Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.69
      1 /*	$NetBSD: if_wpi.c,v 1.69 2014/12/19 11:54:02 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007
      5  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.69 2014/12/19 11:54:02 bouyer Exp $");
     22 
     23 /*
     24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25  */
     26 
     27 
     28 #include <sys/param.h>
     29 #include <sys/sockio.h>
     30 #include <sys/sysctl.h>
     31 #include <sys/mbuf.h>
     32 #include <sys/kernel.h>
     33 #include <sys/socket.h>
     34 #include <sys/systm.h>
     35 #include <sys/malloc.h>
     36 #include <sys/mutex.h>
     37 #include <sys/once.h>
     38 #include <sys/conf.h>
     39 #include <sys/kauth.h>
     40 #include <sys/callout.h>
     41 #include <sys/proc.h>
     42 
     43 #include <sys/bus.h>
     44 #include <machine/endian.h>
     45 #include <sys/intr.h>
     46 
     47 #include <dev/pci/pcireg.h>
     48 #include <dev/pci/pcivar.h>
     49 #include <dev/pci/pcidevs.h>
     50 
     51 #include <net/bpf.h>
     52 #include <net/if.h>
     53 #include <net/if_arp.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_ether.h>
     56 #include <net/if_media.h>
     57 #include <net/if_types.h>
     58 
     59 #include <netinet/in.h>
     60 #include <netinet/in_systm.h>
     61 #include <netinet/in_var.h>
     62 #include <netinet/ip.h>
     63 
     64 #include <net80211/ieee80211_var.h>
     65 #include <net80211/ieee80211_amrr.h>
     66 #include <net80211/ieee80211_radiotap.h>
     67 
     68 #include <dev/firmload.h>
     69 
     70 #include <dev/pci/if_wpireg.h>
     71 #include <dev/pci/if_wpivar.h>
     72 
     73 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
     74 static once_t wpi_firmware_init;
     75 static kmutex_t wpi_firmware_mutex;
     76 static size_t wpi_firmware_users;
     77 static uint8_t *wpi_firmware_image;
     78 static size_t wpi_firmware_size;
     79 
     80 static int	wpi_match(device_t, cfdata_t, void *);
     81 static void	wpi_attach(device_t, device_t, void *);
     82 static int	wpi_detach(device_t , int);
     83 static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
     84 		    void **, bus_size_t, bus_size_t, int);
     85 static void	wpi_dma_contig_free(struct wpi_dma_info *);
     86 static int	wpi_alloc_shared(struct wpi_softc *);
     87 static void	wpi_free_shared(struct wpi_softc *);
     88 static int	wpi_alloc_fwmem(struct wpi_softc *);
     89 static void	wpi_free_fwmem(struct wpi_softc *);
     90 static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
     91 static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
     92 static int	wpi_alloc_rpool(struct wpi_softc *);
     93 static void	wpi_free_rpool(struct wpi_softc *);
     94 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
     95 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
     96 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
     97 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
     98 		    int, int);
     99 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    100 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    101 static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    102 static void	wpi_newassoc(struct ieee80211_node *, int);
    103 static int	wpi_media_change(struct ifnet *);
    104 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    105 static void	wpi_mem_lock(struct wpi_softc *);
    106 static void	wpi_mem_unlock(struct wpi_softc *);
    107 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
    108 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    109 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    110 		    const uint32_t *, int);
    111 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    112 static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    113 static int	wpi_cache_firmware(struct wpi_softc *);
    114 static void	wpi_release_firmware(void);
    115 static int	wpi_load_firmware(struct wpi_softc *);
    116 static void	wpi_calib_timeout(void *);
    117 static void	wpi_iter_func(void *, struct ieee80211_node *);
    118 static void	wpi_power_calibration(struct wpi_softc *, int);
    119 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    120 		    struct wpi_rx_data *);
    121 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    122 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    123 static void	wpi_notif_intr(struct wpi_softc *);
    124 static int	wpi_intr(void *);
    125 static void	wpi_read_eeprom(struct wpi_softc *);
    126 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
    127 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
    128 static uint8_t	wpi_plcp_signal(int);
    129 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
    130 		    struct ieee80211_node *, int);
    131 static void	wpi_start(struct ifnet *);
    132 static void	wpi_watchdog(struct ifnet *);
    133 static int	wpi_ioctl(struct ifnet *, u_long, void *);
    134 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    135 static int	wpi_wme_update(struct ieee80211com *);
    136 static int	wpi_mrr_setup(struct wpi_softc *);
    137 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    138 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    139 static int	wpi_set_txpower(struct wpi_softc *,
    140 		    struct ieee80211_channel *, int);
    141 static int	wpi_get_power_index(struct wpi_softc *,
    142 		    struct wpi_power_group *, struct ieee80211_channel *, int);
    143 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    144 static int	wpi_auth(struct wpi_softc *);
    145 static int	wpi_scan(struct wpi_softc *);
    146 static int	wpi_config(struct wpi_softc *);
    147 static void	wpi_stop_master(struct wpi_softc *);
    148 static int	wpi_power_up(struct wpi_softc *);
    149 static int	wpi_reset(struct wpi_softc *);
    150 static void	wpi_hw_config(struct wpi_softc *);
    151 static int	wpi_init(struct ifnet *);
    152 static void	wpi_stop(struct ifnet *, int);
    153 static bool	wpi_resume(device_t, const pmf_qual_t *);
    154 static int	wpi_getrfkill(struct wpi_softc *);
    155 static void	wpi_sysctlattach(struct wpi_softc *);
    156 
    157 #ifdef WPI_DEBUG
    158 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
    159 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
    160 int wpi_debug = 1;
    161 #else
    162 #define DPRINTF(x)
    163 #define DPRINTFN(n, x)
    164 #endif
    165 
    166 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    167 	wpi_detach, NULL);
    168 
    169 static int
    170 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
    171 {
    172 	struct pci_attach_args *pa = aux;
    173 
    174 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    175 		return 0;
    176 
    177 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    178 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    179 		return 1;
    180 
    181 	return 0;
    182 }
    183 
    184 /* Base Address Register */
    185 #define WPI_PCI_BAR0	0x10
    186 
    187 static int
    188 wpi_attach_once(void)
    189 {
    190 
    191 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
    192 	return 0;
    193 }
    194 
    195 static void
    196 wpi_attach(device_t parent __unused, device_t self, void *aux)
    197 {
    198 	struct wpi_softc *sc = device_private(self);
    199 	struct ieee80211com *ic = &sc->sc_ic;
    200 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    201 	struct pci_attach_args *pa = aux;
    202 	const char *intrstr;
    203 	bus_space_tag_t memt;
    204 	bus_space_handle_t memh;
    205 	pci_intr_handle_t ih;
    206 	pcireg_t data;
    207 	int ac, error;
    208 	char intrbuf[PCI_INTRSTR_LEN];
    209 
    210 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
    211 	sc->fw_used = false;
    212 
    213 	sc->sc_dev = self;
    214 	sc->sc_pct = pa->pa_pc;
    215 	sc->sc_pcitag = pa->pa_tag;
    216 
    217 	callout_init(&sc->calib_to, 0);
    218 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    219 
    220 	pci_aprint_devinfo(pa, NULL);
    221 
    222 	/* enable bus-mastering */
    223 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    224 	data |= PCI_COMMAND_MASTER_ENABLE;
    225 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    226 
    227 	/* map the register window */
    228 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    229 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    230 	if (error != 0) {
    231 		aprint_error_dev(self, "could not map memory space\n");
    232 		return;
    233 	}
    234 
    235 	sc->sc_st = memt;
    236 	sc->sc_sh = memh;
    237 	sc->sc_dmat = pa->pa_dmat;
    238 
    239 	if (pci_intr_map(pa, &ih) != 0) {
    240 		aprint_error_dev(self, "could not map interrupt\n");
    241 		return;
    242 	}
    243 
    244 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
    245 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
    246 	if (sc->sc_ih == NULL) {
    247 		aprint_error_dev(self, "could not establish interrupt");
    248 		if (intrstr != NULL)
    249 			aprint_error(" at %s", intrstr);
    250 		aprint_error("\n");
    251 		return;
    252 	}
    253 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    254 
    255 	/*
    256 	 * Put adapter into a known state.
    257 	 */
    258 	if ((error = wpi_reset(sc)) != 0) {
    259 		aprint_error_dev(self, "could not reset adapter\n");
    260 		return;
    261 	}
    262 
    263 	/*
    264 	 * Allocate DMA memory for firmware transfers.
    265 	 */
    266 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
    267 		aprint_error_dev(self, "could not allocate firmware memory\n");
    268 		return;
    269 	}
    270 
    271 	/*
    272 	 * Allocate shared page and Tx/Rx rings.
    273 	 */
    274 	if ((error = wpi_alloc_shared(sc)) != 0) {
    275 		aprint_error_dev(self, "could not allocate shared area\n");
    276 		goto fail1;
    277 	}
    278 
    279 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    280 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    281 		goto fail2;
    282 	}
    283 
    284 	for (ac = 0; ac < 4; ac++) {
    285 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
    286 		    ac);
    287 		if (error != 0) {
    288 			aprint_error_dev(self,
    289 			    "could not allocate Tx ring %d\n", ac);
    290 			goto fail3;
    291 		}
    292 	}
    293 
    294 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    295 	if (error != 0) {
    296 		aprint_error_dev(self, "could not allocate command ring\n");
    297 		goto fail3;
    298 	}
    299 
    300 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
    301 	if (error != 0) {
    302 		aprint_error_dev(self, "could not allocate Rx ring\n");
    303 		goto fail4;
    304 	}
    305 
    306 	ic->ic_ifp = ifp;
    307 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    308 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    309 	ic->ic_state = IEEE80211_S_INIT;
    310 
    311 	/* set device capabilities */
    312 	ic->ic_caps =
    313 	    IEEE80211_C_WPA |		/* 802.11i */
    314 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    315 	    IEEE80211_C_TXPMGT |	/* tx power management */
    316 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    317 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    318 	    IEEE80211_C_WME;		/* 802.11e */
    319 
    320 	/* read supported channels and MAC address from EEPROM */
    321 	wpi_read_eeprom(sc);
    322 
    323 	/* set supported .11a, .11b and .11g rates */
    324 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
    325 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    326 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    327 
    328 	/* IBSS channel undefined for now */
    329 	ic->ic_ibss_chan = &ic->ic_channels[0];
    330 
    331 	ifp->if_softc = sc;
    332 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    333 	ifp->if_init = wpi_init;
    334 	ifp->if_stop = wpi_stop;
    335 	ifp->if_ioctl = wpi_ioctl;
    336 	ifp->if_start = wpi_start;
    337 	ifp->if_watchdog = wpi_watchdog;
    338 	IFQ_SET_READY(&ifp->if_snd);
    339 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    340 
    341 	if_attach(ifp);
    342 	ieee80211_ifattach(ic);
    343 	/* override default methods */
    344 	ic->ic_node_alloc = wpi_node_alloc;
    345 	ic->ic_newassoc = wpi_newassoc;
    346 	ic->ic_wme.wme_update = wpi_wme_update;
    347 
    348 	/* override state transition machine */
    349 	sc->sc_newstate = ic->ic_newstate;
    350 	ic->ic_newstate = wpi_newstate;
    351 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
    352 
    353 	sc->amrr.amrr_min_success_threshold =  1;
    354 	sc->amrr.amrr_max_success_threshold = 15;
    355 
    356 	wpi_sysctlattach(sc);
    357 
    358 	if (pmf_device_register(self, NULL, wpi_resume))
    359 		pmf_class_network_register(self, ifp);
    360 	else
    361 		aprint_error_dev(self, "couldn't establish power handler\n");
    362 
    363 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    364 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    365 	    &sc->sc_drvbpf);
    366 
    367 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    368 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    369 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    370 
    371 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    372 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    373 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    374 
    375 	ieee80211_announce(ic);
    376 
    377 	return;
    378 
    379 	/* free allocated memory if something failed during attachment */
    380 fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
    381 fail3:	while (--ac >= 0)
    382 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    383 	wpi_free_rpool(sc);
    384 fail2:	wpi_free_shared(sc);
    385 fail1:	wpi_free_fwmem(sc);
    386 }
    387 
    388 static int
    389 wpi_detach(device_t self, int flags __unused)
    390 {
    391 	struct wpi_softc *sc = device_private(self);
    392 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    393 	int ac;
    394 
    395 	wpi_stop(ifp, 1);
    396 
    397 	if (ifp != NULL)
    398 		bpf_detach(ifp);
    399 	ieee80211_ifdetach(&sc->sc_ic);
    400 	if (ifp != NULL)
    401 		if_detach(ifp);
    402 
    403 	for (ac = 0; ac < 4; ac++)
    404 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    405 	wpi_free_tx_ring(sc, &sc->cmdq);
    406 	wpi_free_rx_ring(sc, &sc->rxq);
    407 	wpi_free_rpool(sc);
    408 	wpi_free_shared(sc);
    409 
    410 	if (sc->sc_ih != NULL) {
    411 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    412 		sc->sc_ih = NULL;
    413 	}
    414 
    415 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    416 
    417 	if (sc->fw_used) {
    418 		sc->fw_used = false;
    419 		wpi_release_firmware();
    420 	}
    421 
    422 	return 0;
    423 }
    424 
    425 static int
    426 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
    427     bus_size_t size, bus_size_t alignment, int flags)
    428 {
    429 	int nsegs, error;
    430 
    431 	dma->tag = tag;
    432 	dma->size = size;
    433 
    434 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    435 	if (error != 0)
    436 		goto fail;
    437 
    438 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    439 	    flags);
    440 	if (error != 0)
    441 		goto fail;
    442 
    443 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    444 	if (error != 0)
    445 		goto fail;
    446 
    447 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    448 	if (error != 0)
    449 		goto fail;
    450 
    451 	memset(dma->vaddr, 0, size);
    452 	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
    453 
    454 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    455 	if (kvap != NULL)
    456 		*kvap = dma->vaddr;
    457 
    458 	return 0;
    459 
    460 fail:	wpi_dma_contig_free(dma);
    461 	return error;
    462 }
    463 
    464 static void
    465 wpi_dma_contig_free(struct wpi_dma_info *dma)
    466 {
    467 	if (dma->map != NULL) {
    468 		if (dma->vaddr != NULL) {
    469 			bus_dmamap_unload(dma->tag, dma->map);
    470 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    471 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    472 			dma->vaddr = NULL;
    473 		}
    474 		bus_dmamap_destroy(dma->tag, dma->map);
    475 		dma->map = NULL;
    476 	}
    477 }
    478 
    479 /*
    480  * Allocate a shared page between host and NIC.
