Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.72
      1 /*	$NetBSD: if_wpi.c,v 1.72 2016/05/26 05:01:12 ozaki-r Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007
      5  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.72 2016/05/26 05:01:12 ozaki-r Exp $");
     22 
     23 /*
     24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25  */
     26 
     27 
     28 #include <sys/param.h>
     29 #include <sys/sockio.h>
     30 #include <sys/sysctl.h>
     31 #include <sys/mbuf.h>
     32 #include <sys/kernel.h>
     33 #include <sys/socket.h>
     34 #include <sys/systm.h>
     35 #include <sys/malloc.h>
     36 #include <sys/mutex.h>
     37 #include <sys/once.h>
     38 #include <sys/conf.h>
     39 #include <sys/kauth.h>
     40 #include <sys/callout.h>
     41 #include <sys/proc.h>
     42 #include <sys/kthread.h>
     43 
     44 #include <sys/bus.h>
     45 #include <machine/endian.h>
     46 #include <sys/intr.h>
     47 
     48 #include <dev/pci/pcireg.h>
     49 #include <dev/pci/pcivar.h>
     50 #include <dev/pci/pcidevs.h>
     51 
     52 #include <dev/sysmon/sysmonvar.h>
     53 
     54 #include <net/bpf.h>
     55 #include <net/if.h>
     56 #include <net/if_arp.h>
     57 #include <net/if_dl.h>
     58 #include <net/if_ether.h>
     59 #include <net/if_media.h>
     60 #include <net/if_types.h>
     61 
     62 #include <netinet/in.h>
     63 #include <netinet/in_systm.h>
     64 #include <netinet/in_var.h>
     65 #include <netinet/ip.h>
     66 
     67 #include <net80211/ieee80211_var.h>
     68 #include <net80211/ieee80211_amrr.h>
     69 #include <net80211/ieee80211_radiotap.h>
     70 
     71 #include <dev/firmload.h>
     72 
     73 #include <dev/pci/if_wpireg.h>
     74 #include <dev/pci/if_wpivar.h>
     75 
     76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
     77 static once_t wpi_firmware_init;
     78 static kmutex_t wpi_firmware_mutex;
     79 static size_t wpi_firmware_users;
     80 static uint8_t *wpi_firmware_image;
     81 static size_t wpi_firmware_size;
     82 
     83 static int	wpi_match(device_t, cfdata_t, void *);
     84 static void	wpi_attach(device_t, device_t, void *);
     85 static int	wpi_detach(device_t , int);
     86 static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
     87 		    void **, bus_size_t, bus_size_t, int);
     88 static void	wpi_dma_contig_free(struct wpi_dma_info *);
     89 static int	wpi_alloc_shared(struct wpi_softc *);
     90 static void	wpi_free_shared(struct wpi_softc *);
     91 static int	wpi_alloc_fwmem(struct wpi_softc *);
     92 static void	wpi_free_fwmem(struct wpi_softc *);
     93 static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
     94 static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
     95 static int	wpi_alloc_rpool(struct wpi_softc *);
     96 static void	wpi_free_rpool(struct wpi_softc *);
     97 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
     98 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
     99 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    100 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
    101 		    int, int);
    102 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    103 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    104 static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    105 static void	wpi_newassoc(struct ieee80211_node *, int);
    106 static int	wpi_media_change(struct ifnet *);
    107 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    108 static void	wpi_mem_lock(struct wpi_softc *);
    109 static void	wpi_mem_unlock(struct wpi_softc *);
    110 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
    111 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    112 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    113 		    const uint32_t *, int);
    114 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    115 static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    116 static int	wpi_cache_firmware(struct wpi_softc *);
    117 static void	wpi_release_firmware(void);
    118 static int	wpi_load_firmware(struct wpi_softc *);
    119 static void	wpi_calib_timeout(void *);
    120 static void	wpi_iter_func(void *, struct ieee80211_node *);
    121 static void	wpi_power_calibration(struct wpi_softc *, int);
    122 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    123 		    struct wpi_rx_data *);
    124 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    125 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    126 static void	wpi_notif_intr(struct wpi_softc *);
    127 static int	wpi_intr(void *);
    128 static void	wpi_read_eeprom(struct wpi_softc *);
    129 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
    130 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
    131 static uint8_t	wpi_plcp_signal(int);
    132 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
    133 		    struct ieee80211_node *, int);
    134 static void	wpi_start(struct ifnet *);
    135 static void	wpi_watchdog(struct ifnet *);
    136 static int	wpi_ioctl(struct ifnet *, u_long, void *);
    137 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    138 static int	wpi_wme_update(struct ieee80211com *);
    139 static int	wpi_mrr_setup(struct wpi_softc *);
    140 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    141 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    142 static int	wpi_set_txpower(struct wpi_softc *,
    143 		    struct ieee80211_channel *, int);
    144 static int	wpi_get_power_index(struct wpi_softc *,
    145 		    struct wpi_power_group *, struct ieee80211_channel *, int);
    146 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    147 static int	wpi_auth(struct wpi_softc *);
    148 static int	wpi_scan(struct wpi_softc *);
    149 static int	wpi_config(struct wpi_softc *);
    150 static void	wpi_stop_master(struct wpi_softc *);
    151 static int	wpi_power_up(struct wpi_softc *);
    152 static int	wpi_reset(struct wpi_softc *);
    153 static void	wpi_hw_config(struct wpi_softc *);
    154 static int	wpi_init(struct ifnet *);
    155 static void	wpi_stop(struct ifnet *, int);
    156 static bool	wpi_resume(device_t, const pmf_qual_t *);
    157 static int	wpi_getrfkill(struct wpi_softc *);
    158 static void	wpi_sysctlattach(struct wpi_softc *);
    159 static void	wpi_rsw_thread(void *);
    160 
    161 #ifdef WPI_DEBUG
    162 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
    163 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
    164 int wpi_debug = 1;
    165 #else
    166 #define DPRINTF(x)
    167 #define DPRINTFN(n, x)
    168 #endif
    169 
    170 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    171 	wpi_detach, NULL);
    172 
    173 static int
    174 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
    175 {
    176 	struct pci_attach_args *pa = aux;
    177 
    178 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    179 		return 0;
    180 
    181 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    182 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    183 		return 1;
    184 
    185 	return 0;
    186 }
    187 
    188 /* Base Address Register */
    189 #define WPI_PCI_BAR0	0x10
    190 
    191 static int
    192 wpi_attach_once(void)
    193 {
    194 
    195 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
    196 	return 0;
    197 }
    198 
    199 static void
    200 wpi_attach(device_t parent __unused, device_t self, void *aux)
    201 {
    202 	struct wpi_softc *sc = device_private(self);
    203 	struct ieee80211com *ic = &sc->sc_ic;
    204 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    205 	struct pci_attach_args *pa = aux;
    206 	const char *intrstr;
    207 	bus_space_tag_t memt;
    208 	bus_space_handle_t memh;
    209 	pci_intr_handle_t ih;
    210 	pcireg_t data;
    211 	int ac, error;
    212 	char intrbuf[PCI_INTRSTR_LEN];
    213 
    214 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
    215 	sc->fw_used = false;
    216 
    217 	sc->sc_dev = self;
    218 	sc->sc_pct = pa->pa_pc;
    219 	sc->sc_pcitag = pa->pa_tag;
    220 
    221 	sc->sc_rsw_status = WPI_RSW_UNKNOWN;
    222 	sc->sc_rsw.smpsw_name = device_xname(self);
    223 	sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
    224 	error = sysmon_pswitch_register(&sc->sc_rsw);
    225 	if (error) {
    226 		aprint_error_dev(self,
    227 		    "unable to register radio switch with sysmon\n");
    228 		return;
    229 	}
    230 	mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
    231 	cv_init(&sc->sc_rsw_cv, "wpirsw");
    232 	if (kthread_create(PRI_NONE, 0, NULL,
    233 	    wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
    234 		aprint_error_dev(self, "couldn't create switch thread\n");
    235 	}
    236 
    237 	callout_init(&sc->calib_to, 0);
    238 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    239 
    240 	pci_aprint_devinfo(pa, NULL);
    241 
    242 	/* enable bus-mastering */
    243 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    244 	data |= PCI_COMMAND_MASTER_ENABLE;
    245 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    246 
    247 	/* map the register window */
    248 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    249 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    250 	if (error != 0) {
    251 		aprint_error_dev(self, "could not map memory space\n");
    252 		return;
    253 	}
    254 
    255 	sc->sc_st = memt;
    256 	sc->sc_sh = memh;
    257 	sc->sc_dmat = pa->pa_dmat;
    258 
    259 	if (pci_intr_map(pa, &ih) != 0) {
    260 		aprint_error_dev(self, "could not map interrupt\n");
    261 		return;
    262 	}
    263 
    264 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
    265 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
    266 	if (sc->sc_ih == NULL) {
    267 		aprint_error_dev(self, "could not establish interrupt");
    268 		if (intrstr != NULL)
    269 			aprint_error(" at %s", intrstr);
    270 		aprint_error("\n");
    271 		return;
    272 	}
    273 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    274 
    275 	/*
    276 	 * Put adapter into a known state.
    277 	 */
    278 	if ((error = wpi_reset(sc)) != 0) {
    279 		aprint_error_dev(self, "could not reset adapter\n");
    280 		return;
    281 	}
    282 
    283 	/*
    284 	 * Allocate DMA memory for firmware transfers.
    285 	 */
    286 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
    287 		aprint_error_dev(self, "could not allocate firmware memory\n");
    288 		return;
    289 	}
    290 
    291 	/*
    292 	 * Allocate shared page and Tx/Rx rings.
    293 	 */
    294 	if ((error = wpi_alloc_shared(sc)) != 0) {
    295 		aprint_error_dev(self, "could not allocate shared area\n");
    296 		goto fail1;
    297 	}
    298 
    299 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    300 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    301 		goto fail2;
    302 	}
    303 
    304 	for (ac = 0; ac < 4; ac++) {
    305 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
    306 		    ac);
    307 		if (error != 0) {
    308 			aprint_error_dev(self,
    309 			    "could not allocate Tx ring %d\n", ac);
    310 			goto fail3;
    311 		}
    312 	}
    313 
    314 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    315 	if (error != 0) {
    316 		aprint_error_dev(self, "could not allocate command ring\n");
    317 		goto fail3;
    318 	}
    319 
    320 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
    321 	if (error != 0) {
    322 		aprint_error_dev(self, "could not allocate Rx ring\n");
    323 		goto fail4;
    324 	}
    325 
    326 	ic->ic_ifp = ifp;
    327 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    328 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    329 	ic->ic_state = IEEE80211_S_INIT;
    330 
    331 	/* set device capabilities */
    332 	ic->ic_caps =
    333 	    IEEE80211_C_WPA |		/* 802.11i */
    334 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    335 	    IEEE80211_C_TXPMGT |	/* tx power management */
    336 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    337 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    338 	    IEEE80211_C_WME;		/* 802.11e */
    339 
    340 	/* read supported channels and MAC address from EEPROM */
    341 	wpi_read_eeprom(sc);
    342 
    343 	/* set supported .11a, .11b and .11g rates */
    344 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
    345 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    346 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    347 
    348 	/* IBSS channel undefined for now */
    349 	ic->ic_ibss_chan = &ic->ic_channels[0];
    350 
    351 	ifp->if_softc = sc;
    352 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    353 	ifp->if_init = wpi_init;
    354 	ifp->if_stop = wpi_stop;
    355 	ifp->if_ioctl = wpi_ioctl;
    356 	ifp->if_start = wpi_start;
    357 	ifp->if_watchdog = wpi_watchdog;
    358 	IFQ_SET_READY(&ifp->if_snd);
    359 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    360 
    361 	if_attach(ifp);
    362 	ieee80211_ifattach(ic);
    363 	/* override default methods */
    364 	ic->ic_node_alloc = wpi_node_alloc;
    365 	ic->ic_newassoc = wpi_newassoc;
    366 	ic->ic_wme.wme_update = wpi_wme_update;
    367 
    368 	/* override state transition machine */
    369 	sc->sc_newstate = ic->ic_newstate;
    370 	ic->ic_newstate = wpi_newstate;
    371 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
    372 
    373 	sc->amrr.amrr_min_success_threshold =  1;
    374 	sc->amrr.amrr_max_success_threshold = 15;
    375 
    376 	wpi_sysctlattach(sc);
    377 
    378 	if (pmf_device_register(self, NULL, wpi_resume))
    379 		pmf_class_network_register(self, ifp);
    380 	else
    381 		aprint_error_dev(self, "couldn't establish power handler\n");
    382 
    383 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    384 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    385 	    &sc->sc_drvbpf);
    386 
    387 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    388 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    389 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    390 
    391 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    392 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    393 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    394 
    395 	ieee80211_announce(ic);
    396 
    397 	return;
    398 
    399 	/* free allocated memory if something failed during attachment */
    400 fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
    401 fail3:	while (--ac >= 0)
    402 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    403 	wpi_free_rpool(sc);
    404 fail2:	wpi_free_shared(sc);
    405 fail1:	wpi_free_fwmem(sc);
    406 }
    407 
    408 static int
    409 wpi_detach(device_t self, int flags __unused)
    410 {
    411 	struct wpi_softc *sc = device_private(self);
    412 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    413 	int ac;
    414 
    415 	wpi_stop(ifp, 1);
    416 
    417 	if (ifp != NULL)
    418 		bpf_detach(ifp);
    419 	ieee80211_ifdetach(&sc->sc_ic);
    420 	if (ifp != NULL)
    421 		if_detach(ifp);
    422 
    423 	for (ac = 0; ac < 4; ac++)
    424 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    425 	wpi_free_tx_ring(sc, &sc->cmdq);
    426 	wpi_free_rx_ring(sc, &sc->rxq);
    427 	wpi_free_rpool(sc);
    428 	wpi_free_shared(sc);
    429 
    430 	if (sc->sc_ih != NULL) {
    431 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    432 		sc->sc_ih = NULL;
    433 	}
    434 	mutex_enter(&sc->sc_rsw_mtx);
    435 	sc->sc_dying = 1;
    436 	cv_signal(&sc->sc_rsw_cv);
    437 	while (sc->sc_rsw_lwp != NULL)
    438 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
    439 	mutex_exit(&sc->sc_rsw_mtx);
    440 	sysmon_pswitch_unregister(&sc->sc_rsw);
    441 
    442 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    443 
    444 	if (sc->fw_used) {
    445 		sc->fw_used = false;
    446 		wpi_release_firmware();
    447 	}
    448 	cv_destroy(&sc->sc_rsw_cv);
    449 	mutex_destroy(&sc->sc_rsw_mtx);
    450 	return 0;
    451 }
    452 
    453 static int
    454 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
    455     bus_size_t size, bus_size_t alignment, int flags)
    456 {
    457 	int nsegs, error;
    458 
    459 	dma->tag = tag;
    460 	dma->size = size;
    461 
    462 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    463 	if (error != 0)
    464 		goto fail;
    465 
    466 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    467 	    flags);
    468 	if (error != 0)
    469 		goto fail;
    470 
    471 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    472 	if (error != 0)
    473 		goto fail;
    474 
    475 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    476 	if (error != 0)
    477 		goto fail;
    478 
    479 	memset(dma->vaddr, 0, size);
    480 	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
    481 
    482 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    483 	if (kvap != NULL)
    484 		*kvap = dma->vaddr;
    485 
    486 	return 0;
    487 
    488 fail:	wpi_dma_contig_free(dma);
    489 	return error;
    490 }
    491 
    492 static void
    493 wpi_dma_contig_free(struct wpi_dma_info *dma)
    494 {
    495 	if (dma->map != NULL) {
    496 		if (dma->vaddr != NULL) {
    497 			bus_dmamap_unload(dma->tag, dma->map);
    498 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    499 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    500 			dma->vaddr = NULL;
    501 		}
    502 		bus_dmamap_destroy(dma->tag, dma->map);
    503 		dma->map = NULL;
    504 	}
    505 }
    506 
    507 /*
    508  * Allocate a shared page between host and NIC.
