if_wpi.c revision 1.75 1 /* $NetBSD: if_wpi.c,v 1.75 2016/12/08 01:12:01 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.75 2016/12/08 01:12:01 ozaki-r Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 #include <sys/kthread.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51
52 #include <dev/sysmon/sysmonvar.h>
53
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_ether.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_amrr.h>
69 #include <net80211/ieee80211_radiotap.h>
70
71 #include <dev/firmload.h>
72
73 #include <dev/pci/if_wpireg.h>
74 #include <dev/pci/if_wpivar.h>
75
76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
77 static once_t wpi_firmware_init;
78 static kmutex_t wpi_firmware_mutex;
79 static size_t wpi_firmware_users;
80 static uint8_t *wpi_firmware_image;
81 static size_t wpi_firmware_size;
82
83 static int wpi_match(device_t, cfdata_t, void *);
84 static void wpi_attach(device_t, device_t, void *);
85 static int wpi_detach(device_t , int);
86 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
87 void **, bus_size_t, bus_size_t, int);
88 static void wpi_dma_contig_free(struct wpi_dma_info *);
89 static int wpi_alloc_shared(struct wpi_softc *);
90 static void wpi_free_shared(struct wpi_softc *);
91 static int wpi_alloc_fwmem(struct wpi_softc *);
92 static void wpi_free_fwmem(struct wpi_softc *);
93 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
94 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
95 static int wpi_alloc_rpool(struct wpi_softc *);
96 static void wpi_free_rpool(struct wpi_softc *);
97 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
98 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
99 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
100 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
101 int, int);
102 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
103 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
104 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
105 static void wpi_newassoc(struct ieee80211_node *, int);
106 static int wpi_media_change(struct ifnet *);
107 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
108 static void wpi_mem_lock(struct wpi_softc *);
109 static void wpi_mem_unlock(struct wpi_softc *);
110 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
111 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
112 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
113 const uint32_t *, int);
114 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
115 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
116 static int wpi_cache_firmware(struct wpi_softc *);
117 static void wpi_release_firmware(void);
118 static int wpi_load_firmware(struct wpi_softc *);
119 static void wpi_calib_timeout(void *);
120 static void wpi_iter_func(void *, struct ieee80211_node *);
121 static void wpi_power_calibration(struct wpi_softc *, int);
122 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
123 struct wpi_rx_data *);
124 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
125 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
126 static void wpi_notif_intr(struct wpi_softc *);
127 static int wpi_intr(void *);
128 static void wpi_read_eeprom(struct wpi_softc *);
129 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
130 static void wpi_read_eeprom_group(struct wpi_softc *, int);
131 static uint8_t wpi_plcp_signal(int);
132 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
133 struct ieee80211_node *, int);
134 static void wpi_start(struct ifnet *);
135 static void wpi_watchdog(struct ifnet *);
136 static int wpi_ioctl(struct ifnet *, u_long, void *);
137 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
138 static int wpi_wme_update(struct ieee80211com *);
139 static int wpi_mrr_setup(struct wpi_softc *);
140 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
141 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
142 static int wpi_set_txpower(struct wpi_softc *,
143 struct ieee80211_channel *, int);
144 static int wpi_get_power_index(struct wpi_softc *,
145 struct wpi_power_group *, struct ieee80211_channel *, int);
146 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
147 static int wpi_auth(struct wpi_softc *);
148 static int wpi_scan(struct wpi_softc *);
149 static int wpi_config(struct wpi_softc *);
150 static void wpi_stop_master(struct wpi_softc *);
151 static int wpi_power_up(struct wpi_softc *);
152 static int wpi_reset(struct wpi_softc *);
153 static void wpi_hw_config(struct wpi_softc *);
154 static int wpi_init(struct ifnet *);
155 static void wpi_stop(struct ifnet *, int);
156 static bool wpi_resume(device_t, const pmf_qual_t *);
157 static int wpi_getrfkill(struct wpi_softc *);
158 static void wpi_sysctlattach(struct wpi_softc *);
159 static void wpi_rsw_thread(void *);
160
161 #ifdef WPI_DEBUG
162 #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0)
163 #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0)
164 int wpi_debug = 1;
165 #else
166 #define DPRINTF(x)
167 #define DPRINTFN(n, x)
168 #endif
169
170 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
171 wpi_detach, NULL);
172
173 static int
174 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
175 {
176 struct pci_attach_args *pa = aux;
177
178 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
179 return 0;
180
181 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
182 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
183 return 1;
184
185 return 0;
186 }
187
188 /* Base Address Register */
189 #define WPI_PCI_BAR0 0x10
190
191 static int
192 wpi_attach_once(void)
193 {
194
195 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
196 return 0;
197 }
198
199 static void
200 wpi_attach(device_t parent __unused, device_t self, void *aux)
201 {
202 struct wpi_softc *sc = device_private(self);
203 struct ieee80211com *ic = &sc->sc_ic;
204 struct ifnet *ifp = &sc->sc_ec.ec_if;
205 struct pci_attach_args *pa = aux;
206 const char *intrstr;
207 bus_space_tag_t memt;
208 bus_space_handle_t memh;
209 pci_intr_handle_t ih;
210 pcireg_t data;
211 int ac, error;
212 char intrbuf[PCI_INTRSTR_LEN];
213
214 RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
215 sc->fw_used = false;
216
217 sc->sc_dev = self;
218 sc->sc_pct = pa->pa_pc;
219 sc->sc_pcitag = pa->pa_tag;
220
221 sc->sc_rsw_status = WPI_RSW_UNKNOWN;
222 sc->sc_rsw.smpsw_name = device_xname(self);
223 sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
224 error = sysmon_pswitch_register(&sc->sc_rsw);
225 if (error) {
226 aprint_error_dev(self,
227 "unable to register radio switch with sysmon\n");
228 return;
229 }
230 mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
231 cv_init(&sc->sc_rsw_cv, "wpirsw");
232 if (kthread_create(PRI_NONE, 0, NULL,
233 wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
234 aprint_error_dev(self, "couldn't create switch thread\n");
235 }
236
237 callout_init(&sc->calib_to, 0);
238 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
239
240 pci_aprint_devinfo(pa, NULL);
241
242 /* enable bus-mastering */
243 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
244 data |= PCI_COMMAND_MASTER_ENABLE;
245 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
246
247 /* map the register window */
248 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
249 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
250 if (error != 0) {
251 aprint_error_dev(self, "could not map memory space\n");
252 return;
253 }
254
255 sc->sc_st = memt;
256 sc->sc_sh = memh;
257 sc->sc_dmat = pa->pa_dmat;
258
259 if (pci_intr_map(pa, &ih) != 0) {
260 aprint_error_dev(self, "could not map interrupt\n");
261 return;
262 }
263
264 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
265 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
266 if (sc->sc_ih == NULL) {
267 aprint_error_dev(self, "could not establish interrupt");
268 if (intrstr != NULL)
269 aprint_error(" at %s", intrstr);
270 aprint_error("\n");
271 return;
272 }
273 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
274
275 /*
276 * Put adapter into a known state.
277 */
278 if ((error = wpi_reset(sc)) != 0) {
279 aprint_error_dev(self, "could not reset adapter\n");
280 return;
281 }
282
283 /*
284 * Allocate DMA memory for firmware transfers.
285 */
286 if ((error = wpi_alloc_fwmem(sc)) != 0) {
287 aprint_error_dev(self, "could not allocate firmware memory\n");
288 return;
289 }
290
291 /*
292 * Allocate shared page and Tx/Rx rings.
293 */
294 if ((error = wpi_alloc_shared(sc)) != 0) {
295 aprint_error_dev(self, "could not allocate shared area\n");
296 goto fail1;
297 }
298
299 if ((error = wpi_alloc_rpool(sc)) != 0) {
300 aprint_error_dev(self, "could not allocate Rx buffers\n");
301 goto fail2;
302 }
303
304 for (ac = 0; ac < 4; ac++) {
305 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
306 ac);
307 if (error != 0) {
308 aprint_error_dev(self,
309 "could not allocate Tx ring %d\n", ac);
310 goto fail3;
311 }
312 }
313
314 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
315 if (error != 0) {
316 aprint_error_dev(self, "could not allocate command ring\n");
317 goto fail3;
318 }
319
320 error = wpi_alloc_rx_ring(sc, &sc->rxq);
321 if (error != 0) {
322 aprint_error_dev(self, "could not allocate Rx ring\n");
323 goto fail4;
324 }
325
326 ic->ic_ifp = ifp;
327 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
328 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
329 ic->ic_state = IEEE80211_S_INIT;
330
331 /* set device capabilities */
332 ic->ic_caps =
333 IEEE80211_C_WPA | /* 802.11i */
334 IEEE80211_C_MONITOR | /* monitor mode supported */
335 IEEE80211_C_TXPMGT | /* tx power management */
336 IEEE80211_C_SHSLOT | /* short slot time supported */
337 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
338 IEEE80211_C_WME; /* 802.11e */
339
340 /* read supported channels and MAC address from EEPROM */
341 wpi_read_eeprom(sc);
342
343 /* set supported .11a, .11b and .11g rates */
344 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
345 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
346 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
347
348 /* IBSS channel undefined for now */
349 ic->ic_ibss_chan = &ic->ic_channels[0];
350
351 ifp->if_softc = sc;
352 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
353 ifp->if_init = wpi_init;
354 ifp->if_stop = wpi_stop;
355 ifp->if_ioctl = wpi_ioctl;
356 ifp->if_start = wpi_start;
357 ifp->if_watchdog = wpi_watchdog;
358 IFQ_SET_READY(&ifp->if_snd);
359 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
360
361 if_attach(ifp);
362 if_deferred_start_init(ifp, NULL);
363 ieee80211_ifattach(ic);
364 /* override default methods */
365 ic->ic_node_alloc = wpi_node_alloc;
366 ic->ic_newassoc = wpi_newassoc;
367 ic->ic_wme.wme_update = wpi_wme_update;
368
369 /* override state transition machine */
370 sc->sc_newstate = ic->ic_newstate;
371 ic->ic_newstate = wpi_newstate;
372 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
373
374 sc->amrr.amrr_min_success_threshold = 1;
375 sc->amrr.amrr_max_success_threshold = 15;
376
377 wpi_sysctlattach(sc);
378
379 if (pmf_device_register(self, NULL, wpi_resume))
380 pmf_class_network_register(self, ifp);
381 else
382 aprint_error_dev(self, "couldn't establish power handler\n");
383
384 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
385 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
386 &sc->sc_drvbpf);
387
388 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
389 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
390 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
391
392 sc->sc_txtap_len = sizeof sc->sc_txtapu;
393 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
394 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
395
396 ieee80211_announce(ic);
397
398 return;
399
400 /* free allocated memory if something failed during attachment */
401 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
402 fail3: while (--ac >= 0)
403 wpi_free_tx_ring(sc, &sc->txq[ac]);
404 wpi_free_rpool(sc);
405 fail2: wpi_free_shared(sc);
406 fail1: wpi_free_fwmem(sc);
407 }
408
409 static int
410 wpi_detach(device_t self, int flags __unused)
411 {
412 struct wpi_softc *sc = device_private(self);
413 struct ifnet *ifp = sc->sc_ic.ic_ifp;
414 int ac;
415
416 wpi_stop(ifp, 1);
417
418 if (ifp != NULL)
419 bpf_detach(ifp);
420 ieee80211_ifdetach(&sc->sc_ic);
421 if (ifp != NULL)
422 if_detach(ifp);
423
424 for (ac = 0; ac < 4; ac++)
425 wpi_free_tx_ring(sc, &sc->txq[ac]);
426 wpi_free_tx_ring(sc, &sc->cmdq);
427 wpi_free_rx_ring(sc, &sc->rxq);
428 wpi_free_rpool(sc);
429 wpi_free_shared(sc);
430
431 if (sc->sc_ih != NULL) {
432 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
433 sc->sc_ih = NULL;
434 }
435 mutex_enter(&sc->sc_rsw_mtx);
436 sc->sc_dying = 1;
437 cv_signal(&sc->sc_rsw_cv);
438 while (sc->sc_rsw_lwp != NULL)
439 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
440 mutex_exit(&sc->sc_rsw_mtx);
441 sysmon_pswitch_unregister(&sc->sc_rsw);
442
443 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
444
445 if (sc->fw_used) {
446 sc->fw_used = false;
447 wpi_release_firmware();
448 }
449 cv_destroy(&sc->sc_rsw_cv);
450 mutex_destroy(&sc->sc_rsw_mtx);
451 return 0;
452 }
453
454 static int
455 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
456 bus_size_t size, bus_size_t alignment, int flags)
457 {
458 int nsegs, error;
459
460 dma->tag = tag;
461 dma->size = size;
462
463 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
464 if (error != 0)
465 goto fail;
466
467 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
468 flags);
469 if (error != 0)
470 goto fail;
471
472 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
473 if (error != 0)
474 goto fail;
475
476 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
477 if (error != 0)
478 goto fail;
479
480 memset(dma->vaddr, 0, size);
481 bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
482
483 dma->paddr = dma->map->dm_segs[0].ds_addr;
484 if (kvap != NULL)
485 *kvap = dma->vaddr;
486
487 return 0;
488
489 fail: wpi_dma_contig_free(dma);
490 return error;
491 }
492
493 static void
494 wpi_dma_contig_free(struct wpi_dma_info *dma)
495 {
496 if (dma->map != NULL) {
497 if (dma->vaddr != NULL) {
498 bus_dmamap_unload(dma->tag, dma->map);
499 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
500 bus_dmamem_free(dma->tag, &dma->seg, 1);
501 dma->vaddr = NULL;
502 }
503 bus_dmamap_destroy(dma->tag, dma->map);
504 dma->map = NULL;
505 }
506 }
507
508 /*
509 * Allocate a shared page between host and NIC.
