Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.77
      1 /*	$NetBSD: if_wpi.c,v 1.77 2017/02/02 10:05:35 nonaka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007
      5  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.77 2017/02/02 10:05:35 nonaka Exp $");
     22 
     23 /*
     24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25  */
     26 
     27 
     28 #include <sys/param.h>
     29 #include <sys/sockio.h>
     30 #include <sys/sysctl.h>
     31 #include <sys/mbuf.h>
     32 #include <sys/kernel.h>
     33 #include <sys/socket.h>
     34 #include <sys/systm.h>
     35 #include <sys/malloc.h>
     36 #include <sys/mutex.h>
     37 #include <sys/once.h>
     38 #include <sys/conf.h>
     39 #include <sys/kauth.h>
     40 #include <sys/callout.h>
     41 #include <sys/proc.h>
     42 #include <sys/kthread.h>
     43 
     44 #include <sys/bus.h>
     45 #include <machine/endian.h>
     46 #include <sys/intr.h>
     47 
     48 #include <dev/pci/pcireg.h>
     49 #include <dev/pci/pcivar.h>
     50 #include <dev/pci/pcidevs.h>
     51 
     52 #include <dev/sysmon/sysmonvar.h>
     53 
     54 #include <net/bpf.h>
     55 #include <net/if.h>
     56 #include <net/if_arp.h>
     57 #include <net/if_dl.h>
     58 #include <net/if_ether.h>
     59 #include <net/if_media.h>
     60 #include <net/if_types.h>
     61 
     62 #include <netinet/in.h>
     63 #include <netinet/in_systm.h>
     64 #include <netinet/in_var.h>
     65 #include <netinet/ip.h>
     66 
     67 #include <net80211/ieee80211_var.h>
     68 #include <net80211/ieee80211_amrr.h>
     69 #include <net80211/ieee80211_radiotap.h>
     70 
     71 #include <dev/firmload.h>
     72 
     73 #include <dev/pci/if_wpireg.h>
     74 #include <dev/pci/if_wpivar.h>
     75 
     76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
     77 static once_t wpi_firmware_init;
     78 static kmutex_t wpi_firmware_mutex;
     79 static size_t wpi_firmware_users;
     80 static uint8_t *wpi_firmware_image;
     81 static size_t wpi_firmware_size;
     82 
     83 static int	wpi_match(device_t, cfdata_t, void *);
     84 static void	wpi_attach(device_t, device_t, void *);
     85 static int	wpi_detach(device_t , int);
     86 static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
     87 		    void **, bus_size_t, bus_size_t, int);
     88 static void	wpi_dma_contig_free(struct wpi_dma_info *);
     89 static int	wpi_alloc_shared(struct wpi_softc *);
     90 static void	wpi_free_shared(struct wpi_softc *);
     91 static int	wpi_alloc_fwmem(struct wpi_softc *);
     92 static void	wpi_free_fwmem(struct wpi_softc *);
     93 static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
     94 static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
     95 static int	wpi_alloc_rpool(struct wpi_softc *);
     96 static void	wpi_free_rpool(struct wpi_softc *);
     97 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
     98 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
     99 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    100 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
    101 		    int, int);
    102 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    103 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    104 static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    105 static void	wpi_newassoc(struct ieee80211_node *, int);
    106 static int	wpi_media_change(struct ifnet *);
    107 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    108 static void	wpi_mem_lock(struct wpi_softc *);
    109 static void	wpi_mem_unlock(struct wpi_softc *);
    110 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
    111 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    112 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    113 		    const uint32_t *, int);
    114 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    115 static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    116 static int	wpi_cache_firmware(struct wpi_softc *);
    117 static void	wpi_release_firmware(void);
    118 static int	wpi_load_firmware(struct wpi_softc *);
    119 static void	wpi_calib_timeout(void *);
    120 static void	wpi_iter_func(void *, struct ieee80211_node *);
    121 static void	wpi_power_calibration(struct wpi_softc *, int);
    122 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    123 		    struct wpi_rx_data *);
    124 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    125 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    126 static void	wpi_notif_intr(struct wpi_softc *);
    127 static int	wpi_intr(void *);
    128 static void	wpi_softintr(void *);
    129 static void	wpi_read_eeprom(struct wpi_softc *);
    130 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
    131 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
    132 static uint8_t	wpi_plcp_signal(int);
    133 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
    134 		    struct ieee80211_node *, int);
    135 static void	wpi_start(struct ifnet *);
    136 static void	wpi_watchdog(struct ifnet *);
    137 static int	wpi_ioctl(struct ifnet *, u_long, void *);
    138 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    139 static int	wpi_wme_update(struct ieee80211com *);
    140 static int	wpi_mrr_setup(struct wpi_softc *);
    141 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    142 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    143 static int	wpi_set_txpower(struct wpi_softc *,
    144 		    struct ieee80211_channel *, int);
    145 static int	wpi_get_power_index(struct wpi_softc *,
    146 		    struct wpi_power_group *, struct ieee80211_channel *, int);
    147 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    148 static int	wpi_auth(struct wpi_softc *);
    149 static int	wpi_scan(struct wpi_softc *);
    150 static int	wpi_config(struct wpi_softc *);
    151 static void	wpi_stop_master(struct wpi_softc *);
    152 static int	wpi_power_up(struct wpi_softc *);
    153 static int	wpi_reset(struct wpi_softc *);
    154 static void	wpi_hw_config(struct wpi_softc *);
    155 static int	wpi_init(struct ifnet *);
    156 static void	wpi_stop(struct ifnet *, int);
    157 static bool	wpi_resume(device_t, const pmf_qual_t *);
    158 static int	wpi_getrfkill(struct wpi_softc *);
    159 static void	wpi_sysctlattach(struct wpi_softc *);
    160 static void	wpi_rsw_thread(void *);
    161 
    162 #ifdef WPI_DEBUG
    163 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
    164 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
    165 int wpi_debug = 1;
    166 #else
    167 #define DPRINTF(x)
    168 #define DPRINTFN(n, x)
    169 #endif
    170 
    171 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    172 	wpi_detach, NULL);
    173 
    174 static int
    175 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
    176 {
    177 	struct pci_attach_args *pa = aux;
    178 
    179 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    180 		return 0;
    181 
    182 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    183 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    184 		return 1;
    185 
    186 	return 0;
    187 }
    188 
    189 /* Base Address Register */
    190 #define WPI_PCI_BAR0	0x10
    191 
    192 static int
    193 wpi_attach_once(void)
    194 {
    195 
    196 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
    197 	return 0;
    198 }
    199 
    200 static void
    201 wpi_attach(device_t parent __unused, device_t self, void *aux)
    202 {
    203 	struct wpi_softc *sc = device_private(self);
    204 	struct ieee80211com *ic = &sc->sc_ic;
    205 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    206 	struct pci_attach_args *pa = aux;