    509  */
    510 static int
    511 wpi_alloc_shared(struct wpi_softc *sc)
    512 {
    513 	int error;
    514 
    515 	/* must be aligned on a 4K-page boundary */
    516 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    517 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
    518 	    BUS_DMA_NOWAIT);
    519 	if (error != 0)
    520 		aprint_error_dev(sc->sc_dev,
    521 		    "could not allocate shared area DMA memory\n");
    522 
    523 	return error;
    524 }
    525 
    526 static void
    527 wpi_free_shared(struct wpi_softc *sc)
    528 {
    529 	wpi_dma_contig_free(&sc->shared_dma);
    530 }
    531 
    532 /*
    533  * Allocate DMA-safe memory for firmware transfer.
    534  */
    535 static int
    536 wpi_alloc_fwmem(struct wpi_softc *sc)
    537 {
    538 	int error;
    539 
    540 	/* allocate enough contiguous space to store text and data */
    541 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    542 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    543 	    BUS_DMA_NOWAIT);
    544 
    545 	if (error != 0)
    546 		aprint_error_dev(sc->sc_dev,
    547 		    "could not allocate firmware transfer area DMA memory\n");
    548 	return error;
    549 }
    550 
    551 static void
    552 wpi_free_fwmem(struct wpi_softc *sc)
    553 {
    554 	wpi_dma_contig_free(&sc->fw_dma);
    555 }
    556 
    557 static struct wpi_rbuf *
    558 wpi_alloc_rbuf(struct wpi_softc *sc)
    559 {
    560 	struct wpi_rbuf *rbuf;
    561 
    562 	mutex_enter(&sc->rxq.freelist_mtx);
    563 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    564 	if (rbuf != NULL) {
    565 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    566 	}
    567 	mutex_exit(&sc->rxq.freelist_mtx);
    568 
    569 	return rbuf;
    570 }
    571 
    572 /*
    573  * This is called automatically by the network stack when the mbuf to which our
    574  * Rx buffer is attached is freed.
    575  */
    576 static void
    577 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    578 {
    579 	struct wpi_rbuf *rbuf = arg;
    580 	struct wpi_softc *sc = rbuf->sc;
    581 
    582 	/* put the buffer back in the free list */
    583 
    584 	mutex_enter(&sc->rxq.freelist_mtx);
    585 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    586 	mutex_exit(&sc->rxq.freelist_mtx);
    587 
    588 	if (__predict_true(m != NULL))
    589 		pool_cache_put(mb_cache, m);
    590 }
    591 
    592 static int
    593 wpi_alloc_rpool(struct wpi_softc *sc)
    594 {
    595 	struct wpi_rx_ring *ring = &sc->rxq;
    596 	int i, error;
    597 
    598 	/* allocate a big chunk of DMA'able memory.. */
    599 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    600 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    601 	if (error != 0) {
    602 		aprint_normal_dev(sc->sc_dev,
    603 		    "could not allocate Rx buffers DMA memory\n");
    604 		return error;
    605 	}
    606 
    607 	/* ..and split it into 3KB chunks */
    608 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
    609 	SLIST_INIT(&ring->freelist);
    610 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    611 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
    612 
    613 		rbuf->sc = sc;	/* backpointer for callbacks */
    614 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    615 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    616 
    617 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    618 	}
    619 
    620 	return 0;
    621 }
    622 
    623 static void
    624 wpi_free_rpool(struct wpi_softc *sc)
    625 {
    626 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    627 }
    628 
    629 static int
    630 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    631 {
    632 	bus_size_t size;
    633 	int i, error;
    634 
    635 	ring->cur = 0;
    636 
    637 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
    638 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    639 	    (void **)&ring->desc, size,
    640 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    641 	if (error != 0) {
    642 		aprint_error_dev(sc->sc_dev,
    643 		    "could not allocate rx ring DMA memory\n");
    644 		goto fail;
    645 	}
    646 
    647 	/*
    648 	 * Setup Rx buffers.
    649 	 */
    650 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    651 		struct wpi_rx_data *data = &ring->data[i];
    652 		struct wpi_rbuf *rbuf;
    653 
    654 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
    655 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
    656 		if (error) {
    657 			aprint_error_dev(sc->sc_dev,
    658 			    "could not allocate rx dma map\n");
    659 			goto fail;
    660 		}
    661 
    662 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    663 		if (data->m == NULL) {
    664 			aprint_error_dev(sc->sc_dev,
    665 			    "could not allocate rx mbuf\n");
    666 			error = ENOMEM;
    667 			goto fail;
    668 		}
    669 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    670 			m_freem(data->m);
    671 			data->m = NULL;
    672 			aprint_error_dev(sc->sc_dev,
    673 			    "could not allocate rx cluster\n");
    674 			error = ENOMEM;
    675 			goto fail;
    676 		}
    677 		/* attach Rx buffer to mbuf */
    678 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    679 		    rbuf);
    680 		data->m->m_flags |= M_EXT_RW;
    681 
    682 		error = bus_dmamap_load(sc->sc_dmat, data->map,
    683 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
    684 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
    685 		if (error) {
    686 			aprint_error_dev(sc->sc_dev,
    687 			    "could not load mbuf: %d\n", error);
    688 			goto fail;
    689 		}
    690 
    691 		ring->desc[i] = htole32(rbuf->paddr);
    692 	}
    693 
    694 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
    695 	    BUS_DMASYNC_PREWRITE);
    696 
    697 	return 0;
    698 
    699 fail:	wpi_free_rx_ring(sc, ring);
    700 	return error;
    701 }
    702 
    703 static void
    704 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    705 {
    706 	int ntries;
    707 
    708 	wpi_mem_lock(sc);
    709 
    710 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    711 	for (ntries = 0; ntries < 100; ntries++) {
    712 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    713 			break;
    714 		DELAY(10);
    715 	}
    716 #ifdef WPI_DEBUG
    717 	if (ntries == 100 && wpi_debug > 0)
    718 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    719 #endif
    720 	wpi_mem_unlock(sc);
    721 
    722 	ring->cur = 0;
    723 }
    724 
    725 static void
    726 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    727 {
    728 	int i;
    729 
    730 	wpi_dma_contig_free(&ring->desc_dma);
    731 
    732 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    733 		if (ring->data[i].m != NULL) {
    734 			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
    735 			m_freem(ring->data[i].m);
    736 		}
    737 		if (ring->data[i].map != NULL) {
    738 			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
    739 		}
    740 	}
    741 }
    742 
    743 static int
    744 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    745     int qid)
    746 {
    747 	int i, error;
    748 
    749 	ring->qid = qid;
    750 	ring->count = count;
    751 	ring->queued = 0;
    752 	ring->cur = 0;
    753 
    754 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    755 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    756 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    757 	if (error != 0) {
    758 		aprint_error_dev(sc->sc_dev,
    759 		    "could not allocate tx ring DMA memory\n");
    760 		goto fail;
    761 	}
    762 
    763 	/* update shared page with ring's base address */
    764 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    765 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
    766 	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
    767 
    768 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    769 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
    770 	    BUS_DMA_NOWAIT);
    771 	if (error != 0) {
    772 		aprint_error_dev(sc->sc_dev,
    773 		    "could not allocate tx cmd DMA memory\n");
    774 		goto fail;
    775 	}
    776 
    777 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    778 	    M_NOWAIT | M_ZERO);
    779 	if (ring->data == NULL) {
    780 		aprint_error_dev(sc->sc_dev,
    781 		    "could not allocate tx data slots\n");
    782 		goto fail;
    783 	}
    784 
    785 	for (i = 0; i < count; i++) {
    786 		struct wpi_tx_data *data = &ring->data[i];
    787 
    788 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    789 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    790 		    &data->map);
    791 		if (error != 0) {
    792 			aprint_error_dev(sc->sc_dev,
    793 			    "could not create tx buf DMA map\n");
    794 			goto fail;
    795 		}
    796 	}
    797 
    798 	return 0;
    799 
    800 fail:	wpi_free_tx_ring(sc, ring);
    801 	return error;
    802 }
    803 
    804 static void
    805 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    806 {
    807 	int i, ntries;
    808 
    809 	wpi_mem_lock(sc);
    810 
    811 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    812 	for (ntries = 0; ntries < 100; ntries++) {
    813 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    814 			break;
    815 		DELAY(10);
    816 	}
    817 #ifdef WPI_DEBUG
    818 	if (ntries == 100 && wpi_debug > 0) {
    819 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    820 		    ring->qid);
    821 	}
    822 #endif
    823 	wpi_mem_unlock(sc);
    824 
    825 	for (i = 0; i < ring->count; i++) {
    826 		struct wpi_tx_data *data = &ring->data[i];
    827 
    828 		if (data->m != NULL) {
    829 			bus_dmamap_unload(sc->sc_dmat, data->map);
    830 			m_freem(data->m);
    831 			data->m = NULL;
    832 		}
    833 	}
    834 
    835 	ring->queued = 0;
    836 	ring->cur = 0;
    837 }
    838 
    839 static void
    840 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    841 {
    842 	int i;
    843 
    844 	wpi_dma_contig_free(&ring->desc_dma);
    845 	wpi_dma_contig_free(&ring->cmd_dma);
    846 
    847 	if (ring->data != NULL) {
    848 		for (i = 0; i < ring->count; i++) {
    849 			struct wpi_tx_data *data = &ring->data[i];
    850 
    851 			if (data->m != NULL) {
    852 				bus_dmamap_unload(sc->sc_dmat, data->map);
    853 				m_freem(data->m);
    854 			}
    855 		}
    856 		free(ring->data, M_DEVBUF);
    857 	}
    858 }
    859 
    860 /*ARGUSED*/
    861 static struct ieee80211_node *
    862 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    863 {
    864 	struct wpi_node *wn;
    865 
    866 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
    867 
    868 	return (struct ieee80211_node *)wn;
    869 }
    870 
    871 static void
    872 wpi_newassoc(struct ieee80211_node *ni, int isnew)
    873 {
    874 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    875 	int i;
    876 
    877 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    878 
    879 	/* set rate to some reasonable initial value */
    880 	for (i = ni->ni_rates.rs_nrates - 1;
    881 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    882 	     i--);
    883 	ni->ni_txrate = i;
    884 }
    885 
    886 static int
    887 wpi_media_change(struct ifnet *ifp)
    888 {
    889 	int error;
    890 
    891 	error = ieee80211_media_change(ifp);
    892 	if (error != ENETRESET)
    893 		return error;
    894 
    895 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    896 		wpi_init(ifp);
    897 
    898 	return 0;
    899 }
    900 
    901 static int
    902 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    903 {
    904 	struct ifnet *ifp = ic->ic_ifp;
    905 	struct wpi_softc *sc = ifp->if_softc;
    906 	struct ieee80211_node *ni;
    907 	enum ieee80211_state ostate = ic->ic_state;
    908 	int error;
    909 
    910 	callout_stop(&sc->calib_to);
    911 
    912 	switch (nstate) {
    913 	case IEEE80211_S_SCAN:
    914 
    915 		if (sc->is_scanning)
    916 			break;
    917 
    918 		sc->is_scanning = true;
    919 
    920 		if (ostate != IEEE80211_S_SCAN) {
    921 			/* make the link LED blink while we're scanning */
    922 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    923 		}
    924 
    925 		if ((error = wpi_scan(sc)) != 0) {
    926 			aprint_error_dev(sc->sc_dev,
    927 			    "could not initiate scan\n");
    928 			return error;
    929 		}
    930 		break;
    931 
    932 	case IEEE80211_S_ASSOC:
    933 		if (ic->ic_state != IEEE80211_S_RUN)
    934 			break;
    935 		/* FALLTHROUGH */
    936 	case IEEE80211_S_AUTH:
    937 		/* reset state to handle reassociations correctly */
    938 		sc->config.associd = 0;
    939 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    940 
    941 		if ((error = wpi_auth(sc)) != 0) {
    942 			aprint_error_dev(sc->sc_dev,
    943 			    "could not send authentication request\n");
    944 			return error;
    945 		}
    946 		break;
    947 
    948 	case IEEE80211_S_RUN:
    949 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    950 			/* link LED blinks while monitoring */
    951 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    952 			break;
    953 		}
    954 		ni = ic->ic_bss;
    955 
    956 		if (ic->ic_opmode != IEEE80211_M_STA) {
    957 			(void) wpi_auth(sc);    /* XXX */
    958 			wpi_setup_beacon(sc, ni);
    959 		}
    960 
    961 		wpi_enable_tsf(sc, ni);
    962 
    963 		/* update adapter's configuration */
    964 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    965 		/* short preamble/slot time are negotiated when associating */
    966 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
    967 		    WPI_CONFIG_SHSLOT);
    968 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
    969 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
    970 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
    971 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
    972 		sc->config.filter |= htole32(WPI_FILTER_BSS);
    973 		if (ic->ic_opmode != IEEE80211_M_STA)
    974 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
    975 
    976 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
    977 
    978 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
    979 		    sc->config.flags));
    980 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
    981 		    sizeof (struct wpi_config), 1);
    982 		if (error != 0) {
    983 			aprint_error_dev(sc->sc_dev,
    984 			    "could not update configuration\n");
    985 			return error;
    986 		}
    987 
    988 		/* configuration has changed, set Tx power accordingly */
    989 		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
    990 			aprint_error_dev(sc->sc_dev,
    991 			    "could not set Tx power\n");
    992 			return error;
    993 		}
    994 
    995 		if (ic->ic_opmode == IEEE80211_M_STA) {
    996 			/* fake a join to init the tx rate */
    997 			wpi_newassoc(ni, 1);
    998 		}
    999 
   1000 		/* start periodic calibration timer */
   1001 		sc->calib_cnt = 0;
   1002 		callout_schedule(&sc->calib_to, hz/2);
   1003 
   1004 		/* link LED always on while associated */
   1005 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
   1006 		break;
   1007 
   1008 	case IEEE80211_S_INIT:
   1009 		sc->is_scanning = false;
   1010 		break;
   1011 	}
   1012 
   1013 	return sc->sc_newstate(ic, nstate, arg);
   1014 }
   1015 
   1016 /*
   1017  * Grab exclusive access to NIC memory.