510 */
511 static int
512 wpi_alloc_shared(struct wpi_softc *sc)
513 {
514 int error;
515
516 /* must be aligned on a 4K-page boundary */
517 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
518 (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
519 BUS_DMA_NOWAIT);
520 if (error != 0)
521 aprint_error_dev(sc->sc_dev,
522 "could not allocate shared area DMA memory\n");
523
524 return error;
525 }
526
527 static void
528 wpi_free_shared(struct wpi_softc *sc)
529 {
530 wpi_dma_contig_free(&sc->shared_dma);
531 }
532
533 /*
534 * Allocate DMA-safe memory for firmware transfer.
535 */
536 static int
537 wpi_alloc_fwmem(struct wpi_softc *sc)
538 {
539 int error;
540
541 /* allocate enough contiguous space to store text and data */
542 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
543 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
544 BUS_DMA_NOWAIT);
545
546 if (error != 0)
547 aprint_error_dev(sc->sc_dev,
548 "could not allocate firmware transfer area DMA memory\n");
549 return error;
550 }
551
552 static void
553 wpi_free_fwmem(struct wpi_softc *sc)
554 {
555 wpi_dma_contig_free(&sc->fw_dma);
556 }
557
558 static struct wpi_rbuf *
559 wpi_alloc_rbuf(struct wpi_softc *sc)
560 {
561 struct wpi_rbuf *rbuf;
562
563 mutex_enter(&sc->rxq.freelist_mtx);
564 rbuf = SLIST_FIRST(&sc->rxq.freelist);
565 if (rbuf != NULL) {
566 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
567 }
568 mutex_exit(&sc->rxq.freelist_mtx);
569
570 return rbuf;
571 }
572
573 /*
574 * This is called automatically by the network stack when the mbuf to which our
575 * Rx buffer is attached is freed.
576 */
577 static void
578 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
579 {
580 struct wpi_rbuf *rbuf = arg;
581 struct wpi_softc *sc = rbuf->sc;
582
583 /* put the buffer back in the free list */
584
585 mutex_enter(&sc->rxq.freelist_mtx);
586 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
587 mutex_exit(&sc->rxq.freelist_mtx);
588
589 if (__predict_true(m != NULL))
590 pool_cache_put(mb_cache, m);
591 }
592
593 static int
594 wpi_alloc_rpool(struct wpi_softc *sc)
595 {
596 struct wpi_rx_ring *ring = &sc->rxq;
597 int i, error;
598
599 /* allocate a big chunk of DMA'able memory.. */
600 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
601 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
602 if (error != 0) {
603 aprint_normal_dev(sc->sc_dev,
604 "could not allocate Rx buffers DMA memory\n");
605 return error;
606 }
607
608 /* ..and split it into 3KB chunks */
609 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
610 SLIST_INIT(&ring->freelist);
611 for (i = 0; i < WPI_RBUF_COUNT; i++) {
612 struct wpi_rbuf *rbuf = &ring->rbuf[i];
613
614 rbuf->sc = sc; /* backpointer for callbacks */
615 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
616 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
617
618 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
619 }
620
621 return 0;
622 }
623
624 static void
625 wpi_free_rpool(struct wpi_softc *sc)
626 {
627 wpi_dma_contig_free(&sc->rxq.buf_dma);
628 }
629
630 static int
631 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
632 {
633 bus_size_t size;
634 int i, error;
635
636 ring->cur = 0;
637
638 size = WPI_RX_RING_COUNT * sizeof (uint32_t);
639 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
640 (void **)&ring->desc, size,
641 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
642 if (error != 0) {
643 aprint_error_dev(sc->sc_dev,
644 "could not allocate rx ring DMA memory\n");
645 goto fail;
646 }
647
648 /*
649 * Setup Rx buffers.
650 */
651 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
652 struct wpi_rx_data *data = &ring->data[i];
653 struct wpi_rbuf *rbuf;
654
655 error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
656 WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
657 if (error) {
658 aprint_error_dev(sc->sc_dev,
659 "could not allocate rx dma map\n");
660 goto fail;
661 }
662
663 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
664 if (data->m == NULL) {
665 aprint_error_dev(sc->sc_dev,
666 "could not allocate rx mbuf\n");
667 error = ENOMEM;
668 goto fail;
669 }
670 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
671 m_freem(data->m);
672 data->m = NULL;
673 aprint_error_dev(sc->sc_dev,
674 "could not allocate rx cluster\n");
675 error = ENOMEM;
676 goto fail;
677 }
678 /* attach Rx buffer to mbuf */
679 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
680 rbuf);
681 data->m->m_flags |= M_EXT_RW;
682
683 error = bus_dmamap_load(sc->sc_dmat, data->map,
684 mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
685 BUS_DMA_NOWAIT | BUS_DMA_READ);
686 if (error) {
687 aprint_error_dev(sc->sc_dev,
688 "could not load mbuf: %d\n", error);
689 goto fail;
690 }
691
692 ring->desc[i] = htole32(rbuf->paddr);
693 }
694
695 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
696 BUS_DMASYNC_PREWRITE);
697
698 return 0;
699
700 fail: wpi_free_rx_ring(sc, ring);
701 return error;
702 }
703
704 static void
705 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
706 {
707 int ntries;
708
709 wpi_mem_lock(sc);
710
711 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
712 for (ntries = 0; ntries < 100; ntries++) {
713 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
714 break;
715 DELAY(10);
716 }
717 #ifdef WPI_DEBUG
718 if (ntries == 100 && wpi_debug > 0)
719 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
720 #endif
721 wpi_mem_unlock(sc);
722
723 ring->cur = 0;
724 }
725
726 static void
727 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
728 {
729 int i;
730
731 wpi_dma_contig_free(&ring->desc_dma);
732
733 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
734 if (ring->data[i].m != NULL) {
735 bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
736 m_freem(ring->data[i].m);
737 }
738 if (ring->data[i].map != NULL) {
739 bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
740 }
741 }
742 }
743
744 static int
745 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
746 int qid)
747 {
748 int i, error;
749
750 ring->qid = qid;
751 ring->count = count;
752 ring->queued = 0;
753 ring->cur = 0;
754
755 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
756 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
757 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
758 if (error != 0) {
759 aprint_error_dev(sc->sc_dev,
760 "could not allocate tx ring DMA memory\n");
761 goto fail;
762 }
763
764 /* update shared page with ring's base address */
765 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
766 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
767 sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
768
769 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
770 (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
771 BUS_DMA_NOWAIT);
772 if (error != 0) {
773 aprint_error_dev(sc->sc_dev,
774 "could not allocate tx cmd DMA memory\n");
775 goto fail;
776 }
777
778 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
779 M_NOWAIT | M_ZERO);
780 if (ring->data == NULL) {
781 aprint_error_dev(sc->sc_dev,
782 "could not allocate tx data slots\n");
783 goto fail;
784 }
785
786 for (i = 0; i < count; i++) {
787 struct wpi_tx_data *data = &ring->data[i];
788
789 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
790 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
791 &data->map);
792 if (error != 0) {
793 aprint_error_dev(sc->sc_dev,
794 "could not create tx buf DMA map\n");
795 goto fail;
796 }
797 }
798
799 return 0;
800
801 fail: wpi_free_tx_ring(sc, ring);
802 return error;
803 }
804
805 static void
806 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
807 {
808 int i, ntries;
809
810 wpi_mem_lock(sc);
811
812 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
813 for (ntries = 0; ntries < 100; ntries++) {
814 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
815 break;
816 DELAY(10);
817 }
818 #ifdef WPI_DEBUG
819 if (ntries == 100 && wpi_debug > 0) {
820 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
821 ring->qid);
822 }
823 #endif
824 wpi_mem_unlock(sc);
825
826 for (i = 0; i < ring->count; i++) {
827 struct wpi_tx_data *data = &ring->data[i];
828
829 if (data->m != NULL) {
830 bus_dmamap_unload(sc->sc_dmat, data->map);
831 m_freem(data->m);
832 data->m = NULL;
833 }
834 }
835
836 ring->queued = 0;
837 ring->cur = 0;
838 }
839
840 static void
841 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
842 {
843 int i;
844
845 wpi_dma_contig_free(&ring->desc_dma);
846 wpi_dma_contig_free(&ring->cmd_dma);
847
848 if (ring->data != NULL) {
849 for (i = 0; i < ring->count; i++) {
850 struct wpi_tx_data *data = &ring->data[i];
851
852 if (data->m != NULL) {
853 bus_dmamap_unload(sc->sc_dmat, data->map);
854 m_freem(data->m);
855 }
856 }
857 free(ring->data, M_DEVBUF);
858 }
859 }
860
861 /*ARGUSED*/
862 static struct ieee80211_node *
863 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
864 {
865 struct wpi_node *wn;
866
867 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
868
869 return (struct ieee80211_node *)wn;
870 }
871
872 static void
873 wpi_newassoc(struct ieee80211_node *ni, int isnew)
874 {
875 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
876 int i;
877
878 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
879
880 /* set rate to some reasonable initial value */
881 for (i = ni->ni_rates.rs_nrates - 1;
882 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
883 i--);
884 ni->ni_txrate = i;
885 }
886
887 static int
888 wpi_media_change(struct ifnet *ifp)
889 {
890 int error;
891
892 error = ieee80211_media_change(ifp);
893 if (error != ENETRESET)
894 return error;
895
896 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
897 wpi_init(ifp);
898
899 return 0;
900 }
901
902 static int
903 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
904 {
905 struct ifnet *ifp = ic->ic_ifp;
906 struct wpi_softc *sc = ifp->if_softc;
907 struct ieee80211_node *ni;
908 enum ieee80211_state ostate = ic->ic_state;
909 int error;
910
911 callout_stop(&sc->calib_to);
912
913 switch (nstate) {
914 case IEEE80211_S_SCAN:
915
916 if (sc->is_scanning)
917 break;
918
919 sc->is_scanning = true;
920
921 if (ostate != IEEE80211_S_SCAN) {
922 /* make the link LED blink while we're scanning */
923 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
924 }
925
926 if ((error = wpi_scan(sc)) != 0) {
927 aprint_error_dev(sc->sc_dev,
928 "could not initiate scan\n");
929 return error;
930 }
931 break;
932
933 case IEEE80211_S_ASSOC:
934 if (ic->ic_state != IEEE80211_S_RUN)
935 break;
936 /* FALLTHROUGH */
937 case IEEE80211_S_AUTH:
938 /* reset state to handle reassociations correctly */
939 sc->config.associd = 0;
940 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
941
942 if ((error = wpi_auth(sc)) != 0) {
943 aprint_error_dev(sc->sc_dev,
944 "could not send authentication request\n");
945 return error;
946 }
947 break;
948
949 case IEEE80211_S_RUN:
950 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
951 /* link LED blinks while monitoring */
952 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
953 break;
954 }
955 ni = ic->ic_bss;
956
957 if (ic->ic_opmode != IEEE80211_M_STA) {
958 (void) wpi_auth(sc); /* XXX */
959 wpi_setup_beacon(sc, ni);
960 }
961
962 wpi_enable_tsf(sc, ni);
963
964 /* update adapter's configuration */
965 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
966 /* short preamble/slot time are negotiated when associating */
967 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
968 WPI_CONFIG_SHSLOT);
969 if (ic->ic_flags & IEEE80211_F_SHSLOT)
970 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
971 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
972 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
973 sc->config.filter |= htole32(WPI_FILTER_BSS);
974 if (ic->ic_opmode != IEEE80211_M_STA)
975 sc->config.filter |= htole32(WPI_FILTER_BEACON);
976
977 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
978
979 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
980 sc->config.flags));
981 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
982 sizeof (struct wpi_config), 1);
983 if (error != 0) {
984 aprint_error_dev(sc->sc_dev,
985 "could not update configuration\n");
986 return error;
987 }
988
989 /* configuration has changed, set Tx power accordingly */
990 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
991 aprint_error_dev(sc->sc_dev,
992 "could not set Tx power\n");
993 return error;
994 }
995
996 if (ic->ic_opmode == IEEE80211_M_STA) {
997 /* fake a join to init the tx rate */
998 wpi_newassoc(ni, 1);
999 }
1000
1001 /* start periodic calibration timer */
1002 sc->calib_cnt = 0;
1003 callout_schedule(&sc->calib_to, hz/2);
1004
1005 /* link LED always on while associated */
1006 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1007 break;
1008
1009 case IEEE80211_S_INIT:
1010 sc->is_scanning = false;
1011 break;
1012 }
1013
1014 return sc->sc_newstate(ic, nstate, arg);
1015 }
1016
1017 /*
1018 * Grab exclusive access to NIC memory.
