if_wpi.c revision 1.6.4.6 1 /* $NetBSD: if_wpi.c,v 1.6.4.6 2007/11/15 11:44:23 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.6.4.6 2007/11/15 11:44:23 yamt Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39 #include <sys/callout.h>
40
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47 #include <dev/pci/pcidevs.h>
48
49 #if NBPFILTER > 0
50 #include <net/bpf.h>
51 #endif
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x) if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 { 4, { 2, 4, 11, 22 } };
90
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94 static int wpi_match(struct device *, struct cfdata *, void *);
95 static void wpi_attach(struct device *, struct device *, void *);
96 static int wpi_detach(struct device*, int);
97 static void wpi_power(int, void *);
98 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
99 void **, bus_size_t, bus_size_t, int);
100 static void wpi_dma_contig_free(struct wpi_dma_info *);
101 static int wpi_alloc_shared(struct wpi_softc *);
102 static void wpi_free_shared(struct wpi_softc *);
103 static int wpi_alloc_fwmem(struct wpi_softc *);
104 static void wpi_free_fwmem(struct wpi_softc *);
105 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
106 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
107 static int wpi_alloc_rpool(struct wpi_softc *);
108 static void wpi_free_rpool(struct wpi_softc *);
109 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
112 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
113 int);
114 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
116 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
117 static void wpi_newassoc(struct ieee80211_node *, int);
118 static int wpi_media_change(struct ifnet *);
119 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
120 static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
121 static void wpi_mem_lock(struct wpi_softc *);
122 static void wpi_mem_unlock(struct wpi_softc *);
123 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
124 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
125 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
126 const uint32_t *, int);
127 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
128 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
129 static int wpi_load_firmware(struct wpi_softc *);
130 static void wpi_calib_timeout(void *);
131 static void wpi_iter_func(void *, struct ieee80211_node *);
132 static void wpi_power_calibration(struct wpi_softc *, int);
133 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
134 struct wpi_rx_data *);
135 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
136 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
137 static void wpi_notif_intr(struct wpi_softc *);
138 static int wpi_intr(void *);
139 static void wpi_read_eeprom(struct wpi_softc *);
140 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
141 static void wpi_read_eeprom_group(struct wpi_softc *, int);
142 static uint8_t wpi_plcp_signal(int);
143 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
144 struct ieee80211_node *, int);
145 static void wpi_start(struct ifnet *);
146 static void wpi_watchdog(struct ifnet *);
147 static int wpi_ioctl(struct ifnet *, u_long, void *);
148 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
149 static int wpi_wme_update(struct ieee80211com *);
150 static int wpi_mrr_setup(struct wpi_softc *);
151 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
152 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
153 static int wpi_set_txpower(struct wpi_softc *,
154 struct ieee80211_channel *, int);
155 static int wpi_get_power_index(struct wpi_softc *,
156 struct wpi_power_group *, struct ieee80211_channel *, int);
157 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
158 static int wpi_auth(struct wpi_softc *);
159 static int wpi_scan(struct wpi_softc *, uint16_t);
160 static int wpi_config(struct wpi_softc *);
161 static void wpi_stop_master(struct wpi_softc *);
162 static int wpi_power_up(struct wpi_softc *);
163 static int wpi_reset(struct wpi_softc *);
164 static void wpi_hw_config(struct wpi_softc *);
165 static int wpi_init(struct ifnet *);
166 static void wpi_stop(struct ifnet *, int);
167
168 CFATTACH_DECL(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
169 wpi_detach, NULL);
170
171 static int
172 wpi_match(struct device *parent, struct cfdata *match __unused, void *aux)
173 {
174 struct pci_attach_args *pa = aux;
175
176 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
177 return 0;
178
179 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
180 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
181 return 1;
182
183 return 0;
184 }
185
186 /* Base Address Register */
187 #define WPI_PCI_BAR0 0x10
188
189 static void
190 wpi_attach(struct device *parent __unused, struct device *self, void *aux)
191 {
192 struct wpi_softc *sc = (struct wpi_softc *)self;
193 struct ieee80211com *ic = &sc->sc_ic;
194 struct ifnet *ifp = &sc->sc_ec.ec_if;
195 struct pci_attach_args *pa = aux;
196 const char *intrstr;
197 char devinfo[256];
198 bus_space_tag_t memt;
199 bus_space_handle_t memh;
200 pci_intr_handle_t ih;
201 pcireg_t data;
202 int error, ac, revision;
203
204 sc->sc_pct = pa->pa_pc;
205 sc->sc_pcitag = pa->pa_tag;
206
207 callout_init(&sc->calib_to, 0);
208
209 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
210 revision = PCI_REVISION(pa->pa_class);
211 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
212
213 /* clear device specific PCI configuration register 0x41 */
214 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
215 data &= ~0x0000ff00;
216 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
217
218 /* enable bus-mastering */
219 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
220 data |= PCI_COMMAND_MASTER_ENABLE;
221 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
222
223 /* map the register window */
224 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
225 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
226 if (error != 0) {
227 aprint_error("%s: could not map memory space\n",
228 sc->sc_dev.dv_xname);
229 return;
230 }
231
232 sc->sc_st = memt;
233 sc->sc_sh = memh;
234 sc->sc_dmat = pa->pa_dmat;
235
236 if (pci_intr_map(pa, &ih) != 0) {
237 aprint_error("%s: could not map interrupt\n",
238 sc->sc_dev.dv_xname);
239 return;
240 }
241
242 intrstr = pci_intr_string(sc->sc_pct, ih);
243 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
244 if (sc->sc_ih == NULL) {
245 aprint_error("%s: could not establish interrupt",
246 sc->sc_dev.dv_xname);
247 if (intrstr != NULL)
248 aprint_error(" at %s", intrstr);
249 aprint_error("\n");
250 return;
251 }
252 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
253
254 if (wpi_reset(sc) != 0) {
255 aprint_error("%s: could not reset adapter\n",
256 sc->sc_dev.dv_xname);
257 return;
258 }
259
260 /*
261 * Allocate DMA memory for firmware transfers.
262 */
263 if ((error = wpi_alloc_fwmem(sc)) != 0) {
264 aprint_error(": could not allocate firmware memory\n");
265 return;
266 }
267
268 /*
269 * Allocate shared page and Tx/Rx rings.
270 */
271 if ((error = wpi_alloc_shared(sc)) != 0) {
272 aprint_error("%s: could not allocate shared area\n",
273 sc->sc_dev.dv_xname);
274 goto fail1;
275 }
276
277 if ((error = wpi_alloc_rpool(sc)) != 0) {
278 aprint_error("%s: could not allocate Rx buffers\n",
279 sc->sc_dev.dv_xname);
280 goto fail2;
281 }
282
283 for (ac = 0; ac < 4; ac++) {
284 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
285 if (error != 0) {
286 aprint_error("%s: could not allocate Tx ring %d\n",
287 sc->sc_dev.dv_xname, ac);
288 goto fail3;
289 }
290 }
291
292 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
293 if (error != 0) {
294 aprint_error("%s: could not allocate command ring\n",
295 sc->sc_dev.dv_xname);
296 goto fail3;
297 }
298
299 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
300 aprint_error("%s: could not allocate Rx ring\n",
301 sc->sc_dev.dv_xname);
302 goto fail4;
303 }
304
305 ic->ic_ifp = ifp;
306 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
307 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
308 ic->ic_state = IEEE80211_S_INIT;
309
310 /* set device capabilities */
311 ic->ic_caps =
312 IEEE80211_C_IBSS | /* IBSS mode support */
313 IEEE80211_C_WPA | /* 802.11i */
314 IEEE80211_C_MONITOR | /* monitor mode supported */
315 IEEE80211_C_TXPMGT | /* tx power management */
316 IEEE80211_C_SHSLOT | /* short slot time supported */
317 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
318 IEEE80211_C_WME; /* 802.11e */
319
320 /* read supported channels and MAC address from EEPROM */
321 wpi_read_eeprom(sc);
322
323 /* set supported .11a, .11b, .11g rates */
324 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
325 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
326 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
327
328 ic->ic_ibss_chan = &ic->ic_channels[0];
329
330 ifp->if_softc = sc;
331 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
332 ifp->if_init = wpi_init;
333 ifp->if_stop = wpi_stop;
334 ifp->if_ioctl = wpi_ioctl;
335 ifp->if_start = wpi_start;
336 ifp->if_watchdog = wpi_watchdog;
337 IFQ_SET_READY(&ifp->if_snd);
338 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
339
340 if_attach(ifp);
341 ieee80211_ifattach(ic);
342 /* override default methods */
343 ic->ic_node_alloc = wpi_node_alloc;
344 ic->ic_newassoc = wpi_newassoc;
345 ic->ic_wme.wme_update = wpi_wme_update;
346
347 /* override state transition machine */
348 sc->sc_newstate = ic->ic_newstate;
349 ic->ic_newstate = wpi_newstate;
350 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
351
352 sc->amrr.amrr_min_success_threshold = 1;
353 sc->amrr.amrr_max_success_threshold = 15;
354
355 /* set powerhook */
356 sc->powerhook = powerhook_establish(sc->sc_dev.dv_xname, wpi_power, sc);
357
358 #if NBPFILTER > 0
359 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
360 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
361 &sc->sc_drvbpf);
362
363 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
364 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
365 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
366
367 sc->sc_txtap_len = sizeof sc->sc_txtapu;
368 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
369 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
370 #endif
371
372 ieee80211_announce(ic);
373
374 return;
375
376 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
377 fail3: while (--ac >= 0)
378 wpi_free_tx_ring(sc, &sc->txq[ac]);
379 wpi_free_rpool(sc);
380 fail2: wpi_free_shared(sc);
381 fail1: wpi_free_fwmem(sc);
382 }
383
384 static int
385 wpi_detach(struct device* self, int flags __unused)
386 {
387 struct wpi_softc *sc = (struct wpi_softc *)self;
388 struct ifnet *ifp = sc->sc_ic.ic_ifp;
389 int ac;
390
391 wpi_stop(ifp, 1);
392
393 #if NBPFILTER > 0
394 if (ifp != NULL)
395 bpfdetach(ifp);
396 #endif
397 ieee80211_ifdetach(&sc->sc_ic);
398 if (ifp != NULL)
399 if_detach(ifp);
400
401 for (ac = 0; ac < 4; ac++)
402 wpi_free_tx_ring(sc, &sc->txq[ac]);
403 wpi_free_tx_ring(sc, &sc->cmdq);
404 wpi_free_rx_ring(sc, &sc->rxq);
405 wpi_free_rpool(sc);
406 wpi_free_shared(sc);
407
408 if (sc->sc_ih != NULL) {
409 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
410 sc->sc_ih = NULL;
411 }
412
413 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
414
415 return 0;
416 }
417
418 static void
419 wpi_power(int why, void *arg)
420 {
421 struct wpi_softc *sc = arg;
422 struct ifnet *ifp;
423 pcireg_t data;
424 int s;
425
426 if (why != PWR_RESUME)
427 return;
428
429 /* clear device specific PCI configuration register 0x41 */
430 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
431 data &= ~0x0000ff00;
432 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
433
434 s = splnet();
435 ifp = sc->sc_ic.ic_ifp;
436 if (ifp->if_flags & IFF_UP) {
437 ifp->if_init(ifp);
438 if (ifp->if_flags & IFF_RUNNING)
439 ifp->if_start(ifp);
440 }
441 splx(s);
442 }
443
444 static int
445 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
446 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
447 {
448 int nsegs, error;
449
450 dma->tag = tag;
451 dma->size = size;
452
453 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
454 if (error != 0)
455 goto fail;
456
457 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
458 flags);
459 if (error != 0)
460 goto fail;
461
462 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
463 if (error != 0)
464 goto fail;
465
466 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
467 if (error != 0)
468 goto fail;
469
470 memset(dma->vaddr, 0, size);
471
472 dma->paddr = dma->map->dm_segs[0].ds_addr;
473 if (kvap != NULL)
474 *kvap = dma->vaddr;
475
476 return 0;
477
478 fail: wpi_dma_contig_free(dma);
479 return error;
480 }
481
482 static void
483 wpi_dma_contig_free(struct wpi_dma_info *dma)
484 {
485 if (dma->map != NULL) {
486 if (dma->vaddr != NULL) {
487 bus_dmamap_unload(dma->tag, dma->map);
488 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
489 bus_dmamem_free(dma->tag, &dma->seg, 1);
490 dma->vaddr = NULL;
491 }
492 bus_dmamap_destroy(dma->tag, dma->map);
493 dma->map = NULL;
494 }
495 }
496
497 /*
498 * Allocate a shared page between host and NIC.
