if_wpi.c revision 1.69 1 /* $NetBSD: if_wpi.c,v 1.69 2014/12/19 11:54:02 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.69 2014/12/19 11:54:02 bouyer Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcidevs.h>
50
51 #include <net/bpf.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/in_var.h>
62 #include <netinet/ip.h>
63
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_amrr.h>
66 #include <net80211/ieee80211_radiotap.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
74 static once_t wpi_firmware_init;
75 static kmutex_t wpi_firmware_mutex;
76 static size_t wpi_firmware_users;
77 static uint8_t *wpi_firmware_image;
78 static size_t wpi_firmware_size;
79
80 static int wpi_match(device_t, cfdata_t, void *);
81 static void wpi_attach(device_t, device_t, void *);
82 static int wpi_detach(device_t , int);
83 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
84 void **, bus_size_t, bus_size_t, int);
85 static void wpi_dma_contig_free(struct wpi_dma_info *);
86 static int wpi_alloc_shared(struct wpi_softc *);
87 static void wpi_free_shared(struct wpi_softc *);
88 static int wpi_alloc_fwmem(struct wpi_softc *);
89 static void wpi_free_fwmem(struct wpi_softc *);
90 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
91 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
92 static int wpi_alloc_rpool(struct wpi_softc *);
93 static void wpi_free_rpool(struct wpi_softc *);
94 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
95 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
96 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
97 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
98 int, int);
99 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
100 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
101 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
102 static void wpi_newassoc(struct ieee80211_node *, int);
103 static int wpi_media_change(struct ifnet *);
104 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
105 static void wpi_mem_lock(struct wpi_softc *);
106 static void wpi_mem_unlock(struct wpi_softc *);
107 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
108 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
109 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
110 const uint32_t *, int);
111 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
112 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
113 static int wpi_cache_firmware(struct wpi_softc *);
114 static void wpi_release_firmware(void);
115 static int wpi_load_firmware(struct wpi_softc *);
116 static void wpi_calib_timeout(void *);
117 static void wpi_iter_func(void *, struct ieee80211_node *);
118 static void wpi_power_calibration(struct wpi_softc *, int);
119 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
120 struct wpi_rx_data *);
121 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
122 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
123 static void wpi_notif_intr(struct wpi_softc *);
124 static int wpi_intr(void *);
125 static void wpi_read_eeprom(struct wpi_softc *);
126 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
127 static void wpi_read_eeprom_group(struct wpi_softc *, int);
128 static uint8_t wpi_plcp_signal(int);
129 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
130 struct ieee80211_node *, int);
131 static void wpi_start(struct ifnet *);
132 static void wpi_watchdog(struct ifnet *);
133 static int wpi_ioctl(struct ifnet *, u_long, void *);
134 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
135 static int wpi_wme_update(struct ieee80211com *);
136 static int wpi_mrr_setup(struct wpi_softc *);
137 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
138 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
139 static int wpi_set_txpower(struct wpi_softc *,
140 struct ieee80211_channel *, int);
141 static int wpi_get_power_index(struct wpi_softc *,
142 struct wpi_power_group *, struct ieee80211_channel *, int);
143 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
144 static int wpi_auth(struct wpi_softc *);
145 static int wpi_scan(struct wpi_softc *);
146 static int wpi_config(struct wpi_softc *);
147 static void wpi_stop_master(struct wpi_softc *);
148 static int wpi_power_up(struct wpi_softc *);
149 static int wpi_reset(struct wpi_softc *);
150 static void wpi_hw_config(struct wpi_softc *);
151 static int wpi_init(struct ifnet *);
152 static void wpi_stop(struct ifnet *, int);
153 static bool wpi_resume(device_t, const pmf_qual_t *);
154 static int wpi_getrfkill(struct wpi_softc *);
155 static void wpi_sysctlattach(struct wpi_softc *);
156
157 #ifdef WPI_DEBUG
158 #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0)
159 #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0)
160 int wpi_debug = 1;
161 #else
162 #define DPRINTF(x)
163 #define DPRINTFN(n, x)
164 #endif
165
166 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
167 wpi_detach, NULL);
168
169 static int
170 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
171 {
172 struct pci_attach_args *pa = aux;
173
174 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
175 return 0;
176
177 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
178 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
179 return 1;
180
181 return 0;
182 }
183
184 /* Base Address Register */
185 #define WPI_PCI_BAR0 0x10
186
187 static int
188 wpi_attach_once(void)
189 {
190
191 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
192 return 0;
193 }
194
195 static void
196 wpi_attach(device_t parent __unused, device_t self, void *aux)
197 {
198 struct wpi_softc *sc = device_private(self);
199 struct ieee80211com *ic = &sc->sc_ic;
200 struct ifnet *ifp = &sc->sc_ec.ec_if;
201 struct pci_attach_args *pa = aux;
202 const char *intrstr;
203 bus_space_tag_t memt;
204 bus_space_handle_t memh;
205 pci_intr_handle_t ih;
206 pcireg_t data;
207 int ac, error;
208 char intrbuf[PCI_INTRSTR_LEN];
209
210 RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
211 sc->fw_used = false;
212
213 sc->sc_dev = self;
214 sc->sc_pct = pa->pa_pc;
215 sc->sc_pcitag = pa->pa_tag;
216
217 callout_init(&sc->calib_to, 0);
218 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
219
220 pci_aprint_devinfo(pa, NULL);
221
222 /* enable bus-mastering */
223 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
224 data |= PCI_COMMAND_MASTER_ENABLE;
225 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
226
227 /* map the register window */
228 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
229 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
230 if (error != 0) {
231 aprint_error_dev(self, "could not map memory space\n");
232 return;
233 }
234
235 sc->sc_st = memt;
236 sc->sc_sh = memh;
237 sc->sc_dmat = pa->pa_dmat;
238
239 if (pci_intr_map(pa, &ih) != 0) {
240 aprint_error_dev(self, "could not map interrupt\n");
241 return;
242 }
243
244 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
245 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
246 if (sc->sc_ih == NULL) {
247 aprint_error_dev(self, "could not establish interrupt");
248 if (intrstr != NULL)
249 aprint_error(" at %s", intrstr);
250 aprint_error("\n");
251 return;
252 }
253 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
254
255 /*
256 * Put adapter into a known state.
257 */
258 if ((error = wpi_reset(sc)) != 0) {
259 aprint_error_dev(self, "could not reset adapter\n");
260 return;
261 }
262
263 /*
264 * Allocate DMA memory for firmware transfers.
265 */
266 if ((error = wpi_alloc_fwmem(sc)) != 0) {
267 aprint_error_dev(self, "could not allocate firmware memory\n");
268 return;
269 }
270
271 /*
272 * Allocate shared page and Tx/Rx rings.
273 */
274 if ((error = wpi_alloc_shared(sc)) != 0) {
275 aprint_error_dev(self, "could not allocate shared area\n");
276 goto fail1;
277 }
278
279 if ((error = wpi_alloc_rpool(sc)) != 0) {
280 aprint_error_dev(self, "could not allocate Rx buffers\n");
281 goto fail2;
282 }
283
284 for (ac = 0; ac < 4; ac++) {
285 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
286 ac);
287 if (error != 0) {
288 aprint_error_dev(self,
289 "could not allocate Tx ring %d\n", ac);
290 goto fail3;
291 }
292 }
293
294 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
295 if (error != 0) {
296 aprint_error_dev(self, "could not allocate command ring\n");
297 goto fail3;
298 }
299
300 error = wpi_alloc_rx_ring(sc, &sc->rxq);
301 if (error != 0) {
302 aprint_error_dev(self, "could not allocate Rx ring\n");
303 goto fail4;
304 }
305
306 ic->ic_ifp = ifp;
307 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
308 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
309 ic->ic_state = IEEE80211_S_INIT;
310
311 /* set device capabilities */
312 ic->ic_caps =
313 IEEE80211_C_WPA | /* 802.11i */
314 IEEE80211_C_MONITOR | /* monitor mode supported */
315 IEEE80211_C_TXPMGT | /* tx power management */
316 IEEE80211_C_SHSLOT | /* short slot time supported */
317 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
318 IEEE80211_C_WME; /* 802.11e */
319
320 /* read supported channels and MAC address from EEPROM */
321 wpi_read_eeprom(sc);
322
323 /* set supported .11a, .11b and .11g rates */
324 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
325 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
326 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
327
328 /* IBSS channel undefined for now */
329 ic->ic_ibss_chan = &ic->ic_channels[0];
330
331 ifp->if_softc = sc;
332 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
333 ifp->if_init = wpi_init;
334 ifp->if_stop = wpi_stop;
335 ifp->if_ioctl = wpi_ioctl;
336 ifp->if_start = wpi_start;
337 ifp->if_watchdog = wpi_watchdog;
338 IFQ_SET_READY(&ifp->if_snd);
339 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
340
341 if_attach(ifp);
342 ieee80211_ifattach(ic);
343 /* override default methods */
344 ic->ic_node_alloc = wpi_node_alloc;
345 ic->ic_newassoc = wpi_newassoc;
346 ic->ic_wme.wme_update = wpi_wme_update;
347
348 /* override state transition machine */
349 sc->sc_newstate = ic->ic_newstate;
350 ic->ic_newstate = wpi_newstate;
351 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
352
353 sc->amrr.amrr_min_success_threshold = 1;
354 sc->amrr.amrr_max_success_threshold = 15;
355
356 wpi_sysctlattach(sc);
357
358 if (pmf_device_register(self, NULL, wpi_resume))
359 pmf_class_network_register(self, ifp);
360 else
361 aprint_error_dev(self, "couldn't establish power handler\n");
362
363 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
364 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
365 &sc->sc_drvbpf);
366
367 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
368 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
369 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
370
371 sc->sc_txtap_len = sizeof sc->sc_txtapu;
372 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
373 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
374
375 ieee80211_announce(ic);
376
377 return;
378
379 /* free allocated memory if something failed during attachment */
380 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
381 fail3: while (--ac >= 0)
382 wpi_free_tx_ring(sc, &sc->txq[ac]);
383 wpi_free_rpool(sc);
384 fail2: wpi_free_shared(sc);
385 fail1: wpi_free_fwmem(sc);
386 }
387
388 static int
389 wpi_detach(device_t self, int flags __unused)
390 {
391 struct wpi_softc *sc = device_private(self);
392 struct ifnet *ifp = sc->sc_ic.ic_ifp;
393 int ac;
394
395 wpi_stop(ifp, 1);
396
397 if (ifp != NULL)
398 bpf_detach(ifp);
399 ieee80211_ifdetach(&sc->sc_ic);
400 if (ifp != NULL)
401 if_detach(ifp);
402
403 for (ac = 0; ac < 4; ac++)
404 wpi_free_tx_ring(sc, &sc->txq[ac]);
405 wpi_free_tx_ring(sc, &sc->cmdq);
406 wpi_free_rx_ring(sc, &sc->rxq);
407 wpi_free_rpool(sc);
408 wpi_free_shared(sc);
409
410 if (sc->sc_ih != NULL) {
411 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
412 sc->sc_ih = NULL;
413 }
414
415 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
416
417 if (sc->fw_used) {
418 sc->fw_used = false;
419 wpi_release_firmware();
420 }
421
422 return 0;
423 }
424
425 static int
426 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
427 bus_size_t size, bus_size_t alignment, int flags)
428 {
429 int nsegs, error;
430
431 dma->tag = tag;
432 dma->size = size;
433
434 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
435 if (error != 0)
436 goto fail;
437
438 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
439 flags);
440 if (error != 0)
441 goto fail;
442
443 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
444 if (error != 0)
445 goto fail;
446
447 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
448 if (error != 0)
449 goto fail;
450
451 memset(dma->vaddr, 0, size);
452 bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
453
454 dma->paddr = dma->map->dm_segs[0].ds_addr;
455 if (kvap != NULL)
456 *kvap = dma->vaddr;
457
458 return 0;
459
460 fail: wpi_dma_contig_free(dma);
461 return error;
462 }
463
464 static void
465 wpi_dma_contig_free(struct wpi_dma_info *dma)
466 {
467 if (dma->map != NULL) {
468 if (dma->vaddr != NULL) {
469 bus_dmamap_unload(dma->tag, dma->map);
470 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
471 bus_dmamem_free(dma->tag, &dma->seg, 1);
472 dma->vaddr = NULL;
473 }
474 bus_dmamap_destroy(dma->tag, dma->map);
475 dma->map = NULL;
476 }
477 }
478
479 /*
480 * Allocate a shared page between host and NIC.