    207 	const char *intrstr;
    208 	bus_space_tag_t memt;
    209 	bus_space_handle_t memh;
    210 	pcireg_t data;
    211 	int ac, error;
    212 	char intrbuf[PCI_INTRSTR_LEN];
    213 
    214 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
    215 	sc->fw_used = false;
    216 
    217 	sc->sc_dev = self;
    218 	sc->sc_pct = pa->pa_pc;
    219 	sc->sc_pcitag = pa->pa_tag;
    220 
    221 	sc->sc_rsw_status = WPI_RSW_UNKNOWN;
    222 	sc->sc_rsw.smpsw_name = device_xname(self);
    223 	sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
    224 	error = sysmon_pswitch_register(&sc->sc_rsw);
    225 	if (error) {
    226 		aprint_error_dev(self,
    227 		    "unable to register radio switch with sysmon\n");
    228 		return;
    229 	}
    230 	mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
    231 	cv_init(&sc->sc_rsw_cv, "wpirsw");
    232 	if (kthread_create(PRI_NONE, 0, NULL,
    233 	    wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
    234 		aprint_error_dev(self, "couldn't create switch thread\n");
    235 	}
    236 
    237 	callout_init(&sc->calib_to, 0);
    238 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    239 
    240 	pci_aprint_devinfo(pa, NULL);
    241 
    242 	/* enable bus-mastering */
    243 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    244 	data |= PCI_COMMAND_MASTER_ENABLE;
    245 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    246 
    247 	/* map the register window */
    248 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    249 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    250 	if (error != 0) {
    251 		aprint_error_dev(self, "could not map memory space\n");
    252 		return;
    253 	}
    254 
    255 	sc->sc_st = memt;
    256 	sc->sc_sh = memh;
    257 	sc->sc_dmat = pa->pa_dmat;
    258 
    259 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc);
    260 	if (sc->sc_soft_ih == NULL) {
    261 		aprint_error_dev(self, "could not establish softint\n");
    262 		goto unmap;
    263 	}
    264 
    265 	if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
    266 		aprint_error_dev(self, "could not map interrupt\n");
    267 		goto failsi;
    268 	}
    269 
    270 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
    271 	    sizeof(intrbuf));
    272 	sc->sc_ih = pci_intr_establish(sc->sc_pct, sc->sc_pihp[0], IPL_NET,
    273 	    wpi_intr, sc);
    274 	if (sc->sc_ih == NULL) {
    275 		aprint_error_dev(self, "could not establish interrupt");
    276 		if (intrstr != NULL)
    277 			aprint_error(" at %s", intrstr);
    278 		aprint_error("\n");
    279 		goto failia;
    280 	}
    281 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    282 
    283 	/*
    284 	 * Put adapter into a known state.
    285 	 */
    286 	if ((error = wpi_reset(sc)) != 0) {
    287 		aprint_error_dev(self, "could not reset adapter\n");
    288 		goto failih;
    289 	}
    290 
    291 	/*
    292 	 * Allocate DMA memory for firmware transfers.
    293 	 */
    294 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
    295 		aprint_error_dev(self, "could not allocate firmware memory\n");
    296 		goto failih;
    297 	}
    298 
    299 	/*
    300 	 * Allocate shared page and Tx/Rx rings.
    301 	 */
    302 	if ((error = wpi_alloc_shared(sc)) != 0) {
    303 		aprint_error_dev(self, "could not allocate shared area\n");
    304 		goto fail1;
    305 	}
    306 
    307 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    308 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    309 		goto fail2;
    310 	}
    311 
    312 	for (ac = 0; ac < 4; ac++) {
    313 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
    314 		    ac);
    315 		if (error != 0) {
    316 			aprint_error_dev(self,
    317 			    "could not allocate Tx ring %d\n", ac);
    318 			goto fail3;
    319 		}
    320 	}
    321 
    322 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    323 	if (error != 0) {
    324 		aprint_error_dev(self, "could not allocate command ring\n");
    325 		goto fail3;
    326 	}
    327 
    328 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
    329 	if (error != 0) {
    330 		aprint_error_dev(self, "could not allocate Rx ring\n");
    331 		goto fail4;
    332 	}
    333 
    334 	ic->ic_ifp = ifp;
    335 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    336 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    337 	ic->ic_state = IEEE80211_S_INIT;
    338 
    339 	/* set device capabilities */
    340 	ic->ic_caps =
    341 	    IEEE80211_C_WPA |		/* 802.11i */
    342 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    343 	    IEEE80211_C_TXPMGT |	/* tx power management */
    344 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    345 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    346 	    IEEE80211_C_WME;		/* 802.11e */
    347 
    348 	/* read supported channels and MAC address from EEPROM */
    349 	wpi_read_eeprom(sc);
    350 
    351 	/* set supported .11a, .11b and .11g rates */
    352 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
    353 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    354 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    355 
    356 	/* IBSS channel undefined for now */
    357 	ic->ic_ibss_chan = &ic->ic_channels[0];
    358 
    359 	ifp->if_softc = sc;
    360 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    361 	ifp->if_init = wpi_init;
    362 	ifp->if_stop = wpi_stop;
    363 	ifp->if_ioctl = wpi_ioctl;
    364 	ifp->if_start = wpi_start;
    365 	ifp->if_watchdog = wpi_watchdog;
    366 	IFQ_SET_READY(&ifp->if_snd);
    367 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    368 
    369 	if_initialize(ifp);
    370 	ieee80211_ifattach(ic);
    371 	/* Use common softint-based if_input */
    372 	ifp->if_percpuq = if_percpuq_create(ifp);
    373 	if_register(ifp);
    374 
    375 	/* override default methods */
    376 	ic->ic_node_alloc = wpi_node_alloc;
    377 	ic->ic_newassoc = wpi_newassoc;
    378 	ic->ic_wme.wme_update = wpi_wme_update;
    379 
    380 	/* override state transition machine */
    381 	sc->sc_newstate = ic->ic_newstate;
    382 	ic->ic_newstate = wpi_newstate;
    383 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
    384 
    385 	sc->amrr.amrr_min_success_threshold =  1;
    386 	sc->amrr.amrr_max_success_threshold = 15;
    387 
    388 	wpi_sysctlattach(sc);
    389 
    390 	if (pmf_device_register(self, NULL, wpi_resume))
    391 		pmf_class_network_register(self, ifp);
    392 	else
    393 		aprint_error_dev(self, "couldn't establish power handler\n");
    394 
    395 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    396 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    397 	    &sc->sc_drvbpf);
    398 
    399 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    400 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    401 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    402 
    403 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    404 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    405 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    406 
    407 	ieee80211_announce(ic);
    408 
    409 	return;
    410 
    411 	/* free allocated memory if something failed during attachment */
    412 fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
    413 fail3:	while (--ac >= 0)
    414 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    415 	wpi_free_rpool(sc);
    416 fail2:	wpi_free_shared(sc);
    417 fail1:	wpi_free_fwmem(sc);
    418 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    419 	sc->sc_ih = NULL;
    420 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    421 	sc->sc_pihp = NULL;
