Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.58
      1 /*  $NetBSD: if_wpi.c,v 1.58 2014/03/29 19:28:25 christos Exp $    */
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007
      5  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.58 2014/03/29 19:28:25 christos Exp $");
     22 
     23 /*
     24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25  */
     26 
     27 
     28 #include <sys/param.h>
     29 #include <sys/sockio.h>
     30 #include <sys/sysctl.h>
     31 #include <sys/mbuf.h>
     32 #include <sys/kernel.h>
     33 #include <sys/socket.h>
     34 #include <sys/systm.h>
     35 #include <sys/malloc.h>
     36 #include <sys/mutex.h>
     37 #include <sys/once.h>
     38 #include <sys/conf.h>
     39 #include <sys/kauth.h>
     40 #include <sys/callout.h>
     41 #include <sys/proc.h>
     42 
     43 #include <sys/bus.h>
     44 #include <machine/endian.h>
     45 #include <sys/intr.h>
     46 
     47 #include <dev/pci/pcireg.h>
     48 #include <dev/pci/pcivar.h>
     49 #include <dev/pci/pcidevs.h>
     50 
     51 #include <net/bpf.h>
     52 #include <net/if.h>
     53 #include <net/if_arp.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_ether.h>
     56 #include <net/if_media.h>
     57 #include <net/if_types.h>
     58 
     59 #include <net80211/ieee80211_var.h>
     60 #include <net80211/ieee80211_amrr.h>
     61 #include <net80211/ieee80211_radiotap.h>
     62 
     63 #include <netinet/in.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <netinet/ip.h>
     67 
     68 #include <dev/firmload.h>
     69 
     70 #include <dev/pci/if_wpireg.h>
     71 #include <dev/pci/if_wpivar.h>
     72 
     73 #ifdef WPI_DEBUG
     74 #define DPRINTF(x)	if (wpi_debug > 0) printf x
     75 #define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
     76 int wpi_debug = 1;
     77 #else
     78 #define DPRINTF(x)
     79 #define DPRINTFN(n, x)
     80 #endif
     81 
     82 /*
     83  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
     84  */
     85 static const struct ieee80211_rateset wpi_rateset_11a =
     86 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
     87 
     88 static const struct ieee80211_rateset wpi_rateset_11b =
     89 	{ 4, { 2, 4, 11, 22 } };
     90 
     91 static const struct ieee80211_rateset wpi_rateset_11g =
     92 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
     93 
     94 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
     95 static once_t wpi_firmware_init;
     96 static kmutex_t wpi_firmware_mutex;
     97 static size_t wpi_firmware_users;
     98 static uint8_t *wpi_firmware_image;
     99 static size_t wpi_firmware_size;
    100 
    101 static int  wpi_match(device_t, cfdata_t, void *);
    102 static void wpi_attach(device_t, device_t, void *);
    103 static int  wpi_detach(device_t , int);
    104 static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
    105 	void **, bus_size_t, bus_size_t, int);
    106 static void wpi_dma_contig_free(struct wpi_dma_info *);
    107 static int  wpi_alloc_shared(struct wpi_softc *);
    108 static void wpi_free_shared(struct wpi_softc *);
    109 static int  wpi_alloc_fwmem(struct wpi_softc *);
    110 static void wpi_free_fwmem(struct wpi_softc *);
    111 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
    112 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
    113 static int  wpi_alloc_rpool(struct wpi_softc *);
    114 static void wpi_free_rpool(struct wpi_softc *);
    115 static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    116 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    117 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    118 static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
    119 	int);
    120 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    121 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    122 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    123 static void wpi_newassoc(struct ieee80211_node *, int);
    124 static int  wpi_media_change(struct ifnet *);
    125 static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    126 static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
    127 static void wpi_mem_lock(struct wpi_softc *);
    128 static void wpi_mem_unlock(struct wpi_softc *);
    129 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
    130 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    131 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    132 								   const uint32_t *, int);
    133 static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    134 static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    135 static int  wpi_cache_firmware(struct wpi_softc *);
    136 static void wpi_release_firmware(void);
    137 static int  wpi_load_firmware(struct wpi_softc *);
    138 static void wpi_calib_timeout(void *);
    139 static void wpi_iter_func(void *, struct ieee80211_node *);
    140 static void wpi_power_calibration(struct wpi_softc *, int);
    141 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    142 	struct wpi_rx_data *);
    143 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    144 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    145 static void wpi_notif_intr(struct wpi_softc *);
    146 static int  wpi_intr(void *);
    147 static void wpi_read_eeprom(struct wpi_softc *);
    148 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
    149 static void wpi_read_eeprom_group(struct wpi_softc *, int);
    150 static uint8_t wpi_plcp_signal(int);
    151 static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
    152 	struct ieee80211_node *, int);
    153 static void wpi_start(struct ifnet *);
    154 static void wpi_watchdog(struct ifnet *);
    155 static int  wpi_ioctl(struct ifnet *, u_long, void *);
    156 static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    157 static int  wpi_wme_update(struct ieee80211com *);
    158 static int  wpi_mrr_setup(struct wpi_softc *);
    159 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    160 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    161 static int  wpi_set_txpower(struct wpi_softc *,
    162 			    struct ieee80211_channel *, int);
    163 static int  wpi_get_power_index(struct wpi_softc *,
    164 		struct wpi_power_group *, struct ieee80211_channel *, int);
    165 static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    166 static int  wpi_auth(struct wpi_softc *);
    167 static int  wpi_scan(struct wpi_softc *, uint16_t);
    168 static int  wpi_config(struct wpi_softc *);
    169 static void wpi_stop_master(struct wpi_softc *);
    170 static int  wpi_power_up(struct wpi_softc *);
    171 static int  wpi_reset(struct wpi_softc *);
    172 static void wpi_hw_config(struct wpi_softc *);
    173 static int  wpi_init(struct ifnet *);
    174 static void wpi_stop(struct ifnet *, int);
    175 static bool wpi_resume(device_t, const pmf_qual_t *);
    176 static int	wpi_getrfkill(struct wpi_softc *);
    177 static void wpi_sysctlattach(struct wpi_softc *);
    178 
    179 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    180 	wpi_detach, NULL);
    181 
    182 static int
    183 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
    184 {
    185 	struct pci_attach_args *pa = aux;
    186 
    187 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    188 		return 0;
    189 
    190 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    191 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    192 		return 1;
    193 
    194 	return 0;
    195 }
    196 
    197 /* Base Address Register */
    198 #define WPI_PCI_BAR0	0x10
    199 
    200 static int
    201 wpi_attach_once(void)
    202 {
    203 
    204 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
    205 	return 0;
    206 }
    207 
    208 static void
    209 wpi_attach(device_t parent __unused, device_t self, void *aux)
    210 {
    211 	struct wpi_softc *sc = device_private(self);
    212 	struct ieee80211com *ic = &sc->sc_ic;
    213 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    214 	struct pci_attach_args *pa = aux;
    215 	const char *intrstr;
    216 	bus_space_tag_t memt;
    217 	bus_space_handle_t memh;
    218 	pci_intr_handle_t ih;
    219 	pcireg_t data;
    220 	int error, ac;
    221 	char intrbuf[PCI_INTRSTR_LEN];
    222 
    223 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
    224 	sc->fw_used = false;
    225 
    226 	sc->sc_dev = self;
    227 	sc->sc_pct = pa->pa_pc;
    228 	sc->sc_pcitag = pa->pa_tag;
    229 
    230 	callout_init(&sc->calib_to, 0);
    231 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    232 
    233 	pci_aprint_devinfo(pa, NULL);
    234 
    235 	/* enable bus-mastering */
    236 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    237 	data |= PCI_COMMAND_MASTER_ENABLE;
    238 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    239 
    240 	/* map the register window */
    241 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    242 		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    243 	if (error != 0) {
    244 		aprint_error_dev(self, "could not map memory space\n");
    245 		return;
    246 	}
    247 
    248 	sc->sc_st = memt;
    249 	sc->sc_sh = memh;
    250 	sc->sc_dmat = pa->pa_dmat;
    251 
    252 	if (pci_intr_map(pa, &ih) != 0) {
    253 		aprint_error_dev(self, "could not map interrupt\n");
    254 		return;
    255 	}
    256 
    257 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
    258 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
    259 	if (sc->sc_ih == NULL) {
    260 		aprint_error_dev(self, "could not establish interrupt");
    261 		if (intrstr != NULL)
    262 			aprint_error(" at %s", intrstr);
    263 		aprint_error("\n");
    264 		return;
    265 	}
    266 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    267 
    268 	if (wpi_reset(sc) != 0) {
    269 		aprint_error_dev(self, "could not reset adapter\n");
    270 		return;
    271 	}
    272 
    273  	/*
    274 	 * Allocate DMA memory for firmware transfers.
    275 	 */
    276 	if ((error = wpi_alloc_fwmem(sc)) != 0)
    277 		return;
    278 
    279 	/*
    280 	 * Allocate shared page and Tx/Rx rings.
    281 	 */
    282 	if ((error = wpi_alloc_shared(sc)) != 0) {
    283 		aprint_error_dev(self, "could not allocate shared area\n");
    284 		goto fail1;
    285 	}
    286 
    287 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    288 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    289 		goto fail2;
    290 	}
    291 
    292 	for (ac = 0; ac < 4; ac++) {
    293 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
    294 		if (error != 0) {
    295 			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
    296 			goto fail3;
    297 		}
    298 	}
    299 
    300 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    301 	if (error != 0) {
    302 		aprint_error_dev(self, "could not allocate command ring\n");
    303 		goto fail3;
    304 	}
    305 
    306 	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
    307 		aprint_error_dev(self, "could not allocate Rx ring\n");
    308 		goto fail4;
    309 	}
    310 
    311 	ic->ic_ifp = ifp;
    312 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    313 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    314 	ic->ic_state = IEEE80211_S_INIT;
    315 
    316 	/* set device capabilities */
    317 	ic->ic_caps =
    318 #ifdef netyet
    319 		IEEE80211_C_IBSS |       /* IBSS mode support */
    320 #endif
    321 		IEEE80211_C_WPA |        /* 802.11i */
    322 		IEEE80211_C_MONITOR |    /* monitor mode supported */
    323 		IEEE80211_C_TXPMGT |     /* tx power management */
    324 		IEEE80211_C_SHSLOT |     /* short slot time supported */
    325 		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
    326 		IEEE80211_C_WME;         /* 802.11e */
    327 
    328 	/* read supported channels and MAC address from EEPROM */
    329 	wpi_read_eeprom(sc);
    330 
    331 	/* set supported .11a, .11b, .11g rates */
    332 	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
    333 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
    334 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
    335 
    336 	ic->ic_ibss_chan = &ic->ic_channels[0];
    337 
    338 	ifp->if_softc = sc;
    339 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    340 	ifp->if_init = wpi_init;
    341 	ifp->if_stop = wpi_stop;
    342 	ifp->if_ioctl = wpi_ioctl;
    343 	ifp->if_start = wpi_start;
    344 	ifp->if_watchdog = wpi_watchdog;
    345 	IFQ_SET_READY(&ifp->if_snd);
    346 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    347 
    348 	if_attach(ifp);
    349 	ieee80211_ifattach(ic);
    350 	/* override default methods */
    351 	ic->ic_node_alloc = wpi_node_alloc;
    352 	ic->ic_newassoc = wpi_newassoc;
    353 	ic->ic_wme.wme_update = wpi_wme_update;
    354 
    355 	/* override state transition machine */
    356 	sc->sc_newstate = ic->ic_newstate;
    357 	ic->ic_newstate = wpi_newstate;
    358 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
    359 
    360 	sc->amrr.amrr_min_success_threshold = 1;
    361 	sc->amrr.amrr_max_success_threshold = 15;
    362 
    363 	wpi_sysctlattach(sc);
    364 
    365 	if (pmf_device_register(self, NULL, wpi_resume))
    366 		pmf_class_network_register(self, ifp);
    367 	else
    368 		aprint_error_dev(self, "couldn't establish power handler\n");
    369 
    370 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    371 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    372 	    &sc->sc_drvbpf);
    373 
    374 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    375 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    376 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    377 
    378 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    379 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    380 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    381 
    382 	ieee80211_announce(ic);
    383 
    384 	return;
    385 
    386 fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
    387 fail3:  while (--ac >= 0)
    388 			wpi_free_tx_ring(sc, &sc->txq[ac]);
    389 	wpi_free_rpool(sc);
    390 fail2:	wpi_free_shared(sc);
    391 fail1:	wpi_free_fwmem(sc);
    392 }
    393 
    394 static int
    395 wpi_detach(device_t self, int flags __unused)
    396 {
    397 	struct wpi_softc *sc = device_private(self);
    398 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    399 	int ac;
    400 
    401 	wpi_stop(ifp, 1);
    402 
    403 	if (ifp != NULL)
    404 		bpf_detach(ifp);
    405 	ieee80211_ifdetach(&sc->sc_ic);
    406 	if (ifp != NULL)
    407 		if_detach(ifp);
    408 
    409 	for (ac = 0; ac < 4; ac++)
    410 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    411 	wpi_free_tx_ring(sc, &sc->cmdq);
    412 	wpi_free_rx_ring(sc, &sc->rxq);
    413 	wpi_free_rpool(sc);
    414 	wpi_free_shared(sc);
    415 
    416 	if (sc->sc_ih != NULL) {
    417 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    418 		sc->sc_ih = NULL;
    419 	}
    420 
    421 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    422 
    423 	if (sc->fw_used) {
    424 		sc->fw_used = false;
    425 		wpi_release_firmware();
    426 	}
    427 
    428 	return 0;
    429 }
    430 
    431 static int
    432 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
    433 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
    434 {
    435 	int nsegs, error;
    436 
    437 	dma->tag = tag;
    438 	dma->size = size;
    439 
    440 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    441 	if (error != 0)
    442 		goto fail;
    443 
    444 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    445 	    flags);
    446 	if (error != 0)
    447 		goto fail;
    448 
    449 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    450 	if (error != 0)
    451 		goto fail;
    452 
    453 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    454 	if (error != 0)
    455 		goto fail;
    456 
    457 	memset(dma->vaddr, 0, size);
    458 
    459 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    460 	if (kvap != NULL)
    461 		*kvap = dma->vaddr;
    462 
    463 	return 0;
    464 
    465 fail:   wpi_dma_contig_free(dma);
    466 	return error;
    467 }
    468 
    469 static void
    470 wpi_dma_contig_free(struct wpi_dma_info *dma)
    471 {
    472 	if (dma->map != NULL) {
    473 		if (dma->vaddr != NULL) {
    474 			bus_dmamap_unload(dma->tag, dma->map);
    475 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    476 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    477 			dma->vaddr = NULL;
    478 		}
    479 		bus_dmamap_destroy(dma->tag, dma->map);
    480 		dma->map = NULL;
    481 	}
    482 }
    483 
    484 /*
    485  * Allocate a shared page between host and NIC.
