ENOMEM;
2728 }
2729
2730 MCLGET(data->m, M_DONTWAIT);
2731 if (!(data->m->m_flags & M_EXT)) {
2732 m_freem(data->m);
2733 data->m = NULL;
2734 aprint_error_dev(sc->sc_dev,
2735 "could not allocate mbuf for scan command\n");
2736 return ENOMEM;
2737 }
2738
2739 cmd = mtod(data->m, struct wpi_tx_cmd *);
2740 cmd->code = WPI_CMD_SCAN;
2741 cmd->flags = 0;
2742 cmd->qid = ring->qid;
2743 cmd->idx = ring->cur;
2744
2745 hdr = (struct wpi_scan_hdr *)cmd->data;
2746 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2747 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2748 hdr->id = WPI_ID_BROADCAST;
2749 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2750
2751 /*
2752 * Move to the next channel if no packets are received within 5 msecs
2753 * after sending the probe request (this helps to reduce the duration
2754 * of active scans).
2755 */
2756 hdr->quiet = htole16(5); /* timeout in milliseconds */
2757 hdr->plcp_threshold = htole16(1); /* min # of packets */
2758
2759 if (flags & IEEE80211_CHAN_A) {
2760 hdr->crc_threshold = htole16(1);
2761 /* send probe requests at 6Mbps */
2762 hdr->rate = wpi_plcp_signal(12);
2763 } else {
2764 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2765 /* send probe requests at 1Mbps */
2766 hdr->rate = wpi_plcp_signal(2);
2767 }
2768
2769 /* for directed scans, firmware inserts the essid IE itself */
2770 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2771 hdr->essid[0].len = ic->ic_des_esslen;
2772 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2773
2774 /*
2775 * Build a probe request frame. Most of the following code is a
2776 * copy & paste of what is done in net80211.
2777 */
2778 wh = (struct ieee80211_frame *)(hdr + 1);
2779 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2780 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2781 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2782 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2783 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2784 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2785 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2786 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2787
2788 frm = (uint8_t *)(wh + 1);
2789
2790 /* add empty essid IE (firmware generates it for directed scans) */
2791 *frm++ = IEEE80211_ELEMID_SSID;
2792 *frm++ = 0;
2793
2794 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2795 rs = &ic->ic_sup_rates[mode];
2796
2797 /* add supported rates IE */
2798 *frm++ = IEEE80211_ELEMID_RATES;
2799 nrates = rs->rs_nrates;
2800 if (nrates > IEEE80211_RATE_SIZE)
2801 nrates = IEEE80211_RATE_SIZE;
2802 *frm++ = nrates;
2803 memcpy(frm, rs->rs_rates, nrates);
2804 frm += nrates;
2805
2806 /* add supported xrates IE */
2807 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2808 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2809 *frm++ = IEEE80211_ELEMID_XRATES;
2810 *frm++ = nrates;
2811 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2812 frm += nrates;
2813 }
2814
2815 /* setup length of probe request */
2816 hdr->paylen = htole16(frm - (uint8_t *)wh);
2817
2818 chan = (struct wpi_scan_chan *)frm;
2819 for (c = &ic->ic_channels[1];
2820 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2821 if ((c->ic_flags & flags) != flags)
2822 continue;
2823
2824 chan->chan = ieee80211_chan2ieee(ic, c);
2825 chan->flags = 0;
2826 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2827 chan->flags |= WPI_CHAN_ACTIVE;
2828 if (ic->ic_des_esslen != 0)
2829 chan->flags |= WPI_CHAN_DIRECT;
2830 }
2831 chan->dsp_gain = 0x6e;
2832 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2833 chan->rf_gain = 0x3b;
2834 chan->active = htole16(10);
2835 chan->passive = htole16(110);
2836 } else {
2837 chan->rf_gain = 0x28;
2838 chan->active = htole16(20);
2839 chan->passive = htole16(120);
2840 }
2841 hdr->nchan++;
2842 chan++;
2843
2844 frm += sizeof (struct wpi_scan_chan);
2845 }
2846 hdr->len = htole16(frm - (uint8_t *)hdr);
2847 pktlen = frm - (uint8_t *)cmd;
2848
2849 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2850 NULL, BUS_DMA_NOWAIT);
2851 if (error) {
2852 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2853 m_freem(data->m);
2854 data->m = NULL;
2855 return error;
2856 }
2857
2858 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2859 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2860 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2861