    422 failsi:	softint_disestablish(sc->sc_soft_ih);
    423 	sc->sc_soft_ih = NULL;
    424 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    425 }
    426 
    427 static int
    428 wpi_detach(device_t self, int flags __unused)
    429 {
    430 	struct wpi_softc *sc = device_private(self);
    431 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    432 	int ac;
    433 
    434 	wpi_stop(ifp, 1);
    435 
    436 	if (ifp != NULL)
    437 		bpf_detach(ifp);
    438 	ieee80211_ifdetach(&sc->sc_ic);
    439 	if (ifp != NULL)
    440 		if_detach(ifp);
    441 
    442 	for (ac = 0; ac < 4; ac++)
    443 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    444 	wpi_free_tx_ring(sc, &sc->cmdq);
    445 	wpi_free_rx_ring(sc, &sc->rxq);
    446 	wpi_free_rpool(sc);
    447 	wpi_free_shared(sc);
    448 
    449 	if (sc->sc_ih != NULL) {
    450 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    451 		sc->sc_ih = NULL;
    452 	}
    453 	if (sc->sc_pihp != NULL) {
    454 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    455 		sc->sc_pihp = NULL;
    456 	}
    457 	if (sc->sc_soft_ih != NULL) {
    458 		softint_disestablish(sc->sc_soft_ih);
    459 		sc->sc_soft_ih = NULL;
    460 	}
    461 
    462 	mutex_enter(&sc->sc_rsw_mtx);
    463 	sc->sc_dying = 1;
    464 	cv_signal(&sc->sc_rsw_cv);
    465 	while (sc->sc_rsw_lwp != NULL)
    466 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
    467 	mutex_exit(&sc->sc_rsw_mtx);
    468 	sysmon_pswitch_unregister(&sc->sc_rsw);
    469 
    470 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    471 
    472 	if (sc->fw_used) {
    473 		sc->fw_used = false;
    474 		wpi_release_firmware();
    475 	}
    476 	cv_destroy(&sc->sc_rsw_cv);
    477 	mutex_destroy(&sc->sc_rsw_mtx);
    478 	return 0;
    479 }
    480 
    481 static int
    482 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
    483     bus_size_t size, bus_size_t alignment, int flags)
    484 {
    485 	int nsegs, error;
    486 
    487 	dma->tag = tag;
    488 	dma->size = size;
    489 
    490 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    491 	if (error != 0)
    492 		goto fail;
    493 
    494 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    495 	    flags);
    496 	if (error != 0)
    497 		goto fail;
    498 
    499 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    500 	if (error != 0)
    501 		goto fail;
    502 
    503 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    504 	if (error != 0)
    505 		goto fail;
    506 
    507 	memset(dma->vaddr, 0, size);
    508 	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
    509 
    510 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    511 	if (kvap != NULL)
    512 		*kvap = dma->vaddr;
    513 
    514 	return 0;
    515 
    516 fail:	wpi_dma_contig_free(dma);
    517 	return error;
    518 }
    519 
    520 static void
    521 wpi_dma_contig_free(struct wpi_dma_info *dma)
    522 {
    523 	if (dma->map != NULL) {
    524 		if (dma->vaddr != NULL) {
    525 			bus_dmamap_unload(dma->tag, dma->map);
    526 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    527 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    528 			dma->vaddr = NULL;
    529 		}
    530 		bus_dmamap_destroy(dma->tag, dma->map);
    531 		dma->map = NULL;
    532 	}
    533 }
    534 
    535 /*
    536  * Allocate a shared page between host and NIC.
    537  */
    538 static int
    539 wpi_alloc_shared(struct wpi_softc *sc)
    540 {
    541 	int error;
    542 
    543 	/* must be aligned on a 4K-page boundary */
    544 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    545 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
    546 	    BUS_DMA_NOWAIT);
    547 	if (error != 0)
    548 		aprint_error_dev(sc->sc_dev,
    549 		    "could not allocate shared area DMA memory\n");
    550 
    551 	return error;
    552 }
    553 
    554 static void
    555 wpi_free_shared(struct wpi_softc *sc)
    556 {
    557 	wpi_dma_contig_free(&sc->shared_dma);
    558 }
    559 
    560 /*
    561  * Allocate DMA-safe memory for firmware transfer.
    562  */
    563 static int
    564 wpi_alloc_fwmem(struct wpi_softc *sc)
    565 {
    566 	int error;
    567 
    568 	/* allocate enough contiguous space to store text and data */
    569 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    570 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    571 	    BUS_DMA_NOWAIT);
    572 
    573 	if (error != 0)
    574 		aprint_error_dev(sc->sc_dev,
    575 		    "could not allocate firmware transfer area DMA memory\n");
    576 	return error;
    577 }
    578 
    579 static void
    580 wpi_free_fwmem(struct wpi_softc *sc)
    581 {
    582 	wpi_dma_contig_free(&sc->fw_dma);
    583 }
    584 
    585 static struct wpi_rbuf *
    586 wpi_alloc_rbuf(struct wpi_softc *sc)
    587 {
    588 	struct wpi_rbuf *rbuf;
    589 
    590 	mutex_enter(&sc->rxq.freelist_mtx);
    591 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    592 	if (rbuf != NULL) {
    593 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    594 	}
    595 	mutex_exit(&sc->rxq.freelist_mtx);
    596 
    597 	return rbuf;
    598 }
    599 
    600 /*
    601  * This is called automatically by the network stack when the mbuf to which our
    602  * Rx buffer is attached is freed.
    603  */
    604 static void
    605 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    606 {
    607 	struct wpi_rbuf *rbuf = arg;
    608 	struct wpi_softc *sc = rbuf->sc;
    609 
    610 	/* put the buffer back in the free list */
    611 
    612 	mutex_enter(&sc->rxq.freelist_mtx);
    613 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    614 	mutex_exit(&sc->rxq.freelist_mtx);
    615 
    616 	if (__predict_true(m != NULL))
    617 		pool_cache_put(mb_cache, m);
    618 }
    619 
    620 static int
    621 wpi_alloc_rpool(struct wpi_softc *sc)
    622 {
    623 	struct wpi_rx_ring *ring = &sc->rxq;
    624 	int i, error;
    625 
    626 	/* allocate a big chunk of DMA'able memory.. */
    627 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    628 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    629 	if (error != 0) {
    630 		aprint_normal_dev(sc->sc_dev,
    631 		    "could not allocate Rx buffers DMA memory\n");
    632 		return error;
    633 	}
    634 
    635 	/* ..and split it into 3KB chunks */
    636 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
    637 	SLIST_INIT(&ring->freelist);
    638 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    639 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
    640 
    641 		rbuf->sc = sc;	/* backpointer for callbacks */
    642 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    643 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    644 
    645 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    646 	}
    647 
    648 	return 0;
    649 }
    650 
    651 static void
    652 wpi_free_rpool(struct wpi_softc *sc)
    653 {
    654 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    655 }
    656 
    657 static int
    658 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    659 {
    660 	bus_size_t size;
    661 	int i, error;
    662 
    663 	ring->cur = 0;
    664 
    665 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
    666 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    667 	    (void **)&ring->desc, size,
    668 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    669 	if (error != 0) {
    670 		aprint_error_dev(sc->sc_dev,
    671 		    "could not allocate rx ring DMA memory\n");
    672 		goto fail;
    673 	}
    674 
    675 	/*
    676 	 * Setup Rx buffers.
