if_wpi.c revision 1.59 1 /* $NetBSD: if_wpi.c,v 1.59 2014/06/16 22:38:27 jakllsch Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.59 2014/06/16 22:38:27 jakllsch Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x) if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
83 static once_t wpi_firmware_init;
84 static kmutex_t wpi_firmware_mutex;
85 static size_t wpi_firmware_users;
86 static uint8_t *wpi_firmware_image;
87 static size_t wpi_firmware_size;
88
89 static int wpi_match(device_t, cfdata_t, void *);
90 static void wpi_attach(device_t, device_t, void *);
91 static int wpi_detach(device_t , int);
92 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
93 void **, bus_size_t, bus_size_t, int);
94 static void wpi_dma_contig_free(struct wpi_dma_info *);
95 static int wpi_alloc_shared(struct wpi_softc *);
96 static void wpi_free_shared(struct wpi_softc *);
97 static int wpi_alloc_fwmem(struct wpi_softc *);
98 static void wpi_free_fwmem(struct wpi_softc *);
99 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
100 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
101 static int wpi_alloc_rpool(struct wpi_softc *);
102 static void wpi_free_rpool(struct wpi_softc *);
103 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
104 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
105 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
106 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
107 int);
108 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
109 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
110 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
111 static void wpi_newassoc(struct ieee80211_node *, int);
112 static int wpi_media_change(struct ifnet *);
113 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
114 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
115 static void wpi_mem_lock(struct wpi_softc *);
116 static void wpi_mem_unlock(struct wpi_softc *);
117 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
118 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
119 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
120 const uint32_t *, int);
121 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
122 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
123 static int wpi_cache_firmware(struct wpi_softc *);
124 static void wpi_release_firmware(void);
125 static int wpi_load_firmware(struct wpi_softc *);
126 static void wpi_calib_timeout(void *);
127 static void wpi_iter_func(void *, struct ieee80211_node *);
128 static void wpi_power_calibration(struct wpi_softc *, int);
129 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
130 struct wpi_rx_data *);
131 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
132 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
133 static void wpi_notif_intr(struct wpi_softc *);
134 static int wpi_intr(void *);
135 static void wpi_read_eeprom(struct wpi_softc *);
136 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
137 static void wpi_read_eeprom_group(struct wpi_softc *, int);
138 static uint8_t wpi_plcp_signal(int);
139 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
140 struct ieee80211_node *, int);
141 static void wpi_start(struct ifnet *);
142 static void wpi_watchdog(struct ifnet *);
143 static int wpi_ioctl(struct ifnet *, u_long, void *);
144 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
145 static int wpi_wme_update(struct ieee80211com *);
146 static int wpi_mrr_setup(struct wpi_softc *);
147 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
148 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
149 static int wpi_set_txpower(struct wpi_softc *,
150 struct ieee80211_channel *, int);
151 static int wpi_get_power_index(struct wpi_softc *,
152 struct wpi_power_group *, struct ieee80211_channel *, int);
153 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
154 static int wpi_auth(struct wpi_softc *);
155 static int wpi_scan(struct wpi_softc *, uint16_t);
156 static int wpi_config(struct wpi_softc *);
157 static void wpi_stop_master(struct wpi_softc *);
158 static int wpi_power_up(struct wpi_softc *);
159 static int wpi_reset(struct wpi_softc *);
160 static void wpi_hw_config(struct wpi_softc *);
161 static int wpi_init(struct ifnet *);
162 static void wpi_stop(struct ifnet *, int);
163 static bool wpi_resume(device_t, const pmf_qual_t *);
164 static int wpi_getrfkill(struct wpi_softc *);
165 static void wpi_sysctlattach(struct wpi_softc *);
166
167 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
168 wpi_detach, NULL);
169
170 static int
171 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
172 {
173 struct pci_attach_args *pa = aux;
174
175 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
176 return 0;
177
178 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
179 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
180 return 1;
181
182 return 0;
183 }
184
185 /* Base Address Register */
186 #define WPI_PCI_BAR0 0x10
187
188 static int
189 wpi_attach_once(void)
190 {
191
192 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
193 return 0;
194 }
195
196 static void
197 wpi_attach(device_t parent __unused, device_t self, void *aux)
198 {
199 struct wpi_softc *sc = device_private(self);
200 struct ieee80211com *ic = &sc->sc_ic;
201 struct ifnet *ifp = &sc->sc_ec.ec_if;
202 struct pci_attach_args *pa = aux;
203 const char *intrstr;
204 bus_space_tag_t memt;
205 bus_space_handle_t memh;
206 pci_intr_handle_t ih;
207 pcireg_t data;
208 int error, ac;
209 char intrbuf[PCI_INTRSTR_LEN];
210
211 RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
212 sc->fw_used = false;
213
214 sc->sc_dev = self;
215 sc->sc_pct = pa->pa_pc;
216 sc->sc_pcitag = pa->pa_tag;
217
218 callout_init(&sc->calib_to, 0);
219 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
220
221 pci_aprint_devinfo(pa, NULL);
222
223 /* enable bus-mastering */
224 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
225 data |= PCI_COMMAND_MASTER_ENABLE;
226 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
227
228 /* map the register window */
229 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
230 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
231 if (error != 0) {
232 aprint_error_dev(self, "could not map memory space\n");
233 return;
234 }
235
236 sc->sc_st = memt;
237 sc->sc_sh = memh;
238 sc->sc_dmat = pa->pa_dmat;
239
240 if (pci_intr_map(pa, &ih) != 0) {
241 aprint_error_dev(self, "could not map interrupt\n");
242 return;
243 }
244
245 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
246 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
247 if (sc->sc_ih == NULL) {
248 aprint_error_dev(self, "could not establish interrupt");
249 if (intrstr != NULL)
250 aprint_error(" at %s", intrstr);
251 aprint_error("\n");
252 return;
253 }
254 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
255
256 if (wpi_reset(sc) != 0) {
257 aprint_error_dev(self, "could not reset adapter\n");
258 return;
259 }
260
261 /*
262 * Allocate DMA memory for firmware transfers.
263 */
264 if ((error = wpi_alloc_fwmem(sc)) != 0)
265 return;
266
267 /*
268 * Allocate shared page and Tx/Rx rings.
269 */
270 if ((error = wpi_alloc_shared(sc)) != 0) {
271 aprint_error_dev(self, "could not allocate shared area\n");
272 goto fail1;
273 }
274
275 if ((error = wpi_alloc_rpool(sc)) != 0) {
276 aprint_error_dev(self, "could not allocate Rx buffers\n");
277 goto fail2;
278 }
279
280 for (ac = 0; ac < 4; ac++) {
281 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
282 if (error != 0) {
283 aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
284 goto fail3;
285 }
286 }
287
288 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
289 if (error != 0) {
290 aprint_error_dev(self, "could not allocate command ring\n");
291 goto fail3;
292 }
293
294 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
295 aprint_error_dev(self, "could not allocate Rx ring\n");
296 goto fail4;
297 }
298
299 ic->ic_ifp = ifp;
300 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
301 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
302 ic->ic_state = IEEE80211_S_INIT;
303
304 /* set device capabilities */
305 ic->ic_caps =
306 IEEE80211_C_WPA | /* 802.11i */
307 IEEE80211_C_MONITOR | /* monitor mode supported */
308 IEEE80211_C_TXPMGT | /* tx power management */
309 IEEE80211_C_SHSLOT | /* short slot time supported */
310 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
311 IEEE80211_C_WME; /* 802.11e */
312
313 /* read supported channels and MAC address from EEPROM */
314 wpi_read_eeprom(sc);
315
316 /* set supported .11a, .11b and .11g rates */
317 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
318 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
319 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
320
321 /* IBSS channel undefined for now */
322 ic->ic_ibss_chan = &ic->ic_channels[0];
323
324 ifp->if_softc = sc;
325 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
326 ifp->if_init = wpi_init;
327 ifp->if_stop = wpi_stop;
328 ifp->if_ioctl = wpi_ioctl;
329 ifp->if_start = wpi_start;
330 ifp->if_watchdog = wpi_watchdog;
331 IFQ_SET_READY(&ifp->if_snd);
332 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
333
334 if_attach(ifp);
335 ieee80211_ifattach(ic);
336 /* override default methods */
337 ic->ic_node_alloc = wpi_node_alloc;
338 ic->ic_newassoc = wpi_newassoc;
339 ic->ic_wme.wme_update = wpi_wme_update;
340
341 /* override state transition machine */
342 sc->sc_newstate = ic->ic_newstate;
343 ic->ic_newstate = wpi_newstate;
344 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
345
346 sc->amrr.amrr_min_success_threshold = 1;
347 sc->amrr.amrr_max_success_threshold = 15;
348
349 wpi_sysctlattach(sc);
350
351 if (pmf_device_register(self, NULL, wpi_resume))
352 pmf_class_network_register(self, ifp);
353 else
354 aprint_error_dev(self, "couldn't establish power handler\n");
355
356 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
357 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
358 &sc->sc_drvbpf);
359
360 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
361 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
362 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
363
364 sc->sc_txtap_len = sizeof sc->sc_txtapu;
365 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
366 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
367
368 ieee80211_announce(ic);
369
370 return;
371
372 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
373 fail3: while (--ac >= 0)
374 wpi_free_tx_ring(sc, &sc->txq[ac]);
375 wpi_free_rpool(sc);
376 fail2: wpi_free_shared(sc);
377 fail1: wpi_free_fwmem(sc);
378 }
379
380 static int
381 wpi_detach(device_t self, int flags __unused)
382 {
383 struct wpi_softc *sc = device_private(self);
384 struct ifnet *ifp = sc->sc_ic.ic_ifp;
385 int ac;
386
387 wpi_stop(ifp, 1);
388
389 if (ifp != NULL)
390 bpf_detach(ifp);
391 ieee80211_ifdetach(&sc->sc_ic);
392 if (ifp != NULL)
393 if_detach(ifp);
394
395 for (ac = 0; ac < 4; ac++)
396 wpi_free_tx_ring(sc, &sc->txq[ac]);
397 wpi_free_tx_ring(sc, &sc->cmdq);
398 wpi_free_rx_ring(sc, &sc->rxq);
399 wpi_free_rpool(sc);
400 wpi_free_shared(sc);
401
402 if (sc->sc_ih != NULL) {
403 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
404 sc->sc_ih = NULL;
405 }
406
407 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
408
409 if (sc->fw_used) {
410 sc->fw_used = false;
411 wpi_release_firmware();
412 }
413
414 return 0;
415 }
416
417 static int
418 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
419 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
420 {
421 int nsegs, error;
422
423 dma->tag = tag;
424 dma->size = size;
425
426 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
427 if (error != 0)
428 goto fail;
429
430 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
431 flags);
432 if (error != 0)
433 goto fail;
434
435 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
436 if (error != 0)
437 goto fail;
438
439 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
440 if (error != 0)
441 goto fail;
442
443 memset(dma->vaddr, 0, size);
444
445 dma->paddr = dma->map->dm_segs[0].ds_addr;
446 if (kvap != NULL)
447 *kvap = dma->vaddr;
448
449 return 0;
450
451 fail: wpi_dma_contig_free(dma);
452 return error;
453 }
454
455 static void
456 wpi_dma_contig_free(struct wpi_dma_info *dma)
457 {
458 if (dma->map != NULL) {
459 if (dma->vaddr != NULL) {
460 bus_dmamap_unload(dma->tag, dma->map);
461 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
462 bus_dmamem_free(dma->tag, &dma->seg, 1);
463 dma->vaddr = NULL;
464 }
465 bus_dmamap_destroy(dma->tag, dma->map);
466 dma->map = NULL;
467 }
468 }
469
470 /*
471 * Allocate a shared page between host and NIC.