481 */
482 static int
483 wpi_alloc_shared(struct wpi_softc *sc)
484 {
485 int error;
486
487 /* must be aligned on a 4K-page boundary */
488 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
489 (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
490 BUS_DMA_NOWAIT);
491 if (error != 0)
492 aprint_error_dev(sc->sc_dev,
493 "could not allocate shared area DMA memory\n");
494
495 return error;
496 }
497
498 static void
499 wpi_free_shared(struct wpi_softc *sc)
500 {
501 wpi_dma_contig_free(&sc->shared_dma);
502 }
503
504 /*
505 * Allocate DMA-safe memory for firmware transfer.
506 */
507 static int
508 wpi_alloc_fwmem(struct wpi_softc *sc)
509 {
510 int error;
511
512 /* allocate enough contiguous space to store text and data */
513 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
514 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
515 BUS_DMA_NOWAIT);
516
517 if (error != 0)
518 aprint_error_dev(sc->sc_dev,
519 "could not allocate firmware transfer area DMA memory\n");
520 return error;
521 }
522
523 static void
524 wpi_free_fwmem(struct wpi_softc *sc)
525 {
526 wpi_dma_contig_free(&sc->fw_dma);
527 }
528
529 static struct wpi_rbuf *
530 wpi_alloc_rbuf(struct wpi_softc *sc)
531 {
532 struct wpi_rbuf *rbuf;
533
534 mutex_enter(&sc->rxq.freelist_mtx);
535 rbuf = SLIST_FIRST(&sc->rxq.freelist);
536 if (rbuf != NULL) {
537 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
538 }
539 mutex_exit(&sc->rxq.freelist_mtx);
540
541 return rbuf;
542 }
543
544 /*
545 * This is called automatically by the network stack when the mbuf to which our
546 * Rx buffer is attached is freed.
547 */
548 static void
549 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
550 {
551 struct wpi_rbuf *rbuf = arg;
552 struct wpi_softc *sc = rbuf->sc;
553
554 /* put the buffer back in the free list */
555
556 mutex_enter(&sc->rxq.freelist_mtx);
557 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
558 mutex_exit(&sc->rxq.freelist_mtx);
559
560 if (__predict_true(m != NULL))
561 pool_cache_put(mb_cache, m);
562 }
563
564 static int
565 wpi_alloc_rpool(struct wpi_softc *sc)
566 {
567 struct wpi_rx_ring *ring = &sc->rxq;
568 int i, error;
569
570 /* allocate a big chunk of DMA'able memory.. */
571 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
572 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
573 if (error != 0) {
574 aprint_normal_dev(sc->sc_dev,
575 "could not allocate Rx buffers DMA memory\n");
576 return error;
577 }
578
579 /* ..and split it into 3KB chunks */
580 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
581 SLIST_INIT(&ring->freelist);
582 for (i = 0; i < WPI_RBUF_COUNT; i++) {
583 struct wpi_rbuf *rbuf = &ring->rbuf[i];
584
585 rbuf->sc = sc; /* backpointer for callbacks */
586 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
587 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
588
589 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
590 }
591
592 return 0;
593 }
594
595 static void
596 wpi_free_rpool(struct wpi_softc *sc)
597 {
598 wpi_dma_contig_free(&sc->rxq.buf_dma);
599 }
600
601 static int
602 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
603 {
604 bus_size_t size;
605 int i, error;
606
607 ring->cur = 0;
608
609 size = WPI_RX_RING_COUNT * sizeof (uint32_t);
610 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
611 (void **)&ring->desc, size,
612 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
613 if (error != 0) {
614 aprint_error_dev(sc->sc_dev,
615 "could not allocate rx ring DMA memory\n");
616 goto fail;
617 }
618
619 /*
620 * Setup Rx buffers.
621 */
622 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
623 struct wpi_rx_data *data = &ring->data[i];
624 struct wpi_rbuf *rbuf;
625
626 error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
627 WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
628 if (error) {
629 aprint_error_dev(sc->sc_dev,
630 "could not allocate rx dma map\n");
631 goto fail;
632 }
633
634 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
635 if (data->m == NULL) {
636 aprint_error_dev(sc->sc_dev,
637 "could not allocate rx mbuf\n");
638 error = ENOMEM;
639 goto fail;
640 }
641 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
642 m_freem(data->m);
643 data->m = NULL;
644 aprint_error_dev(sc->sc_dev,
645 "could not allocate rx cluster\n");
646 error = ENOMEM;
647 goto fail;
648 }
649 /* attach Rx buffer to mbuf */
650 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
651 rbuf);
652 data->m->m_flags |= M_EXT_RW;
653
654 error = bus_dmamap_load(sc->sc_dmat, data->map,
655 mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
656 BUS_DMA_NOWAIT | BUS_DMA_READ);
657 if (error) {
658 aprint_error_dev(sc->sc_dev,
659 "could not load mbuf: %d\n", error);
660 goto fail;
661 }
662
663 ring->desc[i] = htole32(rbuf->paddr);
664 }
665
666 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
667 BUS_DMASYNC_PREWRITE);
668
669 return 0;
670
671 fail: wpi_free_rx_ring(sc, ring);
672 return error;
673 }
674
675 static void
676 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
677 {
678 int ntries;
679
680 wpi_mem_lock(sc);
681
682 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
683 for (ntries = 0; ntries < 100; ntries++) {
684 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
685 break;
686 DELAY(10);
687 }
688 #ifdef WPI_DEBUG
689 if (ntries == 100 && wpi_debug > 0)
690 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
691 #endif
692 wpi_mem_unlock(sc);
693
694 ring->cur = 0;
695 }
696
697 static void
698 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
699 {
700 int i;
701
702 wpi_dma_contig_free(&ring->desc_dma);
703
704 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
705 if (ring->data[i].m != NULL) {
706 bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
707 m_freem(ring->data[i].m);
708 }
709 if (ring->data[i].map != NULL) {
710 bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
711 }
712 }
713 }
714
715 static int
716 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
717 int qid)
718 {
719 int i, error;
720
721 ring->qid = qid;
722 ring->count = count;
723 ring->queued = 0;
724 ring->cur = 0;
725
726 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
727 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
728 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
729 if (error != 0) {
730 aprint_error_dev(sc->sc_dev,
731 "could not allocate tx ring DMA memory\n");
732 goto fail;
733 }
734
735 /* update shared page with ring's base address */
736 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
737 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
738 sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
739
740 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
741 (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
742 BUS_DMA_NOWAIT);
743 if (error != 0) {
744 aprint_error_dev(sc->sc_dev,
745 "could not allocate tx cmd DMA memory\n");
746 goto fail;
747 }
748
749 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
750 M_NOWAIT | M_ZERO);
751 if (ring->data == NULL) {
752 aprint_error_dev(sc->sc_dev,
753 "could not allocate tx data slots\n");
754 goto fail;
755 }
756
757 for (i = 0; i < count; i++) {
758 struct wpi_tx_data *data = &ring->data[i];
759
760 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
761 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
762 &data->map);
763 if (error != 0) {
764 aprint_error_dev(sc->sc_dev,
765 "could not create tx buf DMA map\n");
766 goto fail;
767 }
768 }
769
770 return 0;
771
772 fail: wpi_free_tx_ring(sc, ring);
773 return error;
774 }
775
776 static void
777 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
778 {
779 int i, ntries;
780
781 wpi_mem_lock(sc);
782
783 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
784 for (ntries = 0; ntries < 100; ntries++) {
785 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
786 break;
787 DELAY(10);
788 }
789 #ifdef WPI_DEBUG
790 if (ntries == 100 && wpi_debug > 0) {
791 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
792 ring->qid);
793 }
794 #endif
795 wpi_mem_unlock(sc);
796
797 for (i = 0; i < ring->count; i++) {
798 struct wpi_tx_data *data = &ring->data[i];
799
800 if (data->m != NULL) {
801 bus_dmamap_unload(sc->sc_dmat, data->map);
802 m_freem(data->m);
803 data->m = NULL;
804 }
805 }
806
807 ring->queued = 0;
808 ring->cur = 0;
809 }
810
811 static void
812 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
813 {
814 int i;
815
816 wpi_dma_contig_free(&ring->desc_dma);
817 wpi_dma_contig_free(&ring->cmd_dma);
818
819 if (ring->data != NULL) {
820 for (i = 0; i < ring->count; i++) {
821 struct wpi_tx_data *data = &ring->data[i];
822
823 if (data->m != NULL) {
824 bus_dmamap_unload(sc->sc_dmat, data->map);
825 m_freem(data->m);
826 }
827 }
828 free(ring->data, M_DEVBUF);
829 }
830 }
831
832 /*ARGUSED*/
833 static struct ieee80211_node *
834 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
835 {
836 struct wpi_node *wn;
837
838 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
839
840 return (struct ieee80211_node *)wn;
841 }
842
843 static void
844 wpi_newassoc(struct ieee80211_node *ni, int isnew)
845 {
846 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
847 int i;
848
849 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
850
851 /* set rate to some reasonable initial value */
852 for (i = ni->ni_rates.rs_nrates - 1;
853 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
854 i--);
855 ni->ni_txrate = i;
856 }
857
858 static int
859 wpi_media_change(struct ifnet *ifp)
860 {
861 int error;
862
863 error = ieee80211_media_change(ifp);
864 if (error != ENETRESET)
865 return error;
866
867 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
868 wpi_init(ifp);
869
870 return 0;
871 }
872
873 static int
874 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
875 {
876 struct ifnet *ifp = ic->ic_ifp;
877 struct wpi_softc *sc = ifp->if_softc;
878 struct ieee80211_node *ni;
879 enum ieee80211_state ostate = ic->ic_state;
880 int error;
881
882 callout_stop(&sc->calib_to);
883
884 switch (nstate) {
885 case IEEE80211_S_SCAN:
886
887 if (sc->is_scanning)
888 break;
889
890 sc->is_scanning = true;
891
892 if (ostate != IEEE80211_S_SCAN) {
893 /* make the link LED blink while we're scanning */
894 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
895 }
896
897 if ((error = wpi_scan(sc)) != 0) {
898 aprint_error_dev(sc->sc_dev,
899 "could not initiate scan\n");
900 return error;
901 }
902 break;
903
904 case IEEE80211_S_ASSOC:
905 if (ic->ic_state != IEEE80211_S_RUN)
906 break;
907 /* FALLTHROUGH */
908 case IEEE80211_S_AUTH:
909 /* reset state to handle reassociations correctly */
910 sc->config.associd = 0;
911 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
912
913 if ((error = wpi_auth(sc)) != 0) {
914 aprint_error_dev(sc->sc_dev,
915 "could not send authentication request\n");
916 return error;
917 }
918 break;
919
920 case IEEE80211_S_RUN:
921 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
922 /* link LED blinks while monitoring */
923 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
924 break;
925 }
926 ni = ic->ic_bss;
927
928 if (ic->ic_opmode != IEEE80211_M_STA) {
929 (void) wpi_auth(sc); /* XXX */
930 wpi_setup_beacon(sc, ni);
931 }
932
933 wpi_enable_tsf(sc, ni);
934
935 /* update adapter's configuration */
936 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
937 /* short preamble/slot time are negotiated when associating */
938 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
939 WPI_CONFIG_SHSLOT);
940 if (ic->ic_flags & IEEE80211_F_SHSLOT)
941 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
942 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
943 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
944 sc->config.filter |= htole32(WPI_FILTER_BSS);
945 if (ic->ic_opmode != IEEE80211_M_STA)
946 sc->config.filter |= htole32(WPI_FILTER_BEACON);
947
948 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
949
950 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
951 sc->config.flags));
952 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
953 sizeof (struct wpi_config), 1);
954 if (error != 0) {
955 aprint_error_dev(sc->sc_dev,
956 "could not update configuration\n");
957 return error;
958 }
959
960 /* configuration has changed, set Tx power accordingly */
961 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
962 aprint_error_dev(sc->sc_dev,
963 "could not set Tx power\n");
964 return error;
965 }
966
967 if (ic->ic_opmode == IEEE80211_M_STA) {
968 /* fake a join to init the tx rate */
969 wpi_newassoc(ni, 1);
970 }
971
972 /* start periodic calibration timer */
973 sc->calib_cnt = 0;
974 callout_schedule(&sc->calib_to, hz/2);
975
976 /* link LED always on while associated */
977 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
978 break;
979
980 case IEEE80211_S_INIT:
981 sc->is_scanning = false;
982 break;
983 }
984
985 return sc->sc_newstate(ic, nstate, arg);
986 }
987
988 /*
989 * Grab exclusive access to NIC memory.