   1018  */
   1019 static void
   1020 wpi_mem_lock(struct wpi_softc *sc)
   1021 {
   1022 	uint32_t tmp;
   1023 	int ntries;
   1024 
   1025 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1026 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
   1027 
   1028 	/* spin until we actually get the lock */
   1029 	for (ntries = 0; ntries < 1000; ntries++) {
   1030 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
   1031 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
   1032 			break;
   1033 		DELAY(10);
   1034 	}
   1035 	if (ntries == 1000)
   1036 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
   1037 }
   1038 
   1039 /*
   1040  * Release lock on NIC memory.
   1041  */
   1042 static void
   1043 wpi_mem_unlock(struct wpi_softc *sc)
   1044 {
   1045 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1046 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1047 }
   1048 
   1049 static uint32_t
   1050 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1051 {
   1052 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1053 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1054 }
   1055 
   1056 static void
   1057 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1058 {
   1059 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1060 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1061 }
   1062 
   1063 static void
   1064 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1065     const uint32_t *data, int wlen)
   1066 {
   1067 	for (; wlen > 0; wlen--, data++, addr += 4)
   1068 		wpi_mem_write(sc, addr, *data);
   1069 }
   1070 
   1071 /*
   1072  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1073  * instead of using the traditional bit-bang method.
   1074  */
   1075 static int
   1076 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1077 {
   1078 	uint8_t *out = data;
   1079 	uint32_t val;
   1080 	int ntries;
   1081 
   1082 	wpi_mem_lock(sc);
   1083 	for (; len > 0; len -= 2, addr++) {
   1084 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1085 
   1086 		for (ntries = 0; ntries < 10; ntries++) {
   1087 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1088 			    WPI_EEPROM_READY)
   1089 				break;
   1090 			DELAY(5);
   1091 		}
   1092 		if (ntries == 10) {
   1093 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1094 			return ETIMEDOUT;
   1095 		}
   1096 		*out++ = val >> 16;
   1097 		if (len > 1)
   1098 			*out++ = val >> 24;
   1099 	}
   1100 	wpi_mem_unlock(sc);
   1101 
   1102 	return 0;
   1103 }
   1104 
   1105 /*
   1106  * The firmware boot code is small and is intended to be copied directly into
   1107  * the NIC internal memory.
   1108  */
   1109 int
   1110 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1111 {
   1112 	int ntries;
   1113 
   1114 	size /= sizeof (uint32_t);
   1115 
   1116 	wpi_mem_lock(sc);
   1117 
   1118 	/* copy microcode image into NIC memory */
   1119 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1120 	    (const uint32_t *)ucode, size);
   1121 
   1122 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1123 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1124 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1125 
   1126 	/* run microcode */
   1127 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1128 
   1129 	/* wait for transfer to complete */
   1130 	for (ntries = 0; ntries < 1000; ntries++) {
   1131 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1132 			break;
   1133 		DELAY(10);
   1134 	}
   1135 	if (ntries == 1000) {
   1136 		wpi_mem_unlock(sc);
   1137 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1138 		return ETIMEDOUT;
   1139 	}
   1140 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1141 
   1142 	wpi_mem_unlock(sc);
   1143 
   1144 	return 0;
   1145 }
   1146 
   1147 static int
   1148 wpi_cache_firmware(struct wpi_softc *sc)
   1149 {
   1150 	const char *const fwname = wpi_firmware_name;
   1151 	firmware_handle_t fw;
   1152 	int error;
   1153 
   1154 	/* sc is used here only to report error messages.  */
   1155 
   1156 	mutex_enter(&wpi_firmware_mutex);
   1157 
   1158 	if (wpi_firmware_users == SIZE_MAX) {
   1159 		mutex_exit(&wpi_firmware_mutex);
   1160 		return ENFILE;	/* Too many of something in the system...  */
   1161 	}
   1162 	if (wpi_firmware_users++) {
   1163 		KASSERT(wpi_firmware_image != NULL);
   1164 		KASSERT(wpi_firmware_size > 0);
   1165 		mutex_exit(&wpi_firmware_mutex);
   1166 		return 0;	/* Already good to go.  */
   1167 	}
   1168 
   1169 	KASSERT(wpi_firmware_image == NULL);
   1170 	KASSERT(wpi_firmware_size == 0);
   1171 
   1172 	/* load firmware image from disk */
   1173 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
   1174 		aprint_error_dev(sc->sc_dev,
   1175 		    "could not open firmware file %s: %d\n", fwname, error);
   1176 		goto fail0;
   1177 	}
   1178 
   1179 	wpi_firmware_size = firmware_get_size(fw);
   1180 
   1181 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
   1182 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
   1183 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
   1184 	    WPI_FW_BOOT_TEXT_MAXSZ) {
   1185 		aprint_error_dev(sc->sc_dev,
   1186 		    "firmware file %s too large: %zu bytes\n",
   1187 		    fwname, wpi_firmware_size);
   1188 		error = EFBIG;
   1189 		goto fail1;
   1190 	}
   1191 
   1192 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
   1193 		aprint_error_dev(sc->sc_dev,
   1194 		    "firmware file %s too small: %zu bytes\n",
   1195 		    fwname, wpi_firmware_size);
   1196 		error = EINVAL;
   1197 		goto fail1;
   1198 	}
   1199 
   1200 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
   1201 	if (wpi_firmware_image == NULL) {
   1202 		aprint_error_dev(sc->sc_dev,
   1203 		    "not enough memory for firmware file %s\n", fwname);
   1204 		error = ENOMEM;
   1205 		goto fail1;
   1206 	}
   1207 
   1208 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
   1209 	if (error != 0) {
   1210 		aprint_error_dev(sc->sc_dev,
   1211 		    "error reading firmware file %s: %d\n", fwname, error);
   1212 		goto fail2;
   1213 	}
   1214 
   1215 	/* Success!  */
   1216 	firmware_close(fw);
   1217 	mutex_exit(&wpi_firmware_mutex);
   1218 	return 0;
   1219 
   1220 fail2:
   1221 	firmware_free(wpi_firmware_image, wpi_firmware_size);
   1222 	wpi_firmware_image = NULL;
   1223 fail1:
   1224 	wpi_firmware_size = 0;
   1225 	firmware_close(fw);
   1226 fail0:
   1227 	KASSERT(wpi_firmware_users == 1);
   1228 	wpi_firmware_users = 0;
   1229 	KASSERT(wpi_firmware_image == NULL);
   1230 	KASSERT(wpi_firmware_size == 0);
   1231 
   1232 	mutex_exit(&wpi_firmware_mutex);
   1233 	return error;
   1234 }
   1235 
   1236 static void
   1237 wpi_release_firmware(void)
   1238 {
   1239 
   1240 	mutex_enter(&wpi_firmware_mutex);
   1241 
   1242 	KASSERT(wpi_firmware_users > 0);
   1243 	KASSERT(wpi_firmware_image != NULL);
   1244 	KASSERT(wpi_firmware_size != 0);
   1245 
   1246 	if (--wpi_firmware_users == 0) {
   1247 		firmware_free(wpi_firmware_image, wpi_firmware_size);
   1248 		wpi_firmware_image = NULL;
   1249 		wpi_firmware_size = 0;
   1250 	}
   1251 
   1252 	mutex_exit(&wpi_firmware_mutex);
   1253 }
   1254 
   1255 static int
   1256 wpi_load_firmware(struct wpi_softc *sc)
   1257 {
   1258 	struct wpi_dma_info *dma = &sc->fw_dma;
   1259 	struct wpi_firmware_hdr hdr;
   1260 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1261 	const uint8_t *boot_text;
   1262 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1263 	uint32_t boot_textsz;
   1264 	size_t size;
   1265 	int error;
   1266 
   1267 	if (!sc->fw_used) {
   1268 		if ((error = wpi_cache_firmware(sc)) != 0)
   1269 			return error;
   1270 		sc->fw_used = true;
   1271 	}
   1272 
   1273 	KASSERT(sc->fw_used);
   1274 	KASSERT(wpi_firmware_image != NULL);
   1275 	KASSERT(wpi_firmware_size > sizeof(hdr));
   1276 
   1277 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
   1278 
   1279 	main_textsz = le32toh(hdr.main_textsz);
   1280 	main_datasz = le32toh(hdr.main_datasz);
   1281 	init_textsz = le32toh(hdr.init_textsz);
   1282 	init_datasz = le32toh(hdr.init_datasz);
   1283 	boot_textsz = le32toh(hdr.boot_textsz);
   1284 
   1285 	/* sanity-check firmware segments sizes */
   1286 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1287 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1288 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1289 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1290 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1291 	    (boot_textsz & 3) != 0) {
   1292 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1293 		error = EINVAL;
   1294 		goto free_firmware;
   1295 	}
   1296 
   1297 	/* check that all firmware segments are present */
   1298 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
   1299 	    main_datasz + init_textsz + init_datasz + boot_textsz;
   1300 	if (wpi_firmware_size < size) {
   1301 		aprint_error_dev(sc->sc_dev,
   1302 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
   1303 		    wpi_firmware_size, size);
   1304 		error = EINVAL;
   1305 		goto free_firmware;
   1306 	}
   1307 
   1308 	/* get pointers to firmware segments */
   1309 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
   1310 	main_data = main_text + main_textsz;
   1311 	init_text = main_data + main_datasz;
   1312 	init_data = init_text + init_textsz;
   1313 	boot_text = init_data + init_datasz;
   1314 
   1315 	/* copy initialization images into pre-allocated DMA-safe memory */
   1316 	memcpy(dma->vaddr, init_data, init_datasz);
   1317 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
   1318 	    init_textsz);
   1319 
   1320 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   1321 
   1322 	/* tell adapter where to find initialization images */
   1323 	wpi_mem_lock(sc);
   1324 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1325 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1326 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1327 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1328 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1329 	wpi_mem_unlock(sc);
   1330 
   1331 	/* load firmware boot code */
   1332 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1333 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1334 		return error;
   1335 	}
   1336 
   1337 	/* now press "execute" ;-) */
   1338 	WPI_WRITE(sc, WPI_RESET, 0);
   1339 
   1340 	/* wait at most one second for first alive notification */
   1341 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1342 		/* this isn't what was supposed to happen.. */
   1343 		aprint_error_dev(sc->sc_dev,
   1344 		    "timeout waiting for adapter to initialize\n");
   1345 	}
   1346 
   1347 	/* copy runtime images into pre-allocated DMA-safe memory */
   1348 	memcpy(dma->vaddr, main_data, main_datasz);
   1349 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
   1350 	    main_textsz);
   1351 
   1352 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   1353 
   1354 	/* tell adapter where to find runtime images */
   1355 	wpi_mem_lock(sc);
   1356 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1357 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1358 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1359 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1360 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1361 	wpi_mem_unlock(sc);
   1362 
   1363 	/* wait at most one second for second alive notification */
   1364 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1365 		/* this isn't what was supposed to happen.. */
   1366 		aprint_error_dev(sc->sc_dev,
   1367 		    "timeout waiting for adapter to initialize\n");
   1368 	}
   1369 
   1370 	return error;
   1371 
   1372 free_firmware:
   1373 	sc->fw_used = false;
   1374 	wpi_release_firmware();
   1375 	return error;
   1376 }
   1377 
   1378 static void
   1379 wpi_calib_timeout(void *arg)
   1380 {
   1381 	struct wpi_softc *sc = arg;
   1382 	struct ieee80211com *ic = &sc->sc_ic;
   1383 	int temp, s;
   1384 
   1385 	/* automatic rate control triggered every 500ms */
   1386 	if (ic->ic_fixed_rate == -1) {
   1387 		s = splnet();
   1388 		if (ic->ic_opmode == IEEE80211_M_STA)
   1389 			wpi_iter_func(sc, ic->ic_bss);
   1390 		else
   1391 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1392 		splx(s);
   1393 	}
   1394 
   1395 	/* update sensor data */
   1396 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1397 
   1398 	/* automatic power calibration every 60s */
   1399 	if (++sc->calib_cnt >= 120) {
   1400 		wpi_power_calibration(sc, temp);
   1401 		sc->calib_cnt = 0;
   1402 	}
   1403 
   1404 	callout_schedule(&sc->calib_to, hz/2);
   1405 }
   1406 
   1407 static void
   1408 wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1409 {
   1410 	struct wpi_softc *sc = arg;
   1411 	struct wpi_node *wn = (struct wpi_node *)ni;
   1412 
   1413 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1414 }
   1415 
   1416 /*
   1417  * This function is called periodically (every 60 seconds) to adjust output
   1418  * power to temperature changes.