472 */
473 static int
474 wpi_alloc_shared(struct wpi_softc *sc)
475 {
476 int error;
477 /* must be aligned on a 4K-page boundary */
478 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
479 (void **)&sc->shared, sizeof (struct wpi_shared),
480 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
481 if (error != 0)
482 aprint_error_dev(sc->sc_dev,
483 "could not allocate shared area DMA memory\n");
484
485 return error;
486 }
487
488 static void
489 wpi_free_shared(struct wpi_softc *sc)
490 {
491 wpi_dma_contig_free(&sc->shared_dma);
492 }
493
494 /*
495 * Allocate DMA-safe memory for firmware transfer.
496 */
497 static int
498 wpi_alloc_fwmem(struct wpi_softc *sc)
499 {
500 int error;
501 /* allocate enough contiguous space to store text and data */
502 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
503 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
504 BUS_DMA_NOWAIT);
505
506 if (error != 0)
507 aprint_error_dev(sc->sc_dev,
508 "could not allocate firmware transfer area"
509 "DMA memory\n");
510 return error;
511 }
512
513 static void
514 wpi_free_fwmem(struct wpi_softc *sc)
515 {
516 wpi_dma_contig_free(&sc->fw_dma);
517 }
518
519
520 static struct wpi_rbuf *
521 wpi_alloc_rbuf(struct wpi_softc *sc)
522 {
523 struct wpi_rbuf *rbuf;
524
525 mutex_enter(&sc->rxq.freelist_mtx);
526 rbuf = SLIST_FIRST(&sc->rxq.freelist);
527 if (rbuf != NULL) {
528 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
529 sc->rxq.nb_free_entries --;
530 }
531 mutex_exit(&sc->rxq.freelist_mtx);
532
533 return rbuf;
534 }
535
536 /*
537 * This is called automatically by the network stack when the mbuf to which our
538 * Rx buffer is attached is freed.
539 */
540 static void
541 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
542 {
543 struct wpi_rbuf *rbuf = arg;
544 struct wpi_softc *sc = rbuf->sc;
545
546 /* put the buffer back in the free list */
547
548 mutex_enter(&sc->rxq.freelist_mtx);
549 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
550 mutex_exit(&sc->rxq.freelist_mtx);
551 /* No need to protect this with a mutex, see wpi_rx_intr */
552 sc->rxq.nb_free_entries ++;
553
554 if (__predict_true(m != NULL))
555 pool_cache_put(mb_cache, m);
556 }
557
558 static int
559 wpi_alloc_rpool(struct wpi_softc *sc)
560 {
561 struct wpi_rx_ring *ring = &sc->rxq;
562 struct wpi_rbuf *rbuf;
563 int i, error;
564
565 /* allocate a big chunk of DMA'able memory.. */
566 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
567 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
568 if (error != 0) {
569 aprint_normal_dev(sc->sc_dev, "could not allocate Rx buffers DMA memory\n");
570 return error;
571 }
572
573 /* ..and split it into 3KB chunks */
574 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
575 SLIST_INIT(&ring->freelist);
576 for (i = 0; i < WPI_RBUF_COUNT; i++) {
577 rbuf = &ring->rbuf[i];
578 rbuf->sc = sc; /* backpointer for callbacks */
579 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
580 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
581
582 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
583 }
584
585 ring->nb_free_entries = WPI_RBUF_COUNT;
586 return 0;
587 }
588
589 static void
590 wpi_free_rpool(struct wpi_softc *sc)
591 {
592 wpi_dma_contig_free(&sc->rxq.buf_dma);
593 }
594
595 static int
596 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
597 {
598 struct wpi_rx_data *data;
599 struct wpi_rbuf *rbuf;
600 int i, error;
601
602 ring->cur = 0;
603
604 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
605 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
606 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
607 if (error != 0) {
608 aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
609 goto fail;
610 }
611
612 /*
613 * Setup Rx buffers.
614 */
615 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
616 data = &ring->data[i];
617
618 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
619 if (data->m == NULL) {
620 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
621 error = ENOMEM;
622 goto fail;
623 }
624 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
625 m_freem(data->m);
626 data->m = NULL;
627 aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
628 error = ENOMEM;
629 goto fail;
630 }
631 /* attach Rx buffer to mbuf */
632 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
633 rbuf);
634 data->m->m_flags |= M_EXT_RW;
635
636 ring->desc[i] = htole32(rbuf->paddr);
637 }
638
639 return 0;
640
641 fail: wpi_free_rx_ring(sc, ring);
642 return error;
643 }
644
645 static void
646 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
647 {
648 int ntries;
649
650 wpi_mem_lock(sc);
651
652 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
653 for (ntries = 0; ntries < 100; ntries++) {
654 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
655 break;
656 DELAY(10);
657 }
658 #ifdef WPI_DEBUG
659 if (ntries == 100 && wpi_debug > 0)
660 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
661 #endif
662 wpi_mem_unlock(sc);
663
664 ring->cur = 0;
665 }
666
667 static void
668 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
669 {
670 int i;
671
672 wpi_dma_contig_free(&ring->desc_dma);
673
674 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
675 if (ring->data[i].m != NULL)
676 m_freem(ring->data[i].m);
677 }
678 }
679
680 static int
681 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
682 int qid)
683 {
684 struct wpi_tx_data *data;
685 int i, error;
686
687 ring->qid = qid;
688 ring->count = count;
689 ring->queued = 0;
690 ring->cur = 0;
691
692 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
693 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
694 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
695 if (error != 0) {
696 aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
697 goto fail;
698 }
699
700 /* update shared page with ring's base address */
701 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
702
703 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
704 (void **)&ring->cmd,
705 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
706 if (error != 0) {
707 aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
708 goto fail;
709 }
710
711 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
712 M_NOWAIT);
713 if (ring->data == NULL) {
714 aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
715 goto fail;
716 }
717
718 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
719
720 for (i = 0; i < count; i++) {
721 data = &ring->data[i];
722
723 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
724 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
725 &data->map);
726 if (error != 0) {
727 aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
728 goto fail;
729 }
730 }
731
732 return 0;
733
734 fail: wpi_free_tx_ring(sc, ring);
735 return error;
736 }
737
738 static void
739 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
740 {
741 struct wpi_tx_data *data;
742 int i, ntries;
743
744 wpi_mem_lock(sc);
745
746 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
747 for (ntries = 0; ntries < 100; ntries++) {
748 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
749 break;
750 DELAY(10);
751 }
752 #ifdef WPI_DEBUG
753 if (ntries == 100 && wpi_debug > 0) {
754 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
755 ring->qid);
756 }
757 #endif
758 wpi_mem_unlock(sc);
759
760 for (i = 0; i < ring->count; i++) {
761 data = &ring->data[i];
762
763 if (data->m != NULL) {
764 bus_dmamap_unload(sc->sc_dmat, data->map);
765 m_freem(data->m);
766 data->m = NULL;
767 }
768 }
769
770 ring->queued = 0;
771 ring->cur = 0;
772 }
773
774 static void
775 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
776 {
777 struct wpi_tx_data *data;
778 int i;
779
780 wpi_dma_contig_free(&ring->desc_dma);
781 wpi_dma_contig_free(&ring->cmd_dma);
782
783 if (ring->data != NULL) {
784 for (i = 0; i < ring->count; i++) {
785 data = &ring->data[i];
786
787 if (data->m != NULL) {
788 bus_dmamap_unload(sc->sc_dmat, data->map);
789 m_freem(data->m);
790 }
791 }
792 free(ring->data, M_DEVBUF);
793 }
794 }
795
796 /*ARGUSED*/
797 static struct ieee80211_node *
798 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
799 {
800 struct wpi_node *wn;
801
802 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
803
804 return (struct ieee80211_node *)wn;
805 }
806
807 static void
808 wpi_newassoc(struct ieee80211_node *ni, int isnew)
809 {
810 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
811 int i;
812
813 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
814
815 /* set rate to some reasonable initial value */
816 for (i = ni->ni_rates.rs_nrates - 1;
817 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
818 i--);
819 ni->ni_txrate = i;
820 }
821
822 static int
823 wpi_media_change(struct ifnet *ifp)
824 {
825 int error;
826
827 error = ieee80211_media_change(ifp);
828 if (error != ENETRESET)
829 return error;
830
831 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
832 wpi_init(ifp);
833
834 return 0;
835 }
836
837 static int
838 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
839 {
840 struct ifnet *ifp = ic->ic_ifp;
841 struct wpi_softc *sc = ifp->if_softc;
842 struct ieee80211_node *ni;
843 int error;
844
845 callout_stop(&sc->calib_to);
846
847 switch (nstate) {
848 case IEEE80211_S_SCAN:
849
850 if (sc->is_scanning)
851 break;
852
853 sc->is_scanning = true;
854 ieee80211_node_table_reset(&ic->ic_scan);
855 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
856
857 /* make the link LED blink while we're scanning */
858 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
859
860 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
861 aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
862 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
863 return error;
864 }
865
866 ic->ic_state = nstate;
867 return 0;
868
869 case IEEE80211_S_ASSOC:
870 if (ic->ic_state != IEEE80211_S_RUN)
871 break;
872 /* FALLTHROUGH */
873 case IEEE80211_S_AUTH:
874 sc->config.associd = 0;
875 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
876 if ((error = wpi_auth(sc)) != 0) {
877 aprint_error_dev(sc->sc_dev,
878 "could not send authentication request\n");
879 return error;
880 }
881 break;
882
883 case IEEE80211_S_RUN:
884 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
885 /* link LED blinks while monitoring */
886 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
887 break;
888 }
889
890 ni = ic->ic_bss;
891
892 if (ic->ic_opmode != IEEE80211_M_STA) {
893 (void) wpi_auth(sc); /* XXX */
894 wpi_setup_beacon(sc, ni);
895 }
896
897 wpi_enable_tsf(sc, ni);
898
899 /* update adapter's configuration */
900 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
901 /* short preamble/slot time are negotiated when associating */
902 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
903 WPI_CONFIG_SHSLOT);
904 if (ic->ic_flags & IEEE80211_F_SHSLOT)
905 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
906 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
907 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
908 sc->config.filter |= htole32(WPI_FILTER_BSS);
909 if (ic->ic_opmode != IEEE80211_M_STA)
910 sc->config.filter |= htole32(WPI_FILTER_BEACON);
911
912 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
913
914 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
915 sc->config.flags));
916 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
917 sizeof (struct wpi_config), 1);
918 if (error != 0) {
919 aprint_error_dev(sc->sc_dev, "could not update configuration\n");
920 return error;
921 }
922
923 /* configuration has changed, set Tx power accordingly */
924 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
925 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
926 return error;
927 }
928
929 if (ic->ic_opmode == IEEE80211_M_STA) {
930 /* fake a join to init the tx rate */
931 wpi_newassoc(ni, 1);
932 }
933
934 /* start periodic calibration timer */
935 sc->calib_cnt = 0;
936 callout_schedule(&sc->calib_to, hz/2);
937
938 /* link LED always on while associated */
939 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
940 break;
941
942 case IEEE80211_S_INIT:
943 sc->is_scanning = false;
944 break;
945 }
946
947 return sc->sc_newstate(ic, nstate, arg);
948 }
949
950 /*
951 * XXX: Hack to set the current channel to the value advertised in beacons or
952 * probe responses. Only used during AP detection.