990 */
991 static void
992 wpi_mem_lock(struct wpi_softc *sc)
993 {
994 uint32_t tmp;
995 int ntries;
996
997 tmp = WPI_READ(sc, WPI_GPIO_CTL);
998 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
999
1000 /* spin until we actually get the lock */
1001 for (ntries = 0; ntries < 1000; ntries++) {
1002 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1003 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1004 break;
1005 DELAY(10);
1006 }
1007 if (ntries == 1000)
1008 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1009 }
1010
1011 /*
1012 * Release lock on NIC memory.
1013 */
1014 static void
1015 wpi_mem_unlock(struct wpi_softc *sc)
1016 {
1017 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1018 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1019 }
1020
1021 static uint32_t
1022 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1023 {
1024 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1025 return WPI_READ(sc, WPI_READ_MEM_DATA);
1026 }
1027
1028 static void
1029 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1030 {
1031 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1032 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1033 }
1034
1035 static void
1036 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1037 const uint32_t *data, int wlen)
1038 {
1039 for (; wlen > 0; wlen--, data++, addr += 4)
1040 wpi_mem_write(sc, addr, *data);
1041 }
1042
1043 /*
1044 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1045 * instead of using the traditional bit-bang method.
1046 */
1047 static int
1048 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1049 {
1050 uint8_t *out = data;
1051 uint32_t val;
1052 int ntries;
1053
1054 wpi_mem_lock(sc);
1055 for (; len > 0; len -= 2, addr++) {
1056 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1057
1058 for (ntries = 0; ntries < 10; ntries++) {
1059 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1060 WPI_EEPROM_READY)
1061 break;
1062 DELAY(5);
1063 }
1064 if (ntries == 10) {
1065 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1066 return ETIMEDOUT;
1067 }
1068 *out++ = val >> 16;
1069 if (len > 1)
1070 *out++ = val >> 24;
1071 }
1072 wpi_mem_unlock(sc);
1073
1074 return 0;
1075 }
1076
1077 /*
1078 * The firmware boot code is small and is intended to be copied directly into
1079 * the NIC internal memory.
1080 */
1081 int
1082 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1083 {
1084 int ntries;
1085
1086 size /= sizeof (uint32_t);
1087
1088 wpi_mem_lock(sc);
1089
1090 /* copy microcode image into NIC memory */
1091 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1092 (const uint32_t *)ucode, size);
1093
1094 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1095 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1096 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1097
1098 /* run microcode */
1099 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1100
1101 /* wait for transfer to complete */
1102 for (ntries = 0; ntries < 1000; ntries++) {
1103 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1104 break;
1105 DELAY(10);
1106 }
1107 if (ntries == 1000) {
1108 wpi_mem_unlock(sc);
1109 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1110 return ETIMEDOUT;
1111 }
1112 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1113
1114 wpi_mem_unlock(sc);
1115
1116 return 0;
1117 }
1118
1119 static int
1120 wpi_cache_firmware(struct wpi_softc *sc)
1121 {
1122 const char *const fwname = wpi_firmware_name;
1123 firmware_handle_t fw;
1124 int error;
1125
1126 /* sc is used here only to report error messages. */
1127
1128 mutex_enter(&wpi_firmware_mutex);
1129
1130 if (wpi_firmware_users == SIZE_MAX) {
1131 mutex_exit(&wpi_firmware_mutex);
1132 return ENFILE; /* Too many of something in the system... */
1133 }
1134 if (wpi_firmware_users++) {
1135 KASSERT(wpi_firmware_image != NULL);
1136 KASSERT(wpi_firmware_size > 0);
1137 mutex_exit(&wpi_firmware_mutex);
1138 return 0; /* Already good to go. */
1139 }
1140
1141 KASSERT(wpi_firmware_image == NULL);
1142 KASSERT(wpi_firmware_size == 0);
1143
1144 /* load firmware image from disk */
1145 if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1146 aprint_error_dev(sc->sc_dev,
1147 "could not open firmware file %s: %d\n", fwname, error);
1148 goto fail0;
1149 }
1150
1151 wpi_firmware_size = firmware_get_size(fw);
1152
1153 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1154 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1155 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1156 WPI_FW_BOOT_TEXT_MAXSZ) {
1157 aprint_error_dev(sc->sc_dev,
1158 "firmware file %s too large: %zu bytes\n",
1159 fwname, wpi_firmware_size);
1160 error = EFBIG;
1161 goto fail1;
1162 }
1163
1164 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1165 aprint_error_dev(sc->sc_dev,
1166 "firmware file %s too small: %zu bytes\n",
1167 fwname, wpi_firmware_size);
1168 error = EINVAL;
1169 goto fail1;
1170 }
1171
1172 wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1173 if (wpi_firmware_image == NULL) {
1174 aprint_error_dev(sc->sc_dev,
1175 "not enough memory for firmware file %s\n", fwname);
1176 error = ENOMEM;
1177 goto fail1;
1178 }
1179
1180 error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1181 if (error != 0) {
1182 aprint_error_dev(sc->sc_dev,
1183 "error reading firmware file %s: %d\n", fwname, error);
1184 goto fail2;
1185 }
1186
1187 /* Success! */
1188 firmware_close(fw);
1189 mutex_exit(&wpi_firmware_mutex);
1190 return 0;
1191
1192 fail2:
1193 firmware_free(wpi_firmware_image, wpi_firmware_size);
1194 wpi_firmware_image = NULL;
1195 fail1:
1196 wpi_firmware_size = 0;
1197 firmware_close(fw);
1198 fail0:
1199 KASSERT(wpi_firmware_users == 1);
1200 wpi_firmware_users = 0;
1201 KASSERT(wpi_firmware_image == NULL);
1202 KASSERT(wpi_firmware_size == 0);
1203
1204 mutex_exit(&wpi_firmware_mutex);
1205 return error;
1206 }
1207
1208 static void
1209 wpi_release_firmware(void)
1210 {
1211
1212 mutex_enter(&wpi_firmware_mutex);
1213
1214 KASSERT(wpi_firmware_users > 0);
1215 KASSERT(wpi_firmware_image != NULL);
1216 KASSERT(wpi_firmware_size != 0);
1217
1218 if (--wpi_firmware_users == 0) {
1219 firmware_free(wpi_firmware_image, wpi_firmware_size);
1220 wpi_firmware_image = NULL;
1221 wpi_firmware_size = 0;
1222 }
1223
1224 mutex_exit(&wpi_firmware_mutex);
1225 }
1226
1227 static int
1228 wpi_load_firmware(struct wpi_softc *sc)
1229 {
1230 struct wpi_dma_info *dma = &sc->fw_dma;
1231 struct wpi_firmware_hdr hdr;
1232 const uint8_t *init_text, *init_data, *main_text, *main_data;
1233 const uint8_t *boot_text;
1234 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1235 uint32_t boot_textsz;
1236 size_t size;
1237 int error;
1238
1239 if (!sc->fw_used) {
1240 if ((error = wpi_cache_firmware(sc)) != 0)
1241 return error;
1242 sc->fw_used = true;
1243 }
1244
1245 KASSERT(sc->fw_used);
1246 KASSERT(wpi_firmware_image != NULL);
1247 KASSERT(wpi_firmware_size > sizeof(hdr));
1248
1249 memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1250
1251 main_textsz = le32toh(hdr.main_textsz);
1252 main_datasz = le32toh(hdr.main_datasz);
1253 init_textsz = le32toh(hdr.init_textsz);
1254 init_datasz = le32toh(hdr.init_datasz);
1255 boot_textsz = le32toh(hdr.boot_textsz);
1256
1257 /* sanity-check firmware segments sizes */
1258 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1259 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1260 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1261 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1262 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1263 (boot_textsz & 3) != 0) {
1264 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1265 error = EINVAL;
1266 goto free_firmware;
1267 }
1268
1269 /* check that all firmware segments are present */
1270 size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1271 main_datasz + init_textsz + init_datasz + boot_textsz;
1272 if (wpi_firmware_size < size) {
1273 aprint_error_dev(sc->sc_dev,
1274 "firmware file truncated: %zu bytes, expected %zu bytes\n",
1275 wpi_firmware_size, size);
1276 error = EINVAL;
1277 goto free_firmware;
1278 }
1279
1280 /* get pointers to firmware segments */
1281 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1282 main_data = main_text + main_textsz;
1283 init_text = main_data + main_datasz;
1284 init_data = init_text + init_textsz;
1285 boot_text = init_data + init_datasz;
1286
1287 /* copy initialization images into pre-allocated DMA-safe memory */
1288 memcpy(dma->vaddr, init_data, init_datasz);
1289 memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1290 init_textsz);
1291
1292 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1293
1294 /* tell adapter where to find initialization images */
1295 wpi_mem_lock(sc);
1296 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1297 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1298 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1299 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1300 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1301 wpi_mem_unlock(sc);
1302
1303 /* load firmware boot code */
1304 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1305 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1306 return error;
1307 }
1308
1309 /* now press "execute" ;-) */
1310 WPI_WRITE(sc, WPI_RESET, 0);
1311
1312 /* wait at most one second for first alive notification */
1313 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1314 /* this isn't what was supposed to happen.. */
1315 aprint_error_dev(sc->sc_dev,
1316 "timeout waiting for adapter to initialize\n");
1317 }
1318
1319 /* copy runtime images into pre-allocated DMA-safe memory */
1320 memcpy(dma->vaddr, main_data, main_datasz);
1321 memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1322 main_textsz);
1323
1324 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1325
1326 /* tell adapter where to find runtime images */
1327 wpi_mem_lock(sc);
1328 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1329 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1330 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1331 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1332 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1333 wpi_mem_unlock(sc);
1334
1335 /* wait at most one second for second alive notification */
1336 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1337 /* this isn't what was supposed to happen.. */
1338 aprint_error_dev(sc->sc_dev,
1339 "timeout waiting for adapter to initialize\n");
1340 }
1341
1342 return error;
1343
1344 free_firmware:
1345 sc->fw_used = false;
1346 wpi_release_firmware();
1347 return error;
1348 }
1349
1350 static void
1351 wpi_calib_timeout(void *arg)
1352 {
1353 struct wpi_softc *sc = arg;
1354 struct ieee80211com *ic = &sc->sc_ic;
1355 int temp, s;
1356
1357 /* automatic rate control triggered every 500ms */
1358 if (ic->ic_fixed_rate == -1) {
1359 s = splnet();
1360 if (ic->ic_opmode == IEEE80211_M_STA)
1361 wpi_iter_func(sc, ic->ic_bss);
1362 else
1363 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1364 splx(s);
1365 }
1366
1367 /* update sensor data */
1368 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1369
1370 /* automatic power calibration every 60s */
1371 if (++sc->calib_cnt >= 120) {
1372 wpi_power_calibration(sc, temp);
1373 sc->calib_cnt = 0;
1374 }
1375
1376 callout_schedule(&sc->calib_to, hz/2);
1377 }
1378
1379 static void
1380 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1381 {
1382 struct wpi_softc *sc = arg;
1383 struct wpi_node *wn = (struct wpi_node *)ni;
1384
1385 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1386 }
1387
1388 /*
1389 * This function is called periodically (every 60 seconds) to adjust output
1390 * power to temperature changes.