    486  */
    487 static int
    488 wpi_alloc_shared(struct wpi_softc *sc)
    489 {
    490 	int error;
    491 	/* must be aligned on a 4K-page boundary */
    492 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    493 			(void **)&sc->shared, sizeof (struct wpi_shared),
    494 			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
    495 	if (error != 0)
    496 		aprint_error_dev(sc->sc_dev,
    497 				"could not allocate shared area DMA memory\n");
    498 
    499 	return error;
    500 }
    501 
    502 static void
    503 wpi_free_shared(struct wpi_softc *sc)
    504 {
    505 	wpi_dma_contig_free(&sc->shared_dma);
    506 }
    507 
    508 /*
    509  * Allocate DMA-safe memory for firmware transfer.
    510  */
    511 static int
    512 wpi_alloc_fwmem(struct wpi_softc *sc)
    513 {
    514 	int error;
    515 	/* allocate enough contiguous space to store text and data */
    516 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    517 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    518 	    BUS_DMA_NOWAIT);
    519 
    520 	if (error != 0)
    521 		aprint_error_dev(sc->sc_dev,
    522 			"could not allocate firmware transfer area"
    523 			"DMA memory\n");
    524 	return error;
    525 }
    526 
    527 static void
    528 wpi_free_fwmem(struct wpi_softc *sc)
    529 {
    530 	wpi_dma_contig_free(&sc->fw_dma);
    531 }
    532 
    533 
    534 static struct wpi_rbuf *
    535 wpi_alloc_rbuf(struct wpi_softc *sc)
    536 {
    537 	struct wpi_rbuf *rbuf;
    538 
    539 	mutex_enter(&sc->rxq.freelist_mtx);
    540 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    541 	if (rbuf != NULL) {
    542 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    543 		sc->rxq.nb_free_entries --;
    544 	}
    545 	mutex_exit(&sc->rxq.freelist_mtx);
    546 
    547 	return rbuf;
    548 }
    549 
    550 /*
    551  * This is called automatically by the network stack when the mbuf to which our
    552  * Rx buffer is attached is freed.
    553  */
    554 static void
    555 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    556 {
    557 	struct wpi_rbuf *rbuf = arg;
    558 	struct wpi_softc *sc = rbuf->sc;
    559 
    560 	/* put the buffer back in the free list */
    561 
    562 	mutex_enter(&sc->rxq.freelist_mtx);
    563 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    564 	mutex_exit(&sc->rxq.freelist_mtx);
    565 	/* No need to protect this with a mutex, see wpi_rx_intr */
    566 	sc->rxq.nb_free_entries ++;
    567 
    568 	if (__predict_true(m != NULL))
    569 		pool_cache_put(mb_cache, m);
    570 }
    571 
    572 static int
    573 wpi_alloc_rpool(struct wpi_softc *sc)
    574 {
    575 	struct wpi_rx_ring *ring = &sc->rxq;
    576 	struct wpi_rbuf *rbuf;
    577 	int i, error;
    578 
    579 	/* allocate a big chunk of DMA'able memory.. */
    580 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    581 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    582 	if (error != 0) {
    583 		aprint_normal_dev(sc->sc_dev,
    584 						  "could not allocate Rx buffers DMA memory\n");
    585 		return error;
    586 	}
    587 
    588 	/* ..and split it into 3KB chunks */
    589 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
    590 	SLIST_INIT(&ring->freelist);
    591 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    592 		rbuf = &ring->rbuf[i];
    593 		rbuf->sc = sc;	/* backpointer for callbacks */
    594 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    595 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    596 
    597 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    598 	}
    599 
    600 	ring->nb_free_entries = WPI_RBUF_COUNT;
    601 	return 0;
    602 }
    603 
    604 static void
    605 wpi_free_rpool(struct wpi_softc *sc)
    606 {
    607 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    608 }
    609 
    610 static int
    611 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    612 {
    613 	struct wpi_rx_data *data;
    614 	struct wpi_rbuf *rbuf;
    615 	int i, error;
    616 
    617 	ring->cur = 0;
    618 
    619 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    620 		(void **)&ring->desc,
    621 		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
    622 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    623 	if (error != 0) {
    624 		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
    625 		goto fail;
    626 	}
    627 
    628 	/*
    629 	 * Setup Rx buffers.
    630 	 */
    631 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    632 		data = &ring->data[i];
    633 
    634 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    635 		if (data->m == NULL) {
    636 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
    637 			error = ENOMEM;
    638 			goto fail;
    639 		}
    640 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    641 			m_freem(data->m);
    642 			data->m = NULL;
    643 			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
    644 			error = ENOMEM;
    645 			goto fail;
    646 		}
    647 		/* attach Rx buffer to mbuf */
    648 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    649 		    rbuf);
    650 		data->m->m_flags |= M_EXT_RW;
    651 
    652 		ring->desc[i] = htole32(rbuf->paddr);
    653 	}
    654 
    655 	return 0;
    656 
    657 fail:	wpi_free_rx_ring(sc, ring);
    658 	return error;
    659 }
    660 
    661 static void
    662 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    663 {
    664 	int ntries;
    665 
    666 	wpi_mem_lock(sc);
    667 
    668 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    669 	for (ntries = 0; ntries < 100; ntries++) {
    670 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    671 			break;
    672 		DELAY(10);
    673 	}
    674 #ifdef WPI_DEBUG
    675 	if (ntries == 100 && wpi_debug > 0)
    676 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    677 #endif
    678 	wpi_mem_unlock(sc);
    679 
    680 	ring->cur = 0;
    681 }
    682 
    683 static void
    684 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    685 {
    686 	int i;
    687 
    688 	wpi_dma_contig_free(&ring->desc_dma);
    689 
    690 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    691 		if (ring->data[i].m != NULL)
    692 			m_freem(ring->data[i].m);
    693 	}
    694 }
    695 
    696 static int
    697 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    698 	int qid)
    699 {
    700 	struct wpi_tx_data *data;
    701 	int i, error;
    702 
    703 	ring->qid = qid;
    704 	ring->count = count;
    705 	ring->queued = 0;
    706 	ring->cur = 0;
    707 
    708 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    709 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    710 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    711 	if (error != 0) {
    712 		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
    713 		goto fail;
    714 	}
    715 
    716 	/* update shared page with ring's base address */
    717 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    718 
    719 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    720 		(void **)&ring->cmd,
    721 		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
    722 	if (error != 0) {
    723 		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
    724 		goto fail;
    725 	}
    726 
    727 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    728 		M_NOWAIT);
    729 	if (ring->data == NULL) {
    730 		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
    731 		goto fail;
    732 	}
    733 
    734 	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
    735 
    736 	for (i = 0; i < count; i++) {
    737 		data = &ring->data[i];
    738 
    739 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    740 			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    741 			&data->map);
    742 		if (error != 0) {
    743 			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
    744 			goto fail;
    745 		}
    746 	}
    747 
    748 	return 0;
    749 
    750 fail:	wpi_free_tx_ring(sc, ring);
    751 	return error;
    752 }
    753 
    754 static void
    755 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    756 {
    757 	struct wpi_tx_data *data;
    758 	int i, ntries;
    759 
    760 	wpi_mem_lock(sc);
    761 
    762 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    763 	for (ntries = 0; ntries < 100; ntries++) {
    764 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    765 			break;
    766 		DELAY(10);
    767 	}
    768 #ifdef WPI_DEBUG
    769 	if (ntries == 100 && wpi_debug > 0) {
    770 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    771 									   ring->qid);
    772 	}
    773 #endif
    774 	wpi_mem_unlock(sc);
    775 
    776 	for (i = 0; i < ring->count; i++) {
    777 		data = &ring->data[i];
    778 
    779 		if (data->m != NULL) {
    780 			bus_dmamap_unload(sc->sc_dmat, data->map);
    781 			m_freem(data->m);
    782 			data->m = NULL;
    783 		}
    784 	}
    785 
    786 	ring->queued = 0;
    787 	ring->cur = 0;
    788 }
    789 
    790 static void
    791 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    792 {
    793 	struct wpi_tx_data *data;
    794 	int i;
    795 
    796 	wpi_dma_contig_free(&ring->desc_dma);
    797 	wpi_dma_contig_free(&ring->cmd_dma);
    798 
    799 	if (ring->data != NULL) {
    800 		for (i = 0; i < ring->count; i++) {
    801 			data = &ring->data[i];
    802 
    803 			if (data->m != NULL) {
    804 				bus_dmamap_unload(sc->sc_dmat, data->map);
    805 				m_freem(data->m);
    806 			}
    807 		}
    808 		free(ring->data, M_DEVBUF);
    809 	}
    810 }
    811 
    812 /*ARGUSED*/
    813 static struct ieee80211_node *
    814 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    815 {
    816 	struct wpi_node *wn;
    817 
    818 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
    819 
    820 	return (struct ieee80211_node *)wn;
    821 }
    822 
    823 static void
    824 wpi_newassoc(struct ieee80211_node *ni, int isnew)
    825 {
    826 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    827 	int i;
    828 
    829 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    830 
    831 	/* set rate to some reasonable initial value */
    832 	for (i = ni->ni_rates.rs_nrates - 1;
    833 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    834 	     i--);
    835 	ni->ni_txrate = i;
    836 }
    837 
    838 static int
    839 wpi_media_change(struct ifnet *ifp)
    840 {
    841 	int error;
    842 
    843 	error = ieee80211_media_change(ifp);
    844 	if (error != ENETRESET)
    845 		return error;
    846 
    847 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    848 		wpi_init(ifp);
    849 
    850 	return 0;
    851 }
    852 
    853 static int
    854 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    855 {
    856 	struct ifnet *ifp = ic->ic_ifp;
    857 	struct wpi_softc *sc = ifp->if_softc;
    858 	struct ieee80211_node *ni;
    859 	int error;
    860 
    861 	callout_stop(&sc->calib_to);
    862 
    863 	switch (nstate) {
    864 	case IEEE80211_S_SCAN:
    865 
    866 		if (sc->is_scanning)
    867 			break;
    868 
    869 		sc->is_scanning = true;
    870 		ieee80211_node_table_reset(&ic->ic_scan);
    871 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
    872 
    873 		/* make the link LED blink while we're scanning */
    874 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    875 
    876 		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
    877 			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
    878 			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
    879 			return error;
    880 		}
    881 
    882 		ic->ic_state = nstate;
    883 		return 0;
    884 
    885 	case IEEE80211_S_ASSOC:
    886 		if (ic->ic_state != IEEE80211_S_RUN)
    887 			break;
    888 		/* FALLTHROUGH */
    889 	case IEEE80211_S_AUTH:
    890 		sc->config.associd = 0;
    891 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    892 		if ((error = wpi_auth(sc)) != 0) {
    893 			aprint_error_dev(sc->sc_dev,
    894 							"could not send authentication request\n");
    895 			return error;
    896 		}
    897 		break;
    898 
    899 	case IEEE80211_S_RUN:
    900 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    901 			/* link LED blinks while monitoring */
    902 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    903 			break;
    904 		}
    905 
    906 		ni = ic->ic_bss;
    907 
    908 		if (ic->ic_opmode != IEEE80211_M_STA) {
    909 			(void) wpi_auth(sc);    /* XXX */
    910 			wpi_setup_beacon(sc, ni);
    911 		}
    912 
    913 		wpi_enable_tsf(sc, ni);
    914 
    915 		/* update adapter's configuration */
    916 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    917 		/* short preamble/slot time are negotiated when associating */
    918 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
    919 			WPI_CONFIG_SHSLOT);
    920 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
    921 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
    922 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
    923 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
    924 		sc->config.filter |= htole32(WPI_FILTER_BSS);
    925 		if (ic->ic_opmode != IEEE80211_M_STA)
    926 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
    927 
    928 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
    929 
    930 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
    931 			sc->config.flags));
    932 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
    933 			sizeof (struct wpi_config), 1);
    934 		if (error != 0) {
    935 			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
    936 			return error;
    937 		}
    938 
    939 		/* configuration has changed, set Tx power accordingly */
    940 		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
    941 			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
    942 			return error;
    943 		}
    944 
    945 		if (ic->ic_opmode == IEEE80211_M_STA) {
    946 			/* fake a join to init the tx rate */
    947 			wpi_newassoc(ni, 1);
    948 		}
    949 
    950 		/* start periodic calibration timer */
    951 		sc->calib_cnt = 0;
    952 		callout_schedule(&sc->calib_to, hz/2);
    953 
    954 		/* link LED always on while associated */
    955 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
    956 		break;
    957 
    958 	case IEEE80211_S_INIT:
    959 		sc->is_scanning = false;
    960 		break;
    961 	}
    962 
    963 	return sc->sc_newstate(ic, nstate, arg);
    964 }
    965 
    966 /*
    967  * XXX: Hack to set the current channel to the value advertised in beacons or
    968  * probe responses. Only used during AP detection.