953 * XXX: Duplicated from if_iwi.c
954 */
955 static void
956 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
957 {
958 struct ieee80211_frame *wh;
959 uint8_t subtype;
960 uint8_t *frm, *efrm;
961
962 wh = mtod(m, struct ieee80211_frame *);
963
964 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
965 return;
966
967 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
968
969 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
970 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
971 return;
972
973 frm = (uint8_t *)(wh + 1);
974 efrm = mtod(m, uint8_t *) + m->m_len;
975
976 frm += 12; /* skip tstamp, bintval and capinfo fields */
977 while (frm < efrm) {
978 if (*frm == IEEE80211_ELEMID_DSPARMS)
979 #if IEEE80211_CHAN_MAX < 255
980 if (frm[2] <= IEEE80211_CHAN_MAX)
981 #endif
982 ic->ic_curchan = &ic->ic_channels[frm[2]];
983
984 frm += frm[1] + 2;
985 }
986 }
987
988 /*
989 * Grab exclusive access to NIC memory.
990 */
991 static void
992 wpi_mem_lock(struct wpi_softc *sc)
993 {
994 uint32_t tmp;
995 int ntries;
996
997 tmp = WPI_READ(sc, WPI_GPIO_CTL);
998 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
999
1000 /* spin until we actually get the lock */
1001 for (ntries = 0; ntries < 1000; ntries++) {
1002 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1003 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1004 break;
1005 DELAY(10);
1006 }
1007 if (ntries == 1000)
1008 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1009 }
1010
1011 /*
1012 * Release lock on NIC memory.
1013 */
1014 static void
1015 wpi_mem_unlock(struct wpi_softc *sc)
1016 {
1017 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1018 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1019 }
1020
1021 static uint32_t
1022 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1023 {
1024 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1025 return WPI_READ(sc, WPI_READ_MEM_DATA);
1026 }
1027
1028 static void
1029 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1030 {
1031 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1032 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1033 }
1034
1035 static void
1036 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1037 const uint32_t *data, int wlen)
1038 {
1039 for (; wlen > 0; wlen--, data++, addr += 4)
1040 wpi_mem_write(sc, addr, *data);
1041 }
1042
1043
1044 /*
1045 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1046 * instead of using the traditional bit-bang method.
1047 */
1048 static int
1049 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1050 {
1051 uint8_t *out = data;
1052 uint32_t val;
1053 int ntries;
1054
1055 wpi_mem_lock(sc);
1056 for (; len > 0; len -= 2, addr++) {
1057 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1058
1059 for (ntries = 0; ntries < 10; ntries++) {
1060 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1061 WPI_EEPROM_READY)
1062 break;
1063 DELAY(5);
1064 }
1065 if (ntries == 10) {
1066 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1067 return ETIMEDOUT;
1068 }
1069 *out++ = val >> 16;
1070 if (len > 1)
1071 *out++ = val >> 24;
1072 }
1073 wpi_mem_unlock(sc);
1074
1075 return 0;
1076 }
1077
1078 /*
1079 * The firmware boot code is small and is intended to be copied directly into
1080 * the NIC internal memory.
1081 */
1082 int
1083 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1084 {
1085 int ntries;
1086
1087 size /= sizeof (uint32_t);
1088
1089 wpi_mem_lock(sc);
1090
1091 /* copy microcode image into NIC memory */
1092 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1093 (const uint32_t *)ucode, size);
1094
1095 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1096 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1097 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1098
1099 /* run microcode */
1100 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1101
1102 /* wait for transfer to complete */
1103 for (ntries = 0; ntries < 1000; ntries++) {
1104 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1105 break;
1106 DELAY(10);
1107 }
1108 if (ntries == 1000) {
1109 wpi_mem_unlock(sc);
1110 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1111 return ETIMEDOUT;
1112 }
1113 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1114
1115 wpi_mem_unlock(sc);
1116
1117 return 0;
1118 }
1119
1120 static int
1121 wpi_cache_firmware(struct wpi_softc *sc)
1122 {
1123 const char *const fwname = wpi_firmware_name;
1124 firmware_handle_t fw;
1125 int error;
1126
1127 /* sc is used here only to report error messages. */
1128
1129 mutex_enter(&wpi_firmware_mutex);
1130
1131 if (wpi_firmware_users == SIZE_MAX) {
1132 mutex_exit(&wpi_firmware_mutex);
1133 return ENFILE; /* Too many of something in the system... */
1134 }
1135 if (wpi_firmware_users++) {
1136 KASSERT(wpi_firmware_image != NULL);
1137 KASSERT(wpi_firmware_size > 0);
1138 mutex_exit(&wpi_firmware_mutex);
1139 return 0; /* Already good to go. */
1140 }
1141
1142 KASSERT(wpi_firmware_image == NULL);
1143 KASSERT(wpi_firmware_size == 0);
1144
1145 /* load firmware image from disk */
1146 if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1147 aprint_error_dev(sc->sc_dev,
1148 "could not open firmware file %s: %d\n", fwname, error);
1149 goto fail0;
1150 }
1151
1152 wpi_firmware_size = firmware_get_size(fw);
1153
1154 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1155 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1156 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1157 WPI_FW_BOOT_TEXT_MAXSZ) {
1158 aprint_error_dev(sc->sc_dev,
1159 "firmware file %s too large: %zu bytes\n",
1160 fwname, wpi_firmware_size);
1161 error = EFBIG;
1162 goto fail1;
1163 }
1164
1165 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1166 aprint_error_dev(sc->sc_dev,
1167 "firmware file %s too small: %zu bytes\n",
1168 fwname, wpi_firmware_size);
1169 error = EINVAL;
1170 goto fail1;
1171 }
1172
1173 wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1174 if (wpi_firmware_image == NULL) {
1175 aprint_error_dev(sc->sc_dev,
1176 "not enough memory for firmware file %s\n", fwname);
1177 error = ENOMEM;
1178 goto fail1;
1179 }
1180
1181 error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1182 if (error != 0) {
1183 aprint_error_dev(sc->sc_dev,
1184 "error reading firmware file %s: %d\n", fwname, error);
1185 goto fail2;
1186 }
1187
1188 /* Success! */
1189 firmware_close(fw);
1190 mutex_exit(&wpi_firmware_mutex);
1191 return 0;
1192
1193 fail2:
1194 firmware_free(wpi_firmware_image, wpi_firmware_size);
1195 wpi_firmware_image = NULL;
1196 fail1:
1197 wpi_firmware_size = 0;
1198 firmware_close(fw);
1199 fail0:
1200 KASSERT(wpi_firmware_users == 1);
1201 wpi_firmware_users = 0;
1202 KASSERT(wpi_firmware_image == NULL);
1203 KASSERT(wpi_firmware_size == 0);
1204
1205 mutex_exit(&wpi_firmware_mutex);
1206 return error;
1207 }
1208
1209 static void
1210 wpi_release_firmware(void)
1211 {
1212
1213 mutex_enter(&wpi_firmware_mutex);
1214
1215 KASSERT(wpi_firmware_users > 0);
1216 KASSERT(wpi_firmware_image != NULL);
1217 KASSERT(wpi_firmware_size != 0);
1218
1219 if (--wpi_firmware_users == 0) {
1220 firmware_free(wpi_firmware_image, wpi_firmware_size);
1221 wpi_firmware_image = NULL;
1222 wpi_firmware_size = 0;
1223 }
1224
1225 mutex_exit(&wpi_firmware_mutex);
1226 }
1227
1228 static int
1229 wpi_load_firmware(struct wpi_softc *sc)
1230 {
1231 struct wpi_dma_info *dma = &sc->fw_dma;
1232 struct wpi_firmware_hdr hdr;
1233 const uint8_t *init_text, *init_data, *main_text, *main_data;
1234 const uint8_t *boot_text;
1235 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1236 uint32_t boot_textsz;
1237 size_t size;
1238 int error;
1239
1240 if (!sc->fw_used) {
1241 if ((error = wpi_cache_firmware(sc)) != 0)
1242 return error;
1243 sc->fw_used = true;
1244 }
1245
1246 KASSERT(sc->fw_used);
1247 KASSERT(wpi_firmware_image != NULL);
1248 KASSERT(wpi_firmware_size > sizeof(hdr));
1249
1250 memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1251
1252 main_textsz = le32toh(hdr.main_textsz);
1253 main_datasz = le32toh(hdr.main_datasz);
1254 init_textsz = le32toh(hdr.init_textsz);
1255 init_datasz = le32toh(hdr.init_datasz);
1256 boot_textsz = le32toh(hdr.boot_textsz);
1257
1258 /* sanity-check firmware segments sizes */
1259 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1260 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1261 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1262 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1263 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1264 (boot_textsz & 3) != 0) {
1265 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1266 error = EINVAL;
1267 goto free_firmware;
1268 }
1269
1270 /* check that all firmware segments are present */
1271 size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1272 main_datasz + init_textsz + init_datasz + boot_textsz;
1273 if (wpi_firmware_size < size) {
1274 aprint_error_dev(sc->sc_dev,
1275 "firmware file truncated: %zu bytes, expected %zu bytes\n",
1276 wpi_firmware_size, size);
1277 error = EINVAL;
1278 goto free_firmware;
1279 }
1280
1281 /* get pointers to firmware segments */
1282 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1283 main_data = main_text + main_textsz;
1284 init_text = main_data + main_datasz;
1285 init_data = init_text + init_textsz;
1286 boot_text = init_data + init_datasz;
1287
1288 /* copy initialization images into pre-allocated DMA-safe memory */
1289 memcpy(dma->vaddr, init_data, init_datasz);
1290 memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1291 init_textsz);
1292
1293 /* tell adapter where to find initialization images */
1294 wpi_mem_lock(sc);
1295 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1296 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1297 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1298 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1299 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1300 wpi_mem_unlock(sc);
1301
1302 /* load firmware boot code */
1303 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1304 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1305 return error;
1306 }
1307
1308 /* now press "execute" ;-) */
1309 WPI_WRITE(sc, WPI_RESET, 0);
1310
1311 /* wait at most one second for first alive notification */
1312 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1313 /* this isn't what was supposed to happen.. */
1314 aprint_error_dev(sc->sc_dev,
1315 "timeout waiting for adapter to initialize\n");
1316 }
1317
1318 /* copy runtime images into pre-allocated DMA-safe memory */
1319 memcpy(dma->vaddr, main_data, main_datasz);
1320 memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1321 main_textsz);
1322
1323 /* tell adapter where to find runtime images */
1324 wpi_mem_lock(sc);
1325 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1326 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1327 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1328 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1329 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1330 wpi_mem_unlock(sc);
1331
1332 /* wait at most one second for second alive notification */
1333 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1334 /* this isn't what was supposed to happen.. */
1335 aprint_error_dev(sc->sc_dev,
1336 "timeout waiting for adapter to initialize\n");
1337 }
1338
1339 return error;
1340
1341 free_firmware:
1342 sc->fw_used = false;
1343 wpi_release_firmware();
1344 return error;
1345 }
1346
1347 static void
1348 wpi_calib_timeout(void *arg)
1349 {
1350 struct wpi_softc *sc = arg;
1351 struct ieee80211com *ic = &sc->sc_ic;
1352 int temp, s;
1353
1354 /* automatic rate control triggered every 500ms */
1355 if (ic->ic_fixed_rate == -1) {
1356 s = splnet();
1357 if (ic->ic_opmode == IEEE80211_M_STA)
1358 wpi_iter_func(sc, ic->ic_bss);
1359 else
1360 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1361 splx(s);
1362 }
1363
1364 /* update sensor data */
1365 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1366
1367 /* automatic power calibration every 60s */
1368 if (++sc->calib_cnt >= 120) {
1369 wpi_power_calibration(sc, temp);
1370 sc->calib_cnt = 0;
1371 }
1372
1373 callout_schedule(&sc->calib_to, hz/2);
1374 }
1375
1376 static void
1377 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1378 {
1379 struct wpi_softc *sc = arg;
1380 struct wpi_node *wn = (struct wpi_node *)ni;
1381
1382 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1383 }
1384
1385 /*
1386 * This function is called periodically (every 60 seconds) to adjust output
1387 * power to temperature changes.