1391 */
1392 void
1393 wpi_power_calibration(struct wpi_softc *sc, int temp)
1394 {
1395 /* sanity-check read value */
1396 if (temp < -260 || temp > 25) {
1397 /* this can't be correct, ignore */
1398 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1399 return;
1400 }
1401
1402 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1403
1404 /* adjust Tx power if need be */
1405 if (abs(temp - sc->temp) <= 6)
1406 return;
1407
1408 sc->temp = temp;
1409
1410 if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1411 /* just warn, too bad for the automatic calibration... */
1412 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1413 }
1414 }
1415
1416 static void
1417 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1418 struct wpi_rx_data *data)
1419 {
1420 struct ieee80211com *ic = &sc->sc_ic;
1421 struct ifnet *ifp = ic->ic_ifp;
1422 struct wpi_rx_ring *ring = &sc->rxq;
1423 struct wpi_rx_stat *stat;
1424 struct wpi_rx_head *head;
1425 struct wpi_rx_tail *tail;
1426 struct wpi_rbuf *rbuf;
1427 struct ieee80211_frame *wh;
1428 struct ieee80211_node *ni;
1429 struct mbuf *m, *mnew;
1430 int data_off, error;
1431
1432 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1433 BUS_DMASYNC_POSTREAD);
1434 stat = (struct wpi_rx_stat *)(desc + 1);
1435
1436 if (stat->len > WPI_STAT_MAXLEN) {
1437 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1438 ifp->if_ierrors++;
1439 return;
1440 }
1441
1442 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1443 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1444
1445 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1446 "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1447 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1448 le64toh(tail->tstamp)));
1449
1450 /*
1451 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1452 * to radiotap in monitor mode).
1453 */
1454 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1455 DPRINTF(("rx tail flags error %x\n",
1456 le32toh(tail->flags)));
1457 ifp->if_ierrors++;
1458 return;
1459 }
1460
1461 /* Compute where are the useful datas */
1462 data_off = (char*)(head + 1) - mtod(data->m, char*);
1463
1464 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1465 if (mnew == NULL) {
1466 ifp->if_ierrors++;
1467 return;
1468 }
1469
1470 rbuf = wpi_alloc_rbuf(sc);
1471 if (rbuf == NULL) {
1472 m_freem(mnew);
1473 ifp->if_ierrors++;
1474 return;
1475 }
1476
1477 /* attach Rx buffer to mbuf */
1478 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1479 rbuf);
1480 mnew->m_flags |= M_EXT_RW;
1481
1482 bus_dmamap_unload(sc->sc_dmat, data->map);
1483
1484 error = bus_dmamap_load(sc->sc_dmat, data->map,
1485 mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1486 BUS_DMA_NOWAIT | BUS_DMA_READ);
1487 if (error) {
1488 device_printf(sc->sc_dev,
1489 "couldn't load rx mbuf: %d\n", error);
1490 m_freem(mnew);
1491 ifp->if_ierrors++;
1492
1493 error = bus_dmamap_load(sc->sc_dmat, data->map,
1494 mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1495 BUS_DMA_NOWAIT | BUS_DMA_READ);
1496 if (error)
1497 panic("%s: bus_dmamap_load failed: %d\n",
1498 device_xname(sc->sc_dev), error);
1499 return;
1500 }
1501
1502 /* new mbuf loaded successfully */
1503 m = data->m;
1504 data->m = mnew;
1505
1506 /* update Rx descriptor */
1507 ring->desc[ring->cur] = htole32(rbuf->paddr);
1508 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1509 ring->desc_dma.size,
1510 BUS_DMASYNC_PREWRITE);
1511
1512 m->m_data = (char*)m->m_data + data_off;
1513 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1514
1515 /* finalize mbuf */
1516 m->m_pkthdr.rcvif = ifp;
1517
1518 if (sc->sc_drvbpf != NULL) {
1519 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1520
1521 tap->wr_flags = 0;
1522 tap->wr_chan_freq =
1523 htole16(ic->ic_channels[head->chan].ic_freq);
1524 tap->wr_chan_flags =
1525 htole16(ic->ic_channels[head->chan].ic_flags);
1526 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1527 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1528 tap->wr_tsft = tail->tstamp;
1529 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1530 switch (head->rate) {
1531 /* CCK rates */
1532 case 10: tap->wr_rate = 2; break;
1533 case 20: tap->wr_rate = 4; break;
1534 case 55: tap->wr_rate = 11; break;
1535 case 110: tap->wr_rate = 22; break;
1536 /* OFDM rates */
1537 case 0xd: tap->wr_rate = 12; break;
1538 case 0xf: tap->wr_rate = 18; break;
1539 case 0x5: tap->wr_rate = 24; break;
1540 case 0x7: tap->wr_rate = 36; break;
1541 case 0x9: tap->wr_rate = 48; break;
1542 case 0xb: tap->wr_rate = 72; break;
1543 case 0x1: tap->wr_rate = 96; break;
1544 case 0x3: tap->wr_rate = 108; break;
1545 /* unknown rate: should not happen */
1546 default: tap->wr_rate = 0;
1547 }
1548 if (le16toh(head->flags) & 0x4)
1549 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1550
1551 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1552 }
1553
1554 /* grab a reference to the source node */
1555 wh = mtod(m, struct ieee80211_frame *);
1556 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1557
1558 /* send the frame to the 802.11 layer */
1559 ieee80211_input(ic, m, ni, stat->rssi, 0);
1560
1561 /* release node reference */
1562 ieee80211_free_node(ni);
1563 }
1564
1565 static void
1566 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1567 {
1568 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1569 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1570 struct wpi_tx_data *data = &ring->data[desc->idx];
1571 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1572 struct wpi_node *wn = (struct wpi_node *)data->ni;
1573
1574 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1575 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1576 stat->nkill, stat->rate, le32toh(stat->duration),
1577 le32toh(stat->status)));
1578
1579 /*
1580 * Update rate control statistics for the node.
1581 * XXX we should not count mgmt frames since they're always sent at
1582 * the lowest available bit-rate.
1583 */
1584 wn->amn.amn_txcnt++;
1585 if (stat->ntries > 0) {
1586 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1587 wn->amn.amn_retrycnt++;
1588 }
1589
1590 if ((le32toh(stat->status) & 0xff) != 1)
1591 ifp->if_oerrors++;
1592 else
1593 ifp->if_opackets++;
1594
1595 bus_dmamap_unload(sc->sc_dmat, data->map);
1596 m_freem(data->m);
1597 data->m = NULL;
1598 ieee80211_free_node(data->ni);
1599 data->ni = NULL;
1600
1601 ring->queued--;
1602
1603 sc->sc_tx_timer = 0;
1604 ifp->if_flags &= ~IFF_OACTIVE;
1605 wpi_start(ifp);
1606 }
1607
1608 static void
1609 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1610 {
1611 struct wpi_tx_ring *ring = &sc->cmdq;
1612 struct wpi_tx_data *data;
1613
1614 if ((desc->qid & 7) != 4)
1615 return; /* not a command ack */
1616
1617 data = &ring->data[desc->idx];
1618
1619 /* if the command was mapped in a mbuf, free it */
1620 if (data->m != NULL) {
1621 bus_dmamap_unload(sc->sc_dmat, data->map);
1622 m_freem(data->m);
1623 data->m = NULL;
1624 }
1625
1626 wakeup(&ring->cmd[desc->idx]);
1627 }
1628
1629 static void
1630 wpi_notif_intr(struct wpi_softc *sc)
1631 {
1632 struct ieee80211com *ic = &sc->sc_ic;
1633 struct ifnet *ifp = ic->ic_ifp;
1634 uint32_t hw;
1635
1636 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1637 sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1638
1639 hw = le32toh(sc->shared->next);
1640 while (sc->rxq.cur != hw) {
1641 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1642 struct wpi_rx_desc *desc;
1643
1644 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1645 BUS_DMASYNC_POSTREAD);
1646 desc = mtod(data->m, struct wpi_rx_desc *);
1647
1648 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1649 "len=%d\n", desc->qid, desc->idx, desc->flags,
1650 desc->type, le32toh(desc->len)));
1651
1652 if (!(desc->qid & 0x80)) /* reply to a command */
1653 wpi_cmd_intr(sc, desc);
1654
1655 switch (desc->type) {
1656 case WPI_RX_DONE:
1657 /* a 802.11 frame was received */
1658 wpi_rx_intr(sc, desc, data);
1659 break;
1660
1661 case WPI_TX_DONE:
1662 /* a 802.11 frame has been transmitted */
1663 wpi_tx_intr(sc, desc);
1664 break;
1665
1666 case WPI_UC_READY:
1667 {
1668 struct wpi_ucode_info *uc =
1669 (struct wpi_ucode_info *)(desc + 1);
1670
1671 /* the microcontroller is ready */
1672 DPRINTF(("microcode alive notification version %x "
1673 "alive %x\n", le32toh(uc->version),
1674 le32toh(uc->valid)));
1675
1676 if (le32toh(uc->valid) != 1) {
1677 aprint_error_dev(sc->sc_dev,
1678 "microcontroller initialization failed\n");
1679 }
1680 break;
1681 }
1682 case WPI_STATE_CHANGED:
1683 {
1684 uint32_t *status = (uint32_t *)(desc + 1);
1685
1686 /* enabled/disabled notification */
1687 DPRINTF(("state changed to %x\n", le32toh(*status)));
1688
1689 if (le32toh(*status) & 1) {
1690 /* the radio button has to be pushed */
1691 aprint_error_dev(sc->sc_dev,
1692 "Radio transmitter is off\n");
1693 /* turn the interface down */
1694 ifp->if_flags &= ~IFF_UP;
1695 wpi_stop(ifp, 1);
1696 return; /* no further processing */
1697 }
1698 break;
1699 }
1700 case WPI_START_SCAN:
1701 {
1702 #if 0
1703 struct wpi_start_scan *scan =
1704 (struct wpi_start_scan *)(desc + 1);
1705
1706 DPRINTFN(2, ("scanning channel %d status %x\n",
1707 scan->chan, le32toh(scan->status)));
1708
1709 /* fix current channel */
1710 ic->ic_curchan = &ic->ic_channels[scan->chan];
1711 #endif
1712 break;
1713 }
1714 case WPI_STOP_SCAN:
1715 {
1716 #ifdef WPI_DEBUG
1717 struct wpi_stop_scan *scan =
1718 (struct wpi_stop_scan *)(desc + 1);
1719 #endif
1720
1721 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1722 scan->nchan, scan->status, scan->chan));
1723
1724 sc->is_scanning = false;
1725 if (ic->ic_state == IEEE80211_S_SCAN)
1726 ieee80211_next_scan(ic);
1727
1728 break;
1729 }
1730 }
1731
1732 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1733 }
1734
1735 /* tell the firmware what we have processed */
1736 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1737 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1738 }
1739
1740 static int
1741 wpi_intr(void *arg)
1742 {
1743 struct wpi_softc *sc = arg;
1744 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1745 uint32_t r;
1746
1747 r = WPI_READ(sc, WPI_INTR);
1748 if (r == 0 || r == 0xffffffff)
1749 return 0; /* not for us */
1750
1751 DPRINTFN(6, ("interrupt reg %x\n", r));
1752
1753 /* disable interrupts */
1754 WPI_WRITE(sc, WPI_MASK, 0);
1755 /* ack interrupts */
1756 WPI_WRITE(sc, WPI_INTR, r);
1757
1758 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1759 /* SYSTEM FAILURE, SYSTEM FAILURE */
1760 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1761 ifp->if_flags &= ~IFF_UP;
1762 wpi_stop(ifp, 1);
1763 return 1;
1764 }
1765
1766 if (r & WPI_RX_INTR)
1767 wpi_notif_intr(sc);
1768
1769 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1770 wakeup(sc);
1771
1772 /* re-enable interrupts */
1773 if (ifp->if_flags & IFF_UP)
1774 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1775