499 */
500 static int
501 wpi_alloc_shared(struct wpi_softc *sc)
502 {
503 int error;
504 /* must be aligned on a 4K-page boundary */
505 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
506 (void **)&sc->shared, sizeof (struct wpi_shared),
507 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
508 if (error != 0)
509 aprint_error(
510 "%s: could not allocate shared area DMA memory\n",
511 sc->sc_dev.dv_xname);
512
513 return error;
514 }
515
516 static void
517 wpi_free_shared(struct wpi_softc *sc)
518 {
519 wpi_dma_contig_free(&sc->shared_dma);
520 }
521
522 /*
523 * Allocate DMA-safe memory for firmware transfer.
524 */
525 static int
526 wpi_alloc_fwmem(struct wpi_softc *sc)
527 {
528 int error;
529 /* allocate enough contiguous space to store text and data */
530 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
531 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
532 BUS_DMA_NOWAIT);
533
534 if (error != 0)
535 aprint_error(
536 "%s: could not allocate firmware transfer area"
537 "DMA memory\n", sc->sc_dev.dv_xname);
538 return error;
539 }
540
541 static void
542 wpi_free_fwmem(struct wpi_softc *sc)
543 {
544 wpi_dma_contig_free(&sc->fw_dma);
545 }
546
547
548 static struct wpi_rbuf *
549 wpi_alloc_rbuf(struct wpi_softc *sc)
550 {
551 struct wpi_rbuf *rbuf;
552
553 rbuf = SLIST_FIRST(&sc->rxq.freelist);
554 if (rbuf == NULL)
555 return NULL;
556 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
557 sc->rxq.nb_free_entries --;
558
559 return rbuf;
560 }
561
562 /*
563 * This is called automatically by the network stack when the mbuf to which our
564 * Rx buffer is attached is freed.
565 */
566 static void
567 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
568 {
569 struct wpi_rbuf *rbuf = arg;
570 struct wpi_softc *sc = rbuf->sc;
571
572 /* put the buffer back in the free list */
573
574 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
575 sc->rxq.nb_free_entries ++;
576
577 if (__predict_true(m != NULL))
578 pool_cache_put(mb_cache, m);
579 }
580
581 static int
582 wpi_alloc_rpool(struct wpi_softc *sc)
583 {
584 struct wpi_rx_ring *ring = &sc->rxq;
585 struct wpi_rbuf *rbuf;
586 int i, error;
587
588 /* allocate a big chunk of DMA'able memory.. */
589 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
590 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
591 if (error != 0) {
592 aprint_normal("%s: could not allocate Rx buffers DMA memory\n",
593 sc->sc_dev.dv_xname);
594 return error;
595 }
596
597 /* ..and split it into 3KB chunks */
598 SLIST_INIT(&ring->freelist);
599 for (i = 0; i < WPI_RBUF_COUNT; i++) {
600 rbuf = &ring->rbuf[i];
601 rbuf->sc = sc; /* backpointer for callbacks */
602 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
603 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
604
605 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
606 }
607
608 ring->nb_free_entries = WPI_RBUF_COUNT;
609 return 0;
610 }
611
612 static void
613 wpi_free_rpool(struct wpi_softc *sc)
614 {
615 wpi_dma_contig_free(&sc->rxq.buf_dma);
616 }
617
618 static int
619 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
620 {
621 struct wpi_rx_data *data;
622 struct wpi_rbuf *rbuf;
623 int i, error;
624
625 ring->cur = 0;
626
627 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
628 (void **)&ring->desc,
629 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
630 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
631 if (error != 0) {
632 aprint_error("%s: could not allocate rx ring DMA memory\n",
633 sc->sc_dev.dv_xname);
634 goto fail;
635 }
636
637 /*
638 * Setup Rx buffers.
639 */
640 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
641 data = &ring->data[i];
642
643 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
644 if (data->m == NULL) {
645 aprint_error("%s: could not allocate rx mbuf\n",
646 sc->sc_dev.dv_xname);
647 error = ENOMEM;
648 goto fail;
649 }
650 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
651 m_freem(data->m);
652 data->m = NULL;
653 aprint_error("%s: could not allocate rx cluster\n",
654 sc->sc_dev.dv_xname);
655 error = ENOMEM;
656 goto fail;
657 }
658 /* attach Rx buffer to mbuf */
659 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
660 rbuf);
661 data->m->m_flags |= M_EXT_RW;
662
663 ring->desc[i] = htole32(rbuf->paddr);
664 }
665
666 return 0;
667
668 fail: wpi_free_rx_ring(sc, ring);
669 return error;
670 }
671
672 static void
673 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
674 {
675 int ntries;
676
677 wpi_mem_lock(sc);
678
679 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
680 for (ntries = 0; ntries < 100; ntries++) {
681 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
682 break;
683 DELAY(10);
684 }
685 #ifdef WPI_DEBUG
686 if (ntries == 100 && wpi_debug > 0)
687 aprint_error("%s: timeout resetting Rx ring\n",
688 sc->sc_dev.dv_xname);
689 #endif
690 wpi_mem_unlock(sc);
691
692 ring->cur = 0;
693 }
694
695 static void
696 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
697 {
698 int i;
699
700 wpi_dma_contig_free(&ring->desc_dma);
701
702 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
703 if (ring->data[i].m != NULL)
704 m_freem(ring->data[i].m);
705 }
706 }
707
708 static int
709 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
710 int qid)
711 {
712 struct wpi_tx_data *data;
713 int i, error;
714
715 ring->qid = qid;
716 ring->count = count;
717 ring->queued = 0;
718 ring->cur = 0;
719
720 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
721 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
722 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
723 if (error != 0) {
724 aprint_error("%s: could not allocate tx ring DMA memory\n",
725 sc->sc_dev.dv_xname);
726 goto fail;
727 }
728
729 /* update shared page with ring's base address */
730 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
731
732 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
733 (void **)&ring->cmd,
734 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
735 if (error != 0) {
736 aprint_error("%s: could not allocate tx cmd DMA memory\n",
737 sc->sc_dev.dv_xname);
738 goto fail;
739 }
740
741 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
742 M_NOWAIT);
743 if (ring->data == NULL) {
744 aprint_error("%s: could not allocate tx data slots\n",
745 sc->sc_dev.dv_xname);
746 goto fail;
747 }
748
749 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
750
751 for (i = 0; i < count; i++) {
752 data = &ring->data[i];
753
754 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
755 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
756 &data->map);
757 if (error != 0) {
758 aprint_error("%s: could not create tx buf DMA map\n",
759 sc->sc_dev.dv_xname);
760 goto fail;
761 }
762 }
763
764 return 0;
765
766 fail: wpi_free_tx_ring(sc, ring);
767 return error;
768 }
769
770 static void
771 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
772 {
773 struct wpi_tx_data *data;
774 int i, ntries;
775
776 wpi_mem_lock(sc);
777
778 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
779 for (ntries = 0; ntries < 100; ntries++) {
780 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
781 break;
782 DELAY(10);
783 }
784 #ifdef WPI_DEBUG
785 if (ntries == 100 && wpi_debug > 0) {
786 aprint_error("%s: timeout resetting Tx ring %d\n",
787 sc->sc_dev.dv_xname, ring->qid);
788 }
789 #endif
790 wpi_mem_unlock(sc);
791
792 for (i = 0; i < ring->count; i++) {
793 data = &ring->data[i];
794
795 if (data->m != NULL) {
796 bus_dmamap_unload(sc->sc_dmat, data->map);
797 m_freem(data->m);
798 data->m = NULL;
799 }
800 }
801
802 ring->queued = 0;
803 ring->cur = 0;
804 }
805
806 static void
807 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
808 {
809 struct wpi_tx_data *data;
810 int i;
811
812 wpi_dma_contig_free(&ring->desc_dma);
813 wpi_dma_contig_free(&ring->cmd_dma);
814
815 if (ring->data != NULL) {
816 for (i = 0; i < ring->count; i++) {
817 data = &ring->data[i];
818
819 if (data->m != NULL) {
820 bus_dmamap_unload(sc->sc_dmat, data->map);
821 m_freem(data->m);
822 }
823 }
824 free(ring->data, M_DEVBUF);
825 }
826 }
827
828 /*ARGUSED*/
829 static struct ieee80211_node *
830 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
831 {
832 struct wpi_node *wn;
833
834 wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
835
836 if (wn != NULL)
837 memset(wn, 0, sizeof (struct wpi_node));
838 return (struct ieee80211_node *)wn;
839 }
840
841 static void
842 wpi_newassoc(struct ieee80211_node *ni, int isnew)
843 {
844 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
845 int i;
846
847 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
848
849 /* set rate to some reasonable initial value */
850 for (i = ni->ni_rates.rs_nrates - 1;
851 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
852 i--);
853 ni->ni_txrate = i;
854 }
855
856 static int
857 wpi_media_change(struct ifnet *ifp)
858 {
859 int error;
860
861 error = ieee80211_media_change(ifp);
862 if (error != ENETRESET)
863 return error;
864
865 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
866 wpi_init(ifp);
867
868 return 0;
869 }
870
871 static int
872 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
873 {
874 struct ifnet *ifp = ic->ic_ifp;
875 struct wpi_softc *sc = ifp->if_softc;
876 struct ieee80211_node *ni;
877 int error;
878
879 callout_stop(&sc->calib_to);
880
881 switch (nstate) {
882 case IEEE80211_S_SCAN:
883
884 if (sc->is_scanning)
885 break;
886
887 sc->is_scanning = true;
888 ieee80211_node_table_reset(&ic->ic_scan);
889 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
890
891 /* make the link LED blink while we're scanning */
892 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
893
894 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
895 aprint_error("%s: could not initiate scan\n",
896 sc->sc_dev.dv_xname);
897 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
898 return error;
899 }
900
901 ic->ic_state = nstate;
902 return 0;
903
904 case IEEE80211_S_ASSOC:
905 if (ic->ic_state != IEEE80211_S_RUN)
906 break;
907 /* FALLTHROUGH */
908 case IEEE80211_S_AUTH:
909 sc->config.associd = 0;
910 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
911 if ((error = wpi_auth(sc)) != 0) {
912 aprint_error("%s: could not send authentication request\n",
913 sc->sc_dev.dv_xname);
914 return error;
915 }
916 break;
917
918 case IEEE80211_S_RUN:
919 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
920 /* link LED blinks while monitoring */
921 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
922 break;
923 }
924
925 ni = ic->ic_bss;
926
927 if (ic->ic_opmode != IEEE80211_M_STA) {
928 (void) wpi_auth(sc); /* XXX */
929 wpi_setup_beacon(sc, ni);
930 }
931
932 wpi_enable_tsf(sc, ni);
933
934 /* update adapter's configuration */
935 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
936 /* short preamble/slot time are negotiated when associating */
937 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
938 WPI_CONFIG_SHSLOT);
939 if (ic->ic_flags & IEEE80211_F_SHSLOT)
940 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
941 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
942 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
943 sc->config.filter |= htole32(WPI_FILTER_BSS);
944 if (ic->ic_opmode != IEEE80211_M_STA)
945 sc->config.filter |= htole32(WPI_FILTER_BEACON);
946
947 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
948
949 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
950 sc->config.flags));
951 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
952 sizeof (struct wpi_config), 1);
953 if (error != 0) {
954 aprint_error("%s: could not update configuration\n",
955 sc->sc_dev.dv_xname);
956 return error;
957 }
958
959 /* configuration has changed, set Tx power accordingly */
960 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
961 aprint_error("%s: could not set Tx power\n",
962 sc->sc_dev.dv_xname);
963 return error;
964 }
965
966 if (ic->ic_opmode == IEEE80211_M_STA) {
967 /* fake a join to init the tx rate */
968 wpi_newassoc(ni, 1);
969 }
970
971 /* start periodic calibration timer */
972 sc->calib_cnt = 0;
973 callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
974
975 /* link LED always on while associated */
976 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
977 break;
978
979 case IEEE80211_S_INIT:
980 sc->is_scanning = false;
981 break;
982 }
983
984 return sc->sc_newstate(ic, nstate, arg);
985 }
986
987 /*
988 * XXX: Hack to set the current channel to the value advertised in beacons or
989 * probe responses. Only used during AP detection.