1019 */
1020 static void
1021 wpi_mem_lock(struct wpi_softc *sc)
1022 {
1023 uint32_t tmp;
1024 int ntries;
1025
1026 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1027 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1028
1029 /* spin until we actually get the lock */
1030 for (ntries = 0; ntries < 1000; ntries++) {
1031 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1032 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1033 break;
1034 DELAY(10);
1035 }
1036 if (ntries == 1000)
1037 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1038 }
1039
1040 /*
1041 * Release lock on NIC memory.
1042 */
1043 static void
1044 wpi_mem_unlock(struct wpi_softc *sc)
1045 {
1046 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1047 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1048 }
1049
1050 static uint32_t
1051 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1052 {
1053 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1054 return WPI_READ(sc, WPI_READ_MEM_DATA);
1055 }
1056
1057 static void
1058 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1059 {
1060 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1061 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1062 }
1063
1064 static void
1065 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1066 const uint32_t *data, int wlen)
1067 {
1068 for (; wlen > 0; wlen--, data++, addr += 4)
1069 wpi_mem_write(sc, addr, *data);
1070 }
1071
1072 /*
1073 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1074 * instead of using the traditional bit-bang method.
1075 */
1076 static int
1077 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1078 {
1079 uint8_t *out = data;
1080 uint32_t val;
1081 int ntries;
1082
1083 wpi_mem_lock(sc);
1084 for (; len > 0; len -= 2, addr++) {
1085 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1086
1087 for (ntries = 0; ntries < 10; ntries++) {
1088 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1089 WPI_EEPROM_READY)
1090 break;
1091 DELAY(5);
1092 }
1093 if (ntries == 10) {
1094 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1095 return ETIMEDOUT;
1096 }
1097 *out++ = val >> 16;
1098 if (len > 1)
1099 *out++ = val >> 24;
1100 }
1101 wpi_mem_unlock(sc);
1102
1103 return 0;
1104 }
1105
1106 /*
1107 * The firmware boot code is small and is intended to be copied directly into
1108 * the NIC internal memory.
1109 */
1110 int
1111 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1112 {
1113 int ntries;
1114
1115 size /= sizeof (uint32_t);
1116
1117 wpi_mem_lock(sc);
1118
1119 /* copy microcode image into NIC memory */
1120 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1121 (const uint32_t *)ucode, size);
1122
1123 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1124 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1125 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1126
1127 /* run microcode */
1128 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1129
1130 /* wait for transfer to complete */
1131 for (ntries = 0; ntries < 1000; ntries++) {
1132 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1133 break;
1134 DELAY(10);
1135 }
1136 if (ntries == 1000) {
1137 wpi_mem_unlock(sc);
1138 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1139 return ETIMEDOUT;
1140 }
1141 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1142
1143 wpi_mem_unlock(sc);
1144
1145 return 0;
1146 }
1147
1148 static int
1149 wpi_cache_firmware(struct wpi_softc *sc)
1150 {
1151 const char *const fwname = wpi_firmware_name;
1152 firmware_handle_t fw;
1153 int error;
1154
1155 /* sc is used here only to report error messages. */
1156
1157 mutex_enter(&wpi_firmware_mutex);
1158
1159 if (wpi_firmware_users == SIZE_MAX) {
1160 mutex_exit(&wpi_firmware_mutex);
1161 return ENFILE; /* Too many of something in the system... */
1162 }
1163 if (wpi_firmware_users++) {
1164 KASSERT(wpi_firmware_image != NULL);
1165 KASSERT(wpi_firmware_size > 0);
1166 mutex_exit(&wpi_firmware_mutex);
1167 return 0; /* Already good to go. */
1168 }
1169
1170 KASSERT(wpi_firmware_image == NULL);
1171 KASSERT(wpi_firmware_size == 0);
1172
1173 /* load firmware image from disk */
1174 if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1175 aprint_error_dev(sc->sc_dev,
1176 "could not open firmware file %s: %d\n", fwname, error);
1177 goto fail0;
1178 }
1179
1180 wpi_firmware_size = firmware_get_size(fw);
1181
1182 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1183 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1184 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1185 WPI_FW_BOOT_TEXT_MAXSZ) {
1186 aprint_error_dev(sc->sc_dev,
1187 "firmware file %s too large: %zu bytes\n",
1188 fwname, wpi_firmware_size);
1189 error = EFBIG;
1190 goto fail1;
1191 }
1192
1193 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1194 aprint_error_dev(sc->sc_dev,
1195 "firmware file %s too small: %zu bytes\n",
1196 fwname, wpi_firmware_size);
1197 error = EINVAL;
1198 goto fail1;
1199 }
1200
1201 wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1202 if (wpi_firmware_image == NULL) {
1203 aprint_error_dev(sc->sc_dev,
1204 "not enough memory for firmware file %s\n", fwname);
1205 error = ENOMEM;
1206 goto fail1;
1207 }
1208
1209 error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1210 if (error != 0) {
1211 aprint_error_dev(sc->sc_dev,
1212 "error reading firmware file %s: %d\n", fwname, error);
1213 goto fail2;
1214 }
1215
1216 /* Success! */
1217 firmware_close(fw);
1218 mutex_exit(&wpi_firmware_mutex);
1219 return 0;
1220
1221 fail2:
1222 firmware_free(wpi_firmware_image, wpi_firmware_size);
1223 wpi_firmware_image = NULL;
1224 fail1:
1225 wpi_firmware_size = 0;
1226 firmware_close(fw);
1227 fail0:
1228 KASSERT(wpi_firmware_users == 1);
1229 wpi_firmware_users = 0;
1230 KASSERT(wpi_firmware_image == NULL);
1231 KASSERT(wpi_firmware_size == 0);
1232
1233 mutex_exit(&wpi_firmware_mutex);
1234 return error;
1235 }
1236
1237 static void
1238 wpi_release_firmware(void)
1239 {
1240
1241 mutex_enter(&wpi_firmware_mutex);
1242
1243 KASSERT(wpi_firmware_users > 0);
1244 KASSERT(wpi_firmware_image != NULL);
1245 KASSERT(wpi_firmware_size != 0);
1246
1247 if (--wpi_firmware_users == 0) {
1248 firmware_free(wpi_firmware_image, wpi_firmware_size);
1249 wpi_firmware_image = NULL;
1250 wpi_firmware_size = 0;
1251 }
1252
1253 mutex_exit(&wpi_firmware_mutex);
1254 }
1255
1256 static int
1257 wpi_load_firmware(struct wpi_softc *sc)
1258 {
1259 struct wpi_dma_info *dma = &sc->fw_dma;
1260 struct wpi_firmware_hdr hdr;
1261 const uint8_t *init_text, *init_data, *main_text, *main_data;
1262 const uint8_t *boot_text;
1263 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1264 uint32_t boot_textsz;
1265 size_t size;
1266 int error;
1267
1268 if (!sc->fw_used) {
1269 if ((error = wpi_cache_firmware(sc)) != 0)
1270 return error;
1271 sc->fw_used = true;
1272 }
1273
1274 KASSERT(sc->fw_used);
1275 KASSERT(wpi_firmware_image != NULL);
1276 KASSERT(wpi_firmware_size > sizeof(hdr));
1277
1278 memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1279
1280 main_textsz = le32toh(hdr.main_textsz);
1281 main_datasz = le32toh(hdr.main_datasz);
1282 init_textsz = le32toh(hdr.init_textsz);
1283 init_datasz = le32toh(hdr.init_datasz);
1284 boot_textsz = le32toh(hdr.boot_textsz);
1285
1286 /* sanity-check firmware segments sizes */
1287 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1288 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1289 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1290 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1291 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1292 (boot_textsz & 3) != 0) {
1293 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1294 error = EINVAL;
1295 goto free_firmware;
1296 }
1297
1298 /* check that all firmware segments are present */
1299 size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1300 main_datasz + init_textsz + init_datasz + boot_textsz;
1301 if (wpi_firmware_size < size) {
1302 aprint_error_dev(sc->sc_dev,
1303 "firmware file truncated: %zu bytes, expected %zu bytes\n",
1304 wpi_firmware_size, size);
1305 error = EINVAL;
1306 goto free_firmware;
1307 }
1308
1309 /* get pointers to firmware segments */
1310 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1311 main_data = main_text + main_textsz;
1312 init_text = main_data + main_datasz;
1313 init_data = init_text + init_textsz;
1314 boot_text = init_data + init_datasz;
1315
1316 /* copy initialization images into pre-allocated DMA-safe memory */
1317 memcpy(dma->vaddr, init_data, init_datasz);
1318 memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1319 init_textsz);
1320
1321 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1322
1323 /* tell adapter where to find initialization images */
1324 wpi_mem_lock(sc);
1325 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1326 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1327 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1328 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1329 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1330 wpi_mem_unlock(sc);
1331
1332 /* load firmware boot code */
1333 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1334 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1335 return error;
1336 }
1337
1338 /* now press "execute" ;-) */
1339 WPI_WRITE(sc, WPI_RESET, 0);
1340
1341 /* wait at most one second for first alive notification */
1342 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1343 /* this isn't what was supposed to happen.. */
1344 aprint_error_dev(sc->sc_dev,
1345 "timeout waiting for adapter to initialize\n");
1346 }
1347
1348 /* copy runtime images into pre-allocated DMA-safe memory */
1349 memcpy(dma->vaddr, main_data, main_datasz);
1350 memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1351 main_textsz);
1352
1353 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1354
1355 /* tell adapter where to find runtime images */
1356 wpi_mem_lock(sc);
1357 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1358 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1359 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1360 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1361 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1362 wpi_mem_unlock(sc);
1363
1364 /* wait at most one second for second alive notification */
1365 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1366 /* this isn't what was supposed to happen.. */
1367 aprint_error_dev(sc->sc_dev,
1368 "timeout waiting for adapter to initialize\n");
1369 }
1370
1371 return error;
1372
1373 free_firmware:
1374 sc->fw_used = false;
1375 wpi_release_firmware();
1376 return error;
1377 }
1378
1379 static void
1380 wpi_calib_timeout(void *arg)
1381 {
1382 struct wpi_softc *sc = arg;
1383 struct ieee80211com *ic = &sc->sc_ic;
1384 int temp, s;
1385
1386 /* automatic rate control triggered every 500ms */
1387 if (ic->ic_fixed_rate == -1) {
1388 s = splnet();
1389 if (ic->ic_opmode == IEEE80211_M_STA)
1390 wpi_iter_func(sc, ic->ic_bss);
1391 else
1392 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1393 splx(s);
1394 }
1395
1396 /* update sensor data */
1397 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1398
1399 /* automatic power calibration every 60s */
1400 if (++sc->calib_cnt >= 120) {
1401 wpi_power_calibration(sc, temp);
1402 sc->calib_cnt = 0;
1403 }
1404
1405 callout_schedule(&sc->calib_to, hz/2);
1406 }
1407
1408 static void
1409 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1410 {
1411 struct wpi_softc *sc = arg;
1412 struct wpi_node *wn = (struct wpi_node *)ni;
1413
1414 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1415 }
1416
1417 /*
1418 * This function is called periodically (every 60 seconds) to adjust output
1419 * power to temperature changes.