1776 return 1;
1777 }
1778
1779 static uint8_t
1780 wpi_plcp_signal(int rate)
1781 {
1782 switch (rate) {
1783 /* CCK rates (returned values are device-dependent) */
1784 case 2: return 10;
1785 case 4: return 20;
1786 case 11: return 55;
1787 case 22: return 110;
1788
1789 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1790 /* R1-R4, (u)ral is R4-R1 */
1791 case 12: return 0xd;
1792 case 18: return 0xf;
1793 case 24: return 0x5;
1794 case 36: return 0x7;
1795 case 48: return 0x9;
1796 case 72: return 0xb;
1797 case 96: return 0x1;
1798 case 108: return 0x3;
1799
1800 /* unsupported rates (should not get there) */
1801 default: return 0;
1802 }
1803 }
1804
1805 /* quickly determine if a given rate is CCK or OFDM */
1806 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1807
1808 static int
1809 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1810 int ac)
1811 {
1812 struct ieee80211com *ic = &sc->sc_ic;
1813 struct wpi_tx_ring *ring = &sc->txq[ac];
1814 struct wpi_tx_desc *desc;
1815 struct wpi_tx_data *data;
1816 struct wpi_tx_cmd *cmd;
1817 struct wpi_cmd_data *tx;
1818 struct ieee80211_frame *wh;
1819 struct ieee80211_key *k;
1820 const struct chanAccParams *cap;
1821 struct mbuf *mnew;
1822 int i, rate, error, hdrlen, noack = 0;
1823
1824 desc = &ring->desc[ring->cur];
1825 data = &ring->data[ring->cur];
1826
1827 wh = mtod(m0, struct ieee80211_frame *);
1828
1829 if (ieee80211_has_qos(wh)) {
1830 cap = &ic->ic_wme.wme_chanParams;
1831 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1832 }
1833
1834 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1835 k = ieee80211_crypto_encap(ic, ni, m0);
1836 if (k == NULL) {
1837 m_freem(m0);
1838 return ENOBUFS;
1839 }
1840
1841 /* packet header may have moved, reset our local pointer */
1842 wh = mtod(m0, struct ieee80211_frame *);
1843 }
1844
1845 hdrlen = ieee80211_anyhdrsize(wh);
1846
1847 /* pickup a rate */
1848 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1849 IEEE80211_FC0_TYPE_MGT) {
1850 /* mgmt frames are sent at the lowest available bit-rate */
1851 rate = ni->ni_rates.rs_rates[0];
1852 } else {
1853 if (ic->ic_fixed_rate != -1) {
1854 rate = ic->ic_sup_rates[ic->ic_curmode].
1855 rs_rates[ic->ic_fixed_rate];
1856 } else
1857 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1858 }
1859 rate &= IEEE80211_RATE_VAL;
1860
1861 if (sc->sc_drvbpf != NULL) {
1862 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1863
1864 tap->wt_flags = 0;
1865 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1866 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1867 tap->wt_rate = rate;
1868 tap->wt_hwqueue = ac;
1869 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1870 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1871
1872 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1873 }
1874
1875 cmd = &ring->cmd[ring->cur];
1876 cmd->code = WPI_CMD_TX_DATA;
1877 cmd->flags = 0;
1878 cmd->qid = ring->qid;
1879 cmd->idx = ring->cur;
1880
1881 tx = (struct wpi_cmd_data *)cmd->data;
1882 /* no need to zero tx, all fields are reinitialized here */
1883 tx->flags = 0;
1884
1885 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1886 tx->flags |= htole32(WPI_TX_NEED_ACK);
1887 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1888 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1889
1890 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1891
1892 /* retrieve destination node's id */
1893 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1894 WPI_ID_BSS;
1895
1896 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1897 IEEE80211_FC0_TYPE_MGT) {
1898 /* tell h/w to set timestamp in probe responses */
1899 if ((wh->i_fc[0] &
1900 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1901 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1902 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1903
1904 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1905 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1906 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1907 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1908 tx->timeout = htole16(3);
1909 else
1910 tx->timeout = htole16(2);
1911 } else
1912 tx->timeout = htole16(0);
1913
1914 tx->rate = wpi_plcp_signal(rate);
1915
1916 /* be very persistant at sending frames out */
1917 tx->rts_ntries = 7;
1918 tx->data_ntries = 15;
1919
1920 tx->ofdm_mask = 0xff;
1921 tx->cck_mask = 0x0f;
1922 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1923
1924 tx->len = htole16(m0->m_pkthdr.len);
1925
1926 /* save and trim IEEE802.11 header */
1927 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1928 m_adj(m0, hdrlen);
1929
1930 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1931 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1932 if (error != 0 && error != EFBIG) {
1933 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1934 error);
1935 m_freem(m0);
1936 return error;
1937 }
1938 if (error != 0) {
1939 /* too many fragments, linearize */
1940
1941 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1942 if (mnew == NULL) {
1943 m_freem(m0);
1944 return ENOMEM;
1945 }
1946 M_COPY_PKTHDR(mnew, m0);
1947 if (m0->m_pkthdr.len > MHLEN) {
1948 MCLGET(mnew, M_DONTWAIT);
1949 if (!(mnew->m_flags & M_EXT)) {
1950 m_freem(m0);
1951 m_freem(mnew);
1952 return ENOMEM;
1953 }
1954 }
1955
1956 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1957 m_freem(m0);
1958 mnew->m_len = mnew->m_pkthdr.len;
1959 m0 = mnew;
1960
1961 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1962 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1963 if (error != 0) {
1964 aprint_error_dev(sc->sc_dev,
1965 "could not map mbuf (error %d)\n", error);
1966 m_freem(m0);
1967 return error;
1968 }
1969 }
1970
1971 data->m = m0;
1972 data->ni = ni;
1973
1974 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1975 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1976
1977 /* first scatter/gather segment is used by the tx data command */
1978 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1979 (1 + data->map->dm_nsegs) << 24);
1980 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1981 ring->cur * sizeof (struct wpi_tx_cmd));
1982 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
1983 ((hdrlen + 3) & ~3));
1984 for (i = 1; i <= data->map->dm_nsegs; i++) {
1985 desc->segs[i].addr =
1986 htole32(data->map->dm_segs[i - 1].ds_addr);
1987 desc->segs[i].len =
1988 htole32(data->map->dm_segs[i - 1].ds_len);
1989 }
1990
1991 ring->queued++;
1992
1993 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1994 data->map->dm_mapsize,
1995 BUS_DMASYNC_PREWRITE);
1996 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
1997 ring->cmd_dma.size,
1998 BUS_DMASYNC_PREWRITE);
1999 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2000 ring->desc_dma.size,
2001 BUS_DMASYNC_PREWRITE);
2002
2003 /* kick ring */
2004 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2005 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2006
2007 return 0;
2008 }
2009
2010 static void
2011 wpi_start(struct ifnet *ifp)
2012 {
2013 struct wpi_softc *sc = ifp->if_softc;
2014 struct ieee80211com *ic = &sc->sc_ic;
2015 struct ieee80211_node *ni;
2016 struct ether_header *eh;
2017 struct mbuf *m0;
2018 int ac;
2019
2020 /*
2021 * net80211 may still try to send management frames even if the
2022 * IFF_RUNNING flag is not set...
2023 */
2024 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2025 return;
2026
2027 for (;;) {
2028 IF_DEQUEUE(&ic->ic_mgtq, m0);
2029 if (m0 != NULL) {
2030
2031 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2032 m0->m_pkthdr.rcvif = NULL;
2033
2034 /* management frames go into ring 0 */
2035 if (sc->txq[0].queued > sc->txq[0].count - 8) {
2036 ifp->if_oerrors++;
2037 continue;
2038 }
2039 bpf_mtap3(ic->ic_rawbpf, m0);
2040 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2041 ifp->if_oerrors++;
2042 break;
2043 }
2044 } else {
2045 if (ic->ic_state != IEEE80211_S_RUN)
2046 break;
2047 IFQ_POLL(&ifp->if_snd, m0);
2048 if (m0 == NULL)
2049 break;
2050
2051 if (m0->m_len < sizeof (*eh) &&
2052 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2053 ifp->if_oerrors++;
2054 continue;
2055 }
2056 eh = mtod(m0, struct ether_header *);
2057 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2058 if (ni == NULL) {
2059 m_freem(m0);
2060 ifp->if_oerrors++;
2061 continue;
2062 }
2063
2064 /* classify mbuf so we can find which tx ring to use */
2065 if (ieee80211_classify(ic, m0, ni) != 0) {
2066 m_freem(m0);
2067 ieee80211_free_node(ni);
2068 ifp->if_oerrors++;
2069 continue;
2070 }
2071
2072 /* no QoS encapsulation for EAPOL frames */
2073 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2074 M_WME_GETAC(m0) : WME_AC_BE;
2075
2076 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2077 /* there is no place left in this ring */
2078 ifp->if_flags |= IFF_OACTIVE;
2079 break;
2080 }
2081 IFQ_DEQUEUE(&ifp->if_snd, m0);
2082 bpf_mtap(ifp, m0);
2083 m0 = ieee80211_encap(ic, m0, ni);
2084 if (m0 == NULL) {
2085 ieee80211_free_node(ni);
2086 ifp->if_oerrors++;
2087 continue;
2088 }
2089 bpf_mtap3(ic->ic_rawbpf, m0);
2090 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2091 ieee80211_free_node(ni);
2092 ifp->if_oerrors++;
2093 break;
2094 }
2095 }
2096
2097 sc->sc_tx_timer = 5;
2098 ifp->if_timer = 1;
2099 }
2100 }
2101
2102 static void
2103 wpi_watchdog(struct ifnet *ifp)
2104 {
2105 struct wpi_softc *sc = ifp->if_softc;
2106
2107 ifp->if_timer = 0;
2108
2109 if (sc->sc_tx_timer > 0) {
2110 if (--sc->sc_tx_timer == 0) {
2111 aprint_error_dev(sc->sc_dev, "device timeout\n");
2112 ifp->if_flags &= ~IFF_UP;
2113 wpi_stop(ifp, 1);
2114 ifp->if_oerrors++;
2115 return;
2116 }
2117 ifp->if_timer = 1;
2118 }
2119
2120 ieee80211_watchdog(&sc->sc_ic);
2121 }
2122
2123 static int
2124 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2125 {
2126 #define IS_RUNNING(ifp) \
2127 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2128
2129 struct wpi_softc *sc = ifp->if_softc;
2130 struct ieee80211com *ic = &sc->sc_ic;
2131 int s, error = 0;
2132
2133 s = splnet();
2134
2135 switch (cmd) {
2136 case SIOCSIFFLAGS:
2137 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2138 break;
2139 if (ifp->if_flags & IFF_UP) {
2140 if (!(ifp->if_flags & IFF_RUNNING))
2141 wpi_init(ifp);
2142 } else {
2143 if (ifp->if_flags & IFF_RUNNING)
2144 wpi_stop(ifp, 1);
2145 }
2146 break;
2147
2148 case SIOCADDMULTI:
2149 case SIOCDELMULTI:
2150 /* XXX no h/w multicast filter? --dyoung */
2151 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2152 /* setup multicast filter, etc */
2153 error = 0;
2154 }
2155 break;
2156
2157 default:
2158 error = ieee80211_ioctl(ic, cmd, data);
2159 }
2160
2161 if (error == ENETRESET) {
2162 if (IS_RUNNING(ifp) &&
2163 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2164 wpi_init(ifp);
2165 error = 0;
2166 }
2167
2168 splx(s);
2169 return error;
2170
2171 #undef IS_RUNNING
2172 }
2173
2174 /*
2175 * Extract various information from EEPROM.