    677 	 */
    678 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    679 		struct wpi_rx_data *data = &ring->data[i];
    680 		struct wpi_rbuf *rbuf;
    681 
    682 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
    683 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
    684 		if (error) {
    685 			aprint_error_dev(sc->sc_dev,
    686 			    "could not allocate rx dma map\n");
    687 			goto fail;
    688 		}
    689 
    690 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    691 		if (data->m == NULL) {
    692 			aprint_error_dev(sc->sc_dev,
    693 			    "could not allocate rx mbuf\n");
    694 			error = ENOMEM;
    695 			goto fail;
    696 		}
    697 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    698 			m_freem(data->m);
    699 			data->m = NULL;
    700 			aprint_error_dev(sc->sc_dev,
    701 			    "could not allocate rx cluster\n");
    702 			error = ENOMEM;
    703 			goto fail;
    704 		}
    705 		/* attach Rx buffer to mbuf */
    706 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    707 		    rbuf);
    708 		data->m->m_flags |= M_EXT_RW;
    709 
    710 		error = bus_dmamap_load(sc->sc_dmat, data->map,
    711 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
    712 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
    713 		if (error) {
    714 			aprint_error_dev(sc->sc_dev,
    715 			    "could not load mbuf: %d\n", error);
    716 			goto fail;
    717 		}
    718 
    719 		ring->desc[i] = htole32(rbuf->paddr);
    720 	}
    721 
    722 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
    723 	    BUS_DMASYNC_PREWRITE);
    724 
    725 	return 0;
    726 
    727 fail:	wpi_free_rx_ring(sc, ring);
    728 	return error;
    729 }
    730 
    731 static void
    732 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    733 {
    734 	int ntries;
    735 
    736 	wpi_mem_lock(sc);
    737 
    738 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    739 	for (ntries = 0; ntries < 100; ntries++) {
    740 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    741 			break;
    742 		DELAY(10);
    743 	}
    744 #ifdef WPI_DEBUG
    745 	if (ntries == 100 && wpi_debug > 0)
    746 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    747 #endif
    748 	wpi_mem_unlock(sc);
    749 
    750 	ring->cur = 0;
    751 }
    752 
    753 static void
    754 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    755 {
    756 	int i;
    757 
    758 	wpi_dma_contig_free(&ring->desc_dma);
    759 
    760 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    761 		if (ring->data[i].m != NULL) {
    762 			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
    763 			m_freem(ring->data[i].m);
    764 		}
    765 		if (ring->data[i].map != NULL) {
    766 			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
    767 		}
    768 	}
    769 }
    770 
    771 static int
    772 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    773     int qid)
    774 {
    775 	int i, error;
    776 
    777 	ring->qid = qid;
    778 	ring->count = count;
    779 	ring->queued = 0;
    780 	ring->cur = 0;
    781 
    782 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    783 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    784 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    785 	if (error != 0) {
    786 		aprint_error_dev(sc->sc_dev,
    787 		    "could not allocate tx ring DMA memory\n");
    788 		goto fail;
    789 	}
    790 
    791 	/* update shared page with ring's base address */
    792 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    793 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
    794 	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
    795 
    796 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    797 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
    798 	    BUS_DMA_NOWAIT);
    799 	if (error != 0) {
    800 		aprint_error_dev(sc->sc_dev,
    801 		    "could not allocate tx cmd DMA memory\n");
    802 		goto fail;
    803 	}
    804 
    805 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    806 	    M_NOWAIT | M_ZERO);
    807 	if (ring->data == NULL) {
    808 		aprint_error_dev(sc->sc_dev,
    809 		    "could not allocate tx data slots\n");
    810 		goto fail;
    811 	}
    812 
    813 	for (i = 0; i < count; i++) {
    814 		struct wpi_tx_data *data = &ring->data[i];
    815 
    816 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    817 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    818 		    &data->map);
    819 		if (error != 0) {
    820 			aprint_error_dev(sc->sc_dev,
    821 			    "could not create tx buf DMA map\n");
    822 			goto fail;
    823 		}
    824 	}
    825 
    826 	return 0;
    827 
    828 fail:	wpi_free_tx_ring(sc, ring);
    829 	return error;
    830 }
    831 
    832 static void
    833 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    834 {
    835 	int i, ntries;
    836 
    837 	wpi_mem_lock(sc);
    838 
    839 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    840 	for (ntries = 0; ntries < 100; ntries++) {
    841 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    842 			break;
    843 		DELAY(10);
    844 	}
    845 #ifdef WPI_DEBUG
    846 	if (ntries == 100 && wpi_debug > 0) {
    847 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    848 		    ring->qid);
    849 	}
    850 #endif
    851 	wpi_mem_unlock(sc);
    852 
    853 	for (i = 0; i < ring->count; i++) {
    854 		struct wpi_tx_data *data = &ring->data[i];
    855 
    856 		if (data->m != NULL) {
    857 			bus_dmamap_unload(sc->sc_dmat, data->map);
    858 			m_freem(data->m);
    859 			data->m = NULL;
    860 		}
    861 	}
    862 
    863 	ring->queued = 0;
    864 	ring->cur = 0;
    865 }
    866 
    867 static void
    868 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    869 {
    870 	int i;
    871 
    872 	wpi_dma_contig_free(&ring->desc_dma);
    873 	wpi_dma_contig_free(&ring->cmd_dma);
    874 
    875 	if (ring->data != NULL) {
    876 		for (i = 0; i < ring->count; i++) {
    877 			struct wpi_tx_data *data = &ring->data[i];
    878 
    879 			if (data->m != NULL) {
    880 				bus_dmamap_unload(sc->sc_dmat, data->map);
    881 				m_freem(data->m);
    882 			}
    883 		}
    884 		free(ring->data, M_DEVBUF);
    885 	}
    886 }
    887 
    888 /*ARGUSED*/
    889 static struct ieee80211_node *
    890 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    891 {
    892 	struct wpi_node *wn;
    893 
    894 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
    895 
    896 	return (struct ieee80211_node *)wn;
    897 }
    898 
    899 static void
    900 wpi_newassoc(struct ieee80211_node *ni, int isnew)
    901 {
    902 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    903 	int i;
    904 
    905 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    906 
    907 	/* set rate to some reasonable initial value */
    908 	for (i = ni->ni_rates.rs_nrates - 1;