   1419  */
   1420 void
   1421 wpi_power_calibration(struct wpi_softc *sc, int temp)
   1422 {
   1423 	/* sanity-check read value */
   1424 	if (temp < -260 || temp > 25) {
   1425 		/* this can't be correct, ignore */
   1426 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1427 		return;
   1428 	}
   1429 
   1430 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1431 
   1432 	/* adjust Tx power if need be */
   1433 	if (abs(temp - sc->temp) <= 6)
   1434 		return;
   1435 
   1436 	sc->temp = temp;
   1437 
   1438 	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
   1439 		/* just warn, too bad for the automatic calibration... */
   1440 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1441 	}
   1442 }
   1443 
   1444 static void
   1445 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1446     struct wpi_rx_data *data)
   1447 {
   1448 	struct ieee80211com *ic = &sc->sc_ic;
   1449 	struct ifnet *ifp = ic->ic_ifp;
   1450 	struct wpi_rx_ring *ring = &sc->rxq;
   1451 	struct wpi_rx_stat *stat;
   1452 	struct wpi_rx_head *head;
   1453 	struct wpi_rx_tail *tail;
   1454 	struct wpi_rbuf *rbuf;
   1455 	struct ieee80211_frame *wh;
   1456 	struct ieee80211_node *ni;
   1457 	struct mbuf *m, *mnew;
   1458 	int data_off, error;
   1459 
   1460 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1461 	    BUS_DMASYNC_POSTREAD);
   1462 	stat = (struct wpi_rx_stat *)(desc + 1);
   1463 
   1464 	if (stat->len > WPI_STAT_MAXLEN) {
   1465 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1466 		ifp->if_ierrors++;
   1467 		return;
   1468 	}
   1469 
   1470 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1471 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1472 
   1473 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1474 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
   1475 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1476 	    le64toh(tail->tstamp)));
   1477 
   1478 	/*
   1479 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1480 	 * to radiotap in monitor mode).
   1481 	 */
   1482 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1483 		DPRINTF(("rx tail flags error %x\n",
   1484 		    le32toh(tail->flags)));
   1485 		ifp->if_ierrors++;
   1486 		return;
   1487 	}
   1488 
   1489 	/* Compute where are the useful datas */
   1490 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1491 
   1492 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1493 	if (mnew == NULL) {
   1494 		ifp->if_ierrors++;
   1495 		return;
   1496 	}
   1497 
   1498 	rbuf = wpi_alloc_rbuf(sc);
   1499 	if (rbuf == NULL) {
   1500 		m_freem(mnew);
   1501 		ifp->if_ierrors++;
   1502 		return;
   1503 	}
   1504 
   1505 	/* attach Rx buffer to mbuf */
   1506 	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1507 		rbuf);
   1508 	mnew->m_flags |= M_EXT_RW;
   1509 
   1510 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1511 
   1512 	error = bus_dmamap_load(sc->sc_dmat, data->map,
   1513 	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
   1514 	    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1515 	if (error) {
   1516 		device_printf(sc->sc_dev,
   1517 		    "couldn't load rx mbuf: %d\n", error);
   1518 		m_freem(mnew);
   1519 		ifp->if_ierrors++;
   1520 
   1521 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1522 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
   1523 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1524 		if (error)
   1525 			panic("%s: bus_dmamap_load failed: %d\n",
   1526 			    device_xname(sc->sc_dev), error);
   1527 		return;
   1528 	}
   1529 
   1530 	/* new mbuf loaded successfully */
   1531 	m = data->m;
   1532 	data->m = mnew;
   1533 
   1534 	/* update Rx descriptor */
   1535 	ring->desc[ring->cur] = htole32(rbuf->paddr);
   1536 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1537 	    ring->desc_dma.size,
   1538 	    BUS_DMASYNC_PREWRITE);
   1539 
   1540 	m->m_data = (char*)m->m_data + data_off;
   1541 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1542 
   1543 	/* finalize mbuf */
   1544 	m->m_pkthdr.rcvif = ifp;
   1545 
   1546 	if (sc->sc_drvbpf != NULL) {
   1547 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1548 
   1549 		tap->wr_flags = 0;
   1550 		tap->wr_chan_freq =
   1551 		    htole16(ic->ic_channels[head->chan].ic_freq);
   1552 		tap->wr_chan_flags =
   1553 		    htole16(ic->ic_channels[head->chan].ic_flags);
   1554 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1555 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1556 		tap->wr_tsft = tail->tstamp;
   1557 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1558 		switch (head->rate) {
   1559 		/* CCK rates */
   1560 		case  10: tap->wr_rate =   2; break;
   1561 		case  20: tap->wr_rate =   4; break;
   1562 		case  55: tap->wr_rate =  11; break;
   1563 		case 110: tap->wr_rate =  22; break;
   1564 		/* OFDM rates */
   1565 		case 0xd: tap->wr_rate =  12; break;
   1566 		case 0xf: tap->wr_rate =  18; break;
   1567 		case 0x5: tap->wr_rate =  24; break;
   1568 		case 0x7: tap->wr_rate =  36; break;
   1569 		case 0x9: tap->wr_rate =  48; break;
   1570 		case 0xb: tap->wr_rate =  72; break;
   1571 		case 0x1: tap->wr_rate =  96; break;
   1572 		case 0x3: tap->wr_rate = 108; break;
   1573 		/* unknown rate: should not happen */
   1574 		default:  tap->wr_rate =   0;
   1575 		}
   1576 		if (le16toh(head->flags) & 0x4)
   1577 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1578 
   1579 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1580 	}
   1581 
   1582 	/* grab a reference to the source node */
   1583 	wh = mtod(m, struct ieee80211_frame *);
   1584 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1585 
   1586 	/* send the frame to the 802.11 layer */
   1587 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1588 
   1589 	/* release node reference */
   1590 	ieee80211_free_node(ni);
   1591 }
   1592 
   1593 static void
   1594 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1595 {
   1596 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1597 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1598 	struct wpi_tx_data *data = &ring->data[desc->idx];
   1599 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1600 	struct wpi_node *wn = (struct wpi_node *)data->ni;
   1601 
   1602 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1603 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1604 	    stat->nkill, stat->rate, le32toh(stat->duration),
   1605 	    le32toh(stat->status)));
   1606 
   1607 	/*
   1608 	 * Update rate control statistics for the node.
   1609 	 * XXX we should not count mgmt frames since they're always sent at
   1610 	 * the lowest available bit-rate.