2176 */
2177 static void
2178 wpi_read_eeprom(struct wpi_softc *sc)
2179 {
2180 struct ieee80211com *ic = &sc->sc_ic;
2181 char domain[4];
2182 int i;
2183
2184 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2185 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2186 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2187
2188 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2189 sc->type));
2190
2191 /* read and print regulatory domain */
2192 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2193 aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2194
2195 /* read and print MAC address */
2196 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2197 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2198
2199 /* read the list of authorized channels */
2200 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2201 wpi_read_eeprom_channels(sc, i);
2202
2203 /* read the list of power groups */
2204 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2205 wpi_read_eeprom_group(sc, i);
2206 }
2207
2208 static void
2209 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2210 {
2211 struct ieee80211com *ic = &sc->sc_ic;
2212 const struct wpi_chan_band *band = &wpi_bands[n];
2213 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2214 int chan, i;
2215
2216 wpi_read_prom_data(sc, band->addr, channels,
2217 band->nchan * sizeof (struct wpi_eeprom_chan));
2218
2219 for (i = 0; i < band->nchan; i++) {
2220 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2221 continue;
2222
2223 chan = band->chan[i];
2224
2225 if (n == 0) { /* 2GHz band */
2226 ic->ic_channels[chan].ic_freq =
2227 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2228 ic->ic_channels[chan].ic_flags =
2229 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2230 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2231
2232 } else { /* 5GHz band */
2233 /*
2234 * Some 3945ABG adapters support channels 7, 8, 11
2235 * and 12 in the 2GHz *and* 5GHz bands.
2236 * Because of limitations in our net80211(9) stack,
2237 * we can't support these channels in 5GHz band.
2238 */
2239 if (chan <= 14)
2240 continue;
2241
2242 ic->ic_channels[chan].ic_freq =
2243 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2244 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2245 }
2246
2247 /* is active scan allowed on this channel? */
2248 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2249 ic->ic_channels[chan].ic_flags |=
2250 IEEE80211_CHAN_PASSIVE;
2251 }
2252
2253 /* save maximum allowed power for this channel */
2254 sc->maxpwr[chan] = channels[i].maxpwr;
2255
2256 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2257 chan, channels[i].flags, sc->maxpwr[chan]));
2258 }
2259 }
2260
2261 static void
2262 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2263 {
2264 struct wpi_power_group *group = &sc->groups[n];
2265 struct wpi_eeprom_group rgroup;
2266 int i;
2267
2268 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2269 sizeof rgroup);
2270
2271 /* save power group information */
2272 group->chan = rgroup.chan;
2273 group->maxpwr = rgroup.maxpwr;
2274 /* temperature at which the samples were taken */
2275 group->temp = (int16_t)le16toh(rgroup.temp);
2276
2277 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2278 group->chan, group->maxpwr, group->temp));
2279
2280 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2281 group->samples[i].index = rgroup.samples[i].index;
2282 group->samples[i].power = rgroup.samples[i].power;
2283
2284 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2285 group->samples[i].index, group->samples[i].power));
2286 }
2287 }
2288
2289 /*
2290 * Send a command to the firmware.
2291 */
2292 static int
2293 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2294 {
2295 struct wpi_tx_ring *ring = &sc->cmdq;
2296 struct wpi_tx_desc *desc;
2297 struct wpi_tx_cmd *cmd;
2298 struct wpi_dma_info *dma;
2299
2300 KASSERT(size <= sizeof cmd->data);
2301
2302 desc = &ring->desc[ring->cur];
2303 cmd = &ring->cmd[ring->cur];
2304
2305 cmd->code = code;
2306 cmd->flags = 0;
2307 cmd->qid = ring->qid;
2308 cmd->idx = ring->cur;
2309 memcpy(cmd->data, buf, size);
2310
2311 dma = &ring->cmd_dma;
2312 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2313
2314 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2315 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2316 ring->cur * sizeof (struct wpi_tx_cmd));
2317 desc->segs[0].len = htole32(4 + size);
2318
2319 dma = &ring->desc_dma;
2320 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2321
2322 /* kick cmd ring */
2323 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2324 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2325
2326 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2327 }
2328
2329 static int
2330 wpi_wme_update(struct ieee80211com *ic)
2331 {
2332 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2333 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2334 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2335 const struct wmeParams *wmep;
2336 struct wpi_wme_setup wme;
2337 int ac;
2338
2339 /* don't override default WME values if WME is not actually enabled */
2340 if (!(ic->ic_flags & IEEE80211_F_WME))
2341 return 0;
2342
2343 wme.flags = 0;
2344 for (ac = 0; ac < WME_NUM_AC; ac++) {
2345 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2346 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2347 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2348 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2349 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2350
2351 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2352 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2353 wme.ac[ac].cwmax, wme.ac[ac].txop));
2354 }
2355
2356 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2357 #undef WPI_USEC
2358 #undef WPI_EXP2
2359 }
2360
2361 /*
2362 * Configure h/w multi-rate retries.
2363 */
2364 static int
2365 wpi_mrr_setup(struct wpi_softc *sc)
2366 {
2367 struct ieee80211com *ic = &sc->sc_ic;
2368 struct wpi_mrr_setup mrr;
2369 int i, error;
2370
2371 /* CCK rates (not used with 802.11a) */
2372 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2373 mrr.rates[i].flags = 0;
2374 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2375 /* fallback to the immediate lower CCK rate (if any) */
2376 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2377 /* try one time at this rate before falling back to "next" */
2378 mrr.rates[i].ntries = 1;
2379 }
2380
2381 /* OFDM rates (not used with 802.11b) */
2382 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2383 mrr.rates[i].flags = 0;
2384 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2385 /* fallback to the immediate lower rate (if any) */
2386 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2387 mrr.rates[i].next = (i == WPI_OFDM6) ?
2388 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2389 WPI_OFDM6 : WPI_CCK2) :
2390 i - 1;
2391 /* try one time at this rate before falling back to "next" */
2392 mrr.rates[i].ntries = 1;
2393 }
2394
2395 /* setup MRR for control frames */
2396 mrr.which = htole32(WPI_MRR_CTL);
2397 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2398 if (error != 0) {
2399 aprint_error_dev(sc->sc_dev,
2400 "could not setup MRR for control frames\n");
2401 return error;
2402 }
2403
2404 /* setup MRR for data frames */
2405 mrr.which = htole32(WPI_MRR_DATA);
2406 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2407 if (error != 0) {
2408 aprint_error_dev(sc->sc_dev,
2409 "could not setup MRR for data frames\n");
2410 return error;
2411 }
2412
2413 return 0;
2414 }
2415
2416 static void
2417 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2418 {
2419 struct wpi_cmd_led led;
2420
2421 led.which = which;
2422 led.unit = htole32(100000); /* on/off in unit of 100ms */
2423 led.off = off;
2424 led.on = on;
2425
2426 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2427 }
2428
2429 static void
2430 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2431 {
2432 struct wpi_cmd_tsf tsf;
2433 uint64_t val, mod;
2434
2435 memset(&tsf, 0, sizeof tsf);
2436 memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2437 tsf.bintval = htole16(ni->ni_intval);
2438 tsf.lintval = htole16(10);
2439
2440 /* compute remaining time until next beacon */
2441 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2442 mod = le64toh(tsf.tstamp) % val;
2443 tsf.binitval = htole32((uint32_t)(val - mod));
2444
2445 DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2446 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2447
2448 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2449 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2450 }
2451
2452 /*
2453 * Update Tx power to match what is defined for channel `c'.
2454 */
2455 static int
2456 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2457 {
2458 struct ieee80211com *ic = &sc->sc_ic;
2459 struct wpi_power_group *group;
2460 struct wpi_cmd_txpower txpower;
2461 u_int chan;
2462 int i;
2463
2464 /* get channel number */
2465 chan = ieee80211_chan2ieee(ic, c);
2466
2467 /* find the power group to which this channel belongs */
2468 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2469 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2470 if (chan <= group->chan)
2471 break;
2472 } else
2473 group = &sc->groups[0];
2474
2475 memset(&txpower, 0, sizeof txpower);
2476 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2477 txpower.chan = htole16(chan);
2478
2479 /* set Tx power for all OFDM and CCK rates */
2480 for (i = 0; i <= 11 ; i++) {
2481 /* retrieve Tx power for this channel/rate combination */
2482 int idx = wpi_get_power_index(sc, group, c,
2483 wpi_ridx_to_rate[i]);
2484
2485 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2486
2487 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2488 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2489 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2490 } else {
2491 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2492 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2493 }
2494 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2495 wpi_ridx_to_rate[i], idx));
2496 }
2497
2498 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2499 }
2500
2501 /*
2502 * Determine Tx power index for a given channel/rate combination.
2503 * This takes into account the regulatory information from EEPROM and the
2504 * current temperature.