    909 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    910 	     i--);
    911 	ni->ni_txrate = i;
    912 }
    913 
    914 static int
    915 wpi_media_change(struct ifnet *ifp)
    916 {
    917 	int error;
    918 
    919 	error = ieee80211_media_change(ifp);
    920 	if (error != ENETRESET)
    921 		return error;
    922 
    923 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    924 		wpi_init(ifp);
    925 
    926 	return 0;
    927 }
    928 
    929 static int
    930 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    931 {
    932 	struct ifnet *ifp = ic->ic_ifp;
    933 	struct wpi_softc *sc = ifp->if_softc;
    934 	struct ieee80211_node *ni;
    935 	enum ieee80211_state ostate = ic->ic_state;
    936 	int error;
    937 
    938 	callout_stop(&sc->calib_to);
    939 
    940 	switch (nstate) {
    941 	case IEEE80211_S_SCAN:
    942 
    943 		if (sc->is_scanning)
    944 			break;
    945 
    946 		sc->is_scanning = true;
    947 
    948 		if (ostate != IEEE80211_S_SCAN) {
    949 			/* make the link LED blink while we're scanning */
    950 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    951 		}
    952 
    953 		if ((error = wpi_scan(sc)) != 0) {
    954 			aprint_error_dev(sc->sc_dev,
    955 			    "could not initiate scan\n");
    956 			return error;
    957 		}
    958 		break;
    959 
    960 	case IEEE80211_S_ASSOC:
    961 		if (ic->ic_state != IEEE80211_S_RUN)
    962 			break;
    963 		/* FALLTHROUGH */
    964 	case IEEE80211_S_AUTH:
    965 		/* reset state to handle reassociations correctly */
    966 		sc->config.associd = 0;
    967 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    968 
    969 		if ((error = wpi_auth(sc)) != 0) {
    970 			aprint_error_dev(sc->sc_dev,
    971 			    "could not send authentication request\n");
    972 			return error;
    973 		}
    974 		break;
    975 
    976 	case IEEE80211_S_RUN:
    977 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    978 			/* link LED blinks while monitoring */
    979 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    980 			break;
    981 		}
    982 		ni = ic->ic_bss;
    983 
    984 		if (ic->ic_opmode != IEEE80211_M_STA) {
    985 			(void) wpi_auth(sc);    /* XXX */
    986 			wpi_setup_beacon(sc, ni);
    987 		}
    988 
    989 		wpi_enable_tsf(sc, ni);
    990 
    991 		/* update adapter's configuration */
    992 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    993 		/* short preamble/slot time are negotiated when associating */
    994 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
    995 		    WPI_CONFIG_SHSLOT);
    996 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
    997 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
    998 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
    999 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
   1000 		sc->config.filter |= htole32(WPI_FILTER_BSS);
   1001 		if (ic->ic_opmode != IEEE80211_M_STA)
   1002 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
   1003 
   1004 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
   1005 
   1006 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
   1007 		    sc->config.flags));
   1008 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   1009 		    sizeof (struct wpi_config), 1);
   1010 		if (error != 0) {
   1011 			aprint_error_dev(sc->sc_dev,
   1012 			    "could not update configuration\n");
   1013 			return error;
   1014 		}
   1015 
   1016 		/* configuration has changed, set Tx power accordingly */
   1017 		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
   1018 			aprint_error_dev(sc->sc_dev,
   1019 			    "could not set Tx power\n");
   1020 			return error;
   1021 		}
   1022 
   1023 		if (ic->ic_opmode == IEEE80211_M_STA) {
   1024 			/* fake a join to init the tx rate */
   1025 			wpi_newassoc(ni, 1);
   1026 		}
   1027 
   1028 		/* start periodic calibration timer */
   1029 		sc->calib_cnt = 0;
   1030 		callout_schedule(&sc->calib_to, hz/2);
   1031 
   1032 		/* link LED always on while associated */
   1033 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
   1034 		break;
   1035 
   1036 	case IEEE80211_S_INIT:
   1037 		sc->is_scanning = false;
   1038 		break;
   1039 	}
   1040 
   1041 	return sc->sc_newstate(ic, nstate, arg);
   1042 }
   1043 
   1044 /*
   1045  * Grab exclusive access to NIC memory.
   1046  */
   1047 static void
   1048 wpi_mem_lock(struct wpi_softc *sc)
   1049 {
   1050 	uint32_t tmp;
   1051 	int ntries;
   1052 
   1053 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1054 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
   1055 
   1056 	/* spin until we actually get the lock */
   1057 	for (ntries = 0; ntries < 1000; ntries++) {
   1058 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
   1059 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
   1060 			break;
   1061 		DELAY(10);
   1062 	}
   1063 	if (ntries == 1000)
   1064 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
   1065 }
   1066 
   1067 /*
   1068  * Release lock on NIC memory.
   1069  */
   1070 static void
   1071 wpi_mem_unlock(struct wpi_softc *sc)
   1072 {
   1073 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1074 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1075 }
   1076 
   1077 static uint32_t
   1078 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1079 {
   1080 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1081 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1082 }
   1083 
   1084 static void
   1085 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1086 {
   1087 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1088 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1089 }
   1090 
   1091 static void
   1092 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1093     const uint32_t *data, int wlen)
   1094 {
   1095 	for (; wlen > 0; wlen--, data++, addr += 4)
   1096 		wpi_mem_write(sc, addr, *data);
   1097 }
   1098 
   1099 /*
   1100  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1101  * instead of using the traditional bit-bang method.
   1102  */
   1103 static int
   1104 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1105 {
   1106 	uint8_t *out = data;
   1107 	uint32_t val;
   1108 	int ntries;
   1109 
   1110 	wpi_mem_lock(sc);
   1111 	for (; len > 0; len -= 2, addr++) {
   1112 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1113 
   1114 		for (ntries = 0; ntries < 10; ntries++) {
   1115 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1116 			    WPI_EEPROM_READY)
   1117 				break;
   1118 			DELAY(5);
   1119 		}
   1120 		if (ntries == 10) {
   1121 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1122 			return ETIMEDOUT;
   1123 		}
   1124 		*out++ = val >> 16;
   1125 		if (len > 1)
   1126 			*out++ = val >> 24;
   1127 	}
   1128 	wpi_mem_unlock(sc);
   1129 
   1130 	return 0;
   1131 }
   1132 
   1133 /*
   1134  * The firmware boot code is small and is intended to be copied directly into
   1135  * the NIC internal memory.