    481  */
    482 static int
    483 wpi_alloc_shared(struct wpi_softc *sc)
    484 {
    485 	int error;
    486 
    487 	/* must be aligned on a 4K-page boundary */
    488 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    489 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
    490 	    BUS_DMA_NOWAIT);
    491 	if (error != 0)
    492 		aprint_error_dev(sc->sc_dev,
    493 		    "could not allocate shared area DMA memory\n");
    494 
    495 	return error;
    496 }
    497 
    498 static void
    499 wpi_free_shared(struct wpi_softc *sc)
    500 {
    501 	wpi_dma_contig_free(&sc->shared_dma);
    502 }
    503 
    504 /*
    505  * Allocate DMA-safe memory for firmware transfer.
    506  */
    507 static int
    508 wpi_alloc_fwmem(struct wpi_softc *sc)
    509 {
    510 	int error;
    511 
    512 	/* allocate enough contiguous space to store text and data */
    513 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    514 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    515 	    BUS_DMA_NOWAIT);
    516 
    517 	if (error != 0)
    518 		aprint_error_dev(sc->sc_dev,
    519 		    "could not allocate firmware transfer area DMA memory\n");
    520 	return error;
    521 }
    522 
    523 static void
    524 wpi_free_fwmem(struct wpi_softc *sc)
    525 {
    526 	wpi_dma_contig_free(&sc->fw_dma);
    527 }
    528 
    529 static struct wpi_rbuf *
    530 wpi_alloc_rbuf(struct wpi_softc *sc)
    531 {
    532 	struct wpi_rbuf *rbuf;
    533 
    534 	mutex_enter(&sc->rxq.freelist_mtx);
    535 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    536 	if (rbuf != NULL) {
    537 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    538 	}
    539 	mutex_exit(&sc->rxq.freelist_mtx);
    540 
    541 	return rbuf;
    542 }
    543 
    544 /*
    545  * This is called automatically by the network stack when the mbuf to which our
    546  * Rx buffer is attached is freed.
    547  */
    548 static void
    549 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    550 {
    551 	struct wpi_rbuf *rbuf = arg;
    552 	struct wpi_softc *sc = rbuf->sc;
    553 
    554 	/* put the buffer back in the free list */
    555 
    556 	mutex_enter(&sc->rxq.freelist_mtx);
    557 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    558 	mutex_exit(&sc->rxq.freelist_mtx);
    559 
    560 	if (__predict_true(m != NULL))
    561 		pool_cache_put(mb_cache, m);
    562 }
    563 
    564 static int
    565 wpi_alloc_rpool(struct wpi_softc *sc)
    566 {
    567 	struct wpi_rx_ring *ring = &sc->rxq;
    568 	int i, error;
    569 
    570 	/* allocate a big chunk of DMA'able memory.. */
    571 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    572 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    573 	if (error != 0) {
    574 		aprint_normal_dev(sc->sc_dev,
    575 		    "could not allocate Rx buffers DMA memory\n");
    576 		return error;
    577 	}
    578 
    579 	/* ..and split it into 3KB chunks */
    580 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
    581 	SLIST_INIT(&ring->freelist);
    582 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    583 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
    584 
    585 		rbuf->sc = sc;	/* backpointer for callbacks */
    586 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    587 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    588 
    589 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    590 	}
    591 
    592 	return 0;
    593 }
    594 
    595 static void
    596 wpi_free_rpool(struct wpi_softc *sc)
    597 {
    598 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    599 }
    600 
    601 static int
    602 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    603 {
    604 	bus_size_t size;
    605 	int i, error;
    606 
    607 	ring->cur = 0;
    608 
    609 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
    610 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    611 	    (void **)&ring->desc, size,
    612 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    613 	if (error != 0) {
    614 		aprint_error_dev(sc->sc_dev,
    615 		    "could not allocate rx ring DMA memory\n");
    616 		goto fail;
    617 	}
    618 
    619 	/*
    620 	 * Setup Rx buffers.
    621 	 */
    622 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    623 		struct wpi_rx_data *data = &ring->data[i];
    624 		struct wpi_rbuf *rbuf;
    625 
    626 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
    627 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
    628 		if (error) {
    629 			aprint_error_dev(sc->sc_dev,
    630 			    "could not allocate rx dma map\n");
    631 			goto fail;
    632 		}
    633 
    634 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    635 		if (data->m == NULL) {
    636 			aprint_error_dev(sc->sc_dev,
    637 			    "could not allocate rx mbuf\n");
    638 			error = ENOMEM;
    639 			goto fail;
    640 		}
    641 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    642 			m_freem(data->m);
    643 			data->m = NULL;
    644 			aprint_error_dev(sc->sc_dev,
    645 			    "could not allocate rx cluster\n");
    646 			error = ENOMEM;
    647 			goto fail;
    648 		}
    649 		/* attach Rx buffer to mbuf */
    650 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    651 		    rbuf);
    652 		data->m->m_flags |= M_EXT_RW;
    653 
    654 		error = bus_dmamap_load(sc->sc_dmat, data->map,
    655 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
    656 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
    657 		if (error) {
    658 			aprint_error_dev(sc->sc_dev,
    659 			    "could not load mbuf: %d\n", error);
    660 			goto fail;
    661 		}
    662 
    663 		ring->desc[i] = htole32(rbuf->paddr);
    664 	}
    665 
    666 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
    667 	    BUS_DMASYNC_PREWRITE);
    668 
    669 	return 0;
    670 
    671 fail:	wpi_free_rx_ring(sc, ring);
    672 	return error;
    673 }
    674 
    675 static void
    676 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    677 {
    678 	int ntries;
    679 
    680 	wpi_mem_lock(sc);
    681 
    682 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    683 	for (ntries = 0; ntries < 100; ntries++) {
    684 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    685 			break;
    686 		DELAY(10);
    687 	}
    688 #ifdef WPI_DEBUG
    689 	if (ntries == 100 && wpi_debug > 0)
    690 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    691 #endif
    692 	wpi_mem_unlock(sc);
    693 
    694 	ring->cur = 0;
    695 }
    696 
    697 static void
    698 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    699 {
    700 	int i;
    701 
    702 	wpi_dma_contig_free(&ring->desc_dma);
    703 
    704 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    705 		if (ring->data[i].m != NULL) {
    706 			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
    707 			m_freem(ring->data[i].m);
    708 		}
    709 		if (ring->data[i].map != NULL) {
    710 			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
    711 		}
    712 	}
    713 }
    714 
    715 static int
    716 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    717     int qid)
    718 {
    719 	int i, error;
    720 
    721 	ring->qid = qid;
    722 	ring->count = count;
    723 	ring->queued = 0;
    724 	ring->cur = 0;
    725 
    726 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    727 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    728 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    729 	if (error != 0) {
    730 		aprint_error_dev(sc->sc_dev,
    731 		    "could not allocate tx ring DMA memory\n");
    732 		goto fail;
    733 	}
    734 
    735 	/* update shared page with ring's base address */
    736 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    737 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
    738 	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
    739 
    740 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    741 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
    742 	    BUS_DMA_NOWAIT);
    743 	if (error != 0) {
    744 		aprint_error_dev(sc->sc_dev,
    745 		    "could not allocate tx cmd DMA memory\n");
    746 		goto fail;
    747 	}
    748 
    749 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    750 	    M_NOWAIT | M_ZERO);
    751 	if (ring->data == NULL) {
    752 		aprint_error_dev(sc->sc_dev,
    753 		    "could not allocate tx data slots\n");
    754 		goto fail;
    755 	}
    756 
    757 	for (i = 0; i < count; i++) {
    758 		struct wpi_tx_data *data = &ring->data[i];
    759 
    760 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    761 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    762 		    &data->map);
    763 		if (error != 0) {
    764 			aprint_error_dev(sc->sc_dev,
    765 			    "could not create tx buf DMA map\n");
    766 			goto fail;
    767 		}
    768 	}
    769 
    770 	return 0;
    771 
    772 fail:	wpi_free_tx_ring(sc, ring);
    773 	return error;
    774 }
    775 
    776 static void
    777 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    778 {
    779 	int i, ntries;
    780 
    781 	wpi_mem_lock(sc);
    782 
    783 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    784 	for (ntries = 0; ntries < 100; ntries++) {
    785 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    786 			break;
    787 		DELAY(10);
    788 	}
    789 #ifdef WPI_DEBUG
    790 	if (ntries == 100 && wpi_debug > 0) {
    791 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    792 		    ring->qid);
    793 	}
    794 #endif
    795 	wpi_mem_unlock(sc);
    796 
    797 	for (i = 0; i < ring->count; i++) {
    798 		struct wpi_tx_data *data = &ring->data[i];
    799 
    800 		if (data->m != NULL) {
    801 			bus_dmamap_unload(sc->sc_dmat, data->map);
    802 			m_freem(data->m);
    803 			data->m = NULL;
    804 		}
    805 	}
    806 
    807 	ring->queued = 0;
    808 	ring->cur = 0;
    809 }
    810 
    811 static void
    812 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    813 {
    814 	int i;
    815 
    816 	wpi_dma_contig_free(&ring->desc_dma);
    817 	wpi_dma_contig_free(&ring->cmd_dma);
    818 
    819 	if (ring->data != NULL) {
    820 		for (i = 0; i < ring->count; i++) {
    821 			struct wpi_tx_data *data = &ring->data[i];
    822 
    823 			if (data->m != NULL) {
    824 				bus_dmamap_unload(sc->sc_dmat, data->map);
    825 				m_freem(data->m);
    826 			}
    827 		}
    828 		free(ring->data, M_DEVBUF);
    829 	}
    830 }
    831 
    832 /*ARGUSED*/
    833 static struct ieee80211_node *
    834 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    835 {
    836 	struct wpi_node *wn;
    837 
    838 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
    839 
    840 	return (struct ieee80211_node *)wn;
    841 }
    842 
    843 static void
    844 wpi_newassoc(struct ieee80211_node *ni, int isnew)
    845 {
    846 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    847 	int i;
    848 
    849 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    850 
    851 	/* set rate to some reasonable initial value */
    852 	for (i = ni->ni_rates.rs_nrates - 1;
    853 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    854 	     i--);
    855 	ni->ni_txrate = i;
    856 }
    857 
    858 static int
    859 wpi_media_change(struct ifnet *ifp)
    860 {
    861 	int error;
    862 
    863 	error = ieee80211_media_change(ifp);
    864 	if (error != ENETRESET)
    865 		return error;
    866 
    867 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    868 		wpi_init(ifp);
    869 
    870 	return 0;
    871 }
    872 
    873 static int
    874 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    875 {
    876 	struct ifnet *ifp = ic->ic_ifp;
    877 	struct wpi_softc *sc = ifp->if_softc;
    878 	struct ieee80211_node *ni;
    879 	enum ieee80211_state ostate = ic->ic_state;
    880 	int error;
    881 
    882 	callout_stop(&sc->calib_to);
    883 
    884 	switch (nstate) {
    885 	case IEEE80211_S_SCAN:
    886 
    887 		if (sc->is_scanning)
    888 			break;
    889 
    890 		sc->is_scanning = true;
    891 
    892 		if (ostate != IEEE80211_S_SCAN) {
    893 			/* make the link LED blink while we're scanning */
    894 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    895 		}
    896 
    897 		if ((error = wpi_scan(sc)) != 0) {
    898 			aprint_error_dev(sc->sc_dev,
    899 			    "could not initiate scan\n");
    900 			return error;
    901 		}
    902 		break;
    903 
    904 	case IEEE80211_S_ASSOC:
    905 		if (ic->ic_state != IEEE80211_S_RUN)
    906 			break;
    907 		/* FALLTHROUGH */
    908 	case IEEE80211_S_AUTH:
    909 		/* reset state to handle reassociations correctly */
    910 		sc->config.associd = 0;
    911 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    912 
    913 		if ((error = wpi_auth(sc)) != 0) {
    914 			aprint_error_dev(sc->sc_dev,
    915 			    "could not send authentication request\n");
    916 			return error;
    917 		}
    918 		break;
    919 
    920 	case IEEE80211_S_RUN:
    921 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    922 			/* link LED blinks while monitoring */
    923 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    924 			break;
    925 		}
    926 		ni = ic->ic_bss;
    927 
    928 		if (ic->ic_opmode != IEEE80211_M_STA) {
    929 			(void) wpi_auth(sc);    /* XXX */
    930 			wpi_setup_beacon(sc, ni);
    931 		}
    932 
    933 		wpi_enable_tsf(sc, ni);
    934 
    935 		/* update adapter's configuration */
    936 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    937 		/* short preamble/slot time are negotiated when associating */
    938 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
    939 		    WPI_CONFIG_SHSLOT);
    940 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
    941 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
    942 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
    943 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
    944 		sc->config.filter |= htole32(WPI_FILTER_BSS);
    945 		if (ic->ic_opmode != IEEE80211_M_STA)
    946 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
    947 
    948 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
    949 
    950 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
    951 		    sc->config.flags));
    952 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
    953 		    sizeof (struct wpi_config), 1);
    954 		if (error != 0) {
    955 			aprint_error_dev(sc->sc_dev,
    956 			    "could not update configuration\n");
    957 			return error;
    958 		}
    959 
    960 		/* configuration has changed, set Tx power accordingly */
    961 		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
    962 			aprint_error_dev(sc->sc_dev,
    963 			    "could not set Tx power\n");
    964 			return error;
    965 		}
    966 
    967 		if (ic->ic_opmode == IEEE80211_M_STA) {
    968 			/* fake a join to init the tx rate */
    969 			wpi_newassoc(ni, 1);
    970 		}
    971 
    972 		/* start periodic calibration timer */
    973 		sc->calib_cnt = 0;
    974 		callout_schedule(&sc->calib_to, hz/2);
    975 
    976 		/* link LED always on while associated */
    977 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
    978 		break;
    979 
    980 	case IEEE80211_S_INIT:
    981 		sc->is_scanning = false;
    982 		break;
    983 	}
    984 
    985 	return sc->sc_newstate(ic, nstate, arg);
    986 }
    987 
    988 /*
    989  * Grab exclusive access to NIC memory.