1420 */
1421 void
1422 wpi_power_calibration(struct wpi_softc *sc, int temp)
1423 {
1424 /* sanity-check read value */
1425 if (temp < -260 || temp > 25) {
1426 /* this can't be correct, ignore */
1427 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1428 return;
1429 }
1430
1431 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1432
1433 /* adjust Tx power if need be */
1434 if (abs(temp - sc->temp) <= 6)
1435 return;
1436
1437 sc->temp = temp;
1438
1439 if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1440 /* just warn, too bad for the automatic calibration... */
1441 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1442 }
1443 }
1444
1445 static void
1446 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1447 struct wpi_rx_data *data)
1448 {
1449 struct ieee80211com *ic = &sc->sc_ic;
1450 struct ifnet *ifp = ic->ic_ifp;
1451 struct wpi_rx_ring *ring = &sc->rxq;
1452 struct wpi_rx_stat *stat;
1453 struct wpi_rx_head *head;
1454 struct wpi_rx_tail *tail;
1455 struct wpi_rbuf *rbuf;
1456 struct ieee80211_frame *wh;
1457 struct ieee80211_node *ni;
1458 struct mbuf *m, *mnew;
1459 int data_off, error;
1460
1461 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1462 BUS_DMASYNC_POSTREAD);
1463 stat = (struct wpi_rx_stat *)(desc + 1);
1464
1465 if (stat->len > WPI_STAT_MAXLEN) {
1466 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1467 ifp->if_ierrors++;
1468 return;
1469 }
1470
1471 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1472 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1473
1474 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1475 "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1476 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1477 le64toh(tail->tstamp)));
1478
1479 /*
1480 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1481 * to radiotap in monitor mode).
1482 */
1483 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1484 DPRINTF(("rx tail flags error %x\n",
1485 le32toh(tail->flags)));
1486 ifp->if_ierrors++;
1487 return;
1488 }
1489
1490 /* Compute where are the useful datas */
1491 data_off = (char*)(head + 1) - mtod(data->m, char*);
1492
1493 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1494 if (mnew == NULL) {
1495 ifp->if_ierrors++;
1496 return;
1497 }
1498
1499 rbuf = wpi_alloc_rbuf(sc);
1500 if (rbuf == NULL) {
1501 m_freem(mnew);
1502 ifp->if_ierrors++;
1503 return;
1504 }
1505
1506 /* attach Rx buffer to mbuf */
1507 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1508 rbuf);
1509 mnew->m_flags |= M_EXT_RW;
1510
1511 bus_dmamap_unload(sc->sc_dmat, data->map);
1512
1513 error = bus_dmamap_load(sc->sc_dmat, data->map,
1514 mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1515 BUS_DMA_NOWAIT | BUS_DMA_READ);
1516 if (error) {
1517 device_printf(sc->sc_dev,
1518 "couldn't load rx mbuf: %d\n", error);
1519 m_freem(mnew);
1520 ifp->if_ierrors++;
1521
1522 error = bus_dmamap_load(sc->sc_dmat, data->map,
1523 mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1524 BUS_DMA_NOWAIT | BUS_DMA_READ);
1525 if (error)
1526 panic("%s: bus_dmamap_load failed: %d\n",
1527 device_xname(sc->sc_dev), error);
1528 return;
1529 }
1530
1531 /* new mbuf loaded successfully */
1532 m = data->m;
1533 data->m = mnew;
1534
1535 /* update Rx descriptor */
1536 ring->desc[ring->cur] = htole32(rbuf->paddr);
1537 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1538 ring->desc_dma.size,
1539 BUS_DMASYNC_PREWRITE);
1540
1541 m->m_data = (char*)m->m_data + data_off;
1542 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1543
1544 /* finalize mbuf */
1545 m_set_rcvif(m, ifp);
1546
1547 if (sc->sc_drvbpf != NULL) {
1548 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1549
1550 tap->wr_flags = 0;
1551 tap->wr_chan_freq =
1552 htole16(ic->ic_channels[head->chan].ic_freq);
1553 tap->wr_chan_flags =
1554 htole16(ic->ic_channels[head->chan].ic_flags);
1555 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1556 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1557 tap->wr_tsft = tail->tstamp;
1558 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1559 switch (head->rate) {
1560 /* CCK rates */
1561 case 10: tap->wr_rate = 2; break;
1562 case 20: tap->wr_rate = 4; break;
1563 case 55: tap->wr_rate = 11; break;
1564 case 110: tap->wr_rate = 22; break;
1565 /* OFDM rates */
1566 case 0xd: tap->wr_rate = 12; break;
1567 case 0xf: tap->wr_rate = 18; break;
1568 case 0x5: tap->wr_rate = 24; break;
1569 case 0x7: tap->wr_rate = 36; break;
1570 case 0x9: tap->wr_rate = 48; break;
1571 case 0xb: tap->wr_rate = 72; break;
1572 case 0x1: tap->wr_rate = 96; break;
1573 case 0x3: tap->wr_rate = 108; break;
1574 /* unknown rate: should not happen */
1575 default: tap->wr_rate = 0;
1576 }
1577 if (le16toh(head->flags) & 0x4)
1578 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1579
1580 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1581 }
1582
1583 /* grab a reference to the source node */
1584 wh = mtod(m, struct ieee80211_frame *);
1585 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1586
1587 /* send the frame to the 802.11 layer */
1588 ieee80211_input(ic, m, ni, stat->rssi, 0);
1589
1590 /* release node reference */
1591 ieee80211_free_node(ni);
1592 }
1593
1594 static void
1595 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1596 {
1597 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1598 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1599 struct wpi_tx_data *data = &ring->data[desc->idx];
1600 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1601 struct wpi_node *wn = (struct wpi_node *)data->ni;
1602
1603 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1604 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1605 stat->nkill, stat->rate, le32toh(stat->duration),
1606 le32toh(stat->status)));
1607
1608 /*
1609 * Update rate control statistics for the node.
1610 * XXX we should not count mgmt frames since they're always sent at
1611 * the lowest available bit-rate.
1612 */
1613 wn->amn.amn_txcnt++;
1614 if (stat->ntries > 0) {
1615 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1616 wn->amn.amn_retrycnt++;
1617 }
1618
1619 if ((le32toh(stat->status) & 0xff) != 1)
1620 ifp->if_oerrors++;
1621 else
1622 ifp->if_opackets++;
1623
1624 bus_dmamap_unload(sc->sc_dmat, data->map);
1625 m_freem(data->m);
1626 data->m = NULL;
1627 ieee80211_free_node(data->ni);
1628 data->ni = NULL;
1629
1630 ring->queued--;
1631
1632 sc->sc_tx_timer = 0;
1633 ifp->if_flags &= ~IFF_OACTIVE;
1634 if_schedule_deferred_start(ifp);
1635 }
1636
1637 static void
1638 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1639 {
1640 struct wpi_tx_ring *ring = &sc->cmdq;
1641 struct wpi_tx_data *data;
1642
1643 if ((desc->qid & 7) != 4)
1644 return; /* not a command ack */
1645
1646 data = &ring->data[desc->idx];
1647
1648 /* if the command was mapped in a mbuf, free it */
1649 if (data->m != NULL) {
1650 bus_dmamap_unload(sc->sc_dmat, data->map);
1651 m_freem(data->m);
1652 data->m = NULL;
1653 }
1654
1655 wakeup(&ring->cmd[desc->idx]);
1656 }
1657
1658 static void
1659 wpi_notif_intr(struct wpi_softc *sc)
1660 {
1661 struct ieee80211com *ic = &sc->sc_ic;
1662 struct ifnet *ifp = ic->ic_ifp;
1663 uint32_t hw;
1664
1665 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1666 sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1667
1668 hw = le32toh(sc->shared->next);
1669 while (sc->rxq.cur != hw) {
1670 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1671 struct wpi_rx_desc *desc;
1672
1673 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1674 BUS_DMASYNC_POSTREAD);
1675 desc = mtod(data->m, struct wpi_rx_desc *);
1676
1677 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1678 "len=%d\n", desc->qid, desc->idx, desc->flags,
1679 desc->type, le32toh(desc->len)));
1680
1681 if (!(desc->qid & 0x80)) /* reply to a command */
1682 wpi_cmd_intr(sc, desc);
1683
1684 switch (desc->type) {
1685 case WPI_RX_DONE:
1686 /* a 802.11 frame was received */
1687 wpi_rx_intr(sc, desc, data);
1688 break;
1689
1690 case WPI_TX_DONE:
1691 /* a 802.11 frame has been transmitted */
1692 wpi_tx_intr(sc, desc);
1693 break;
1694
1695 case WPI_UC_READY:
1696 {
1697 struct wpi_ucode_info *uc =
1698 (struct wpi_ucode_info *)(desc + 1);
1699
1700 /* the microcontroller is ready */
1701 DPRINTF(("microcode alive notification version %x "
1702 "alive %x\n", le32toh(uc->version),
1703 le32toh(uc->valid)));
1704
1705 if (le32toh(uc->valid) != 1) {
1706 aprint_error_dev(sc->sc_dev,
1707 "microcontroller initialization failed\n");
1708 }
1709 break;
1710 }
1711 case WPI_STATE_CHANGED:
1712 {
1713 uint32_t *status = (uint32_t *)(desc + 1);
1714
1715 /* enabled/disabled notification */
1716 DPRINTF(("state changed to %x\n", le32toh(*status)));
1717
1718 if (le32toh(*status) & 1) {
1719 /* the radio button has to be pushed */
1720 /* wake up thread to signal powerd */
1721 cv_signal(&sc->sc_rsw_cv);
1722 aprint_error_dev(sc->sc_dev,
1723 "Radio transmitter is off\n");
1724 /* turn the interface down */
1725 ifp->if_flags &= ~IFF_UP;
1726 wpi_stop(ifp, 1);
1727 return; /* no further processing */
1728 }
1729 break;
1730 }
1731 case WPI_START_SCAN:
1732 {
1733 #if 0
1734 struct wpi_start_scan *scan =
1735 (struct wpi_start_scan *)(desc + 1);
1736
1737 DPRINTFN(2, ("scanning channel %d status %x\n",
1738 scan->chan, le32toh(scan->status)));
1739
1740 /* fix current channel */
1741 ic->ic_curchan = &ic->ic_channels[scan->chan];
1742 #endif
1743 break;
1744 }
1745 case WPI_STOP_SCAN:
1746 {
1747 #ifdef WPI_DEBUG
1748 struct wpi_stop_scan *scan =
1749 (struct wpi_stop_scan *)(desc + 1);
1750 #endif
1751
1752 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1753 scan->nchan, scan->status, scan->chan));
1754
1755 sc->is_scanning = false;
1756 if (ic->ic_state == IEEE80211_S_SCAN)
1757 ieee80211_next_scan(ic);
1758
1759 break;
1760 }
1761 }
1762
1763 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1764 }
1765
1766 /* tell the firmware what we have processed */
1767 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1768 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1769 }
1770
1771 static int
1772 wpi_intr(void *arg)
1773 {
1774 struct wpi_softc *sc = arg;
1775 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1776 uint32_t r;
1777
1778 r = WPI_READ(sc, WPI_INTR);
1779 if (r == 0 || r == 0xffffffff)
1780 return 0; /* not for us */
1781
1782 DPRINTFN(6, ("interrupt reg %x\n", r));
1783
1784 /* disable interrupts */
1785 WPI_WRITE(sc, WPI_MASK, 0);
1786 /* ack interrupts */
1787 WPI_WRITE(sc, WPI_INTR, r);
1788
1789 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1790 /* SYSTEM FAILURE, SYSTEM FAILURE */
1791 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1792 ifp->if_flags &= ~IFF_UP;
1793 wpi_stop(ifp, 1);
1794 return 1;
1795 }
1796
1797 if (r & WPI_RX_INTR)
1798 wpi_notif_intr(sc);
1799
1800 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1801 wakeup(sc);
1802
1803 /* re-enable interrupts */
1804 if (ifp->if_flags & IFF_UP)
