if_wpi.c revision 1.77 1 /* $NetBSD: if_wpi.c,v 1.77 2017/02/02 10:05:35 nonaka Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.77 2017/02/02 10:05:35 nonaka Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 #include <sys/kthread.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51
52 #include <dev/sysmon/sysmonvar.h>
53
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_ether.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_amrr.h>
69 #include <net80211/ieee80211_radiotap.h>
70
71 #include <dev/firmload.h>
72
73 #include <dev/pci/if_wpireg.h>
74 #include <dev/pci/if_wpivar.h>
75
76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
77 static once_t wpi_firmware_init;
78 static kmutex_t wpi_firmware_mutex;
79 static size_t wpi_firmware_users;
80 static uint8_t *wpi_firmware_image;
81 static size_t wpi_firmware_size;
82
83 static int wpi_match(device_t, cfdata_t, void *);
84 static void wpi_attach(device_t, device_t, void *);
85 static int wpi_detach(device_t , int);
86 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
87 void **, bus_size_t, bus_size_t, int);
88 static void wpi_dma_contig_free(struct wpi_dma_info *);
89 static int wpi_alloc_shared(struct wpi_softc *);
90 static void wpi_free_shared(struct wpi_softc *);
91 static int wpi_alloc_fwmem(struct wpi_softc *);
92 static void wpi_free_fwmem(struct wpi_softc *);
93 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
94 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
95 static int wpi_alloc_rpool(struct wpi_softc *);
96 static void wpi_free_rpool(struct wpi_softc *);
97 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
98 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
99 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
100 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
101 int, int);
102 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
103 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
104 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
105 static void wpi_newassoc(struct ieee80211_node *, int);
106 static int wpi_media_change(struct ifnet *);
107 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
108 static void wpi_mem_lock(struct wpi_softc *);
109 static void wpi_mem_unlock(struct wpi_softc *);
110 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
111 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
112 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
113 const uint32_t *, int);
114 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
115 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
116 static int wpi_cache_firmware(struct wpi_softc *);
117 static void wpi_release_firmware(void);
118 static int wpi_load_firmware(struct wpi_softc *);
119 static void wpi_calib_timeout(void *);
120 static void wpi_iter_func(void *, struct ieee80211_node *);
121 static void wpi_power_calibration(struct wpi_softc *, int);
122 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
123 struct wpi_rx_data *);
124 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
125 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
126 static void wpi_notif_intr(struct wpi_softc *);
127 static int wpi_intr(void *);
128 static void wpi_softintr(void *);
129 static void wpi_read_eeprom(struct wpi_softc *);
130 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
131 static void wpi_read_eeprom_group(struct wpi_softc *, int);
132 static uint8_t wpi_plcp_signal(int);
133 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
134 struct ieee80211_node *, int);
135 static void wpi_start(struct ifnet *);
136 static void wpi_watchdog(struct ifnet *);
137 static int wpi_ioctl(struct ifnet *, u_long, void *);
138 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
139 static int wpi_wme_update(struct ieee80211com *);
140 static int wpi_mrr_setup(struct wpi_softc *);
141 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
142 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
143 static int wpi_set_txpower(struct wpi_softc *,
144 struct ieee80211_channel *, int);
145 static int wpi_get_power_index(struct wpi_softc *,
146 struct wpi_power_group *, struct ieee80211_channel *, int);
147 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
148 static int wpi_auth(struct wpi_softc *);
149 static int wpi_scan(struct wpi_softc *);
150 static int wpi_config(struct wpi_softc *);
151 static void wpi_stop_master(struct wpi_softc *);
152 static int wpi_power_up(struct wpi_softc *);
153 static int wpi_reset(struct wpi_softc *);
154 static void wpi_hw_config(struct wpi_softc *);
155 static int wpi_init(struct ifnet *);
156 static void wpi_stop(struct ifnet *, int);
157 static bool wpi_resume(device_t, const pmf_qual_t *);
158 static int wpi_getrfkill(struct wpi_softc *);
159 static void wpi_sysctlattach(struct wpi_softc *);
160 static void wpi_rsw_thread(void *);
161
162 #ifdef WPI_DEBUG
163 #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0)
164 #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0)
165 int wpi_debug = 1;
166 #else
167 #define DPRINTF(x)
168 #define DPRINTFN(n, x)
169 #endif
170
171 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
172 wpi_detach, NULL);
173
174 static int
175 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
176 {
177 struct pci_attach_args *pa = aux;
178
179 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
180 return 0;
181
182 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
183 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
184 return 1;
185
186 return 0;
187 }
188
189 /* Base Address Register */
190 #define WPI_PCI_BAR0 0x10
191
192 static int
193 wpi_attach_once(void)
194 {
195
196 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
197 return 0;
198 }
199
200 static void
201 wpi_attach(device_t parent __unused, device_t self, void *aux)
202 {
203 struct wpi_softc *sc = device_private(self);
204 struct ieee80211com *ic = &sc->sc_ic;
205 struct ifnet *ifp = &sc->sc_ec.ec_if;
206 struct pci_attach_args *pa = aux;
207 const char *intrstr;
208 bus_space_tag_t memt;
209 bus_space_handle_t memh;
210 pcireg_t data;
211 int ac, error;
212 char intrbuf[PCI_INTRSTR_LEN];
213
214 RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
215 sc->fw_used = false;
216
217 sc->sc_dev = self;
218 sc->sc_pct = pa->pa_pc;
219 sc->sc_pcitag = pa->pa_tag;
220
221 sc->sc_rsw_status = WPI_RSW_UNKNOWN;
222 sc->sc_rsw.smpsw_name = device_xname(self);
223 sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
224 error = sysmon_pswitch_register(&sc->sc_rsw);
225 if (error) {
226 aprint_error_dev(self,
227 "unable to register radio switch with sysmon\n");
228 return;
229 }
230 mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
231 cv_init(&sc->sc_rsw_cv, "wpirsw");
232 if (kthread_create(PRI_NONE, 0, NULL,
233 wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
234 aprint_error_dev(self, "couldn't create switch thread\n");
235 }
236
237 callout_init(&sc->calib_to, 0);
238 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
239
240 pci_aprint_devinfo(pa, NULL);
241
242 /* enable bus-mastering */
243 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
244 data |= PCI_COMMAND_MASTER_ENABLE;
245 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
246
247 /* map the register window */
248 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
249 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
250 if (error != 0) {
251 aprint_error_dev(self, "could not map memory space\n");
252 return;
253 }
254
255 sc->sc_st = memt;
256 sc->sc_sh = memh;
257 sc->sc_dmat = pa->pa_dmat;
258
259 sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc);
260 if (sc->sc_soft_ih == NULL) {
261 aprint_error_dev(self, "could not establish softint\n");
262 goto unmap;
263 }
264
265 if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
266 aprint_error_dev(self, "could not map interrupt\n");
267 goto failsi;
268 }
269
270 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
271 sizeof(intrbuf));
272 sc->sc_ih = pci_intr_establish(sc->sc_pct, sc->sc_pihp[0], IPL_NET,
273 wpi_intr, sc);
274 if (sc->sc_ih == NULL) {
275 aprint_error_dev(self, "could not establish interrupt");
276 if (intrstr != NULL)
277 aprint_error(" at %s", intrstr);
278 aprint_error("\n");
279 goto failia;
280 }
281 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
282
283 /*
284 * Put adapter into a known state.
285 */
286 if ((error = wpi_reset(sc)) != 0) {
287 aprint_error_dev(self, "could not reset adapter\n");
288 goto failih;
289 }
290
291 /*
292 * Allocate DMA memory for firmware transfers.
293 */
294 if ((error = wpi_alloc_fwmem(sc)) != 0) {
295 aprint_error_dev(self, "could not allocate firmware memory\n");
296 goto failih;
297 }
298
299 /*
300 * Allocate shared page and Tx/Rx rings.
301 */
302 if ((error = wpi_alloc_shared(sc)) != 0) {
303 aprint_error_dev(self, "could not allocate shared area\n");
304 goto fail1;
305 }
306
307 if ((error = wpi_alloc_rpool(sc)) != 0) {
308 aprint_error_dev(self, "could not allocate Rx buffers\n");
309 goto fail2;
310 }
311
312 for (ac = 0; ac < 4; ac++) {
313 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
314 ac);
315 if (error != 0) {
316 aprint_error_dev(self,
317 "could not allocate Tx ring %d\n", ac);
318 goto fail3;
319 }
320 }
321
322 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
323 if (error != 0) {
324 aprint_error_dev(self, "could not allocate command ring\n");
325 goto fail3;
326 }
327
328 error = wpi_alloc_rx_ring(sc, &sc->rxq);
329 if (error != 0) {
330 aprint_error_dev(self, "could not allocate Rx ring\n");
331 goto fail4;
332 }
333
334 ic->ic_ifp = ifp;
335 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
336 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
337 ic->ic_state = IEEE80211_S_INIT;
338
339 /* set device capabilities */
340 ic->ic_caps =
341 IEEE80211_C_WPA | /* 802.11i */
342 IEEE80211_C_MONITOR | /* monitor mode supported */
343 IEEE80211_C_TXPMGT | /* tx power management */
344 IEEE80211_C_SHSLOT | /* short slot time supported */
345 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
346 IEEE80211_C_WME; /* 802.11e */
347
348 /* read supported channels and MAC address from EEPROM */
349 wpi_read_eeprom(sc);
350
351 /* set supported .11a, .11b and .11g rates */
352 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
353 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
354 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
355
356 /* IBSS channel undefined for now */
357 ic->ic_ibss_chan = &ic->ic_channels[0];
358
359 ifp->if_softc = sc;
360 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
361 ifp->if_init = wpi_init;
362 ifp->if_stop = wpi_stop;
363 ifp->if_ioctl = wpi_ioctl;
364 ifp->if_start = wpi_start;
365 ifp->if_watchdog = wpi_watchdog;
366 IFQ_SET_READY(&ifp->if_snd);
367 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
368
369 if_initialize(ifp);
370 ieee80211_ifattach(ic);
371 /* Use common softint-based if_input */
372 ifp->if_percpuq = if_percpuq_create(ifp);
373 if_register(ifp);
374
375 /* override default methods */
376 ic->ic_node_alloc = wpi_node_alloc;
377 ic->ic_newassoc = wpi_newassoc;
378 ic->ic_wme.wme_update = wpi_wme_update;
379
380 /* override state transition machine */
381 sc->sc_newstate = ic->ic_newstate;
382 ic->ic_newstate = wpi_newstate;
383 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
384
385 sc->amrr.amrr_min_success_threshold = 1;
386 sc->amrr.amrr_max_success_threshold = 15;
387
388 wpi_sysctlattach(sc);
389
390 if (pmf_device_register(self, NULL, wpi_resume))
391 pmf_class_network_register(self, ifp);
392 else
393 aprint_error_dev(self, "couldn't establish power handler\n");
394
395 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
396 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
397 &sc->sc_drvbpf);
398
399 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
400 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
401 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
402
403 sc->sc_txtap_len = sizeof sc->sc_txtapu;
404 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
405 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
406
407 ieee80211_announce(ic);
408
409 return;
410
411 /* free allocated memory if something failed during attachment */
412 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
413 fail3: while (--ac >= 0)
414 wpi_free_tx_ring(sc, &sc->txq[ac]);
415 wpi_free_rpool(sc);
416 fail2: wpi_free_shared(sc);
417 fail1: wpi_free_fwmem(sc);
418 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
419 sc->sc_ih = NULL;
420 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
421 sc->sc_pihp = NULL;
422 failsi: softint_disestablish(sc->sc_soft_ih);
423 sc->sc_soft_ih = NULL;
424 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
425 }
426
427 static int
428 wpi_detach(device_t self, int flags __unused)
429 {
430 struct wpi_softc *sc = device_private(self);
431 struct ifnet *ifp = sc->sc_ic.ic_ifp;
432 int ac;
433
434 wpi_stop(ifp, 1);
435
436 if (ifp != NULL)
437 bpf_detach(ifp);
438 ieee80211_ifdetach(&sc->sc_ic);
439 if (ifp != NULL)
440 if_detach(ifp);
441
442 for (ac = 0; ac < 4; ac++)
443 wpi_free_tx_ring(sc, &sc->txq[ac]);
444 wpi_free_tx_ring(sc, &sc->cmdq);
445 wpi_free_rx_ring(sc, &sc->rxq);
446 wpi_free_rpool(sc);
447 wpi_free_shared(sc);
448
449 if (sc->sc_ih != NULL) {
450 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
451 sc->sc_ih = NULL;
452 }
453 if (sc->sc_pihp != NULL) {
454 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
455 sc->sc_pihp = NULL;
456 }
457 if (sc->sc_soft_ih != NULL) {
458 softint_disestablish(sc->sc_soft_ih);
459 sc->sc_soft_ih = NULL;
460 }
461
462 mutex_enter(&sc->sc_rsw_mtx);
463 sc->sc_dying = 1;
464 cv_signal(&sc->sc_rsw_cv);
465 while (sc->sc_rsw_lwp != NULL)
466 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
467 mutex_exit(&sc->sc_rsw_mtx);
468 sysmon_pswitch_unregister(&sc->sc_rsw);
469
470 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
471
472 if (sc->fw_used) {
473 sc->fw_used = false;
474 wpi_release_firmware();
475 }
476 cv_destroy(&sc->sc_rsw_cv);
477 mutex_destroy(&sc->sc_rsw_mtx);
478 return 0;
479 }
480
481 static int
482 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
483 bus_size_t size, bus_size_t alignment, int flags)
484 {
485 int nsegs, error;
486
487 dma->tag = tag;
488 dma->size = size;
489
490 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
491 if (error != 0)
492 goto fail;
493
494 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
495 flags);
496 if (error != 0)
497 goto fail;
498
499 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
500 if (error != 0)
501 goto fail;
502
503 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
504 if (error != 0)
505 goto fail;
506
507 memset(dma->vaddr, 0, size);
508 bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
509
510 dma->paddr = dma->map->dm_segs[0].ds_addr;
511 if (kvap != NULL)
512 *kvap = dma->vaddr;
513
514 return 0;
515
516 fail: wpi_dma_contig_free(dma);
517 return error;
518 }
519
520 static void
521 wpi_dma_contig_free(struct wpi_dma_info *dma)
522 {
523 if (dma->map != NULL) {
524 if (dma->vaddr != NULL) {
525 bus_dmamap_unload(dma->tag, dma->map);
526 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
527 bus_dmamem_free(dma->tag, &dma->seg, 1);
528 dma->vaddr = NULL;
529 }
530 bus_dmamap_destroy(dma->tag, dma->map);
531 dma->map = NULL;
532 }
533 }
534
535 /*
536 * Allocate a shared page between host and NIC.