    990  */
    991 static void
    992 wpi_mem_lock(struct wpi_softc *sc)
    993 {
    994 	uint32_t tmp;
    995 	int ntries;
    996 
    997 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
    998 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
    999 
   1000 	/* spin until we actually get the lock */
   1001 	for (ntries = 0; ntries < 1000; ntries++) {
   1002 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
   1003 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
   1004 			break;
   1005 		DELAY(10);
   1006 	}
   1007 	if (ntries == 1000)
   1008 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
   1009 }
   1010 
   1011 /*
   1012  * Release lock on NIC memory.
   1013  */
   1014 static void
   1015 wpi_mem_unlock(struct wpi_softc *sc)
   1016 {
   1017 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1018 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1019 }
   1020 
   1021 static uint32_t
   1022 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1023 {
   1024 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1025 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1026 }
   1027 
   1028 static void
   1029 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1030 {
   1031 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1032 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1033 }
   1034 
   1035 static void
   1036 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1037     const uint32_t *data, int wlen)
   1038 {
   1039 	for (; wlen > 0; wlen--, data++, addr += 4)
   1040 		wpi_mem_write(sc, addr, *data);
   1041 }
   1042 
   1043 /*
   1044  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1045  * instead of using the traditional bit-bang method.
   1046  */
   1047 static int
   1048 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1049 {
   1050 	uint8_t *out = data;
   1051 	uint32_t val;
   1052 	int ntries;
   1053 
   1054 	wpi_mem_lock(sc);
   1055 	for (; len > 0; len -= 2, addr++) {
   1056 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1057 
   1058 		for (ntries = 0; ntries < 10; ntries++) {
   1059 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1060 			    WPI_EEPROM_READY)
   1061 				break;
   1062 			DELAY(5);
   1063 		}
   1064 		if (ntries == 10) {
   1065 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1066 			return ETIMEDOUT;
   1067 		}
   1068 		*out++ = val >> 16;
   1069 		if (len > 1)
   1070 			*out++ = val >> 24;
   1071 	}
   1072 	wpi_mem_unlock(sc);
   1073 
   1074 	return 0;
   1075 }
   1076 
   1077 /*
   1078  * The firmware boot code is small and is intended to be copied directly into
   1079  * the NIC internal memory.
   1080  */
   1081 int
   1082 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1083 {
   1084 	int ntries;
   1085 
   1086 	size /= sizeof (uint32_t);
   1087 
   1088 	wpi_mem_lock(sc);
   1089 
   1090 	/* copy microcode image into NIC memory */
   1091 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1092 	    (const uint32_t *)ucode, size);
   1093 
   1094 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1095 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1096 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1097 
   1098 	/* run microcode */
   1099 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1100 
   1101 	/* wait for transfer to complete */
   1102 	for (ntries = 0; ntries < 1000; ntries++) {
   1103 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1104 			break;
   1105 		DELAY(10);
   1106 	}
   1107 	if (ntries == 1000) {
   1108 		wpi_mem_unlock(sc);
   1109 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1110 		return ETIMEDOUT;
   1111 	}
   1112 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1113 
   1114 	wpi_mem_unlock(sc);
   1115 
   1116 	return 0;
   1117 }
   1118 
   1119 static int
   1120 wpi_cache_firmware(struct wpi_softc *sc)
   1121 {
   1122 	const char *const fwname = wpi_firmware_name;
   1123 	firmware_handle_t fw;
   1124 	int error;
   1125 
   1126 	/* sc is used here only to report error messages.  */
   1127 
   1128 	mutex_enter(&wpi_firmware_mutex);
   1129 
   1130 	if (wpi_firmware_users == SIZE_MAX) {
   1131 		mutex_exit(&wpi_firmware_mutex);
   1132 		return ENFILE;	/* Too many of something in the system...  */
   1133 	}
   1134 	if (wpi_firmware_users++) {
   1135 		KASSERT(wpi_firmware_image != NULL);
   1136 		KASSERT(wpi_firmware_size > 0);
   1137 		mutex_exit(&wpi_firmware_mutex);
   1138 		return 0;	/* Already good to go.  */
   1139 	}
   1140 
   1141 	KASSERT(wpi_firmware_image == NULL);
   1142 	KASSERT(wpi_firmware_size == 0);
   1143 
   1144 	/* load firmware image from disk */
   1145 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
   1146 		aprint_error_dev(sc->sc_dev,
   1147 		    "could not open firmware file %s: %d\n", fwname, error);
   1148 		goto fail0;
   1149 	}
   1150 
   1151 	wpi_firmware_size = firmware_get_size(fw);
   1152 
   1153 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
   1154 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
   1155 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
   1156 	    WPI_FW_BOOT_TEXT_MAXSZ) {
   1157 		aprint_error_dev(sc->sc_dev,
   1158 		    "firmware file %s too large: %zu bytes\n",
   1159 		    fwname, wpi_firmware_size);
   1160 		error = EFBIG;
   1161 		goto fail1;
   1162 	}
   1163 
   1164 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
   1165 		aprint_error_dev(sc->sc_dev,
   1166 		    "firmware file %s too small: %zu bytes\n",
   1167 		    fwname, wpi_firmware_size);
   1168 		error = EINVAL;
   1169 		goto fail1;
   1170 	}
   1171 
   1172 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
   1173 	if (wpi_firmware_image == NULL) {
   1174 		aprint_error_dev(sc->sc_dev,
   1175 		    "not enough memory for firmware file %s\n", fwname);
   1176 		error = ENOMEM;
   1177 		goto fail1;
   1178 	}
   1179 
   1180 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
   1181 	if (error != 0) {
   1182 		aprint_error_dev(sc->sc_dev,
   1183 		    "error reading firmware file %s: %d\n", fwname, error);
   1184 		goto fail2;
   1185 	}
   1186 
   1187 	/* Success!  */
   1188 	firmware_close(fw);
   1189 	mutex_exit(&wpi_firmware_mutex);
   1190 	return 0;
   1191 
   1192 fail2:
   1193 	firmware_free(wpi_firmware_image, wpi_firmware_size);
   1194 	wpi_firmware_image = NULL;
   1195 fail1:
   1196 	wpi_firmware_size = 0;
   1197 	firmware_close(fw);
   1198 fail0:
   1199 	KASSERT(wpi_firmware_users == 1);
   1200 	wpi_firmware_users = 0;
   1201 	KASSERT(wpi_firmware_image == NULL);
   1202 	KASSERT(wpi_firmware_size == 0);
   1203 
   1204 	mutex_exit(&wpi_firmware_mutex);
   1205 	return error;
   1206 }
   1207 
   1208 static void
   1209 wpi_release_firmware(void)
   1210 {
   1211 
   1212 	mutex_enter(&wpi_firmware_mutex);
   1213 
   1214 	KASSERT(wpi_firmware_users > 0);
   1215 	KASSERT(wpi_firmware_image != NULL);
   1216 	KASSERT(wpi_firmware_size != 0);
   1217 
   1218 	if (--wpi_firmware_users == 0) {
   1219 		firmware_free(wpi_firmware_image, wpi_firmware_size);
   1220 		wpi_firmware_image = NULL;
   1221 		wpi_firmware_size = 0;
   1222 	}
   1223 
   1224 	mutex_exit(&wpi_firmware_mutex);
   1225 }
   1226 
   1227 static int
   1228 wpi_load_firmware(struct wpi_softc *sc)
   1229 {
   1230 	struct wpi_dma_info *dma = &sc->fw_dma;
   1231 	struct wpi_firmware_hdr hdr;
   1232 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1233 	const uint8_t *boot_text;
   1234 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1235 	uint32_t boot_textsz;
   1236 	size_t size;
   1237 	int error;
   1238 
   1239 	if (!sc->fw_used) {
   1240 		if ((error = wpi_cache_firmware(sc)) != 0)
   1241 			return error;
   1242 		sc->fw_used = true;
   1243 	}
   1244 
   1245 	KASSERT(sc->fw_used);
   1246 	KASSERT(wpi_firmware_image != NULL);
   1247 	KASSERT(wpi_firmware_size > sizeof(hdr));
   1248 
   1249 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
   1250 
   1251 	main_textsz = le32toh(hdr.main_textsz);
   1252 	main_datasz = le32toh(hdr.main_datasz);
   1253 	init_textsz = le32toh(hdr.init_textsz);
   1254 	init_datasz = le32toh(hdr.init_datasz);
   1255 	boot_textsz = le32toh(hdr.boot_textsz);
   1256 
   1257 	/* sanity-check firmware segments sizes */
   1258 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1259 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1260 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1261 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1262 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1263 	    (boot_textsz & 3) != 0) {
   1264 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1265 		error = EINVAL;
   1266 		goto free_firmware;
   1267 	}
   1268 
   1269 	/* check that all firmware segments are present */
   1270 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
   1271 	    main_datasz + init_textsz + init_datasz + boot_textsz;
   1272 	if (wpi_firmware_size < size) {
   1273 		aprint_error_dev(sc->sc_dev,
   1274 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
   1275 		    wpi_firmware_size, size);
   1276 		error = EINVAL;
   1277 		goto free_firmware;
   1278 	}
   1279 
   1280 	/* get pointers to firmware segments */
   1281 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
   1282 	main_data = main_text + main_textsz;
   1283 	init_text = main_data + main_datasz;
   1284 	init_data = init_text + init_textsz;
   1285 	boot_text = init_data + init_datasz;
   1286 
   1287 	/* copy initialization images into pre-allocated DMA-safe memory */
   1288 	memcpy(dma->vaddr, init_data, init_datasz);
   1289 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
   1290 	    init_textsz);
   1291 
   1292 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   1293 
   1294 	/* tell adapter where to find initialization images */
   1295 	wpi_mem_lock(sc);
   1296 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1297 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1298 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1299 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1300 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1301 	wpi_mem_unlock(sc);
   1302 
   1303 	/* load firmware boot code */
   1304 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1305 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1306 		return error;
   1307 	}
   1308 
   1309 	/* now press "execute" ;-) */
   1310 	WPI_WRITE(sc, WPI_RESET, 0);
   1311 
   1312 	/* wait at most one second for first alive notification */
   1313 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1314 		/* this isn't what was supposed to happen.. */
   1315 		aprint_error_dev(sc->sc_dev,
   1316 		    "timeout waiting for adapter to initialize\n");
   1317 	}
   1318 
   1319 	/* copy runtime images into pre-allocated DMA-safe memory */
   1320 	memcpy(dma->vaddr, main_data, main_datasz);
   1321 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
   1322 	    main_textsz);
   1323 
   1324 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   1325 
   1326 	/* tell adapter where to find runtime images */
   1327 	wpi_mem_lock(sc);
   1328 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1329 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1330 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1331 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1332 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1333 	wpi_mem_unlock(sc);
   1334 
   1335 	/* wait at most one second for second alive notification */
   1336 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1337 		/* this isn't what was supposed to happen.. */
   1338 		aprint_error_dev(sc->sc_dev,
   1339 		    "timeout waiting for adapter to initialize\n");
   1340 	}
   1341 
   1342 	return error;
   1343 
   1344 free_firmware:
   1345 	sc->fw_used = false;
   1346 	wpi_release_firmware();
   1347 	return error;
   1348 }
   1349 
   1350 static void
   1351 wpi_calib_timeout(void *arg)
   1352 {
   1353 	struct wpi_softc *sc = arg;
   1354 	struct ieee80211com *ic = &sc->sc_ic;
   1355 	int temp, s;
   1356 
   1357 	/* automatic rate control triggered every 500ms */
   1358 	if (ic->ic_fixed_rate == -1) {
   1359 		s = splnet();
   1360 		if (ic->ic_opmode == IEEE80211_M_STA)
   1361 			wpi_iter_func(sc, ic->ic_bss);
   1362 		else
   1363 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1364 		splx(s);
   1365 	}
   1366 
   1367 	/* update sensor data */
   1368 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1369 
   1370 	/* automatic power calibration every 60s */
   1371 	if (++sc->calib_cnt >= 120) {
   1372 		wpi_power_calibration(sc, temp);
   1373 		sc->calib_cnt = 0;
   1374 	}
   1375 
   1376 	callout_schedule(&sc->calib_to, hz/2);
   1377 }
   1378 
   1379 static void
   1380 wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1381 {
   1382 	struct wpi_softc *sc = arg;
   1383 	struct wpi_node *wn = (struct wpi_node *)ni;
   1384 
   1385 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1386 }
   1387 
   1388 /*
   1389  * This function is called periodically (every 60 seconds) to adjust output
   1390  * power to temperature changes.