1805 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1806
1807 return 1;
1808 }
1809
1810 static uint8_t
1811 wpi_plcp_signal(int rate)
1812 {
1813 switch (rate) {
1814 /* CCK rates (returned values are device-dependent) */
1815 case 2: return 10;
1816 case 4: return 20;
1817 case 11: return 55;
1818 case 22: return 110;
1819
1820 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1821 /* R1-R4, (u)ral is R4-R1 */
1822 case 12: return 0xd;
1823 case 18: return 0xf;
1824 case 24: return 0x5;
1825 case 36: return 0x7;
1826 case 48: return 0x9;
1827 case 72: return 0xb;
1828 case 96: return 0x1;
1829 case 108: return 0x3;
1830
1831 /* unsupported rates (should not get there) */
1832 default: return 0;
1833 }
1834 }
1835
1836 /* quickly determine if a given rate is CCK or OFDM */
1837 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1838
1839 static int
1840 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1841 int ac)
1842 {
1843 struct ieee80211com *ic = &sc->sc_ic;
1844 struct wpi_tx_ring *ring = &sc->txq[ac];
1845 struct wpi_tx_desc *desc;
1846 struct wpi_tx_data *data;
1847 struct wpi_tx_cmd *cmd;
1848 struct wpi_cmd_data *tx;
1849 struct ieee80211_frame *wh;
1850 struct ieee80211_key *k;
1851 const struct chanAccParams *cap;
1852 struct mbuf *mnew;
1853 int i, rate, error, hdrlen, noack = 0;
1854
1855 desc = &ring->desc[ring->cur];
1856 data = &ring->data[ring->cur];
1857
1858 wh = mtod(m0, struct ieee80211_frame *);
1859
1860 if (ieee80211_has_qos(wh)) {
1861 cap = &ic->ic_wme.wme_chanParams;
1862 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1863 }
1864
1865 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1866 k = ieee80211_crypto_encap(ic, ni, m0);
1867 if (k == NULL) {
1868 m_freem(m0);
1869 return ENOBUFS;
1870 }
1871
1872 /* packet header may have moved, reset our local pointer */
1873 wh = mtod(m0, struct ieee80211_frame *);
1874 }
1875
1876 hdrlen = ieee80211_anyhdrsize(wh);
1877
1878 /* pickup a rate */
1879 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1880 IEEE80211_FC0_TYPE_MGT) {
1881 /* mgmt frames are sent at the lowest available bit-rate */
1882 rate = ni->ni_rates.rs_rates[0];
1883 } else {
1884 if (ic->ic_fixed_rate != -1) {
1885 rate = ic->ic_sup_rates[ic->ic_curmode].
1886 rs_rates[ic->ic_fixed_rate];
1887 } else
1888 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1889 }
1890 rate &= IEEE80211_RATE_VAL;
1891
1892 if (sc->sc_drvbpf != NULL) {
1893 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1894
1895 tap->wt_flags = 0;
1896 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1897 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1898 tap->wt_rate = rate;
1899 tap->wt_hwqueue = ac;
1900 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1901 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1902
1903 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1904 }
1905
1906 cmd = &ring->cmd[ring->cur];
1907 cmd->code = WPI_CMD_TX_DATA;
1908 cmd->flags = 0;
1909 cmd->qid = ring->qid;
1910 cmd->idx = ring->cur;
1911
1912 tx = (struct wpi_cmd_data *)cmd->data;
1913 /* no need to zero tx, all fields are reinitialized here */
1914 tx->flags = 0;
1915
1916 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1917 tx->flags |= htole32(WPI_TX_NEED_ACK);
1918 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1919 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1920
1921 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1922
1923 /* retrieve destination node's id */
1924 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1925 WPI_ID_BSS;
1926
1927 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1928 IEEE80211_FC0_TYPE_MGT) {
1929 /* tell h/w to set timestamp in probe responses */
1930 if ((wh->i_fc[0] &
1931 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1932 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1933 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1934
1935 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1936 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1937 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1938 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1939 tx->timeout = htole16(3);
1940 else
1941 tx->timeout = htole16(2);
1942 } else
1943 tx->timeout = htole16(0);
1944
1945 tx->rate = wpi_plcp_signal(rate);
1946
1947 /* be very persistant at sending frames out */
1948 tx->rts_ntries = 7;
1949 tx->data_ntries = 15;
1950
1951 tx->ofdm_mask = 0xff;
1952 tx->cck_mask = 0x0f;
1953 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1954
1955 tx->len = htole16(m0->m_pkthdr.len);
1956
1957 /* save and trim IEEE802.11 header */
1958 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1959 m_adj(m0, hdrlen);
1960
1961 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1962 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1963 if (error != 0 && error != EFBIG) {
1964 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1965 error);
1966 m_freem(m0);
1967 return error;
1968 }
1969 if (error != 0) {
1970 /* too many fragments, linearize */
1971
1972 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1973 if (mnew == NULL) {
1974 m_freem(m0);
1975 return ENOMEM;
1976 }
1977 M_COPY_PKTHDR(mnew, m0);
1978 if (m0->m_pkthdr.len > MHLEN) {
1979 MCLGET(mnew, M_DONTWAIT);
1980 if (!(mnew->m_flags & M_EXT)) {
1981 m_freem(m0);
1982 m_freem(mnew);
1983 return ENOMEM;
1984 }
1985 }
1986
1987 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1988 m_freem(m0);
1989 mnew->m_len = mnew->m_pkthdr.len;
1990 m0 = mnew;
1991
1992 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1993 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1994 if (error != 0) {
1995 aprint_error_dev(sc->sc_dev,
1996 "could not map mbuf (error %d)\n", error);
1997 m_freem(m0);
1998 return error;
1999 }
2000 }
2001
2002 data->m = m0;
2003 data->ni = ni;
2004
2005 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2006 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2007
2008 /* first scatter/gather segment is used by the tx data command */
2009 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2010 (1 + data->map->dm_nsegs) << 24);
2011 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2012 ring->cur * sizeof (struct wpi_tx_cmd));
2013 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
2014 ((hdrlen + 3) & ~3));
2015 for (i = 1; i <= data->map->dm_nsegs; i++) {
2016 desc->segs[i].addr =
2017 htole32(data->map->dm_segs[i - 1].ds_addr);
2018 desc->segs[i].len =
2019 htole32(data->map->dm_segs[i - 1].ds_len);
2020 }
2021
2022 ring->queued++;
2023
2024 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2025 data->map->dm_mapsize,
2026 BUS_DMASYNC_PREWRITE);
2027 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
2028 ring->cmd_dma.size,
2029 BUS_DMASYNC_PREWRITE);
2030 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2031 ring->desc_dma.size,
2032 BUS_DMASYNC_PREWRITE);
2033
2034 /* kick ring */
2035 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2036 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2037
2038 return 0;
2039 }
2040
2041 static void
2042 wpi_start(struct ifnet *ifp)
2043 {
2044 struct wpi_softc *sc = ifp->if_softc;
2045 struct ieee80211com *ic = &sc->sc_ic;
2046 struct ieee80211_node *ni;
2047 struct ether_header *eh;
2048 struct mbuf *m0;
2049 int ac;
2050
2051 /*
2052 * net80211 may still try to send management frames even if the
2053 * IFF_RUNNING flag is not set...
2054 */
2055 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2056 return;
2057
2058 for (;;) {
2059 IF_DEQUEUE(&ic->ic_mgtq, m0);
2060 if (m0 != NULL) {
2061
2062 ni = M_GETCTX(m0, struct ieee80211_node *);
2063 M_CLEARCTX(m0);
2064
2065 /* management frames go into ring 0 */
2066 if (sc->txq[0].queued > sc->txq[0].count - 8) {
2067 ifp->if_oerrors++;
2068 continue;
2069 }
2070 bpf_mtap3(ic->ic_rawbpf, m0);
2071 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2072 ifp->if_oerrors++;
2073 break;
2074 }
2075 } else {
2076 if (ic->ic_state != IEEE80211_S_RUN)
2077 break;
2078 IFQ_POLL(&ifp->if_snd, m0);
2079 if (m0 == NULL)
2080 break;
2081
2082 if (m0->m_len < sizeof (*eh) &&
2083 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2084 ifp->if_oerrors++;
2085 continue;
2086 }
2087 eh = mtod(m0, struct ether_header *);
2088 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2089 if (ni == NULL) {
2090 m_freem(m0);
2091 ifp->if_oerrors++;
2092 continue;
2093 }
2094
2095 /* classify mbuf so we can find which tx ring to use */
2096 if (ieee80211_classify(ic, m0, ni) != 0) {
2097 m_freem(m0);
2098 ieee80211_free_node(ni);
2099 ifp->if_oerrors++;
2100 continue;
2101 }
2102
2103 /* no QoS encapsulation for EAPOL frames */
2104 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2105 M_WME_GETAC(m0) : WME_AC_BE;
2106
2107 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2108 /* there is no place left in this ring */
2109 ifp->if_flags |= IFF_OACTIVE;
2110 break;
2111 }
2112 IFQ_DEQUEUE(&ifp->if_snd, m0);
2113 bpf_mtap(ifp, m0);
2114 m0 = ieee80211_encap(ic, m0, ni);
2115 if (m0 == NULL) {
2116 ieee80211_free_node(ni);
2117 ifp->if_oerrors++;
2118 continue;
2119 }
2120 bpf_mtap3(ic->ic_rawbpf, m0);
2121 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2122 ieee80211_free_node(ni);
2123 ifp->if_oerrors++;
2124 break;
2125 }
2126 }
2127
2128 sc->sc_tx_timer = 5;
2129 ifp->if_timer = 1;
2130 }
2131 }
2132
2133 static void
2134 wpi_watchdog(struct ifnet *ifp)
2135 {
2136 struct wpi_softc *sc = ifp->if_softc;
2137
2138 ifp->if_timer = 0;
2139
2140 if (sc->sc_tx_timer > 0) {
2141 if (--sc->sc_tx_timer == 0) {
2142 aprint_error_dev(sc->sc_dev, "device timeout\n");
2143 ifp->if_flags &= ~IFF_UP;
2144 wpi_stop(ifp, 1);
2145 ifp->if_oerrors++;
2146 return;
2147 }
2148 ifp->if_timer = 1;
2149 }
2150
2151 ieee80211_watchdog(&sc->sc_ic);
2152 }
2153
2154 static int
2155 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2156 {
2157 #define IS_RUNNING(ifp) \
2158 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2159
2160 struct wpi_softc *sc = ifp->if_softc;
2161 struct ieee80211com *ic = &sc->sc_ic;
2162 int s, error = 0;
2163
2164 s = splnet();
2165
2166 switch (cmd) {
2167 case SIOCSIFFLAGS:
2168 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2169 break;
2170 if (ifp->if_flags & IFF_UP) {
2171 if (!(ifp->if_flags & IFF_RUNNING))
2172 wpi_init(ifp);
2173 } else {
2174 if (ifp->if_flags & IFF_RUNNING)
2175 wpi_stop(ifp, 1);
2176 }
2177 break;
2178
2179 case SIOCADDMULTI:
2180 case SIOCDELMULTI:
2181 /* XXX no h/w multicast filter? --dyoung */
2182 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2183 /* setup multicast filter, etc */
2184 error = 0;
2185 }
2186 break;
2187
2188 default:
2189 error = ieee80211_ioctl(ic, cmd, data);
2190 }
2191
2192 if (error == ENETRESET) {
2193 if (IS_RUNNING(ifp) &&
2194 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2195 wpi_init(ifp);
2196 error = 0;
2197 }
2198
2199 splx(s);
2200 return error;
2201
2202 #undef IS_RUNNING
2203 }
2204
2205 /*
2206 * Extract various information from EEPROM.