990 * XXX: Duplicated from if_iwi.c
991 */
992 static void
993 wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
994 {
995 struct ieee80211_frame *wh;
996 uint8_t subtype;
997 uint8_t *frm, *efrm;
998
999 wh = mtod(m, struct ieee80211_frame *);
1000
1001 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
1002 return;
1003
1004 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1005
1006 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
1007 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1008 return;
1009
1010 frm = (uint8_t *)(wh + 1);
1011 efrm = mtod(m, uint8_t *) + m->m_len;
1012
1013 frm += 12; /* skip tstamp, bintval and capinfo fields */
1014 while (frm < efrm) {
1015 if (*frm == IEEE80211_ELEMID_DSPARMS)
1016 #if IEEE80211_CHAN_MAX < 255
1017 if (frm[2] <= IEEE80211_CHAN_MAX)
1018 #endif
1019 ic->ic_curchan = &ic->ic_channels[frm[2]];
1020
1021 frm += frm[1] + 2;
1022 }
1023 }
1024
1025 /*
1026 * Grab exclusive access to NIC memory.
1027 */
1028 static void
1029 wpi_mem_lock(struct wpi_softc *sc)
1030 {
1031 uint32_t tmp;
1032 int ntries;
1033
1034 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1035 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1036
1037 /* spin until we actually get the lock */
1038 for (ntries = 0; ntries < 1000; ntries++) {
1039 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1040 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1041 break;
1042 DELAY(10);
1043 }
1044 if (ntries == 1000)
1045 aprint_error("%s: could not lock memory\n", sc->sc_dev.dv_xname);
1046 }
1047
1048 /*
1049 * Release lock on NIC memory.
1050 */
1051 static void
1052 wpi_mem_unlock(struct wpi_softc *sc)
1053 {
1054 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1055 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1056 }
1057
1058 static uint32_t
1059 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1060 {
1061 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1062 return WPI_READ(sc, WPI_READ_MEM_DATA);
1063 }
1064
1065 static void
1066 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1067 {
1068 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1069 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1070 }
1071
1072 static void
1073 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1074 const uint32_t *data, int wlen)
1075 {
1076 for (; wlen > 0; wlen--, data++, addr += 4)
1077 wpi_mem_write(sc, addr, *data);
1078 }
1079
1080
1081 /*
1082 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1083 * instead of using the traditional bit-bang method.
1084 */
1085 static int
1086 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1087 {
1088 uint8_t *out = data;
1089 uint32_t val;
1090 int ntries;
1091
1092 wpi_mem_lock(sc);
1093 for (; len > 0; len -= 2, addr++) {
1094 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1095
1096 for (ntries = 0; ntries < 10; ntries++) {
1097 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1098 WPI_EEPROM_READY)
1099 break;
1100 DELAY(5);
1101 }
1102 if (ntries == 10) {
1103 aprint_error("%s: could not read EEPROM\n",
1104 sc->sc_dev.dv_xname);
1105 return ETIMEDOUT;
1106 }
1107 *out++ = val >> 16;
1108 if (len > 1)
1109 *out++ = val >> 24;
1110 }
1111 wpi_mem_unlock(sc);
1112
1113 return 0;
1114 }
1115
1116 /*
1117 * The firmware boot code is small and is intended to be copied directly into
1118 * the NIC internal memory.
1119 */
1120 int
1121 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1122 {
1123 int ntries;
1124
1125 size /= sizeof (uint32_t);
1126
1127 wpi_mem_lock(sc);
1128
1129 /* copy microcode image into NIC memory */
1130 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1131 (const uint32_t *)ucode, size);
1132
1133 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1134 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1135 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1136
1137 /* run microcode */
1138 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1139
1140 /* wait for transfer to complete */
1141 for (ntries = 0; ntries < 1000; ntries++) {
1142 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1143 break;
1144 DELAY(10);
1145 }
1146 if (ntries == 1000) {
1147 wpi_mem_unlock(sc);
1148 printf("%s: could not load boot firmware\n",
1149 sc->sc_dev.dv_xname);
1150 return ETIMEDOUT;
1151 }
1152 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1153
1154 wpi_mem_unlock(sc);
1155
1156 return 0;
1157 }
1158
1159 static int
1160 wpi_load_firmware(struct wpi_softc *sc)
1161 {
1162 struct wpi_dma_info *dma = &sc->fw_dma;
1163 struct wpi_firmware_hdr hdr;
1164 const uint8_t *init_text, *init_data, *main_text, *main_data;
1165 const uint8_t *boot_text;
1166 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1167 uint32_t boot_textsz;
1168 firmware_handle_t fw;
1169 u_char *dfw;
1170 size_t size;
1171 int error;
1172
1173 /* load firmware image from disk */
1174 if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1175 aprint_error("%s: could not read firmware file\n",
1176 sc->sc_dev.dv_xname);
1177 goto fail1;
1178 }
1179
1180 size = firmware_get_size(fw);
1181
1182 /* extract firmware header information */
1183 if (size < sizeof (struct wpi_firmware_hdr)) {
1184 aprint_error("%s: truncated firmware header: %zu bytes\n",
1185 sc->sc_dev.dv_xname, size);
1186 error = EINVAL;
1187 goto fail2;
1188 }
1189
1190 if ((error = firmware_read(fw, 0, &hdr,
1191 sizeof (struct wpi_firmware_hdr))) != 0) {
1192 aprint_error("%s: can't get firmware header\n",
1193 sc->sc_dev.dv_xname);
1194 goto fail2;
1195 }
1196
1197 main_textsz = le32toh(hdr.main_textsz);
1198 main_datasz = le32toh(hdr.main_datasz);
1199 init_textsz = le32toh(hdr.init_textsz);
1200 init_datasz = le32toh(hdr.init_datasz);
1201 boot_textsz = le32toh(hdr.boot_textsz);
1202
1203 /* sanity-check firmware segments sizes */
1204 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1205 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1206 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1207 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1208 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1209 (boot_textsz & 3) != 0) {
1210 printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname);
1211 error = EINVAL;
1212 goto fail2;
1213 }
1214
1215 /* check that all firmware segments are present */
1216 if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1217 main_datasz + init_textsz + init_datasz + boot_textsz) {
1218 aprint_error("%s: firmware file too short: %zu bytes\n",
1219 sc->sc_dev.dv_xname, size);
1220 error = EINVAL;
1221 goto fail2;
1222 }
1223
1224 dfw = firmware_malloc(size);
1225 if (dfw == NULL) {
1226 aprint_error("%s: not enough memory to stock firmware\n",
1227 sc->sc_dev.dv_xname);
1228 error = ENOMEM;
1229 goto fail2;
1230 }
1231
1232 if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1233 aprint_error("%s: can't get firmware\n",
1234 sc->sc_dev.dv_xname);
1235 goto fail2;
1236 }
1237
1238 /* get pointers to firmware segments */
1239 main_text = dfw + sizeof (struct wpi_firmware_hdr);
1240 main_data = main_text + main_textsz;
1241 init_text = main_data + main_datasz;
1242 init_data = init_text + init_textsz;
1243 boot_text = init_data + init_datasz;
1244
1245 /* copy initialization images into pre-allocated DMA-safe memory */
1246 memcpy(dma->vaddr, init_data, init_datasz);
1247 memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1248
1249 /* tell adapter where to find initialization images */
1250 wpi_mem_lock(sc);
1251 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1252 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1253 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1254 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1255 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1256 wpi_mem_unlock(sc);
1257
1258 /* load firmware boot code */
1259 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1260 printf("%s: could not load boot firmware\n",
1261 sc->sc_dev.dv_xname);
1262 goto fail3;
1263 }
1264
1265 /* now press "execute" ;-) */
1266 WPI_WRITE(sc, WPI_RESET, 0);
1267
1268 /* ..and wait at most one second for adapter to initialize */
1269 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1270 /* this isn't what was supposed to happen.. */
1271 aprint_error("%s: timeout waiting for adapter to initialize\n",
1272 sc->sc_dev.dv_xname);
1273 }
1274
1275 /* copy runtime images into pre-allocated DMA-safe memory */
1276 memcpy(dma->vaddr, main_data, main_datasz);
1277 memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1278
1279 /* tell adapter where to find runtime images */
1280 wpi_mem_lock(sc);
1281 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1282 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1283 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1284 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1285 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1286 wpi_mem_unlock(sc);
1287
1288 /* wait at most one second for second alive notification */
1289 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1290 /* this isn't what was supposed to happen.. */
1291 printf("%s: timeout waiting for adapter to initialize\n",
1292 sc->sc_dev.dv_xname);
1293 }
1294
1295
1296 fail3: firmware_free(dfw,size);
1297 fail2: firmware_close(fw);
1298 fail1: return error;
1299 }
1300
1301 static void
1302 wpi_calib_timeout(void *arg)
1303 {
1304 struct wpi_softc *sc = arg;
1305 struct ieee80211com *ic = &sc->sc_ic;
1306 int temp, s;
1307
1308 /* automatic rate control triggered every 500ms */
1309 if (ic->ic_fixed_rate == -1) {
1310 s = splnet();
1311 if (ic->ic_opmode == IEEE80211_M_STA)
1312 wpi_iter_func(sc, ic->ic_bss);
1313 else
1314 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1315 splx(s);
1316 }
1317
1318 /* update sensor data */
1319 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1320
1321 /* automatic power calibration every 60s */
1322 if (++sc->calib_cnt >= 120) {
1323 wpi_power_calibration(sc, temp);
1324 sc->calib_cnt = 0;
1325 }
1326
1327 callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
1328 }
1329
1330 static void
1331 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1332 {
1333 struct wpi_softc *sc = arg;
1334 struct wpi_node *wn = (struct wpi_node *)ni;
1335
1336 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1337 }
1338
1339 /*
1340 * This function is called periodically (every 60 seconds) to adjust output
1341 * power to temperature changes.