537 */
538 static int
539 wpi_alloc_shared(struct wpi_softc *sc)
540 {
541 int error;
542
543 /* must be aligned on a 4K-page boundary */
544 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
545 (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
546 BUS_DMA_NOWAIT);
547 if (error != 0)
548 aprint_error_dev(sc->sc_dev,
549 "could not allocate shared area DMA memory\n");
550
551 return error;
552 }
553
554 static void
555 wpi_free_shared(struct wpi_softc *sc)
556 {
557 wpi_dma_contig_free(&sc->shared_dma);
558 }
559
560 /*
561 * Allocate DMA-safe memory for firmware transfer.
562 */
563 static int
564 wpi_alloc_fwmem(struct wpi_softc *sc)
565 {
566 int error;
567
568 /* allocate enough contiguous space to store text and data */
569 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
570 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
571 BUS_DMA_NOWAIT);
572
573 if (error != 0)
574 aprint_error_dev(sc->sc_dev,
575 "could not allocate firmware transfer area DMA memory\n");
576 return error;
577 }
578
579 static void
580 wpi_free_fwmem(struct wpi_softc *sc)
581 {
582 wpi_dma_contig_free(&sc->fw_dma);
583 }
584
585 static struct wpi_rbuf *
586 wpi_alloc_rbuf(struct wpi_softc *sc)
587 {
588 struct wpi_rbuf *rbuf;
589
590 mutex_enter(&sc->rxq.freelist_mtx);
591 rbuf = SLIST_FIRST(&sc->rxq.freelist);
592 if (rbuf != NULL) {
593 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
594 }
595 mutex_exit(&sc->rxq.freelist_mtx);
596
597 return rbuf;
598 }
599
600 /*
601 * This is called automatically by the network stack when the mbuf to which our
602 * Rx buffer is attached is freed.
603 */
604 static void
605 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
606 {
607 struct wpi_rbuf *rbuf = arg;
608 struct wpi_softc *sc = rbuf->sc;
609
610 /* put the buffer back in the free list */
611
612 mutex_enter(&sc->rxq.freelist_mtx);
613 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
614 mutex_exit(&sc->rxq.freelist_mtx);
615
616 if (__predict_true(m != NULL))
617 pool_cache_put(mb_cache, m);
618 }
619
620 static int
621 wpi_alloc_rpool(struct wpi_softc *sc)
622 {
623 struct wpi_rx_ring *ring = &sc->rxq;
624 int i, error;
625
626 /* allocate a big chunk of DMA'able memory.. */
627 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
628 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
629 if (error != 0) {
630 aprint_normal_dev(sc->sc_dev,
631 "could not allocate Rx buffers DMA memory\n");
632 return error;
633 }
634
635 /* ..and split it into 3KB chunks */
636 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
637 SLIST_INIT(&ring->freelist);
638 for (i = 0; i < WPI_RBUF_COUNT; i++) {
639 struct wpi_rbuf *rbuf = &ring->rbuf[i];
640
641 rbuf->sc = sc; /* backpointer for callbacks */
642 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
643 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
644
645 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
646 }
647
648 return 0;
649 }
650
651 static void
652 wpi_free_rpool(struct wpi_softc *sc)
653 {
654 wpi_dma_contig_free(&sc->rxq.buf_dma);
655 }
656
657 static int
658 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
659 {
660 bus_size_t size;
661 int i, error;
662
663 ring->cur = 0;
664
665 size = WPI_RX_RING_COUNT * sizeof (uint32_t);
666 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
667 (void **)&ring->desc, size,
668 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
669 if (error != 0) {
670 aprint_error_dev(sc->sc_dev,
671 "could not allocate rx ring DMA memory\n");
672 goto fail;
673 }
674
675 /*
676 * Setup Rx buffers.
677 */
678 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
679 struct wpi_rx_data *data = &ring->data[i];
680 struct wpi_rbuf *rbuf;
681
682 error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
683 WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
684 if (error) {
685 aprint_error_dev(sc->sc_dev,
686 "could not allocate rx dma map\n");
687 goto fail;
688 }
689
690 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
691 if (data->m == NULL) {
692 aprint_error_dev(sc->sc_dev,
693 "could not allocate rx mbuf\n");
694 error = ENOMEM;
695 goto fail;
696 }
697 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
698 m_freem(data->m);
699 data->m = NULL;
700 aprint_error_dev(sc->sc_dev,
701 "could not allocate rx cluster\n");
702 error = ENOMEM;
703 goto fail;
704 }
705 /* attach Rx buffer to mbuf */
706 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
707 rbuf);
708 data->m->m_flags |= M_EXT_RW;
709
710 error = bus_dmamap_load(sc->sc_dmat, data->map,
711 mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
712 BUS_DMA_NOWAIT | BUS_DMA_READ);
713 if (error) {
714 aprint_error_dev(sc->sc_dev,
715 "could not load mbuf: %d\n", error);
716 goto fail;
717 }
718
719 ring->desc[i] = htole32(rbuf->paddr);
720 }
721
722 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
723 BUS_DMASYNC_PREWRITE);
724
725 return 0;
726
727 fail: wpi_free_rx_ring(sc, ring);
728 return error;
729 }
730
731 static void
732 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
733 {
734 int ntries;
735
736 wpi_mem_lock(sc);
737
738 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
739 for (ntries = 0; ntries < 100; ntries++) {
740 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
741 break;
742 DELAY(10);
743 }
744 #ifdef WPI_DEBUG
745 if (ntries == 100 && wpi_debug > 0)
746 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
747 #endif
748 wpi_mem_unlock(sc);
749
750 ring->cur = 0;
751 }
752
753 static void
754 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
755 {
756 int i;
757
758 wpi_dma_contig_free(&ring->desc_dma);
759
760 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
761 if (ring->data[i].m != NULL) {
762 bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
763 m_freem(ring->data[i].m);
764 }
765 if (ring->data[i].map != NULL) {
766 bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
767 }
768 }
769 }
770
771 static int
772 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
773 int qid)
774 {
775 int i, error;
776
777 ring->qid = qid;
778 ring->count = count;
779 ring->queued = 0;
780 ring->cur = 0;
781
782 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
783 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
784 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
785 if (error != 0) {
786 aprint_error_dev(sc->sc_dev,
787 "could not allocate tx ring DMA memory\n");
788 goto fail;
789 }
790
791 /* update shared page with ring's base address */
792 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
793 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
794 sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
795
796 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
797 (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
798 BUS_DMA_NOWAIT);
799 if (error != 0) {
800 aprint_error_dev(sc->sc_dev,
801 "could not allocate tx cmd DMA memory\n");
802 goto fail;
803 }
804
805 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
806 M_NOWAIT | M_ZERO);
807 if (ring->data == NULL) {
808 aprint_error_dev(sc->sc_dev,
809 "could not allocate tx data slots\n");
810 goto fail;
811 }
812
813 for (i = 0; i < count; i++) {
814 struct wpi_tx_data *data = &ring->data[i];
815
816 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
817 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
818 &data->map);
819 if (error != 0) {
820 aprint_error_dev(sc->sc_dev,
821 "could not create tx buf DMA map\n");
822 goto fail;
823 }
824 }
825
826 return 0;
827
828 fail: wpi_free_tx_ring(sc, ring);
829 return error;
830 }
831
832 static void
833 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
834 {
835 int i, ntries;
836
837 wpi_mem_lock(sc);
838
839 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
840 for (ntries = 0; ntries < 100; ntries++) {
841 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
842 break;
843 DELAY(10);
844 }
845 #ifdef WPI_DEBUG
846 if (ntries == 100 && wpi_debug > 0) {
847 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
848 ring->qid);
849 }
850 #endif
851 wpi_mem_unlock(sc);
852
853 for (i = 0; i < ring->count; i++) {
854 struct wpi_tx_data *data = &ring->data[i];
855
856 if (data->m != NULL) {
857 bus_dmamap_unload(sc->sc_dmat, data->map);
858 m_freem(data->m);
859 data->m = NULL;
860 }
861 }
862
863 ring->queued = 0;
864 ring->cur = 0;
865 }
866
867 static void
868 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
869 {
870 int i;
871
872 wpi_dma_contig_free(&ring->desc_dma);
873 wpi_dma_contig_free(&ring->cmd_dma);
874
875 if (ring->data != NULL) {
876 for (i = 0; i < ring->count; i++) {
877 struct wpi_tx_data *data = &ring->data[i];
878
879 if (data->m != NULL) {
880 bus_dmamap_unload(sc->sc_dmat, data->map);
881 m_freem(data->m);
882 }
883 }
884 free(ring->data, M_DEVBUF);
885 }
886 }
887
888 /*ARGUSED*/
889 static struct ieee80211_node *
890 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
891 {
892 struct wpi_node *wn;
893
894 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
895
896 return (struct ieee80211_node *)wn;
897 }
898
899 static void
900 wpi_newassoc(struct ieee80211_node *ni, int isnew)
901 {
902 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
903 int i;
904
905 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
906
907 /* set rate to some reasonable initial value */
908 for (i = ni->ni_rates.rs_nrates - 1;
909 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
910 i--);
911 ni->ni_txrate = i;
912 }
913
914 static int
915 wpi_media_change(struct ifnet *ifp)
916 {
917 int error;
918
919 error = ieee80211_media_change(ifp);
920 if (error != ENETRESET)
921 return error;
922
923 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
924 wpi_init(ifp);
925
926 return 0;
927 }
928
929 static int
930 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
931 {
932 struct ifnet *ifp = ic->ic_ifp;
933 struct wpi_softc *sc = ifp->if_softc;
934 struct ieee80211_node *ni;
935 enum ieee80211_state ostate = ic->ic_state;
936 int error;
937
938 callout_stop(&sc->calib_to);
939
940 switch (nstate) {
941 case IEEE80211_S_SCAN:
942
943 if (sc->is_scanning)
944 break;
945
946 sc->is_scanning = true;
947
948 if (ostate != IEEE80211_S_SCAN) {
949 /* make the link LED blink while we're scanning */
950 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
951 }
952
953 if ((error = wpi_scan(sc)) != 0) {
954 aprint_error_dev(sc->sc_dev,
955 "could not initiate scan\n");
956 return error;
957 }
958 break;
959
960 case IEEE80211_S_ASSOC:
961 if (ic->ic_state != IEEE80211_S_RUN)
962 break;
963 /* FALLTHROUGH */
964 case IEEE80211_S_AUTH:
965 /* reset state to handle reassociations correctly */
966 sc->config.associd = 0;
967 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
968
969 if ((error = wpi_auth(sc)) != 0) {
970 aprint_error_dev(sc->sc_dev,
971 "could not send authentication request\n");
972 return error;
973 }
974 break;
975
976 case IEEE80211_S_RUN:
977 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
978 /* link LED blinks while monitoring */
979 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
980 break;
981 }
982 ni = ic->ic_bss;
983
984 if (ic->ic_opmode != IEEE80211_M_STA) {
985 (void) wpi_auth(sc); /* XXX */
986 wpi_setup_beacon(sc, ni);
987 }
988
989 wpi_enable_tsf(sc, ni);
990
991 /* update adapter's configuration */
992 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
993 /* short preamble/slot time are negotiated when associating */
994 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
995 WPI_CONFIG_SHSLOT);
996 if (ic->ic_flags & IEEE80211_F_SHSLOT)
997 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
998 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
999 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
1000 sc->config.filter |= htole32(WPI_FILTER_BSS);
1001 if (ic->ic_opmode != IEEE80211_M_STA)
1002 sc->config.filter |= htole32(WPI_FILTER_BEACON);
1003
1004 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
1005
1006 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
1007 sc->config.flags));
1008 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
1009 sizeof (struct wpi_config), 1);
1010 if (error != 0) {
1011 aprint_error_dev(sc->sc_dev,
1012 "could not update configuration\n");
1013 return error;
1014 }
1015
1016 /* configuration has changed, set Tx power accordingly */
1017 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
1018 aprint_error_dev(sc->sc_dev,
1019 "could not set Tx power\n");
1020 return error;
1021 }
1022
1023 if (ic->ic_opmode == IEEE80211_M_STA) {
1024 /* fake a join to init the tx rate */
1025 wpi_newassoc(ni, 1);
1026 }
1027
1028 /* start periodic calibration timer */
1029 sc->calib_cnt = 0;
1030 callout_schedule(&sc->calib_to, hz/2);
1031
1032 /* link LED always on while associated */
1033 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1034 break;
1035
1036 case IEEE80211_S_INIT:
1037 sc->is_scanning = false;
1038 break;
1039 }
1040
1041 return sc->sc_newstate(ic, nstate, arg);
1042 }
1043
1044 /*
1045 * Grab exclusive access to NIC memory.