2207 */
2208 static void
2209 wpi_read_eeprom(struct wpi_softc *sc)
2210 {
2211 struct ieee80211com *ic = &sc->sc_ic;
2212 char domain[4];
2213 int i;
2214
2215 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2216 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2217 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2218
2219 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2220 sc->type));
2221
2222 /* read and print regulatory domain */
2223 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2224 aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2225
2226 /* read and print MAC address */
2227 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2228 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2229
2230 /* read the list of authorized channels */
2231 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2232 wpi_read_eeprom_channels(sc, i);
2233
2234 /* read the list of power groups */
2235 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2236 wpi_read_eeprom_group(sc, i);
2237 }
2238
2239 static void
2240 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2241 {
2242 struct ieee80211com *ic = &sc->sc_ic;
2243 const struct wpi_chan_band *band = &wpi_bands[n];
2244 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2245 int chan, i;
2246
2247 wpi_read_prom_data(sc, band->addr, channels,
2248 band->nchan * sizeof (struct wpi_eeprom_chan));
2249
2250 for (i = 0; i < band->nchan; i++) {
2251 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2252 continue;
2253
2254 chan = band->chan[i];
2255
2256 if (n == 0) { /* 2GHz band */
2257 ic->ic_channels[chan].ic_freq =
2258 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2259 ic->ic_channels[chan].ic_flags =
2260 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2261 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2262
2263 } else { /* 5GHz band */
2264 /*
2265 * Some 3945ABG adapters support channels 7, 8, 11
2266 * and 12 in the 2GHz *and* 5GHz bands.
2267 * Because of limitations in our net80211(9) stack,
2268 * we can't support these channels in 5GHz band.
2269 */
2270 if (chan <= 14)
2271 continue;
2272
2273 ic->ic_channels[chan].ic_freq =
2274 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2275 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2276 }
2277
2278 /* is active scan allowed on this channel? */
2279 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2280 ic->ic_channels[chan].ic_flags |=
2281 IEEE80211_CHAN_PASSIVE;
2282 }
2283
2284 /* save maximum allowed power for this channel */
2285 sc->maxpwr[chan] = channels[i].maxpwr;
2286
2287 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2288 chan, channels[i].flags, sc->maxpwr[chan]));
2289 }
2290 }
2291
2292 static void
2293 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2294 {
2295 struct wpi_power_group *group = &sc->groups[n];
2296 struct wpi_eeprom_group rgroup;
2297 int i;
2298
2299 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2300 sizeof rgroup);
2301
2302 /* save power group information */
2303 group->chan = rgroup.chan;
2304 group->maxpwr = rgroup.maxpwr;
2305 /* temperature at which the samples were taken */
2306 group->temp = (int16_t)le16toh(rgroup.temp);
2307
2308 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2309 group->chan, group->maxpwr, group->temp));
2310
2311 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2312 group->samples[i].index = rgroup.samples[i].index;
2313 group->samples[i].power = rgroup.samples[i].power;
2314
2315 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2316 group->samples[i].index, group->samples[i].power));
2317 }
2318 }
2319
2320 /*
2321 * Send a command to the firmware.
2322 */
2323 static int
2324 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2325 {
2326 struct wpi_tx_ring *ring = &sc->cmdq;
2327 struct wpi_tx_desc *desc;
2328 struct wpi_tx_cmd *cmd;
2329 struct wpi_dma_info *dma;
2330
2331 KASSERT(size <= sizeof cmd->data);
2332
2333 desc = &ring->desc[ring->cur];
2334 cmd = &ring->cmd[ring->cur];
2335
2336 cmd->code = code;
2337 cmd->flags = 0;
2338 cmd->qid = ring->qid;
2339 cmd->idx = ring->cur;
2340 memcpy(cmd->data, buf, size);
2341
2342 dma = &ring->cmd_dma;
2343 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2344
2345 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2346 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2347 ring->cur * sizeof (struct wpi_tx_cmd));
2348 desc->segs[0].len = htole32(4 + size);
2349
2350 dma = &ring->desc_dma;
2351 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2352
2353 /* kick cmd ring */
2354 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2355 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2356
2357 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2358 }
2359
2360 static int
2361 wpi_wme_update(struct ieee80211com *ic)
2362 {
2363 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2364 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2365 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2366 const struct wmeParams *wmep;
2367 struct wpi_wme_setup wme;
2368 int ac;
2369
2370 /* don't override default WME values if WME is not actually enabled */
2371 if (!(ic->ic_flags & IEEE80211_F_WME))
2372 return 0;
2373
2374 wme.flags = 0;
2375 for (ac = 0; ac < WME_NUM_AC; ac++) {
2376 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2377 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2378 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2379 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2380 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2381
2382 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2383 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2384 wme.ac[ac].cwmax, wme.ac[ac].txop));
2385 }
2386
2387 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2388 #undef WPI_USEC
2389 #undef WPI_EXP2
2390 }
2391
2392 /*
2393 * Configure h/w multi-rate retries.
2394 */
2395 static int
2396 wpi_mrr_setup(struct wpi_softc *sc)
2397 {
2398 struct ieee80211com *ic = &sc->sc_ic;
2399 struct wpi_mrr_setup mrr;
2400 int i, error;
2401
2402 /* CCK rates (not used with 802.11a) */
2403 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2404 mrr.rates[i].flags = 0;
2405 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2406 /* fallback to the immediate lower CCK rate (if any) */
2407 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2408 /* try one time at this rate before falling back to "next" */
2409 mrr.rates[i].ntries = 1;
2410 }
2411
2412 /* OFDM rates (not used with 802.11b) */
2413 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2414 mrr.rates[i].flags = 0;
2415 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2416 /* fallback to the immediate lower rate (if any) */
2417 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2418 mrr.rates[i].next = (i == WPI_OFDM6) ?
2419 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2420 WPI_OFDM6 : WPI_CCK2) :
2421 i - 1;
2422 /* try one time at this rate before falling back to "next" */
2423 mrr.rates[i].ntries = 1;
2424 }
2425
2426 /* setup MRR for control frames */
2427 mrr.which = htole32(WPI_MRR_CTL);
2428 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2429 if (error != 0) {
2430 aprint_error_dev(sc->sc_dev,
2431 "could not setup MRR for control frames\n");
2432 return error;
2433 }
2434
2435 /* setup MRR for data frames */
2436 mrr.which = htole32(WPI_MRR_DATA);
2437 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2438 if (error != 0) {
2439 aprint_error_dev(sc->sc_dev,
2440 "could not setup MRR for data frames\n");
2441 return error;
2442 }
2443
2444 return 0;
2445 }
2446
2447 static void
2448 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2449 {
2450 struct wpi_cmd_led led;
2451
2452 led.which = which;
2453 led.unit = htole32(100000); /* on/off in unit of 100ms */
2454 led.off = off;
2455 led.on = on;
2456
2457 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2458 }
2459
2460 static void
2461 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2462 {
2463 struct wpi_cmd_tsf tsf;
2464 uint64_t val, mod;
2465
2466 memset(&tsf, 0, sizeof tsf);
2467 memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2468 tsf.bintval = htole16(ni->ni_intval);
2469 tsf.lintval = htole16(10);
2470
2471 /* compute remaining time until next beacon */
2472 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2473 mod = le64toh(tsf.tstamp) % val;
2474 tsf.binitval = htole32((uint32_t)(val - mod));
2475
2476 DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2477 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2478
2479 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2480 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2481 }
2482
2483 /*
2484 * Update Tx power to match what is defined for channel `c'.
2485 */
2486 static int
2487 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2488 {
2489 struct ieee80211com *ic = &sc->sc_ic;
2490 struct wpi_power_group *group;
2491 struct wpi_cmd_txpower txpower;
2492 u_int chan;
2493 int i;
2494
2495 /* get channel number */
2496 chan = ieee80211_chan2ieee(ic, c);
2497
2498 /* find the power group to which this channel belongs */
2499 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2500 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2501 if (chan <= group->chan)
2502 break;
2503 } else
2504 group = &sc->groups[0];
2505
2506 memset(&txpower, 0, sizeof txpower);
2507 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2508 txpower.chan = htole16(chan);
2509
2510 /* set Tx power for all OFDM and CCK rates */
2511 for (i = 0; i <= 11 ; i++) {
2512 /* retrieve Tx power for this channel/rate combination */
2513 int idx = wpi_get_power_index(sc, group, c,
2514 wpi_ridx_to_rate[i]);
2515
2516 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2517
2518 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2519 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2520 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2521 } else {
2522 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2523 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2524 }
2525 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2526 wpi_ridx_to_rate[i], idx));
2527 }
2528
2529 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2530 }
2531
2532 /*
2533 * Determine Tx power index for a given channel/rate combination.
2534 * This takes into account the regulatory information from EEPROM and the
2535 * current temperature.
2536 */
2537 static int
2538 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2539 struct ieee80211_channel *c, int rate)
2540 {
2541 /* fixed-point arithmetic division using a n-bit fractional part */
2542 #define fdivround(a, b, n) \
2543 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2544
2545 /* linear interpolation */
2546 #define interpolate(x, x1, y1, x2, y2, n) \
2547 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2548
2549 struct ieee80211com *ic = &sc->sc_ic;
2550 struct wpi_power_sample *sample;
2551 int pwr, idx;
2552 u_int chan;
2553
2554 /* get channel number */
2555 chan = ieee80211_chan2ieee(ic, c);
2556
2557 /* default power is group's maximum power - 3dB */
2558 pwr = group->maxpwr / 2;
2559
2560 /* decrease power for highest OFDM rates to reduce distortion */
2561 switch (rate) {
2562 case 72: /* 36Mb/s */
2563 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2564 break;
2565 case 96: /* 48Mb/s */
2566 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2567 break;
2568 case 108: /* 54Mb/s */
2569 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2570 break;
2571 }
2572
2573 /* never exceed channel's maximum allowed Tx power */
2574 pwr = min(pwr, sc->maxpwr[chan]);
2575
2576 /* retrieve power index into gain tables from samples */
2577 for (sample = group->samples; sample < &group->samples[3]; sample++)
2578 if (pwr > sample[1].power)
2579 break;
2580 /* fixed-point linear interpolation using a 19-bit fractional part */
2581 idx = interpolate(pwr, sample[0].power, sample[0].index,
2582 sample[1].power, sample[1].index, 19);
2583
2584 /*-
2585 * Adjust power index based on current temperature:
2586 * - if cooler than factory-calibrated: decrease output power
2587 * - if warmer than factory-calibrated: increase output power
2588 */
2589 idx -= (sc->temp - group->temp) * 11 / 100;
2590
2591 /* decrease power for CCK rates (-5dB) */
2592 if (!WPI_RATE_IS_OFDM(rate))
2593 idx += 10;
2594
2595 /* keep power index in a valid range */
2596 if (idx < 0)
2597 return 0;
2598 if (idx > WPI_MAX_PWR_INDEX)
2599 return WPI_MAX_PWR_INDEX;
2600 return idx;
2601
2602 #undef interpolate
2603 #undef fdivround
2604 }
2605
2606 /*
2607 * Build a beacon frame that the firmware will broadcast periodically in
2608 * IBSS or HostAP modes.