   1611 	 */
   1612 	wn->amn.amn_txcnt++;
   1613 	if (stat->ntries > 0) {
   1614 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1615 		wn->amn.amn_retrycnt++;
   1616 	}
   1617 
   1618 	if ((le32toh(stat->status) & 0xff) != 1)
   1619 		ifp->if_oerrors++;
   1620 	else
   1621 		ifp->if_opackets++;
   1622 
   1623 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1624 	m_freem(data->m);
   1625 	data->m = NULL;
   1626 	ieee80211_free_node(data->ni);
   1627 	data->ni = NULL;
   1628 
   1629 	ring->queued--;
   1630 
   1631 	sc->sc_tx_timer = 0;
   1632 	ifp->if_flags &= ~IFF_OACTIVE;
   1633 	wpi_start(ifp);
   1634 }
   1635 
   1636 static void
   1637 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1638 {
   1639 	struct wpi_tx_ring *ring = &sc->cmdq;
   1640 	struct wpi_tx_data *data;
   1641 
   1642 	if ((desc->qid & 7) != 4)
   1643 		return;	/* not a command ack */
   1644 
   1645 	data = &ring->data[desc->idx];
   1646 
   1647 	/* if the command was mapped in a mbuf, free it */
   1648 	if (data->m != NULL) {
   1649 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1650 		m_freem(data->m);
   1651 		data->m = NULL;
   1652 	}
   1653 
   1654 	wakeup(&ring->cmd[desc->idx]);
   1655 }
   1656 
   1657 static void
   1658 wpi_notif_intr(struct wpi_softc *sc)
   1659 {
   1660 	struct ieee80211com *ic = &sc->sc_ic;
   1661 	struct ifnet *ifp =  ic->ic_ifp;
   1662 	uint32_t hw;
   1663 
   1664 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
   1665 	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
   1666 
   1667 	hw = le32toh(sc->shared->next);
   1668 	while (sc->rxq.cur != hw) {
   1669 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   1670 		struct wpi_rx_desc *desc;
   1671 
   1672 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1673 		    BUS_DMASYNC_POSTREAD);
   1674 		desc = mtod(data->m, struct wpi_rx_desc *);
   1675 
   1676 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1677 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
   1678 		    desc->type, le32toh(desc->len)));
   1679 
   1680 		if (!(desc->qid & 0x80))	/* reply to a command */
   1681 			wpi_cmd_intr(sc, desc);
   1682 
   1683 		switch (desc->type) {
   1684 		case WPI_RX_DONE:
   1685 			/* a 802.11 frame was received */
   1686 			wpi_rx_intr(sc, desc, data);
   1687 			break;
   1688 
   1689 		case WPI_TX_DONE:
   1690 			/* a 802.11 frame has been transmitted */
   1691 			wpi_tx_intr(sc, desc);
   1692 			break;
   1693 
   1694 		case WPI_UC_READY:
   1695 		{
   1696 			struct wpi_ucode_info *uc =
   1697 			    (struct wpi_ucode_info *)(desc + 1);
   1698 
   1699 			/* the microcontroller is ready */
   1700 			DPRINTF(("microcode alive notification version %x "
   1701 			    "alive %x\n", le32toh(uc->version),
   1702 			    le32toh(uc->valid)));
   1703 
   1704 			if (le32toh(uc->valid) != 1) {
   1705 				aprint_error_dev(sc->sc_dev,
   1706 				    "microcontroller initialization failed\n");
   1707 			}
   1708 			break;
   1709 		}
   1710 		case WPI_STATE_CHANGED:
   1711 		{
   1712 			uint32_t *status = (uint32_t *)(desc + 1);
   1713 
   1714 			/* enabled/disabled notification */
   1715 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1716 
   1717 			if (le32toh(*status) & 1) {
   1718 				/* the radio button has to be pushed */
   1719 				/* wake up thread to signal powerd */
   1720 				cv_signal(&sc->sc_rsw_cv);
   1721 				aprint_error_dev(sc->sc_dev,
   1722 				    "Radio transmitter is off\n");
   1723 				/* turn the interface down */
   1724 				ifp->if_flags &= ~IFF_UP;
   1725 				wpi_stop(ifp, 1);
   1726 				return;	/* no further processing */
   1727 			}
   1728 			break;
   1729 		}
   1730 		case WPI_START_SCAN:
   1731 		{
   1732 #if 0
   1733 			struct wpi_start_scan *scan =
   1734 			    (struct wpi_start_scan *)(desc + 1);
   1735 
   1736 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1737 			    scan->chan, le32toh(scan->status)));
   1738 
   1739 			/* fix current channel */
   1740 			ic->ic_curchan = &ic->ic_channels[scan->chan];
   1741 #endif
   1742 			break;
   1743 		}
   1744 		case WPI_STOP_SCAN:
   1745 		{
   1746 #ifdef WPI_DEBUG
   1747 			struct wpi_stop_scan *scan =
   1748 			    (struct wpi_stop_scan *)(desc + 1);
   1749 #endif
   1750 
   1751 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1752 			    scan->nchan, scan->status, scan->chan));
   1753 
   1754 			sc->is_scanning = false;
   1755 			if (ic->ic_state == IEEE80211_S_SCAN)
   1756 				ieee80211_next_scan(ic);
   1757 
   1758 			break;
   1759 		}
   1760 		}
   1761 
   1762 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1763 	}
   1764 
   1765 	/* tell the firmware what we have processed */
   1766 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1767 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1768 }
   1769 
   1770 static int
   1771 wpi_intr(void *arg)
   1772 {
   1773 	struct wpi_softc *sc = arg;
   1774 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1775 	uint32_t r;
   1776 
   1777 	r = WPI_READ(sc, WPI_INTR);
   1778 	if (r == 0 || r == 0xffffffff)
   1779 		return 0;	/* not for us */
   1780 
   1781 	DPRINTFN(6, ("interrupt reg %x\n", r));
   1782 
   1783 	/* disable interrupts */
   1784 	WPI_WRITE(sc, WPI_MASK, 0);
   1785 	/* ack interrupts */
   1786 	WPI_WRITE(sc, WPI_INTR, r);
   1787 
   1788 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1789 		/* SYSTEM FAILURE, SYSTEM FAILURE */
   1790 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1791 		ifp->if_flags &= ~IFF_UP;
   1792 		wpi_stop(ifp, 1);
   1793 		return 1;
   1794 	}
   1795 
   1796 	if (r & WPI_RX_INTR)
   1797 		wpi_notif_intr(sc);
   1798 
   1799 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1800 		wakeup(sc);
   1801 
   1802 	/* re-enable interrupts */
   1803 	if (ifp->if_flags & IFF_UP)
   1804 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1805 
   1806 	return 1;
   1807 }
   1808 
   1809 static uint8_t
   1810 wpi_plcp_signal(int rate)
   1811 {
   1812 	switch (rate) {
   1813 	/* CCK rates (returned values are device-dependent) */
   1814 	case 2:		return 10;
   1815 	case 4:		return 20;
   1816 	case 11:	return 55;
   1817 	case 22:	return 110;
   1818 
   1819 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1820 	/* R1-R4, (u)ral is R4-R1 */
   1821 	case 12:	return 0xd;
   1822 	case 18:	return 0xf;
   1823 	case 24:	return 0x5;
   1824 	case 36:	return 0x7;
   1825 	case 48:	return 0x9;
   1826 	case 72:	return 0xb;
   1827 	case 96:	return 0x1;
   1828 	case 108:	return 0x3;
   1829 
   1830 	/* unsupported rates (should not get there) */
   1831 	default:	return 0;
   1832 	}
   1833 }
   1834 
   1835 /* quickly determine if a given rate is CCK or OFDM */
   1836 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1837 
   1838 static int
   1839 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1840     int ac)
   1841 {
   1842 	struct ieee80211com *ic = &sc->sc_ic;
   1843 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1844 	struct wpi_tx_desc *desc;
   1845 	struct wpi_tx_data *data;
   1846 	struct wpi_tx_cmd *cmd;
   1847 	struct wpi_cmd_data *tx;
   1848 	struct ieee80211_frame *wh;
   1849 	struct ieee80211_key *k;
   1850 	const struct chanAccParams *cap;
   1851 	struct mbuf *mnew;
   1852 	int i, rate, error, hdrlen, noack = 0;
   1853 
   1854 	desc = &ring->desc[ring->cur];
   1855 	data = &ring->data[ring->cur];
   1856 
   1857 	wh = mtod(m0, struct ieee80211_frame *);
   1858 
   1859 	if (ieee80211_has_qos(wh)) {
   1860 		cap = &ic->ic_wme.wme_chanParams;
   1861 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1862 	}
   1863 
   1864 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1865 		k = ieee80211_crypto_encap(ic, ni, m0);
   1866 		if (k == NULL) {
   1867 			m_freem(m0);
   1868 			return ENOBUFS;
   1869 		}
   1870 
   1871 		/* packet header may have moved, reset our local pointer */
   1872 		wh = mtod(m0, struct ieee80211_frame *);
   1873 	}
   1874 
   1875 	hdrlen = ieee80211_anyhdrsize(wh);
   1876 
   1877 	/* pickup a rate */
   1878 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1879 	    IEEE80211_FC0_TYPE_MGT) {
   1880 		/* mgmt frames are sent at the lowest available bit-rate */
   1881 		rate = ni->ni_rates.rs_rates[0];
   1882 	} else {
   1883 		if (ic->ic_fixed_rate != -1) {
   1884 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1885 			    rs_rates[ic->ic_fixed_rate];
   1886 		} else
   1887 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1888 	}
   1889 	rate &= IEEE80211_RATE_VAL;
   1890 
   1891 	if (sc->sc_drvbpf != NULL) {
   1892 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1893 
   1894 		tap->wt_flags = 0;
   1895 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1896 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1897 		tap->wt_rate = rate;
   1898 		tap->wt_hwqueue = ac;
   1899 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1900 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1901 
   1902 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1903 	}
   1904 
   1905 	cmd = &ring->cmd[ring->cur];
   1906 	cmd->code = WPI_CMD_TX_DATA;
   1907 	cmd->flags = 0;
   1908 	cmd->qid = ring->qid;
   1909 	cmd->idx = ring->cur;
   1910 
   1911 	tx = (struct wpi_cmd_data *)cmd->data;
   1912 	/* no need to zero tx, all fields are reinitialized here */
   1913 	tx->flags = 0;
   1914 
   1915 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1916 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1917 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1918 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1919 
   1920 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1921 
   1922 	/* retrieve destination node's id */
   1923 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1924 		WPI_ID_BSS;
   1925 
   1926 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1927 	    IEEE80211_FC0_TYPE_MGT) {
   1928 		/* tell h/w to set timestamp in probe responses */
   1929 		if ((wh->i_fc[0] &
   1930 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1931 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1932 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1933 
   1934 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1935 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1936 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1937 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1938 			tx->timeout = htole16(3);
   1939 		else
   1940 			tx->timeout = htole16(2);
   1941 	} else
   1942 		tx->timeout = htole16(0);
   1943 
   1944 	tx->rate = wpi_plcp_signal(rate);
   1945 
   1946 	/* be very persistant at sending frames out */
   1947 	tx->rts_ntries = 7;
   1948 	tx->data_ntries = 15;
   1949 
   1950 	tx->ofdm_mask = 0xff;
   1951 	tx->cck_mask = 0x0f;
   1952 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   1953 
   1954 	tx->len = htole16(m0->m_pkthdr.len);
   1955 
   1956 	/* save and trim IEEE802.11 header */
   1957 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   1958 	m_adj(m0, hdrlen);
   1959 
   1960 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1961 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1962 	if (error != 0 && error != EFBIG) {
   1963 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1964 		    error);
   1965 		m_freem(m0);
   1966 		return error;
   1967 	}
   1968 	if (error != 0) {
   1969 		/* too many fragments, linearize */
   1970 
   1971 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1972 		if (mnew == NULL) {
   1973 			m_freem(m0);
   1974 			return ENOMEM;
   1975 		}
   1976 		M_COPY_PKTHDR(mnew, m0);
   1977 		if (m0->m_pkthdr.len > MHLEN) {
   1978 			MCLGET(mnew, M_DONTWAIT);
   1979 			if (!(mnew->m_flags & M_EXT)) {
   1980 				m_freem(m0);
   1981 				m_freem(mnew);
   1982 				return ENOMEM;
   1983 			}
   1984 		}
   1985 
   1986 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1987 		m_freem(m0);
   1988 		mnew->m_len = mnew->m_pkthdr.len;
   1989 		m0 = mnew;
   1990 
   1991 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1992 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1993 		if (error != 0) {
   1994 			aprint_error_dev(sc->sc_dev,
   1995 			    "could not map mbuf (error %d)\n", error);
   1996 			m_freem(m0);
   1997 			return error;
   1998 		}
   1999 	}
   2000 
   2001 	data->m = m0;
   2002 	data->ni = ni;
   2003 
   2004 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   2005 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   2006 
   2007 	/* first scatter/gather segment is used by the tx data command */
   2008 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   2009 	    (1 + data->map->dm_nsegs) << 24);
   2010 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2011 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2012 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   2013 	    ((hdrlen + 3) & ~3));
   2014 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   2015 		desc->segs[i].addr =
   2016 		    htole32(data->map->dm_segs[i - 1].ds_addr);
   2017 		desc->segs[i].len  =
   2018 		    htole32(data->map->dm_segs[i - 1].ds_len);
   2019 	}
   2020 
   2021 	ring->queued++;
   2022 
   2023 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2024 	    data->map->dm_mapsize,
   2025 	    BUS_DMASYNC_PREWRITE);
   2026 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
   2027 	    ring->cmd_dma.size,
   2028 	    BUS_DMASYNC_PREWRITE);
   2029 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2030 	    ring->desc_dma.size,
   2031 	    BUS_DMASYNC_PREWRITE);
   2032 
   2033 	/* kick ring */
   2034 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   2035 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2036 
   2037 	return 0;
   2038 }
   2039 
   2040 static void
   2041 wpi_start(struct ifnet *ifp)
   2042 {
   2043 	struct wpi_softc *sc = ifp->if_softc;
   2044 	struct ieee80211com *ic = &sc->sc_ic;
   2045 	struct ieee80211_node *ni;
   2046 	struct ether_header *eh;
   2047 	struct mbuf *m0;
   2048 	int ac;
   2049 
   2050 	/*
   2051 	 * net80211 may still try to send management frames even if the
   2052 	 * IFF_RUNNING flag is not set...