   1136  */
   1137 int
   1138 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1139 {
   1140 	int ntries;
   1141 
   1142 	size /= sizeof (uint32_t);
   1143 
   1144 	wpi_mem_lock(sc);
   1145 
   1146 	/* copy microcode image into NIC memory */
   1147 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1148 	    (const uint32_t *)ucode, size);
   1149 
   1150 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1151 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1152 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1153 
   1154 	/* run microcode */
   1155 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1156 
   1157 	/* wait for transfer to complete */
   1158 	for (ntries = 0; ntries < 1000; ntries++) {
   1159 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1160 			break;
   1161 		DELAY(10);
   1162 	}
   1163 	if (ntries == 1000) {
   1164 		wpi_mem_unlock(sc);
   1165 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1166 		return ETIMEDOUT;
   1167 	}
   1168 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1169 
   1170 	wpi_mem_unlock(sc);
   1171 
   1172 	return 0;
   1173 }
   1174 
   1175 static int
   1176 wpi_cache_firmware(struct wpi_softc *sc)
   1177 {
   1178 	const char *const fwname = wpi_firmware_name;
   1179 	firmware_handle_t fw;
   1180 	int error;
   1181 
   1182 	/* sc is used here only to report error messages.  */
   1183 
   1184 	mutex_enter(&wpi_firmware_mutex);
   1185 
   1186 	if (wpi_firmware_users == SIZE_MAX) {
   1187 		mutex_exit(&wpi_firmware_mutex);
   1188 		return ENFILE;	/* Too many of something in the system...  */
   1189 	}
   1190 	if (wpi_firmware_users++) {
   1191 		KASSERT(wpi_firmware_image != NULL);
   1192 		KASSERT(wpi_firmware_size > 0);
   1193 		mutex_exit(&wpi_firmware_mutex);
   1194 		return 0;	/* Already good to go.  */
   1195 	}
   1196 
   1197 	KASSERT(wpi_firmware_image == NULL);
   1198 	KASSERT(wpi_firmware_size == 0);
   1199 
   1200 	/* load firmware image from disk */
   1201 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
   1202 		aprint_error_dev(sc->sc_dev,
   1203 		    "could not open firmware file %s: %d\n", fwname, error);
   1204 		goto fail0;
   1205 	}
   1206 
   1207 	wpi_firmware_size = firmware_get_size(fw);
   1208 
   1209 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
   1210 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
   1211 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
   1212 	    WPI_FW_BOOT_TEXT_MAXSZ) {
   1213 		aprint_error_dev(sc->sc_dev,
   1214 		    "firmware file %s too large: %zu bytes\n",
   1215 		    fwname, wpi_firmware_size);
   1216 		error = EFBIG;
   1217 		goto fail1;
   1218 	}
   1219 
   1220 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
   1221 		aprint_error_dev(sc->sc_dev,
   1222 		    "firmware file %s too small: %zu bytes\n",
   1223 		    fwname, wpi_firmware_size);
   1224 		error = EINVAL;
   1225 		goto fail1;
   1226 	}
   1227 
   1228 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
   1229 	if (wpi_firmware_image == NULL) {
   1230 		aprint_error_dev(sc->sc_dev,
   1231 		    "not enough memory for firmware file %s\n", fwname);
   1232 		error = ENOMEM;
   1233 		goto fail1;
   1234 	}
   1235 
   1236 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
   1237 	if (error != 0) {
   1238 		aprint_error_dev(sc->sc_dev,
   1239 		    "error reading firmware file %s: %d\n", fwname, error);
   1240 		goto fail2;
   1241 	}
   1242 
   1243 	/* Success!  */
   1244 	firmware_close(fw);
   1245 	mutex_exit(&wpi_firmware_mutex);
   1246 	return 0;
   1247 
   1248 fail2:
   1249 	firmware_free(wpi_firmware_image, wpi_firmware_size);
   1250 	wpi_firmware_image = NULL;
   1251 fail1:
   1252 	wpi_firmware_size = 0;
   1253 	firmware_close(fw);
   1254 fail0:
   1255 	KASSERT(wpi_firmware_users == 1);
   1256 	wpi_firmware_users = 0;
   1257 	KASSERT(wpi_firmware_image == NULL);
   1258 	KASSERT(wpi_firmware_size == 0);
   1259 
   1260 	mutex_exit(&wpi_firmware_mutex);
   1261 	return error;
   1262 }
   1263 
   1264 static void
   1265 wpi_release_firmware(void)
   1266 {
   1267 
   1268 	mutex_enter(&wpi_firmware_mutex);
   1269 
   1270 	KASSERT(wpi_firmware_users > 0);
   1271 	KASSERT(wpi_firmware_image != NULL);
   1272 	KASSERT(wpi_firmware_size != 0);
   1273 
   1274 	if (--wpi_firmware_users == 0) {
   1275 		firmware_free(wpi_firmware_image, wpi_firmware_size);
   1276 		wpi_firmware_image = NULL;
   1277 		wpi_firmware_size = 0;
   1278 	}
   1279 
   1280 	mutex_exit(&wpi_firmware_mutex);
   1281 }
   1282 
   1283 static int
   1284 wpi_load_firmware(struct wpi_softc *sc)
   1285 {
   1286 	struct wpi_dma_info *dma = &sc->fw_dma;
   1287 	struct wpi_firmware_hdr hdr;
   1288 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1289 	const uint8_t *boot_text;
   1290 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1291 	uint32_t boot_textsz;
   1292 	size_t size;
   1293 	int error;
   1294 
   1295 	if (!sc->fw_used) {
   1296 		if ((error = wpi_cache_firmware(sc)) != 0)
   1297 			return error;
   1298 		sc->fw_used = true;
   1299 	}
   1300 
   1301 	KASSERT(sc->fw_used);
   1302 	KASSERT(wpi_firmware_image != NULL);
   1303 	KASSERT(wpi_firmware_size > sizeof(hdr));
   1304 
   1305 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
   1306 
   1307 	main_textsz = le32toh(hdr.main_textsz);
   1308 	main_datasz = le32toh(hdr.main_datasz);
   1309 	init_textsz = le32toh(hdr.init_textsz);
   1310 	init_datasz = le32toh(hdr.init_datasz);
   1311 	boot_textsz = le32toh(hdr.boot_textsz);
   1312 
   1313 	/* sanity-check firmware segments sizes */
   1314 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1315 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1316 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1317 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1318 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1319 	    (boot_textsz & 3) != 0) {
   1320 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1321 		error = EINVAL;
   1322 		goto free_firmware;
   1323 	}
   1324 
   1325 	/* check that all firmware segments are present */
   1326 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
   1327 	    main_datasz + init_textsz + init_datasz + boot_textsz;
   1328 	if (wpi_firmware_size < size) {
   1329 		aprint_error_dev(sc->sc_dev,
   1330 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
   1331 		    wpi_firmware_size, size);
   1332 		error = EINVAL;
   1333 		goto free_firmware;
   1334 	}
   1335 
   1336 	/* get pointers to firmware segments */
   1337 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
   1338 	main_data = main_text + main_textsz;
   1339 	init_text = main_data + main_datasz;
   1340 	init_data = init_text + init_textsz;
   1341 	boot_text = init_data + init_datasz;
   1342 
   1343 	/* copy initialization images into pre-allocated DMA-safe memory */
   1344 	memcpy(dma->vaddr, init_data, init_datasz);
   1345 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
   1346 	    init_textsz);
   1347 
   1348 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   1349 
   1350 	/* tell adapter where to find initialization images */
   1351 	wpi_mem_lock(sc);
   1352 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1353 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1354 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1355 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1356 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1357 	wpi_mem_unlock(sc);
   1358 
   1359 	/* load firmware boot code */
   1360 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1361 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1362 		return error;
   1363 	}
   1364 
   1365 	/* now press "execute" ;-) */
   1366 	WPI_WRITE(sc, WPI_RESET, 0);
   1367 
   1368 	/* wait at most one second for first alive notification */
   1369 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1370 		/* this isn't what was supposed to happen.. */
   1371 		aprint_error_dev(sc->sc_dev,
   1372 		    "timeout waiting for adapter to initialize\n");
   1373 	}
   1374 
   1375 	/* copy runtime images into pre-allocated DMA-safe memory */
   1376 	memcpy(dma->vaddr, main_data, main_datasz);
   1377 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
   1378 	    main_textsz);
   1379 
   1380 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   1381 
   1382 	/* tell adapter where to find runtime images */
   1383 	wpi_mem_lock(sc);
   1384 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1385 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1386 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1387 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1388 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1389 	wpi_mem_unlock(sc);
   1390 
   1391 	/* wait at most one second for second alive notification */
   1392 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1393 		/* this isn't what was supposed to happen.. */
   1394 		aprint_error_dev(sc->sc_dev,
   1395 		    "timeout waiting for adapter to initialize\n");
   1396 	}
   1397 
   1398 	return error;
   1399 
   1400 free_firmware:
   1401 	sc->fw_used = false;
   1402 	wpi_release_firmware();
   1403 	return error;
   1404 }
   1405 
   1406 static void
   1407 wpi_calib_timeout(void *arg)
   1408 {
   1409 	struct wpi_softc *sc = arg;
   1410 	struct ieee80211com *ic = &sc->sc_ic;
   1411 	int temp, s;
   1412 
   1413 	/* automatic rate control triggered every 500ms */
   1414 	if (ic->ic_fixed_rate == -1) {
   1415 		s = splnet();
   1416 		if (ic->ic_opmode == IEEE80211_M_STA)
   1417 			wpi_iter_func(sc, ic->ic_bss);
   1418 		else
   1419 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1420 		splx(s);
   1421 	}
   1422 
   1423 	/* update sensor data */
   1424 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1425 
   1426 	/* automatic power calibration every 60s */
   1427 	if (++sc->calib_cnt >= 120) {
   1428 		wpi_power_calibration(sc, temp);
   1429 		sc->calib_cnt = 0;
   1430 	}
   1431 
   1432 	callout_schedule(&sc->calib_to, hz/2);
   1433 }
   1434 
   1435 static void
   1436 wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1437 {
   1438 	struct wpi_softc *sc = arg;
   1439 	struct wpi_node *wn = (struct wpi_node *)ni;
   1440 
   1441 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1442 }
   1443 
   1444 /*
   1445  * This function is called periodically (every 60 seconds) to adjust output
   1446  * power to temperature changes.