   1391  */
   1392 void
   1393 wpi_power_calibration(struct wpi_softc *sc, int temp)
   1394 {
   1395 	/* sanity-check read value */
   1396 	if (temp < -260 || temp > 25) {
   1397 		/* this can't be correct, ignore */
   1398 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1399 		return;
   1400 	}
   1401 
   1402 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1403 
   1404 	/* adjust Tx power if need be */
   1405 	if (abs(temp - sc->temp) <= 6)
   1406 		return;
   1407 
   1408 	sc->temp = temp;
   1409 
   1410 	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
   1411 		/* just warn, too bad for the automatic calibration... */
   1412 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1413 	}
   1414 }
   1415 
   1416 static void
   1417 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1418     struct wpi_rx_data *data)
   1419 {
   1420 	struct ieee80211com *ic = &sc->sc_ic;
   1421 	struct ifnet *ifp = ic->ic_ifp;
   1422 	struct wpi_rx_ring *ring = &sc->rxq;
   1423 	struct wpi_rx_stat *stat;
   1424 	struct wpi_rx_head *head;
   1425 	struct wpi_rx_tail *tail;
   1426 	struct wpi_rbuf *rbuf;
   1427 	struct ieee80211_frame *wh;
   1428 	struct ieee80211_node *ni;
   1429 	struct mbuf *m, *mnew;
   1430 	int data_off, error;
   1431 
   1432 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1433 	    BUS_DMASYNC_POSTREAD);
   1434 	stat = (struct wpi_rx_stat *)(desc + 1);
   1435 
   1436 	if (stat->len > WPI_STAT_MAXLEN) {
   1437 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1438 		ifp->if_ierrors++;
   1439 		return;
   1440 	}
   1441 
   1442 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1443 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1444 
   1445 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1446 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
   1447 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1448 	    le64toh(tail->tstamp)));
   1449 
   1450 	/*
   1451 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1452 	 * to radiotap in monitor mode).
   1453 	 */
   1454 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1455 		DPRINTF(("rx tail flags error %x\n",
   1456 		    le32toh(tail->flags)));
   1457 		ifp->if_ierrors++;
   1458 		return;
   1459 	}
   1460 
   1461 	/* Compute where are the useful datas */
   1462 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1463 
   1464 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1465 	if (mnew == NULL) {
   1466 		ifp->if_ierrors++;
   1467 		return;
   1468 	}
   1469 
   1470 	rbuf = wpi_alloc_rbuf(sc);
   1471 	if (rbuf == NULL) {
   1472 		m_freem(mnew);
   1473 		ifp->if_ierrors++;
   1474 		return;
   1475 	}
   1476 
   1477 	/* attach Rx buffer to mbuf */
   1478 	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1479 		rbuf);
   1480 	mnew->m_flags |= M_EXT_RW;
   1481 
   1482 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1483 
   1484 	error = bus_dmamap_load(sc->sc_dmat, data->map,
   1485 	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
   1486 	    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1487 	if (error) {
   1488 		device_printf(sc->sc_dev,
   1489 		    "couldn't load rx mbuf: %d\n", error);
   1490 		m_freem(mnew);
   1491 		ifp->if_ierrors++;
   1492 
   1493 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1494 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
   1495 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1496 		if (error)
   1497 			panic("%s: bus_dmamap_load failed: %d\n",
   1498 			    device_xname(sc->sc_dev), error);
   1499 		return;
   1500 	}
   1501 
   1502 	/* new mbuf loaded successfully */
   1503 	m = data->m;
   1504 	data->m = mnew;
   1505 
   1506 	/* update Rx descriptor */
   1507 	ring->desc[ring->cur] = htole32(rbuf->paddr);
   1508 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1509 	    ring->desc_dma.size,
   1510 	    BUS_DMASYNC_PREWRITE);
   1511 
   1512 	m->m_data = (char*)m->m_data + data_off;
   1513 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1514 
   1515 	/* finalize mbuf */
   1516 	m->m_pkthdr.rcvif = ifp;
   1517 
   1518 	if (sc->sc_drvbpf != NULL) {
   1519 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1520 
   1521 		tap->wr_flags = 0;
   1522 		tap->wr_chan_freq =
   1523 		    htole16(ic->ic_channels[head->chan].ic_freq);
   1524 		tap->wr_chan_flags =
   1525 		    htole16(ic->ic_channels[head->chan].ic_flags);
   1526 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1527 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1528 		tap->wr_tsft = tail->tstamp;
   1529 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1530 		switch (head->rate) {
   1531 		/* CCK rates */
   1532 		case  10: tap->wr_rate =   2; break;
   1533 		case  20: tap->wr_rate =   4; break;
   1534 		case  55: tap->wr_rate =  11; break;
   1535 		case 110: tap->wr_rate =  22; break;
   1536 		/* OFDM rates */
   1537 		case 0xd: tap->wr_rate =  12; break;
   1538 		case 0xf: tap->wr_rate =  18; break;
   1539 		case 0x5: tap->wr_rate =  24; break;
   1540 		case 0x7: tap->wr_rate =  36; break;
   1541 		case 0x9: tap->wr_rate =  48; break;
   1542 		case 0xb: tap->wr_rate =  72; break;
   1543 		case 0x1: tap->wr_rate =  96; break;
   1544 		case 0x3: tap->wr_rate = 108; break;
   1545 		/* unknown rate: should not happen */
   1546 		default:  tap->wr_rate =   0;
   1547 		}
   1548 		if (le16toh(head->flags) & 0x4)
   1549 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1550 
   1551 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1552 	}
   1553 
   1554 	/* grab a reference to the source node */
   1555 	wh = mtod(m, struct ieee80211_frame *);
   1556 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1557 
   1558 	/* send the frame to the 802.11 layer */
   1559 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1560 
   1561 	/* release node reference */
   1562 	ieee80211_free_node(ni);
   1563 }
   1564 
   1565 static void
   1566 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1567 {
   1568 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1569 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1570 	struct wpi_tx_data *data = &ring->data[desc->idx];
   1571 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1572 	struct wpi_node *wn = (struct wpi_node *)data->ni;
   1573 
   1574 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1575 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1576 	    stat->nkill, stat->rate, le32toh(stat->duration),
   1577 	    le32toh(stat->status)));
   1578 
   1579 	/*
   1580 	 * Update rate control statistics for the node.
   1581 	 * XXX we should not count mgmt frames since they're always sent at
   1582 	 * the lowest available bit-rate.