    969  * XXX: Duplicated from if_iwi.c
    970  */
    971 static void
    972 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
    973 {
    974 	struct ieee80211_frame *wh;
    975 	uint8_t subtype;
    976 	uint8_t *frm, *efrm;
    977 
    978 	wh = mtod(m, struct ieee80211_frame *);
    979 
    980 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
    981 		return;
    982 
    983 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
    984 
    985 	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
    986 	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
    987 		return;
    988 
    989 	frm = (uint8_t *)(wh + 1);
    990 	efrm = mtod(m, uint8_t *) + m->m_len;
    991 
    992 	frm += 12;	/* skip tstamp, bintval and capinfo fields */
    993 	while (frm < efrm) {
    994 		if (*frm == IEEE80211_ELEMID_DSPARMS)
    995 #if IEEE80211_CHAN_MAX < 255
    996 		if (frm[2] <= IEEE80211_CHAN_MAX)
    997 #endif
    998 			ic->ic_curchan = &ic->ic_channels[frm[2]];
    999 
   1000 		frm += frm[1] + 2;
   1001 	}
   1002 }
   1003 
   1004 /*
   1005  * Grab exclusive access to NIC memory.
   1006  */
   1007 static void
   1008 wpi_mem_lock(struct wpi_softc *sc)
   1009 {
   1010 	uint32_t tmp;
   1011 	int ntries;
   1012 
   1013 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1014 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
   1015 
   1016 	/* spin until we actually get the lock */
   1017 	for (ntries = 0; ntries < 1000; ntries++) {
   1018 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
   1019 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
   1020 			break;
   1021 		DELAY(10);
   1022 	}
   1023 	if (ntries == 1000)
   1024 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
   1025 }
   1026 
   1027 /*
   1028  * Release lock on NIC memory.
   1029  */
   1030 static void
   1031 wpi_mem_unlock(struct wpi_softc *sc)
   1032 {
   1033 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1034 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1035 }
   1036 
   1037 static uint32_t
   1038 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1039 {
   1040 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1041 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1042 }
   1043 
   1044 static void
   1045 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1046 {
   1047 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1048 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1049 }
   1050 
   1051 static void
   1052 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1053 						const uint32_t *data, int wlen)
   1054 {
   1055 	for (; wlen > 0; wlen--, data++, addr += 4)
   1056 		wpi_mem_write(sc, addr, *data);
   1057 }
   1058 
   1059 
   1060 /*
   1061  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1062  * instead of using the traditional bit-bang method.
   1063  */
   1064 static int
   1065 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1066 {
   1067 	uint8_t *out = data;
   1068 	uint32_t val;
   1069 	int ntries;
   1070 
   1071 	wpi_mem_lock(sc);
   1072 	for (; len > 0; len -= 2, addr++) {
   1073 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1074 
   1075 		for (ntries = 0; ntries < 10; ntries++) {
   1076 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1077 			    WPI_EEPROM_READY)
   1078 				break;
   1079 			DELAY(5);
   1080 		}
   1081 		if (ntries == 10) {
   1082 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1083 			return ETIMEDOUT;
   1084 		}
   1085 		*out++ = val >> 16;
   1086 		if (len > 1)
   1087 			*out++ = val >> 24;
   1088 	}
   1089 	wpi_mem_unlock(sc);
   1090 
   1091 	return 0;
   1092 }
   1093 
   1094 /*
   1095  * The firmware boot code is small and is intended to be copied directly into
   1096  * the NIC internal memory.
   1097  */
   1098 int
   1099 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1100 {
   1101 	int ntries;
   1102 
   1103 	size /= sizeof (uint32_t);
   1104 
   1105 	wpi_mem_lock(sc);
   1106 
   1107 	/* copy microcode image into NIC memory */
   1108 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1109 	    (const uint32_t *)ucode, size);
   1110 
   1111 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1112 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1113 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1114 
   1115 	/* run microcode */
   1116 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1117 
   1118 	/* wait for transfer to complete */
   1119 	for (ntries = 0; ntries < 1000; ntries++) {
   1120 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1121 			break;
   1122 		DELAY(10);
   1123 	}
   1124 	if (ntries == 1000) {
   1125 		wpi_mem_unlock(sc);
   1126 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1127 		return ETIMEDOUT;
   1128 	}
   1129 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1130 
   1131 	wpi_mem_unlock(sc);
   1132 
   1133 	return 0;
   1134 }
   1135 
   1136 static int
   1137 wpi_cache_firmware(struct wpi_softc *sc)
   1138 {
   1139 	const char *const fwname = wpi_firmware_name;
   1140 	firmware_handle_t fw;
   1141 	int error;
   1142 
   1143 	/* sc is used here only to report error messages.  */
   1144 
   1145 	mutex_enter(&wpi_firmware_mutex);
   1146 
   1147 	if (wpi_firmware_users == SIZE_MAX) {
   1148 		mutex_exit(&wpi_firmware_mutex);
   1149 		return ENFILE;	/* Too many of something in the system...  */
   1150 	}
   1151 	if (wpi_firmware_users++) {
   1152 		KASSERT(wpi_firmware_image != NULL);
   1153 		KASSERT(wpi_firmware_size > 0);
   1154 		mutex_exit(&wpi_firmware_mutex);
   1155 		return 0;	/* Already good to go.  */
   1156 	}
   1157 
   1158 	KASSERT(wpi_firmware_image == NULL);
   1159 	KASSERT(wpi_firmware_size == 0);
   1160 
   1161 	/* load firmware image from disk */
   1162 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
   1163 		aprint_error_dev(sc->sc_dev,
   1164 		    "could not open firmware file %s: %d\n", fwname, error);
   1165 		goto fail0;
   1166 	}
   1167 
   1168 	wpi_firmware_size = firmware_get_size(fw);
   1169 
   1170 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
   1171 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
   1172 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
   1173 	    WPI_FW_BOOT_TEXT_MAXSZ) {
   1174 		aprint_error_dev(sc->sc_dev,
   1175 		    "firmware file %s too large: %zu bytes\n",
   1176 		    fwname, wpi_firmware_size);
   1177 		error = EFBIG;
   1178 		goto fail1;
   1179 	}
   1180 
   1181 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
   1182 		aprint_error_dev(sc->sc_dev,
   1183 		    "firmware file %s too small: %zu bytes\n",
   1184 		    fwname, wpi_firmware_size);
   1185 		error = EINVAL;
   1186 		goto fail1;
   1187 	}
   1188 
   1189 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
   1190 	if (wpi_firmware_image == NULL) {
   1191 		aprint_error_dev(sc->sc_dev,
   1192 		    "not enough memory for firmware file %s\n", fwname);
   1193 		error = ENOMEM;
   1194 		goto fail1;
   1195 	}
   1196 
   1197 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
   1198 	if (error != 0) {
   1199 		aprint_error_dev(sc->sc_dev,
   1200 		    "error reading firmware file %s: %d\n", fwname, error);
   1201 		goto fail2;
   1202 	}
   1203 
   1204 	/* Success!  */
   1205 	firmware_close(fw);
   1206 	mutex_exit(&wpi_firmware_mutex);
   1207 	return 0;
   1208 
   1209 fail2:
   1210 	firmware_free(wpi_firmware_image, wpi_firmware_size);
   1211 	wpi_firmware_image = NULL;
   1212 fail1:
   1213 	wpi_firmware_size = 0;
   1214 	firmware_close(fw);
   1215 fail0:
   1216 	KASSERT(wpi_firmware_users == 1);
   1217 	wpi_firmware_users = 0;
   1218 	KASSERT(wpi_firmware_image == NULL);
   1219 	KASSERT(wpi_firmware_size == 0);
   1220 
   1221 	mutex_exit(&wpi_firmware_mutex);
   1222 	return error;
   1223 }
   1224 
   1225 static void
   1226 wpi_release_firmware(void)
   1227 {
   1228 
   1229 	mutex_enter(&wpi_firmware_mutex);
   1230 
   1231 	KASSERT(wpi_firmware_users > 0);
   1232 	KASSERT(wpi_firmware_image != NULL);
   1233 	KASSERT(wpi_firmware_size != 0);
   1234 
   1235 	if (--wpi_firmware_users == 0) {
   1236 		firmware_free(wpi_firmware_image, wpi_firmware_size);
   1237 		wpi_firmware_image = NULL;
   1238 		wpi_firmware_size = 0;
   1239 	}
   1240 
   1241 	mutex_exit(&wpi_firmware_mutex);
   1242 }
   1243 
   1244 static int
   1245 wpi_load_firmware(struct wpi_softc *sc)
   1246 {
   1247 	struct wpi_dma_info *dma = &sc->fw_dma;
   1248 	struct wpi_firmware_hdr hdr;
   1249 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1250 	const uint8_t *boot_text;
   1251 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1252 	uint32_t boot_textsz;
   1253 	size_t size;
   1254 	int error;
   1255 
   1256 	if (!sc->fw_used) {
   1257 		if ((error = wpi_cache_firmware(sc)) != 0)
   1258 			return error;
   1259 		sc->fw_used = true;
   1260 	}
   1261 
   1262 	KASSERT(sc->fw_used);
   1263 	KASSERT(wpi_firmware_image != NULL);
   1264 	KASSERT(wpi_firmware_size > sizeof(hdr));
   1265 
   1266 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
   1267 
   1268 	main_textsz = le32toh(hdr.main_textsz);
   1269 	main_datasz = le32toh(hdr.main_datasz);
   1270 	init_textsz = le32toh(hdr.init_textsz);
   1271 	init_datasz = le32toh(hdr.init_datasz);
   1272 	boot_textsz = le32toh(hdr.boot_textsz);
   1273 
   1274 	/* sanity-check firmware segments sizes */
   1275 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1276 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1277 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1278 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1279 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1280 	    (boot_textsz & 3) != 0) {
   1281 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1282 		error = EINVAL;
   1283 		goto free_firmware;
   1284 	}
   1285 
   1286 	/* check that all firmware segments are present */
   1287 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
   1288 	    main_datasz + init_textsz + init_datasz + boot_textsz;
   1289 	if (wpi_firmware_size < size) {
   1290 		aprint_error_dev(sc->sc_dev,
   1291 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
   1292 		    wpi_firmware_size, size);
   1293 		error = EINVAL;
   1294 		goto free_firmware;
   1295 	}
   1296 
   1297 	/* get pointers to firmware segments */
   1298 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
   1299 	main_data = main_text + main_textsz;
   1300 	init_text = main_data + main_datasz;
   1301 	init_data = init_text + init_textsz;
   1302 	boot_text = init_data + init_datasz;
   1303 
   1304 	/* copy initialization images into pre-allocated DMA-safe memory */
   1305 	memcpy(dma->vaddr, init_data, init_datasz);
   1306 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
   1307 	    init_textsz);
   1308 
   1309 	/* tell adapter where to find initialization images */
   1310 	wpi_mem_lock(sc);
   1311 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1312 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1313 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1314 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1315 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1316 	wpi_mem_unlock(sc);
   1317 
   1318 	/* load firmware boot code */
   1319 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1320 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1321 		return error;
   1322 	}
   1323 
   1324 	/* now press "execute" ;-) */
   1325 	WPI_WRITE(sc, WPI_RESET, 0);
   1326 
   1327 	/* ..and wait at most one second for adapter to initialize */
   1328 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1329 		/* this isn't what was supposed to happen.. */
   1330 		aprint_error_dev(sc->sc_dev,
   1331 		    "timeout waiting for adapter to initialize\n");
   1332 	}
   1333 
   1334 	/* copy runtime images into pre-allocated DMA-safe memory */
   1335 	memcpy(dma->vaddr, main_data, main_datasz);
   1336 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
   1337 	    main_textsz);
   1338 
   1339 	/* tell adapter where to find runtime images */
   1340 	wpi_mem_lock(sc);
   1341 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1342 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1343 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1344 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1345 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1346 	wpi_mem_unlock(sc);
   1347 
   1348 	/* wait at most one second for second alive notification */
   1349 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1350 		/* this isn't what was supposed to happen.. */
   1351 		aprint_error_dev(sc->sc_dev,
   1352 		    "timeout waiting for adapter to initialize\n");
   1353 	}
   1354 
   1355 	return error;
   1356 
   1357 free_firmware:
   1358 	sc->fw_used = false;
   1359 	wpi_release_firmware();
   1360 	return error;
   1361 }
   1362 
   1363 static void
   1364 wpi_calib_timeout(void *arg)
   1365 {
   1366 	struct wpi_softc *sc = arg;
   1367 	struct ieee80211com *ic = &sc->sc_ic;
   1368 	int temp, s;
   1369 
   1370 	/* automatic rate control triggered every 500ms */
   1371 	if (ic->ic_fixed_rate == -1) {
   1372 		s = splnet();
   1373 		if (ic->ic_opmode == IEEE80211_M_STA)
   1374 			wpi_iter_func(sc, ic->ic_bss);
   1375 		else
   1376                 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1377 		splx(s);
   1378 	}
   1379 
   1380 	/* update sensor data */
   1381 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1382 
   1383 	/* automatic power calibration every 60s */
   1384 	if (++sc->calib_cnt >= 120) {
   1385 		wpi_power_calibration(sc, temp);
   1386 		sc->calib_cnt = 0;
   1387 	}
   1388 
   1389 	callout_schedule(&sc->calib_to, hz/2);
   1390 }
   1391 
   1392 static void
   1393 wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1394 {
   1395 	struct wpi_softc *sc = arg;
   1396 	struct wpi_node *wn = (struct wpi_node *)ni;
   1397 
   1398 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1399 }
   1400 
   1401 /*
   1402  * This function is called periodically (every 60 seconds) to adjust output
   1403  * power to temperature changes.