1046 */
1047 static void
1048 wpi_mem_lock(struct wpi_softc *sc)
1049 {
1050 uint32_t tmp;
1051 int ntries;
1052
1053 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1054 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1055
1056 /* spin until we actually get the lock */
1057 for (ntries = 0; ntries < 1000; ntries++) {
1058 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1059 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1060 break;
1061 DELAY(10);
1062 }
1063 if (ntries == 1000)
1064 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1065 }
1066
1067 /*
1068 * Release lock on NIC memory.
1069 */
1070 static void
1071 wpi_mem_unlock(struct wpi_softc *sc)
1072 {
1073 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1074 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1075 }
1076
1077 static uint32_t
1078 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1079 {
1080 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1081 return WPI_READ(sc, WPI_READ_MEM_DATA);
1082 }
1083
1084 static void
1085 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1086 {
1087 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1088 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1089 }
1090
1091 static void
1092 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1093 const uint32_t *data, int wlen)
1094 {
1095 for (; wlen > 0; wlen--, data++, addr += 4)
1096 wpi_mem_write(sc, addr, *data);
1097 }
1098
1099 /*
1100 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1101 * instead of using the traditional bit-bang method.
1102 */
1103 static int
1104 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1105 {
1106 uint8_t *out = data;
1107 uint32_t val;
1108 int ntries;
1109
1110 wpi_mem_lock(sc);
1111 for (; len > 0; len -= 2, addr++) {
1112 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1113
1114 for (ntries = 0; ntries < 10; ntries++) {
1115 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1116 WPI_EEPROM_READY)
1117 break;
1118 DELAY(5);
1119 }
1120 if (ntries == 10) {
1121 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1122 return ETIMEDOUT;
1123 }
1124 *out++ = val >> 16;
1125 if (len > 1)
1126 *out++ = val >> 24;
1127 }
1128 wpi_mem_unlock(sc);
1129
1130 return 0;
1131 }
1132
1133 /*
1134 * The firmware boot code is small and is intended to be copied directly into
1135 * the NIC internal memory.
1136 */
1137 int
1138 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1139 {
1140 int ntries;
1141
1142 size /= sizeof (uint32_t);
1143
1144 wpi_mem_lock(sc);
1145
1146 /* copy microcode image into NIC memory */
1147 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1148 (const uint32_t *)ucode, size);
1149
1150 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1151 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1152 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1153
1154 /* run microcode */
1155 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1156
1157 /* wait for transfer to complete */
1158 for (ntries = 0; ntries < 1000; ntries++) {
1159 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1160 break;
1161 DELAY(10);
1162 }
1163 if (ntries == 1000) {
1164 wpi_mem_unlock(sc);
1165 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1166 return ETIMEDOUT;
1167 }
1168 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1169
1170 wpi_mem_unlock(sc);
1171
1172 return 0;
1173 }
1174
1175 static int
1176 wpi_cache_firmware(struct wpi_softc *sc)
1177 {
1178 const char *const fwname = wpi_firmware_name;
1179 firmware_handle_t fw;
1180 int error;
1181
1182 /* sc is used here only to report error messages. */
1183
1184 mutex_enter(&wpi_firmware_mutex);
1185
1186 if (wpi_firmware_users == SIZE_MAX) {
1187 mutex_exit(&wpi_firmware_mutex);
1188 return ENFILE; /* Too many of something in the system... */
1189 }
1190 if (wpi_firmware_users++) {
1191 KASSERT(wpi_firmware_image != NULL);
1192 KASSERT(wpi_firmware_size > 0);
1193 mutex_exit(&wpi_firmware_mutex);
1194 return 0; /* Already good to go. */
1195 }
1196
1197 KASSERT(wpi_firmware_image == NULL);
1198 KASSERT(wpi_firmware_size == 0);
1199
1200 /* load firmware image from disk */
1201 if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1202 aprint_error_dev(sc->sc_dev,
1203 "could not open firmware file %s: %d\n", fwname, error);
1204 goto fail0;
1205 }
1206
1207 wpi_firmware_size = firmware_get_size(fw);
1208
1209 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1210 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1211 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1212 WPI_FW_BOOT_TEXT_MAXSZ) {
1213 aprint_error_dev(sc->sc_dev,
1214 "firmware file %s too large: %zu bytes\n",
1215 fwname, wpi_firmware_size);
1216 error = EFBIG;
1217 goto fail1;
1218 }
1219
1220 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1221 aprint_error_dev(sc->sc_dev,
1222 "firmware file %s too small: %zu bytes\n",
1223 fwname, wpi_firmware_size);
1224 error = EINVAL;
1225 goto fail1;
1226 }
1227
1228 wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1229 if (wpi_firmware_image == NULL) {
1230 aprint_error_dev(sc->sc_dev,
1231 "not enough memory for firmware file %s\n", fwname);
1232 error = ENOMEM;
1233 goto fail1;
1234 }
1235
1236 error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1237 if (error != 0) {
1238 aprint_error_dev(sc->sc_dev,
1239 "error reading firmware file %s: %d\n", fwname, error);
1240 goto fail2;
1241 }
1242
1243 /* Success! */
1244 firmware_close(fw);
1245 mutex_exit(&wpi_firmware_mutex);
1246 return 0;
1247
1248 fail2:
1249 firmware_free(wpi_firmware_image, wpi_firmware_size);
1250 wpi_firmware_image = NULL;
1251 fail1:
1252 wpi_firmware_size = 0;
1253 firmware_close(fw);
1254 fail0:
1255 KASSERT(wpi_firmware_users == 1);
1256 wpi_firmware_users = 0;
1257 KASSERT(wpi_firmware_image == NULL);
1258 KASSERT(wpi_firmware_size == 0);
1259
1260 mutex_exit(&wpi_firmware_mutex);
1261 return error;
1262 }
1263
1264 static void
1265 wpi_release_firmware(void)
1266 {
1267
1268 mutex_enter(&wpi_firmware_mutex);
1269
1270 KASSERT(wpi_firmware_users > 0);
1271 KASSERT(wpi_firmware_image != NULL);
1272 KASSERT(wpi_firmware_size != 0);
1273
1274 if (--wpi_firmware_users == 0) {
1275 firmware_free(wpi_firmware_image, wpi_firmware_size);
1276 wpi_firmware_image = NULL;
1277 wpi_firmware_size = 0;
1278 }
1279
1280 mutex_exit(&wpi_firmware_mutex);
1281 }
1282
1283 static int
1284 wpi_load_firmware(struct wpi_softc *sc)
1285 {
1286 struct wpi_dma_info *dma = &sc->fw_dma;
1287 struct wpi_firmware_hdr hdr;
1288 const uint8_t *init_text, *init_data, *main_text, *main_data;
1289 const uint8_t *boot_text;
1290 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1291 uint32_t boot_textsz;
1292 size_t size;
1293 int error;
1294
1295 if (!sc->fw_used) {
1296 if ((error = wpi_cache_firmware(sc)) != 0)
1297 return error;
1298 sc->fw_used = true;
1299 }
1300
1301 KASSERT(sc->fw_used);
1302 KASSERT(wpi_firmware_image != NULL);
1303 KASSERT(wpi_firmware_size > sizeof(hdr));
1304
1305 memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1306
1307 main_textsz = le32toh(hdr.main_textsz);
1308 main_datasz = le32toh(hdr.main_datasz);
1309 init_textsz = le32toh(hdr.init_textsz);
1310 init_datasz = le32toh(hdr.init_datasz);
1311 boot_textsz = le32toh(hdr.boot_textsz);
1312
1313 /* sanity-check firmware segments sizes */
1314 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1315 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1316 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1317 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1318 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1319 (boot_textsz & 3) != 0) {
1320 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1321 error = EINVAL;
1322 goto free_firmware;
1323 }
1324
1325 /* check that all firmware segments are present */
1326 size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1327 main_datasz + init_textsz + init_datasz + boot_textsz;
1328 if (wpi_firmware_size < size) {
1329 aprint_error_dev(sc->sc_dev,
1330 "firmware file truncated: %zu bytes, expected %zu bytes\n",
1331 wpi_firmware_size, size);
1332 error = EINVAL;
1333 goto free_firmware;
1334 }
1335
1336 /* get pointers to firmware segments */
1337 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1338 main_data = main_text + main_textsz;
1339 init_text = main_data + main_datasz;
1340 init_data = init_text + init_textsz;
1341 boot_text = init_data + init_datasz;
1342
1343 /* copy initialization images into pre-allocated DMA-safe memory */
1344 memcpy(dma->vaddr, init_data, init_datasz);
1345 memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1346 init_textsz);
1347
1348 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1349
1350 /* tell adapter where to find initialization images */
1351 wpi_mem_lock(sc);
1352 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1353 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1354 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1355 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1356 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1357 wpi_mem_unlock(sc);
1358
1359 /* load firmware boot code */
1360 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1361 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1362 return error;
1363 }
1364
1365 /* now press "execute" ;-) */
1366 WPI_WRITE(sc, WPI_RESET, 0);
1367
1368 /* wait at most one second for first alive notification */
1369 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1370 /* this isn't what was supposed to happen.. */
1371 aprint_error_dev(sc->sc_dev,
1372 "timeout waiting for adapter to initialize\n");
1373 }
1374
1375 /* copy runtime images into pre-allocated DMA-safe memory */
1376 memcpy(dma->vaddr, main_data, main_datasz);
1377 memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1378 main_textsz);
1379
1380 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1381
1382 /* tell adapter where to find runtime images */
1383 wpi_mem_lock(sc);
1384 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1385 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1386 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1387 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1388 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1389 wpi_mem_unlock(sc);
1390
1391 /* wait at most one second for second alive notification */
1392 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1393 /* this isn't what was supposed to happen.. */
1394 aprint_error_dev(sc->sc_dev,
1395 "timeout waiting for adapter to initialize\n");
1396 }
1397
1398 return error;
1399
1400 free_firmware:
1401 sc->fw_used = false;
1402 wpi_release_firmware();
1403 return error;
1404 }
1405
1406 static void
1407 wpi_calib_timeout(void *arg)
1408 {
1409 struct wpi_softc *sc = arg;
1410 struct ieee80211com *ic = &sc->sc_ic;
1411 int temp, s;
1412
1413 /* automatic rate control triggered every 500ms */
1414 if (ic->ic_fixed_rate == -1) {
1415 s = splnet();
1416 if (ic->ic_opmode == IEEE80211_M_STA)
1417 wpi_iter_func(sc, ic->ic_bss);
1418 else
1419 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1420 splx(s);
1421 }
1422
1423 /* update sensor data */
1424 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1425
1426 /* automatic power calibration every 60s */
1427 if (++sc->calib_cnt >= 120) {
1428 wpi_power_calibration(sc, temp);
1429 sc->calib_cnt = 0;
1430 }
1431
1432 callout_schedule(&sc->calib_to, hz/2);
1433 }
1434
1435 static void
1436 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1437 {
1438 struct wpi_softc *sc = arg;
1439 struct wpi_node *wn = (struct wpi_node *)ni;
1440
1441 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1442 }
1443
1444 /*
1445 * This function is called periodically (every 60 seconds) to adjust output
1446 * power to temperature changes.