2862 /* kick cmd ring */
2863 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2864 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2865
2866 return 0; /* will be notified async. of failure/success */
2867 }
2868
2869 static int
2870 wpi_config(struct wpi_softc *sc)
2871 {
2872 struct ieee80211com *ic = &sc->sc_ic;
2873 struct ifnet *ifp = ic->ic_ifp;
2874 struct wpi_power power;
2875 struct wpi_bluetooth bluetooth;
2876 struct wpi_node_info node;
2877 int error;
2878
2879 memset(&power, 0, sizeof power);
2880 power.flags = htole32(WPI_POWER_CAM | 0x8);
2881 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2882 if (error != 0) {
2883 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2884 return error;
2885 }
2886
2887 /* configure bluetooth coexistence */
2888 memset(&bluetooth, 0, sizeof bluetooth);
2889 bluetooth.flags = 3;
2890 bluetooth.lead = 0xaa;
2891 bluetooth.kill = 1;
2892 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2893 0);
2894 if (error != 0) {
2895 aprint_error_dev(sc->sc_dev,
2896 "could not configure bluetooth coexistence\n");
2897 return error;
2898 }
2899
2900 /* configure adapter */
2901 memset(&sc->config, 0, sizeof (struct wpi_config));
2902 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2903 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2904 /*set default channel*/
2905 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2906 sc->config.flags = htole32(WPI_CONFIG_TSF);
2907 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2908 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2909 WPI_CONFIG_24GHZ);
2910 }
2911 sc->config.filter = 0;
2912 switch (ic->ic_opmode) {
2913 case IEEE80211_M_STA:
2914 sc->config.mode = WPI_MODE_STA;
2915 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2916 break;
2917 case IEEE80211_M_IBSS:
2918 case IEEE80211_M_AHDEMO:
2919 sc->config.mode = WPI_MODE_IBSS;
2920 break;
2921 case IEEE80211_M_HOSTAP:
2922 sc->config.mode = WPI_MODE_HOSTAP;
2923 break;
2924 case IEEE80211_M_MONITOR:
2925 sc->config.mode = WPI_MODE_MONITOR;
2926 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2927 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2928 break;
2929 }
2930 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2931 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2932 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2933 sizeof (struct wpi_config), 0);
2934 if (error != 0) {
2935 aprint_error_dev(sc->sc_dev, "configure command failed\n");
2936 return error;
2937 }
2938
2939 /* configuration has changed, set Tx power accordingly */
2940 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2941 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2942 return error;
2943 }
2944
2945 /* add broadcast node */
2946 memset(&node, 0, sizeof node);
2947 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2948 node.id = WPI_ID_BROADCAST;
2949 node.rate = wpi_plcp_signal(2);
2950 node.action = htole32(WPI_ACTION_SET_RATE);
2951 node.antenna = WPI_ANTENNA_BOTH;
2952 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2953 if (error != 0) {
2954 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2955 return error;
2956 }
2957
2958 if ((error = wpi_mrr_setup(sc)) != 0) {
2959 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2960 return error;
2961 }
2962
2963 return 0;
2964 }
2965
2966 static void
2967 wpi_stop_master(struct wpi_softc *sc)
2968 {
2969 uint32_t tmp;
2970 int ntries;
2971
2972 tmp = WPI_READ(sc, WPI_RESET);
2973 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2974
2975 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2976 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2977 return; /* already asleep */
2978
2979 for (ntries = 0; ntries < 100; ntries++) {
2980 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2981 break;
2982 DELAY(10);
2983 }
2984 if (ntries == 100) {
2985 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2986 }
2987 }
2988
2989 static int
2990 wpi_power_up(struct wpi_softc *sc)
2991 {
2992 uint32_t tmp;
2993 int ntries;
2994
2995 wpi_mem_lock(sc);
2996 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2997 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2998 wpi_mem_unlock(sc);
2999
3000 for (ntries = 0; ntries < 5000; ntries++) {
3001 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3002 break;
3003 DELAY(10);
3004 }
3005 if (ntries == 5000) {