   1404  */
   1405 void
   1406 wpi_power_calibration(struct wpi_softc *sc, int temp)
   1407 {
   1408 	/* sanity-check read value */
   1409 	if (temp < -260 || temp > 25) {
   1410 		/* this can't be correct, ignore */
   1411 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1412 		return;
   1413 	}
   1414 
   1415 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1416 
   1417 	/* adjust Tx power if need be */
   1418 	if (abs(temp - sc->temp) <= 6)
   1419 		return;
   1420 
   1421 	sc->temp = temp;
   1422 
   1423 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
   1424 		/* just warn, too bad for the automatic calibration... */
   1425 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1426 	}
   1427 }
   1428 
   1429 static void
   1430 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1431 	struct wpi_rx_data *data)
   1432 {
   1433 	struct ieee80211com *ic = &sc->sc_ic;
   1434 	struct ifnet *ifp = ic->ic_ifp;
   1435 	struct wpi_rx_ring *ring = &sc->rxq;
   1436 	struct wpi_rx_stat *stat;
   1437 	struct wpi_rx_head *head;
   1438 	struct wpi_rx_tail *tail;
   1439 	struct wpi_rbuf *rbuf;
   1440 	struct ieee80211_frame *wh;
   1441 	struct ieee80211_node *ni;
   1442 	struct mbuf *m, *mnew;
   1443 	int data_off ;
   1444 
   1445 	stat = (struct wpi_rx_stat *)(desc + 1);
   1446 
   1447 	if (stat->len > WPI_STAT_MAXLEN) {
   1448 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1449 		ifp->if_ierrors++;
   1450 		return;
   1451 	}
   1452 
   1453 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1454 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1455 
   1456 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1457 		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
   1458 		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1459 		le64toh(tail->tstamp)));
   1460 
   1461 	/*
   1462 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1463 	 * to radiotap in monitor mode).
   1464 	 */
   1465 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1466 		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
   1467 		ifp->if_ierrors++;
   1468 		return;
   1469 	}
   1470 
   1471 	/* Compute where are the useful datas */
   1472 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1473 
   1474 	/*
   1475 	 * If the number of free entry is too low
   1476 	 * just dup the data->m socket and reuse the same rbuf entry
   1477 	 * Note that thi test is not protected by a mutex because the
   1478 	 * only path that causes nb_free_entries to decrease is through
   1479 	 * this interrupt routine, which is not re-entrent.
   1480 	 * What may not be obvious is that the safe path is if that test
   1481 	 * evaluates as true, so nb_free_entries can grow any time.
   1482 	 */
   1483 	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
   1484 
   1485 		/* Prepare the mbuf for the m_dup */
   1486 		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
   1487 		data->m->m_data = (char*) data->m->m_data + data_off;
   1488 
   1489 		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
   1490 
   1491 		/* Restore the m_data pointer for future use */
   1492 		data->m->m_data = (char*) data->m->m_data - data_off;
   1493 
   1494 		if (m == NULL) {
   1495 			ifp->if_ierrors++;
   1496 			return;
   1497 		}
   1498 	} else {
   1499 
   1500 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1501 		if (mnew == NULL) {
   1502 			ifp->if_ierrors++;
   1503 			return;
   1504 		}
   1505 
   1506 		rbuf = wpi_alloc_rbuf(sc);
   1507 		KASSERT(rbuf != NULL);
   1508 
   1509  		/* attach Rx buffer to mbuf */
   1510 		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1511 		 	rbuf);
   1512 		mnew->m_flags |= M_EXT_RW;
   1513 
   1514 		m = data->m;
   1515 		data->m = mnew;
   1516 
   1517 		/* update Rx descriptor */
   1518 		ring->desc[ring->cur] = htole32(rbuf->paddr);
   1519 
   1520 		m->m_data = (char*)m->m_data + data_off;
   1521 		m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1522 	}
   1523 
   1524 	/* finalize mbuf */
   1525 	m->m_pkthdr.rcvif = ifp;
   1526 
   1527 	if (ic->ic_state == IEEE80211_S_SCAN)
   1528 		wpi_fix_channel(ic, m);
   1529 
   1530 	if (sc->sc_drvbpf != NULL) {
   1531 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1532 
   1533 		tap->wr_flags = 0;
   1534 		tap->wr_chan_freq =
   1535 			htole16(ic->ic_channels[head->chan].ic_freq);
   1536 		tap->wr_chan_flags =
   1537 			htole16(ic->ic_channels[head->chan].ic_flags);
   1538 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1539 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1540 		tap->wr_tsft = tail->tstamp;
   1541 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1542 		switch (head->rate) {
   1543 		/* CCK rates */
   1544 		case  10: tap->wr_rate =   2; break;
   1545 		case  20: tap->wr_rate =   4; break;
   1546 		case  55: tap->wr_rate =  11; break;
   1547 		case 110: tap->wr_rate =  22; break;
   1548 		/* OFDM rates */
   1549 		case 0xd: tap->wr_rate =  12; break;
   1550 		case 0xf: tap->wr_rate =  18; break;
   1551 		case 0x5: tap->wr_rate =  24; break;
   1552 		case 0x7: tap->wr_rate =  36; break;
   1553 		case 0x9: tap->wr_rate =  48; break;
   1554 		case 0xb: tap->wr_rate =  72; break;
   1555 		case 0x1: tap->wr_rate =  96; break;
   1556 		case 0x3: tap->wr_rate = 108; break;
   1557 		/* unknown rate: should not happen */
   1558 		default:  tap->wr_rate =   0;
   1559 		}
   1560 		if (le16toh(head->flags) & 0x4)
   1561 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1562 
   1563 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1564 	}
   1565 
   1566 	/* grab a reference to the source node */
   1567 	wh = mtod(m, struct ieee80211_frame *);
   1568 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1569 
   1570 	/* send the frame to the 802.11 layer */
   1571 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1572 
   1573 	/* release node reference */
   1574 	ieee80211_free_node(ni);
   1575 }
   1576 
   1577 static void
   1578 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1579 {
   1580 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1581 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1582 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
   1583 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1584 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
   1585 
   1586 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1587 		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1588 		stat->nkill, stat->rate, le32toh(stat->duration),
   1589 		le32toh(stat->status)));
   1590 
   1591 	/*
   1592 	 * Update rate control statistics for the node.
   1593 	 * XXX we should not count mgmt frames since they're always sent at
   1594 	 * the lowest available bit-rate.
   1595 	 */
   1596 	wn->amn.amn_txcnt++;
   1597 	if (stat->ntries > 0) {
   1598 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1599 		wn->amn.amn_retrycnt++;
   1600 	}
   1601 
   1602 	if ((le32toh(stat->status) & 0xff) != 1)
   1603 		ifp->if_oerrors++;
   1604 	else
   1605 		ifp->if_opackets++;
   1606 
   1607 	bus_dmamap_unload(sc->sc_dmat, txdata->map);
   1608 	m_freem(txdata->m);
   1609 	txdata->m = NULL;
   1610 	ieee80211_free_node(txdata->ni);
   1611 	txdata->ni = NULL;
   1612 
   1613 	ring->queued--;
   1614 
   1615 	sc->sc_tx_timer = 0;
   1616 	ifp->if_flags &= ~IFF_OACTIVE;
   1617 	wpi_start(ifp);
   1618 }
   1619 
   1620 static void
   1621 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1622 {
   1623 	struct wpi_tx_ring *ring = &sc->cmdq;
   1624 	struct wpi_tx_data *data;
   1625 
   1626 	if ((desc->qid & 7) != 4)
   1627 		return;	/* not a command ack */
   1628 
   1629 	data = &ring->data[desc->idx];
   1630 
   1631 	/* if the command was mapped in a mbuf, free it */
   1632 	if (data->m != NULL) {
   1633 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1634 		m_freem(data->m);
   1635 		data->m = NULL;
   1636 	}
   1637 
   1638 	wakeup(&ring->cmd[desc->idx]);
   1639 }
   1640 
   1641 static void
   1642 wpi_notif_intr(struct wpi_softc *sc)
   1643 {
   1644 	struct ieee80211com *ic = &sc->sc_ic;
   1645 	struct ifnet *ifp =  ic->ic_ifp;
   1646 	struct wpi_rx_desc *desc;
   1647 	struct wpi_rx_data *data;
   1648 	uint32_t hw;
   1649 
   1650 	hw = le32toh(sc->shared->next);
   1651 	while (sc->rxq.cur != hw) {
   1652 		data = &sc->rxq.data[sc->rxq.cur];
   1653 
   1654 		desc = mtod(data->m, struct wpi_rx_desc *);
   1655 
   1656 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1657 			"len=%d\n", desc->qid, desc->idx, desc->flags,
   1658 			desc->type, le32toh(desc->len)));
   1659 
   1660 		if (!(desc->qid & 0x80))	/* reply to a command */
   1661 			wpi_cmd_intr(sc, desc);
   1662 
   1663 		switch (desc->type) {
   1664 		case WPI_RX_DONE:
   1665 			/* a 802.11 frame was received */
   1666 			wpi_rx_intr(sc, desc, data);
   1667 			break;
   1668 
   1669 		case WPI_TX_DONE:
   1670 			/* a 802.11 frame has been transmitted */
   1671 			wpi_tx_intr(sc, desc);
   1672 			break;
   1673 
   1674 		case WPI_UC_READY:
   1675 		{
   1676 			struct wpi_ucode_info *uc =
   1677 				(struct wpi_ucode_info *)(desc + 1);
   1678 
   1679 			/* the microcontroller is ready */
   1680 			DPRINTF(("microcode alive notification version %x "
   1681 				"alive %x\n", le32toh(uc->version),
   1682 				le32toh(uc->valid)));
   1683 
   1684 			if (le32toh(uc->valid) != 1) {
   1685 				aprint_error_dev(sc->sc_dev,
   1686 					"microcontroller initialization failed\n");
   1687 			}
   1688 			break;
   1689 		}
   1690 		case WPI_STATE_CHANGED:
   1691 		{
   1692 			uint32_t *status = (uint32_t *)(desc + 1);
   1693 
   1694 			/* enabled/disabled notification */
   1695 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1696 
   1697 			if (le32toh(*status) & 1) {
   1698 				/* the radio button has to be pushed */
   1699 				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
   1700 				/* turn the interface down */
   1701 				ifp->if_flags &= ~IFF_UP;
   1702 				wpi_stop(ifp, 1);
   1703 				return;	/* no further processing */
   1704 			}
   1705 			break;
   1706 		}
   1707 		case WPI_START_SCAN:
   1708 		{
   1709 			struct wpi_start_scan *scan =
   1710 				(struct wpi_start_scan *)(desc + 1);
   1711 
   1712 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1713 				scan->chan, le32toh(scan->status)));
   1714 
   1715 			/* fix current channel */
   1716 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
   1717 			break;
   1718 		}
   1719 		case WPI_STOP_SCAN:
   1720 		{
   1721 			struct wpi_stop_scan *scan =
   1722 				(struct wpi_stop_scan *)(desc + 1);
   1723 
   1724 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1725 				scan->nchan, scan->status, scan->chan));
   1726 
   1727 			if (scan->status == 1 && scan->chan <= 14) {
   1728 				/*
   1729 				 * We just finished scanning 802.11g channels,
   1730 				 * start scanning 802.11a ones.