1388 */
1389 void
1390 wpi_power_calibration(struct wpi_softc *sc, int temp)
1391 {
1392 /* sanity-check read value */
1393 if (temp < -260 || temp > 25) {
1394 /* this can't be correct, ignore */
1395 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1396 return;
1397 }
1398
1399 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1400
1401 /* adjust Tx power if need be */
1402 if (abs(temp - sc->temp) <= 6)
1403 return;
1404
1405 sc->temp = temp;
1406
1407 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1408 /* just warn, too bad for the automatic calibration... */
1409 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1410 }
1411 }
1412
1413 static void
1414 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1415 struct wpi_rx_data *data)
1416 {
1417 struct ieee80211com *ic = &sc->sc_ic;
1418 struct ifnet *ifp = ic->ic_ifp;
1419 struct wpi_rx_ring *ring = &sc->rxq;
1420 struct wpi_rx_stat *stat;
1421 struct wpi_rx_head *head;
1422 struct wpi_rx_tail *tail;
1423 struct wpi_rbuf *rbuf;
1424 struct ieee80211_frame *wh;
1425 struct ieee80211_node *ni;
1426 struct mbuf *m, *mnew;
1427 int data_off ;
1428
1429 stat = (struct wpi_rx_stat *)(desc + 1);
1430
1431 if (stat->len > WPI_STAT_MAXLEN) {
1432 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1433 ifp->if_ierrors++;
1434 return;
1435 }
1436
1437 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1438 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1439
1440 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1441 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1442 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1443 le64toh(tail->tstamp)));
1444
1445 /*
1446 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1447 * to radiotap in monitor mode).
1448 */
1449 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1450 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1451 ifp->if_ierrors++;
1452 return;
1453 }
1454
1455 /* Compute where are the useful datas */
1456 data_off = (char*)(head + 1) - mtod(data->m, char*);
1457
1458 /*
1459 * If the number of free entry is too low
1460 * just dup the data->m socket and reuse the same rbuf entry
1461 * Note that thi test is not protected by a mutex because the
1462 * only path that causes nb_free_entries to decrease is through
1463 * this interrupt routine, which is not re-entrent.
1464 * What may not be obvious is that the safe path is if that test
1465 * evaluates as true, so nb_free_entries can grow any time.
1466 */
1467 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1468
1469 /* Prepare the mbuf for the m_dup */
1470 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1471 data->m->m_data = (char*) data->m->m_data + data_off;
1472
1473 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1474
1475 /* Restore the m_data pointer for future use */
1476 data->m->m_data = (char*) data->m->m_data - data_off;
1477
1478 if (m == NULL) {
1479 ifp->if_ierrors++;
1480 return;
1481 }
1482 } else {
1483
1484 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1485 if (mnew == NULL) {
1486 ifp->if_ierrors++;
1487 return;
1488 }
1489
1490 rbuf = wpi_alloc_rbuf(sc);
1491 KASSERT(rbuf != NULL);
1492
1493 /* attach Rx buffer to mbuf */
1494 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1495 rbuf);
1496 mnew->m_flags |= M_EXT_RW;
1497
1498 m = data->m;
1499 data->m = mnew;
1500
1501 /* update Rx descriptor */
1502 ring->desc[ring->cur] = htole32(rbuf->paddr);
1503
1504 m->m_data = (char*)m->m_data + data_off;
1505 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1506 }
1507
1508 /* finalize mbuf */
1509 m->m_pkthdr.rcvif = ifp;
1510
1511 if (ic->ic_state == IEEE80211_S_SCAN)
1512 wpi_fix_channel(ic, m);
1513
1514 if (sc->sc_drvbpf != NULL) {
1515 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1516
1517 tap->wr_flags = 0;
1518 tap->wr_chan_freq =
1519 htole16(ic->ic_channels[head->chan].ic_freq);
1520 tap->wr_chan_flags =
1521 htole16(ic->ic_channels[head->chan].ic_flags);
1522 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1523 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1524 tap->wr_tsft = tail->tstamp;
1525 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1526 switch (head->rate) {
1527 /* CCK rates */
1528 case 10: tap->wr_rate = 2; break;
1529 case 20: tap->wr_rate = 4; break;
1530 case 55: tap->wr_rate = 11; break;
1531 case 110: tap->wr_rate = 22; break;
1532 /* OFDM rates */
1533 case 0xd: tap->wr_rate = 12; break;
1534 case 0xf: tap->wr_rate = 18; break;
1535 case 0x5: tap->wr_rate = 24; break;
1536 case 0x7: tap->wr_rate = 36; break;
1537 case 0x9: tap->wr_rate = 48; break;
1538 case 0xb: tap->wr_rate = 72; break;
1539 case 0x1: tap->wr_rate = 96; break;
1540 case 0x3: tap->wr_rate = 108; break;
1541 /* unknown rate: should not happen */
1542 default: tap->wr_rate = 0;
1543 }
1544 if (le16toh(head->flags) & 0x4)
1545 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1546
1547 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1548 }
1549
1550 /* grab a reference to the source node */
1551 wh = mtod(m, struct ieee80211_frame *);
1552 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1553
1554 /* send the frame to the 802.11 layer */
1555 ieee80211_input(ic, m, ni, stat->rssi, 0);
1556
1557 /* release node reference */
1558 ieee80211_free_node(ni);
1559 }
1560
1561 static void
1562 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1563 {
1564 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1565 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1566 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1567 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1568 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1569
1570 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1571 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1572 stat->nkill, stat->rate, le32toh(stat->duration),
1573 le32toh(stat->status)));
1574
1575 /*
1576 * Update rate control statistics for the node.
1577 * XXX we should not count mgmt frames since they're always sent at
1578 * the lowest available bit-rate.
1579 */
1580 wn->amn.amn_txcnt++;
1581 if (stat->ntries > 0) {
1582 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1583 wn->amn.amn_retrycnt++;
1584 }
1585
1586 if ((le32toh(stat->status) & 0xff) != 1)
1587 ifp->if_oerrors++;
1588 else
1589 ifp->if_opackets++;
1590
1591 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1592 m_freem(txdata->m);
1593 txdata->m = NULL;
1594 ieee80211_free_node(txdata->ni);
1595 txdata->ni = NULL;
1596
1597 ring->queued--;
1598
1599 sc->sc_tx_timer = 0;
1600 ifp->if_flags &= ~IFF_OACTIVE;
1601 wpi_start(ifp);
1602 }
1603
1604 static void
1605 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1606 {
1607 struct wpi_tx_ring *ring = &sc->cmdq;
1608 struct wpi_tx_data *data;
1609
1610 if ((desc->qid & 7) != 4)
1611 return; /* not a command ack */
1612
1613 data = &ring->data[desc->idx];
1614
1615 /* if the command was mapped in a mbuf, free it */
1616 if (data->m != NULL) {
1617 bus_dmamap_unload(sc->sc_dmat, data->map);
1618 m_freem(data->m);
1619 data->m = NULL;
1620 }
1621
1622 wakeup(&ring->cmd[desc->idx]);
1623 }
1624
1625 static void
1626 wpi_notif_intr(struct wpi_softc *sc)
1627 {
1628 struct ieee80211com *ic = &sc->sc_ic;
1629 struct ifnet *ifp = ic->ic_ifp;
1630 struct wpi_rx_desc *desc;
1631 struct wpi_rx_data *data;
1632 uint32_t hw;
1633
1634 hw = le32toh(sc->shared->next);
1635 while (sc->rxq.cur != hw) {
1636 data = &sc->rxq.data[sc->rxq.cur];
1637
1638 desc = mtod(data->m, struct wpi_rx_desc *);
1639
1640 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1641 "len=%d\n", desc->qid, desc->idx, desc->flags,
1642 desc->type, le32toh(desc->len)));
1643
1644 if (!(desc->qid & 0x80)) /* reply to a command */
1645 wpi_cmd_intr(sc, desc);
1646
1647 switch (desc->type) {
1648 case WPI_RX_DONE:
1649 /* a 802.11 frame was received */
1650 wpi_rx_intr(sc, desc, data);
1651 break;
1652
1653 case WPI_TX_DONE:
1654 /* a 802.11 frame has been transmitted */
1655 wpi_tx_intr(sc, desc);
1656 break;
1657
1658 case WPI_UC_READY:
1659 {
1660 struct wpi_ucode_info *uc =
1661 (struct wpi_ucode_info *)(desc + 1);
1662
1663 /* the microcontroller is ready */
1664 DPRINTF(("microcode alive notification version %x "
1665 "alive %x\n", le32toh(uc->version),
1666 le32toh(uc->valid)));
1667
1668 if (le32toh(uc->valid) != 1) {
1669 aprint_error_dev(sc->sc_dev,
1670 "microcontroller initialization failed\n");
1671 }
1672 break;
1673 }
1674 case WPI_STATE_CHANGED:
1675 {
1676 uint32_t *status = (uint32_t *)(desc + 1);
1677
1678 /* enabled/disabled notification */
1679 DPRINTF(("state changed to %x\n", le32toh(*status)));
1680
1681 if (le32toh(*status) & 1) {
1682 /* the radio button has to be pushed */
1683 aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1684 /* turn the interface down */
1685 ifp->if_flags &= ~IFF_UP;
1686 wpi_stop(ifp, 1);
1687 return; /* no further processing */
1688 }
1689 break;
1690 }
1691 case WPI_START_SCAN:
1692 {
1693 struct wpi_start_scan *scan =
1694 (struct wpi_start_scan *)(desc + 1);
1695
1696 DPRINTFN(2, ("scanning channel %d status %x\n",
1697 scan->chan, le32toh(scan->status)));
1698
1699 /* fix current channel */
1700 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1701 break;
1702 }
1703 case WPI_STOP_SCAN:
1704 {
1705 struct wpi_stop_scan *scan =
1706 (struct wpi_stop_scan *)(desc + 1);
1707
1708 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1709 scan->nchan, scan->status, scan->chan));
1710
1711 if (scan->status == 1 && scan->chan <= 14) {
1712 /*
1713 * We just finished scanning 802.11g channels,
1714 * start scanning 802.11a ones.