   1583 	 */
   1584 	wn->amn.amn_txcnt++;
   1585 	if (stat->ntries > 0) {
   1586 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1587 		wn->amn.amn_retrycnt++;
   1588 	}
   1589 
   1590 	if ((le32toh(stat->status) & 0xff) != 1)
   1591 		ifp->if_oerrors++;
   1592 	else
   1593 		ifp->if_opackets++;
   1594 
   1595 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1596 	m_freem(data->m);
   1597 	data->m = NULL;
   1598 	ieee80211_free_node(data->ni);
   1599 	data->ni = NULL;
   1600 
   1601 	ring->queued--;
   1602 
   1603 	sc->sc_tx_timer = 0;
   1604 	ifp->if_flags &= ~IFF_OACTIVE;
   1605 	wpi_start(ifp);
   1606 }
   1607 
   1608 static void
   1609 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1610 {
   1611 	struct wpi_tx_ring *ring = &sc->cmdq;
   1612 	struct wpi_tx_data *data;
   1613 
   1614 	if ((desc->qid & 7) != 4)
   1615 		return;	/* not a command ack */
   1616 
   1617 	data = &ring->data[desc->idx];
   1618 
   1619 	/* if the command was mapped in a mbuf, free it */
   1620 	if (data->m != NULL) {
   1621 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1622 		m_freem(data->m);
   1623 		data->m = NULL;
   1624 	}
   1625 
   1626 	wakeup(&ring->cmd[desc->idx]);
   1627 }
   1628 
   1629 static void
   1630 wpi_notif_intr(struct wpi_softc *sc)
   1631 {
   1632 	struct ieee80211com *ic = &sc->sc_ic;
   1633 	struct ifnet *ifp =  ic->ic_ifp;
   1634 	uint32_t hw;
   1635 
   1636 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
   1637 	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
   1638 
   1639 	hw = le32toh(sc->shared->next);
   1640 	while (sc->rxq.cur != hw) {
   1641 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   1642 		struct wpi_rx_desc *desc;
   1643 
   1644 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1645 		    BUS_DMASYNC_POSTREAD);
   1646 		desc = mtod(data->m, struct wpi_rx_desc *);
   1647 
   1648 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1649 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
   1650 		    desc->type, le32toh(desc->len)));
   1651 
   1652 		if (!(desc->qid & 0x80))	/* reply to a command */
   1653 			wpi_cmd_intr(sc, desc);
   1654 
   1655 		switch (desc->type) {
   1656 		case WPI_RX_DONE:
   1657 			/* a 802.11 frame was received */
   1658 			wpi_rx_intr(sc, desc, data);
   1659 			break;
   1660 
   1661 		case WPI_TX_DONE:
   1662 			/* a 802.11 frame has been transmitted */
   1663 			wpi_tx_intr(sc, desc);
   1664 			break;
   1665 
   1666 		case WPI_UC_READY:
   1667 		{
   1668 			struct wpi_ucode_info *uc =
   1669 			    (struct wpi_ucode_info *)(desc + 1);
   1670 
   1671 			/* the microcontroller is ready */
   1672 			DPRINTF(("microcode alive notification version %x "
   1673 			    "alive %x\n", le32toh(uc->version),
   1674 			    le32toh(uc->valid)));
   1675 
   1676 			if (le32toh(uc->valid) != 1) {
   1677 				aprint_error_dev(sc->sc_dev,
   1678 				    "microcontroller initialization failed\n");
   1679 			}
   1680 			break;
   1681 		}
   1682 		case WPI_STATE_CHANGED:
   1683 		{
   1684 			uint32_t *status = (uint32_t *)(desc + 1);
   1685 
   1686 			/* enabled/disabled notification */
   1687 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1688 
   1689 			if (le32toh(*status) & 1) {
   1690 				/* the radio button has to be pushed */
   1691 				aprint_error_dev(sc->sc_dev,
   1692 				    "Radio transmitter is off\n");
   1693 				/* turn the interface down */
   1694 				ifp->if_flags &= ~IFF_UP;
   1695 				wpi_stop(ifp, 1);
   1696 				return;	/* no further processing */
   1697 			}
   1698 			break;
   1699 		}
   1700 		case WPI_START_SCAN:
   1701 		{
   1702 #if 0
   1703 			struct wpi_start_scan *scan =
   1704 			    (struct wpi_start_scan *)(desc + 1);
   1705 
   1706 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1707 			    scan->chan, le32toh(scan->status)));
   1708 
   1709 			/* fix current channel */
   1710 			ic->ic_curchan = &ic->ic_channels[scan->chan];
   1711 #endif
   1712 			break;
   1713 		}
   1714 		case WPI_STOP_SCAN:
   1715 		{
   1716 #ifdef WPI_DEBUG
   1717 			struct wpi_stop_scan *scan =
   1718 			    (struct wpi_stop_scan *)(desc + 1);
   1719 #endif
   1720 
   1721 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1722 			    scan->nchan, scan->status, scan->chan));
   1723 
   1724 			sc->is_scanning = false;
   1725 			if (ic->ic_state == IEEE80211_S_SCAN)
   1726 				ieee80211_next_scan(ic);
   1727 
   1728 			break;
   1729 		}
   1730 		}
   1731 
   1732 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1733 	}
   1734 
   1735 	/* tell the firmware what we have processed */
   1736 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1737 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1738 }
   1739 
   1740 static int
   1741 wpi_intr(void *arg)
   1742 {
   1743 	struct wpi_softc *sc = arg;
   1744 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1745 	uint32_t r;
   1746 
   1747 	r = WPI_READ(sc, WPI_INTR);
   1748 	if (r == 0 || r == 0xffffffff)
   1749 		return 0;	/* not for us */
   1750 
   1751 	DPRINTFN(6, ("interrupt reg %x\n", r));
   1752 
   1753 	/* disable interrupts */
   1754 	WPI_WRITE(sc, WPI_MASK, 0);
   1755 	/* ack interrupts */
   1756 	WPI_WRITE(sc, WPI_INTR, r);
   1757 
   1758 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1759 		/* SYSTEM FAILURE, SYSTEM FAILURE */
   1760 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1761 		ifp->if_flags &= ~IFF_UP;
   1762 		wpi_stop(ifp, 1);
   1763 		return 1;
   1764 	}
   1765 
   1766 	if (r & WPI_RX_INTR)
   1767 		wpi_notif_intr(sc);
   1768 
   1769 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1770 		wakeup(sc);
   1771 
   1772 	/* re-enable interrupts */
   1773 	if (ifp->if_flags & IFF_UP)
   1774 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1775 
   1776 	return 1;
   1777 }
   1778 
   1779 static uint8_t
   1780 wpi_plcp_signal(int rate)
   1781 {
   1782 	switch (rate) {
   1783 	/* CCK rates (returned values are device-dependent) */
   1784 	case 2:		return 10;
   1785 	case 4:		return 20;
   1786 	case 11:	return 55;
   1787 	case 22:	return 110;
   1788 
   1789 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1790 	/* R1-R4, (u)ral is R4-R1 */
   1791 	case 12:	return 0xd;
   1792 	case 18:	return 0xf;
   1793 	case 24:	return 0x5;
   1794 	case 36:	return 0x7;
   1795 	case 48:	return 0x9;
   1796 	case 72:	return 0xb;
   1797 	case 96:	return 0x1;
   1798 	case 108:	return 0x3;
   1799 
   1800 	/* unsupported rates (should not get there) */
   1801 	default:	return 0;
   1802 	}
   1803 }
   1804 
   1805 /* quickly determine if a given rate is CCK or OFDM */
   1806 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1807 
   1808 static int
   1809 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1810     int ac)
   1811 {
   1812 	struct ieee80211com *ic = &sc->sc_ic;
   1813 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1814 	struct wpi_tx_desc *desc;
   1815 	struct wpi_tx_data *data;
   1816 	struct wpi_tx_cmd *cmd;
   1817 	struct wpi_cmd_data *tx;
   1818 	struct ieee80211_frame *wh;
   1819 	struct ieee80211_key *k;
   1820 	const struct chanAccParams *cap;
   1821 	struct mbuf *mnew;
   1822 	int i, rate, error, hdrlen, noack = 0;
   1823 
   1824 	desc = &ring->desc[ring->cur];
   1825 	data = &ring->data[ring->cur];
   1826 
   1827 	wh = mtod(m0, struct ieee80211_frame *);
   1828 
   1829 	if (ieee80211_has_qos(wh)) {
   1830 		cap = &ic->ic_wme.wme_chanParams;
   1831 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1832 	}
   1833 
   1834 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1835 		k = ieee80211_crypto_encap(ic, ni, m0);
   1836 		if (k == NULL) {
   1837 			m_freem(m0);
   1838 			return ENOBUFS;
   1839 		}
   1840 
   1841 		/* packet header may have moved, reset our local pointer */
   1842 		wh = mtod(m0, struct ieee80211_frame *);
   1843 	}
   1844 
   1845 	hdrlen = ieee80211_anyhdrsize(wh);
   1846 
   1847 	/* pickup a rate */
   1848 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1849 	    IEEE80211_FC0_TYPE_MGT) {
   1850 		/* mgmt frames are sent at the lowest available bit-rate */
   1851 		rate = ni->ni_rates.rs_rates[0];
   1852 	} else {
   1853 		if (ic->ic_fixed_rate != -1) {
   1854 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1855 			    rs_rates[ic->ic_fixed_rate];
   1856 		} else
   1857 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1858 	}
   1859 	rate &= IEEE80211_RATE_VAL;
   1860 
   1861 	if (sc->sc_drvbpf != NULL) {
   1862 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1863 
   1864 		tap->wt_flags = 0;
   1865 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1866 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1867 		tap->wt_rate = rate;
   1868 		tap->wt_hwqueue = ac;
   1869 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1870 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1871 
   1872 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1873 	}
   1874 
   1875 	cmd = &ring->cmd[ring->cur];
   1876 	cmd->code = WPI_CMD_TX_DATA;
   1877 	cmd->flags = 0;
   1878 	cmd->qid = ring->qid;
   1879 	cmd->idx = ring->cur;
   1880 
   1881 	tx = (struct wpi_cmd_data *)cmd->data;
   1882 	/* no need to zero tx, all fields are reinitialized here */
   1883 	tx->flags = 0;
   1884 
   1885 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1886 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1887 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1888 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1889 
   1890 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1891 
   1892 	/* retrieve destination node's id */
   1893 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1894 		WPI_ID_BSS;
   1895 
   1896 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1897 	    IEEE80211_FC0_TYPE_MGT) {
   1898 		/* tell h/w to set timestamp in probe responses */
   1899 		if ((wh->i_fc[0] &
   1900 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1901 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1902 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1903 
   1904 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1905 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1906 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1907 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1908 			tx->timeout = htole16(3);
   1909 		else
   1910 			tx->timeout = htole16(2);
   1911 	} else
   1912 		tx->timeout = htole16(0);
   1913 
   1914 	tx->rate = wpi_plcp_signal(rate);
   1915 
   1916 	/* be very persistant at sending frames out */
   1917 	tx->rts_ntries = 7;
   1918 	tx->data_ntries = 15;
   1919 
   1920 	tx->ofdm_mask = 0xff;
   1921 	tx->cck_mask = 0x0f;
   1922 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   1923 
   1924 	tx->len = htole16(m0->m_pkthdr.len);
   1925 
   1926 	/* save and trim IEEE802.11 header */
   1927 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   1928 	m_adj(m0, hdrlen);
   1929 
   1930 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1931 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1932 	if (error != 0 && error != EFBIG) {
   1933 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1934 		    error);
   1935 		m_freem(m0);
   1936 		return error;
   1937 	}
   1938 	if (error != 0) {
   1939 		/* too many fragments, linearize */
   1940 
   1941 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1942 		if (mnew == NULL) {
   1943 			m_freem(m0);
   1944 			return ENOMEM;
   1945 		}
   1946 		M_COPY_PKTHDR(mnew, m0);
   1947 		if (m0->m_pkthdr.len > MHLEN) {
   1948 			MCLGET(mnew, M_DONTWAIT);
   1949 			if (!(mnew->m_flags & M_EXT)) {
   1950 				m_freem(m0);
   1951 				m_freem(mnew);
   1952 				return ENOMEM;
   1953 			}
   1954 		}
   1955 
   1956 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1957 		m_freem(m0);
   1958 		mnew->m_len = mnew->m_pkthdr.len;
   1959 		m0 = mnew;
   1960 
   1961 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1962 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1963 		if (error != 0) {
   1964 			aprint_error_dev(sc->sc_dev,
   1965 			    "could not map mbuf (error %d)\n", error);
   1966 			m_freem(m0);
   1967 			return error;
   1968 		}
   1969 	}
   1970 
   1971 	data->m = m0;
   1972 	data->ni = ni;
   1973 
   1974 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   1975 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   1976 
   1977 	/* first scatter/gather segment is used by the tx data command */
   1978 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   1979 	    (1 + data->map->dm_nsegs) << 24);
   1980 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   1981 	    ring->cur * sizeof (struct wpi_tx_cmd));
   1982 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   1983 	    ((hdrlen + 3) & ~3));
   1984 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   1985 		desc->segs[i].addr =
   1986 		    htole32(data->map->dm_segs[i - 1].ds_addr);
   1987 		desc->segs[i].len  =
   1988 		    htole32(data->map->dm_segs[i - 1].ds_len);
   1989 	}
   1990 
   1991 	ring->queued++;
   1992 
   1993 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1994 	    data->map->dm_mapsize,
   1995 	    BUS_DMASYNC_PREWRITE);
   1996 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
   1997 	    ring->cmd_dma.size,
   1998 	    BUS_DMASYNC_PREWRITE);
   1999 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2000 	    ring->desc_dma.size,
   2001 	    BUS_DMASYNC_PREWRITE);
   2002 
   2003 	/* kick ring */
   2004 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   2005 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2006 
   2007 	return 0;
   2008 }
   2009 
   2010 static void
   2011 wpi_start(struct ifnet *ifp)
   2012 {
   2013 	struct wpi_softc *sc = ifp->if_softc;
   2014 	struct ieee80211com *ic = &sc->sc_ic;
   2015 	struct ieee80211_node *ni;
   2016 	struct ether_header *eh;
   2017 	struct mbuf *m0;
   2018 	int ac;
   2019 
   2020 	/*
   2021 	 * net80211 may still try to send management frames even if the
   2022 	 * IFF_RUNNING flag is not set...