1447 */
1448 void
1449 wpi_power_calibration(struct wpi_softc *sc, int temp)
1450 {
1451 /* sanity-check read value */
1452 if (temp < -260 || temp > 25) {
1453 /* this can't be correct, ignore */
1454 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1455 return;
1456 }
1457
1458 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1459
1460 /* adjust Tx power if need be */
1461 if (abs(temp - sc->temp) <= 6)
1462 return;
1463
1464 sc->temp = temp;
1465
1466 if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1467 /* just warn, too bad for the automatic calibration... */
1468 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1469 }
1470 }
1471
1472 static void
1473 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1474 struct wpi_rx_data *data)
1475 {
1476 struct ieee80211com *ic = &sc->sc_ic;
1477 struct ifnet *ifp = ic->ic_ifp;
1478 struct wpi_rx_ring *ring = &sc->rxq;
1479 struct wpi_rx_stat *stat;
1480 struct wpi_rx_head *head;
1481 struct wpi_rx_tail *tail;
1482 struct wpi_rbuf *rbuf;
1483 struct ieee80211_frame *wh;
1484 struct ieee80211_node *ni;
1485 struct mbuf *m, *mnew;
1486 int data_off, error, s;
1487
1488 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1489 BUS_DMASYNC_POSTREAD);
1490 stat = (struct wpi_rx_stat *)(desc + 1);
1491
1492 if (stat->len > WPI_STAT_MAXLEN) {
1493 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1494 ifp->if_ierrors++;
1495 return;
1496 }
1497
1498 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1499 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1500
1501 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1502 "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1503 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1504 le64toh(tail->tstamp)));
1505
1506 /*
1507 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1508 * to radiotap in monitor mode).
1509 */
1510 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1511 DPRINTF(("rx tail flags error %x\n",
1512 le32toh(tail->flags)));
1513 ifp->if_ierrors++;
1514 return;
1515 }
1516
1517 /* Compute where are the useful datas */
1518 data_off = (char*)(head + 1) - mtod(data->m, char*);
1519
1520 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1521 if (mnew == NULL) {
1522 ifp->if_ierrors++;
1523 return;
1524 }
1525
1526 rbuf = wpi_alloc_rbuf(sc);
1527 if (rbuf == NULL) {
1528 m_freem(mnew);
1529 ifp->if_ierrors++;
1530 return;
1531 }
1532
1533 /* attach Rx buffer to mbuf */
1534 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1535 rbuf);
1536 mnew->m_flags |= M_EXT_RW;
1537
1538 bus_dmamap_unload(sc->sc_dmat, data->map);
1539
1540 error = bus_dmamap_load(sc->sc_dmat, data->map,
1541 mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1542 BUS_DMA_NOWAIT | BUS_DMA_READ);
1543 if (error) {
1544 device_printf(sc->sc_dev,
1545 "couldn't load rx mbuf: %d\n", error);
1546 m_freem(mnew);
1547 ifp->if_ierrors++;
1548
1549 error = bus_dmamap_load(sc->sc_dmat, data->map,
1550 mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1551 BUS_DMA_NOWAIT | BUS_DMA_READ);
1552 if (error)
1553 panic("%s: bus_dmamap_load failed: %d\n",
1554 device_xname(sc->sc_dev), error);
1555 return;
1556 }
1557
1558 /* new mbuf loaded successfully */
1559 m = data->m;
1560 data->m = mnew;
1561
1562 /* update Rx descriptor */
1563 ring->desc[ring->cur] = htole32(rbuf->paddr);
1564 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1565 ring->desc_dma.size,
1566 BUS_DMASYNC_PREWRITE);
1567
1568 m->m_data = (char*)m->m_data + data_off;
1569 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1570
1571 /* finalize mbuf */
1572 m_set_rcvif(m, ifp);
1573
1574 s = splnet();
1575
1576 if (sc->sc_drvbpf != NULL) {
1577 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1578
1579 tap->wr_flags = 0;
1580 tap->wr_chan_freq =
1581 htole16(ic->ic_channels[head->chan].ic_freq);
1582 tap->wr_chan_flags =
1583 htole16(ic->ic_channels[head->chan].ic_flags);
1584 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1585 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1586 tap->wr_tsft = tail->tstamp;
1587 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1588 switch (head->rate) {
1589 /* CCK rates */
1590 case 10: tap->wr_rate = 2; break;
1591 case 20: tap->wr_rate = 4; break;
1592 case 55: tap->wr_rate = 11; break;
1593 case 110: tap->wr_rate = 22; break;
1594 /* OFDM rates */
1595 case 0xd: tap->wr_rate = 12; break;
1596 case 0xf: tap->wr_rate = 18; break;
1597 case 0x5: tap->wr_rate = 24; break;
1598 case 0x7: tap->wr_rate = 36; break;
1599 case 0x9: tap->wr_rate = 48; break;
1600 case 0xb: tap->wr_rate = 72; break;
1601 case 0x1: tap->wr_rate = 96; break;
1602 case 0x3: tap->wr_rate = 108; break;
1603 /* unknown rate: should not happen */
1604 default: tap->wr_rate = 0;
1605 }
1606 if (le16toh(head->flags) & 0x4)
1607 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1608
1609 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1610 }
1611
1612 /* grab a reference to the source node */
1613 wh = mtod(m, struct ieee80211_frame *);
1614 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1615
1616 /* send the frame to the 802.11 layer */
1617 ieee80211_input(ic, m, ni, stat->rssi, 0);
1618
1619 /* release node reference */
1620 ieee80211_free_node(ni);
1621
1622 splx(s);
1623 }
1624
1625 static void
1626 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1627 {
1628 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1629 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1630 struct wpi_tx_data *data = &ring->data[desc->idx];
1631 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1632 struct wpi_node *wn = (struct wpi_node *)data->ni;
1633 int s;
1634
1635 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1636 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1637 stat->nkill, stat->rate, le32toh(stat->duration),
1638 le32toh(stat->status)));
1639
1640 s = splnet();
1641
1642 /*
1643 * Update rate control statistics for the node.
1644 * XXX we should not count mgmt frames since they're always sent at
1645 * the lowest available bit-rate.
1646 */
1647 wn->amn.amn_txcnt++;
1648 if (stat->ntries > 0) {
1649 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1650 wn->amn.amn_retrycnt++;
1651 }
1652
1653 if ((le32toh(stat->status) & 0xff) != 1)
1654 ifp->if_oerrors++;
1655 else
1656 ifp->if_opackets++;
1657
1658 bus_dmamap_unload(sc->sc_dmat, data->map);
1659 m_freem(data->m);
1660 data->m = NULL;
1661 ieee80211_free_node(data->ni);
1662 data->ni = NULL;
1663
1664 ring->queued--;
1665
1666 sc->sc_tx_timer = 0;
1667 ifp->if_flags &= ~IFF_OACTIVE;
1668 wpi_start(ifp);
1669
1670 splx(s);
1671 }
1672
1673 static void
1674 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1675 {
1676 struct wpi_tx_ring *ring = &sc->cmdq;
1677 struct wpi_tx_data *data;
1678
1679 if ((desc->qid & 7) != 4)
1680 return; /* not a command ack */
1681
1682 data = &ring->data[desc->idx];
1683
1684 /* if the command was mapped in a mbuf, free it */
1685 if (data->m != NULL) {
1686 bus_dmamap_unload(sc->sc_dmat, data->map);
1687 m_freem(data->m);
1688 data->m = NULL;
1689 }
1690
1691 wakeup(&ring->cmd[desc->idx]);
1692 }
1693
1694 static void
1695 wpi_notif_intr(struct wpi_softc *sc)
1696 {
1697 struct ieee80211com *ic = &sc->sc_ic;
1698 struct ifnet *ifp = ic->ic_ifp;
1699 uint32_t hw;
1700 int s;
1701
1702 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1703 sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1704
1705 hw = le32toh(sc->shared->next);
1706 while (sc->rxq.cur != hw) {
1707 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1708 struct wpi_rx_desc *desc;
1709
1710 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1711 BUS_DMASYNC_POSTREAD);
1712 desc = mtod(data->m, struct wpi_rx_desc *);
1713
1714 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1715 "len=%d\n", desc->qid, desc->idx, desc->flags,
1716 desc->type, le32toh(desc->len)));
1717
1718 if (!(desc->qid & 0x80)) /* reply to a command */
1719 wpi_cmd_intr(sc, desc);
1720
1721 switch (desc->type) {
1722 case WPI_RX_DONE:
1723 /* a 802.11 frame was received */
1724 wpi_rx_intr(sc, desc, data);
1725 break;
1726
1727 case WPI_TX_DONE:
1728 /* a 802.11 frame has been transmitted */
1729 wpi_tx_intr(sc, desc);
1730 break;
1731
1732 case WPI_UC_READY:
1733 {
1734 struct wpi_ucode_info *uc =
1735 (struct wpi_ucode_info *)(desc + 1);
1736
1737 /* the microcontroller is ready */
1738 DPRINTF(("microcode alive notification version %x "
1739 "alive %x\n", le32toh(uc->version),
1740 le32toh(uc->valid)));
1741
1742 if (le32toh(uc->valid) != 1) {
1743 aprint_error_dev(sc->sc_dev,
1744 "microcontroller initialization failed\n");
1745 }
1746 break;
1747 }
1748 case WPI_STATE_CHANGED:
1749 {
1750 uint32_t *status = (uint32_t *)(desc + 1);
1751
1752 /* enabled/disabled notification */
1753 DPRINTF(("state changed to %x\n", le32toh(*status)));
1754
1755 if (le32toh(*status) & 1) {
1756 s = splnet();
1757 /* the radio button has to be pushed */
1758 /* wake up thread to signal powerd */
1759 cv_signal(&sc->sc_rsw_cv);
1760 aprint_error_dev(sc->sc_dev,
1761 "Radio transmitter is off\n");
1762 /* turn the interface down */
1763 ifp->if_flags &= ~IFF_UP;
1764 wpi_stop(ifp, 1);
1765 splx(s);
1766 return; /* no further processing */
1767 }
1768 break;
1769 }
1770 case WPI_START_SCAN:
1771 {
1772 #if 0
1773 struct wpi_start_scan *scan =
1774 (struct wpi_start_scan *)(desc + 1);
1775
1776 DPRINTFN(2, ("scanning channel %d status %x\n",
1777 scan->chan, le32toh(scan->status)));
1778
1779 /* fix current channel */
1780 ic->ic_curchan = &ic->ic_channels[scan->chan];
1781 #endif
1782 break;
1783 }
1784 case WPI_STOP_SCAN:
1785 {
1786 #ifdef WPI_DEBUG
1787 struct wpi_stop_scan *scan =
1788 (struct wpi_stop_scan *)(desc + 1);
1789 #endif
1790
1791 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1792 scan->nchan, scan->status, scan->chan));
1793
1794 s = splnet();
1795 sc->is_scanning = false;
1796 if (ic->ic_state == IEEE80211_S_SCAN)
1797 ieee80211_next_scan(ic);
1798 splx(s);
1799 break;
1800 }
1801 }
1802
1803 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1804 }
1805
1806 /* tell the firmware what we have processed */
1807 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1808 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1809 }
1810
1811 static int
1812 wpi_intr(void *arg)
1813 {
1814 struct wpi_softc *sc = arg;
1815 uint32_t r;
1816
1817 r = WPI_READ(sc, WPI_INTR);
1818 if (r == 0 || r == 0xffffffff)
1819 return 0; /* not for us */
1820
1821 DPRINTFN(6, ("interrupt reg %x\n", r));
1822
1823 /* disable interrupts */
1824 WPI_WRITE(sc, WPI_MASK, 0);
1825
1826 softint_schedule(sc->sc_soft_ih);
1827 return 1;
1828 }
1829
1830 static void
1831 wpi_softintr(void *arg)
1832 {
1833 struct wpi_softc *sc = arg;
1834 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1835 uint32_t r;
1836
1837 r = WPI_READ(sc, WPI_INTR);
1838 if (r == 0 || r == 0xffffffff)
1839 goto out;
1840
1841 /* ack interrupts */
1842 WPI_WRITE(sc, WPI_INTR, r);
1843
1844 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1845 /* SYSTEM FAILURE, SYSTEM FAILURE */
1846 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1847 ifp->if_flags &= ~IFF_UP;
1848 wpi_stop(ifp, 1);
1849 return;
1850 }
1851