1342 */
1343 void
1344 wpi_power_calibration(struct wpi_softc *sc, int temp)
1345 {
1346 /* sanity-check read value */
1347 if (temp < -260 || temp > 25) {
1348 /* this can't be correct, ignore */
1349 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1350 return;
1351 }
1352
1353 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1354
1355 /* adjust Tx power if need be */
1356 if (abs(temp - sc->temp) <= 6)
1357 return;
1358
1359 sc->temp = temp;
1360
1361 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1362 /* just warn, too bad for the automatic calibration... */
1363 aprint_error("%s: could not adjust Tx power\n",
1364 sc->sc_dev.dv_xname);
1365 }
1366 }
1367
1368 static void
1369 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1370 struct wpi_rx_data *data)
1371 {
1372 struct ieee80211com *ic = &sc->sc_ic;
1373 struct ifnet *ifp = ic->ic_ifp;
1374 struct wpi_rx_ring *ring = &sc->rxq;
1375 struct wpi_rx_stat *stat;
1376 struct wpi_rx_head *head;
1377 struct wpi_rx_tail *tail;
1378 struct wpi_rbuf *rbuf;
1379 struct ieee80211_frame *wh;
1380 struct ieee80211_node *ni;
1381 struct mbuf *m, *mnew;
1382 int data_off ;
1383
1384 stat = (struct wpi_rx_stat *)(desc + 1);
1385
1386 if (stat->len > WPI_STAT_MAXLEN) {
1387 aprint_error("%s: invalid rx statistic header\n",
1388 sc->sc_dev.dv_xname);
1389 ifp->if_ierrors++;
1390 return;
1391 }
1392
1393 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1394 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1395
1396 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1397 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1398 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1399 le64toh(tail->tstamp)));
1400
1401 /*
1402 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1403 * to radiotap in monitor mode).
1404 */
1405 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1406 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1407 ifp->if_ierrors++;
1408 return;
1409 }
1410
1411 /* Compute where are the useful datas */
1412 data_off = (char*)(head + 1) - mtod(data->m, char*);
1413
1414 /*
1415 * If the number of free entry is too low
1416 * just dup the data->m socket and reuse the same rbuf entry
1417 */
1418 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1419
1420 /* Prepare the mbuf for the m_dup */
1421 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1422 data->m->m_data = (char*) data->m->m_data + data_off;
1423
1424 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1425
1426 /* Restore the m_data pointer for future use */
1427 data->m->m_data = (char*) data->m->m_data - data_off;
1428
1429 if (m == NULL) {
1430 ifp->if_ierrors++;
1431 return;
1432 }
1433 } else {
1434
1435 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1436 if (mnew == NULL) {
1437 ifp->if_ierrors++;
1438 return;
1439 }
1440
1441 rbuf = wpi_alloc_rbuf(sc);
1442 KASSERT(rbuf != NULL);
1443
1444 /* attach Rx buffer to mbuf */
1445 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1446 rbuf);
1447 mnew->m_flags |= M_EXT_RW;
1448
1449 m = data->m;
1450 data->m = mnew;
1451
1452 /* update Rx descriptor */
1453 ring->desc[ring->cur] = htole32(rbuf->paddr);
1454
1455 m->m_data = (char*)m->m_data + data_off;
1456 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1457 }
1458
1459 /* finalize mbuf */
1460 m->m_pkthdr.rcvif = ifp;
1461
1462 if (ic->ic_state == IEEE80211_S_SCAN)
1463 wpi_fix_channel(ic, m);
1464
1465 #if NBPFILTER > 0
1466 if (sc->sc_drvbpf != NULL) {
1467 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1468
1469 tap->wr_flags = 0;
1470 tap->wr_chan_freq =
1471 htole16(ic->ic_channels[head->chan].ic_freq);
1472 tap->wr_chan_flags =
1473 htole16(ic->ic_channels[head->chan].ic_flags);
1474 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1475 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1476 tap->wr_tsft = tail->tstamp;
1477 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1478 switch (head->rate) {
1479 /* CCK rates */
1480 case 10: tap->wr_rate = 2; break;
1481 case 20: tap->wr_rate = 4; break;
1482 case 55: tap->wr_rate = 11; break;
1483 case 110: tap->wr_rate = 22; break;
1484 /* OFDM rates */
1485 case 0xd: tap->wr_rate = 12; break;
1486 case 0xf: tap->wr_rate = 18; break;
1487 case 0x5: tap->wr_rate = 24; break;
1488 case 0x7: tap->wr_rate = 36; break;
1489 case 0x9: tap->wr_rate = 48; break;
1490 case 0xb: tap->wr_rate = 72; break;
1491 case 0x1: tap->wr_rate = 96; break;
1492 case 0x3: tap->wr_rate = 108; break;
1493 /* unknown rate: should not happen */
1494 default: tap->wr_rate = 0;
1495 }
1496 if (le16toh(head->flags) & 0x4)
1497 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1498
1499 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1500 }
1501 #endif
1502
1503 /* grab a reference to the source node */
1504 wh = mtod(m, struct ieee80211_frame *);
1505 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1506
1507 /* send the frame to the 802.11 layer */
1508 ieee80211_input(ic, m, ni, stat->rssi, 0);
1509
1510 /* release node reference */
1511 ieee80211_free_node(ni);
1512 }
1513
1514 static void
1515 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1516 {
1517 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1518 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1519 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1520 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1521 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1522
1523 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1524 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1525 stat->nkill, stat->rate, le32toh(stat->duration),
1526 le32toh(stat->status)));
1527
1528 /*
1529 * Update rate control statistics for the node.
1530 * XXX we should not count mgmt frames since they're always sent at
1531 * the lowest available bit-rate.
1532 */
1533 wn->amn.amn_txcnt++;
1534 if (stat->ntries > 0) {
1535 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1536 wn->amn.amn_retrycnt++;
1537 }
1538
1539 if ((le32toh(stat->status) & 0xff) != 1)
1540 ifp->if_oerrors++;
1541 else
1542 ifp->if_opackets++;
1543
1544 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1545 m_freem(txdata->m);
1546 txdata->m = NULL;
1547 ieee80211_free_node(txdata->ni);
1548 txdata->ni = NULL;
1549
1550 ring->queued--;
1551
1552 sc->sc_tx_timer = 0;
1553 ifp->if_flags &= ~IFF_OACTIVE;
1554 wpi_start(ifp);
1555 }
1556
1557 static void
1558 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1559 {
1560 struct wpi_tx_ring *ring = &sc->cmdq;
1561 struct wpi_tx_data *data;
1562
1563 if ((desc->qid & 7) != 4)
1564 return; /* not a command ack */
1565
1566 data = &ring->data[desc->idx];
1567
1568 /* if the command was mapped in a mbuf, free it */
1569 if (data->m != NULL) {
1570 bus_dmamap_unload(sc->sc_dmat, data->map);
1571 m_freem(data->m);
1572 data->m = NULL;
1573 }
1574
1575 wakeup(&ring->cmd[desc->idx]);
1576 }
1577
1578 static void
1579 wpi_notif_intr(struct wpi_softc *sc)
1580 {
1581 struct ieee80211com *ic = &sc->sc_ic;
1582 struct ifnet *ifp = ic->ic_ifp;
1583 struct wpi_rx_desc *desc;
1584 struct wpi_rx_data *data;
1585 uint32_t hw;
1586
1587 hw = le32toh(sc->shared->next);
1588 while (sc->rxq.cur != hw) {
1589 data = &sc->rxq.data[sc->rxq.cur];
1590
1591 desc = mtod(data->m, struct wpi_rx_desc *);
1592
1593 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1594 "len=%d\n", desc->qid, desc->idx, desc->flags,
1595 desc->type, le32toh(desc->len)));
1596
1597 if (!(desc->qid & 0x80)) /* reply to a command */
1598 wpi_cmd_intr(sc, desc);
1599
1600 switch (desc->type) {
1601 case WPI_RX_DONE:
1602 /* a 802.11 frame was received */
1603 wpi_rx_intr(sc, desc, data);
1604 break;
1605
1606 case WPI_TX_DONE:
1607 /* a 802.11 frame has been transmitted */
1608 wpi_tx_intr(sc, desc);
1609 break;
1610
1611 case WPI_UC_READY:
1612 {
1613 struct wpi_ucode_info *uc =
1614 (struct wpi_ucode_info *)(desc + 1);
1615
1616 /* the microcontroller is ready */
1617 DPRINTF(("microcode alive notification version %x "
1618 "alive %x\n", le32toh(uc->version),
1619 le32toh(uc->valid)));
1620
1621 if (le32toh(uc->valid) != 1) {
1622 aprint_error("%s: microcontroller "
1623 "initialization failed\n",
1624 sc->sc_dev.dv_xname);
1625 }
1626 break;
1627 }
1628 case WPI_STATE_CHANGED:
1629 {
1630 uint32_t *status = (uint32_t *)(desc + 1);
1631
1632 /* enabled/disabled notification */
1633 DPRINTF(("state changed to %x\n", le32toh(*status)));
1634
1635 if (le32toh(*status) & 1) {
1636 /* the radio button has to be pushed */
1637 aprint_error("%s: Radio transmitter is off\n",
1638 sc->sc_dev.dv_xname);
1639 /* turn the interface down */
1640 ifp->if_flags &= ~IFF_UP;
1641 wpi_stop(ifp, 1);
1642 return; /* no further processing */
1643 }
1644 break;
1645 }
1646 case WPI_START_SCAN:
1647 {
1648 struct wpi_start_scan *scan =
1649 (struct wpi_start_scan *)(desc + 1);
1650
1651 DPRINTFN(2, ("scanning channel %d status %x\n",
1652 scan->chan, le32toh(scan->status)));
1653
1654 /* fix current channel */
1655 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1656 break;
1657 }
1658 case WPI_STOP_SCAN:
1659 {
1660 struct wpi_stop_scan *scan =
1661 (struct wpi_stop_scan *)(desc + 1);
1662
1663 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1664 scan->nchan, scan->status, scan->chan));
1665
1666 if (scan->status == 1 && scan->chan <= 14) {
1667 /*
1668 * We just finished scanning 802.11g channels,
1669 * start scanning 802.11a ones.