   1731 				 */
   1732 				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
   1733 					break;
   1734 			}
   1735 			sc->is_scanning = false;
   1736 			ieee80211_end_scan(ic);
   1737 			break;
   1738 		}
   1739 		}
   1740 
   1741 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1742 	}
   1743 
   1744 	/* tell the firmware what we have processed */
   1745 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1746 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1747 }
   1748 
   1749 static int
   1750 wpi_intr(void *arg)
   1751 {
   1752 	struct wpi_softc *sc = arg;
   1753 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1754 	uint32_t r;
   1755 
   1756 	r = WPI_READ(sc, WPI_INTR);
   1757 	if (r == 0 || r == 0xffffffff)
   1758 		return 0;	/* not for us */
   1759 
   1760 	DPRINTFN(5, ("interrupt reg %x\n", r));
   1761 
   1762 	/* disable interrupts */
   1763 	WPI_WRITE(sc, WPI_MASK, 0);
   1764 	/* ack interrupts */
   1765 	WPI_WRITE(sc, WPI_INTR, r);
   1766 
   1767 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1768 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1769 		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
   1770 		wpi_stop(sc->sc_ic.ic_ifp, 1);
   1771 		return 1;
   1772 	}
   1773 
   1774 	if (r & WPI_RX_INTR)
   1775 		wpi_notif_intr(sc);
   1776 
   1777 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1778 		wakeup(sc);
   1779 
   1780 	/* re-enable interrupts */
   1781 	if (ifp->if_flags & IFF_UP)
   1782 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1783 
   1784 	return 1;
   1785 }
   1786 
   1787 static uint8_t
   1788 wpi_plcp_signal(int rate)
   1789 {
   1790 	switch (rate) {
   1791 	/* CCK rates (returned values are device-dependent) */
   1792 	case 2:		return 10;
   1793 	case 4:		return 20;
   1794 	case 11:	return 55;
   1795 	case 22:	return 110;
   1796 
   1797 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1798 	/* R1-R4, (u)ral is R4-R1 */
   1799 	case 12:	return 0xd;
   1800 	case 18:	return 0xf;
   1801 	case 24:	return 0x5;
   1802 	case 36:	return 0x7;
   1803 	case 48:	return 0x9;
   1804 	case 72:	return 0xb;
   1805 	case 96:	return 0x1;
   1806 	case 108:	return 0x3;
   1807 
   1808 	/* unsupported rates (should not get there) */
   1809 	default:	return 0;
   1810 	}
   1811 }
   1812 
   1813 /* quickly determine if a given rate is CCK or OFDM */
   1814 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1815 
   1816 static int
   1817 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1818 	int ac)
   1819 {
   1820 	struct ieee80211com *ic = &sc->sc_ic;
   1821 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1822 	struct wpi_tx_desc *desc;
   1823 	struct wpi_tx_data *data;
   1824 	struct wpi_tx_cmd *cmd;
   1825 	struct wpi_cmd_data *tx;
   1826 	struct ieee80211_frame *wh;
   1827 	struct ieee80211_key *k;
   1828 	const struct chanAccParams *cap;
   1829 	struct mbuf *mnew;
   1830 	int i, error, rate, hdrlen, noack = 0;
   1831 
   1832 	desc = &ring->desc[ring->cur];
   1833 	data = &ring->data[ring->cur];
   1834 
   1835 	wh = mtod(m0, struct ieee80211_frame *);
   1836 
   1837 	if (ieee80211_has_qos(wh)) {
   1838 		cap = &ic->ic_wme.wme_chanParams;
   1839 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1840 	}
   1841 
   1842 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1843 		k = ieee80211_crypto_encap(ic, ni, m0);
   1844 		if (k == NULL) {
   1845 			m_freem(m0);
   1846 			return ENOBUFS;
   1847 		}
   1848 
   1849 		/* packet header may have moved, reset our local pointer */
   1850 		wh = mtod(m0, struct ieee80211_frame *);
   1851 	}
   1852 
   1853 	hdrlen = ieee80211_anyhdrsize(wh);
   1854 
   1855 	/* pickup a rate */
   1856 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1857 		IEEE80211_FC0_TYPE_MGT) {
   1858 		/* mgmt frames are sent at the lowest available bit-rate */
   1859 		rate = ni->ni_rates.rs_rates[0];
   1860 	} else {
   1861 		if (ic->ic_fixed_rate != -1) {
   1862 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1863 				rs_rates[ic->ic_fixed_rate];
   1864 		} else
   1865 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1866 	}
   1867 	rate &= IEEE80211_RATE_VAL;
   1868 
   1869 
   1870 	if (sc->sc_drvbpf != NULL) {
   1871 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1872 
   1873 		tap->wt_flags = 0;
   1874 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1875 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1876 		tap->wt_rate = rate;
   1877 		tap->wt_hwqueue = ac;
   1878 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1879 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1880 
   1881 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1882 	}
   1883 
   1884 	cmd = &ring->cmd[ring->cur];
   1885 	cmd->code = WPI_CMD_TX_DATA;
   1886 	cmd->flags = 0;
   1887 	cmd->qid = ring->qid;
   1888 	cmd->idx = ring->cur;
   1889 
   1890 	tx = (struct wpi_cmd_data *)cmd->data;
   1891 	tx->flags = 0;
   1892 
   1893 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1894 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1895 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1896 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1897 
   1898 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1899 
   1900 	/* retrieve destination node's id */
   1901 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1902 		WPI_ID_BSS;
   1903 
   1904 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1905 		IEEE80211_FC0_TYPE_MGT) {
   1906 		/* tell h/w to set timestamp in probe responses */
   1907 		if ((wh->i_fc[0] &
   1908 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1909 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1910 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1911 
   1912 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1913 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1914 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1915 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1916 			tx->timeout = htole16(3);
   1917 		else
   1918 			tx->timeout = htole16(2);
   1919 	} else
   1920 		tx->timeout = htole16(0);
   1921 
   1922 	tx->rate = wpi_plcp_signal(rate);
   1923 
   1924 	/* be very persistant at sending frames out */
   1925 	tx->rts_ntries = 7;
   1926 	tx->data_ntries = 15;
   1927 
   1928 	tx->ofdm_mask = 0xff;
   1929 	tx->cck_mask = 0xf;
   1930 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   1931 
   1932 	tx->len = htole16(m0->m_pkthdr.len);
   1933 
   1934 	/* save and trim IEEE802.11 header */
   1935 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   1936 	m_adj(m0, hdrlen);
   1937 
   1938 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1939 		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1940 	if (error != 0 && error != EFBIG) {
   1941 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
   1942 		m_freem(m0);
   1943 		return error;
   1944 	}
   1945 	if (error != 0) {
   1946 		/* too many fragments, linearize */
   1947 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1948 		if (mnew == NULL) {
   1949 			m_freem(m0);
   1950 			return ENOMEM;
   1951 		}
   1952 
   1953 		M_COPY_PKTHDR(mnew, m0);
   1954 		if (m0->m_pkthdr.len > MHLEN) {
   1955 			MCLGET(mnew, M_DONTWAIT);
   1956 			if (!(mnew->m_flags & M_EXT)) {
   1957 				m_freem(m0);
   1958 				m_freem(mnew);
   1959 				return ENOMEM;
   1960 			}
   1961 		}
   1962 
   1963 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1964 		m_freem(m0);
   1965 		mnew->m_len = mnew->m_pkthdr.len;
   1966 		m0 = mnew;
   1967 
   1968 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1969 			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1970 		if (error != 0) {
   1971 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1972 							 error);
   1973 			m_freem(m0);
   1974 			return error;
   1975 		}
   1976 	}
   1977 
   1978 	data->m = m0;
   1979 	data->ni = ni;
   1980 
   1981 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   1982 		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   1983 
   1984 	/* first scatter/gather segment is used by the tx data command */
   1985 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   1986 		(1 + data->map->dm_nsegs) << 24);
   1987 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   1988 		ring->cur * sizeof (struct wpi_tx_cmd));
   1989 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   1990 						 ((hdrlen + 3) & ~3));
   1991 
   1992 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   1993 		desc->segs[i].addr =
   1994 			htole32(data->map->dm_segs[i - 1].ds_addr);
   1995 		desc->segs[i].len  =
   1996 			htole32(data->map->dm_segs[i - 1].ds_len);
   1997 	}
   1998 
   1999 	ring->queued++;
   2000 
   2001 	/* kick ring */
   2002 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   2003 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2004 
   2005 	return 0;
   2006 }
   2007 
   2008 static void
   2009 wpi_start(struct ifnet *ifp)
   2010 {
   2011 	struct wpi_softc *sc = ifp->if_softc;
   2012 	struct ieee80211com *ic = &sc->sc_ic;
   2013 	struct ieee80211_node *ni;
   2014 	struct ether_header *eh;
   2015 	struct mbuf *m0;
   2016 	int ac;
   2017 
   2018 	/*
   2019 	 * net80211 may still try to send management frames even if the
   2020 	 * IFF_RUNNING flag is not set...