   2053 	 */
   2054 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   2055 		return;
   2056 
   2057 	for (;;) {
   2058 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   2059 		if (m0 != NULL) {
   2060 
   2061 			ni = M_GETCTX(m0, struct ieee80211_node *);
   2062 			m0->m_pkthdr.rcvif = NULL;
   2063 
   2064 			/* management frames go into ring 0 */
   2065 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   2066 				ifp->if_oerrors++;
   2067 				continue;
   2068 			}
   2069 			bpf_mtap3(ic->ic_rawbpf, m0);
   2070 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   2071 				ifp->if_oerrors++;
   2072 				break;
   2073 			}
   2074 		} else {
   2075 			if (ic->ic_state != IEEE80211_S_RUN)
   2076 				break;
   2077 			IFQ_POLL(&ifp->if_snd, m0);
   2078 			if (m0 == NULL)
   2079 				break;
   2080 
   2081 			if (m0->m_len < sizeof (*eh) &&
   2082 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
   2083 				ifp->if_oerrors++;
   2084 				continue;
   2085 			}
   2086 			eh = mtod(m0, struct ether_header *);
   2087 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   2088 			if (ni == NULL) {
   2089 				m_freem(m0);
   2090 				ifp->if_oerrors++;
   2091 				continue;
   2092 			}
   2093 
   2094 			/* classify mbuf so we can find which tx ring to use */
   2095 			if (ieee80211_classify(ic, m0, ni) != 0) {
   2096 				m_freem(m0);
   2097 				ieee80211_free_node(ni);
   2098 				ifp->if_oerrors++;
   2099 				continue;
   2100 			}
   2101 
   2102 			/* no QoS encapsulation for EAPOL frames */
   2103 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   2104 			    M_WME_GETAC(m0) : WME_AC_BE;
   2105 
   2106 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   2107 				/* there is no place left in this ring */
   2108 				ifp->if_flags |= IFF_OACTIVE;
   2109 				break;
   2110 			}
   2111 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   2112 			bpf_mtap(ifp, m0);
   2113 			m0 = ieee80211_encap(ic, m0, ni);
   2114 			if (m0 == NULL) {
   2115 				ieee80211_free_node(ni);
   2116 				ifp->if_oerrors++;
   2117 				continue;
   2118 			}
   2119 			bpf_mtap3(ic->ic_rawbpf, m0);
   2120 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   2121 				ieee80211_free_node(ni);
   2122 				ifp->if_oerrors++;
   2123 				break;
   2124 			}
   2125 		}
   2126 
   2127 		sc->sc_tx_timer = 5;
   2128 		ifp->if_timer = 1;
   2129 	}
   2130 }
   2131 
   2132 static void
   2133 wpi_watchdog(struct ifnet *ifp)
   2134 {
   2135 	struct wpi_softc *sc = ifp->if_softc;
   2136 
   2137 	ifp->if_timer = 0;
   2138 
   2139 	if (sc->sc_tx_timer > 0) {
   2140 		if (--sc->sc_tx_timer == 0) {
   2141 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2142 			ifp->if_flags &= ~IFF_UP;
   2143 			wpi_stop(ifp, 1);
   2144 			ifp->if_oerrors++;
   2145 			return;
   2146 		}
   2147 		ifp->if_timer = 1;
   2148 	}
   2149 
   2150 	ieee80211_watchdog(&sc->sc_ic);
   2151 }
   2152 
   2153 static int
   2154 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2155 {
   2156 #define IS_RUNNING(ifp) \
   2157 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2158 
   2159 	struct wpi_softc *sc = ifp->if_softc;
   2160 	struct ieee80211com *ic = &sc->sc_ic;
   2161 	int s, error = 0;
   2162 
   2163 	s = splnet();
   2164 
   2165 	switch (cmd) {
   2166 	case SIOCSIFFLAGS:
   2167 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2168 			break;
   2169 		if (ifp->if_flags & IFF_UP) {
   2170 			if (!(ifp->if_flags & IFF_RUNNING))
   2171 				wpi_init(ifp);
   2172 		} else {
   2173 			if (ifp->if_flags & IFF_RUNNING)
   2174 				wpi_stop(ifp, 1);
   2175 		}
   2176 		break;
   2177 
   2178 	case SIOCADDMULTI:
   2179 	case SIOCDELMULTI:
   2180 		/* XXX no h/w multicast filter? --dyoung */
   2181 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2182 			/* setup multicast filter, etc */
   2183 			error = 0;
   2184 		}
   2185 		break;
   2186 
   2187 	default:
   2188 		error = ieee80211_ioctl(ic, cmd, data);
   2189 	}
   2190 
   2191 	if (error == ENETRESET) {
   2192 		if (IS_RUNNING(ifp) &&
   2193 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2194 			wpi_init(ifp);
   2195 		error = 0;
   2196 	}
   2197 
   2198 	splx(s);
   2199 	return error;
   2200 
   2201 #undef IS_RUNNING
   2202 }
   2203 
   2204 /*
   2205  * Extract various information from EEPROM.
   2206  */
   2207 static void
   2208 wpi_read_eeprom(struct wpi_softc *sc)
   2209 {
   2210 	struct ieee80211com *ic = &sc->sc_ic;
   2211 	char domain[4];
   2212 	int i;
   2213 
   2214 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2215 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2216 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2217 
   2218 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2219 	    sc->type));
   2220 
   2221 	/* read and print regulatory domain */
   2222 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2223 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
   2224 
   2225 	/* read and print MAC address */
   2226 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2227 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2228 
   2229 	/* read the list of authorized channels */
   2230 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2231 		wpi_read_eeprom_channels(sc, i);
   2232 
   2233 	/* read the list of power groups */
   2234 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2235 		wpi_read_eeprom_group(sc, i);
   2236 }
   2237 
   2238 static void
   2239 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2240 {
   2241 	struct ieee80211com *ic = &sc->sc_ic;
   2242 	const struct wpi_chan_band *band = &wpi_bands[n];
   2243 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2244 	int chan, i;
   2245 
   2246 	wpi_read_prom_data(sc, band->addr, channels,
   2247 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2248 
   2249 	for (i = 0; i < band->nchan; i++) {
   2250 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2251 			continue;
   2252 
   2253 		chan = band->chan[i];
   2254 
   2255 		if (n == 0) {	/* 2GHz band */
   2256 			ic->ic_channels[chan].ic_freq =
   2257 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2258 			ic->ic_channels[chan].ic_flags =
   2259 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2260 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2261 
   2262 		} else {	/* 5GHz band */
   2263 			/*
   2264 			 * Some 3945ABG adapters support channels 7, 8, 11
   2265 			 * and 12 in the 2GHz *and* 5GHz bands.
   2266 			 * Because of limitations in our net80211(9) stack,
   2267 			 * we can't support these channels in 5GHz band.
   2268 			 */
   2269 			if (chan <= 14)
   2270 				continue;
   2271 
   2272 			ic->ic_channels[chan].ic_freq =
   2273 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2274 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2275 		}
   2276 
   2277 		/* is active scan allowed on this channel? */
   2278 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2279 			ic->ic_channels[chan].ic_flags |=
   2280 			    IEEE80211_CHAN_PASSIVE;
   2281 		}
   2282 
   2283 		/* save maximum allowed power for this channel */
   2284 		sc->maxpwr[chan] = channels[i].maxpwr;
   2285 
   2286 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2287 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2288 	}
   2289 }
   2290 
   2291 static void
   2292 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2293 {
   2294 	struct wpi_power_group *group = &sc->groups[n];
   2295 	struct wpi_eeprom_group rgroup;
   2296 	int i;
   2297 
   2298 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2299 	    sizeof rgroup);
   2300 
   2301 	/* save power group information */
   2302 	group->chan   = rgroup.chan;
   2303 	group->maxpwr = rgroup.maxpwr;
   2304 	/* temperature at which the samples were taken */
   2305 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2306 
   2307 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2308 	    group->chan, group->maxpwr, group->temp));
   2309 
   2310 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2311 		group->samples[i].index = rgroup.samples[i].index;
   2312 		group->samples[i].power = rgroup.samples[i].power;
   2313 
   2314 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2315 		    group->samples[i].index, group->samples[i].power));
   2316 	}
   2317 }
   2318 
   2319 /*
   2320  * Send a command to the firmware.
   2321  */
   2322 static int
   2323 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2324 {
   2325 	struct wpi_tx_ring *ring = &sc->cmdq;
   2326 	struct wpi_tx_desc *desc;
   2327 	struct wpi_tx_cmd *cmd;
   2328 	struct wpi_dma_info *dma;
   2329 
   2330 	KASSERT(size <= sizeof cmd->data);
   2331 
   2332 	desc = &ring->desc[ring->cur];
   2333 	cmd = &ring->cmd[ring->cur];
   2334 
   2335 	cmd->code = code;
   2336 	cmd->flags = 0;
   2337 	cmd->qid = ring->qid;
   2338 	cmd->idx = ring->cur;
   2339 	memcpy(cmd->data, buf, size);
   2340 
   2341 	dma = &ring->cmd_dma;
   2342 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   2343 
   2344 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2345 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2346 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2347 	desc->segs[0].len  = htole32(4 + size);
   2348 
   2349 	dma = &ring->desc_dma;
   2350 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   2351 
   2352 	/* kick cmd ring */
   2353 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2354 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2355 
   2356 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2357 }
   2358 
   2359 static int
   2360 wpi_wme_update(struct ieee80211com *ic)
   2361 {
   2362 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2363 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2364 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2365 	const struct wmeParams *wmep;
   2366 	struct wpi_wme_setup wme;
   2367 	int ac;
   2368 
   2369 	/* don't override default WME values if WME is not actually enabled */
   2370 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2371 		return 0;
   2372 
   2373 	wme.flags = 0;
   2374 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2375 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2376 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2377 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2378 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2379 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2380 
   2381 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2382 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2383 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2384 	}
   2385 
   2386 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2387 #undef WPI_USEC
   2388 #undef WPI_EXP2
   2389 }
   2390 
   2391 /*
   2392  * Configure h/w multi-rate retries.
   2393  */
   2394 static int
   2395 wpi_mrr_setup(struct wpi_softc *sc)
   2396 {
   2397 	struct ieee80211com *ic = &sc->sc_ic;
   2398 	struct wpi_mrr_setup mrr;
   2399 	int i, error;
   2400 
   2401 	/* CCK rates (not used with 802.11a) */
   2402 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2403 		mrr.rates[i].flags = 0;
   2404 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2405 		/* fallback to the immediate lower CCK rate (if any) */
   2406 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2407 		/* try one time at this rate before falling back to "next" */
   2408 		mrr.rates[i].ntries = 1;
   2409 	}
   2410 
   2411 	/* OFDM rates (not used with 802.11b) */
   2412 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2413 		mrr.rates[i].flags = 0;
   2414 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2415 		/* fallback to the immediate lower rate (if any) */
   2416 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2417 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2418 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2419 			WPI_OFDM6 : WPI_CCK2) :
   2420 		    i - 1;
   2421 		/* try one time at this rate before falling back to "next" */
   2422 		mrr.rates[i].ntries = 1;
   2423 	}
   2424 
   2425 	/* setup MRR for control frames */
   2426 	mrr.which = htole32(WPI_MRR_CTL);
   2427 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2428 	if (error != 0) {
   2429 		aprint_error_dev(sc->sc_dev,
   2430 		    "could not setup MRR for control frames\n");
   2431 		return error;
   2432 	}
   2433 
   2434 	/* setup MRR for data frames */
   2435 	mrr.which = htole32(WPI_MRR_DATA);
   2436 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2437 	if (error != 0) {
   2438 		aprint_error_dev(sc->sc_dev,
   2439 		    "could not setup MRR for data frames\n");
   2440 		return error;
   2441 	}
   2442 
   2443 	return 0;
   2444 }
   2445 
   2446 static void
   2447 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2448 {
   2449 	struct wpi_cmd_led led;
   2450 
   2451 	led.which = which;
   2452 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2453 	led.off = off;
   2454 	led.on = on;
   2455 
   2456 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2457 }
   2458 
   2459 static void
   2460 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2461 {
   2462 	struct wpi_cmd_tsf tsf;
   2463 	uint64_t val, mod;
   2464 
   2465 	memset(&tsf, 0, sizeof tsf);
   2466 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   2467 	tsf.bintval = htole16(ni->ni_intval);
   2468 	tsf.lintval = htole16(10);
   2469 
   2470 	/* compute remaining time until next beacon */
   2471 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   2472 	mod = le64toh(tsf.tstamp) % val;
   2473 	tsf.binitval = htole32((uint32_t)(val - mod));
   2474 
   2475 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
   2476 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2477 
   2478 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2479 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2480 }
   2481 
   2482 /*
   2483  * Update Tx power to match what is defined for channel `c'.
   2484  */
   2485 static int
   2486 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2487 {
   2488 	struct ieee80211com *ic = &sc->sc_ic;
   2489 	struct wpi_power_group *group;
   2490 	struct wpi_cmd_txpower txpower;
   2491 	u_int chan;
   2492 	int i;
   2493 
   2494 	/* get channel number */
   2495 	chan = ieee80211_chan2ieee(ic, c);
   2496 
   2497 	/* find the power group to which this channel belongs */
   2498 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2499 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2500 			if (chan <= group->chan)
   2501 				break;
   2502 	} else
   2503 		group = &sc->groups[0];
   2504 
   2505 	memset(&txpower, 0, sizeof txpower);
   2506 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2507 	txpower.chan = htole16(chan);
   2508 
   2509 	/* set Tx power for all OFDM and CCK rates */
   2510 	for (i = 0; i <= 11 ; i++) {
   2511 		/* retrieve Tx power for this channel/rate combination */
   2512 		int idx = wpi_get_power_index(sc, group, c,
   2513 		    wpi_ridx_to_rate[i]);
   2514 
   2515 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2516 
   2517 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2518 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2519 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2520 		} else {
   2521 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2522 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2523 		}
   2524 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2525 		    wpi_ridx_to_rate[i], idx));
   2526 	}
   2527 
   2528 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2529 }
   2530 
   2531 /*
   2532  * Determine Tx power index for a given channel/rate combination.
   2533  * This takes into account the regulatory information from EEPROM and the
   2534  * current temperature.