1670 */
1671 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1672 break;
1673 }
1674 sc->is_scanning = false;
1675 ieee80211_end_scan(ic);
1676 break;
1677 }
1678 }
1679
1680 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1681 }
1682
1683 /* tell the firmware what we have processed */
1684 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1685 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1686 }
1687
1688 static int
1689 wpi_intr(void *arg)
1690 {
1691 struct wpi_softc *sc = arg;
1692 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1693 uint32_t r;
1694
1695 r = WPI_READ(sc, WPI_INTR);
1696 if (r == 0 || r == 0xffffffff)
1697 return 0; /* not for us */
1698
1699 DPRINTFN(5, ("interrupt reg %x\n", r));
1700
1701 /* disable interrupts */
1702 WPI_WRITE(sc, WPI_MASK, 0);
1703 /* ack interrupts */
1704 WPI_WRITE(sc, WPI_INTR, r);
1705
1706 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1707 aprint_error("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
1708 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1709 wpi_stop(sc->sc_ic.ic_ifp, 1);
1710 return 1;
1711 }
1712
1713 if (r & WPI_RX_INTR)
1714 wpi_notif_intr(sc);
1715
1716 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1717 wakeup(sc);
1718
1719 /* re-enable interrupts */
1720 if (ifp->if_flags & IFF_UP)
1721 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1722
1723 return 1;
1724 }
1725
1726 static uint8_t
1727 wpi_plcp_signal(int rate)
1728 {
1729 switch (rate) {
1730 /* CCK rates (returned values are device-dependent) */
1731 case 2: return 10;
1732 case 4: return 20;
1733 case 11: return 55;
1734 case 22: return 110;
1735
1736 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1737 /* R1-R4, (u)ral is R4-R1 */
1738 case 12: return 0xd;
1739 case 18: return 0xf;
1740 case 24: return 0x5;
1741 case 36: return 0x7;
1742 case 48: return 0x9;
1743 case 72: return 0xb;
1744 case 96: return 0x1;
1745 case 108: return 0x3;
1746
1747 /* unsupported rates (should not get there) */
1748 default: return 0;
1749 }
1750 }
1751
1752 /* quickly determine if a given rate is CCK or OFDM */
1753 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1754
1755 static int
1756 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1757 int ac)
1758 {
1759 struct ieee80211com *ic = &sc->sc_ic;
1760 struct wpi_tx_ring *ring = &sc->txq[ac];
1761 struct wpi_tx_desc *desc;
1762 struct wpi_tx_data *data;
1763 struct wpi_tx_cmd *cmd;
1764 struct wpi_cmd_data *tx;
1765 struct ieee80211_frame *wh;
1766 struct ieee80211_key *k;
1767 const struct chanAccParams *cap;
1768 struct mbuf *mnew;
1769 int i, error, rate, hdrlen, noack = 0;
1770
1771 desc = &ring->desc[ring->cur];
1772 data = &ring->data[ring->cur];
1773
1774 wh = mtod(m0, struct ieee80211_frame *);
1775
1776 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1777 cap = &ic->ic_wme.wme_chanParams;
1778 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1779 }
1780
1781 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1782 k = ieee80211_crypto_encap(ic, ni, m0);
1783 if (k == NULL) {
1784 m_freem(m0);
1785 return ENOBUFS;
1786 }
1787
1788 /* packet header may have moved, reset our local pointer */
1789 wh = mtod(m0, struct ieee80211_frame *);
1790 }
1791
1792 hdrlen = ieee80211_anyhdrsize(wh);
1793
1794 /* pickup a rate */
1795 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1796 IEEE80211_FC0_TYPE_MGT) {
1797 /* mgmt frames are sent at the lowest available bit-rate */
1798 rate = ni->ni_rates.rs_rates[0];
1799 } else {
1800 if (ic->ic_fixed_rate != -1) {
1801 rate = ic->ic_sup_rates[ic->ic_curmode].
1802 rs_rates[ic->ic_fixed_rate];
1803 } else
1804 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1805 }
1806 rate &= IEEE80211_RATE_VAL;
1807
1808
1809 #if NBPFILTER > 0
1810 if (sc->sc_drvbpf != NULL) {
1811 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1812
1813 tap->wt_flags = 0;
1814 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1815 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1816 tap->wt_rate = rate;
1817 tap->wt_hwqueue = ac;
1818 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1819 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1820
1821 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1822 }
1823 #endif
1824
1825 cmd = &ring->cmd[ring->cur];
1826 cmd->code = WPI_CMD_TX_DATA;
1827 cmd->flags = 0;
1828 cmd->qid = ring->qid;
1829 cmd->idx = ring->cur;
1830
1831 tx = (struct wpi_cmd_data *)cmd->data;
1832 tx->flags = 0;
1833
1834 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1835 tx->flags |= htole32(WPI_TX_NEED_ACK);
1836 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1837 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1838
1839 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1840
1841 /* retrieve destination node's id */
1842 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1843 WPI_ID_BSS;
1844
1845 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1846 IEEE80211_FC0_TYPE_MGT) {
1847 /* tell h/w to set timestamp in probe responses */
1848 if ((wh->i_fc[0] &
1849 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1850 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1851 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1852
1853 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1854 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1855 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1856 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1857 tx->timeout = htole16(3);
1858 else
1859 tx->timeout = htole16(2);
1860 } else
1861 tx->timeout = htole16(0);
1862
1863 tx->rate = wpi_plcp_signal(rate);
1864
1865 /* be very persistant at sending frames out */
1866 tx->rts_ntries = 7;
1867 tx->data_ntries = 15;
1868
1869 tx->ofdm_mask = 0xff;
1870 tx->cck_mask = 0xf;
1871 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1872
1873 tx->len = htole16(m0->m_pkthdr.len);
1874
1875 /* save and trim IEEE802.11 header */
1876 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1877 m_adj(m0, hdrlen);
1878
1879 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1880 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1881 if (error != 0 && error != EFBIG) {
1882 aprint_error("%s: could not map mbuf (error %d)\n",
1883 sc->sc_dev.dv_xname, error);
1884 m_freem(m0);
1885 return error;
1886 }
1887 if (error != 0) {
1888 /* too many fragments, linearize */
1889 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1890 if (mnew == NULL) {
1891 m_freem(m0);
1892 return ENOMEM;
1893 }
1894
1895 M_COPY_PKTHDR(mnew, m0);
1896 if (m0->m_pkthdr.len > MHLEN) {
1897 MCLGET(mnew, M_DONTWAIT);
1898 if (!(mnew->m_flags & M_EXT)) {
1899 m_freem(m0);
1900 m_freem(mnew);
1901 return ENOMEM;
1902 }
1903 }
1904
1905 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1906 m_freem(m0);
1907 mnew->m_len = mnew->m_pkthdr.len;
1908 m0 = mnew;
1909
1910 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1911 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1912 if (error != 0) {
1913 aprint_error("%s: could not map mbuf (error %d)\n",
1914 sc->sc_dev.dv_xname, error);
1915 m_freem(m0);
1916 return error;
1917 }
1918 }
1919
1920 data->m = m0;
1921 data->ni = ni;
1922
1923 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1924 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1925
1926 /* first scatter/gather segment is used by the tx data command */
1927 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1928 (1 + data->map->dm_nsegs) << 24);
1929 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1930 ring->cur * sizeof (struct wpi_tx_cmd));
1931 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1932 ((hdrlen + 3) & ~3));
1933
1934 for (i = 1; i <= data->map->dm_nsegs; i++) {
1935 desc->segs[i].addr =
1936 htole32(data->map->dm_segs[i - 1].ds_addr);
1937 desc->segs[i].len =
1938 htole32(data->map->dm_segs[i - 1].ds_len);
1939 }
1940
1941 ring->queued++;
1942
1943 /* kick ring */
1944 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1945 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1946
1947 return 0;
1948 }
1949
1950 static void
1951 wpi_start(struct ifnet *ifp)
1952 {
1953 struct wpi_softc *sc = ifp->if_softc;
1954 struct ieee80211com *ic = &sc->sc_ic;
1955 struct ieee80211_node *ni;
1956 struct ether_header *eh;
1957 struct mbuf *m0;
1958 int ac;
1959
1960 /*
1961 * net80211 may still try to send management frames even if the
1962 * IFF_RUNNING flag is not set...
1963 */
1964 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1965 return;
1966
1967 for (;;) {
1968 IF_DEQUEUE(&ic->ic_mgtq, m0);
1969 if (m0 != NULL) {
1970
1971 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1972 m0->m_pkthdr.rcvif = NULL;
1973
1974 /* management frames go into ring 0 */
1975 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1976 ifp->if_oerrors++;
1977 continue;
1978 }
1979 #if NBPFILTER > 0
1980 if (ic->ic_rawbpf != NULL)
1981 bpf_mtap(ic->ic_rawbpf, m0);
1982 #endif
1983 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1984 ifp->if_oerrors++;
1985 break;
1986 }
1987 } else {
1988 if (ic->ic_state != IEEE80211_S_RUN)
1989 break;
1990 IFQ_POLL(&ifp->if_snd, m0);
1991 if (m0 == NULL)
1992 break;
1993
1994 if (m0->m_len < sizeof (*eh) &&
1995 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1996 ifp->if_oerrors++;
1997 continue;
1998 }
1999 eh = mtod(m0, struct ether_header *);
2000 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2001 if (ni == NULL) {
2002 m_freem(m0);
2003 ifp->if_oerrors++;
2004 continue;
2005 }
2006
2007 /* classify mbuf so we can find which tx ring to use */
2008 if (ieee80211_classify(ic, m0, ni) != 0) {
2009 m_freem(m0);
2010 ieee80211_free_node(ni);
2011 ifp->if_oerrors++;
2012 continue;
2013 }
2014
2015 /* no QoS encapsulation for EAPOL frames */
2016 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2017 M_WME_GETAC(m0) : WME_AC_BE;
2018
2019 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2020 /* there is no place left in this ring */
2021 ifp->if_flags |= IFF_OACTIVE;
2022 break;
2023 }
2024 IFQ_DEQUEUE(&ifp->if_snd, m0);
2025 #if NBPFILTER > 0
2026 if (ifp->if_bpf != NULL)
2027 bpf_mtap(ifp->if_bpf, m0);
2028 #endif
2029 m0 = ieee80211_encap(ic, m0, ni);
2030 if (m0 == NULL) {
2031 ieee80211_free_node(ni);
2032 ifp->if_oerrors++;
2033 continue;
2034 }
2035 #if NBPFILTER > 0
2036 if (ic->ic_rawbpf != NULL)
2037 bpf_mtap(ic->ic_rawbpf, m0);
2038 #endif
2039 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2040 ieee80211_free_node(ni);
2041 ifp->if_oerrors++;
2042 break;
2043 }
2044 }
2045
2046 sc->sc_tx_timer = 5;
2047 ifp->if_timer = 1;
2048 }
2049 }
2050
2051 static void
2052 wpi_watchdog(struct ifnet *ifp)
2053 {
2054 struct wpi_softc *sc = ifp->if_softc;
2055
2056 ifp->if_timer = 0;
2057
2058 if (sc->sc_tx_timer > 0) {
2059 if (--sc->sc_tx_timer == 0) {
2060 aprint_error("%s: device timeout\n",
2061 sc->sc_dev.dv_xname);
2062 ifp->if_oerrors++;
2063 ifp->if_flags &= ~IFF_UP;
2064 wpi_stop(ifp, 1);
2065 return;
2066 }
2067 ifp->if_timer = 1;
2068 }
2069
2070 ieee80211_watchdog(&sc->sc_ic);
2071 }
2072
2073 static int
2074 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2075 {
2076 #define IS_RUNNING(ifp) \
2077 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2078
2079 struct wpi_softc *sc = ifp->if_softc;
2080 struct ieee80211com *ic = &sc->sc_ic;
2081 int s, error = 0;
2082
2083 s = splnet();
2084
2085 switch (cmd) {
2086 case SIOCSIFFLAGS:
2087 if (ifp->if_flags & IFF_UP) {
2088 if (!(ifp->if_flags & IFF_RUNNING))
2089 wpi_init(ifp);
2090 } else {
2091 if (ifp->if_flags & IFF_RUNNING)
2092 wpi_stop(ifp, 1);
2093 }
2094 break;
2095
2096 case SIOCADDMULTI:
2097 case SIOCDELMULTI:
2098 /* XXX no h/w multicast filter? --dyoung */
2099 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2100 /* setup multicast filter, etc */
2101 error = 0;
2102 }
2103 break;
2104
2105 default:
2106 error = ieee80211_ioctl(ic, cmd, data);
2107 }
2108
2109 if (error == ENETRESET) {
2110 if (IS_RUNNING(ifp) &&
2111 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2112 wpi_init(ifp);
2113 error = 0;
2114 }
2115
2116 splx(s);
2117 return error;
2118
2119 #undef IS_RUNNING
2120 }
2121
2122 /*
2123 * Extract various information from EEPROM.