   2021 	 */
   2022 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   2023 		return;
   2024 
   2025 	for (;;) {
   2026 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   2027 		if (m0 != NULL) {
   2028 
   2029 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   2030 			m0->m_pkthdr.rcvif = NULL;
   2031 
   2032 			/* management frames go into ring 0 */
   2033 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   2034 				ifp->if_oerrors++;
   2035 				continue;
   2036 			}
   2037 			bpf_mtap3(ic->ic_rawbpf, m0);
   2038 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   2039 				ifp->if_oerrors++;
   2040 				break;
   2041 			}
   2042 		} else {
   2043 			if (ic->ic_state != IEEE80211_S_RUN)
   2044 				break;
   2045 			IFQ_POLL(&ifp->if_snd, m0);
   2046 			if (m0 == NULL)
   2047 				break;
   2048 
   2049 			if (m0->m_len < sizeof (*eh) &&
   2050 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
   2051 				ifp->if_oerrors++;
   2052 				continue;
   2053 			}
   2054 			eh = mtod(m0, struct ether_header *);
   2055 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   2056 			if (ni == NULL) {
   2057 				m_freem(m0);
   2058 				ifp->if_oerrors++;
   2059 				continue;
   2060 			}
   2061 
   2062 			/* classify mbuf so we can find which tx ring to use */
   2063 			if (ieee80211_classify(ic, m0, ni) != 0) {
   2064 				m_freem(m0);
   2065 				ieee80211_free_node(ni);
   2066 				ifp->if_oerrors++;
   2067 				continue;
   2068 			}
   2069 
   2070 			/* no QoS encapsulation for EAPOL frames */
   2071 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   2072 			    M_WME_GETAC(m0) : WME_AC_BE;
   2073 
   2074 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   2075 				/* there is no place left in this ring */
   2076 				ifp->if_flags |= IFF_OACTIVE;
   2077 				break;
   2078 			}
   2079 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   2080 			bpf_mtap(ifp, m0);
   2081 			m0 = ieee80211_encap(ic, m0, ni);
   2082 			if (m0 == NULL) {
   2083 				ieee80211_free_node(ni);
   2084 				ifp->if_oerrors++;
   2085 				continue;
   2086 			}
   2087 			bpf_mtap3(ic->ic_rawbpf, m0);
   2088 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   2089 				ieee80211_free_node(ni);
   2090 				ifp->if_oerrors++;
   2091 				break;
   2092 			}
   2093 		}
   2094 
   2095 		sc->sc_tx_timer = 5;
   2096 		ifp->if_timer = 1;
   2097 	}
   2098 }
   2099 
   2100 static void
   2101 wpi_watchdog(struct ifnet *ifp)
   2102 {
   2103 	struct wpi_softc *sc = ifp->if_softc;
   2104 
   2105 	ifp->if_timer = 0;
   2106 
   2107 	if (sc->sc_tx_timer > 0) {
   2108 		if (--sc->sc_tx_timer == 0) {
   2109 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2110 			ifp->if_oerrors++;
   2111 			ifp->if_flags &= ~IFF_UP;
   2112 			wpi_stop(ifp, 1);
   2113 			return;
   2114 		}
   2115 		ifp->if_timer = 1;
   2116 	}
   2117 
   2118 	ieee80211_watchdog(&sc->sc_ic);
   2119 }
   2120 
   2121 static int
   2122 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2123 {
   2124 #define IS_RUNNING(ifp) \
   2125 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2126 
   2127 	struct wpi_softc *sc = ifp->if_softc;
   2128 	struct ieee80211com *ic = &sc->sc_ic;
   2129 	int s, error = 0;
   2130 
   2131 	s = splnet();
   2132 
   2133 	switch (cmd) {
   2134 	case SIOCSIFFLAGS:
   2135 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2136 			break;
   2137 		if (ifp->if_flags & IFF_UP) {
   2138 			if (!(ifp->if_flags & IFF_RUNNING))
   2139 				wpi_init(ifp);
   2140 		} else {
   2141 			if (ifp->if_flags & IFF_RUNNING)
   2142 				wpi_stop(ifp, 1);
   2143 		}
   2144 		break;
   2145 
   2146 	case SIOCADDMULTI:
   2147 	case SIOCDELMULTI:
   2148 		/* XXX no h/w multicast filter? --dyoung */
   2149 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2150 			/* setup multicast filter, etc */
   2151 			error = 0;
   2152 		}
   2153 		break;
   2154 
   2155 	default:
   2156 		error = ieee80211_ioctl(ic, cmd, data);
   2157 	}
   2158 
   2159 	if (error == ENETRESET) {
   2160 		if (IS_RUNNING(ifp) &&
   2161 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2162 			wpi_init(ifp);
   2163 		error = 0;
   2164 	}
   2165 
   2166 	splx(s);
   2167 	return error;
   2168 
   2169 #undef IS_RUNNING
   2170 }
   2171 
   2172 /*
   2173  * Extract various information from EEPROM.
   2174  */
   2175 static void
   2176 wpi_read_eeprom(struct wpi_softc *sc)
   2177 {
   2178 	struct ieee80211com *ic = &sc->sc_ic;
   2179 	char domain[4];
   2180 	int i;
   2181 
   2182 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2183 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2184 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2185 
   2186 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2187 	    sc->type));
   2188 
   2189 	/* read and print regulatory domain */
   2190 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2191 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
   2192 
   2193 	/* read and print MAC address */
   2194 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2195 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2196 
   2197 	/* read the list of authorized channels */
   2198 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2199 		wpi_read_eeprom_channels(sc, i);
   2200 
   2201 	/* read the list of power groups */
   2202 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2203 		wpi_read_eeprom_group(sc, i);
   2204 }
   2205 
   2206 static void
   2207 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2208 {
   2209 	struct ieee80211com *ic = &sc->sc_ic;
   2210 	const struct wpi_chan_band *band = &wpi_bands[n];
   2211 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2212 	int chan, i;
   2213 
   2214 	wpi_read_prom_data(sc, band->addr, channels,
   2215 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2216 
   2217 	for (i = 0; i < band->nchan; i++) {
   2218 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2219 			continue;
   2220 
   2221 		chan = band->chan[i];
   2222 
   2223 		if (n == 0) {	/* 2GHz band */
   2224 			ic->ic_channels[chan].ic_freq =
   2225 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2226 			ic->ic_channels[chan].ic_flags =
   2227 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2228 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2229 
   2230 		} else {	/* 5GHz band */
   2231 			/*
   2232 			 * Some 3945abg adapters support channels 7, 8, 11
   2233 			 * and 12 in the 2GHz *and* 5GHz bands.
   2234 			 * Because of limitations in our net80211(9) stack,
   2235 			 * we can't support these channels in 5GHz band.
   2236 			 */
   2237 			if (chan <= 14)
   2238 				continue;
   2239 
   2240 			ic->ic_channels[chan].ic_freq =
   2241 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2242 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2243 		}
   2244 
   2245 		/* is active scan allowed on this channel? */
   2246 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2247 			ic->ic_channels[chan].ic_flags |=
   2248 			    IEEE80211_CHAN_PASSIVE;
   2249 		}
   2250 
   2251 		/* save maximum allowed power for this channel */
   2252 		sc->maxpwr[chan] = channels[i].maxpwr;
   2253 
   2254 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2255 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2256 	}
   2257 }
   2258 
   2259 static void
   2260 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2261 {
   2262 	struct wpi_power_group *group = &sc->groups[n];
   2263 	struct wpi_eeprom_group rgroup;
   2264 	int i;
   2265 
   2266 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2267 	    sizeof rgroup);
   2268 
   2269 	/* save power group information */
   2270 	group->chan   = rgroup.chan;
   2271 	group->maxpwr = rgroup.maxpwr;
   2272 	/* temperature at which the samples were taken */
   2273 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2274 
   2275 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2276 	    group->chan, group->maxpwr, group->temp));
   2277 
   2278 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2279 		group->samples[i].index = rgroup.samples[i].index;
   2280 		group->samples[i].power = rgroup.samples[i].power;
   2281 
   2282 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2283 		    group->samples[i].index, group->samples[i].power));
   2284 	}
   2285 }
   2286 
   2287 /*
   2288  * Send a command to the firmware.
   2289  */
   2290 static int
   2291 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2292 {
   2293 	struct wpi_tx_ring *ring = &sc->cmdq;
   2294 	struct wpi_tx_desc *desc;
   2295 	struct wpi_tx_cmd *cmd;
   2296 
   2297 	KASSERT(size <= sizeof cmd->data);
   2298 
   2299 	desc = &ring->desc[ring->cur];
   2300 	cmd = &ring->cmd[ring->cur];
   2301 
   2302 	cmd->code = code;
   2303 	cmd->flags = 0;
   2304 	cmd->qid = ring->qid;
   2305 	cmd->idx = ring->cur;
   2306 	memcpy(cmd->data, buf, size);
   2307 
   2308 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2309 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2310 		ring->cur * sizeof (struct wpi_tx_cmd));
   2311 	desc->segs[0].len  = htole32(4 + size);
   2312 
   2313 	/* kick cmd ring */
   2314 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2315 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2316 
   2317 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2318 }
   2319 
   2320 static int
   2321 wpi_wme_update(struct ieee80211com *ic)
   2322 {
   2323 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2324 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2325 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2326 	const struct wmeParams *wmep;
   2327 	struct wpi_wme_setup wme;
   2328 	int ac;
   2329 
   2330 	/* don't override default WME values if WME is not actually enabled */
   2331 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2332 		return 0;
   2333 
   2334 	wme.flags = 0;
   2335 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2336 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2337 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2338 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2339 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2340 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2341 
   2342 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2343 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2344 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2345 	}
   2346 
   2347 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2348 #undef WPI_USEC
   2349 #undef WPI_EXP2
   2350 }
   2351 
   2352 /*
   2353  * Configure h/w multi-rate retries.
   2354  */
   2355 static int
   2356 wpi_mrr_setup(struct wpi_softc *sc)
   2357 {
   2358 	struct ieee80211com *ic = &sc->sc_ic;
   2359 	struct wpi_mrr_setup mrr;
   2360 	int i, error;
   2361 
   2362 	/* CCK rates (not used with 802.11a) */
   2363 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2364 		mrr.rates[i].flags = 0;
   2365 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2366 		/* fallback to the immediate lower CCK rate (if any) */
   2367 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2368 		/* try one time at this rate before falling back to "next" */
   2369 		mrr.rates[i].ntries = 1;
   2370 	}
   2371 
   2372 	/* OFDM rates (not used with 802.11b) */
   2373 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2374 		mrr.rates[i].flags = 0;
   2375 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2376 		/* fallback to the immediate lower rate (if any) */
   2377 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2378 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2379 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2380 			WPI_OFDM6 : WPI_CCK2) :
   2381 		    i - 1;
   2382 		/* try one time at this rate before falling back to "next" */
   2383 		mrr.rates[i].ntries = 1;
   2384 	}
   2385 
   2386 	/* setup MRR for control frames */
   2387 	mrr.which = htole32(WPI_MRR_CTL);
   2388 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2389 	if (error != 0) {
   2390 		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
   2391 		return error;
   2392 	}
   2393 
   2394 	/* setup MRR for data frames */
   2395 	mrr.which = htole32(WPI_MRR_DATA);
   2396 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2397 	if (error != 0) {
   2398 		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
   2399 		return error;
   2400 	}
   2401 
   2402 	return 0;
   2403 }
   2404 
   2405 static void
   2406 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2407 {
   2408 	struct wpi_cmd_led led;
   2409 
   2410 	led.which = which;
   2411 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2412 	led.off = off;
   2413 	led.on = on;
   2414 
   2415 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2416 }
   2417 
   2418 static void
   2419 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2420 {
   2421 	struct wpi_cmd_tsf tsf;
   2422 	uint64_t val, mod;
   2423 
   2424 	memset(&tsf, 0, sizeof tsf);
   2425 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
   2426 	tsf.bintval = htole16(ni->ni_intval);
   2427 	tsf.lintval = htole16(10);
   2428 
   2429 	/* compute remaining time until next beacon */
   2430 	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
   2431 	mod = le64toh(tsf.tstamp) % val;
   2432 	tsf.binitval = htole32((uint32_t)(val - mod));
   2433 
   2434 	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
   2435 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2436 
   2437 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2438 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2439 }
   2440 
   2441 /*
   2442  * Update Tx power to match what is defined for channel `c'.
   2443  */
   2444 static int
   2445 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2446 {
   2447 	struct ieee80211com *ic = &sc->sc_ic;
   2448 	struct wpi_power_group *group;
   2449 	struct wpi_cmd_txpower txpower;
   2450 	u_int chan;
   2451 	int i;
   2452 
   2453 	/* get channel number */
   2454 	chan = ieee80211_chan2ieee(ic, c);
   2455 
   2456 	/* find the power group to which this channel belongs */
   2457 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2458 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2459 			if (chan <= group->chan)
   2460 				break;
   2461 	} else
   2462 		group = &sc->groups[0];
   2463 
   2464 	memset(&txpower, 0, sizeof txpower);
   2465 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2466 	txpower.chan = htole16(chan);
   2467 
   2468 	/* set Tx power for all OFDM and CCK rates */
   2469 	for (i = 0; i <= 11 ; i++) {
   2470 		/* retrieve Tx power for this channel/rate combination */
   2471 		int idx = wpi_get_power_index(sc, group, c,
   2472 		    wpi_ridx_to_rate[i]);
   2473 
   2474 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2475 
   2476 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2477 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2478 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2479 		} else {
   2480 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2481 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2482 		}
   2483 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2484 		    wpi_ridx_to_rate[i], idx));
   2485 	}
   2486 
   2487 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2488 }
   2489 
   2490 /*
   2491  * Determine Tx power index for a given channel/rate combination.
   2492  * This takes into account the regulatory information from EEPROM and the
   2493  * current temperature.