3006 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
3007 return ETIMEDOUT;
3008 }
3009 return 0;
3010 }
3011
3012 static int
3013 wpi_reset(struct wpi_softc *sc)
3014 {
3015 uint32_t tmp;
3016 int ntries;
3017
3018 /* clear any pending interrupts */
3019 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3020
3021 tmp = WPI_READ(sc, WPI_PLL_CTL);
3022 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3023
3024 tmp = WPI_READ(sc, WPI_CHICKEN);
3025 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3026
3027 tmp = WPI_READ(sc, WPI_GPIO_CTL);
3028 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3029
3030 /* wait for clock stabilization */
3031 for (ntries = 0; ntries < 1000; ntries++) {
3032 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3033 break;
3034 DELAY(10);
3035 }
3036 if (ntries == 1000) {
3037 aprint_error_dev(sc->sc_dev,
3038 "timeout waiting for clock stabilization\n");
3039 return ETIMEDOUT;
3040 }
3041
3042 /* initialize EEPROM */
3043 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3044 if ((tmp & WPI_EEPROM_VERSION) == 0) {
3045 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3046 return EIO;
3047 }
3048 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3049
3050 return 0;
3051 }
3052
3053 static void
3054 wpi_hw_config(struct wpi_softc *sc)
3055 {
3056 uint32_t rev, hw;
3057
3058 /* voodoo from the reference driver */
3059 hw = WPI_READ(sc, WPI_HWCONFIG);
3060
3061 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3062 rev = PCI_REVISION(rev);
3063 if ((rev & 0xc0) == 0x40)
3064 hw |= WPI_HW_ALM_MB;
3065 else if (!(rev & 0x80))
3066 hw |= WPI_HW_ALM_MM;
3067
3068 if (sc->cap == 0x80)
3069 hw |= WPI_HW_SKU_MRC;
3070
3071 hw &= ~WPI_HW_REV_D;
3072 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3073 hw |= WPI_HW_REV_D;
3074
3075 if (sc->type > 1)
3076 hw |= WPI_HW_TYPE_B;
3077
3078 DPRINTF(("setting h/w config %x\n", hw));
3079 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3080 }
3081
3082 static int
3083 wpi_init(struct ifnet *ifp)
3084 {
3085 struct wpi_softc *sc = ifp->if_softc;
3086 struct ieee80211com *ic = &sc->sc_ic;
3087 uint32_t tmp;
3088 int qid, ntries, error;
3089
3090 wpi_stop(ifp,1);
3091 (void)wpi_reset(sc);
3092
3093 wpi_mem_lock(sc);
3094 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3095 DELAY(20);
3096 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3097 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3098 wpi_mem_unlock(sc);
3099
3100 (void)wpi_power_up(sc);
3101 wpi_hw_config(sc);
3102
3103 /* init Rx ring */
3104 wpi_mem_lock(sc);
3105 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3106 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3107 offsetof(struct wpi_shared, next));
3108 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3109 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3110 wpi_mem_unlock(sc);
3111
3112 /* init Tx rings */
3113 wpi_mem_lock(sc);
3114 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3115 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3116 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3117 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3118 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3119 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3120 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3121
3122 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3123 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3124
3125 for (qid = 0; qid < 6; qid++) {
3126 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3127 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3128 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3129 }
3130 wpi_mem_unlock(sc);
3131
3132 /* clear "radio off" and "disable command" bits (reversed logic) */
3133 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3134 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3135
3136 /* clear any pending interrupts */
3137 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3138 /* enable interrupts */
3139 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3140
3141 /* not sure why/if this is necessary... */
3142 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3143 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3144
3145 if ((error = wpi_load_firmware(sc)) != 0)
3146 /* wpi_load_firmware prints error messages for us. */
3147 goto fail1;
3148
3149 /* Check the status of the radio switch */