   1447  */
   1448 void
   1449 wpi_power_calibration(struct wpi_softc *sc, int temp)
   1450 {
   1451 	/* sanity-check read value */
   1452 	if (temp < -260 || temp > 25) {
   1453 		/* this can't be correct, ignore */
   1454 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1455 		return;
   1456 	}
   1457 
   1458 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1459 
   1460 	/* adjust Tx power if need be */
   1461 	if (abs(temp - sc->temp) <= 6)
   1462 		return;
   1463 
   1464 	sc->temp = temp;
   1465 
   1466 	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
   1467 		/* just warn, too bad for the automatic calibration... */
   1468 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1469 	}
   1470 }
   1471 
   1472 static void
   1473 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1474     struct wpi_rx_data *data)
   1475 {
   1476 	struct ieee80211com *ic = &sc->sc_ic;
   1477 	struct ifnet *ifp = ic->ic_ifp;
   1478 	struct wpi_rx_ring *ring = &sc->rxq;
   1479 	struct wpi_rx_stat *stat;
   1480 	struct wpi_rx_head *head;
   1481 	struct wpi_rx_tail *tail;
   1482 	struct wpi_rbuf *rbuf;
   1483 	struct ieee80211_frame *wh;
   1484 	struct ieee80211_node *ni;
   1485 	struct mbuf *m, *mnew;
   1486 	int data_off, error, s;
   1487 
   1488 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1489 	    BUS_DMASYNC_POSTREAD);
   1490 	stat = (struct wpi_rx_stat *)(desc + 1);
   1491 
   1492 	if (stat->len > WPI_STAT_MAXLEN) {
   1493 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1494 		ifp->if_ierrors++;
   1495 		return;
   1496 	}
   1497 
   1498 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1499 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1500 
   1501 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1502 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
   1503 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1504 	    le64toh(tail->tstamp)));
   1505 
   1506 	/*
   1507 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1508 	 * to radiotap in monitor mode).
   1509 	 */
   1510 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1511 		DPRINTF(("rx tail flags error %x\n",
   1512 		    le32toh(tail->flags)));
   1513 		ifp->if_ierrors++;
   1514 		return;
   1515 	}
   1516 
   1517 	/* Compute where are the useful datas */
   1518 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1519 
   1520 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1521 	if (mnew == NULL) {
   1522 		ifp->if_ierrors++;
   1523 		return;
   1524 	}
   1525 
   1526 	rbuf = wpi_alloc_rbuf(sc);
   1527 	if (rbuf == NULL) {
   1528 		m_freem(mnew);
   1529 		ifp->if_ierrors++;
   1530 		return;
   1531 	}
   1532 
   1533 	/* attach Rx buffer to mbuf */
   1534 	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1535 		rbuf);
   1536 	mnew->m_flags |= M_EXT_RW;
   1537 
   1538 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1539 
   1540 	error = bus_dmamap_load(sc->sc_dmat, data->map,
   1541 	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
   1542 	    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1543 	if (error) {
   1544 		device_printf(sc->sc_dev,
   1545 		    "couldn't load rx mbuf: %d\n", error);
   1546 		m_freem(mnew);
   1547 		ifp->if_ierrors++;
   1548 
   1549 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1550 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
   1551 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1552 		if (error)
   1553 			panic("%s: bus_dmamap_load failed: %d\n",
   1554 			    device_xname(sc->sc_dev), error);
   1555 		return;
   1556 	}
   1557 
   1558 	/* new mbuf loaded successfully */
   1559 	m = data->m;
   1560 	data->m = mnew;
   1561 
   1562 	/* update Rx descriptor */
   1563 	ring->desc[ring->cur] = htole32(rbuf->paddr);
   1564 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1565 	    ring->desc_dma.size,
   1566 	    BUS_DMASYNC_PREWRITE);
   1567 
   1568 	m->m_data = (char*)m->m_data + data_off;
   1569 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1570 
   1571 	/* finalize mbuf */
   1572 	m_set_rcvif(m, ifp);
   1573 
   1574 	s = splnet();
   1575 
   1576 	if (sc->sc_drvbpf != NULL) {
   1577 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1578 
   1579 		tap->wr_flags = 0;
   1580 		tap->wr_chan_freq =
   1581 		    htole16(ic->ic_channels[head->chan].ic_freq);
   1582 		tap->wr_chan_flags =
   1583 		    htole16(ic->ic_channels[head->chan].ic_flags);
   1584 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1585 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1586 		tap->wr_tsft = tail->tstamp;
   1587 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1588 		switch (head->rate) {
   1589 		/* CCK rates */
   1590 		case  10: tap->wr_rate =   2; break;
   1591 		case  20: tap->wr_rate =   4; break;
   1592 		case  55: tap->wr_rate =  11; break;
   1593 		case 110: tap->wr_rate =  22; break;
   1594 		/* OFDM rates */
   1595 		case 0xd: tap->wr_rate =  12; break;
   1596 		case 0xf: tap->wr_rate =  18; break;
   1597 		case 0x5: tap->wr_rate =  24; break;
   1598 		case 0x7: tap->wr_rate =  36; break;
   1599 		case 0x9: tap->wr_rate =  48; break;
   1600 		case 0xb: tap->wr_rate =  72; break;
   1601 		case 0x1: tap->wr_rate =  96; break;
   1602 		case 0x3: tap->wr_rate = 108; break;
   1603 		/* unknown rate: should not happen */
   1604 		default:  tap->wr_rate =   0;
   1605 		}
   1606 		if (le16toh(head->flags) & 0x4)
   1607 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1608 
   1609 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1610 	}
   1611 
   1612 	/* grab a reference to the source node */
   1613 	wh = mtod(m, struct ieee80211_frame *);
   1614 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1615 
   1616 	/* send the frame to the 802.11 layer */
   1617 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1618 
   1619 	/* release node reference */
   1620 	ieee80211_free_node(ni);
   1621 
   1622 	splx(s);
   1623 }
   1624 
   1625 static void
   1626 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1627 {
   1628 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1629 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1630 	struct wpi_tx_data *data = &ring->data[desc->idx];
   1631 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1632 	struct wpi_node *wn = (struct wpi_node *)data->ni;
   1633 	int s;
   1634 
   1635 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1636 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1637 	    stat->nkill, stat->rate, le32toh(stat->duration),
   1638 	    le32toh(stat->status)));
   1639 
   1640 	s = splnet();
   1641 
   1642 	/*
   1643 	 * Update rate control statistics for the node.