   2494  */
   2495 static int
   2496 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2497     struct ieee80211_channel *c, int rate)
   2498 {
   2499 /* fixed-point arithmetic division using a n-bit fractional part */
   2500 #define fdivround(a, b, n)	\
   2501 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2502 
   2503 /* linear interpolation */
   2504 #define interpolate(x, x1, y1, x2, y2, n)	\
   2505 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2506 
   2507 	struct ieee80211com *ic = &sc->sc_ic;
   2508 	struct wpi_power_sample *sample;
   2509 	int pwr, idx;
   2510 	u_int chan;
   2511 
   2512 	/* get channel number */
   2513 	chan = ieee80211_chan2ieee(ic, c);
   2514 
   2515 	/* default power is group's maximum power - 3dB */
   2516 	pwr = group->maxpwr / 2;
   2517 
   2518 	/* decrease power for highest OFDM rates to reduce distortion */
   2519 	switch (rate) {
   2520 	case 72:	/* 36Mb/s */
   2521 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2522 		break;
   2523 	case 96:	/* 48Mb/s */
   2524 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2525 		break;
   2526 	case 108:	/* 54Mb/s */
   2527 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2528 		break;
   2529 	}
   2530 
   2531 	/* never exceed channel's maximum allowed Tx power */
   2532 	pwr = min(pwr, sc->maxpwr[chan]);
   2533 
   2534 	/* retrieve power index into gain tables from samples */
   2535 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2536 		if (pwr > sample[1].power)
   2537 			break;
   2538 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2539 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2540 	    sample[1].power, sample[1].index, 19);
   2541 
   2542 	/*
   2543 	 * Adjust power index based on current temperature:
   2544 	 * - if cooler than factory-calibrated: decrease output power
   2545 	 * - if warmer than factory-calibrated: increase output power
   2546 	 */
   2547 	idx -= (sc->temp - group->temp) * 11 / 100;
   2548 
   2549 	/* decrease power for CCK rates (-5dB) */
   2550 	if (!WPI_RATE_IS_OFDM(rate))
   2551 		idx += 10;
   2552 
   2553 	/* keep power index in a valid range */
   2554 	if (idx < 0)
   2555 		return 0;
   2556 	if (idx > WPI_MAX_PWR_INDEX)
   2557 		return WPI_MAX_PWR_INDEX;
   2558 	return idx;
   2559 
   2560 #undef interpolate
   2561 #undef fdivround
   2562 }
   2563 
   2564 /*
   2565  * Build a beacon frame that the firmware will broadcast periodically in
   2566  * IBSS or HostAP modes.
   2567  */
   2568 static int
   2569 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2570 {
   2571 	struct ieee80211com *ic = &sc->sc_ic;
   2572 	struct wpi_tx_ring *ring = &sc->cmdq;
   2573 	struct wpi_tx_desc *desc;
   2574 	struct wpi_tx_data *data;
   2575 	struct wpi_tx_cmd *cmd;
   2576 	struct wpi_cmd_beacon *bcn;
   2577 	struct ieee80211_beacon_offsets bo;
   2578 	struct mbuf *m0;
   2579 	int error;
   2580 
   2581 	desc = &ring->desc[ring->cur];
   2582 	data = &ring->data[ring->cur];
   2583 
   2584 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2585 	if (m0 == NULL) {
   2586 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
   2587 		return ENOMEM;
   2588 	}
   2589 
   2590 	cmd = &ring->cmd[ring->cur];
   2591 	cmd->code = WPI_CMD_SET_BEACON;
   2592 	cmd->flags = 0;
   2593 	cmd->qid = ring->qid;
   2594 	cmd->idx = ring->cur;
   2595 
   2596 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2597 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2598 	bcn->id = WPI_ID_BROADCAST;
   2599 	bcn->ofdm_mask = 0xff;
   2600 	bcn->cck_mask = 0x0f;
   2601 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2602 	bcn->len = htole16(m0->m_pkthdr.len);
   2603 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2604 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2605 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2606 
   2607 	/* save and trim IEEE802.11 header */
   2608 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2609 	m_adj(m0, sizeof (struct ieee80211_frame));
   2610 
   2611 	/* assume beacon frame is contiguous */
   2612 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2613 		BUS_DMA_READ | BUS_DMA_NOWAIT);
   2614 	if (error) {
   2615 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2616 		m_freem(m0);
   2617 		return error;
   2618 	}
   2619 
   2620 	data->m = m0;
   2621 
   2622 	/* first scatter/gather segment is used by the beacon command */
   2623 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2624 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2625 		ring->cur * sizeof (struct wpi_tx_cmd));
   2626 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2627 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2628 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2629 
   2630 	/* kick cmd ring */
   2631 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2632 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2633 
   2634 	return 0;
   2635 }
   2636 
   2637 static int
   2638 wpi_auth(struct wpi_softc *sc)
   2639 {
   2640 	struct ieee80211com *ic = &sc->sc_ic;
   2641 	struct ieee80211_node *ni = ic->ic_bss;
   2642 	struct wpi_node_info node;
   2643 	int error;
   2644 
   2645 	/* update adapter's configuration */
   2646 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2647 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2648 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2649 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2650 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2651 		    WPI_CONFIG_24GHZ);
   2652 	}
   2653 	switch (ic->ic_curmode) {
   2654 	case IEEE80211_MODE_11A:
   2655 		sc->config.cck_mask  = 0;
   2656 		sc->config.ofdm_mask = 0x15;
   2657 		break;
   2658 	case IEEE80211_MODE_11B:
   2659 		sc->config.cck_mask  = 0x03;
   2660 		sc->config.ofdm_mask = 0;
   2661 		break;
   2662 	default:	/* assume 802.11b/g */
   2663 		sc->config.cck_mask  = 0x0f;
   2664 		sc->config.ofdm_mask = 0x15;
   2665 	}
   2666 
   2667 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2668 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2669 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2670 		sizeof (struct wpi_config), 1);
   2671 	if (error != 0) {
   2672 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2673 		return error;
   2674 	}
   2675 
   2676 	/* configuration has changed, set Tx power accordingly */
   2677 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2678 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2679 		return error;
   2680 	}
   2681 
   2682 	/* add default node */
   2683 	memset(&node, 0, sizeof node);
   2684 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2685 	node.id = WPI_ID_BSS;
   2686 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2687 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2688 	node.action = htole32(WPI_ACTION_SET_RATE);
   2689 	node.antenna = WPI_ANTENNA_BOTH;
   2690 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2691 	if (error != 0) {
   2692 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2693 		return error;
   2694 	}
   2695 
   2696 	return 0;
   2697 }
   2698 
   2699 /*
   2700  * Send a scan request to the firmware.  Since this command is huge, we map it
   2701  * into a mbuf instead of using the pre-allocated set of commands.
   2702  */
   2703 static int
   2704 wpi_scan(struct wpi_softc *sc, uint16_t flags)
   2705 {
   2706 	struct ieee80211com *ic = &sc->sc_ic;
   2707 	struct wpi_tx_ring *ring = &sc->cmdq;
   2708 	struct wpi_tx_desc *desc;
   2709 	struct wpi_tx_data *data;
   2710 	struct wpi_tx_cmd *cmd;
   2711 	struct wpi_scan_hdr *hdr;
   2712 	struct wpi_scan_chan *chan;
   2713 	struct ieee80211_frame *wh;
   2714 	struct ieee80211_rateset *rs;
   2715 	struct ieee80211_channel *c;
   2716 	enum ieee80211_phymode mode;
   2717 	uint8_t *frm;
   2718 	int nrates, pktlen, error;
   2719 
   2720 	desc = &ring->desc[ring->cur];
   2721 	data = &ring->data[ring->cur];
   2722 
   2723 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2724 	if (data->m == NULL) {
   2725 		aprint_error_dev(sc->sc_dev,
   2726 						"could not allocate mbuf for scan command\n");
   2727 		return ENOMEM;
   2728 	}
   2729 
   2730 	MCLGET(data->m, M_DONTWAIT);
   2731 	if (!(data->m->m_flags & M_EXT)) {
   2732 		m_freem(data->m);
   2733 		data->m = NULL;
   2734 		aprint_error_dev(sc->sc_dev,
   2735 						 "could not allocate mbuf for scan command\n");
   2736 		return ENOMEM;
   2737 	}
   2738 
   2739 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2740 	cmd->code = WPI_CMD_SCAN;
   2741 	cmd->flags = 0;
   2742 	cmd->qid = ring->qid;
   2743 	cmd->idx = ring->cur;
   2744 
   2745 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2746 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2747 	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
   2748 	hdr->id = WPI_ID_BROADCAST;
   2749 	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2750 
   2751 	/*
   2752 	 * Move to the next channel if no packets are received within 5 msecs
   2753 	 * after sending the probe request (this helps to reduce the duration
   2754 	 * of active scans).
   2755 	 */
   2756 	hdr->quiet = htole16(5);        /* timeout in milliseconds */
   2757 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2758 
   2759 	if (flags & IEEE80211_CHAN_A) {
   2760 		hdr->crc_threshold = htole16(1);
   2761 		/* send probe requests at 6Mbps */
   2762 		hdr->rate = wpi_plcp_signal(12);
   2763 	} else {
   2764 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2765 		/* send probe requests at 1Mbps */
   2766 		hdr->rate = wpi_plcp_signal(2);
   2767 	}
   2768 
   2769 	/* for directed scans, firmware inserts the essid IE itself */
   2770 	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2771 	hdr->essid[0].len = ic->ic_des_esslen;
   2772 	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2773 
   2774 	/*
   2775 	 * Build a probe request frame.  Most of the following code is a
   2776 	 * copy & paste of what is done in net80211.