1852 if (r & WPI_RX_INTR)
1853 wpi_notif_intr(sc);
1854
1855 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1856 wakeup(sc);
1857
1858 out:
1859 /* re-enable interrupts */
1860 if (ifp->if_flags & IFF_UP)
1861 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1862 }
1863
1864 static uint8_t
1865 wpi_plcp_signal(int rate)
1866 {
1867 switch (rate) {
1868 /* CCK rates (returned values are device-dependent) */
1869 case 2: return 10;
1870 case 4: return 20;
1871 case 11: return 55;
1872 case 22: return 110;
1873
1874 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1875 /* R1-R4, (u)ral is R4-R1 */
1876 case 12: return 0xd;
1877 case 18: return 0xf;
1878 case 24: return 0x5;
1879 case 36: return 0x7;
1880 case 48: return 0x9;
1881 case 72: return 0xb;
1882 case 96: return 0x1;
1883 case 108: return 0x3;
1884
1885 /* unsupported rates (should not get there) */
1886 default: return 0;
1887 }
1888 }
1889
1890 /* quickly determine if a given rate is CCK or OFDM */
1891 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1892
1893 static int
1894 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1895 int ac)
1896 {
1897 struct ieee80211com *ic = &sc->sc_ic;
1898 struct wpi_tx_ring *ring = &sc->txq[ac];
1899 struct wpi_tx_desc *desc;
1900 struct wpi_tx_data *data;
1901 struct wpi_tx_cmd *cmd;
1902 struct wpi_cmd_data *tx;
1903 struct ieee80211_frame *wh;
1904 struct ieee80211_key *k;
1905 const struct chanAccParams *cap;
1906 struct mbuf *mnew;
1907 int i, rate, error, hdrlen, noack = 0;
1908
1909 desc = &ring->desc[ring->cur];
1910 data = &ring->data[ring->cur];
1911
1912 wh = mtod(m0, struct ieee80211_frame *);
1913
1914 if (ieee80211_has_qos(wh)) {
1915 cap = &ic->ic_wme.wme_chanParams;
1916 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1917 }
1918
1919 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1920 k = ieee80211_crypto_encap(ic, ni, m0);
1921 if (k == NULL) {
1922 m_freem(m0);
1923 return ENOBUFS;
1924 }
1925
1926 /* packet header may have moved, reset our local pointer */
1927 wh = mtod(m0, struct ieee80211_frame *);
1928 }
1929
1930 hdrlen = ieee80211_anyhdrsize(wh);
1931
1932 /* pickup a rate */
1933 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1934 IEEE80211_FC0_TYPE_MGT) {
1935 /* mgmt frames are sent at the lowest available bit-rate */
1936 rate = ni->ni_rates.rs_rates[0];
1937 } else {
1938 if (ic->ic_fixed_rate != -1) {
1939 rate = ic->ic_sup_rates[ic->ic_curmode].
1940 rs_rates[ic->ic_fixed_rate];
1941 } else
1942 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1943 }
1944 rate &= IEEE80211_RATE_VAL;
1945
1946 if (sc->sc_drvbpf != NULL) {
1947 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1948
1949 tap->wt_flags = 0;
1950 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1951 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1952 tap->wt_rate = rate;
1953 tap->wt_hwqueue = ac;
1954 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1955 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1956
1957 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1958 }
1959
1960 cmd = &ring->cmd[ring->cur];
1961 cmd->code = WPI_CMD_TX_DATA;
1962 cmd->flags = 0;
1963 cmd->qid = ring->qid;
1964 cmd->idx = ring->cur;
1965
1966 tx = (struct wpi_cmd_data *)cmd->data;
1967 /* no need to zero tx, all fields are reinitialized here */
1968 tx->flags = 0;
1969
1970 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1971 tx->flags |= htole32(WPI_TX_NEED_ACK);
1972 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1973 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1974
1975 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1976
1977 /* retrieve destination node's id */
1978 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1979 WPI_ID_BSS;
1980
1981 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1982 IEEE80211_FC0_TYPE_MGT) {
1983 /* tell h/w to set timestamp in probe responses */
1984 if ((wh->i_fc[0] &
1985 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1986 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1987 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1988
1989 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1990 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1991 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1992 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1993 tx->timeout = htole16(3);
1994 else
1995 tx->timeout = htole16(2);
1996 } else
1997 tx->timeout = htole16(0);
1998
1999 tx->rate = wpi_plcp_signal(rate);
2000
2001 /* be very persistant at sending frames out */
2002 tx->rts_ntries = 7;
2003 tx->data_ntries = 15;
2004
2005 tx->ofdm_mask = 0xff;
2006 tx->cck_mask = 0x0f;
2007 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2008
2009 tx->len = htole16(m0->m_pkthdr.len);
2010
2011 /* save and trim IEEE802.11 header */
2012 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2013 m_adj(m0, hdrlen);
2014
2015 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2016 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2017 if (error != 0 && error != EFBIG) {
2018 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2019 error);
2020 m_freem(m0);
2021 return error;
2022 }
2023 if (error != 0) {
2024 /* too many fragments, linearize */
2025
2026 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2027 if (mnew == NULL) {
2028 m_freem(m0);
2029 return ENOMEM;
2030 }
2031 M_COPY_PKTHDR(mnew, m0);
2032 if (m0->m_pkthdr.len > MHLEN) {
2033 MCLGET(mnew, M_DONTWAIT);
2034 if (!(mnew->m_flags & M_EXT)) {
2035 m_freem(m0);
2036 m_freem(mnew);
2037 return ENOMEM;
2038 }
2039 }
2040
2041 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2042 m_freem(m0);
2043 mnew->m_len = mnew->m_pkthdr.len;
2044 m0 = mnew;
2045
2046 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2047 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2048 if (error != 0) {
2049 aprint_error_dev(sc->sc_dev,
2050 "could not map mbuf (error %d)\n", error);
2051 m_freem(m0);
2052 return error;
2053 }
2054 }
2055
2056 data->m = m0;
2057 data->ni = ni;
2058
2059 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2060 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2061
2062 /* first scatter/gather segment is used by the tx data command */
2063 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2064 (1 + data->map->dm_nsegs) << 24);
2065 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2066 ring->cur * sizeof (struct wpi_tx_cmd));
2067 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
2068 ((hdrlen + 3) & ~3));
2069 for (i = 1; i <= data->map->dm_nsegs; i++) {
2070 desc->segs[i].addr =
2071 htole32(data->map->dm_segs[i - 1].ds_addr);
2072 desc->segs[i].len =
2073 htole32(data->map->dm_segs[i - 1].ds_len);
2074 }
2075
2076 ring->queued++;
2077
2078 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2079 data->map->dm_mapsize,
2080 BUS_DMASYNC_PREWRITE);
2081 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
2082 ring->cmd_dma.size,
2083 BUS_DMASYNC_PREWRITE);
2084 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2085 ring->desc_dma.size,
2086 BUS_DMASYNC_PREWRITE);
2087
2088 /* kick ring */
2089 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2090 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2091
2092 return 0;
2093 }
2094
2095 static void
2096 wpi_start(struct ifnet *ifp)
2097 {
2098 struct wpi_softc *sc = ifp->if_softc;
2099 struct ieee80211com *ic = &sc->sc_ic;
2100 struct ieee80211_node *ni;
2101 struct ether_header *eh;
2102 struct mbuf *m0;
2103 int ac;
2104
2105 /*
2106 * net80211 may still try to send management frames even if the
2107 * IFF_RUNNING flag is not set...
2108 */
2109 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2110 return;
2111
2112 for (;;) {
2113 IF_DEQUEUE(&ic->ic_mgtq, m0);
2114 if (m0 != NULL) {
2115
2116 ni = M_GETCTX(m0, struct ieee80211_node *);
2117 M_CLEARCTX(m0);
2118
2119 /* management frames go into ring 0 */
2120 if (sc->txq[0].queued > sc->txq[0].count - 8) {
2121 ifp->if_oerrors++;
2122 continue;
2123 }
2124 bpf_mtap3(ic->ic_rawbpf, m0);
2125 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2126 ifp->if_oerrors++;
2127 break;
2128 }
2129 } else {
2130 if (ic->ic_state != IEEE80211_S_RUN)
2131 break;
2132 IFQ_POLL(&ifp->if_snd, m0);
2133 if (m0 == NULL)
2134 break;
2135
2136 if (m0->m_len < sizeof (*eh) &&
2137 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2138 ifp->if_oerrors++;
2139 continue;
2140 }
2141 eh = mtod(m0, struct ether_header *);
2142 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2143 if (ni == NULL) {
2144 m_freem(m0);
2145 ifp->if_oerrors++;
2146 continue;
2147 }
2148
2149 /* classify mbuf so we can find which tx ring to use */
2150 if (ieee80211_classify(ic, m0, ni) != 0) {
2151 m_freem(m0);
2152 ieee80211_free_node(ni);
2153 ifp->if_oerrors++;
2154 continue;
2155 }
2156
2157 /* no QoS encapsulation for EAPOL frames */
2158 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2159 M_WME_GETAC(m0) : WME_AC_BE;
2160
2161 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2162 /* there is no place left in this ring */
2163 ifp->if_flags |= IFF_OACTIVE;
2164 break;
2165 }
2166 IFQ_DEQUEUE(&ifp->if_snd, m0);
2167 bpf_mtap(ifp, m0);
2168 m0 = ieee80211_encap(ic, m0, ni);
2169 if (m0 == NULL) {
2170 ieee80211_free_node(ni);
2171 ifp->if_oerrors++;
2172 continue;
2173 }
2174 bpf_mtap3(ic->ic_rawbpf, m0);
2175 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2176 ieee80211_free_node(ni);
2177 ifp->if_oerrors++;
2178 break;
2179 }
2180 }
2181
2182 sc->sc_tx_timer = 5;
2183 ifp->if_timer = 1;
2184 }
2185 }
2186
2187 static void
2188 wpi_watchdog(struct ifnet *ifp)
2189 {
2190 struct wpi_softc *sc = ifp->if_softc;
2191
2192 ifp->if_timer = 0;
2193
2194 if (sc->sc_tx_timer > 0) {
2195 if (--sc->sc_tx_timer == 0) {
2196 aprint_error_dev(sc->sc_dev, "device timeout\n");
2197 ifp->if_flags &= ~IFF_UP;
2198 wpi_stop(ifp, 1);
2199 ifp->if_oerrors++;
2200 return;
2201 }
2202 ifp->if_timer = 1;
2203 }
2204
2205 ieee80211_watchdog(&sc->sc_ic);
2206 }
2207
2208 static int
2209 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2210 {
2211 #define IS_RUNNING(ifp) \
2212 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2213
2214 struct wpi_softc *sc = ifp->if_softc;
2215 struct ieee80211com *ic = &sc->sc_ic;
2216 int s, error = 0;
2217
2218 s = splnet();
2219
2220 switch (cmd) {
2221 case SIOCSIFFLAGS:
2222 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2223 break;
2224 if (ifp->if_flags & IFF_UP) {
2225 if (!(ifp->if_flags & IFF_RUNNING))
2226 wpi_init(ifp);
2227 } else {
2228 if (ifp->if_flags & IFF_RUNNING)
2229 wpi_stop(ifp, 1);
2230 }
2231 break;
2232
2233 case SIOCADDMULTI:
2234 case SIOCDELMULTI:
2235 /* XXX no h/w multicast filter? --dyoung */
2236 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2237 /* setup multicast filter, etc */
2238 error = 0;
2239 }
2240 break;
2241
2242 default:
2243 error = ieee80211_ioctl(ic, cmd, data);
2244 }
2245
2246 if (error == ENETRESET) {
2247 if (IS_RUNNING(ifp) &&
2248 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2249 wpi_init(ifp);
2250 error = 0;
2251 }
2252
2253 splx(s);
2254 return error;
2255
2256 #undef IS_RUNNING
2257 }
2258
2259 /*
2260 * Extract various information from EEPROM.