2505 */
2506 static int
2507 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2508 struct ieee80211_channel *c, int rate)
2509 {
2510 /* fixed-point arithmetic division using a n-bit fractional part */
2511 #define fdivround(a, b, n) \
2512 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2513
2514 /* linear interpolation */
2515 #define interpolate(x, x1, y1, x2, y2, n) \
2516 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2517
2518 struct ieee80211com *ic = &sc->sc_ic;
2519 struct wpi_power_sample *sample;
2520 int pwr, idx;
2521 u_int chan;
2522
2523 /* get channel number */
2524 chan = ieee80211_chan2ieee(ic, c);
2525
2526 /* default power is group's maximum power - 3dB */
2527 pwr = group->maxpwr / 2;
2528
2529 /* decrease power for highest OFDM rates to reduce distortion */
2530 switch (rate) {
2531 case 72: /* 36Mb/s */
2532 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2533 break;
2534 case 96: /* 48Mb/s */
2535 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2536 break;
2537 case 108: /* 54Mb/s */
2538 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2539 break;
2540 }
2541
2542 /* never exceed channel's maximum allowed Tx power */
2543 pwr = min(pwr, sc->maxpwr[chan]);
2544
2545 /* retrieve power index into gain tables from samples */
2546 for (sample = group->samples; sample < &group->samples[3]; sample++)
2547 if (pwr > sample[1].power)
2548 break;
2549 /* fixed-point linear interpolation using a 19-bit fractional part */
2550 idx = interpolate(pwr, sample[0].power, sample[0].index,
2551 sample[1].power, sample[1].index, 19);
2552
2553 /*-
2554 * Adjust power index based on current temperature:
2555 * - if cooler than factory-calibrated: decrease output power
2556 * - if warmer than factory-calibrated: increase output power
2557 */
2558 idx -= (sc->temp - group->temp) * 11 / 100;
2559
2560 /* decrease power for CCK rates (-5dB) */
2561 if (!WPI_RATE_IS_OFDM(rate))
2562 idx += 10;
2563
2564 /* keep power index in a valid range */
2565 if (idx < 0)
2566 return 0;
2567 if (idx > WPI_MAX_PWR_INDEX)
2568 return WPI_MAX_PWR_INDEX;
2569 return idx;
2570
2571 #undef interpolate
2572 #undef fdivround
2573 }
2574
2575 /*
2576 * Build a beacon frame that the firmware will broadcast periodically in
2577 * IBSS or HostAP modes.
2578 */
2579 static int
2580 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2581 {
2582 struct ieee80211com *ic = &sc->sc_ic;
2583 struct wpi_tx_ring *ring = &sc->cmdq;
2584 struct wpi_tx_desc *desc;
2585 struct wpi_tx_data *data;
2586 struct wpi_tx_cmd *cmd;
2587 struct wpi_cmd_beacon *bcn;
2588 struct ieee80211_beacon_offsets bo;
2589 struct mbuf *m0;
2590 int error;
2591
2592 desc = &ring->desc[ring->cur];
2593 data = &ring->data[ring->cur];
2594
2595 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2596 if (m0 == NULL) {
2597 aprint_error_dev(sc->sc_dev,
2598 "could not allocate beacon frame\n");
2599 return ENOMEM;
2600 }
2601
2602 cmd = &ring->cmd[ring->cur];
2603 cmd->code = WPI_CMD_SET_BEACON;
2604 cmd->flags = 0;
2605 cmd->qid = ring->qid;
2606 cmd->idx = ring->cur;
2607
2608 bcn = (struct wpi_cmd_beacon *)cmd->data;
2609 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2610 bcn->id = WPI_ID_BROADCAST;
2611 bcn->ofdm_mask = 0xff;
2612 bcn->cck_mask = 0x0f;
2613 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2614 bcn->len = htole16(m0->m_pkthdr.len);
2615 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2616 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2617 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2618
2619 /* save and trim IEEE802.11 header */
2620 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2621 m_adj(m0, sizeof (struct ieee80211_frame));
2622
2623 /* assume beacon frame is contiguous */
2624 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2625 BUS_DMA_READ | BUS_DMA_NOWAIT);
2626 if (error != 0) {
2627 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2628 m_freem(m0);
2629 return error;
2630 }
2631
2632 data->m = m0;
2633
2634 /* first scatter/gather segment is used by the beacon command */
2635 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2636 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2637 ring->cur * sizeof (struct wpi_tx_cmd));
2638 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2639 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2640 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2641
2642 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2643 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2644 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2645 BUS_DMASYNC_PREWRITE);
2646
2647 /* kick cmd ring */
2648 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2649 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2650
2651 return 0;
2652 }
2653
2654 static int
2655 wpi_auth(struct wpi_softc *sc)
2656 {
2657 struct ieee80211com *ic = &sc->sc_ic;
2658 struct ieee80211_node *ni = ic->ic_bss;
2659 struct wpi_node_info node;
2660 int error;
2661
2662 /* update adapter's configuration */
2663 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2664 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2665 sc->config.flags = htole32(WPI_CONFIG_TSF);
2666 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2667 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2668 WPI_CONFIG_24GHZ);
2669 }
2670 switch (ic->ic_curmode) {
2671 case IEEE80211_MODE_11A:
2672 sc->config.cck_mask = 0;
2673 sc->config.ofdm_mask = 0x15;
2674 break;
2675 case IEEE80211_MODE_11B:
2676 sc->config.cck_mask = 0x03;
2677 sc->config.ofdm_mask = 0;
2678 break;
2679 default: /* assume 802.11b/g */
2680 sc->config.cck_mask = 0x0f;
2681 sc->config.ofdm_mask = 0x15;
2682 }
2683 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2684 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2685 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2686 sizeof (struct wpi_config), 1);
2687 if (error != 0) {
2688 aprint_error_dev(sc->sc_dev, "could not configure\n");
2689 return error;
2690 }
2691
2692 /* configuration has changed, set Tx power accordingly */
2693 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2694 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2695 return error;
2696 }
2697
2698 /* add default node */
2699 memset(&node, 0, sizeof node);
2700 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2701 node.id = WPI_ID_BSS;
2702 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2703 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2704 node.action = htole32(WPI_ACTION_SET_RATE);
2705 node.antenna = WPI_ANTENNA_BOTH;
2706 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2707 if (error != 0) {
2708 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2709 return error;
2710 }
2711
2712 return 0;
2713 }
2714
2715 /*
2716 * Send a scan request to the firmware. Since this command is huge, we map it
2717 * into a mbuf instead of using the pre-allocated set of commands.
2718 */
2719 static int
2720 wpi_scan(struct wpi_softc *sc)
2721 {
2722 struct ieee80211com *ic = &sc->sc_ic;
2723 struct wpi_tx_ring *ring = &sc->cmdq;
2724 struct wpi_tx_desc *desc;
2725 struct wpi_tx_data *data;
2726 struct wpi_tx_cmd *cmd;
2727 struct wpi_scan_hdr *hdr;
2728 struct wpi_scan_chan *chan;
2729 struct ieee80211_frame *wh;
2730 struct ieee80211_rateset *rs;
2731 struct ieee80211_channel *c;
2732 uint8_t *frm;
2733 int pktlen, error, nrates;
2734
2735 if (ic->ic_curchan == NULL)
2736 return EIO;
2737
2738 desc = &ring->desc[ring->cur];
2739 data = &ring->data[ring->cur];
2740
2741 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2742 if (data->m == NULL) {
2743 aprint_error_dev(sc->sc_dev,
2744 "could not allocate mbuf for scan command\n");
2745 return ENOMEM;
2746 }
2747 MCLGET(data->m, M_DONTWAIT);
2748 if (!(data->m->m_flags & M_EXT)) {
2749 m_freem(data->m);
2750 data->m = NULL;
2751 aprint_error_dev(sc->sc_dev,
2752 "could not allocate mbuf for scan command\n");
2753 return ENOMEM;
2754 }
2755
2756 cmd = mtod(data->m, struct wpi_tx_cmd *);
2757 cmd->code = WPI_CMD_SCAN;
2758 cmd->flags = 0;
2759 cmd->qid = ring->qid;
2760 cmd->idx = ring->cur;
2761
2762 hdr = (struct wpi_scan_hdr *)cmd->data;
2763 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2764 hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2765 hdr->cmd.id = WPI_ID_BROADCAST;
2766 hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2767 /*
2768 * Move to the next channel if no packets are received within 5 msecs
2769 * after sending the probe request (this helps to reduce the duration
2770 * of active scans).
2771 */
2772 hdr->quiet = htole16(5); /* timeout in milliseconds */
2773 hdr->plcp_threshold = htole16(1); /* min # of packets */
2774
2775 if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2776 hdr->crc_threshold = htole16(1);
2777 /* send probe requests at 6Mbps */
2778 hdr->cmd.rate = wpi_plcp_signal(12);
2779 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2780 } else {
2781 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2782 /* send probe requests at 1Mbps */
2783 hdr->cmd.rate = wpi_plcp_signal(2);
2784 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2785 }
2786
2787 /* for directed scans, firmware inserts the essid IE itself */
2788 if (ic->ic_des_esslen != 0) {
2789 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2790 hdr->essid[0].len = ic->ic_des_esslen;
2791 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2792 }
2793
2794 /*
2795 * Build a probe request frame. Most of the following code is a
2796 * copy & paste of what is done in net80211.