1715 */
1716 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1717 break;
1718 }
1719 sc->is_scanning = false;
1720 ieee80211_end_scan(ic);
1721 break;
1722 }
1723 }
1724
1725 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1726 }
1727
1728 /* tell the firmware what we have processed */
1729 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1730 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1731 }
1732
1733 static int
1734 wpi_intr(void *arg)
1735 {
1736 struct wpi_softc *sc = arg;
1737 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1738 uint32_t r;
1739
1740 r = WPI_READ(sc, WPI_INTR);
1741 if (r == 0 || r == 0xffffffff)
1742 return 0; /* not for us */
1743
1744 DPRINTFN(5, ("interrupt reg %x\n", r));
1745
1746 /* disable interrupts */
1747 WPI_WRITE(sc, WPI_MASK, 0);
1748 /* ack interrupts */
1749 WPI_WRITE(sc, WPI_INTR, r);
1750
1751 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1752 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1753 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1754 wpi_stop(sc->sc_ic.ic_ifp, 1);
1755 return 1;
1756 }
1757
1758 if (r & WPI_RX_INTR)
1759 wpi_notif_intr(sc);
1760
1761 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1762 wakeup(sc);
1763
1764 /* re-enable interrupts */
1765 if (ifp->if_flags & IFF_UP)
1766 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1767
1768 return 1;
1769 }
1770
1771 static uint8_t
1772 wpi_plcp_signal(int rate)
1773 {
1774 switch (rate) {
1775 /* CCK rates (returned values are device-dependent) */
1776 case 2: return 10;
1777 case 4: return 20;
1778 case 11: return 55;
1779 case 22: return 110;
1780
1781 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1782 /* R1-R4, (u)ral is R4-R1 */
1783 case 12: return 0xd;
1784 case 18: return 0xf;
1785 case 24: return 0x5;
1786 case 36: return 0x7;
1787 case 48: return 0x9;
1788 case 72: return 0xb;
1789 case 96: return 0x1;
1790 case 108: return 0x3;
1791
1792 /* unsupported rates (should not get there) */
1793 default: return 0;
1794 }
1795 }
1796
1797 /* quickly determine if a given rate is CCK or OFDM */
1798 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1799
1800 static int
1801 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1802 int ac)
1803 {
1804 struct ieee80211com *ic = &sc->sc_ic;
1805 struct wpi_tx_ring *ring = &sc->txq[ac];
1806 struct wpi_tx_desc *desc;
1807 struct wpi_tx_data *data;
1808 struct wpi_tx_cmd *cmd;
1809 struct wpi_cmd_data *tx;
1810 struct ieee80211_frame *wh;
1811 struct ieee80211_key *k;
1812 const struct chanAccParams *cap;
1813 struct mbuf *mnew;
1814 int i, error, rate, hdrlen, noack = 0;
1815
1816 desc = &ring->desc[ring->cur];
1817 data = &ring->data[ring->cur];
1818
1819 wh = mtod(m0, struct ieee80211_frame *);
1820
1821 if (ieee80211_has_qos(wh)) {
1822 cap = &ic->ic_wme.wme_chanParams;
1823 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1824 }
1825
1826 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1827 k = ieee80211_crypto_encap(ic, ni, m0);
1828 if (k == NULL) {
1829 m_freem(m0);
1830 return ENOBUFS;
1831 }
1832
1833 /* packet header may have moved, reset our local pointer */
1834 wh = mtod(m0, struct ieee80211_frame *);
1835 }
1836
1837 hdrlen = ieee80211_anyhdrsize(wh);
1838
1839 /* pickup a rate */
1840 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1841 IEEE80211_FC0_TYPE_MGT) {
1842 /* mgmt frames are sent at the lowest available bit-rate */
1843 rate = ni->ni_rates.rs_rates[0];
1844 } else {
1845 if (ic->ic_fixed_rate != -1) {
1846 rate = ic->ic_sup_rates[ic->ic_curmode].
1847 rs_rates[ic->ic_fixed_rate];
1848 } else
1849 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1850 }
1851 rate &= IEEE80211_RATE_VAL;
1852
1853
1854 if (sc->sc_drvbpf != NULL) {
1855 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1856
1857 tap->wt_flags = 0;
1858 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1859 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1860 tap->wt_rate = rate;
1861 tap->wt_hwqueue = ac;
1862 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1863 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1864
1865 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1866 }
1867
1868 cmd = &ring->cmd[ring->cur];
1869 cmd->code = WPI_CMD_TX_DATA;
1870 cmd->flags = 0;
1871 cmd->qid = ring->qid;
1872 cmd->idx = ring->cur;
1873
1874 tx = (struct wpi_cmd_data *)cmd->data;
1875 tx->flags = 0;
1876
1877 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1878 tx->flags |= htole32(WPI_TX_NEED_ACK);
1879 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1880 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1881
1882 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1883
1884 /* retrieve destination node's id */
1885 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1886 WPI_ID_BSS;
1887
1888 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1889 IEEE80211_FC0_TYPE_MGT) {
1890 /* tell h/w to set timestamp in probe responses */
1891 if ((wh->i_fc[0] &
1892 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1893 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1894 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1895
1896 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1897 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1898 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1899 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1900 tx->timeout = htole16(3);
1901 else
1902 tx->timeout = htole16(2);
1903 } else
1904 tx->timeout = htole16(0);
1905
1906 tx->rate = wpi_plcp_signal(rate);
1907
1908 /* be very persistant at sending frames out */
1909 tx->rts_ntries = 7;
1910 tx->data_ntries = 15;
1911
1912 tx->ofdm_mask = 0xff;
1913 tx->cck_mask = 0xf;
1914 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1915
1916 tx->len = htole16(m0->m_pkthdr.len);
1917
1918 /* save and trim IEEE802.11 header */
1919 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1920 m_adj(m0, hdrlen);
1921
1922 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1923 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1924 if (error != 0 && error != EFBIG) {
1925 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1926 m_freem(m0);
1927 return error;
1928 }
1929 if (error != 0) {
1930 /* too many fragments, linearize */
1931 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1932 if (mnew == NULL) {
1933 m_freem(m0);
1934 return ENOMEM;
1935 }
1936
1937 M_COPY_PKTHDR(mnew, m0);
1938 if (m0->m_pkthdr.len > MHLEN) {
1939 MCLGET(mnew, M_DONTWAIT);
1940 if (!(mnew->m_flags & M_EXT)) {
1941 m_freem(m0);
1942 m_freem(mnew);
1943 return ENOMEM;
1944 }
1945 }
1946
1947 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1948 m_freem(m0);
1949 mnew->m_len = mnew->m_pkthdr.len;
1950 m0 = mnew;
1951
1952 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1953 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1954 if (error != 0) {
1955 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1956 error);
1957 m_freem(m0);
1958 return error;
1959 }
1960 }
1961
1962 data->m = m0;
1963 data->ni = ni;
1964
1965 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1966 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1967
1968 /* first scatter/gather segment is used by the tx data command */
1969 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1970 (1 + data->map->dm_nsegs) << 24);
1971 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1972 ring->cur * sizeof (struct wpi_tx_cmd));
1973 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1974 ((hdrlen + 3) & ~3));
1975
1976 for (i = 1; i <= data->map->dm_nsegs; i++) {
1977 desc->segs[i].addr =
1978 htole32(data->map->dm_segs[i - 1].ds_addr);
1979 desc->segs[i].len =
1980 htole32(data->map->dm_segs[i - 1].ds_len);
1981 }
1982
1983 ring->queued++;
1984
1985 /* kick ring */
1986 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1987 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1988
1989 return 0;
1990 }
1991
1992 static void
1993 wpi_start(struct ifnet *ifp)
1994 {
1995 struct wpi_softc *sc = ifp->if_softc;
1996 struct ieee80211com *ic = &sc->sc_ic;
1997 struct ieee80211_node *ni;
1998 struct ether_header *eh;
1999 struct mbuf *m0;
2000 int ac;
2001
2002 /*
2003 * net80211 may still try to send management frames even if the
2004 * IFF_RUNNING flag is not set...
2005 */
2006 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2007 return;
2008
2009 for (;;) {
2010 IF_DEQUEUE(&ic->ic_mgtq, m0);
2011 if (m0 != NULL) {
2012
2013 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2014 m0->m_pkthdr.rcvif = NULL;
2015
2016 /* management frames go into ring 0 */
2017 if (sc->txq[0].queued > sc->txq[0].count - 8) {
2018 ifp->if_oerrors++;
2019 continue;
2020 }
2021 bpf_mtap3(ic->ic_rawbpf, m0);
2022 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2023 ifp->if_oerrors++;
2024 break;
2025 }
2026 } else {
2027 if (ic->ic_state != IEEE80211_S_RUN)
2028 break;
2029 IFQ_POLL(&ifp->if_snd, m0);
2030 if (m0 == NULL)
2031 break;
2032
2033 if (m0->m_len < sizeof (*eh) &&
2034 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2035 ifp->if_oerrors++;
2036 continue;
2037 }
2038 eh = mtod(m0, struct ether_header *);
2039 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2040 if (ni == NULL) {
2041 m_freem(m0);
2042 ifp->if_oerrors++;
2043 continue;
2044 }
2045
2046 /* classify mbuf so we can find which tx ring to use */
2047 if (ieee80211_classify(ic, m0, ni) != 0) {
2048 m_freem(m0);
2049 ieee80211_free_node(ni);
2050 ifp->if_oerrors++;
2051 continue;
2052 }
2053
2054 /* no QoS encapsulation for EAPOL frames */
2055 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2056 M_WME_GETAC(m0) : WME_AC_BE;
2057
2058 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2059 /* there is no place left in this ring */
2060 ifp->if_flags |= IFF_OACTIVE;
2061 break;
2062 }
2063 IFQ_DEQUEUE(&ifp->if_snd, m0);
2064 bpf_mtap(ifp, m0);
2065 m0 = ieee80211_encap(ic, m0, ni);
2066 if (m0 == NULL) {
2067 ieee80211_free_node(ni);
2068 ifp->if_oerrors++;
2069 continue;
2070 }
2071 bpf_mtap3(ic->ic_rawbpf, m0);
2072 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2073 ieee80211_free_node(ni);
2074 ifp->if_oerrors++;
2075 break;
2076 }
2077 }
2078
2079 sc->sc_tx_timer = 5;
2080 ifp->if_timer = 1;
2081 }
2082 }
2083
2084 static void
2085 wpi_watchdog(struct ifnet *ifp)
2086 {
2087 struct wpi_softc *sc = ifp->if_softc;
2088
2089 ifp->if_timer = 0;
2090
2091 if (sc->sc_tx_timer > 0) {
2092 if (--sc->sc_tx_timer == 0) {
2093 aprint_error_dev(sc->sc_dev, "device timeout\n");
2094 ifp->if_oerrors++;
2095 ifp->if_flags &= ~IFF_UP;
2096 wpi_stop(ifp, 1);
2097 return;
2098 }
2099 ifp->if_timer = 1;
2100 }
2101
2102 ieee80211_watchdog(&sc->sc_ic);
2103 }
2104
2105 static int
2106 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2107 {
2108 #define IS_RUNNING(ifp) \
2109 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2110
2111 struct wpi_softc *sc = ifp->if_softc;
2112 struct ieee80211com *ic = &sc->sc_ic;
2113 int s, error = 0;
2114
2115 s = splnet();
2116
2117 switch (cmd) {
2118 case SIOCSIFFLAGS:
2119 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2120 break;
2121 if (ifp->if_flags & IFF_UP) {
2122 if (!(ifp->if_flags & IFF_RUNNING))
2123 wpi_init(ifp);
2124 } else {
2125 if (ifp->if_flags & IFF_RUNNING)
2126 wpi_stop(ifp, 1);
2127 }
2128 break;
2129
2130 case SIOCADDMULTI:
2131 case SIOCDELMULTI:
2132 /* XXX no h/w multicast filter? --dyoung */
2133 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2134 /* setup multicast filter, etc */
2135 error = 0;
2136 }
2137 break;
2138
2139 default:
2140 error = ieee80211_ioctl(ic, cmd, data);
2141 }
2142
2143 if (error == ENETRESET) {
2144 if (IS_RUNNING(ifp) &&
2145 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2146 wpi_init(ifp);
2147 error = 0;
2148 }
2149
2150 splx(s);
2151 return error;
2152
2153 #undef IS_RUNNING
2154 }
2155
2156 /*
2157 * Extract various information from EEPROM.