2609 */
2610 static int
2611 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2612 {
2613 struct ieee80211com *ic = &sc->sc_ic;
2614 struct wpi_tx_ring *ring = &sc->cmdq;
2615 struct wpi_tx_desc *desc;
2616 struct wpi_tx_data *data;
2617 struct wpi_tx_cmd *cmd;
2618 struct wpi_cmd_beacon *bcn;
2619 struct ieee80211_beacon_offsets bo;
2620 struct mbuf *m0;
2621 int error;
2622
2623 desc = &ring->desc[ring->cur];
2624 data = &ring->data[ring->cur];
2625
2626 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2627 if (m0 == NULL) {
2628 aprint_error_dev(sc->sc_dev,
2629 "could not allocate beacon frame\n");
2630 return ENOMEM;
2631 }
2632
2633 cmd = &ring->cmd[ring->cur];
2634 cmd->code = WPI_CMD_SET_BEACON;
2635 cmd->flags = 0;
2636 cmd->qid = ring->qid;
2637 cmd->idx = ring->cur;
2638
2639 bcn = (struct wpi_cmd_beacon *)cmd->data;
2640 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2641 bcn->id = WPI_ID_BROADCAST;
2642 bcn->ofdm_mask = 0xff;
2643 bcn->cck_mask = 0x0f;
2644 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2645 bcn->len = htole16(m0->m_pkthdr.len);
2646 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2647 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2648 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2649
2650 /* save and trim IEEE802.11 header */
2651 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2652 m_adj(m0, sizeof (struct ieee80211_frame));
2653
2654 /* assume beacon frame is contiguous */
2655 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2656 BUS_DMA_READ | BUS_DMA_NOWAIT);
2657 if (error != 0) {
2658 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2659 m_freem(m0);
2660 return error;
2661 }
2662
2663 data->m = m0;
2664
2665 /* first scatter/gather segment is used by the beacon command */
2666 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2667 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2668 ring->cur * sizeof (struct wpi_tx_cmd));
2669 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2670 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2671 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2672
2673 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2674 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2675 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2676 BUS_DMASYNC_PREWRITE);
2677
2678 /* kick cmd ring */
2679 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2680 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2681
2682 return 0;
2683 }
2684
2685 static int
2686 wpi_auth(struct wpi_softc *sc)
2687 {
2688 struct ieee80211com *ic = &sc->sc_ic;
2689 struct ieee80211_node *ni = ic->ic_bss;
2690 struct wpi_node_info node;
2691 int error;
2692
2693 /* update adapter's configuration */
2694 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2695 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2696 sc->config.flags = htole32(WPI_CONFIG_TSF);
2697 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2698 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2699 WPI_CONFIG_24GHZ);
2700 }
2701 switch (ic->ic_curmode) {
2702 case IEEE80211_MODE_11A:
2703 sc->config.cck_mask = 0;
2704 sc->config.ofdm_mask = 0x15;
2705 break;
2706 case IEEE80211_MODE_11B:
2707 sc->config.cck_mask = 0x03;
2708 sc->config.ofdm_mask = 0;
2709 break;
2710 default: /* assume 802.11b/g */
2711 sc->config.cck_mask = 0x0f;
2712 sc->config.ofdm_mask = 0x15;
2713 }
2714 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2715 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2716 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2717 sizeof (struct wpi_config), 1);
2718 if (error != 0) {
2719 aprint_error_dev(sc->sc_dev, "could not configure\n");
2720 return error;
2721 }
2722
2723 /* configuration has changed, set Tx power accordingly */
2724 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2725 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2726 return error;
2727 }
2728
2729 /* add default node */
2730 memset(&node, 0, sizeof node);
2731 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2732 node.id = WPI_ID_BSS;
2733 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2734 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2735 node.action = htole32(WPI_ACTION_SET_RATE);
2736 node.antenna = WPI_ANTENNA_BOTH;
2737 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2738 if (error != 0) {
2739 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2740 return error;
2741 }
2742
2743 return 0;
2744 }
2745
2746 /*
2747 * Send a scan request to the firmware. Since this command is huge, we map it
2748 * into a mbuf instead of using the pre-allocated set of commands.
2749 */
2750 static int
2751 wpi_scan(struct wpi_softc *sc)
2752 {
2753 struct ieee80211com *ic = &sc->sc_ic;
2754 struct wpi_tx_ring *ring = &sc->cmdq;
2755 struct wpi_tx_desc *desc;
2756 struct wpi_tx_data *data;
2757 struct wpi_tx_cmd *cmd;
2758 struct wpi_scan_hdr *hdr;
2759 struct wpi_scan_chan *chan;
2760 struct ieee80211_frame *wh;
2761 struct ieee80211_rateset *rs;
2762 struct ieee80211_channel *c;
2763 uint8_t *frm;
2764 int pktlen, error, nrates;
2765
2766 if (ic->ic_curchan == NULL)
2767 return EIO;
2768
2769 desc = &ring->desc[ring->cur];
2770 data = &ring->data[ring->cur];
2771
2772 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2773 if (data->m == NULL) {
2774 aprint_error_dev(sc->sc_dev,
2775 "could not allocate mbuf for scan command\n");
2776 return ENOMEM;
2777 }
2778 MCLGET(data->m, M_DONTWAIT);
2779 if (!(data->m->m_flags & M_EXT)) {
2780 m_freem(data->m);
2781 data->m = NULL;
2782 aprint_error_dev(sc->sc_dev,
2783 "could not allocate mbuf for scan command\n");
2784 return ENOMEM;
2785 }
2786
2787 cmd = mtod(data->m, struct wpi_tx_cmd *);
2788 cmd->code = WPI_CMD_SCAN;
2789 cmd->flags = 0;
2790 cmd->qid = ring->qid;
2791 cmd->idx = ring->cur;
2792
2793 hdr = (struct wpi_scan_hdr *)cmd->data;
2794 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2795 hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2796 hdr->cmd.id = WPI_ID_BROADCAST;
2797 hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2798 /*
2799 * Move to the next channel if no packets are received within 5 msecs
2800 * after sending the probe request (this helps to reduce the duration
2801 * of active scans).
2802 */
2803 hdr->quiet = htole16(5); /* timeout in milliseconds */
2804 hdr->plcp_threshold = htole16(1); /* min # of packets */
2805
2806 if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2807 hdr->crc_threshold = htole16(1);
2808 /* send probe requests at 6Mbps */
2809 hdr->cmd.rate = wpi_plcp_signal(12);
2810 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2811 } else {
2812 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2813 /* send probe requests at 1Mbps */
2814 hdr->cmd.rate = wpi_plcp_signal(2);
2815 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2816 }
2817
2818 /* for directed scans, firmware inserts the essid IE itself */
2819 if (ic->ic_des_esslen != 0) {
2820 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2821 hdr->essid[0].len = ic->ic_des_esslen;
2822 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2823 }
2824
2825 /*
2826 * Build a probe request frame. Most of the following code is a
2827 * copy & paste of what is done in net80211.
2828 */
2829 wh = (struct ieee80211_frame *)(hdr + 1);
2830 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2831 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2832 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2833 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2834 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2835 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2836 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2837 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2838
2839 frm = (uint8_t *)(wh + 1);
2840
2841 /* add empty essid IE (firmware generates it for directed scans) */
2842 *frm++ = IEEE80211_ELEMID_SSID;
2843 *frm++ = 0;
2844
2845 /* add supported rates IE */
2846 *frm++ = IEEE80211_ELEMID_RATES;
2847 nrates = rs->rs_nrates;
2848 if (nrates > IEEE80211_RATE_SIZE)
2849 nrates = IEEE80211_RATE_SIZE;
2850 *frm++ = nrates;
2851 memcpy(frm, rs->rs_rates, nrates);
2852 frm += nrates;
2853
2854 /* add supported xrates IE */
2855 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2856 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2857 *frm++ = IEEE80211_ELEMID_XRATES;
2858 *frm++ = nrates;
2859 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2860 frm += nrates;
2861 }
2862
2863 /* setup length of probe request */
2864 hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2865
2866 chan = (struct wpi_scan_chan *)frm;
2867 c = ic->ic_curchan;
2868
2869 chan->chan = ieee80211_chan2ieee(ic, c);
2870 chan->flags = 0;
2871 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2872 chan->flags |= WPI_CHAN_ACTIVE;
2873 if (ic->ic_des_esslen != 0)
2874 chan->flags |= WPI_CHAN_DIRECT;
2875 }
2876 chan->dsp_gain = 0x6e;
2877 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2878 chan->rf_gain = 0x3b;
2879 chan->active = htole16(10);
2880 chan->passive = htole16(110);
2881 } else {
2882 chan->rf_gain = 0x28;
2883 chan->active = htole16(20);
2884 chan->passive = htole16(120);
2885 }
2886 hdr->nchan++;
2887 chan++;
2888
2889 frm += sizeof (struct wpi_scan_chan);
2890
2891 hdr->len = htole16(frm - (uint8_t *)hdr);
2892 pktlen = frm - (uint8_t *)cmd;
2893
2894 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2895 BUS_DMA_NOWAIT);
2896 if (error != 0) {
2897 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2898 m_freem(data->m);
2899 data->m = NULL;
2900 return error;
2901 }
2902
2903 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2904 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2905 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2906
2907 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2908 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2909 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2910 BUS_DMASYNC_PREWRITE);
2911
2912 /* kick cmd ring */
2913 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2914 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2915
2916 return 0; /* will be notified async. of failure/success */
2917 }
2918
2919 static int
2920 wpi_config(struct wpi_softc *sc)
2921 {
2922 struct ieee80211com *ic = &sc->sc_ic;
2923 struct ifnet *ifp = ic->ic_ifp;
2924 struct wpi_power power;
2925 struct wpi_bluetooth bluetooth;
2926 struct wpi_node_info node;
2927 int error;
2928
2929 memset(&power, 0, sizeof power);
2930 power.flags = htole32(WPI_POWER_CAM | 0x8);
2931 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2932 if (error != 0) {
2933 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2934 return error;
2935 }
2936
2937 /* configure bluetooth coexistence */
2938 memset(&bluetooth, 0, sizeof bluetooth);
2939 bluetooth.flags = 3;
2940 bluetooth.lead = 0xaa;
2941 bluetooth.kill = 1;
2942 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2943 0);
2944 if (error != 0) {
2945 aprint_error_dev(sc->sc_dev,
2946 "could not configure bluetooth coexistence\n");
2947 return error;
2948 }
2949
2950 /* configure adapter */
2951 memset(&sc->config, 0, sizeof (struct wpi_config));
2952 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2953 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2954 /* set default channel */
2955 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2956 sc->config.flags = htole32(WPI_CONFIG_TSF);
2957 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2958 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2959 WPI_CONFIG_24GHZ);
2960 }
2961 sc->config.filter = 0;
2962 switch (ic->ic_opmode) {
2963 case IEEE80211_M_STA:
2964 sc->config.mode = WPI_MODE_STA;
2965 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2966 break;
2967 case IEEE80211_M_IBSS:
2968 case IEEE80211_M_AHDEMO:
2969 sc->config.mode = WPI_MODE_IBSS;
2970 break;
2971 case IEEE80211_M_HOSTAP:
2972 sc->config.mode = WPI_MODE_HOSTAP;
2973 break;
2974 case IEEE80211_M_MONITOR:
2975 sc->config.mode = WPI_MODE_MONITOR;
2976 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2977 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2978 break;