3150 if (wpi_getrfkill(sc)) {
3151 aprint_error_dev(sc->sc_dev,
3152 "radio is disabled by hardware switch\n");
3153 error = EBUSY;
3154 goto fail1;
3155 }
3156
3157 /* wait for thermal sensors to calibrate */
3158 for (ntries = 0; ntries < 1000; ntries++) {
3159 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3160 break;
3161 DELAY(10);
3162 }
3163 if (ntries == 1000) {
3164 aprint_error_dev(sc->sc_dev,
3165 "timeout waiting for thermal sensors calibration\n");
3166 error = ETIMEDOUT;
3167 goto fail1;
3168 }
3169
3170 DPRINTF(("temperature %d\n", sc->temp));
3171
3172 if ((error = wpi_config(sc)) != 0) {
3173 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3174 goto fail1;
3175 }
3176
3177 ifp->if_flags &= ~IFF_OACTIVE;
3178 ifp->if_flags |= IFF_RUNNING;
3179
3180 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3181 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3182 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3183 }
3184 else
3185 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3186
3187 return 0;
3188
3189 fail1: wpi_stop(ifp, 1);
3190 return error;
3191 }
3192
3193
3194 static void
3195 wpi_stop(struct ifnet *ifp, int disable)
3196 {
3197 struct wpi_softc *sc = ifp->if_softc;
3198 struct ieee80211com *ic = &sc->sc_ic;
3199 uint32_t tmp;
3200 int ac;
3201
3202 ifp->if_timer = sc->sc_tx_timer = 0;
3203 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3204
3205 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3206
3207 /* disable interrupts */
3208 WPI_WRITE(sc, WPI_MASK, 0);
3209 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3210 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3211 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3212
3213 wpi_mem_lock(sc);
3214 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3215 wpi_mem_unlock(sc);
3216
3217 /* reset all Tx rings */
3218 for (ac = 0; ac < 4; ac++)
3219 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3220 wpi_reset_tx_ring(sc, &sc->cmdq);
3221
3222 /* reset Rx ring */
3223 wpi_reset_rx_ring(sc, &sc->rxq);
3224
3225 wpi_mem_lock(sc);
3226 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3227 wpi_mem_unlock(sc);
3228
3229 DELAY(5);
3230
3231 wpi_stop_master(sc);
3232
3233 tmp = WPI_READ(sc, WPI_RESET);
3234 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3235 }
3236
3237 static bool
3238 wpi_resume(device_t dv, const pmf_qual_t *qual)
3239 {
3240 struct wpi_softc *sc = device_private(dv);
3241
3242 (void)wpi_reset(sc);
3243
3244 return true;
3245 }
3246
3247 /*
3248 * Return whether or not the radio is enabled in hardware
3249 * (i.e. the rfkill switch is "off").
3250 */
3251 static int
3252 wpi_getrfkill(struct wpi_softc *sc)
3253 {
3254 uint32_t tmp;
3255
3256 wpi_mem_lock(sc);
3257 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3258 wpi_mem_unlock(sc);
3259
3260 return !(tmp & 0x01);
3261 }
3262
3263 static int
3264 wpi_sysctl_radio(SYSCTLFN_ARGS)
3265 {
3266 struct sysctlnode node;
3267 struct wpi_softc *sc;
3268 int val, error;
3269
3270 node = *rnode;
3271 sc = (struct wpi_softc *)node.sysctl_data;
3272
3273 val = !wpi_getrfkill(sc);
3274
3275 node.sysctl_data = &val;
3276 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3277
3278 if (error || newp == NULL)
3279 return error;
3280
3281 return 0;
3282 }
3283
3284 static void
3285 wpi_sysctlattach(struct wpi_softc *sc)
3286 {
3287 int rc;
3288 const struct sysctlnode *rnode;
3289 const struct sysctlnode *cnode;
3290
3291 struct sysctllog **clog = &sc->sc_sysctllog;
3292
3293 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3294 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3295 SYSCTL_DESCR("wpi controls and statistics"),
3296 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3297 goto err;
3298
3299 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3300 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3301 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3302 wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3303 goto err;
3304
3305 #ifdef WPI_DEBUG
3306 /* control debugging printfs */
3307 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3308 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3309 "debug", SYSCTL_DESCR("Enable debugging output"),
3310 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3311 goto err;
3312 #endif
3313
3314 return;
3315 err:
3316 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3317 }
3318