   2023 	 */
   2024 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   2025 		return;
   2026 
   2027 	for (;;) {
   2028 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   2029 		if (m0 != NULL) {
   2030 
   2031 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
   2032 			m0->m_pkthdr.rcvif = NULL;
   2033 
   2034 			/* management frames go into ring 0 */
   2035 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   2036 				ifp->if_oerrors++;
   2037 				continue;
   2038 			}
   2039 			bpf_mtap3(ic->ic_rawbpf, m0);
   2040 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   2041 				ifp->if_oerrors++;
   2042 				break;
   2043 			}
   2044 		} else {
   2045 			if (ic->ic_state != IEEE80211_S_RUN)
   2046 				break;
   2047 			IFQ_POLL(&ifp->if_snd, m0);
   2048 			if (m0 == NULL)
   2049 				break;
   2050 
   2051 			if (m0->m_len < sizeof (*eh) &&
   2052 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
   2053 				ifp->if_oerrors++;
   2054 				continue;
   2055 			}
   2056 			eh = mtod(m0, struct ether_header *);
   2057 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   2058 			if (ni == NULL) {
   2059 				m_freem(m0);
   2060 				ifp->if_oerrors++;
   2061 				continue;
   2062 			}
   2063 
   2064 			/* classify mbuf so we can find which tx ring to use */
   2065 			if (ieee80211_classify(ic, m0, ni) != 0) {
   2066 				m_freem(m0);
   2067 				ieee80211_free_node(ni);
   2068 				ifp->if_oerrors++;
   2069 				continue;
   2070 			}
   2071 
   2072 			/* no QoS encapsulation for EAPOL frames */
   2073 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   2074 			    M_WME_GETAC(m0) : WME_AC_BE;
   2075 
   2076 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   2077 				/* there is no place left in this ring */
   2078 				ifp->if_flags |= IFF_OACTIVE;
   2079 				break;
   2080 			}
   2081 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   2082 			bpf_mtap(ifp, m0);
   2083 			m0 = ieee80211_encap(ic, m0, ni);
   2084 			if (m0 == NULL) {
   2085 				ieee80211_free_node(ni);
   2086 				ifp->if_oerrors++;
   2087 				continue;
   2088 			}
   2089 			bpf_mtap3(ic->ic_rawbpf, m0);
   2090 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   2091 				ieee80211_free_node(ni);
   2092 				ifp->if_oerrors++;
   2093 				break;
   2094 			}
   2095 		}
   2096 
   2097 		sc->sc_tx_timer = 5;
   2098 		ifp->if_timer = 1;
   2099 	}
   2100 }
   2101 
   2102 static void
   2103 wpi_watchdog(struct ifnet *ifp)
   2104 {
   2105 	struct wpi_softc *sc = ifp->if_softc;
   2106 
   2107 	ifp->if_timer = 0;
   2108 
   2109 	if (sc->sc_tx_timer > 0) {
   2110 		if (--sc->sc_tx_timer == 0) {
   2111 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2112 			ifp->if_flags &= ~IFF_UP;
   2113 			wpi_stop(ifp, 1);
   2114 			ifp->if_oerrors++;
   2115 			return;
   2116 		}
   2117 		ifp->if_timer = 1;
   2118 	}
   2119 
   2120 	ieee80211_watchdog(&sc->sc_ic);
   2121 }
   2122 
   2123 static int
   2124 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2125 {
   2126 #define IS_RUNNING(ifp) \
   2127 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2128 
   2129 	struct wpi_softc *sc = ifp->if_softc;
   2130 	struct ieee80211com *ic = &sc->sc_ic;
   2131 	int s, error = 0;
   2132 
   2133 	s = splnet();
   2134 
   2135 	switch (cmd) {
   2136 	case SIOCSIFFLAGS:
   2137 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2138 			break;
   2139 		if (ifp->if_flags & IFF_UP) {
   2140 			if (!(ifp->if_flags & IFF_RUNNING))
   2141 				wpi_init(ifp);
   2142 		} else {
   2143 			if (ifp->if_flags & IFF_RUNNING)
   2144 				wpi_stop(ifp, 1);
   2145 		}
   2146 		break;
   2147 
   2148 	case SIOCADDMULTI:
   2149 	case SIOCDELMULTI:
   2150 		/* XXX no h/w multicast filter? --dyoung */
   2151 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2152 			/* setup multicast filter, etc */
   2153 			error = 0;
   2154 		}
   2155 		break;
   2156 
   2157 	default:
   2158 		error = ieee80211_ioctl(ic, cmd, data);
   2159 	}
   2160 
   2161 	if (error == ENETRESET) {
   2162 		if (IS_RUNNING(ifp) &&
   2163 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2164 			wpi_init(ifp);
   2165 		error = 0;
   2166 	}
   2167 
   2168 	splx(s);
   2169 	return error;
   2170 
   2171 #undef IS_RUNNING
   2172 }
   2173 
   2174 /*
   2175  * Extract various information from EEPROM.
   2176  */
   2177 static void
   2178 wpi_read_eeprom(struct wpi_softc *sc)
   2179 {
   2180 	struct ieee80211com *ic = &sc->sc_ic;
   2181 	char domain[4];
   2182 	int i;
   2183 
   2184 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2185 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2186 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2187 
   2188 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2189 	    sc->type));
   2190 
   2191 	/* read and print regulatory domain */
   2192 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2193 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
   2194 
   2195 	/* read and print MAC address */
   2196 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2197 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2198 
   2199 	/* read the list of authorized channels */
   2200 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2201 		wpi_read_eeprom_channels(sc, i);
   2202 
   2203 	/* read the list of power groups */
   2204 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2205 		wpi_read_eeprom_group(sc, i);
   2206 }
   2207 
   2208 static void
   2209 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2210 {
   2211 	struct ieee80211com *ic = &sc->sc_ic;
   2212 	const struct wpi_chan_band *band = &wpi_bands[n];
   2213 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2214 	int chan, i;
   2215 
   2216 	wpi_read_prom_data(sc, band->addr, channels,
   2217 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2218 
   2219 	for (i = 0; i < band->nchan; i++) {
   2220 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2221 			continue;
   2222 
   2223 		chan = band->chan[i];
   2224 
   2225 		if (n == 0) {	/* 2GHz band */
   2226 			ic->ic_channels[chan].ic_freq =
   2227 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2228 			ic->ic_channels[chan].ic_flags =
   2229 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2230 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2231 
   2232 		} else {	/* 5GHz band */
   2233 			/*
   2234 			 * Some 3945ABG adapters support channels 7, 8, 11
   2235 			 * and 12 in the 2GHz *and* 5GHz bands.
   2236 			 * Because of limitations in our net80211(9) stack,
   2237 			 * we can't support these channels in 5GHz band.
   2238 			 */
   2239 			if (chan <= 14)
   2240 				continue;
   2241 
   2242 			ic->ic_channels[chan].ic_freq =
   2243 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2244 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2245 		}
   2246 
   2247 		/* is active scan allowed on this channel? */
   2248 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2249 			ic->ic_channels[chan].ic_flags |=
   2250 			    IEEE80211_CHAN_PASSIVE;
   2251 		}
   2252 
   2253 		/* save maximum allowed power for this channel */
   2254 		sc->maxpwr[chan] = channels[i].maxpwr;
   2255 
   2256 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2257 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2258 	}
   2259 }
   2260 
   2261 static void
   2262 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2263 {
   2264 	struct wpi_power_group *group = &sc->groups[n];
   2265 	struct wpi_eeprom_group rgroup;
   2266 	int i;
   2267 
   2268 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2269 	    sizeof rgroup);
   2270 
   2271 	/* save power group information */
   2272 	group->chan   = rgroup.chan;
   2273 	group->maxpwr = rgroup.maxpwr;
   2274 	/* temperature at which the samples were taken */
   2275 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2276 
   2277 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2278 	    group->chan, group->maxpwr, group->temp));
   2279 
   2280 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2281 		group->samples[i].index = rgroup.samples[i].index;
   2282 		group->samples[i].power = rgroup.samples[i].power;
   2283 
   2284 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2285 		    group->samples[i].index, group->samples[i].power));
   2286 	}
   2287 }
   2288 
   2289 /*
   2290  * Send a command to the firmware.
   2291  */
   2292 static int
   2293 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2294 {
   2295 	struct wpi_tx_ring *ring = &sc->cmdq;
   2296 	struct wpi_tx_desc *desc;
   2297 	struct wpi_tx_cmd *cmd;
   2298 	struct wpi_dma_info *dma;
   2299 
   2300 	KASSERT(size <= sizeof cmd->data);
   2301 
   2302 	desc = &ring->desc[ring->cur];
   2303 	cmd = &ring->cmd[ring->cur];
   2304 
   2305 	cmd->code = code;
   2306 	cmd->flags = 0;
   2307 	cmd->qid = ring->qid;
   2308 	cmd->idx = ring->cur;
   2309 	memcpy(cmd->data, buf, size);
   2310 
   2311 	dma = &ring->cmd_dma;
   2312 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   2313 
   2314 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2315 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2316 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2317 	desc->segs[0].len  = htole32(4 + size);
   2318 
   2319 	dma = &ring->desc_dma;
   2320 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   2321 
   2322 	/* kick cmd ring */
   2323 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2324 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2325 
   2326 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2327 }
   2328 
   2329 static int
   2330 wpi_wme_update(struct ieee80211com *ic)
   2331 {
   2332 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2333 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2334 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2335 	const struct wmeParams *wmep;
   2336 	struct wpi_wme_setup wme;
   2337 	int ac;
   2338 
   2339 	/* don't override default WME values if WME is not actually enabled */
   2340 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2341 		return 0;
   2342 
   2343 	wme.flags = 0;
   2344 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2345 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2346 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2347 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2348 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2349 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2350 
   2351 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2352 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2353 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2354 	}
   2355 
   2356 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2357 #undef WPI_USEC
   2358 #undef WPI_EXP2
   2359 }
   2360 
   2361 /*
   2362  * Configure h/w multi-rate retries.
   2363  */
   2364 static int
   2365 wpi_mrr_setup(struct wpi_softc *sc)
   2366 {
   2367 	struct ieee80211com *ic = &sc->sc_ic;
   2368 	struct wpi_mrr_setup mrr;
   2369 	int i, error;
   2370 
   2371 	/* CCK rates (not used with 802.11a) */
   2372 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2373 		mrr.rates[i].flags = 0;
   2374 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2375 		/* fallback to the immediate lower CCK rate (if any) */
   2376 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2377 		/* try one time at this rate before falling back to "next" */
   2378 		mrr.rates[i].ntries = 1;
   2379 	}
   2380 
   2381 	/* OFDM rates (not used with 802.11b) */
   2382 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2383 		mrr.rates[i].flags = 0;
   2384 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2385 		/* fallback to the immediate lower rate (if any) */
   2386 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2387 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2388 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2389 			WPI_OFDM6 : WPI_CCK2) :
   2390 		    i - 1;
   2391 		/* try one time at this rate before falling back to "next" */
   2392 		mrr.rates[i].ntries = 1;
   2393 	}
   2394 
   2395 	/* setup MRR for control frames */
   2396 	mrr.which = htole32(WPI_MRR_CTL);
   2397 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2398 	if (error != 0) {
   2399 		aprint_error_dev(sc->sc_dev,
   2400 		    "could not setup MRR for control frames\n");
   2401 		return error;
   2402 	}
   2403 
   2404 	/* setup MRR for data frames */
   2405 	mrr.which = htole32(WPI_MRR_DATA);
   2406 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2407 	if (error != 0) {
   2408 		aprint_error_dev(sc->sc_dev,
   2409 		    "could not setup MRR for data frames\n");
   2410 		return error;
   2411 	}
   2412 
   2413 	return 0;
   2414 }
   2415 
   2416 static void
   2417 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2418 {
   2419 	struct wpi_cmd_led led;
   2420 
   2421 	led.which = which;
   2422 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2423 	led.off = off;
   2424 	led.on = on;
   2425 
   2426 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2427 }
   2428 
   2429 static void
   2430 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2431 {
   2432 	struct wpi_cmd_tsf tsf;
   2433 	uint64_t val, mod;
   2434 
   2435 	memset(&tsf, 0, sizeof tsf);
   2436 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   2437 	tsf.bintval = htole16(ni->ni_intval);
   2438 	tsf.lintval = htole16(10);
   2439 
   2440 	/* compute remaining time until next beacon */
   2441 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   2442 	mod = le64toh(tsf.tstamp) % val;
   2443 	tsf.binitval = htole32((uint32_t)(val - mod));
   2444 
   2445 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
   2446 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2447 
   2448 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2449 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2450 }
   2451 
   2452 /*
   2453  * Update Tx power to match what is defined for channel `c'.
   2454  */
   2455 static int
   2456 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2457 {
   2458 	struct ieee80211com *ic = &sc->sc_ic;
   2459 	struct wpi_power_group *group;
   2460 	struct wpi_cmd_txpower txpower;
   2461 	u_int chan;
   2462 	int i;
   2463 
   2464 	/* get channel number */
   2465 	chan = ieee80211_chan2ieee(ic, c);
   2466 
   2467 	/* find the power group to which this channel belongs */
   2468 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2469 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2470 			if (chan <= group->chan)
   2471 				break;
   2472 	} else
   2473 		group = &sc->groups[0];
   2474 
   2475 	memset(&txpower, 0, sizeof txpower);
   2476 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2477 	txpower.chan = htole16(chan);
   2478 
   2479 	/* set Tx power for all OFDM and CCK rates */
   2480 	for (i = 0; i <= 11 ; i++) {
   2481 		/* retrieve Tx power for this channel/rate combination */
   2482 		int idx = wpi_get_power_index(sc, group, c,
   2483 		    wpi_ridx_to_rate[i]);
   2484 
   2485 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2486 
   2487 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2488 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2489 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2490 		} else {
   2491 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2492 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2493 		}
   2494 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2495 		    wpi_ridx_to_rate[i], idx));
   2496 	}
   2497 
   2498 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2499 }
   2500 
   2501 /*
   2502  * Determine Tx power index for a given channel/rate combination.
   2503  * This takes into account the regulatory information from EEPROM and the
   2504  * current temperature.