2797 */
2798 wh = (struct ieee80211_frame *)(hdr + 1);
2799 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2800 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2801 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2802 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2803 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2804 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2805 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2806 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2807
2808 frm = (uint8_t *)(wh + 1);
2809
2810 /* add empty essid IE (firmware generates it for directed scans) */
2811 *frm++ = IEEE80211_ELEMID_SSID;
2812 *frm++ = 0;
2813
2814 /* add supported rates IE */
2815 *frm++ = IEEE80211_ELEMID_RATES;
2816 nrates = rs->rs_nrates;
2817 if (nrates > IEEE80211_RATE_SIZE)
2818 nrates = IEEE80211_RATE_SIZE;
2819 *frm++ = nrates;
2820 memcpy(frm, rs->rs_rates, nrates);
2821 frm += nrates;
2822
2823 /* add supported xrates IE */
2824 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2825 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2826 *frm++ = IEEE80211_ELEMID_XRATES;
2827 *frm++ = nrates;
2828 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2829 frm += nrates;
2830 }
2831
2832 /* setup length of probe request */
2833 hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2834
2835 chan = (struct wpi_scan_chan *)frm;
2836 c = ic->ic_curchan;
2837
2838 chan->chan = ieee80211_chan2ieee(ic, c);
2839 chan->flags = 0;
2840 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2841 chan->flags |= WPI_CHAN_ACTIVE;
2842 if (ic->ic_des_esslen != 0)
2843 chan->flags |= WPI_CHAN_DIRECT;
2844 }
2845 chan->dsp_gain = 0x6e;
2846 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2847 chan->rf_gain = 0x3b;
2848 chan->active = htole16(10);
2849 chan->passive = htole16(110);
2850 } else {
2851 chan->rf_gain = 0x28;
2852 chan->active = htole16(20);
2853 chan->passive = htole16(120);
2854 }
2855 hdr->nchan++;
2856 chan++;
2857
2858 frm += sizeof (struct wpi_scan_chan);
2859
2860 hdr->len = htole16(frm - (uint8_t *)hdr);
2861 pktlen = frm - (uint8_t *)cmd;
2862
2863 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2864 BUS_DMA_NOWAIT);
2865 if (error != 0) {
2866 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2867 m_freem(data->m);
2868 data->m = NULL;
2869 return error;
2870 }
2871
2872 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2873 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2874 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2875
2876 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2877 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2878 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2879 BUS_DMASYNC_PREWRITE);
2880
2881 /* kick cmd ring */
2882 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2883 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2884
2885 return 0; /* will be notified async. of failure/success */
2886 }
2887
2888 static int
2889 wpi_config(struct wpi_softc *sc)
2890 {
2891 struct ieee80211com *ic = &sc->sc_ic;
2892 struct ifnet *ifp = ic->ic_ifp;
2893 struct wpi_power power;
2894 struct wpi_bluetooth bluetooth;
2895 struct wpi_node_info node;
2896 int error;
2897
2898 memset(&power, 0, sizeof power);
2899 power.flags = htole32(WPI_POWER_CAM | 0x8);
2900 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2901 if (error != 0) {
2902 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2903 return error;
2904 }
2905
2906 /* configure bluetooth coexistence */
2907 memset(&bluetooth, 0, sizeof bluetooth);
2908 bluetooth.flags = 3;
2909 bluetooth.lead = 0xaa;
2910 bluetooth.kill = 1;
2911 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2912 0);
2913 if (error != 0) {
2914 aprint_error_dev(sc->sc_dev,
2915 "could not configure bluetooth coexistence\n");
2916 return error;
2917 }
2918
2919 /* configure adapter */
2920 memset(&sc->config, 0, sizeof (struct wpi_config));
2921 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2922 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2923 /* set default channel */
2924 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2925 sc->config.flags = htole32(WPI_CONFIG_TSF);
2926 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2927 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2928 WPI_CONFIG_24GHZ);
2929 }
2930 sc->config.filter = 0;
2931 switch (ic->ic_opmode) {
2932 case IEEE80211_M_STA:
2933 sc->config.mode = WPI_MODE_STA;
2934 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2935 break;
2936 case IEEE80211_M_IBSS:
2937 case IEEE80211_M_AHDEMO:
2938 sc->config.mode = WPI_MODE_IBSS;
2939 break;
2940 case IEEE80211_M_HOSTAP:
2941 sc->config.mode = WPI_MODE_HOSTAP;
2942 break;
2943 case IEEE80211_M_MONITOR:
2944 sc->config.mode = WPI_MODE_MONITOR;
2945 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2946 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2947 break;
2948 }
2949 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2950 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2951 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2952 sizeof (struct wpi_config), 0);
2953 if (error != 0) {
2954 aprint_error_dev(sc->sc_dev, "configure command failed\n");
2955 return error;
2956 }
2957
2958 /* configuration has changed, set Tx power accordingly */
2959 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2960 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2961 return error;
2962 }
2963
2964 /* add broadcast node */
2965 memset(&node, 0, sizeof node);
2966 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2967 node.id = WPI_ID_BROADCAST;
2968 node.rate = wpi_plcp_signal(2);
2969 node.action = htole32(WPI_ACTION_SET_RATE);
2970 node.antenna = WPI_ANTENNA_BOTH;
2971 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2972 if (error != 0) {
2973 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2974 return error;
2975 }
2976
2977 if ((error = wpi_mrr_setup(sc)) != 0) {
2978 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2979 return error;
2980 }
2981
2982 return 0;
2983 }
2984
2985 static void
2986 wpi_stop_master(struct wpi_softc *sc)
2987 {
2988 uint32_t tmp;
2989 int ntries;
2990
2991 tmp = WPI_READ(sc, WPI_RESET);
2992 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2993
2994 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2995 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2996 return; /* already asleep */
2997
2998 for (ntries = 0; ntries < 100; ntries++) {
2999 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3000 break;
3001 DELAY(10);
3002 }
3003 if (ntries == 100) {
3004 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3005 }
3006 }
3007
3008 static int
3009 wpi_power_up(struct wpi_softc *sc)
3010 {
3011 uint32_t tmp;
3012 int ntries;
3013
3014 wpi_mem_lock(sc);
3015 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3016 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3017 wpi_mem_unlock(sc);
3018
3019 for (ntries = 0; ntries < 5000; ntries++) {
3020 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3021 break;
3022 DELAY(10);
3023 }
3024 if (ntries == 5000) {
3025 aprint_error_dev(sc->sc_dev,
3026 "timeout waiting for NIC to power up\n");
3027 return ETIMEDOUT;
3028 }
3029 return 0;
3030 }
3031
3032 static int
3033 wpi_reset(struct wpi_softc *sc)
3034 {
3035 uint32_t tmp;
3036 int ntries;
3037
3038 /* clear any pending interrupts */
3039 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3040
3041 tmp = WPI_READ(sc, WPI_PLL_CTL);
3042 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3043
3044 tmp = WPI_READ(sc, WPI_CHICKEN);
3045 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3046
3047 tmp = WPI_READ(sc, WPI_GPIO_CTL);
3048 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3049
3050 /* wait for clock stabilization */
3051 for (ntries = 0; ntries < 1000; ntries++) {
3052 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3053 break;
3054 DELAY(10);
3055 }
3056 if (ntries == 1000) {
3057 aprint_error_dev(sc->sc_dev,
3058 "timeout waiting for clock stabilization\n");
3059 return ETIMEDOUT;
3060 }
3061
3062 /* initialize EEPROM */
3063 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3064 if ((tmp & WPI_EEPROM_VERSION) == 0) {
3065 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3066 return EIO;
3067 }
3068 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3069
3070 return 0;
3071 }
3072
3073 static void
3074 wpi_hw_config(struct wpi_softc *sc)
3075 {
3076 uint32_t rev, hw;
3077
3078 /* voodoo from the reference driver */
3079 hw = WPI_READ(sc, WPI_HWCONFIG);
3080
3081 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3082 rev = PCI_REVISION(rev);
3083 if ((rev & 0xc0) == 0x40)
3084 hw |= WPI_HW_ALM_MB;
3085 else if (!(rev & 0x80))
3086 hw |= WPI_HW_ALM_MM;
3087
3088 if (sc->cap == 0x80)
3089 hw |= WPI_HW_SKU_MRC;
3090
3091 hw &= ~WPI_HW_REV_D;
3092 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3093 hw |= WPI_HW_REV_D;
3094
3095 if (sc->type > 1)
3096 hw |= WPI_HW_TYPE_B;
3097
3098 DPRINTF(("setting h/w config %x\n", hw));
3099 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3100 }
3101
3102 static int
3103 wpi_init(struct ifnet *ifp)
3104 {
3105 struct wpi_softc *sc = ifp->if_softc;
3106 struct ieee80211com *ic = &sc->sc_ic;
3107 uint32_t tmp;
3108 int qid, ntries, error;
3109
3110 wpi_stop(ifp,1);
3111 (void)wpi_reset(sc);
3112
3113 wpi_mem_lock(sc);
3114 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3115 DELAY(20);
3116 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3117 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3118 wpi_mem_unlock(sc);
3119
3120 (void)wpi_power_up(sc);
3121 wpi_hw_config(sc);
3122
3123 /* init Rx ring */
3124 wpi_mem_lock(sc);
3125 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3126 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3127 offsetof(struct wpi_shared, next));
3128 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3129 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3130 wpi_mem_unlock(sc);
3131
3132 /* init Tx rings */
3133 wpi_mem_lock(sc);
3134 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3135 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3136 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3137 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3138 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3139 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3140 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3141
3142 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3143 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3144
3145 for (qid = 0; qid < 6; qid++) {
3146 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3147 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3148 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3149 }
3150 wpi_mem_unlock(sc);
3151
3152 /* clear "radio off" and "disable command" bits (reversed logic) */
3153 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3154 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3155
3156 /* clear any pending interrupts */
3157 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3158 /* enable interrupts */
3159 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3160
3161 /* not sure why/if this is necessary... */
3162 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3163 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3164
3165 if ((error = wpi_load_firmware(sc)) != 0)
3166 /* wpi_load_firmware prints error messages for us. */
3167 goto fail1;
3168
3169 /* Check the status of the radio switch */
3170 if (wpi_getrfkill(sc)) {
3171 aprint_error_dev(sc->sc_dev,
3172 "radio is disabled by hardware switch\n");
3173 ifp->if_flags &= ~IFF_UP;
3174 error = EBUSY;
3175 goto fail1;
3176 }
3177
3178 /* wait for thermal sensors to calibrate */
3179 for (ntries = 0; ntries < 1000; ntries++) {
3180 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3181 break;
3182 DELAY(10);
3183 }
3184 if (ntries == 1000) {
3185 aprint_error_dev(sc->sc_dev,
3186 "timeout waiting for thermal sensors calibration\n");
3187 error = ETIMEDOUT;
3188 goto fail1;
3189 }
3190 DPRINTF(("temperature %d\n", sc->temp));
3191
3192 if ((error = wpi_config(sc)) != 0) {
3193 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3194 goto fail1;
3195 }
3196
3197 ifp->if_flags &= ~IFF_OACTIVE;
3198 ifp->if_flags |= IFF_RUNNING;
3199
3200 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3201 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3202 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3203 }
3204 else
3205 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3206
3207 return 0;
3208
3209 fail1: wpi_stop(ifp, 1);
3210 return error;
3211 }
3212
3213 static void
3214 wpi_stop(struct ifnet *ifp, int disable)
3215 {
3216 struct wpi_softc *sc = ifp->if_softc;
3217 struct ieee80211com *ic = &sc->sc_ic;
3218 uint32_t tmp;
3219 int ac;
3220
3221 ifp->if_timer = sc->sc_tx_timer = 0;
3222 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3223
3224 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3225
3226 /* disable interrupts */
3227 WPI_WRITE(sc, WPI_MASK, 0);
3228 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3229 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3230 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3231
3232 wpi_mem_lock(sc);
3233 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3234 wpi_mem_unlock(sc);
3235
3236 /* reset all Tx rings */
3237 for (ac = 0; ac < 4; ac++)
3238 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3239 wpi_reset_tx_ring(sc, &sc->cmdq);
3240
3241 /* reset Rx ring */
3242 wpi_reset_rx_ring(sc, &sc->rxq);
3243
3244 wpi_mem_lock(sc);
3245 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3246 wpi_mem_unlock(sc);
3247
3248 DELAY(5);
3249
3250 wpi_stop_master(sc);
3251
3252 tmp = WPI_READ(sc, WPI_RESET);
3253 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3254 }
3255
3256 static bool
3257 wpi_resume(device_t dv, const pmf_qual_t *qual)
3258 {
3259 struct wpi_softc *sc = device_private(dv);
3260
3261 (void)wpi_reset(sc);
3262
3263 return true;
3264 }
3265
3266 /*
3267 * Return whether or not the radio is enabled in hardware
3268 * (i.e. the rfkill switch is "off").
3269 */
3270 static int
3271 wpi_getrfkill(struct wpi_softc *sc)
3272 {
3273 uint32_t tmp;
3274
3275 wpi_mem_lock(sc);
3276 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3277 wpi_mem_unlock(sc);
3278
3279 return !(tmp & 0x01);
3280 }
3281
3282 static int
3283 wpi_sysctl_radio(SYSCTLFN_ARGS)
3284 {
3285 struct sysctlnode node;
3286 struct wpi_softc *sc;
3287 int val, error;
3288
3289 node = *rnode;
3290 sc = (struct wpi_softc *)node.sysctl_data;
3291
3292 val = !wpi_getrfkill(sc);
3293
3294 node.sysctl_data = &val;
3295 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3296
3297 if (error || newp == NULL)
3298 return error;
3299
3300 return 0;
3301 }
3302
3303 static void
3304 wpi_sysctlattach(struct wpi_softc *sc)
3305 {
3306 int rc;
3307 const struct sysctlnode *rnode;
3308 const struct sysctlnode *cnode;
3309
3310 struct sysctllog **clog = &sc->sc_sysctllog;
3311
3312 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3313 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3314 SYSCTL_DESCR("wpi controls and statistics"),
3315 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3316 goto err;
3317
3318 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3319 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3320 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3321 wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3322 goto err;
3323
3324 #ifdef WPI_DEBUG
3325 /* control debugging printfs */
3326 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3327 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3328 "debug", SYSCTL_DESCR("Enable debugging output"),
3329 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3330 goto err;
3331 #endif
3332
3333 return;
3334 err:
3335 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3336 }
3337