2158 */
2159 static void
2160 wpi_read_eeprom(struct wpi_softc *sc)
2161 {
2162 struct ieee80211com *ic = &sc->sc_ic;
2163 char domain[4];
2164 int i;
2165
2166 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2167 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2168 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2169
2170 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2171 sc->type));
2172
2173 /* read and print regulatory domain */
2174 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2175 aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2176
2177 /* read and print MAC address */
2178 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2179 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2180
2181 /* read the list of authorized channels */
2182 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2183 wpi_read_eeprom_channels(sc, i);
2184
2185 /* read the list of power groups */
2186 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2187 wpi_read_eeprom_group(sc, i);
2188 }
2189
2190 static void
2191 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2192 {
2193 struct ieee80211com *ic = &sc->sc_ic;
2194 const struct wpi_chan_band *band = &wpi_bands[n];
2195 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2196 int chan, i;
2197
2198 wpi_read_prom_data(sc, band->addr, channels,
2199 band->nchan * sizeof (struct wpi_eeprom_chan));
2200
2201 for (i = 0; i < band->nchan; i++) {
2202 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2203 continue;
2204
2205 chan = band->chan[i];
2206
2207 if (n == 0) { /* 2GHz band */
2208 ic->ic_channels[chan].ic_freq =
2209 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2210 ic->ic_channels[chan].ic_flags =
2211 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2212 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2213
2214 } else { /* 5GHz band */
2215 /*
2216 * Some 3945abg adapters support channels 7, 8, 11
2217 * and 12 in the 2GHz *and* 5GHz bands.
2218 * Because of limitations in our net80211(9) stack,
2219 * we can't support these channels in 5GHz band.
2220 */
2221 if (chan <= 14)
2222 continue;
2223
2224 ic->ic_channels[chan].ic_freq =
2225 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2226 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2227 }
2228
2229 /* is active scan allowed on this channel? */
2230 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2231 ic->ic_channels[chan].ic_flags |=
2232 IEEE80211_CHAN_PASSIVE;
2233 }
2234
2235 /* save maximum allowed power for this channel */
2236 sc->maxpwr[chan] = channels[i].maxpwr;
2237
2238 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2239 chan, channels[i].flags, sc->maxpwr[chan]));
2240 }
2241 }
2242
2243 static void
2244 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2245 {
2246 struct wpi_power_group *group = &sc->groups[n];
2247 struct wpi_eeprom_group rgroup;
2248 int i;
2249
2250 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2251 sizeof rgroup);
2252
2253 /* save power group information */
2254 group->chan = rgroup.chan;
2255 group->maxpwr = rgroup.maxpwr;
2256 /* temperature at which the samples were taken */
2257 group->temp = (int16_t)le16toh(rgroup.temp);
2258
2259 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2260 group->chan, group->maxpwr, group->temp));
2261
2262 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2263 group->samples[i].index = rgroup.samples[i].index;
2264 group->samples[i].power = rgroup.samples[i].power;
2265
2266 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2267 group->samples[i].index, group->samples[i].power));
2268 }
2269 }
2270
2271 /*
2272 * Send a command to the firmware.
2273 */
2274 static int
2275 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2276 {
2277 struct wpi_tx_ring *ring = &sc->cmdq;
2278 struct wpi_tx_desc *desc;
2279 struct wpi_tx_cmd *cmd;
2280
2281 KASSERT(size <= sizeof cmd->data);
2282
2283 desc = &ring->desc[ring->cur];
2284 cmd = &ring->cmd[ring->cur];
2285
2286 cmd->code = code;
2287 cmd->flags = 0;
2288 cmd->qid = ring->qid;
2289 cmd->idx = ring->cur;
2290 memcpy(cmd->data, buf, size);
2291
2292 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2293 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2294 ring->cur * sizeof (struct wpi_tx_cmd));
2295 desc->segs[0].len = htole32(4 + size);
2296
2297 /* kick cmd ring */
2298 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2299 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2300
2301 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2302 }
2303
2304 static int
2305 wpi_wme_update(struct ieee80211com *ic)
2306 {
2307 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2308 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2309 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2310 const struct wmeParams *wmep;
2311 struct wpi_wme_setup wme;
2312 int ac;
2313
2314 /* don't override default WME values if WME is not actually enabled */
2315 if (!(ic->ic_flags & IEEE80211_F_WME))
2316 return 0;
2317
2318 wme.flags = 0;
2319 for (ac = 0; ac < WME_NUM_AC; ac++) {
2320 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2321 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2322 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2323 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2324 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2325
2326 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2327 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2328 wme.ac[ac].cwmax, wme.ac[ac].txop));
2329 }
2330
2331 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2332 #undef WPI_USEC
2333 #undef WPI_EXP2
2334 }
2335
2336 /*
2337 * Configure h/w multi-rate retries.
2338 */
2339 static int
2340 wpi_mrr_setup(struct wpi_softc *sc)
2341 {
2342 struct ieee80211com *ic = &sc->sc_ic;
2343 struct wpi_mrr_setup mrr;
2344 int i, error;
2345
2346 /* CCK rates (not used with 802.11a) */
2347 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2348 mrr.rates[i].flags = 0;
2349 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2350 /* fallback to the immediate lower CCK rate (if any) */
2351 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2352 /* try one time at this rate before falling back to "next" */
2353 mrr.rates[i].ntries = 1;
2354 }
2355
2356 /* OFDM rates (not used with 802.11b) */
2357 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2358 mrr.rates[i].flags = 0;
2359 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2360 /* fallback to the immediate lower rate (if any) */
2361 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2362 mrr.rates[i].next = (i == WPI_OFDM6) ?
2363 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2364 WPI_OFDM6 : WPI_CCK2) :
2365 i - 1;
2366 /* try one time at this rate before falling back to "next" */
2367 mrr.rates[i].ntries = 1;
2368 }
2369
2370 /* setup MRR for control frames */
2371 mrr.which = htole32(WPI_MRR_CTL);
2372 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2373 if (error != 0) {
2374 aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2375 return error;
2376 }
2377
2378 /* setup MRR for data frames */
2379 mrr.which = htole32(WPI_MRR_DATA);
2380 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2381 if (error != 0) {
2382 aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2383 return error;
2384 }
2385
2386 return 0;
2387 }
2388
2389 static void
2390 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2391 {
2392 struct wpi_cmd_led led;
2393
2394 led.which = which;
2395 led.unit = htole32(100000); /* on/off in unit of 100ms */
2396 led.off = off;
2397 led.on = on;
2398
2399 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2400 }
2401
2402 static void
2403 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2404 {
2405 struct wpi_cmd_tsf tsf;
2406 uint64_t val, mod;
2407
2408 memset(&tsf, 0, sizeof tsf);
2409 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2410 tsf.bintval = htole16(ni->ni_intval);
2411 tsf.lintval = htole16(10);
2412
2413 /* compute remaining time until next beacon */
2414 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2415 mod = le64toh(tsf.tstamp) % val;
2416 tsf.binitval = htole32((uint32_t)(val - mod));
2417
2418 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2419 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2420
2421 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2422 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2423 }
2424
2425 /*
2426 * Update Tx power to match what is defined for channel `c'.
2427 */
2428 static int
2429 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2430 {
2431 struct ieee80211com *ic = &sc->sc_ic;
2432 struct wpi_power_group *group;
2433 struct wpi_cmd_txpower txpower;
2434 u_int chan;
2435 int i;
2436
2437 /* get channel number */
2438 chan = ieee80211_chan2ieee(ic, c);
2439
2440 /* find the power group to which this channel belongs */
2441 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2442 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2443 if (chan <= group->chan)
2444 break;
2445 } else
2446 group = &sc->groups[0];
2447
2448 memset(&txpower, 0, sizeof txpower);
2449 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2450 txpower.chan = htole16(chan);
2451
2452 /* set Tx power for all OFDM and CCK rates */
2453 for (i = 0; i <= 11 ; i++) {
2454 /* retrieve Tx power for this channel/rate combination */
2455 int idx = wpi_get_power_index(sc, group, c,
2456 wpi_ridx_to_rate[i]);
2457
2458 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2459
2460 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2461 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2462 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2463 } else {
2464 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2465 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2466 }
2467 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2468 wpi_ridx_to_rate[i], idx));
2469 }
2470
2471 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2472 }
2473
2474 /*
2475 * Determine Tx power index for a given channel/rate combination.
2476 * This takes into account the regulatory information from EEPROM and the
2477 * current temperature.