   2505  */
   2506 static int
   2507 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2508     struct ieee80211_channel *c, int rate)
   2509 {
   2510 /* fixed-point arithmetic division using a n-bit fractional part */
   2511 #define fdivround(a, b, n)	\
   2512 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2513 
   2514 /* linear interpolation */
   2515 #define interpolate(x, x1, y1, x2, y2, n)	\
   2516 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2517 
   2518 	struct ieee80211com *ic = &sc->sc_ic;
   2519 	struct wpi_power_sample *sample;
   2520 	int pwr, idx;
   2521 	u_int chan;
   2522 
   2523 	/* get channel number */
   2524 	chan = ieee80211_chan2ieee(ic, c);
   2525 
   2526 	/* default power is group's maximum power - 3dB */
   2527 	pwr = group->maxpwr / 2;
   2528 
   2529 	/* decrease power for highest OFDM rates to reduce distortion */
   2530 	switch (rate) {
   2531 	case 72:	/* 36Mb/s */
   2532 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2533 		break;
   2534 	case 96:	/* 48Mb/s */
   2535 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2536 		break;
   2537 	case 108:	/* 54Mb/s */
   2538 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2539 		break;
   2540 	}
   2541 
   2542 	/* never exceed channel's maximum allowed Tx power */
   2543 	pwr = min(pwr, sc->maxpwr[chan]);
   2544 
   2545 	/* retrieve power index into gain tables from samples */
   2546 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2547 		if (pwr > sample[1].power)
   2548 			break;
   2549 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2550 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2551 	    sample[1].power, sample[1].index, 19);
   2552 
   2553 	/*-
   2554 	 * Adjust power index based on current temperature:
   2555 	 * - if cooler than factory-calibrated: decrease output power
   2556 	 * - if warmer than factory-calibrated: increase output power
   2557 	 */
   2558 	idx -= (sc->temp - group->temp) * 11 / 100;
   2559 
   2560 	/* decrease power for CCK rates (-5dB) */
   2561 	if (!WPI_RATE_IS_OFDM(rate))
   2562 		idx += 10;
   2563 
   2564 	/* keep power index in a valid range */
   2565 	if (idx < 0)
   2566 		return 0;
   2567 	if (idx > WPI_MAX_PWR_INDEX)
   2568 		return WPI_MAX_PWR_INDEX;
   2569 	return idx;
   2570 
   2571 #undef interpolate
   2572 #undef fdivround
   2573 }
   2574 
   2575 /*
   2576  * Build a beacon frame that the firmware will broadcast periodically in
   2577  * IBSS or HostAP modes.
   2578  */
   2579 static int
   2580 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2581 {
   2582 	struct ieee80211com *ic = &sc->sc_ic;
   2583 	struct wpi_tx_ring *ring = &sc->cmdq;
   2584 	struct wpi_tx_desc *desc;
   2585 	struct wpi_tx_data *data;
   2586 	struct wpi_tx_cmd *cmd;
   2587 	struct wpi_cmd_beacon *bcn;
   2588 	struct ieee80211_beacon_offsets bo;
   2589 	struct mbuf *m0;
   2590 	int error;
   2591 
   2592 	desc = &ring->desc[ring->cur];
   2593 	data = &ring->data[ring->cur];
   2594 
   2595 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2596 	if (m0 == NULL) {
   2597 		aprint_error_dev(sc->sc_dev,
   2598 		    "could not allocate beacon frame\n");
   2599 		return ENOMEM;
   2600 	}
   2601 
   2602 	cmd = &ring->cmd[ring->cur];
   2603 	cmd->code = WPI_CMD_SET_BEACON;
   2604 	cmd->flags = 0;
   2605 	cmd->qid = ring->qid;
   2606 	cmd->idx = ring->cur;
   2607 
   2608 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2609 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2610 	bcn->id = WPI_ID_BROADCAST;
   2611 	bcn->ofdm_mask = 0xff;
   2612 	bcn->cck_mask = 0x0f;
   2613 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2614 	bcn->len = htole16(m0->m_pkthdr.len);
   2615 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2616 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2617 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2618 
   2619 	/* save and trim IEEE802.11 header */
   2620 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2621 	m_adj(m0, sizeof (struct ieee80211_frame));
   2622 
   2623 	/* assume beacon frame is contiguous */
   2624 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2625 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   2626 	if (error != 0) {
   2627 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2628 		m_freem(m0);
   2629 		return error;
   2630 	}
   2631 
   2632 	data->m = m0;
   2633 
   2634 	/* first scatter/gather segment is used by the beacon command */
   2635 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2636 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2637 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2638 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2639 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2640 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2641 
   2642 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2643 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2644 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2645 	    BUS_DMASYNC_PREWRITE);
   2646 
   2647 	/* kick cmd ring */
   2648 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2649 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2650 
   2651 	return 0;
   2652 }
   2653 
   2654 static int
   2655 wpi_auth(struct wpi_softc *sc)
   2656 {
   2657 	struct ieee80211com *ic = &sc->sc_ic;
   2658 	struct ieee80211_node *ni = ic->ic_bss;
   2659 	struct wpi_node_info node;
   2660 	int error;
   2661 
   2662 	/* update adapter's configuration */
   2663 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2664 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2665 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2666 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2667 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2668 		    WPI_CONFIG_24GHZ);
   2669 	}
   2670 	switch (ic->ic_curmode) {
   2671 	case IEEE80211_MODE_11A:
   2672 		sc->config.cck_mask  = 0;
   2673 		sc->config.ofdm_mask = 0x15;
   2674 		break;
   2675 	case IEEE80211_MODE_11B:
   2676 		sc->config.cck_mask  = 0x03;
   2677 		sc->config.ofdm_mask = 0;
   2678 		break;
   2679 	default:	/* assume 802.11b/g */
   2680 		sc->config.cck_mask  = 0x0f;
   2681 		sc->config.ofdm_mask = 0x15;
   2682 	}
   2683 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2684 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2685 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2686 	    sizeof (struct wpi_config), 1);
   2687 	if (error != 0) {
   2688 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2689 		return error;
   2690 	}
   2691 
   2692 	/* configuration has changed, set Tx power accordingly */
   2693 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2694 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2695 		return error;
   2696 	}
   2697 
   2698 	/* add default node */
   2699 	memset(&node, 0, sizeof node);
   2700 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2701 	node.id = WPI_ID_BSS;
   2702 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2703 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2704 	node.action = htole32(WPI_ACTION_SET_RATE);
   2705 	node.antenna = WPI_ANTENNA_BOTH;
   2706 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2707 	if (error != 0) {
   2708 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2709 		return error;
   2710 	}
   2711 
   2712 	return 0;
   2713 }
   2714 
   2715 /*
   2716  * Send a scan request to the firmware.  Since this command is huge, we map it
   2717  * into a mbuf instead of using the pre-allocated set of commands.
   2718  */
   2719 static int
   2720 wpi_scan(struct wpi_softc *sc)
   2721 {
   2722 	struct ieee80211com *ic = &sc->sc_ic;
   2723 	struct wpi_tx_ring *ring = &sc->cmdq;
   2724 	struct wpi_tx_desc *desc;
   2725 	struct wpi_tx_data *data;
   2726 	struct wpi_tx_cmd *cmd;
   2727 	struct wpi_scan_hdr *hdr;
   2728 	struct wpi_scan_chan *chan;
   2729 	struct ieee80211_frame *wh;
   2730 	struct ieee80211_rateset *rs;
   2731 	struct ieee80211_channel *c;
   2732 	uint8_t *frm;
   2733 	int pktlen, error, nrates;
   2734 
   2735 	if (ic->ic_curchan == NULL)
   2736 		return EIO;
   2737 
   2738 	desc = &ring->desc[ring->cur];
   2739 	data = &ring->data[ring->cur];
   2740 
   2741 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2742 	if (data->m == NULL) {
   2743 		aprint_error_dev(sc->sc_dev,
   2744 		    "could not allocate mbuf for scan command\n");
   2745 		return ENOMEM;
   2746 	}
   2747 	MCLGET(data->m, M_DONTWAIT);
   2748 	if (!(data->m->m_flags & M_EXT)) {
   2749 		m_freem(data->m);
   2750 		data->m = NULL;
   2751 		aprint_error_dev(sc->sc_dev,
   2752 		    "could not allocate mbuf for scan command\n");
   2753 		return ENOMEM;
   2754 	}
   2755 
   2756 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2757 	cmd->code = WPI_CMD_SCAN;
   2758 	cmd->flags = 0;
   2759 	cmd->qid = ring->qid;
   2760 	cmd->idx = ring->cur;
   2761 
   2762 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2763 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2764 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
   2765 	hdr->cmd.id = WPI_ID_BROADCAST;
   2766 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
   2767 	/*
   2768 	 * Move to the next channel if no packets are received within 5 msecs
   2769 	 * after sending the probe request (this helps to reduce the duration
   2770 	 * of active scans).
   2771 	 */
   2772 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
   2773 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2774 
   2775 	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
   2776 		hdr->crc_threshold = htole16(1);
   2777 		/* send probe requests at 6Mbps */
   2778 		hdr->cmd.rate = wpi_plcp_signal(12);
   2779 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   2780 	} else {
   2781 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2782 		/* send probe requests at 1Mbps */
   2783 		hdr->cmd.rate = wpi_plcp_signal(2);
   2784 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   2785 	}
   2786 
   2787 	/* for directed scans, firmware inserts the essid IE itself */
   2788 	if (ic->ic_des_esslen != 0) {
   2789 		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2790 		hdr->essid[0].len = ic->ic_des_esslen;
   2791 		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2792 	}
   2793 
   2794 	/*
   2795 	 * Build a probe request frame.  Most of the following code is a
   2796 	 * copy & paste of what is done in net80211.