2979 }
2980 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2981 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2982 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2983 sizeof (struct wpi_config), 0);
2984 if (error != 0) {
2985 aprint_error_dev(sc->sc_dev, "configure command failed\n");
2986 return error;
2987 }
2988
2989 /* configuration has changed, set Tx power accordingly */
2990 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2991 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2992 return error;
2993 }
2994
2995 /* add broadcast node */
2996 memset(&node, 0, sizeof node);
2997 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2998 node.id = WPI_ID_BROADCAST;
2999 node.rate = wpi_plcp_signal(2);
3000 node.action = htole32(WPI_ACTION_SET_RATE);
3001 node.antenna = WPI_ANTENNA_BOTH;
3002 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3003 if (error != 0) {
3004 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3005 return error;
3006 }
3007
3008 if ((error = wpi_mrr_setup(sc)) != 0) {
3009 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
3010 return error;
3011 }
3012
3013 return 0;
3014 }
3015
3016 static void
3017 wpi_stop_master(struct wpi_softc *sc)
3018 {
3019 uint32_t tmp;
3020 int ntries;
3021
3022 tmp = WPI_READ(sc, WPI_RESET);
3023 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3024
3025 tmp = WPI_READ(sc, WPI_GPIO_CTL);
3026 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3027 return; /* already asleep */
3028
3029 for (ntries = 0; ntries < 100; ntries++) {
3030 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3031 break;
3032 DELAY(10);
3033 }
3034 if (ntries == 100) {
3035 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3036 }
3037 }
3038
3039 static int
3040 wpi_power_up(struct wpi_softc *sc)
3041 {
3042 uint32_t tmp;
3043 int ntries;
3044
3045 wpi_mem_lock(sc);
3046 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3047 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3048 wpi_mem_unlock(sc);
3049
3050 for (ntries = 0; ntries < 5000; ntries++) {
3051 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3052 break;
3053 DELAY(10);
3054 }
3055 if (ntries == 5000) {
3056 aprint_error_dev(sc->sc_dev,
3057 "timeout waiting for NIC to power up\n");
3058 return ETIMEDOUT;
3059 }
3060 return 0;
3061 }
3062
3063 static int
3064 wpi_reset(struct wpi_softc *sc)
3065 {
3066 uint32_t tmp;
3067 int ntries;
3068
3069 /* clear any pending interrupts */
3070 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3071
3072 tmp = WPI_READ(sc, WPI_PLL_CTL);
3073 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3074
3075 tmp = WPI_READ(sc, WPI_CHICKEN);
3076 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3077
3078 tmp = WPI_READ(sc, WPI_GPIO_CTL);
3079 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3080
3081 /* wait for clock stabilization */
3082 for (ntries = 0; ntries < 1000; ntries++) {
3083 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3084 break;
3085 DELAY(10);
3086 }
3087 if (ntries == 1000) {
3088 aprint_error_dev(sc->sc_dev,
3089 "timeout waiting for clock stabilization\n");
3090 return ETIMEDOUT;
3091 }
3092
3093 /* initialize EEPROM */
3094 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3095 if ((tmp & WPI_EEPROM_VERSION) == 0) {
3096 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3097 return EIO;
3098 }
3099 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3100
3101 return 0;
3102 }
3103
3104 static void
3105 wpi_hw_config(struct wpi_softc *sc)
3106 {
3107 uint32_t rev, hw;
3108
3109 /* voodoo from the reference driver */
3110 hw = WPI_READ(sc, WPI_HWCONFIG);
3111
3112 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3113 rev = PCI_REVISION(rev);
3114 if ((rev & 0xc0) == 0x40)
3115 hw |= WPI_HW_ALM_MB;
3116 else if (!(rev & 0x80))
3117 hw |= WPI_HW_ALM_MM;
3118
3119 if (sc->cap == 0x80)
3120 hw |= WPI_HW_SKU_MRC;
3121
3122 hw &= ~WPI_HW_REV_D;
3123 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3124 hw |= WPI_HW_REV_D;
3125
3126 if (sc->type > 1)
3127 hw |= WPI_HW_TYPE_B;
3128
3129 DPRINTF(("setting h/w config %x\n", hw));
3130 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3131 }
3132
3133 static int
3134 wpi_init(struct ifnet *ifp)
3135 {
3136 struct wpi_softc *sc = ifp->if_softc;
3137 struct ieee80211com *ic = &sc->sc_ic;
3138 uint32_t tmp;
3139 int qid, ntries, error;
3140
3141 wpi_stop(ifp,1);
3142 (void)wpi_reset(sc);
3143
3144 wpi_mem_lock(sc);
3145 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3146 DELAY(20);
3147 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3148 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3149 wpi_mem_unlock(sc);
3150
3151 (void)wpi_power_up(sc);
3152 wpi_hw_config(sc);
3153
3154 /* init Rx ring */
3155 wpi_mem_lock(sc);
3156 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3157 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3158 offsetof(struct wpi_shared, next));
3159 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3160 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3161 wpi_mem_unlock(sc);
3162
3163 /* init Tx rings */
3164 wpi_mem_lock(sc);
3165 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3166 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3167 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3168 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3169 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3170 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3171 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3172
3173 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3174 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3175
3176 for (qid = 0; qid < 6; qid++) {
3177 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3178 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3179 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3180 }
3181 wpi_mem_unlock(sc);
3182
3183 /* clear "radio off" and "disable command" bits (reversed logic) */
3184 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3185 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3186
3187 /* clear any pending interrupts */
3188 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3189 /* enable interrupts */
3190 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3191
3192 /* not sure why/if this is necessary... */
3193 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3194 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3195
3196 if ((error = wpi_load_firmware(sc)) != 0)
3197 /* wpi_load_firmware prints error messages for us. */
3198 goto fail1;
3199
3200 /* Check the status of the radio switch */
3201 mutex_enter(&sc->sc_rsw_mtx);
3202 if (wpi_getrfkill(sc)) {
3203 mutex_exit(&sc->sc_rsw_mtx);
3204 aprint_error_dev(sc->sc_dev,
3205 "radio is disabled by hardware switch\n");
3206 ifp->if_flags &= ~IFF_UP;
3207 error = EBUSY;
3208 goto fail1;
3209 }
3210 mutex_exit(&sc->sc_rsw_mtx);
3211
3212 /* wait for thermal sensors to calibrate */
3213 for (ntries = 0; ntries < 1000; ntries++) {
3214 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3215 break;
3216 DELAY(10);
3217 }
3218 if (ntries == 1000) {
3219 aprint_error_dev(sc->sc_dev,
3220 "timeout waiting for thermal sensors calibration\n");
3221 error = ETIMEDOUT;
3222 goto fail1;
3223 }
3224 DPRINTF(("temperature %d\n", sc->temp));
3225
3226 if ((error = wpi_config(sc)) != 0) {
3227 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3228 goto fail1;
3229 }
3230
3231 ifp->if_flags &= ~IFF_OACTIVE;
3232 ifp->if_flags |= IFF_RUNNING;
3233
3234 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3235 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3236 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3237 }
3238 else
3239 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3240
3241 return 0;
3242
3243 fail1: wpi_stop(ifp, 1);
3244 return error;
3245 }
3246
3247 static void
3248 wpi_stop(struct ifnet *ifp, int disable)
3249 {
3250 struct wpi_softc *sc = ifp->if_softc;
3251 struct ieee80211com *ic = &sc->sc_ic;
3252 uint32_t tmp;
3253 int ac;
3254
3255 ifp->if_timer = sc->sc_tx_timer = 0;
3256 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3257
3258 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3259
3260 /* disable interrupts */
3261 WPI_WRITE(sc, WPI_MASK, 0);
3262 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3263 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3264 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3265
3266 wpi_mem_lock(sc);
3267 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3268 wpi_mem_unlock(sc);
3269
3270 /* reset all Tx rings */
3271 for (ac = 0; ac < 4; ac++)
3272 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3273 wpi_reset_tx_ring(sc, &sc->cmdq);
3274
3275 /* reset Rx ring */
3276 wpi_reset_rx_ring(sc, &sc->rxq);
3277
3278 wpi_mem_lock(sc);
3279 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3280 wpi_mem_unlock(sc);
3281
3282 DELAY(5);
3283
3284 wpi_stop_master(sc);
3285
3286 tmp = WPI_READ(sc, WPI_RESET);
3287 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3288 }
3289
3290 static bool
3291 wpi_resume(device_t dv, const pmf_qual_t *qual)
3292 {
3293 struct wpi_softc *sc = device_private(dv);
3294
3295 (void)wpi_reset(sc);
3296
3297 return true;
3298 }
3299
3300 /*
3301 * Return whether or not the radio is enabled in hardware
3302 * (i.e. the rfkill switch is "off").
3303 */
3304 static int
3305 wpi_getrfkill(struct wpi_softc *sc)
3306 {
3307 uint32_t tmp;
3308
3309 wpi_mem_lock(sc);
3310 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3311 wpi_mem_unlock(sc);
3312
3313 KASSERT(mutex_owned(&sc->sc_rsw_mtx));
3314 if (tmp & 0x01) {
3315 /* switch is on */
3316 if (sc->sc_rsw_status != WPI_RSW_ON) {
3317 sc->sc_rsw_status = WPI_RSW_ON;
3318 sysmon_pswitch_event(&sc->sc_rsw,
3319 PSWITCH_EVENT_PRESSED);
3320 }
3321 } else {
3322 /* switch is off */
3323 if (sc->sc_rsw_status != WPI_RSW_OFF) {
3324 sc->sc_rsw_status = WPI_RSW_OFF;
3325 sysmon_pswitch_event(&sc->sc_rsw,
3326 PSWITCH_EVENT_RELEASED);
3327 }
3328 }
3329
3330 return !(tmp & 0x01);
3331 }
3332
3333 static int
3334 wpi_sysctl_radio(SYSCTLFN_ARGS)
3335 {
3336 struct sysctlnode node;
3337 struct wpi_softc *sc;
3338 int val, error;
3339
3340 node = *rnode;
3341 sc = (struct wpi_softc *)node.sysctl_data;
3342
3343 mutex_enter(&sc->sc_rsw_mtx);
3344 val = !wpi_getrfkill(sc);
3345 mutex_exit(&sc->sc_rsw_mtx);
3346
3347 node.sysctl_data = &val;
3348 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3349
3350 if (error || newp == NULL)
3351 return error;
3352
3353 return 0;
3354 }
3355
3356 static void
3357 wpi_sysctlattach(struct wpi_softc *sc)
3358 {
3359 int rc;
3360 const struct sysctlnode *rnode;
3361 const struct sysctlnode *cnode;
3362
3363 struct sysctllog **clog = &sc->sc_sysctllog;
3364
3365 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3366 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3367 SYSCTL_DESCR("wpi controls and statistics"),
3368 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3369 goto err;
3370
3371 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3372 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3373 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3374 wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3375 goto err;
3376
3377 #ifdef WPI_DEBUG
3378 /* control debugging printfs */
3379 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3380 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3381 "debug", SYSCTL_DESCR("Enable debugging output"),
3382 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3383 goto err;
3384 #endif
3385
3386 return;
3387 err:
3388 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3389 }
3390
3391 static void
3392 wpi_rsw_thread(void *arg)
3393 {
3394 struct wpi_softc *sc = (struct wpi_softc *)arg;
3395
3396 mutex_enter(&sc->sc_rsw_mtx);
3397 for (;;) {
3398 cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
3399 if (sc->sc_dying) {
3400 sc->sc_rsw_lwp = NULL;
3401 cv_broadcast(&sc->sc_rsw_cv);
3402 mutex_exit(&sc->sc_rsw_mtx);
3403 kthread_exit(0);
3404 }
3405 wpi_getrfkill(sc);
3406 }
3407 }
3408
3409