2478 */
2479 static int
2480 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2481 struct ieee80211_channel *c, int rate)
2482 {
2483 /* fixed-point arithmetic division using a n-bit fractional part */
2484 #define fdivround(a, b, n) \
2485 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2486
2487 /* linear interpolation */
2488 #define interpolate(x, x1, y1, x2, y2, n) \
2489 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2490
2491 struct ieee80211com *ic = &sc->sc_ic;
2492 struct wpi_power_sample *sample;
2493 int pwr, idx;
2494 u_int chan;
2495
2496 /* get channel number */
2497 chan = ieee80211_chan2ieee(ic, c);
2498
2499 /* default power is group's maximum power - 3dB */
2500 pwr = group->maxpwr / 2;
2501
2502 /* decrease power for highest OFDM rates to reduce distortion */
2503 switch (rate) {
2504 case 72: /* 36Mb/s */
2505 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2506 break;
2507 case 96: /* 48Mb/s */
2508 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2509 break;
2510 case 108: /* 54Mb/s */
2511 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2512 break;
2513 }
2514
2515 /* never exceed channel's maximum allowed Tx power */
2516 pwr = min(pwr, sc->maxpwr[chan]);
2517
2518 /* retrieve power index into gain tables from samples */
2519 for (sample = group->samples; sample < &group->samples[3]; sample++)
2520 if (pwr > sample[1].power)
2521 break;
2522 /* fixed-point linear interpolation using a 19-bit fractional part */
2523 idx = interpolate(pwr, sample[0].power, sample[0].index,
2524 sample[1].power, sample[1].index, 19);
2525
2526 /*
2527 * Adjust power index based on current temperature:
2528 * - if cooler than factory-calibrated: decrease output power
2529 * - if warmer than factory-calibrated: increase output power
2530 */
2531 idx -= (sc->temp - group->temp) * 11 / 100;
2532
2533 /* decrease power for CCK rates (-5dB) */
2534 if (!WPI_RATE_IS_OFDM(rate))
2535 idx += 10;
2536
2537 /* keep power index in a valid range */
2538 if (idx < 0)
2539 return 0;
2540 if (idx > WPI_MAX_PWR_INDEX)
2541 return WPI_MAX_PWR_INDEX;
2542 return idx;
2543
2544 #undef interpolate
2545 #undef fdivround
2546 }
2547
2548 /*
2549 * Build a beacon frame that the firmware will broadcast periodically in
2550 * IBSS or HostAP modes.
2551 */
2552 static int
2553 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2554 {
2555 struct ieee80211com *ic = &sc->sc_ic;
2556 struct wpi_tx_ring *ring = &sc->cmdq;
2557 struct wpi_tx_desc *desc;
2558 struct wpi_tx_data *data;
2559 struct wpi_tx_cmd *cmd;
2560 struct wpi_cmd_beacon *bcn;
2561 struct ieee80211_beacon_offsets bo;
2562 struct mbuf *m0;
2563 int error;
2564
2565 desc = &ring->desc[ring->cur];
2566 data = &ring->data[ring->cur];
2567
2568 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2569 if (m0 == NULL) {
2570 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2571 return ENOMEM;
2572 }
2573
2574 cmd = &ring->cmd[ring->cur];
2575 cmd->code = WPI_CMD_SET_BEACON;
2576 cmd->flags = 0;
2577 cmd->qid = ring->qid;
2578 cmd->idx = ring->cur;
2579
2580 bcn = (struct wpi_cmd_beacon *)cmd->data;
2581 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2582 bcn->id = WPI_ID_BROADCAST;
2583 bcn->ofdm_mask = 0xff;
2584 bcn->cck_mask = 0x0f;
2585 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2586 bcn->len = htole16(m0->m_pkthdr.len);
2587 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2588 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2589 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2590
2591 /* save and trim IEEE802.11 header */
2592 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2593 m_adj(m0, sizeof (struct ieee80211_frame));
2594
2595 /* assume beacon frame is contiguous */
2596 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2597 BUS_DMA_READ | BUS_DMA_NOWAIT);
2598 if (error) {
2599 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2600 m_freem(m0);
2601 return error;
2602 }
2603
2604 data->m = m0;
2605
2606 /* first scatter/gather segment is used by the beacon command */
2607 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2608 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2609 ring->cur * sizeof (struct wpi_tx_cmd));
2610 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2611 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2612 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2613
2614 /* kick cmd ring */
2615 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2616 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2617
2618 return 0;
2619 }
2620
2621 static int
2622 wpi_auth(struct wpi_softc *sc)
2623 {
2624 struct ieee80211com *ic = &sc->sc_ic;
2625 struct ieee80211_node *ni = ic->ic_bss;
2626 struct wpi_node_info node;
2627 int error;
2628
2629 /* update adapter's configuration */
2630 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2631 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2632 sc->config.flags = htole32(WPI_CONFIG_TSF);
2633 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2634 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2635 WPI_CONFIG_24GHZ);
2636 }
2637 switch (ic->ic_curmode) {
2638 case IEEE80211_MODE_11A:
2639 sc->config.cck_mask = 0;
2640 sc->config.ofdm_mask = 0x15;
2641 break;
2642 case IEEE80211_MODE_11B:
2643 sc->config.cck_mask = 0x03;
2644 sc->config.ofdm_mask = 0;
2645 break;
2646 default: /* assume 802.11b/g */
2647 sc->config.cck_mask = 0x0f;
2648 sc->config.ofdm_mask = 0x15;
2649 }
2650
2651 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2652 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2653 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2654 sizeof (struct wpi_config), 1);
2655 if (error != 0) {
2656 aprint_error_dev(sc->sc_dev, "could not configure\n");
2657 return error;
2658 }
2659
2660 /* configuration has changed, set Tx power accordingly */
2661 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2662 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2663 return error;
2664 }
2665
2666 /* add default node */
2667 memset(&node, 0, sizeof node);
2668 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2669 node.id = WPI_ID_BSS;
2670 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2671 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2672 node.action = htole32(WPI_ACTION_SET_RATE);
2673 node.antenna = WPI_ANTENNA_BOTH;
2674 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2675 if (error != 0) {
2676 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2677 return error;
2678 }
2679
2680 return 0;
2681 }
2682
2683 /*
2684 * Send a scan request to the firmware. Since this command is huge, we map it
2685 * into a mbuf instead of using the pre-allocated set of commands.
2686 */
2687 static int
2688 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2689 {
2690 struct ieee80211com *ic = &sc->sc_ic;
2691 struct wpi_tx_ring *ring = &sc->cmdq;
2692 struct wpi_tx_desc *desc;
2693 struct wpi_tx_data *data;
2694 struct wpi_tx_cmd *cmd;
2695 struct wpi_scan_hdr *hdr;
2696 struct wpi_scan_chan *chan;
2697 struct ieee80211_frame *wh;
2698 struct ieee80211_rateset *rs;
2699 struct ieee80211_channel *c;
2700 enum ieee80211_phymode mode;
2701 uint8_t *frm;
2702 int nrates, pktlen, error;
2703
2704 desc = &ring->desc[ring->cur];
2705 data = &ring->data[ring->cur];
2706
2707 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2708 if (data->m == NULL) {
2709 aprint_error_dev(sc->sc_dev,
2710 "could not allocate mbuf for scan command\n");
2711 return ENOMEM;
2712 }
2713
2714 MCLGET(data->m, M_DONTWAIT);
2715 if (!(data->m->m_flags & M_EXT)) {
2716 m_freem(data->m);
2717 data->m = NULL;
2718 aprint_error_dev(sc->sc_dev,
2719 "could not allocate mbuf for scan command\n");
2720 return ENOMEM;
2721 }
2722
2723 cmd = mtod(data->m, struct wpi_tx_cmd *);
2724 cmd->code = WPI_CMD_SCAN;
2725 cmd->flags = 0;
2726 cmd->qid = ring->qid;
2727 cmd->idx = ring->cur;
2728
2729 hdr = (struct wpi_scan_hdr *)cmd->data;
2730 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2731 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2732 hdr->id = WPI_ID_BROADCAST;
2733 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2734
2735 /*
2736 * Move to the next channel if no packets are received within 5 msecs
2737 * after sending the probe request (this helps to reduce the duration
2738 * of active scans).
2739 */
2740 hdr->quiet = htole16(5); /* timeout in milliseconds */
2741 hdr->plcp_threshold = htole16(1); /* min # of packets */
2742
2743 if (flags & IEEE80211_CHAN_A) {
2744 hdr->crc_threshold = htole16(1);
2745 /* send probe requests at 6Mbps */
2746 hdr->rate = wpi_plcp_signal(12);
2747 } else {
2748 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2749 /* send probe requests at 1Mbps */
2750 hdr->rate = wpi_plcp_signal(2);
2751 }
2752
2753 /* for directed scans, firmware inserts the essid IE itself */
2754 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2755 hdr->essid[0].len = ic->ic_des_esslen;
2756 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2757
2758 /*
2759 * Build a probe request frame. Most of the following code is a
2760 * copy & paste of what is done in net80211.