   2797 	 */
   2798 	wh = (struct ieee80211_frame *)(hdr + 1);
   2799 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2800 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2801 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2802 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2803 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2804 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2805 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2806 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2807 
   2808 	frm = (uint8_t *)(wh + 1);
   2809 
   2810 	/* add empty essid IE (firmware generates it for directed scans) */
   2811 	*frm++ = IEEE80211_ELEMID_SSID;
   2812 	*frm++ = 0;
   2813 
   2814 	/* add supported rates IE */
   2815 	*frm++ = IEEE80211_ELEMID_RATES;
   2816 	nrates = rs->rs_nrates;
   2817 	if (nrates > IEEE80211_RATE_SIZE)
   2818 		nrates = IEEE80211_RATE_SIZE;
   2819 	*frm++ = nrates;
   2820 	memcpy(frm, rs->rs_rates, nrates);
   2821 	frm += nrates;
   2822 
   2823 	/* add supported xrates IE */
   2824 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2825 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2826 		*frm++ = IEEE80211_ELEMID_XRATES;
   2827 		*frm++ = nrates;
   2828 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2829 		frm += nrates;
   2830 	}
   2831 
   2832 	/* setup length of probe request */
   2833 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
   2834 
   2835 	chan = (struct wpi_scan_chan *)frm;
   2836 	c = ic->ic_curchan;
   2837 
   2838 	chan->chan = ieee80211_chan2ieee(ic, c);
   2839 	chan->flags = 0;
   2840 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2841 		chan->flags |= WPI_CHAN_ACTIVE;
   2842 		if (ic->ic_des_esslen != 0)
   2843 			chan->flags |= WPI_CHAN_DIRECT;
   2844 	}
   2845 	chan->dsp_gain = 0x6e;
   2846 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2847 		chan->rf_gain = 0x3b;
   2848 		chan->active  = htole16(10);
   2849 		chan->passive = htole16(110);
   2850 	} else {
   2851 		chan->rf_gain = 0x28;
   2852 		chan->active  = htole16(20);
   2853 		chan->passive = htole16(120);
   2854 	}
   2855 	hdr->nchan++;
   2856 	chan++;
   2857 
   2858 	frm += sizeof (struct wpi_scan_chan);
   2859 
   2860 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2861 	pktlen = frm - (uint8_t *)cmd;
   2862 
   2863 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
   2864 	    BUS_DMA_NOWAIT);
   2865 	if (error != 0) {
   2866 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2867 		m_freem(data->m);
   2868 		data->m = NULL;
   2869 		return error;
   2870 	}
   2871 
   2872 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2873 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2874 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2875 
   2876 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2877 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2878 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2879 	    BUS_DMASYNC_PREWRITE);
   2880 
   2881 	/* kick cmd ring */
   2882 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2883 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2884 
   2885 	return 0;	/* will be notified async. of failure/success */
   2886 }
   2887 
   2888 static int
   2889 wpi_config(struct wpi_softc *sc)
   2890 {
   2891 	struct ieee80211com *ic = &sc->sc_ic;
   2892 	struct ifnet *ifp = ic->ic_ifp;
   2893 	struct wpi_power power;
   2894 	struct wpi_bluetooth bluetooth;
   2895 	struct wpi_node_info node;
   2896 	int error;
   2897 
   2898 	memset(&power, 0, sizeof power);
   2899 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2900 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2901 	if (error != 0) {
   2902 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2903 		return error;
   2904 	}
   2905 
   2906 	/* configure bluetooth coexistence */
   2907 	memset(&bluetooth, 0, sizeof bluetooth);
   2908 	bluetooth.flags = 3;
   2909 	bluetooth.lead = 0xaa;
   2910 	bluetooth.kill = 1;
   2911 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   2912 	    0);
   2913 	if (error != 0) {
   2914 		aprint_error_dev(sc->sc_dev,
   2915 			"could not configure bluetooth coexistence\n");
   2916 		return error;
   2917 	}
   2918 
   2919 	/* configure adapter */
   2920 	memset(&sc->config, 0, sizeof (struct wpi_config));
   2921 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2922 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   2923 	/* set default channel */
   2924 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
   2925 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2926 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
   2927 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2928 		    WPI_CONFIG_24GHZ);
   2929 	}
   2930 	sc->config.filter = 0;
   2931 	switch (ic->ic_opmode) {
   2932 	case IEEE80211_M_STA:
   2933 		sc->config.mode = WPI_MODE_STA;
   2934 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   2935 		break;
   2936 	case IEEE80211_M_IBSS:
   2937 	case IEEE80211_M_AHDEMO:
   2938 		sc->config.mode = WPI_MODE_IBSS;
   2939 		break;
   2940 	case IEEE80211_M_HOSTAP:
   2941 		sc->config.mode = WPI_MODE_HOSTAP;
   2942 		break;
   2943 	case IEEE80211_M_MONITOR:
   2944 		sc->config.mode = WPI_MODE_MONITOR;
   2945 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   2946 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   2947 		break;
   2948 	}
   2949 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   2950 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   2951 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2952 	    sizeof (struct wpi_config), 0);
   2953 	if (error != 0) {
   2954 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   2955 		return error;
   2956 	}
   2957 
   2958 	/* configuration has changed, set Tx power accordingly */
   2959 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
   2960 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2961 		return error;
   2962 	}
   2963 
   2964 	/* add broadcast node */
   2965 	memset(&node, 0, sizeof node);
   2966 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   2967 	node.id = WPI_ID_BROADCAST;
   2968 	node.rate = wpi_plcp_signal(2);
   2969 	node.action = htole32(WPI_ACTION_SET_RATE);
   2970 	node.antenna = WPI_ANTENNA_BOTH;
   2971 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   2972 	if (error != 0) {
   2973 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   2974 		return error;
   2975 	}
   2976 
   2977 	if ((error = wpi_mrr_setup(sc)) != 0) {
   2978 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   2979 		return error;
   2980 	}
   2981 
   2982 	return 0;
   2983 }
   2984 
   2985 static void
   2986 wpi_stop_master(struct wpi_softc *sc)
   2987 {
   2988 	uint32_t tmp;
   2989 	int ntries;
   2990 
   2991 	tmp = WPI_READ(sc, WPI_RESET);
   2992 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   2993 
   2994 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   2995 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   2996 		return;	/* already asleep */
   2997 
   2998 	for (ntries = 0; ntries < 100; ntries++) {
   2999 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   3000 			break;
   3001 		DELAY(10);
   3002 	}
   3003 	if (ntries == 100) {
   3004 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   3005 	}
   3006 }
   3007 
   3008 static int
   3009 wpi_power_up(struct wpi_softc *sc)
   3010 {
   3011 	uint32_t tmp;
   3012 	int ntries;
   3013 
   3014 	wpi_mem_lock(sc);
   3015 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   3016 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   3017 	wpi_mem_unlock(sc);
   3018 
   3019 	for (ntries = 0; ntries < 5000; ntries++) {
   3020 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   3021 			break;
   3022 		DELAY(10);
   3023 	}
   3024 	if (ntries == 5000) {
   3025 		aprint_error_dev(sc->sc_dev,
   3026 		    "timeout waiting for NIC to power up\n");
   3027 		return ETIMEDOUT;
   3028 	}
   3029 	return 0;
   3030 }
   3031 
   3032 static int
   3033 wpi_reset(struct wpi_softc *sc)
   3034 {
   3035 	uint32_t tmp;
   3036 	int ntries;
   3037 
   3038 	/* clear any pending interrupts */
   3039 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3040 
   3041 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   3042 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   3043 
   3044 	tmp = WPI_READ(sc, WPI_CHICKEN);
   3045 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   3046 
   3047 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   3048 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   3049 
   3050 	/* wait for clock stabilization */
   3051 	for (ntries = 0; ntries < 1000; ntries++) {
   3052 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   3053 			break;
   3054 		DELAY(10);
   3055 	}
   3056 	if (ntries == 1000) {
   3057 		aprint_error_dev(sc->sc_dev,
   3058 		    "timeout waiting for clock stabilization\n");
   3059 		return ETIMEDOUT;
   3060 	}
   3061 
   3062 	/* initialize EEPROM */
   3063 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   3064 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   3065 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   3066 		return EIO;
   3067 	}
   3068 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   3069 
   3070 	return 0;
   3071 }
   3072 
   3073 static void
   3074 wpi_hw_config(struct wpi_softc *sc)
   3075 {
   3076 	uint32_t rev, hw;
   3077 
   3078 	/* voodoo from the reference driver */
   3079 	hw = WPI_READ(sc, WPI_HWCONFIG);
   3080 
   3081 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   3082 	rev = PCI_REVISION(rev);
   3083 	if ((rev & 0xc0) == 0x40)
   3084 		hw |= WPI_HW_ALM_MB;
   3085 	else if (!(rev & 0x80))
   3086 		hw |= WPI_HW_ALM_MM;
   3087 
   3088 	if (sc->cap == 0x80)
   3089 		hw |= WPI_HW_SKU_MRC;
   3090 
   3091 	hw &= ~WPI_HW_REV_D;
   3092 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   3093 		hw |= WPI_HW_REV_D;
   3094 
   3095 	if (sc->type > 1)
   3096 		hw |= WPI_HW_TYPE_B;
   3097 
   3098 	DPRINTF(("setting h/w config %x\n", hw));
   3099 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   3100 }
   3101 
   3102 static int
   3103 wpi_init(struct ifnet *ifp)
   3104 {
   3105 	struct wpi_softc *sc = ifp->if_softc;
   3106 	struct ieee80211com *ic = &sc->sc_ic;
   3107 	uint32_t tmp;
   3108 	int qid, ntries, error;
   3109 
   3110 	wpi_stop(ifp,1);
   3111 	(void)wpi_reset(sc);
   3112 
   3113 	wpi_mem_lock(sc);
   3114 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   3115 	DELAY(20);
   3116 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   3117 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   3118 	wpi_mem_unlock(sc);
   3119 
   3120 	(void)wpi_power_up(sc);
   3121 	wpi_hw_config(sc);
   3122 
   3123 	/* init Rx ring */
   3124 	wpi_mem_lock(sc);
   3125 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   3126 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   3127 	    offsetof(struct wpi_shared, next));
   3128 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3129 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3130 	wpi_mem_unlock(sc);
   3131 
   3132 	/* init Tx rings */
   3133 	wpi_mem_lock(sc);
   3134 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
   3135 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
   3136 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
   3137 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3138 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3139 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3140 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3141 
   3142 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3143 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3144 
   3145 	for (qid = 0; qid < 6; qid++) {
   3146 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3147 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3148 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3149 	}
   3150 	wpi_mem_unlock(sc);
   3151 
   3152 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3153 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3154 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3155 
   3156 	/* clear any pending interrupts */
   3157 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3158 	/* enable interrupts */
   3159 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3160 
   3161 	/* not sure why/if this is necessary... */
   3162 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3163 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3164 
   3165 	if ((error = wpi_load_firmware(sc)) != 0)
   3166 		/* wpi_load_firmware prints error messages for us.  */
   3167 		goto fail1;
   3168 
   3169 	/* Check the status of the radio switch */
   3170 	if (wpi_getrfkill(sc)) {
   3171 		aprint_error_dev(sc->sc_dev,
   3172 		    "radio is disabled by hardware switch\n");
   3173 		ifp->if_flags &= ~IFF_UP;
   3174 		error = EBUSY;
   3175 		goto fail1;
   3176 	}
   3177 
   3178 	/* wait for thermal sensors to calibrate */
   3179 	for (ntries = 0; ntries < 1000; ntries++) {
   3180 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3181 			break;
   3182 		DELAY(10);
   3183 	}
   3184 	if (ntries == 1000) {
   3185 		aprint_error_dev(sc->sc_dev,
   3186 		    "timeout waiting for thermal sensors calibration\n");
   3187 		error = ETIMEDOUT;
   3188 		goto fail1;
   3189 	}
   3190 	DPRINTF(("temperature %d\n", sc->temp));
   3191 
   3192 	if ((error = wpi_config(sc)) != 0) {
   3193 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3194 		goto fail1;
   3195 	}
   3196 
   3197 	ifp->if_flags &= ~IFF_OACTIVE;
   3198 	ifp->if_flags |= IFF_RUNNING;
   3199 
   3200 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3201 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3202 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3203 	}
   3204 	else
   3205 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3206 
   3207 	return 0;
   3208 
   3209 fail1:	wpi_stop(ifp, 1);
   3210 	return error;
   3211 }
   3212 
   3213 static void
   3214 wpi_stop(struct ifnet *ifp, int disable)
   3215 {
   3216 	struct wpi_softc *sc = ifp->if_softc;
   3217 	struct ieee80211com *ic = &sc->sc_ic;
   3218 	uint32_t tmp;
   3219 	int ac;
   3220 
   3221 	ifp->if_timer = sc->sc_tx_timer = 0;
   3222 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3223 
   3224 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3225 
   3226 	/* disable interrupts */
   3227 	WPI_WRITE(sc, WPI_MASK, 0);
   3228 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3229 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3230 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3231 
   3232 	wpi_mem_lock(sc);
   3233 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3234 	wpi_mem_unlock(sc);
   3235 
   3236 	/* reset all Tx rings */
   3237 	for (ac = 0; ac < 4; ac++)
   3238 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3239 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3240 
   3241 	/* reset Rx ring */
   3242 	wpi_reset_rx_ring(sc, &sc->rxq);
   3243 
   3244 	wpi_mem_lock(sc);
   3245 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3246 	wpi_mem_unlock(sc);
   3247 
   3248 	DELAY(5);
   3249 
   3250 	wpi_stop_master(sc);
   3251 
   3252 	tmp = WPI_READ(sc, WPI_RESET);
   3253 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3254 }
   3255 
   3256 static bool
   3257 wpi_resume(device_t dv, const pmf_qual_t *qual)
   3258 {
   3259 	struct wpi_softc *sc = device_private(dv);
   3260 
   3261 	(void)wpi_reset(sc);
   3262 
   3263 	return true;
   3264 }
   3265 
   3266 /*
   3267  * Return whether or not the radio is enabled in hardware
   3268  * (i.e. the rfkill switch is "off").
   3269  */
   3270 static int
   3271 wpi_getrfkill(struct wpi_softc *sc)
   3272 {
   3273 	uint32_t tmp;
   3274 
   3275 	wpi_mem_lock(sc);
   3276 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3277 	wpi_mem_unlock(sc);
   3278 
   3279 	return !(tmp & 0x01);
   3280 }
   3281 
   3282 static int
   3283 wpi_sysctl_radio(SYSCTLFN_ARGS)
   3284 {
   3285 	struct sysctlnode node;
   3286 	struct wpi_softc *sc;
   3287 	int val, error;
   3288 
   3289 	node = *rnode;
   3290 	sc = (struct wpi_softc *)node.sysctl_data;
   3291 
   3292 	val = !wpi_getrfkill(sc);
   3293 
   3294 	node.sysctl_data = &val;
   3295 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3296 
   3297 	if (error || newp == NULL)
   3298 		return error;
   3299 
   3300 	return 0;
   3301 }
   3302 
   3303 static void
   3304 wpi_sysctlattach(struct wpi_softc *sc)
   3305 {
   3306 	int rc;
   3307 	const struct sysctlnode *rnode;
   3308 	const struct sysctlnode *cnode;
   3309 
   3310 	struct sysctllog **clog = &sc->sc_sysctllog;
   3311 
   3312 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
   3313 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
   3314 	    SYSCTL_DESCR("wpi controls and statistics"),
   3315 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
   3316 		goto err;
   3317 
   3318 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3319 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
   3320 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
   3321 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
   3322 		goto err;
   3323 
   3324 #ifdef WPI_DEBUG
   3325 	/* control debugging printfs */
   3326 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3327 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
   3328 	    "debug", SYSCTL_DESCR("Enable debugging output"),
   3329 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
   3330 		goto err;
   3331 #endif
   3332 
   3333 	return;
   3334 err:
   3335 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3336 }
   3337