2261 */
2262 static void
2263 wpi_read_eeprom(struct wpi_softc *sc)
2264 {
2265 struct ieee80211com *ic = &sc->sc_ic;
2266 char domain[4];
2267 int i;
2268
2269 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2270 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2271 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2272
2273 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2274 sc->type));
2275
2276 /* read and print regulatory domain */
2277 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2278 aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2279
2280 /* read and print MAC address */
2281 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2282 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2283
2284 /* read the list of authorized channels */
2285 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2286 wpi_read_eeprom_channels(sc, i);
2287
2288 /* read the list of power groups */
2289 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2290 wpi_read_eeprom_group(sc, i);
2291 }
2292
2293 static void
2294 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2295 {
2296 struct ieee80211com *ic = &sc->sc_ic;
2297 const struct wpi_chan_band *band = &wpi_bands[n];
2298 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2299 int chan, i;
2300
2301 wpi_read_prom_data(sc, band->addr, channels,
2302 band->nchan * sizeof (struct wpi_eeprom_chan));
2303
2304 for (i = 0; i < band->nchan; i++) {
2305 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2306 continue;
2307
2308 chan = band->chan[i];
2309
2310 if (n == 0) { /* 2GHz band */
2311 ic->ic_channels[chan].ic_freq =
2312 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2313 ic->ic_channels[chan].ic_flags =
2314 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2315 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2316
2317 } else { /* 5GHz band */
2318 /*
2319 * Some 3945ABG adapters support channels 7, 8, 11
2320 * and 12 in the 2GHz *and* 5GHz bands.
2321 * Because of limitations in our net80211(9) stack,
2322 * we can't support these channels in 5GHz band.
2323 */
2324 if (chan <= 14)
2325 continue;
2326
2327 ic->ic_channels[chan].ic_freq =
2328 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2329 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2330 }
2331
2332 /* is active scan allowed on this channel? */
2333 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2334 ic->ic_channels[chan].ic_flags |=
2335 IEEE80211_CHAN_PASSIVE;
2336 }
2337
2338 /* save maximum allowed power for this channel */
2339 sc->maxpwr[chan] = channels[i].maxpwr;
2340
2341 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2342 chan, channels[i].flags, sc->maxpwr[chan]));
2343 }
2344 }
2345
2346 static void
2347 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2348 {
2349 struct wpi_power_group *group = &sc->groups[n];
2350 struct wpi_eeprom_group rgroup;
2351 int i;
2352
2353 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2354 sizeof rgroup);
2355
2356 /* save power group information */
2357 group->chan = rgroup.chan;
2358 group->maxpwr = rgroup.maxpwr;
2359 /* temperature at which the samples were taken */
2360 group->temp = (int16_t)le16toh(rgroup.temp);
2361
2362 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2363 group->chan, group->maxpwr, group->temp));
2364
2365 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2366 group->samples[i].index = rgroup.samples[i].index;
2367 group->samples[i].power = rgroup.samples[i].power;
2368
2369 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2370 group->samples[i].index, group->samples[i].power));
2371 }
2372 }
2373
2374 /*
2375 * Send a command to the firmware.
2376 */
2377 static int
2378 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2379 {
2380 struct wpi_tx_ring *ring = &sc->cmdq;
2381 struct wpi_tx_desc *desc;
2382 struct wpi_tx_cmd *cmd;
2383 struct wpi_dma_info *dma;
2384
2385 KASSERT(size <= sizeof cmd->data);
2386
2387 desc = &ring->desc[ring->cur];
2388 cmd = &ring->cmd[ring->cur];
2389
2390 cmd->code = code;
2391 cmd->flags = 0;
2392 cmd->qid = ring->qid;
2393 cmd->idx = ring->cur;
2394 memcpy(cmd->data, buf, size);
2395
2396 dma = &ring->cmd_dma;
2397 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2398
2399 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2400 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2401 ring->cur * sizeof (struct wpi_tx_cmd));
2402 desc->segs[0].len = htole32(4 + size);
2403
2404 dma = &ring->desc_dma;
2405 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2406
2407 /* kick cmd ring */
2408 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2409 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2410
2411 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2412 }
2413
2414 static int
2415 wpi_wme_update(struct ieee80211com *ic)
2416 {
2417 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2418 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2419 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2420 const struct wmeParams *wmep;
2421 struct wpi_wme_setup wme;
2422 int ac;
2423
2424 /* don't override default WME values if WME is not actually enabled */
2425 if (!(ic->ic_flags & IEEE80211_F_WME))
2426 return 0;
2427
2428 wme.flags = 0;
2429 for (ac = 0; ac < WME_NUM_AC; ac++) {
2430 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2431 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2432 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2433 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2434 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2435
2436 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2437 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2438 wme.ac[ac].cwmax, wme.ac[ac].txop));
2439 }
2440
2441 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2442 #undef WPI_USEC
2443 #undef WPI_EXP2
2444 }
2445
2446 /*
2447 * Configure h/w multi-rate retries.
2448 */
2449 static int
2450 wpi_mrr_setup(struct wpi_softc *sc)
2451 {
2452 struct ieee80211com *ic = &sc->sc_ic;
2453 struct wpi_mrr_setup mrr;
2454 int i, error;
2455
2456 /* CCK rates (not used with 802.11a) */
2457 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2458 mrr.rates[i].flags = 0;
2459 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2460 /* fallback to the immediate lower CCK rate (if any) */
2461 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2462 /* try one time at this rate before falling back to "next" */
2463 mrr.rates[i].ntries = 1;
2464 }
2465
2466 /* OFDM rates (not used with 802.11b) */
2467 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2468 mrr.rates[i].flags = 0;
2469 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2470 /* fallback to the immediate lower rate (if any) */
2471 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2472 mrr.rates[i].next = (i == WPI_OFDM6) ?
2473 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2474 WPI_OFDM6 : WPI_CCK2) :
2475 i - 1;
2476 /* try one time at this rate before falling back to "next" */
2477 mrr.rates[i].ntries = 1;
2478 }
2479
2480 /* setup MRR for control frames */
2481 mrr.which = htole32(WPI_MRR_CTL);
2482 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2483 if (error != 0) {
2484 aprint_error_dev(sc->sc_dev,
2485 "could not setup MRR for control frames\n");
2486 return error;
2487 }
2488
2489 /* setup MRR for data frames */
2490 mrr.which = htole32(WPI_MRR_DATA);
2491 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2492 if (error != 0) {
2493 aprint_error_dev(sc->sc_dev,
2494 "could not setup MRR for data frames\n");
2495 return error;
2496 }
2497
2498 return 0;
2499 }
2500
2501 static void
2502 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2503 {
2504 struct wpi_cmd_led led;
2505
2506 led.which = which;
2507 led.unit = htole32(100000); /* on/off in unit of 100ms */
2508 led.off = off;
2509 led.on = on;
2510
2511 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2512 }
2513
2514 static void
2515 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2516 {
2517 struct wpi_cmd_tsf tsf;
2518 uint64_t val, mod;
2519
2520 memset(&tsf, 0, sizeof tsf);
2521 memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2522 tsf.bintval = htole16(ni->ni_intval);
2523 tsf.lintval = htole16(10);
2524
2525 /* compute remaining time until next beacon */
2526 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2527 mod = le64toh(tsf.tstamp) % val;
2528 tsf.binitval = htole32((uint32_t)(val - mod));
2529
2530 DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2531 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2532
2533 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2534 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2535 }
2536
2537 /*
2538 * Update Tx power to match what is defined for channel `c'.
2539 */
2540 static int
2541 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2542 {
2543 struct ieee80211com *ic = &sc->sc_ic;
2544 struct wpi_power_group *group;
2545 struct wpi_cmd_txpower txpower;
2546 u_int chan;
2547 int i;
2548
2549 /* get channel number */
2550 chan = ieee80211_chan2ieee(ic, c);
2551
2552 /* find the power group to which this channel belongs */
2553 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2554 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2555 if (chan <= group->chan)
2556 break;
2557 } else
2558 group = &sc->groups[0];
2559
2560 memset(&txpower, 0, sizeof txpower);
2561 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2562 txpower.chan = htole16(chan);
2563
2564 /* set Tx power for all OFDM and CCK rates */
2565 for (i = 0; i <= 11 ; i++) {
2566 /* retrieve Tx power for this channel/rate combination */
2567 int idx = wpi_get_power_index(sc, group, c,
2568 wpi_ridx_to_rate[i]);
2569
2570 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2571
2572 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2573 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2574 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2575 } else {
2576 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2577 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2578 }
2579 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2580 wpi_ridx_to_rate[i], idx));
2581 }
2582
2583 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2584 }
2585
2586 /*
2587 * Determine Tx power index for a given channel/rate combination.
2588 * This takes into account the regulatory information from EEPROM and the
2589 * current temperature.
2590 */
2591 static int
2592 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2593 struct ieee80211_channel *c, int rate)
2594 {
2595 /* fixed-point arithmetic division using a n-bit fractional part */
2596 #define fdivround(a, b, n) \
2597 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2598
2599 /* linear interpolation */
2600 #define interpolate(x, x1, y1, x2, y2, n) \
2601 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2602
2603 struct ieee80211com *ic = &sc->sc_ic;
2604 struct wpi_power_sample *sample;
2605 int pwr, idx;
2606 u_int chan;
2607
2608 /* get channel number */
2609 chan = ieee80211_chan2ieee(ic, c);
2610
2611 /* default power is group's maximum power - 3dB */
2612 pwr = group->maxpwr / 2;
2613
2614 /* decrease power for highest OFDM rates to reduce distortion */
2615 switch (rate) {
2616 case 72: /* 36Mb/s */
2617 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2618 break;
2619 case 96: /* 48Mb/s */
2620 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2621 break;
2622 case 108: /* 54Mb/s */
2623 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2624 break;
2625 }
2626
2627 /* never exceed channel's maximum allowed Tx power */
2628 pwr = min(pwr, sc->maxpwr[chan]);
2629
2630 /* retrieve power index into gain tables from samples */
2631 for (sample = group->samples; sample < &group->samples[3]; sample++)
2632 if (pwr > sample[1].power)
2633 break;
2634 /* fixed-point linear interpolation using a 19-bit fractional part */
2635 idx = interpolate(pwr, sample[0].power, sample[0].index,
2636 sample[1].power, sample[1].index, 19);
2637
2638 /*-
2639 * Adjust power index based on current temperature:
2640 * - if cooler than factory-calibrated: decrease output power
2641 * - if warmer than factory-calibrated: increase output power
2642 */
2643 idx -= (sc->temp - group->temp) * 11 / 100;
2644
2645 /* decrease power for CCK rates (-5dB) */
2646 if (!WPI_RATE_IS_OFDM(rate))
2647 idx += 10;
2648
2649 /* keep power index in a valid range */
2650 if (idx < 0)
2651 return 0;
2652 if (idx > WPI_MAX_PWR_INDEX)
2653 return WPI_MAX_PWR_INDEX;
2654 return idx;
2655
2656 #undef interpolate
2657 #undef fdivround
2658 }
2659
2660 /*
2661 * Build a beacon frame that the firmware will broadcast periodically in
2662 * IBSS or HostAP modes.