   2535  */
   2536 static int
   2537 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2538     struct ieee80211_channel *c, int rate)
   2539 {
   2540 /* fixed-point arithmetic division using a n-bit fractional part */
   2541 #define fdivround(a, b, n)	\
   2542 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2543 
   2544 /* linear interpolation */
   2545 #define interpolate(x, x1, y1, x2, y2, n)	\
   2546 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2547 
   2548 	struct ieee80211com *ic = &sc->sc_ic;
   2549 	struct wpi_power_sample *sample;
   2550 	int pwr, idx;
   2551 	u_int chan;
   2552 
   2553 	/* get channel number */
   2554 	chan = ieee80211_chan2ieee(ic, c);
   2555 
   2556 	/* default power is group's maximum power - 3dB */
   2557 	pwr = group->maxpwr / 2;
   2558 
   2559 	/* decrease power for highest OFDM rates to reduce distortion */
   2560 	switch (rate) {
   2561 	case 72:	/* 36Mb/s */
   2562 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2563 		break;
   2564 	case 96:	/* 48Mb/s */
   2565 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2566 		break;
   2567 	case 108:	/* 54Mb/s */
   2568 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2569 		break;
   2570 	}
   2571 
   2572 	/* never exceed channel's maximum allowed Tx power */
   2573 	pwr = min(pwr, sc->maxpwr[chan]);
   2574 
   2575 	/* retrieve power index into gain tables from samples */
   2576 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2577 		if (pwr > sample[1].power)
   2578 			break;
   2579 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2580 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2581 	    sample[1].power, sample[1].index, 19);
   2582 
   2583 	/*-
   2584 	 * Adjust power index based on current temperature:
   2585 	 * - if cooler than factory-calibrated: decrease output power
   2586 	 * - if warmer than factory-calibrated: increase output power
   2587 	 */
   2588 	idx -= (sc->temp - group->temp) * 11 / 100;
   2589 
   2590 	/* decrease power for CCK rates (-5dB) */
   2591 	if (!WPI_RATE_IS_OFDM(rate))
   2592 		idx += 10;
   2593 
   2594 	/* keep power index in a valid range */
   2595 	if (idx < 0)
   2596 		return 0;
   2597 	if (idx > WPI_MAX_PWR_INDEX)
   2598 		return WPI_MAX_PWR_INDEX;
   2599 	return idx;
   2600 
   2601 #undef interpolate
   2602 #undef fdivround
   2603 }
   2604 
   2605 /*
   2606  * Build a beacon frame that the firmware will broadcast periodically in
   2607  * IBSS or HostAP modes.
   2608  */
   2609 static int
   2610 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2611 {
   2612 	struct ieee80211com *ic = &sc->sc_ic;
   2613 	struct wpi_tx_ring *ring = &sc->cmdq;
   2614 	struct wpi_tx_desc *desc;
   2615 	struct wpi_tx_data *data;
   2616 	struct wpi_tx_cmd *cmd;
   2617 	struct wpi_cmd_beacon *bcn;
   2618 	struct ieee80211_beacon_offsets bo;
   2619 	struct mbuf *m0;
   2620 	int error;
   2621 
   2622 	desc = &ring->desc[ring->cur];
   2623 	data = &ring->data[ring->cur];
   2624 
   2625 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2626 	if (m0 == NULL) {
   2627 		aprint_error_dev(sc->sc_dev,
   2628 		    "could not allocate beacon frame\n");
   2629 		return ENOMEM;
   2630 	}
   2631 
   2632 	cmd = &ring->cmd[ring->cur];
   2633 	cmd->code = WPI_CMD_SET_BEACON;
   2634 	cmd->flags = 0;
   2635 	cmd->qid = ring->qid;
   2636 	cmd->idx = ring->cur;
   2637 
   2638 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2639 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2640 	bcn->id = WPI_ID_BROADCAST;
   2641 	bcn->ofdm_mask = 0xff;
   2642 	bcn->cck_mask = 0x0f;
   2643 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2644 	bcn->len = htole16(m0->m_pkthdr.len);
   2645 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2646 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2647 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2648 
   2649 	/* save and trim IEEE802.11 header */
   2650 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2651 	m_adj(m0, sizeof (struct ieee80211_frame));
   2652 
   2653 	/* assume beacon frame is contiguous */
   2654 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2655 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   2656 	if (error != 0) {
   2657 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2658 		m_freem(m0);
   2659 		return error;
   2660 	}
   2661 
   2662 	data->m = m0;
   2663 
   2664 	/* first scatter/gather segment is used by the beacon command */
   2665 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2666 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2667 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2668 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2669 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2670 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2671 
   2672 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2673 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2674 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2675 	    BUS_DMASYNC_PREWRITE);
   2676 
   2677 	/* kick cmd ring */
   2678 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2679 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2680 
   2681 	return 0;
   2682 }
   2683 
   2684 static int
   2685 wpi_auth(struct wpi_softc *sc)
   2686 {
   2687 	struct ieee80211com *ic = &sc->sc_ic;
   2688 	struct ieee80211_node *ni = ic->ic_bss;
   2689 	struct wpi_node_info node;
   2690 	int error;
   2691 
   2692 	/* update adapter's configuration */
   2693 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2694 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2695 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2696 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2697 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2698 		    WPI_CONFIG_24GHZ);
   2699 	}
   2700 	switch (ic->ic_curmode) {
   2701 	case IEEE80211_MODE_11A:
   2702 		sc->config.cck_mask  = 0;
   2703 		sc->config.ofdm_mask = 0x15;
   2704 		break;
   2705 	case IEEE80211_MODE_11B:
   2706 		sc->config.cck_mask  = 0x03;
   2707 		sc->config.ofdm_mask = 0;
   2708 		break;
   2709 	default:	/* assume 802.11b/g */
   2710 		sc->config.cck_mask  = 0x0f;
   2711 		sc->config.ofdm_mask = 0x15;
   2712 	}
   2713 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2714 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2715 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2716 	    sizeof (struct wpi_config), 1);
   2717 	if (error != 0) {
   2718 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2719 		return error;
   2720 	}
   2721 
   2722 	/* configuration has changed, set Tx power accordingly */
   2723 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2724 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2725 		return error;
   2726 	}
   2727 
   2728 	/* add default node */
   2729 	memset(&node, 0, sizeof node);
   2730 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2731 	node.id = WPI_ID_BSS;
   2732 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2733 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2734 	node.action = htole32(WPI_ACTION_SET_RATE);
   2735 	node.antenna = WPI_ANTENNA_BOTH;
   2736 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2737 	if (error != 0) {
   2738 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2739 		return error;
   2740 	}
   2741 
   2742 	return 0;
   2743 }
   2744 
   2745 /*
   2746  * Send a scan request to the firmware.  Since this command is huge, we map it
   2747  * into a mbuf instead of using the pre-allocated set of commands.
   2748  */
   2749 static int
   2750 wpi_scan(struct wpi_softc *sc)
   2751 {
   2752 	struct ieee80211com *ic = &sc->sc_ic;
   2753 	struct wpi_tx_ring *ring = &sc->cmdq;
   2754 	struct wpi_tx_desc *desc;
   2755 	struct wpi_tx_data *data;
   2756 	struct wpi_tx_cmd *cmd;
   2757 	struct wpi_scan_hdr *hdr;
   2758 	struct wpi_scan_chan *chan;
   2759 	struct ieee80211_frame *wh;
   2760 	struct ieee80211_rateset *rs;
   2761 	struct ieee80211_channel *c;
   2762 	uint8_t *frm;
   2763 	int pktlen, error, nrates;
   2764 
   2765 	if (ic->ic_curchan == NULL)
   2766 		return EIO;
   2767 
   2768 	desc = &ring->desc[ring->cur];
   2769 	data = &ring->data[ring->cur];
   2770 
   2771 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2772 	if (data->m == NULL) {
   2773 		aprint_error_dev(sc->sc_dev,
   2774 		    "could not allocate mbuf for scan command\n");
   2775 		return ENOMEM;
   2776 	}
   2777 	MCLGET(data->m, M_DONTWAIT);
   2778 	if (!(data->m->m_flags & M_EXT)) {
   2779 		m_freem(data->m);
   2780 		data->m = NULL;
   2781 		aprint_error_dev(sc->sc_dev,
   2782 		    "could not allocate mbuf for scan command\n");
   2783 		return ENOMEM;
   2784 	}
   2785 
   2786 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2787 	cmd->code = WPI_CMD_SCAN;
   2788 	cmd->flags = 0;
   2789 	cmd->qid = ring->qid;
   2790 	cmd->idx = ring->cur;
   2791 
   2792 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2793 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2794 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
   2795 	hdr->cmd.id = WPI_ID_BROADCAST;
   2796 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
   2797 	/*
   2798 	 * Move to the next channel if no packets are received within 5 msecs
   2799 	 * after sending the probe request (this helps to reduce the duration
   2800 	 * of active scans).
   2801 	 */
   2802 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
   2803 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2804 
   2805 	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
   2806 		hdr->crc_threshold = htole16(1);
   2807 		/* send probe requests at 6Mbps */
   2808 		hdr->cmd.rate = wpi_plcp_signal(12);
   2809 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   2810 	} else {
   2811 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2812 		/* send probe requests at 1Mbps */
   2813 		hdr->cmd.rate = wpi_plcp_signal(2);
   2814 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   2815 	}
   2816 
   2817 	/* for directed scans, firmware inserts the essid IE itself */
   2818 	if (ic->ic_des_esslen != 0) {
   2819 		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2820 		hdr->essid[0].len = ic->ic_des_esslen;
   2821 		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2822 	}
   2823 
   2824 	/*
   2825 	 * Build a probe request frame.  Most of the following code is a
   2826 	 * copy & paste of what is done in net80211.
   2827 	 */
   2828 	wh = (struct ieee80211_frame *)(hdr + 1);
   2829 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2830 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2831 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2832 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2833 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2834 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2835 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2836 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2837 
   2838 	frm = (uint8_t *)(wh + 1);
   2839 
   2840 	/* add empty essid IE (firmware generates it for directed scans) */
   2841 	*frm++ = IEEE80211_ELEMID_SSID;
   2842 	*frm++ = 0;
   2843 
   2844 	/* add supported rates IE */
   2845 	*frm++ = IEEE80211_ELEMID_RATES;
   2846 	nrates = rs->rs_nrates;
   2847 	if (nrates > IEEE80211_RATE_SIZE)
   2848 		nrates = IEEE80211_RATE_SIZE;
   2849 	*frm++ = nrates;
   2850 	memcpy(frm, rs->rs_rates, nrates);
   2851 	frm += nrates;
   2852 
   2853 	/* add supported xrates IE */
   2854 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2855 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2856 		*frm++ = IEEE80211_ELEMID_XRATES;
   2857 		*frm++ = nrates;
   2858 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2859 		frm += nrates;
   2860 	}
   2861 
   2862 	/* setup length of probe request */
   2863 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
   2864 
   2865 	chan = (struct wpi_scan_chan *)frm;
   2866 	c = ic->ic_curchan;
   2867 
   2868 	chan->chan = ieee80211_chan2ieee(ic, c);
   2869 	chan->flags = 0;
   2870 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2871 		chan->flags |= WPI_CHAN_ACTIVE;
   2872 		if (ic->ic_des_esslen != 0)
   2873 			chan->flags |= WPI_CHAN_DIRECT;
   2874 	}
   2875 	chan->dsp_gain = 0x6e;
   2876 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2877 		chan->rf_gain = 0x3b;
   2878 		chan->active  = htole16(10);
   2879 		chan->passive = htole16(110);
   2880 	} else {
   2881 		chan->rf_gain = 0x28;
   2882 		chan->active  = htole16(20);
   2883 		chan->passive = htole16(120);
   2884 	}
   2885 	hdr->nchan++;
   2886 	chan++;
   2887 
   2888 	frm += sizeof (struct wpi_scan_chan);
   2889 
   2890 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2891 	pktlen = frm - (uint8_t *)cmd;
   2892 
   2893 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
   2894 	    BUS_DMA_NOWAIT);
   2895 	if (error != 0) {
   2896 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2897 		m_freem(data->m);
   2898 		data->m = NULL;
   2899 		return error;
   2900 	}
   2901 
   2902 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2903 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2904 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2905 
   2906 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2907 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2908 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2909 	    BUS_DMASYNC_PREWRITE);
   2910 
   2911 	/* kick cmd ring */
   2912 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2913 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2914 
   2915 	return 0;	/* will be notified async. of failure/success */
   2916 }
   2917 
   2918 static int
   2919 wpi_config(struct wpi_softc *sc)
   2920 {
   2921 	struct ieee80211com *ic = &sc->sc_ic;
   2922 	struct ifnet *ifp = ic->ic_ifp;
   2923 	struct wpi_power power;
   2924 	struct wpi_bluetooth bluetooth;
   2925 	struct wpi_node_info node;
   2926 	int error;
   2927 
   2928 	memset(&power, 0, sizeof power);
   2929 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2930 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2931 	if (error != 0) {
   2932 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2933 		return error;
   2934 	}
   2935 
   2936 	/* configure bluetooth coexistence */
   2937 	memset(&bluetooth, 0, sizeof bluetooth);
   2938 	bluetooth.flags = 3;
   2939 	bluetooth.lead = 0xaa;
   2940 	bluetooth.kill = 1;
   2941 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   2942 	    0);
   2943 	if (error != 0) {
   2944 		aprint_error_dev(sc->sc_dev,
   2945 			"could not configure bluetooth coexistence\n");
   2946 		return error;
   2947 	}
   2948 
   2949 	/* configure adapter */