   2777 	 */
   2778 	wh = (struct ieee80211_frame *)(hdr + 1);
   2779 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2780 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2781 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2782 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2783 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2784 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2785 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2786 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2787 
   2788 	frm = (uint8_t *)(wh + 1);
   2789 
   2790 	/* add empty essid IE (firmware generates it for directed scans) */
   2791 	*frm++ = IEEE80211_ELEMID_SSID;
   2792 	*frm++ = 0;
   2793 
   2794 	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
   2795 	rs = &ic->ic_sup_rates[mode];
   2796 
   2797 	/* add supported rates IE */
   2798 	*frm++ = IEEE80211_ELEMID_RATES;
   2799 	nrates = rs->rs_nrates;
   2800 	if (nrates > IEEE80211_RATE_SIZE)
   2801 		nrates = IEEE80211_RATE_SIZE;
   2802 	*frm++ = nrates;
   2803 	memcpy(frm, rs->rs_rates, nrates);
   2804 	frm += nrates;
   2805 
   2806 	/* add supported xrates IE */
   2807 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2808 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2809 		*frm++ = IEEE80211_ELEMID_XRATES;
   2810 		*frm++ = nrates;
   2811 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2812 		frm += nrates;
   2813 	}
   2814 
   2815 	/* setup length of probe request */
   2816 	hdr->paylen = htole16(frm - (uint8_t *)wh);
   2817 
   2818 	chan = (struct wpi_scan_chan *)frm;
   2819 	for (c  = &ic->ic_channels[1];
   2820 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
   2821 		if ((c->ic_flags & flags) != flags)
   2822 			continue;
   2823 
   2824 		chan->chan = ieee80211_chan2ieee(ic, c);
   2825 		chan->flags = 0;
   2826 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2827 			chan->flags |= WPI_CHAN_ACTIVE;
   2828 			if (ic->ic_des_esslen != 0)
   2829 				chan->flags |= WPI_CHAN_DIRECT;
   2830 		}
   2831 		chan->dsp_gain = 0x6e;
   2832 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2833 			chan->rf_gain = 0x3b;
   2834 			chan->active = htole16(10);
   2835 			chan->passive = htole16(110);
   2836 		} else {
   2837 			chan->rf_gain = 0x28;
   2838 			chan->active = htole16(20);
   2839 			chan->passive = htole16(120);
   2840 		}
   2841 		hdr->nchan++;
   2842 		chan++;
   2843 
   2844 		frm += sizeof (struct wpi_scan_chan);
   2845 	}
   2846 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2847 	pktlen = frm - (uint8_t *)cmd;
   2848 
   2849 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
   2850 		NULL, BUS_DMA_NOWAIT);
   2851 	if (error) {
   2852 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2853 		m_freem(data->m);
   2854 		data->m = NULL;
   2855 		return error;
   2856 	}
   2857 
   2858 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2859 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2860 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2861 
   2862 	/* kick cmd ring */
   2863 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2864 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2865 
   2866 	return 0;	/* will be notified async. of failure/success */
   2867 }
   2868 
   2869 static int
   2870 wpi_config(struct wpi_softc *sc)
   2871 {
   2872 	struct ieee80211com *ic = &sc->sc_ic;
   2873 	struct ifnet *ifp = ic->ic_ifp;
   2874 	struct wpi_power power;
   2875 	struct wpi_bluetooth bluetooth;
   2876 	struct wpi_node_info node;
   2877 	int error;
   2878 
   2879 	memset(&power, 0, sizeof power);
   2880 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2881 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2882 	if (error != 0) {
   2883 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2884 		return error;
   2885 	}
   2886 
   2887 	/* configure bluetooth coexistence */
   2888 	memset(&bluetooth, 0, sizeof bluetooth);
   2889 	bluetooth.flags = 3;
   2890 	bluetooth.lead = 0xaa;
   2891 	bluetooth.kill = 1;
   2892 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   2893 		0);
   2894 	if (error != 0) {
   2895 		aprint_error_dev(sc->sc_dev,
   2896 			"could not configure bluetooth coexistence\n");
   2897 		return error;
   2898 	}
   2899 
   2900 	/* configure adapter */
   2901 	memset(&sc->config, 0, sizeof (struct wpi_config));
   2902 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2903 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   2904 	/*set default channel*/
   2905 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
   2906 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2907 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
   2908 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2909 		    WPI_CONFIG_24GHZ);
   2910 	}
   2911 	sc->config.filter = 0;
   2912 	switch (ic->ic_opmode) {
   2913 	case IEEE80211_M_STA:
   2914 		sc->config.mode = WPI_MODE_STA;
   2915 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   2916 		break;
   2917 	case IEEE80211_M_IBSS:
   2918 	case IEEE80211_M_AHDEMO:
   2919 		sc->config.mode = WPI_MODE_IBSS;
   2920 		break;
   2921 	case IEEE80211_M_HOSTAP:
   2922 		sc->config.mode = WPI_MODE_HOSTAP;
   2923 		break;
   2924 	case IEEE80211_M_MONITOR:
   2925 		sc->config.mode = WPI_MODE_MONITOR;
   2926 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   2927 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   2928 		break;
   2929 	}
   2930 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   2931 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   2932 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2933 		sizeof (struct wpi_config), 0);
   2934 	if (error != 0) {
   2935 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   2936 		return error;
   2937 	}
   2938 
   2939 	/* configuration has changed, set Tx power accordingly */
   2940 	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
   2941 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2942 		return error;
   2943 	}
   2944 
   2945 	/* add broadcast node */
   2946 	memset(&node, 0, sizeof node);
   2947 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   2948 	node.id = WPI_ID_BROADCAST;
   2949 	node.rate = wpi_plcp_signal(2);
   2950 	node.action = htole32(WPI_ACTION_SET_RATE);
   2951 	node.antenna = WPI_ANTENNA_BOTH;
   2952 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   2953 	if (error != 0) {
   2954 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   2955 		return error;
   2956 	}
   2957 
   2958 	if ((error = wpi_mrr_setup(sc)) != 0) {
   2959 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   2960 		return error;
   2961 	}
   2962 
   2963 	return 0;
   2964 }
   2965 
   2966 static void
   2967 wpi_stop_master(struct wpi_softc *sc)
   2968 {
   2969 	uint32_t tmp;
   2970 	int ntries;
   2971 
   2972 	tmp = WPI_READ(sc, WPI_RESET);
   2973 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   2974 
   2975 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2976 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   2977 		return;	/* already asleep */
   2978 
   2979 	for (ntries = 0; ntries < 100; ntries++) {
   2980 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   2981 			break;
   2982 		DELAY(10);
   2983 	}
   2984 	if (ntries == 100) {
   2985 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   2986 	}
   2987 }
   2988 
   2989 static int
   2990 wpi_power_up(struct wpi_softc *sc)
   2991 {
   2992 	uint32_t tmp;
   2993 	int ntries;
   2994 
   2995 	wpi_mem_lock(sc);
   2996 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   2997 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   2998 	wpi_mem_unlock(sc);
   2999 
   3000 	for (ntries = 0; ntries < 5000; ntries++) {
   3001 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   3002 			break;
   3003 		DELAY(10);
   3004 	}
   3005 	if (ntries == 5000) {
   3006 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
   3007 		return ETIMEDOUT;
   3008 	}
   3009 	return 0;
   3010 }
   3011 
   3012 static int
   3013 wpi_reset(struct wpi_softc *sc)
   3014 {
   3015 	uint32_t tmp;
   3016 	int ntries;
   3017 
   3018 	/* clear any pending interrupts */
   3019 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3020 
   3021 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   3022 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   3023 
   3024 	tmp = WPI_READ(sc, WPI_CHICKEN);
   3025 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   3026 
   3027 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   3028 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   3029 
   3030 	/* wait for clock stabilization */
   3031 	for (ntries = 0; ntries < 1000; ntries++) {
   3032 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   3033 			break;
   3034 		DELAY(10);
   3035 	}
   3036 	if (ntries == 1000) {
   3037 		aprint_error_dev(sc->sc_dev,
   3038 						 "timeout waiting for clock stabilization\n");
   3039 		return ETIMEDOUT;
   3040 	}
   3041 
   3042 	/* initialize EEPROM */
   3043 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   3044 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   3045 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   3046 		return EIO;
   3047 	}
   3048 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   3049 
   3050 	return 0;
   3051 }
   3052 
   3053 static void
   3054 wpi_hw_config(struct wpi_softc *sc)
   3055 {
   3056 	uint32_t rev, hw;
   3057 
   3058 	/* voodoo from the reference driver */
   3059 	hw = WPI_READ(sc, WPI_HWCONFIG);
   3060 
   3061 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   3062 	rev = PCI_REVISION(rev);
   3063 	if ((rev & 0xc0) == 0x40)
   3064 		hw |= WPI_HW_ALM_MB;
   3065 	else if (!(rev & 0x80))
   3066 		hw |= WPI_HW_ALM_MM;
   3067 
   3068 	if (sc->cap == 0x80)
   3069 		hw |= WPI_HW_SKU_MRC;
   3070 
   3071 	hw &= ~WPI_HW_REV_D;
   3072 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   3073 		hw |= WPI_HW_REV_D;
   3074 
   3075 	if (sc->type > 1)
   3076 		hw |= WPI_HW_TYPE_B;
   3077 
   3078 	DPRINTF(("setting h/w config %x\n", hw));
   3079 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   3080 }
   3081 
   3082 static int
   3083 wpi_init(struct ifnet *ifp)
   3084 {
   3085 	struct wpi_softc *sc = ifp->if_softc;
   3086 	struct ieee80211com *ic = &sc->sc_ic;
   3087 	uint32_t tmp;
   3088 	int qid, ntries, error;
   3089 
   3090 	wpi_stop(ifp,1);
   3091 	(void)wpi_reset(sc);
   3092 
   3093 	wpi_mem_lock(sc);
   3094 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   3095 	DELAY(20);
   3096 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   3097 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   3098 	wpi_mem_unlock(sc);
   3099 
   3100 	(void)wpi_power_up(sc);
   3101 	wpi_hw_config(sc);
   3102 
   3103 	/* init Rx ring */
   3104 	wpi_mem_lock(sc);
   3105 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   3106 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   3107 	    offsetof(struct wpi_shared, next));
   3108 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3109 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3110 	wpi_mem_unlock(sc);
   3111 
   3112 	/* init Tx rings */
   3113 	wpi_mem_lock(sc);
   3114 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
   3115 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
   3116 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
   3117 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3118 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3119 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3120 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3121 
   3122 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3123 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3124 
   3125 	for (qid = 0; qid < 6; qid++) {
   3126 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3127 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3128 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3129 	}
   3130 	wpi_mem_unlock(sc);
   3131 
   3132 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3133 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3134 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3135 
   3136 	/* clear any pending interrupts */
   3137 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3138 	/* enable interrupts */
   3139 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3140 
   3141 	/* not sure why/if this is necessary... */
   3142 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3143 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3144 
   3145 	if ((error = wpi_load_firmware(sc)) != 0)
   3146 		/* wpi_load_firmware prints error messages for us.  */
   3147 		goto fail1;
   3148 
   3149 	/* Check the status of the radio switch */
   3150 	if (wpi_getrfkill(sc)) {
   3151 		aprint_error_dev(sc->sc_dev,
   3152 		    "radio is disabled by hardware switch\n");
   3153 		error = EBUSY;
   3154 		goto fail1;
   3155 	}
   3156 
   3157 	/* wait for thermal sensors to calibrate */
   3158 	for (ntries = 0; ntries < 1000; ntries++) {
   3159 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3160 			break;
   3161 		DELAY(10);
   3162 	}
   3163 	if (ntries == 1000) {
   3164 		aprint_error_dev(sc->sc_dev,
   3165 		    "timeout waiting for thermal sensors calibration\n");
   3166 		error = ETIMEDOUT;
   3167 		goto fail1;
   3168 	}
   3169 
   3170 	DPRINTF(("temperature %d\n", sc->temp));
   3171 
   3172 	if ((error = wpi_config(sc)) != 0) {
   3173 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3174 		goto fail1;
   3175 	}
   3176 
   3177 	ifp->if_flags &= ~IFF_OACTIVE;
   3178 	ifp->if_flags |= IFF_RUNNING;
   3179 
   3180 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3181 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3182 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3183 	}
   3184 	else
   3185 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3186 
   3187 	return 0;
   3188 
   3189 fail1:	wpi_stop(ifp, 1);
   3190 	return error;
   3191 }
   3192 
   3193 
   3194 static void
   3195 wpi_stop(struct ifnet *ifp, int disable)
   3196 {
   3197 	struct wpi_softc *sc = ifp->if_softc;
   3198 	struct ieee80211com *ic = &sc->sc_ic;
   3199 	uint32_t tmp;
   3200 	int ac;
   3201 
   3202 	ifp->if_timer = sc->sc_tx_timer = 0;
   3203 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3204 
   3205 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3206 
   3207 	/* disable interrupts */
   3208 	WPI_WRITE(sc, WPI_MASK, 0);
   3209 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3210 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3211 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3212 
   3213 	wpi_mem_lock(sc);
   3214 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3215 	wpi_mem_unlock(sc);
   3216 
   3217 	/* reset all Tx rings */
   3218 	for (ac = 0; ac < 4; ac++)
   3219 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3220 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3221 
   3222 	/* reset Rx ring */
   3223 	wpi_reset_rx_ring(sc, &sc->rxq);
   3224 
   3225 	wpi_mem_lock(sc);
   3226 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3227 	wpi_mem_unlock(sc);
   3228 
   3229 	DELAY(5);
   3230 
   3231 	wpi_stop_master(sc);
   3232 
   3233 	tmp = WPI_READ(sc, WPI_RESET);
   3234 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3235 }
   3236 
   3237 static bool
   3238 wpi_resume(device_t dv, const pmf_qual_t *qual)
   3239 {
   3240 	struct wpi_softc *sc = device_private(dv);
   3241 
   3242 	(void)wpi_reset(sc);
   3243 
   3244 	return true;
   3245 }
   3246 
   3247 /*
   3248  * Return whether or not the radio is enabled in hardware
   3249  * (i.e. the rfkill switch is "off").
   3250  */
   3251 static int
   3252 wpi_getrfkill(struct wpi_softc *sc)
   3253 {
   3254 	uint32_t tmp;
   3255 
   3256 	wpi_mem_lock(sc);
   3257 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3258 	wpi_mem_unlock(sc);
   3259 
   3260 	return !(tmp & 0x01);
   3261 }
   3262 
   3263 static int
   3264 wpi_sysctl_radio(SYSCTLFN_ARGS)
   3265 {
   3266 	struct sysctlnode node;
   3267 	struct wpi_softc *sc;
   3268 	int val, error;
   3269 
   3270 	node = *rnode;
   3271 	sc = (struct wpi_softc *)node.sysctl_data;
   3272 
   3273 	val = !wpi_getrfkill(sc);
   3274 
   3275 	node.sysctl_data = &val;
   3276 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3277 
   3278 	if (error || newp == NULL)
   3279 		return error;
   3280 
   3281 	return 0;
   3282 }
   3283 
   3284 static void
   3285 wpi_sysctlattach(struct wpi_softc *sc)
   3286 {
   3287 	int rc;
   3288 	const struct sysctlnode *rnode;
   3289 	const struct sysctlnode *cnode;
   3290 
   3291 	struct sysctllog **clog = &sc->sc_sysctllog;
   3292 
   3293 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
   3294 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
   3295 	    SYSCTL_DESCR("wpi controls and statistics"),
   3296 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
   3297 		goto err;
   3298 
   3299 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3300 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
   3301 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
   3302 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
   3303 		goto err;
   3304 
   3305 #ifdef WPI_DEBUG
   3306 	/* control debugging printfs */
   3307 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3308 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
   3309 	    "debug", SYSCTL_DESCR("Enable debugging output"),
   3310 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
   3311 		goto err;
   3312 #endif
   3313 
   3314 	return;
   3315 err:
   3316 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3317 }
   3318