2663 */
2664 static int
2665 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2666 {
2667 struct ieee80211com *ic = &sc->sc_ic;
2668 struct wpi_tx_ring *ring = &sc->cmdq;
2669 struct wpi_tx_desc *desc;
2670 struct wpi_tx_data *data;
2671 struct wpi_tx_cmd *cmd;
2672 struct wpi_cmd_beacon *bcn;
2673 struct ieee80211_beacon_offsets bo;
2674 struct mbuf *m0;
2675 int error;
2676
2677 desc = &ring->desc[ring->cur];
2678 data = &ring->data[ring->cur];
2679
2680 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2681 if (m0 == NULL) {
2682 aprint_error_dev(sc->sc_dev,
2683 "could not allocate beacon frame\n");
2684 return ENOMEM;
2685 }
2686
2687 cmd = &ring->cmd[ring->cur];
2688 cmd->code = WPI_CMD_SET_BEACON;
2689 cmd->flags = 0;
2690 cmd->qid = ring->qid;
2691 cmd->idx = ring->cur;
2692
2693 bcn = (struct wpi_cmd_beacon *)cmd->data;
2694 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2695 bcn->id = WPI_ID_BROADCAST;
2696 bcn->ofdm_mask = 0xff;
2697 bcn->cck_mask = 0x0f;
2698 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2699 bcn->len = htole16(m0->m_pkthdr.len);
2700 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2701 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2702 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2703
2704 /* save and trim IEEE802.11 header */
2705 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2706 m_adj(m0, sizeof (struct ieee80211_frame));
2707
2708 /* assume beacon frame is contiguous */
2709 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2710 BUS_DMA_READ | BUS_DMA_NOWAIT);
2711 if (error != 0) {
2712 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2713 m_freem(m0);
2714 return error;
2715 }
2716
2717 data->m = m0;
2718
2719 /* first scatter/gather segment is used by the beacon command */
2720 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2721 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2722 ring->cur * sizeof (struct wpi_tx_cmd));
2723 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2724 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2725 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2726
2727 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2728 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2729 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2730 BUS_DMASYNC_PREWRITE);
2731
2732 /* kick cmd ring */
2733 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2734 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2735
2736 return 0;
2737 }
2738
2739 static int
2740 wpi_auth(struct wpi_softc *sc)
2741 {
2742 struct ieee80211com *ic = &sc->sc_ic;
2743 struct ieee80211_node *ni = ic->ic_bss;
2744 struct wpi_node_info node;
2745 int error;
2746
2747 /* update adapter's configuration */
2748 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2749 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2750 sc->config.flags = htole32(WPI_CONFIG_TSF);
2751 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2752 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2753 WPI_CONFIG_24GHZ);
2754 }
2755 switch (ic->ic_curmode) {
2756 case IEEE80211_MODE_11A:
2757 sc->config.cck_mask = 0;
2758 sc->config.ofdm_mask = 0x15;
2759 break;
2760 case IEEE80211_MODE_11B:
2761 sc->config.cck_mask = 0x03;
2762 sc->config.ofdm_mask = 0;
2763 break;
2764 default: /* assume 802.11b/g */
2765 sc->config.cck_mask = 0x0f;
2766 sc->config.ofdm_mask = 0x15;
2767 }
2768 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2769 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2770 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2771 sizeof (struct wpi_config), 1);
2772 if (error != 0) {
2773 aprint_error_dev(sc->sc_dev, "could not configure\n");
2774 return error;
2775 }
2776
2777 /* configuration has changed, set Tx power accordingly */
2778 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2779 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2780 return error;
2781 }
2782
2783 /* add default node */
2784 memset(&node, 0, sizeof node);
2785 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2786 node.id = WPI_ID_BSS;
2787 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2788 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2789 node.action = htole32(WPI_ACTION_SET_RATE);
2790 node.antenna = WPI_ANTENNA_BOTH;
2791 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2792 if (error != 0) {
2793 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2794 return error;
2795 }
2796
2797 return 0;
2798 }
2799
2800 /*
2801 * Send a scan request to the firmware. Since this command is huge, we map it
2802 * into a mbuf instead of using the pre-allocated set of commands.
2803 */
2804 static int
2805 wpi_scan(struct wpi_softc *sc)
2806 {
2807 struct ieee80211com *ic = &sc->sc_ic;
2808 struct wpi_tx_ring *ring = &sc->cmdq;
2809 struct wpi_tx_desc *desc;
2810 struct wpi_tx_data *data;
2811 struct wpi_tx_cmd *cmd;
2812 struct wpi_scan_hdr *hdr;
2813 struct wpi_scan_chan *chan;
2814 struct ieee80211_frame *wh;
2815 struct ieee80211_rateset *rs;
2816 struct ieee80211_channel *c;
2817 uint8_t *frm;
2818 int pktlen, error, nrates;
2819
2820 if (ic->ic_curchan == NULL)
2821 return EIO;
2822
2823 desc = &ring->desc[ring->cur];
2824 data = &ring->data[ring->cur];
2825
2826 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2827 if (data->m == NULL) {
2828 aprint_error_dev(sc->sc_dev,
2829 "could not allocate mbuf for scan command\n");
2830 return ENOMEM;
2831 }
2832 MCLGET(data->m, M_DONTWAIT);
2833 if (!(data->m->m_flags & M_EXT)) {
2834 m_freem(data->m);
2835 data->m = NULL;
2836 aprint_error_dev(sc->sc_dev,
2837 "could not allocate mbuf for scan command\n");
2838 return ENOMEM;
2839 }
2840
2841 cmd = mtod(data->m, struct wpi_tx_cmd *);
2842 cmd->code = WPI_CMD_SCAN;
2843 cmd->flags = 0;
2844 cmd->qid = ring->qid;
2845 cmd->idx = ring->cur;
2846
2847 hdr = (struct wpi_scan_hdr *)cmd->data;
2848 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2849 hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2850 hdr->cmd.id = WPI_ID_BROADCAST;
2851 hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2852 /*
2853 * Move to the next channel if no packets are received within 5 msecs
2854 * after sending the probe request (this helps to reduce the duration
2855 * of active scans).
2856 */
2857 hdr->quiet = htole16(5); /* timeout in milliseconds */
2858 hdr->plcp_threshold = htole16(1); /* min # of packets */
2859
2860 if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2861 hdr->crc_threshold = htole16(1);
2862 /* send probe requests at 6Mbps */
2863 hdr->cmd.rate = wpi_plcp_signal(12);
2864 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2865 } else {
2866 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2867 /* send probe requests at 1Mbps */
2868 hdr->cmd.rate = wpi_plcp_signal(2);
2869 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2870 }
2871
2872 /* for directed scans, firmware inserts the essid IE itself */
2873 if (ic->ic_des_esslen != 0) {
2874 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2875 hdr->essid[0].len = ic->ic_des_esslen;
2876 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2877 }
2878
2879 /*
2880 * Build a probe request frame. Most of the following code is a
2881 * copy & paste of what is done in net80211.
2882 */
2883 wh = (struct ieee80211_frame *)(hdr + 1);
2884 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2885 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2886 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2887 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2888 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2889 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2890 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2891 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2892
2893 frm = (uint8_t *)(wh + 1);
2894
2895 /* add empty essid IE (firmware generates it for directed scans) */
2896 *frm++ = IEEE80211_ELEMID_SSID;
2897 *frm++ = 0;
2898
2899 /* add supported rates IE */
2900 *frm++ = IEEE80211_ELEMID_RATES;
2901 nrates = rs->rs_nrates;
2902 if (nrates > IEEE80211_RATE_SIZE)
2903 nrates = IEEE80211_RATE_SIZE;
2904 *frm++ = nrates;
2905 memcpy(frm, rs->rs_rates, nrates);
2906 frm += nrates;
2907
2908 /* add supported xrates IE */
2909 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2910 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2911 *frm++ = IEEE80211_ELEMID_XRATES;
2912 *frm++ = nrates;
2913 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2914 frm += nrates;
2915 }
2916
2917 /* setup length of probe request */
2918 hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2919
2920 chan = (struct wpi_scan_chan *)frm;
2921 c = ic->ic_curchan;
2922
2923 chan->chan = ieee80211_chan2ieee(ic, c);
2924 chan->flags = 0;
2925 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2926 chan->flags |= WPI_CHAN_ACTIVE;
2927 if (ic->ic_des_esslen != 0)
2928 chan->flags |= WPI_CHAN_DIRECT;
2929 }
2930 chan->dsp_gain = 0x6e;
2931 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2932 chan->rf_gain = 0x3b;
2933 chan->active = htole16(10);
2934 chan->passive = htole16(110);
2935 } else {
2936 chan->rf_gain = 0x28;
2937 chan->active = htole16(20);
2938 chan->passive = htole16(120);
2939 }
2940 hdr->nchan++;
2941 chan++;
2942
2943 frm += sizeof (struct wpi_scan_chan);
2944
2945 hdr->len = htole16(frm - (uint8_t *)hdr);
2946 pktlen = frm - (uint8_t *)cmd;
2947
2948 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2949 BUS_DMA_NOWAIT);
2950 if (error != 0) {
2951 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2952 m_freem(data->m);
2953 data->m = NULL;
2954 return error;
2955 }
2956
2957 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2958 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2959 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2960
2961 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2962 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2963 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2964 BUS_DMASYNC_PREWRITE);
2965
2966 /* kick cmd ring */
2967 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2968 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2969
2970 return 0; /* will be notified async. of failure/success */
2971 }
2972
2973 static int
2974 wpi_config(struct wpi_softc *sc)
2975 {
2976 struct ieee80211com *ic = &sc->sc_ic;
2977 struct ifnet *ifp = ic->ic_ifp;
2978 struct wpi_power power;
2979 struct wpi_bluetooth bluetooth;
2980 struct wpi_node_info node;
2981 int error;
2982
2983 memset(&power, 0, sizeof power);
2984 power.flags = htole32(WPI_POWER_CAM | 0x8);
2985 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2986 if (error != 0) {
2987 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2988 return error;
2989 }
2990
2991 /* configure bluetooth coexistence */
2992 memset(&bluetooth, 0, sizeof bluetooth);
2993 bluetooth.flags = 3;
2994 bluetooth.lead = 0xaa;
2995 bluetooth.kill = 1;
2996 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2997 0);
2998 if (error != 0) {
2999 aprint_error_dev(sc->sc_dev,
3000 "could not configure bluetooth coexistence\n");
3001 return error;
3002 }
3003
3004 /* configure adapter */
3005 memset(&sc->config, 0, sizeof (struct wpi_config));
3006 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3007 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3008 /* set default channel */
3009 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3010 sc->config.flags = htole32(WPI_CONFIG_TSF);
3011 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3012 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
3013 WPI_CONFIG_24GHZ);
3014 }
3015 sc->config.filter = 0;
3016 switch (ic->ic_opmode) {
3017 case IEEE80211_M_STA:
3018 sc->config.mode = WPI_MODE_STA;
3019 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
3020 break;
3021 case IEEE80211_M_IBSS:
3022 case IEEE80211_M_AHDEMO:
3023 sc->config.mode = WPI_MODE_IBSS;
3024 break;
3025 case IEEE80211_M_HOSTAP:
3026 sc->config.mode = WPI_MODE_HOSTAP;
3027 break;
3028 case IEEE80211_M_MONITOR:
3029 sc->config.mode = WPI_MODE_MONITOR;
3030 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