   2950 	memset(&sc->config, 0, sizeof (struct wpi_config));
   2951 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2952 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   2953 	/* set default channel */
   2954 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
   2955 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2956 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
   2957 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2958 		    WPI_CONFIG_24GHZ);
   2959 	}
   2960 	sc->config.filter = 0;
   2961 	switch (ic->ic_opmode) {
   2962 	case IEEE80211_M_STA:
   2963 		sc->config.mode = WPI_MODE_STA;
   2964 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   2965 		break;
   2966 	case IEEE80211_M_IBSS:
   2967 	case IEEE80211_M_AHDEMO:
   2968 		sc->config.mode = WPI_MODE_IBSS;
   2969 		break;
   2970 	case IEEE80211_M_HOSTAP:
   2971 		sc->config.mode = WPI_MODE_HOSTAP;
   2972 		break;
   2973 	case IEEE80211_M_MONITOR:
   2974 		sc->config.mode = WPI_MODE_MONITOR;
   2975 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   2976 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   2977 		break;
   2978 	}
   2979 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   2980 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   2981 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2982 	    sizeof (struct wpi_config), 0);
   2983 	if (error != 0) {
   2984 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   2985 		return error;
   2986 	}
   2987 
   2988 	/* configuration has changed, set Tx power accordingly */
   2989 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
   2990 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2991 		return error;
   2992 	}
   2993 
   2994 	/* add broadcast node */
   2995 	memset(&node, 0, sizeof node);
   2996 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   2997 	node.id = WPI_ID_BROADCAST;
   2998 	node.rate = wpi_plcp_signal(2);
   2999 	node.action = htole32(WPI_ACTION_SET_RATE);
   3000 	node.antenna = WPI_ANTENNA_BOTH;
   3001 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   3002 	if (error != 0) {
   3003 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   3004 		return error;
   3005 	}
   3006 
   3007 	if ((error = wpi_mrr_setup(sc)) != 0) {
   3008 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   3009 		return error;
   3010 	}
   3011 
   3012 	return 0;
   3013 }
   3014 
   3015 static void
   3016 wpi_stop_master(struct wpi_softc *sc)
   3017 {
   3018 	uint32_t tmp;
   3019 	int ntries;
   3020 
   3021 	tmp = WPI_READ(sc, WPI_RESET);
   3022 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   3023 
   3024 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   3025 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   3026 		return;	/* already asleep */
   3027 
   3028 	for (ntries = 0; ntries < 100; ntries++) {
   3029 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   3030 			break;
   3031 		DELAY(10);
   3032 	}
   3033 	if (ntries == 100) {
   3034 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   3035 	}
   3036 }
   3037 
   3038 static int
   3039 wpi_power_up(struct wpi_softc *sc)
   3040 {
   3041 	uint32_t tmp;
   3042 	int ntries;
   3043 
   3044 	wpi_mem_lock(sc);
   3045 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   3046 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   3047 	wpi_mem_unlock(sc);
   3048 
   3049 	for (ntries = 0; ntries < 5000; ntries++) {
   3050 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   3051 			break;
   3052 		DELAY(10);
   3053 	}
   3054 	if (ntries == 5000) {
   3055 		aprint_error_dev(sc->sc_dev,
   3056 		    "timeout waiting for NIC to power up\n");
   3057 		return ETIMEDOUT;
   3058 	}
   3059 	return 0;
   3060 }
   3061 
   3062 static int
   3063 wpi_reset(struct wpi_softc *sc)
   3064 {
   3065 	uint32_t tmp;
   3066 	int ntries;
   3067 
   3068 	/* clear any pending interrupts */
   3069 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3070 
   3071 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   3072 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   3073 
   3074 	tmp = WPI_READ(sc, WPI_CHICKEN);
   3075 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   3076 
   3077 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   3078 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   3079 
   3080 	/* wait for clock stabilization */
   3081 	for (ntries = 0; ntries < 1000; ntries++) {
   3082 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   3083 			break;
   3084 		DELAY(10);
   3085 	}
   3086 	if (ntries == 1000) {
   3087 		aprint_error_dev(sc->sc_dev,
   3088 		    "timeout waiting for clock stabilization\n");
   3089 		return ETIMEDOUT;
   3090 	}
   3091 
   3092 	/* initialize EEPROM */
   3093 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   3094 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   3095 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   3096 		return EIO;
   3097 	}
   3098 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   3099 
   3100 	return 0;
   3101 }
   3102 
   3103 static void
   3104 wpi_hw_config(struct wpi_softc *sc)
   3105 {
   3106 	uint32_t rev, hw;
   3107 
   3108 	/* voodoo from the reference driver */
   3109 	hw = WPI_READ(sc, WPI_HWCONFIG);
   3110 
   3111 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   3112 	rev = PCI_REVISION(rev);
   3113 	if ((rev & 0xc0) == 0x40)
   3114 		hw |= WPI_HW_ALM_MB;
   3115 	else if (!(rev & 0x80))
   3116 		hw |= WPI_HW_ALM_MM;
   3117 
   3118 	if (sc->cap == 0x80)
   3119 		hw |= WPI_HW_SKU_MRC;
   3120 
   3121 	hw &= ~WPI_HW_REV_D;
   3122 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   3123 		hw |= WPI_HW_REV_D;
   3124 
   3125 	if (sc->type > 1)
   3126 		hw |= WPI_HW_TYPE_B;
   3127 
   3128 	DPRINTF(("setting h/w config %x\n", hw));
   3129 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   3130 }
   3131 
   3132 static int
   3133 wpi_init(struct ifnet *ifp)
   3134 {
   3135 	struct wpi_softc *sc = ifp->if_softc;
   3136 	struct ieee80211com *ic = &sc->sc_ic;
   3137 	uint32_t tmp;
   3138 	int qid, ntries, error;
   3139 
   3140 	wpi_stop(ifp,1);
   3141 	(void)wpi_reset(sc);
   3142 
   3143 	wpi_mem_lock(sc);
   3144 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   3145 	DELAY(20);
   3146 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   3147 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   3148 	wpi_mem_unlock(sc);
   3149 
   3150 	(void)wpi_power_up(sc);
   3151 	wpi_hw_config(sc);
   3152 
   3153 	/* init Rx ring */
   3154 	wpi_mem_lock(sc);
   3155 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   3156 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   3157 	    offsetof(struct wpi_shared, next));
   3158 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3159 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3160 	wpi_mem_unlock(sc);
   3161 
   3162 	/* init Tx rings */
   3163 	wpi_mem_lock(sc);
   3164 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
   3165 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
   3166 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
   3167 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3168 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3169 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3170 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3171 
   3172 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3173 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3174 
   3175 	for (qid = 0; qid < 6; qid++) {
   3176 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3177 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3178 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3179 	}
   3180 	wpi_mem_unlock(sc);
   3181 
   3182 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3183 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3184 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3185 
   3186 	/* clear any pending interrupts */
   3187 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3188 	/* enable interrupts */
   3189 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3190 
   3191 	/* not sure why/if this is necessary... */
   3192 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3193 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3194 
   3195 	if ((error = wpi_load_firmware(sc)) != 0)
   3196 		/* wpi_load_firmware prints error messages for us.  */
   3197 		goto fail1;
   3198 
   3199 	/* Check the status of the radio switch */
   3200 	mutex_enter(&sc->sc_rsw_mtx);
   3201 	if (wpi_getrfkill(sc)) {
   3202 		mutex_exit(&sc->sc_rsw_mtx);
   3203 		aprint_error_dev(sc->sc_dev,
   3204 		    "radio is disabled by hardware switch\n");
   3205 		ifp->if_flags &= ~IFF_UP;
   3206 		error = EBUSY;
   3207 		goto fail1;
   3208 	}
   3209 	mutex_exit(&sc->sc_rsw_mtx);
   3210 
   3211 	/* wait for thermal sensors to calibrate */
   3212 	for (ntries = 0; ntries < 1000; ntries++) {
   3213 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3214 			break;
   3215 		DELAY(10);
   3216 	}
   3217 	if (ntries == 1000) {
   3218 		aprint_error_dev(sc->sc_dev,
   3219 		    "timeout waiting for thermal sensors calibration\n");
   3220 		error = ETIMEDOUT;
   3221 		goto fail1;
   3222 	}
   3223 	DPRINTF(("temperature %d\n", sc->temp));
   3224 
   3225 	if ((error = wpi_config(sc)) != 0) {
   3226 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3227 		goto fail1;
   3228 	}
   3229 
   3230 	ifp->if_flags &= ~IFF_OACTIVE;
   3231 	ifp->if_flags |= IFF_RUNNING;
   3232 
   3233 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3234 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3235 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3236 	}
   3237 	else
   3238 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3239 
   3240 	return 0;
   3241 
   3242 fail1:	wpi_stop(ifp, 1);
   3243 	return error;
   3244 }
   3245 
   3246 static void
   3247 wpi_stop(struct ifnet *ifp, int disable)
   3248 {
   3249 	struct wpi_softc *sc = ifp->if_softc;
   3250 	struct ieee80211com *ic = &sc->sc_ic;
   3251 	uint32_t tmp;
   3252 	int ac;
   3253 
   3254 	ifp->if_timer = sc->sc_tx_timer = 0;
   3255 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3256 
   3257 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3258 
   3259 	/* disable interrupts */
   3260 	WPI_WRITE(sc, WPI_MASK, 0);
   3261 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3262 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3263 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3264 
   3265 	wpi_mem_lock(sc);
   3266 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3267 	wpi_mem_unlock(sc);
   3268 
   3269 	/* reset all Tx rings */
   3270 	for (ac = 0; ac < 4; ac++)
   3271 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3272 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3273 
   3274 	/* reset Rx ring */
   3275 	wpi_reset_rx_ring(sc, &sc->rxq);
   3276 
   3277 	wpi_mem_lock(sc);
   3278 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3279 	wpi_mem_unlock(sc);
   3280 
   3281 	DELAY(5);
   3282 
   3283 	wpi_stop_master(sc);
   3284 
   3285 	tmp = WPI_READ(sc, WPI_RESET);
   3286 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3287 }
   3288 
   3289 static bool
   3290 wpi_resume(device_t dv, const pmf_qual_t *qual)
   3291 {
   3292 	struct wpi_softc *sc = device_private(dv);
   3293 
   3294 	(void)wpi_reset(sc);
   3295 
   3296 	return true;
   3297 }
   3298 
   3299 /*
   3300  * Return whether or not the radio is enabled in hardware
   3301  * (i.e. the rfkill switch is "off").
   3302  */
   3303 static int
   3304 wpi_getrfkill(struct wpi_softc *sc)
   3305 {
   3306 	uint32_t tmp;
   3307 
   3308 	wpi_mem_lock(sc);
   3309 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3310 	wpi_mem_unlock(sc);
   3311 
   3312 	KASSERT(mutex_owned(&sc->sc_rsw_mtx));
   3313 	if (tmp & 0x01) {
   3314 		/* switch is on */
   3315 		if (sc->sc_rsw_status != WPI_RSW_ON) {
   3316 			sc->sc_rsw_status = WPI_RSW_ON;
   3317 			sysmon_pswitch_event(&sc->sc_rsw,
   3318 			    PSWITCH_EVENT_PRESSED);
   3319 		}
   3320 	} else {
   3321 		/* switch is off */
   3322 		if (sc->sc_rsw_status != WPI_RSW_OFF) {
   3323 			sc->sc_rsw_status = WPI_RSW_OFF;
   3324 			sysmon_pswitch_event(&sc->sc_rsw,
   3325 			    PSWITCH_EVENT_RELEASED);
   3326 		}
   3327 	}
   3328 
   3329 	return !(tmp & 0x01);
   3330 }
   3331 
   3332 static int
   3333 wpi_sysctl_radio(SYSCTLFN_ARGS)
   3334 {
   3335 	struct sysctlnode node;
   3336 	struct wpi_softc *sc;
   3337 	int val, error;
   3338 
   3339 	node = *rnode;
   3340 	sc = (struct wpi_softc *)node.sysctl_data;
   3341 
   3342 	mutex_enter(&sc->sc_rsw_mtx);
   3343 	val = !wpi_getrfkill(sc);
   3344 	mutex_exit(&sc->sc_rsw_mtx);
   3345 
   3346 	node.sysctl_data = &val;
   3347 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3348 
   3349 	if (error || newp == NULL)
   3350 		return error;
   3351 
   3352 	return 0;
   3353 }
   3354 
   3355 static void
   3356 wpi_sysctlattach(struct wpi_softc *sc)
   3357 {
   3358 	int rc;
   3359 	const struct sysctlnode *rnode;
   3360 	const struct sysctlnode *cnode;
   3361 
   3362 	struct sysctllog **clog = &sc->sc_sysctllog;
   3363 
   3364 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
   3365 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
   3366 	    SYSCTL_DESCR("wpi controls and statistics"),
   3367 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
   3368 		goto err;
   3369 
   3370 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3371 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
   3372 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
   3373 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
   3374 		goto err;
   3375 
   3376 #ifdef WPI_DEBUG
   3377 	/* control debugging printfs */
   3378 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3379 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
   3380 	    "debug", SYSCTL_DESCR("Enable debugging output"),
   3381 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
   3382 		goto err;
   3383 #endif
   3384 
   3385 	return;
   3386 err:
   3387 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3388 }
   3389 
   3390 static void
   3391 wpi_rsw_thread(void *arg)
   3392 {
   3393 	struct wpi_softc *sc = (struct wpi_softc *)arg;
   3394 
   3395 	mutex_enter(&sc->sc_rsw_mtx);
   3396 	for (;;) {
   3397 		cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
   3398 		if (sc->sc_dying) {
   3399 			sc->sc_rsw_lwp = NULL;
   3400 			cv_broadcast(&sc->sc_rsw_cv);
   3401 			mutex_exit(&sc->sc_rsw_mtx);
   3402 			kthread_exit(0);
   3403 		}
   3404 		wpi_getrfkill(sc);
   3405 	}
   3406 }
   3407 
   3408