2124 */
2125 static void
2126 wpi_read_eeprom(struct wpi_softc *sc)
2127 {
2128 struct ieee80211com *ic = &sc->sc_ic;
2129 char domain[4];
2130 int i;
2131
2132 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2133 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2134 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2135
2136 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2137 sc->type));
2138
2139 /* read and print regulatory domain */
2140 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2141 aprint_normal(", %.4s", domain);
2142
2143 /* read and print MAC address */
2144 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2145 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2146
2147 /* read the list of authorized channels */
2148 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2149 wpi_read_eeprom_channels(sc, i);
2150
2151 /* read the list of power groups */
2152 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2153 wpi_read_eeprom_group(sc, i);
2154 }
2155
2156 static void
2157 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2158 {
2159 struct ieee80211com *ic = &sc->sc_ic;
2160 const struct wpi_chan_band *band = &wpi_bands[n];
2161 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2162 int chan, i;
2163
2164 wpi_read_prom_data(sc, band->addr, channels,
2165 band->nchan * sizeof (struct wpi_eeprom_chan));
2166
2167 for (i = 0; i < band->nchan; i++) {
2168 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2169 continue;
2170
2171 chan = band->chan[i];
2172
2173 if (n == 0) { /* 2GHz band */
2174 ic->ic_channels[chan].ic_freq =
2175 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2176 ic->ic_channels[chan].ic_flags =
2177 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2178 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2179
2180 } else { /* 5GHz band */
2181 /*
2182 * Some 3945abg adapters support channels 7, 8, 11
2183 * and 12 in the 2GHz *and* 5GHz bands.
2184 * Because of limitations in our net80211(9) stack,
2185 * we can't support these channels in 5GHz band.
2186 */
2187 if (chan <= 14)
2188 continue;
2189
2190 ic->ic_channels[chan].ic_freq =
2191 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2192 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2193 }
2194
2195 /* is active scan allowed on this channel? */
2196 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2197 ic->ic_channels[chan].ic_flags |=
2198 IEEE80211_CHAN_PASSIVE;
2199 }
2200
2201 /* save maximum allowed power for this channel */
2202 sc->maxpwr[chan] = channels[i].maxpwr;
2203
2204 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2205 chan, channels[i].flags, sc->maxpwr[chan]));
2206 }
2207 }
2208
2209 static void
2210 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2211 {
2212 struct wpi_power_group *group = &sc->groups[n];
2213 struct wpi_eeprom_group rgroup;
2214 int i;
2215
2216 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2217 sizeof rgroup);
2218
2219 /* save power group information */
2220 group->chan = rgroup.chan;
2221 group->maxpwr = rgroup.maxpwr;
2222 /* temperature at which the samples were taken */
2223 group->temp = (int16_t)le16toh(rgroup.temp);
2224
2225 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2226 group->chan, group->maxpwr, group->temp));
2227
2228 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2229 group->samples[i].index = rgroup.samples[i].index;
2230 group->samples[i].power = rgroup.samples[i].power;
2231
2232 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2233 group->samples[i].index, group->samples[i].power));
2234 }
2235 }
2236
2237 /*
2238 * Send a command to the firmware.
2239 */
2240 static int
2241 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2242 {
2243 struct wpi_tx_ring *ring = &sc->cmdq;
2244 struct wpi_tx_desc *desc;
2245 struct wpi_tx_cmd *cmd;
2246
2247 KASSERT(size <= sizeof cmd->data);
2248
2249 desc = &ring->desc[ring->cur];
2250 cmd = &ring->cmd[ring->cur];
2251
2252 cmd->code = code;
2253 cmd->flags = 0;
2254 cmd->qid = ring->qid;
2255 cmd->idx = ring->cur;
2256 memcpy(cmd->data, buf, size);
2257
2258 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2259 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2260 ring->cur * sizeof (struct wpi_tx_cmd));
2261 desc->segs[0].len = htole32(4 + size);
2262
2263 /* kick cmd ring */
2264 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2265 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2266
2267 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2268 }
2269
2270 static int
2271 wpi_wme_update(struct ieee80211com *ic)
2272 {
2273 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2274 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2275 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2276 const struct wmeParams *wmep;
2277 struct wpi_wme_setup wme;
2278 int ac;
2279
2280 /* don't override default WME values if WME is not actually enabled */
2281 if (!(ic->ic_flags & IEEE80211_F_WME))
2282 return 0;
2283
2284 wme.flags = 0;
2285 for (ac = 0; ac < WME_NUM_AC; ac++) {
2286 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2287 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2288 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2289 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2290 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2291
2292 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2293 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2294 wme.ac[ac].cwmax, wme.ac[ac].txop));
2295 }
2296
2297 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2298 #undef WPI_USEC
2299 #undef WPI_EXP2
2300 }
2301
2302 /*
2303 * Configure h/w multi-rate retries.
2304 */
2305 static int
2306 wpi_mrr_setup(struct wpi_softc *sc)
2307 {
2308 struct ieee80211com *ic = &sc->sc_ic;
2309 struct wpi_mrr_setup mrr;
2310 int i, error;
2311
2312 /* CCK rates (not used with 802.11a) */
2313 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2314 mrr.rates[i].flags = 0;
2315 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2316 /* fallback to the immediate lower CCK rate (if any) */
2317 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2318 /* try one time at this rate before falling back to "next" */
2319 mrr.rates[i].ntries = 1;
2320 }
2321
2322 /* OFDM rates (not used with 802.11b) */
2323 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2324 mrr.rates[i].flags = 0;
2325 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2326 /* fallback to the immediate lower rate (if any) */
2327 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2328 mrr.rates[i].next = (i == WPI_OFDM6) ?
2329 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2330 WPI_OFDM6 : WPI_CCK2) :
2331 i - 1;
2332 /* try one time at this rate before falling back to "next" */
2333 mrr.rates[i].ntries = 1;
2334 }
2335
2336 /* setup MRR for control frames */
2337 mrr.which = htole32(WPI_MRR_CTL);
2338 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2339 if (error != 0) {
2340 aprint_error("%s: could not setup MRR for control frames\n",
2341 sc->sc_dev.dv_xname);
2342 return error;
2343 }
2344
2345 /* setup MRR for data frames */
2346 mrr.which = htole32(WPI_MRR_DATA);
2347 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2348 if (error != 0) {
2349 aprint_error("%s: could not setup MRR for data frames\n",
2350 sc->sc_dev.dv_xname);
2351 return error;
2352 }
2353
2354 return 0;
2355 }
2356
2357 static void
2358 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2359 {
2360 struct wpi_cmd_led led;
2361
2362 led.which = which;
2363 led.unit = htole32(100000); /* on/off in unit of 100ms */
2364 led.off = off;
2365 led.on = on;
2366
2367 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2368 }
2369
2370 static void
2371 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2372 {
2373 struct wpi_cmd_tsf tsf;
2374 uint64_t val, mod;
2375
2376 memset(&tsf, 0, sizeof tsf);
2377 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2378 tsf.bintval = htole16(ni->ni_intval);
2379 tsf.lintval = htole16(10);
2380
2381 /* compute remaining time until next beacon */
2382 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2383 mod = le64toh(tsf.tstamp) % val;
2384 tsf.binitval = htole32((uint32_t)(val - mod));
2385
2386 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2387 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2388
2389 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2390 aprint_error("%s: could not enable TSF\n", sc->sc_dev.dv_xname);
2391 }
2392
2393 /*
2394 * Update Tx power to match what is defined for channel `c'.
2395 */
2396 static int
2397 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2398 {
2399 struct ieee80211com *ic = &sc->sc_ic;
2400 struct wpi_power_group *group;
2401 struct wpi_cmd_txpower txpower;
2402 u_int chan;
2403 int i;
2404
2405 /* get channel number */
2406 chan = ieee80211_chan2ieee(ic, c);
2407
2408 /* find the power group to which this channel belongs */
2409 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2410 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2411 if (chan <= group->chan)
2412 break;
2413 } else
2414 group = &sc->groups[0];
2415
2416 memset(&txpower, 0, sizeof txpower);
2417 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2418 txpower.chan = htole16(chan);
2419
2420 /* set Tx power for all OFDM and CCK rates */
2421 for (i = 0; i <= 11 ; i++) {
2422 /* retrieve Tx power for this channel/rate combination */
2423 int idx = wpi_get_power_index(sc, group, c,
2424 wpi_ridx_to_rate[i]);
2425
2426 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2427
2428 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2429 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2430 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2431 } else {
2432 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2433 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2434 }
2435 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2436 wpi_ridx_to_rate[i], idx));
2437 }
2438
2439 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2440 }
2441
2442 /*
2443 * Determine Tx power index for a given channel/rate combination.
2444 * This takes into account the regulatory information from EEPROM and the
2445 * current temperature.