3031 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3032 break;
3033 }
3034 sc->config.cck_mask = 0x0f; /* not yet negotiated */
3035 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
3036 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
3037 sizeof (struct wpi_config), 0);
3038 if (error != 0) {
3039 aprint_error_dev(sc->sc_dev, "configure command failed\n");
3040 return error;
3041 }
3042
3043 /* configuration has changed, set Tx power accordingly */
3044 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
3045 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3046 return error;
3047 }
3048
3049 /* add broadcast node */
3050 memset(&node, 0, sizeof node);
3051 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
3052 node.id = WPI_ID_BROADCAST;
3053 node.rate = wpi_plcp_signal(2);
3054 node.action = htole32(WPI_ACTION_SET_RATE);
3055 node.antenna = WPI_ANTENNA_BOTH;
3056 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3057 if (error != 0) {
3058 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3059 return error;
3060 }
3061
3062 if ((error = wpi_mrr_setup(sc)) != 0) {
3063 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
3064 return error;
3065 }
3066
3067 return 0;
3068 }
3069
3070 static void
3071 wpi_stop_master(struct wpi_softc *sc)
3072 {
3073 uint32_t tmp;
3074 int ntries;
3075
3076 tmp = WPI_READ(sc, WPI_RESET);
3077 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3078
3079 tmp = WPI_READ(sc, WPI_GPIO_CTL);
3080 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3081 return; /* already asleep */
3082
3083 for (ntries = 0; ntries < 100; ntries++) {
3084 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3085 break;
3086 DELAY(10);
3087 }
3088 if (ntries == 100) {
3089 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3090 }
3091 }
3092
3093 static int
3094 wpi_power_up(struct wpi_softc *sc)
3095 {
3096 uint32_t tmp;
3097 int ntries;
3098
3099 wpi_mem_lock(sc);
3100 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3101 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3102 wpi_mem_unlock(sc);
3103
3104 for (ntries = 0; ntries < 5000; ntries++) {
3105 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3106 break;
3107 DELAY(10);
3108 }
3109 if (ntries == 5000) {
3110 aprint_error_dev(sc->sc_dev,
3111 "timeout waiting for NIC to power up\n");
3112 return ETIMEDOUT;
3113 }
3114 return 0;
3115 }
3116
3117 static int
3118 wpi_reset(struct wpi_softc *sc)
3119 {
3120 uint32_t tmp;
3121 int ntries;
3122
3123 /* clear any pending interrupts */
3124 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3125
3126 tmp = WPI_READ(sc, WPI_PLL_CTL);
3127 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3128
3129 tmp = WPI_READ(sc, WPI_CHICKEN);
3130 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3131
3132 tmp = WPI_READ(sc, WPI_GPIO_CTL);
3133 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3134
3135 /* wait for clock stabilization */
3136 for (ntries = 0; ntries < 1000; ntries++) {
3137 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3138 break;
3139 DELAY(10);
3140 }
3141 if (ntries == 1000) {
3142 aprint_error_dev(sc->sc_dev,
3143 "timeout waiting for clock stabilization\n");
3144 return ETIMEDOUT;
3145 }
3146
3147 /* initialize EEPROM */
3148 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3149 if ((tmp & WPI_EEPROM_VERSION) == 0) {
3150 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3151 return EIO;
3152 }
3153 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3154
3155 return 0;
3156 }
3157
3158 static void
3159 wpi_hw_config(struct wpi_softc *sc)
3160 {
3161 uint32_t rev, hw;
3162
3163 /* voodoo from the reference driver */
3164 hw = WPI_READ(sc, WPI_HWCONFIG);
3165
3166 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3167 rev = PCI_REVISION(rev);
3168 if ((rev & 0xc0) == 0x40)
3169 hw |= WPI_HW_ALM_MB;
3170 else if (!(rev & 0x80))
3171 hw |= WPI_HW_ALM_MM;
3172
3173 if (sc->cap == 0x80)
3174 hw |= WPI_HW_SKU_MRC;
3175
3176 hw &= ~WPI_HW_REV_D;
3177 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3178 hw |= WPI_HW_REV_D;
3179
3180 if (sc->type > 1)
3181 hw |= WPI_HW_TYPE_B;
3182
3183 DPRINTF(("setting h/w config %x\n", hw));
3184 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3185 }
3186
3187 static int
3188 wpi_init(struct ifnet *ifp)
3189 {
3190 struct wpi_softc *sc = ifp->if_softc;
3191 struct ieee80211com *ic = &sc->sc_ic;
3192 uint32_t tmp;
3193 int qid, ntries, error;
3194
3195 wpi_stop(ifp,1);
3196 (void)wpi_reset(sc);
3197
3198 wpi_mem_lock(sc);
3199 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3200 DELAY(20);
3201 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3202 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3203 wpi_mem_unlock(sc);
3204
3205 (void)wpi_power_up(sc);
3206 wpi_hw_config(sc);
3207
3208 /* init Rx ring */
3209 wpi_mem_lock(sc);
3210 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3211 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3212 offsetof(struct wpi_shared, next));
3213 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3214 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3215 wpi_mem_unlock(sc);
3216
3217 /* init Tx rings */
3218 wpi_mem_lock(sc);
3219 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3220 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3221 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3222 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3223 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3224 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3225 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3226
3227 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3228 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3229
3230 for (qid = 0; qid < 6; qid++) {
3231 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3232 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3233 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3234 }
3235 wpi_mem_unlock(sc);
3236
3237 /* clear "radio off" and "disable command" bits (reversed logic) */
3238 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3239 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3240
3241 /* clear any pending interrupts */
3242 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3243 /* enable interrupts */
3244 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3245
3246 /* not sure why/if this is necessary... */
3247 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3248 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3249
3250 if ((error = wpi_load_firmware(sc)) != 0)
3251 /* wpi_load_firmware prints error messages for us. */
3252 goto fail1;
3253
3254 /* Check the status of the radio switch */
3255 mutex_enter(&sc->sc_rsw_mtx);
3256 if (wpi_getrfkill(sc)) {
3257 mutex_exit(&sc->sc_rsw_mtx);
3258 aprint_error_dev(sc->sc_dev,
3259 "radio is disabled by hardware switch\n");
3260 ifp->if_flags &= ~IFF_UP;
3261 error = EBUSY;
3262 goto fail1;
3263 }
3264 mutex_exit(&sc->sc_rsw_mtx);
3265
3266 /* wait for thermal sensors to calibrate */
3267 for (ntries = 0; ntries < 1000; ntries++) {
3268 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3269 break;
3270 DELAY(10);
3271 }
3272 if (ntries == 1000) {
3273 aprint_error_dev(sc->sc_dev,
3274 "timeout waiting for thermal sensors calibration\n");
3275 error = ETIMEDOUT;
3276 goto fail1;
3277 }
3278 DPRINTF(("temperature %d\n", sc->temp));
3279
3280 if ((error = wpi_config(sc)) != 0) {
3281 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3282 goto fail1;
3283 }
3284
3285 ifp->if_flags &= ~IFF_OACTIVE;
3286 ifp->if_flags |= IFF_RUNNING;
3287
3288 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3289 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3290 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3291 }
3292 else
3293 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3294
3295 return 0;
3296
3297 fail1: wpi_stop(ifp, 1);
3298 return error;
3299 }
3300
3301 static void
3302 wpi_stop(struct ifnet *ifp, int disable)
3303 {
3304 struct wpi_softc *sc = ifp->if_softc;
3305 struct ieee80211com *ic = &sc->sc_ic;
3306 uint32_t tmp;
3307 int ac;
3308
3309 ifp->if_timer = sc->sc_tx_timer = 0;
3310 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3311
3312 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3313
3314 /* disable interrupts */
3315 WPI_WRITE(sc, WPI_MASK, 0);
3316 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3317 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3318 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3319
3320 wpi_mem_lock(sc);
3321 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3322 wpi_mem_unlock(sc);
3323
3324 /* reset all Tx rings */
3325 for (ac = 0; ac < 4; ac++)
3326 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3327 wpi_reset_tx_ring(sc, &sc->cmdq);
3328
3329 /* reset Rx ring */
3330 wpi_reset_rx_ring(sc, &sc->rxq);
3331
3332 wpi_mem_lock(sc);
3333 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3334 wpi_mem_unlock(sc);
3335
3336 DELAY(5);
3337
3338 wpi_stop_master(sc);
3339
3340 tmp = WPI_READ(sc, WPI_RESET);
3341 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3342 }
3343
3344 static bool
3345 wpi_resume(device_t dv, const pmf_qual_t *qual)
3346 {
3347 struct wpi_softc *sc = device_private(dv);
3348
3349 (void)wpi_reset(sc);
3350
3351 return true;
3352 }
3353
3354 /*
3355 * Return whether or not the radio is enabled in hardware
3356 * (i.e. the rfkill switch is "off").
3357 */
3358 static int
3359 wpi_getrfkill(struct wpi_softc *sc)
3360 {
3361 uint32_t tmp;
3362
3363 wpi_mem_lock(sc);
3364 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3365 wpi_mem_unlock(sc);
3366
3367 KASSERT(mutex_owned(&sc->sc_rsw_mtx));
3368 if (tmp & 0x01) {
3369 /* switch is on */
3370 if (sc->sc_rsw_status != WPI_RSW_ON) {
3371 sc->sc_rsw_status = WPI_RSW_ON;
3372 sysmon_pswitch_event(&sc->sc_rsw,
3373 PSWITCH_EVENT_PRESSED);
3374 }
3375 } else {
3376 /* switch is off */
3377 if (sc->sc_rsw_status != WPI_RSW_OFF) {
3378 sc->sc_rsw_status = WPI_RSW_OFF;
3379 sysmon_pswitch_event(&sc->sc_rsw,
3380 PSWITCH_EVENT_RELEASED);
3381 }
3382 }
3383
3384 return !(tmp & 0x01);
3385 }
3386
3387 static int
3388 wpi_sysctl_radio(SYSCTLFN_ARGS)
3389 {
3390 struct sysctlnode node;
3391 struct wpi_softc *sc;
3392 int val, error;
3393
3394 node = *rnode;
3395 sc = (struct wpi_softc *)node.sysctl_data;
3396
3397 mutex_enter(&sc->sc_rsw_mtx);
3398 val = !wpi_getrfkill(sc);
3399 mutex_exit(&sc->sc_rsw_mtx);
3400
3401 node.sysctl_data = &val;
3402 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3403
3404 if (error || newp == NULL)
3405 return error;
3406
3407 return 0;
3408 }
3409
3410 static void
3411 wpi_sysctlattach(struct wpi_softc *sc)
3412 {
3413 int rc;
3414 const struct sysctlnode *rnode;
3415 const struct sysctlnode *cnode;
3416
3417 struct sysctllog **clog = &sc->sc_sysctllog;
3418
3419 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3420 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3421 SYSCTL_DESCR("wpi controls and statistics"),
3422 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3423 goto err;
3424
3425 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3426 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3427 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3428 wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3429 goto err;
3430
3431 #ifdef WPI_DEBUG
3432 /* control debugging printfs */
3433 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3434 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3435 "debug", SYSCTL_DESCR("Enable debugging output"),
3436 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3437 goto err;
3438 #endif
3439
3440 return;
3441 err:
3442 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3443 }
3444
3445 static void
3446 wpi_rsw_thread(void *arg)
3447 {
3448 struct wpi_softc *sc = (struct wpi_softc *)arg;
3449
3450 mutex_enter(&sc->sc_rsw_mtx);
3451 for (;;) {
3452 cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
3453 if (sc->sc_dying) {
3454 sc->sc_rsw_lwp = NULL;
3455 cv_broadcast(&sc->sc_rsw_cv);
3456 mutex_exit(&sc->sc_rsw_mtx);
3457 kthread_exit(0);
3458 }
3459 wpi_getrfkill(sc);
3460 }
3461 }
3462
3463