2761 */
2762 wh = (struct ieee80211_frame *)(hdr + 1);
2763 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2764 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2765 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2766 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2767 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2768 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2769 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2770 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2771
2772 frm = (uint8_t *)(wh + 1);
2773
2774 /* add empty essid IE (firmware generates it for directed scans) */
2775 *frm++ = IEEE80211_ELEMID_SSID;
2776 *frm++ = 0;
2777
2778 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2779 rs = &ic->ic_sup_rates[mode];
2780
2781 /* add supported rates IE */
2782 *frm++ = IEEE80211_ELEMID_RATES;
2783 nrates = rs->rs_nrates;
2784 if (nrates > IEEE80211_RATE_SIZE)
2785 nrates = IEEE80211_RATE_SIZE;
2786 *frm++ = nrates;
2787 memcpy(frm, rs->rs_rates, nrates);
2788 frm += nrates;
2789
2790 /* add supported xrates IE */
2791 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2792 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2793 *frm++ = IEEE80211_ELEMID_XRATES;
2794 *frm++ = nrates;
2795 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2796 frm += nrates;
2797 }
2798
2799 /* setup length of probe request */
2800 hdr->paylen = htole16(frm - (uint8_t *)wh);
2801
2802 chan = (struct wpi_scan_chan *)frm;
2803 for (c = &ic->ic_channels[1];
2804 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2805 if ((c->ic_flags & flags) != flags)
2806 continue;
2807
2808 chan->chan = ieee80211_chan2ieee(ic, c);
2809 chan->flags = 0;
2810 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2811 chan->flags |= WPI_CHAN_ACTIVE;
2812 if (ic->ic_des_esslen != 0)
2813 chan->flags |= WPI_CHAN_DIRECT;
2814 }
2815 chan->dsp_gain = 0x6e;
2816 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2817 chan->rf_gain = 0x3b;
2818 chan->active = htole16(10);
2819 chan->passive = htole16(110);
2820 } else {
2821 chan->rf_gain = 0x28;
2822 chan->active = htole16(20);
2823 chan->passive = htole16(120);
2824 }
2825 hdr->nchan++;
2826 chan++;
2827
2828 frm += sizeof (struct wpi_scan_chan);
2829 }
2830 hdr->len = htole16(frm - (uint8_t *)hdr);
2831 pktlen = frm - (uint8_t *)cmd;
2832
2833 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2834 NULL, BUS_DMA_NOWAIT);
2835 if (error) {
2836 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2837 m_freem(data->m);
2838 data->m = NULL;
2839 return error;
2840 }
2841
2842 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2843 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2844 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2845
2846 /* kick cmd ring */
2847 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2848 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2849
2850 return 0; /* will be notified async. of failure/success */
2851 }
2852
2853 static int
2854 wpi_config(struct wpi_softc *sc)
2855 {
2856 struct ieee80211com *ic = &sc->sc_ic;
2857 struct ifnet *ifp = ic->ic_ifp;
2858 struct wpi_power power;
2859 struct wpi_bluetooth bluetooth;
2860 struct wpi_node_info node;
2861 int error;
2862
2863 memset(&power, 0, sizeof power);
2864 power.flags = htole32(WPI_POWER_CAM | 0x8);
2865 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2866 if (error != 0) {
2867 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2868 return error;
2869 }
2870
2871 /* configure bluetooth coexistence */
2872 memset(&bluetooth, 0, sizeof bluetooth);
2873 bluetooth.flags = 3;
2874 bluetooth.lead = 0xaa;
2875 bluetooth.kill = 1;
2876 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2877 0);
2878 if (error != 0) {
2879 aprint_error_dev(sc->sc_dev,
2880 "could not configure bluetooth coexistence\n");
2881 return error;
2882 }
2883
2884 /* configure adapter */
2885 memset(&sc->config, 0, sizeof (struct wpi_config));
2886 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2887 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2888 /*set default channel*/
2889 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2890 sc->config.flags = htole32(WPI_CONFIG_TSF);
2891 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2892 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2893 WPI_CONFIG_24GHZ);
2894 }
2895 sc->config.filter = 0;
2896 switch (ic->ic_opmode) {
2897 case IEEE80211_M_STA:
2898 sc->config.mode = WPI_MODE_STA;
2899 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2900 break;
2901 case IEEE80211_M_IBSS:
2902 case IEEE80211_M_AHDEMO:
2903 sc->config.mode = WPI_MODE_IBSS;
2904 break;
2905 case IEEE80211_M_HOSTAP:
2906 sc->config.mode = WPI_MODE_HOSTAP;
2907 break;
2908 case IEEE80211_M_MONITOR:
2909 sc->config.mode = WPI_MODE_MONITOR;
2910 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2911 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2912 break;
2913 }
2914 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2915 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2916 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2917 sizeof (struct wpi_config), 0);
2918 if (error != 0) {
2919 aprint_error_dev(sc->sc_dev, "configure command failed\n");
2920 return error;
2921 }
2922
2923 /* configuration has changed, set Tx power accordingly */
2924 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2925 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2926 return error;
2927 }
2928
2929 /* add broadcast node */
2930 memset(&node, 0, sizeof node);
2931 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2932 node.id = WPI_ID_BROADCAST;
2933 node.rate = wpi_plcp_signal(2);
2934 node.action = htole32(WPI_ACTION_SET_RATE);
2935 node.antenna = WPI_ANTENNA_BOTH;
2936 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2937 if (error != 0) {
2938 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2939 return error;
2940 }
2941
2942 if ((error = wpi_mrr_setup(sc)) != 0) {
2943 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2944 return error;
2945 }
2946
2947 return 0;
2948 }
2949
2950 static void
2951 wpi_stop_master(struct wpi_softc *sc)
2952 {
2953 uint32_t tmp;
2954 int ntries;
2955
2956 tmp = WPI_READ(sc, WPI_RESET);
2957 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2958
2959 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2960 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2961 return; /* already asleep */
2962
2963 for (ntries = 0; ntries < 100; ntries++) {
2964 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2965 break;
2966 DELAY(10);
2967 }
2968 if (ntries == 100) {
2969 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2970 }
2971 }
2972
2973 static int
2974 wpi_power_up(struct wpi_softc *sc)
2975 {
2976 uint32_t tmp;
2977 int ntries;
2978
2979 wpi_mem_lock(sc);
2980 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2981 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2982 wpi_mem_unlock(sc);
2983
2984 for (ntries = 0; ntries < 5000; ntries++) {
2985 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2986 break;
2987 DELAY(10);
2988 }
2989 if (ntries == 5000) {
2990 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
2991 return ETIMEDOUT;
2992 }
2993 return 0;
2994 }
2995
2996 static int
2997 wpi_reset(struct wpi_softc *sc)
2998 {
2999 uint32_t tmp;
3000 int ntries;
3001
3002 /* clear any pending interrupts */
3003 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3004
3005 tmp = WPI_READ(sc, WPI_PLL_CTL);
3006 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3007
3008 tmp = WPI_READ(sc, WPI_CHICKEN);
3009 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3010
3011 tmp = WPI_READ(sc, WPI_GPIO_CTL);
3012 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3013
3014 /* wait for clock stabilization */
3015 for (ntries = 0; ntries < 1000; ntries++) {
3016 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3017 break;
3018 DELAY(10);
3019 }
3020 if (ntries == 1000) {
3021 aprint_error_dev(sc->sc_dev,
3022 "timeout waiting for clock stabilization\n");
3023 return ETIMEDOUT;
3024 }
3025
3026 /* initialize EEPROM */
3027 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3028 if ((tmp & WPI_EEPROM_VERSION) == 0) {
3029 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3030 return EIO;
3031 }
3032 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3033
3034 return 0;
3035 }
3036
3037 static void
3038 wpi_hw_config(struct wpi_softc *sc)
3039 {
3040 uint32_t rev, hw;
3041
3042 /* voodoo from the reference driver */
3043 hw = WPI_READ(sc, WPI_HWCONFIG);
3044
3045 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3046 rev = PCI_REVISION(rev);
3047 if ((rev & 0xc0) == 0x40)
3048 hw |= WPI_HW_ALM_MB;
3049 else if (!(rev & 0x80))
3050 hw |= WPI_HW_ALM_MM;
3051
3052 if (sc->cap == 0x80)
3053 hw |= WPI_HW_SKU_MRC;
3054
3055 hw &= ~WPI_HW_REV_D;
3056 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3057 hw |= WPI_HW_REV_D;
3058
3059 if (sc->type > 1)
3060 hw |= WPI_HW_TYPE_B;
3061
3062 DPRINTF(("setting h/w config %x\n", hw));
3063 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3064 }
3065
3066 static int
3067 wpi_init(struct ifnet *ifp)
3068 {
3069 struct wpi_softc *sc = ifp->if_softc;
3070 struct ieee80211com *ic = &sc->sc_ic;
3071 uint32_t tmp;
3072 int qid, ntries, error;
3073
3074 wpi_stop(ifp,1);
3075 (void)wpi_reset(sc);
3076
3077 wpi_mem_lock(sc);
3078 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3079 DELAY(20);
3080 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3081 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3082 wpi_mem_unlock(sc);
3083
3084 (void)wpi_power_up(sc);
3085 wpi_hw_config(sc);
3086
3087 /* init Rx ring */
3088 wpi_mem_lock(sc);
3089 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3090 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3091 offsetof(struct wpi_shared, next));
3092 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3093 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3094 wpi_mem_unlock(sc);
3095
3096 /* init Tx rings */
3097 wpi_mem_lock(sc);
3098 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3099 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3100 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3101 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3102 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3103 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3104 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3105
3106 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3107 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3108
3109 for (qid = 0; qid < 6; qid++) {
3110 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3111 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3112 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3113 }
3114 wpi_mem_unlock(sc);
3115
3116 /* clear "radio off" and "disable command" bits (reversed logic) */
3117 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3118 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3119
3120 /* clear any pending interrupts */
3121 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3122 /* enable interrupts */
3123 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3124
3125 /* not sure why/if this is necessary... */
3126 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3127 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3128
3129 if ((error = wpi_load_firmware(sc)) != 0)
3130 /* wpi_load_firmware prints error messages for us. */
3131 goto fail1;
3132
3133 /* Check the status of the radio switch */
3134 if (wpi_getrfkill(sc)) {
3135 aprint_error_dev(sc->sc_dev,
3136 "radio is disabled by hardware switch\n");
3137 error = EBUSY;
3138 goto fail1;
3139 }
3140
3141 /* wait for thermal sensors to calibrate */
3142 for (ntries = 0; ntries < 1000; ntries++) {
3143 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3144 break;
3145 DELAY(10);
3146 }
3147 if (ntries == 1000) {
3148 aprint_error_dev(sc->sc_dev,
3149 "timeout waiting for thermal sensors calibration\n");
3150 error = ETIMEDOUT;
3151 goto fail1;
3152 }
3153
3154 DPRINTF(("temperature %d\n", sc->temp));
3155
3156 if ((error = wpi_config(sc)) != 0) {
3157 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3158 goto fail1;
3159 }
3160
3161 ifp->if_flags &= ~IFF_OACTIVE;
3162 ifp->if_flags |= IFF_RUNNING;
3163
3164 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3165 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3166 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3167 }
3168 else
3169 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3170
3171 return 0;
3172
3173 fail1: wpi_stop(ifp, 1);
3174 return error;
3175 }
3176
3177
3178 static void
3179 wpi_stop(struct ifnet *ifp, int disable)
3180 {
3181 struct wpi_softc *sc = ifp->if_softc;
3182 struct ieee80211com *ic = &sc->sc_ic;
3183 uint32_t tmp;
3184 int ac;
3185
3186 ifp->if_timer = sc->sc_tx_timer = 0;
3187 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3188
3189 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3190
3191 /* disable interrupts */
3192 WPI_WRITE(sc, WPI_MASK, 0);
3193 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3194 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3195 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3196
3197 wpi_mem_lock(sc);
3198 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3199 wpi_mem_unlock(sc);
3200
3201 /* reset all Tx rings */
3202 for (ac = 0; ac < 4; ac++)
3203 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3204 wpi_reset_tx_ring(sc, &sc->cmdq);
3205
3206 /* reset Rx ring */
3207 wpi_reset_rx_ring(sc, &sc->rxq);
3208
3209 wpi_mem_lock(sc);
3210 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3211 wpi_mem_unlock(sc);
3212
3213 DELAY(5);
3214
3215 wpi_stop_master(sc);
3216
3217 tmp = WPI_READ(sc, WPI_RESET);
3218 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3219 }
3220
3221 static bool
3222 wpi_resume(device_t dv, const pmf_qual_t *qual)
3223 {
3224 struct wpi_softc *sc = device_private(dv);
3225
3226 (void)wpi_reset(sc);
3227
3228 return true;
3229 }
3230
3231 /*
3232 * Return whether or not the radio is enabled in hardware
3233 * (i.e. the rfkill switch is "off").
3234 */
3235 static int
3236 wpi_getrfkill(struct wpi_softc *sc)
3237 {
3238 uint32_t tmp;
3239
3240 wpi_mem_lock(sc);
3241 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3242 wpi_mem_unlock(sc);
3243
3244 return !(tmp & 0x01);
3245 }
3246
3247 static int
3248 wpi_sysctl_radio(SYSCTLFN_ARGS)
3249 {
3250 struct sysctlnode node;
3251 struct wpi_softc *sc;
3252 int val, error;
3253
3254 node = *rnode;
3255 sc = (struct wpi_softc *)node.sysctl_data;
3256
3257 val = !wpi_getrfkill(sc);
3258
3259 node.sysctl_data = &val;
3260 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3261
3262 if (error || newp == NULL)
3263 return error;
3264
3265 return 0;
3266 }
3267
3268 static void
3269 wpi_sysctlattach(struct wpi_softc *sc)
3270 {
3271 int rc;
3272 const struct sysctlnode *rnode;
3273 const struct sysctlnode *cnode;
3274
3275 struct sysctllog **clog = &sc->sc_sysctllog;
3276
3277 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3278 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3279 SYSCTL_DESCR("wpi controls and statistics"),
3280 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3281 goto err;
3282
3283 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3284 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3285 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3286 wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3287 goto err;
3288
3289 #ifdef WPI_DEBUG
3290 /* control debugging printfs */
3291 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3292 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3293 "debug", SYSCTL_DESCR("Enable debugging output"),
3294 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3295 goto err;
3296 #endif
3297
3298 return;
3299 err:
3300 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3301 }
3302