2446 */
2447 static int
2448 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2449 struct ieee80211_channel *c, int rate)
2450 {
2451 /* fixed-point arithmetic division using a n-bit fractional part */
2452 #define fdivround(a, b, n) \
2453 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2454
2455 /* linear interpolation */
2456 #define interpolate(x, x1, y1, x2, y2, n) \
2457 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2458
2459 struct ieee80211com *ic = &sc->sc_ic;
2460 struct wpi_power_sample *sample;
2461 int pwr, idx;
2462 u_int chan;
2463
2464 /* get channel number */
2465 chan = ieee80211_chan2ieee(ic, c);
2466
2467 /* default power is group's maximum power - 3dB */
2468 pwr = group->maxpwr / 2;
2469
2470 /* decrease power for highest OFDM rates to reduce distortion */
2471 switch (rate) {
2472 case 72: /* 36Mb/s */
2473 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2474 break;
2475 case 96: /* 48Mb/s */
2476 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2477 break;
2478 case 108: /* 54Mb/s */
2479 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2480 break;
2481 }
2482
2483 /* never exceed channel's maximum allowed Tx power */
2484 pwr = min(pwr, sc->maxpwr[chan]);
2485
2486 /* retrieve power index into gain tables from samples */
2487 for (sample = group->samples; sample < &group->samples[3]; sample++)
2488 if (pwr > sample[1].power)
2489 break;
2490 /* fixed-point linear interpolation using a 19-bit fractional part */
2491 idx = interpolate(pwr, sample[0].power, sample[0].index,
2492 sample[1].power, sample[1].index, 19);
2493
2494 /*
2495 * Adjust power index based on current temperature:
2496 * - if cooler than factory-calibrated: decrease output power
2497 * - if warmer than factory-calibrated: increase output power
2498 */
2499 idx -= (sc->temp - group->temp) * 11 / 100;
2500
2501 /* decrease power for CCK rates (-5dB) */
2502 if (!WPI_RATE_IS_OFDM(rate))
2503 idx += 10;
2504
2505 /* keep power index in a valid range */
2506 if (idx < 0)
2507 return 0;
2508 if (idx > WPI_MAX_PWR_INDEX)
2509 return WPI_MAX_PWR_INDEX;
2510 return idx;
2511
2512 #undef interpolate
2513 #undef fdivround
2514 }
2515
2516 /*
2517 * Build a beacon frame that the firmware will broadcast periodically in
2518 * IBSS or HostAP modes.
2519 */
2520 static int
2521 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2522 {
2523 struct ieee80211com *ic = &sc->sc_ic;
2524 struct wpi_tx_ring *ring = &sc->cmdq;
2525 struct wpi_tx_desc *desc;
2526 struct wpi_tx_data *data;
2527 struct wpi_tx_cmd *cmd;
2528 struct wpi_cmd_beacon *bcn;
2529 struct ieee80211_beacon_offsets bo;
2530 struct mbuf *m0;
2531 int error;
2532
2533 desc = &ring->desc[ring->cur];
2534 data = &ring->data[ring->cur];
2535
2536 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2537 if (m0 == NULL) {
2538 aprint_error("%s: could not allocate beacon frame\n",
2539 sc->sc_dev.dv_xname);
2540 return ENOMEM;
2541 }
2542
2543 cmd = &ring->cmd[ring->cur];
2544 cmd->code = WPI_CMD_SET_BEACON;
2545 cmd->flags = 0;
2546 cmd->qid = ring->qid;
2547 cmd->idx = ring->cur;
2548
2549 bcn = (struct wpi_cmd_beacon *)cmd->data;
2550 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2551 bcn->id = WPI_ID_BROADCAST;
2552 bcn->ofdm_mask = 0xff;
2553 bcn->cck_mask = 0x0f;
2554 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2555 bcn->len = htole16(m0->m_pkthdr.len);
2556 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2557 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2558 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2559
2560 /* save and trim IEEE802.11 header */
2561 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2562 m_adj(m0, sizeof (struct ieee80211_frame));
2563
2564 /* assume beacon frame is contiguous */
2565 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2566 BUS_DMA_READ | BUS_DMA_NOWAIT);
2567 if (error) {
2568 aprint_error("%s: could not map beacon\n", sc->sc_dev.dv_xname);
2569 m_freem(m0);
2570 return error;
2571 }
2572
2573 data->m = m0;
2574
2575 /* first scatter/gather segment is used by the beacon command */
2576 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2577 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2578 ring->cur * sizeof (struct wpi_tx_cmd));
2579 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2580 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2581 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2582
2583 /* kick cmd ring */
2584 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2585 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2586
2587 return 0;
2588 }
2589
2590 static int
2591 wpi_auth(struct wpi_softc *sc)
2592 {
2593 struct ieee80211com *ic = &sc->sc_ic;
2594 struct ieee80211_node *ni = ic->ic_bss;
2595 struct wpi_node_info node;
2596 int error;
2597
2598 /* update adapter's configuration */
2599 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2600 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2601 sc->config.flags = htole32(WPI_CONFIG_TSF);
2602 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2603 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2604 WPI_CONFIG_24GHZ);
2605 }
2606 switch (ic->ic_curmode) {
2607 case IEEE80211_MODE_11A:
2608 sc->config.cck_mask = 0;
2609 sc->config.ofdm_mask = 0x15;
2610 break;
2611 case IEEE80211_MODE_11B:
2612 sc->config.cck_mask = 0x03;
2613 sc->config.ofdm_mask = 0;
2614 break;
2615 default: /* assume 802.11b/g */
2616 sc->config.cck_mask = 0x0f;
2617 sc->config.ofdm_mask = 0x15;
2618 }
2619
2620 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2621 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2622 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2623 sizeof (struct wpi_config), 1);
2624 if (error != 0) {
2625 aprint_error("%s: could not configure\n", sc->sc_dev.dv_xname);
2626 return error;
2627 }
2628
2629 /* configuration has changed, set Tx power accordingly */
2630 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2631 aprint_error("%s: could not set Tx power\n", sc->sc_dev.dv_xname);
2632 return error;
2633 }
2634
2635 /* add default node */
2636 memset(&node, 0, sizeof node);
2637 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2638 node.id = WPI_ID_BSS;
2639 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2640 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2641 node.action = htole32(WPI_ACTION_SET_RATE);
2642 node.antenna = WPI_ANTENNA_BOTH;
2643 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2644 if (error != 0) {
2645 aprint_error("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
2646 return error;
2647 }
2648
2649 return 0;
2650 }
2651
2652 /*
2653 * Send a scan request to the firmware. Since this command is huge, we map it
2654 * into a mbuf instead of using the pre-allocated set of commands.
2655 */
2656 static int
2657 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2658 {
2659 struct ieee80211com *ic = &sc->sc_ic;
2660 struct wpi_tx_ring *ring = &sc->cmdq;
2661 struct wpi_tx_desc *desc;
2662 struct wpi_tx_data *data;
2663 struct wpi_tx_cmd *cmd;
2664 struct wpi_scan_hdr *hdr;
2665 struct wpi_scan_chan *chan;
2666 struct ieee80211_frame *wh;
2667 struct ieee80211_rateset *rs;
2668 struct ieee80211_channel *c;
2669 enum ieee80211_phymode mode;
2670 uint8_t *frm;
2671 int nrates, pktlen, error;
2672
2673 desc = &ring->desc[ring->cur];
2674 data = &ring->data[ring->cur];
2675
2676 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2677 if (data->m == NULL) {
2678 aprint_error("%s: could not allocate mbuf for scan command\n",
2679 sc->sc_dev.dv_xname);
2680 return ENOMEM;
2681 }
2682
2683 MCLGET(data->m, M_DONTWAIT);
2684 if (!(data->m->m_flags & M_EXT)) {
2685 m_freem(data->m);
2686 data->m = NULL;
2687 aprint_error("%s: could not allocate mbuf for scan command\n",
2688 sc->sc_dev.dv_xname);
2689 return ENOMEM;
2690 }
2691
2692 cmd = mtod(data->m, struct wpi_tx_cmd *);
2693 cmd->code = WPI_CMD_SCAN;
2694 cmd->flags = 0;
2695 cmd->qid = ring->qid;
2696 cmd->idx = ring->cur;
2697
2698 hdr = (struct wpi_scan_hdr *)cmd->data;
2699 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2700 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2701 hdr->id = WPI_ID_BROADCAST;
2702 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2703
2704 /*
2705 * Move to the next channel if no packets are received within 5 msecs
2706 * after sending the probe request (this helps to reduce the duration
2707 * of active scans).
2708 */
2709 hdr->quiet = htole16(5); /* timeout in milliseconds */
2710 hdr->plcp_threshold = htole16(1); /* min # of packets */
2711
2712 if (flags & IEEE80211_CHAN_A) {
2713 hdr->crc_threshold = htole16(1);
2714 /* send probe requests at 6Mbps */
2715 hdr->rate = wpi_plcp_signal(12);
2716 } else {
2717 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2718 /* send probe requests at 1Mbps */
2719 hdr->rate = wpi_plcp_signal(2);
2720 }
2721
2722 /* for directed scans, firmware inserts the essid IE itself */
2723 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2724 hdr->essid[0].len = ic->ic_des_esslen;
2725 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2726
2727 /*
2728 * Build a probe request frame. Most of the following code is a
2729 * copy & paste of what is done in net80211.
2730 */
2731 wh = (struct ieee80211_frame *)(hdr + 1);
2732 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2733 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2734 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2735 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2736 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2737 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2738 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2739 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2740
2741 frm = (uint8_t *)(wh + 1);
2742
2743 /* add empty essid IE (firmware generates it for directed scans) */
2744 *frm++ = IEEE80211_ELEMID_SSID;
2745 *frm++ = 0;
2746
2747 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2748 rs = &ic->ic_sup_rates[mode];
2749
2750 /* add supported rates IE */
2751 *frm++ = IEEE80211_ELEMID_RATES;
2752 nrates = rs->rs_nrates;
2753 if (nrates > IEEE80211_RATE_SIZE)
2754 nrates = IEEE80211_RATE_SIZE;
2755 *frm++ = nrates;
2756 memcpy(frm, rs->rs_rates, nrates);
2757 frm += nrates;
2758
2759 /* add supported xrates IE */
2760 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2761 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2762 *frm++ = IEEE80211_ELEMID_XRATES;
2763 *frm++ = nrates;
2764 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2765 frm += nrates;
2766 }
2767
2768 /* setup length of probe request */
2769 hdr->paylen = htole16(frm - (uint8_t *)wh);
2770
2771 chan = (struct wpi_scan_chan *)frm;
2772 for (c = &ic->ic_channels[1];
2773 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2774 if ((c->ic_flags & flags) != flags)
2775 continue;
2776
2777 chan->chan = ieee80211_chan2ieee(ic, c);
2778 chan->flags = 0;
2779 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2780 chan->flags |= WPI_CHAN_ACTIVE;
2781 if (ic->ic_des_esslen != 0)
2782 chan->flags |= WPI_CHAN_DIRECT;
2783 }
2784 chan->dsp_gain = 0x6e;
2785 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2786 chan->rf_gain = 0x3b;
2787 chan->active = htole16(10);
2788 chan->passive = htole16(110);
2789 } else {
2790 chan->rf_gain = 0x28;
2791 chan->active = htole16(20);
2792 chan->passive = htole16(120);
2793 }
2794 hdr->nchan++;
2795 chan++;
2796
2797 frm += sizeof (struct wpi_scan_chan);
2798 }
2799 hdr->len = htole16(frm - (uint8_t *)hdr);
2800 pktlen = frm - (uint8_t *)cmd;
2801
2802 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2803 NULL, BUS_DMA_NOWAIT);
2804 if (error) {
2805 aprint_error("%s: could not map scan command\n",
2806 sc->sc_dev.dv_xname);
2807 m_freem(data->m);
2808 data->m = NULL;
2809 return error;
2810 }
2811
2812 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2813 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2814 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2815
2816 /* kick cmd ring */
2817 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2818 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2819
2820 return 0; /* will be notified async. of failure/success */
2821 }
2822
2823 static int
2824 wpi_config(struct wpi_softc *sc)
2825 {
2826 struct ieee80211com *ic = &sc->sc_ic;
2827 struct ifnet *ifp = ic->ic_ifp;
2828 struct wpi_power power;
2829 struct wpi_bluetooth bluetooth;
2830 struct wpi_node_info node;
2831 int error;
2832
2833 memset(&power, 0, sizeof power);
2834 power.flags = htole32(WPI_POWER_CAM | 0x8);
2835 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2836 if (error != 0) {
2837 aprint_error("%s: could not set power mode\n",
2838 sc->sc_dev.dv_xname);
2839 return error;
2840 }
2841
2842 /* configure bluetooth coexistence */
2843 memset(&bluetooth, 0, sizeof bluetooth);
2844 bluetooth.flags = 3;
2845 bluetooth.lead = 0xaa;
2846 bluetooth.kill = 1;
2847 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2848 0);
2849 if (error != 0) {
2850 aprint_error(
2851 "%s: could not configure bluetooth coexistence\n",
2852 sc->sc_dev.dv_xname);
2853 return error;
2854 }
2855
2856 /* configure adapter */
2857 memset(&sc->config, 0, sizeof (struct wpi_config));
2858 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2859 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2860 /*set default channel*/
2861 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2862 sc->config.flags = htole32(WPI_CONFIG_TSF);
2863 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2864 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2865 WPI_CONFIG_24GHZ);
2866 }
2867 sc->config.filter = 0;
2868 switch (ic->ic_opmode) {
2869 case IEEE80211_M_STA:
2870 sc->config.mode = WPI_MODE_STA;
2871 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2872 break;
2873 case IEEE80211_M_IBSS:
2874 case IEEE80211_M_AHDEMO:
2875 sc->config.mode = WPI_MODE_IBSS;
2876 break;
2877 case IEEE80211_M_HOSTAP:
2878 sc->config.mode = WPI_MODE_HOSTAP;
2879 break;
2880 case IEEE80211_M_MONITOR:
2881 sc->config.mode = WPI_MODE_MONITOR;
2882 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2883 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2884 break;
2885 }
2886 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2887 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2888 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2889 sizeof (struct wpi_config), 0);
2890 if (error != 0) {
2891 aprint_error("%s: configure command failed\n",
2892 sc->sc_dev.dv_xname);
2893 return error;
2894 }
2895
2896 /* configuration has changed, set Tx power accordingly */
2897 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2898 aprint_error("%s: could not set Tx power\n", sc->sc_dev.dv_xname);
2899 return error;
2900 }
2901
2902 /* add broadcast node */
2903 memset(&node, 0, sizeof node);
2904 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2905 node.id = WPI_ID_BROADCAST;
2906 node.rate = wpi_plcp_signal(2);
2907 node.action = htole32(WPI_ACTION_SET_RATE);
2908 node.antenna = WPI_ANTENNA_BOTH;
2909 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2910 if (error != 0) {
2911 aprint_error("%s: could not add broadcast node\n",
2912 sc->sc_dev.dv_xname);
2913 return error;
2914 }
2915
2916 if ((error = wpi_mrr_setup(sc)) != 0) {
2917 aprint_error("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
2918 return error;
2919 }
2920
2921 return 0;
2922 }
2923
2924 static void
2925 wpi_stop_master(struct wpi_softc *sc)
2926 {
2927 uint32_t tmp;
2928 int ntries;
2929
2930 tmp = WPI_READ(sc, WPI_RESET);
2931 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2932
2933 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2934 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2935 return; /* already asleep */
2936
2937 for (ntries = 0; ntries < 100; ntries++) {
2938 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2939 break;
2940 DELAY(10);
2941 }
2942 if (ntries == 100) {
2943 aprint_error("%s: timeout waiting for master\n",
2944 sc->sc_dev.dv_xname);
2945 }
2946 }
2947
2948 static int
2949 wpi_power_up(struct wpi_softc *sc)
2950 {
2951 uint32_t tmp;
2952 int ntries;
2953
2954 wpi_mem_lock(sc);
2955 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2956 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2957 wpi_mem_unlock(sc);
2958
2959 for (ntries = 0; ntries < 5000; ntries++) {
2960 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2961 break;
2962 DELAY(10);
2963 }
2964 if (ntries == 5000) {
2965 aprint_error("%s: timeout waiting for NIC to power up\n",
2966 sc->sc_dev.dv_xname);
2967 return ETIMEDOUT;
2968 }
2969 return 0;
2970 }
2971
2972 static int
2973 wpi_reset(struct wpi_softc *sc)
2974 {
2975 uint32_t tmp;
2976 int ntries;
2977
2978 /* clear any pending interrupts */
2979 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2980
2981 tmp = WPI_READ(sc, WPI_PLL_CTL);
2982 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2983
2984 tmp = WPI_READ(sc, WPI_CHICKEN);
2985 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2986
2987 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2988 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2989
2990 /* wait for clock stabilization */
2991 for (ntries = 0; ntries < 1000; ntries++) {
2992 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2993 break;
2994 DELAY(10);
2995 }
2996 if (ntries == 1000) {
2997 aprint_error("%s: timeout waiting for clock stabilization\n",
2998 sc->sc_dev.dv_xname);
2999 return ETIMEDOUT;
3000 }
3001
3002 /* initialize EEPROM */
3003 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3004 if ((tmp & WPI_EEPROM_VERSION) == 0) {
3005 aprint_error("%s: EEPROM not found\n", sc->sc_dev.dv_xname);
3006 return EIO;
3007 }
3008 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3009
3010 return 0;
3011 }
3012
3013 static void
3014 wpi_hw_config(struct wpi_softc *sc)
3015 {
3016 uint32_t rev, hw;
3017
3018 /* voodoo from the reference driver */
3019 hw = WPI_READ(sc, WPI_HWCONFIG);
3020
3021 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3022 rev = PCI_REVISION(rev);
3023 if ((rev & 0xc0) == 0x40)
3024 hw |= WPI_HW_ALM_MB;
3025 else if (!(rev & 0x80))
3026 hw |= WPI_HW_ALM_MM;
3027
3028 if (sc->cap == 0x80)
3029 hw |= WPI_HW_SKU_MRC;
3030
3031 hw &= ~WPI_HW_REV_D;
3032 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3033 hw |= WPI_HW_REV_D;
3034
3035 if (sc->type > 1)
3036 hw |= WPI_HW_TYPE_B;
3037
3038 DPRINTF(("setting h/w config %x\n", hw));
3039 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3040 }
3041
3042 static int
3043 wpi_init(struct ifnet *ifp)
3044 {
3045 struct wpi_softc *sc = ifp->if_softc;
3046 struct ieee80211com *ic = &sc->sc_ic;
3047 uint32_t tmp;
3048 int qid, ntries, error;
3049
3050 wpi_stop(ifp,1);
3051 (void)wpi_reset(sc);
3052
3053 wpi_mem_lock(sc);
3054 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3055 DELAY(20);
3056 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3057 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3058 wpi_mem_unlock(sc);
3059
3060 (void)wpi_power_up(sc);
3061 wpi_hw_config(sc);
3062
3063 /* init Rx ring */
3064 wpi_mem_lock(sc);
3065 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3066 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3067 offsetof(struct wpi_shared, next));
3068 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3069 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3070 wpi_mem_unlock(sc);
3071
3072 /* init Tx rings */
3073 wpi_mem_lock(sc);
3074 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3075 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3076 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3077 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3078 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3079 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3080 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3081
3082 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3083 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3084
3085 for (qid = 0; qid < 6; qid++) {
3086 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3087 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3088 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3089 }
3090 wpi_mem_unlock(sc);
3091
3092 /* clear "radio off" and "disable command" bits (reversed logic) */
3093 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3094 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3095
3096 /* clear any pending interrupts */
3097 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3098 /* enable interrupts */
3099 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3100
3101 /* not sure why/if this is necessary... */
3102 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3103 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3104
3105 if ((error = wpi_load_firmware(sc)) != 0) {
3106 aprint_error("%s: could not load firmware\n", sc->sc_dev.dv_xname);
3107 goto fail1;
3108 }
3109
3110 /* wait for thermal sensors to calibrate */
3111 for (ntries = 0; ntries < 1000; ntries++) {
3112 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3113 break;
3114 DELAY(10);
3115 }
3116 if (ntries == 1000) {
3117 aprint_error("%s: timeout waiting for thermal sensors calibration\n",
3118 sc->sc_dev.dv_xname);
3119 error = ETIMEDOUT;
3120 goto fail1;
3121 }
3122
3123 DPRINTF(("temperature %d\n", sc->temp));
3124
3125 if ((error = wpi_config(sc)) != 0) {
3126 aprint_error("%s: could not configure device\n",
3127 sc->sc_dev.dv_xname);
3128 goto fail1;
3129 }
3130
3131 ifp->if_flags &= ~IFF_OACTIVE;
3132 ifp->if_flags |= IFF_RUNNING;
3133
3134 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3135 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3136 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3137 }
3138 else
3139 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3140
3141 return 0;
3142
3143 fail1: wpi_stop(ifp, 1);
3144 return error;
3145 }
3146
3147
3148 static void
3149 wpi_stop(struct ifnet *ifp, int disable)
3150 {
3151 struct wpi_softc *sc = ifp->if_softc;
3152 struct ieee80211com *ic = &sc->sc_ic;
3153 uint32_t tmp;
3154 int ac;
3155
3156 ifp->if_timer = sc->sc_tx_timer = 0;
3157 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3158
3159 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3160
3161 /* disable interrupts */
3162 WPI_WRITE(sc, WPI_MASK, 0);
3163 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3164 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3165 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3166
3167 wpi_mem_lock(sc);
3168 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3169 wpi_mem_unlock(sc);
3170
3171 /* reset all Tx rings */
3172 for (ac = 0; ac < 4; ac++)
3173 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3174 wpi_reset_tx_ring(sc, &sc->cmdq);
3175
3176 /* reset Rx ring */
3177 wpi_reset_rx_ring(sc, &sc->rxq);
3178
3179 wpi_mem_lock(sc);
3180 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3181 wpi_mem_unlock(sc);
3182
3183 DELAY(5);
3184
3185 wpi_stop_master(sc);
3186
3187 tmp = WPI_READ(sc, WPI_RESET);
3188 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3189 }
3190