   1644 	 * XXX we should not count mgmt frames since they're always sent at
   1645 	 * the lowest available bit-rate.
   1646 	 */
   1647 	wn->amn.amn_txcnt++;
   1648 	if (stat->ntries > 0) {
   1649 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1650 		wn->amn.amn_retrycnt++;
   1651 	}
   1652 
   1653 	if ((le32toh(stat->status) & 0xff) != 1)
   1654 		ifp->if_oerrors++;
   1655 	else
   1656 		ifp->if_opackets++;
   1657 
   1658 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1659 	m_freem(data->m);
   1660 	data->m = NULL;
   1661 	ieee80211_free_node(data->ni);
   1662 	data->ni = NULL;
   1663 
   1664 	ring->queued--;
   1665 
   1666 	sc->sc_tx_timer = 0;
   1667 	ifp->if_flags &= ~IFF_OACTIVE;
   1668 	wpi_start(ifp);
   1669 
   1670 	splx(s);
   1671 }
   1672 
   1673 static void
   1674 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1675 {
   1676 	struct wpi_tx_ring *ring = &sc->cmdq;
   1677 	struct wpi_tx_data *data;
   1678 
   1679 	if ((desc->qid & 7) != 4)
   1680 		return;	/* not a command ack */
   1681 
   1682 	data = &ring->data[desc->idx];
   1683 
   1684 	/* if the command was mapped in a mbuf, free it */
   1685 	if (data->m != NULL) {
   1686 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1687 		m_freem(data->m);
   1688 		data->m = NULL;
   1689 	}
   1690 
   1691 	wakeup(&ring->cmd[desc->idx]);
   1692 }
   1693 
   1694 static void
   1695 wpi_notif_intr(struct wpi_softc *sc)
   1696 {
   1697 	struct ieee80211com *ic = &sc->sc_ic;
   1698 	struct ifnet *ifp =  ic->ic_ifp;
   1699 	uint32_t hw;
   1700 	int s;
   1701 
   1702 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
   1703 	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
   1704 
   1705 	hw = le32toh(sc->shared->next);
   1706 	while (sc->rxq.cur != hw) {
   1707 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   1708 		struct wpi_rx_desc *desc;
   1709 
   1710 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1711 		    BUS_DMASYNC_POSTREAD);
   1712 		desc = mtod(data->m, struct wpi_rx_desc *);
   1713 
   1714 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1715 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
   1716 		    desc->type, le32toh(desc->len)));
   1717 
   1718 		if (!(desc->qid & 0x80))	/* reply to a command */
   1719 			wpi_cmd_intr(sc, desc);
   1720 
   1721 		switch (desc->type) {
   1722 		case WPI_RX_DONE:
   1723 			/* a 802.11 frame was received */
   1724 			wpi_rx_intr(sc, desc, data);
   1725 			break;
   1726 
   1727 		case WPI_TX_DONE:
   1728 			/* a 802.11 frame has been transmitted */
   1729 			wpi_tx_intr(sc, desc);
   1730 			break;
   1731 
   1732 		case WPI_UC_READY:
   1733 		{
   1734 			struct wpi_ucode_info *uc =
   1735 			    (struct wpi_ucode_info *)(desc + 1);
   1736 
   1737 			/* the microcontroller is ready */
   1738 			DPRINTF(("microcode alive notification version %x "
   1739 			    "alive %x\n", le32toh(uc->version),
   1740 			    le32toh(uc->valid)));
   1741 
   1742 			if (le32toh(uc->valid) != 1) {
   1743 				aprint_error_dev(sc->sc_dev,
   1744 				    "microcontroller initialization failed\n");
   1745 			}
   1746 			break;
   1747 		}
   1748 		case WPI_STATE_CHANGED:
   1749 		{
   1750 			uint32_t *status = (uint32_t *)(desc + 1);
   1751 
   1752 			/* enabled/disabled notification */
   1753 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1754 
   1755 			if (le32toh(*status) & 1) {
   1756 				s = splnet();
   1757 				/* the radio button has to be pushed */
   1758 				/* wake up thread to signal powerd */
   1759 				cv_signal(&sc->sc_rsw_cv);
   1760 				aprint_error_dev(sc->sc_dev,
   1761 				    "Radio transmitter is off\n");
   1762 				/* turn the interface down */
   1763 				ifp->if_flags &= ~IFF_UP;
   1764 				wpi_stop(ifp, 1);
   1765 				splx(s);
   1766 				return;	/* no further processing */
   1767 			}
   1768 			break;
   1769 		}
   1770 		case WPI_START_SCAN:
   1771 		{
   1772 #if 0
   1773 			struct wpi_start_scan *scan =
   1774 			    (struct wpi_start_scan *)(desc + 1);
   1775 
   1776 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1777 			    scan->chan, le32toh(scan->status)));
   1778 
   1779 			/* fix current channel */
   1780 			ic->ic_curchan = &ic->ic_channels[scan->chan];
   1781 #endif
   1782 			break;
   1783 		}
   1784 		case WPI_STOP_SCAN:
   1785 		{
   1786 #ifdef WPI_DEBUG
   1787 			struct wpi_stop_scan *scan =
   1788 			    (struct wpi_stop_scan *)(desc + 1);
   1789 #endif
   1790 
   1791 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1792 			    scan->nchan, scan->status, scan->chan));
   1793 
   1794 			s = splnet();
   1795 			sc->is_scanning = false;
   1796 			if (ic->ic_state == IEEE80211_S_SCAN)
   1797 				ieee80211_next_scan(ic);
   1798 			splx(s);
   1799 			break;
   1800 		}
   1801 		}
   1802 
   1803 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1804 	}
   1805 
   1806 	/* tell the firmware what we have processed */
   1807 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1808 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1809 }
   1810 
   1811 static int
   1812 wpi_intr(void *arg)
   1813 {
   1814 	struct wpi_softc *sc = arg;
   1815 	uint32_t r;
   1816 
   1817 	r = WPI_READ(sc, WPI_INTR);
   1818 	if (r == 0 || r == 0xffffffff)
   1819 		return 0;	/* not for us */
   1820 
   1821 	DPRINTFN(6, ("interrupt reg %x\n", r));
   1822 
   1823 	/* disable interrupts */
   1824 	WPI_WRITE(sc, WPI_MASK, 0);
   1825 
   1826 	softint_schedule(sc->sc_soft_ih);
   1827 	return 1;
   1828 }
   1829 
   1830 static void
   1831 wpi_softintr(void *arg)
   1832 {
   1833 	struct wpi_softc *sc = arg;
   1834 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1835 	uint32_t r;
   1836 
   1837 	r = WPI_READ(sc, WPI_INTR);
   1838 	if (r == 0 || r == 0xffffffff)
   1839 		goto out;
   1840 
   1841 	/* ack interrupts */
   1842 	WPI_WRITE(sc, WPI_INTR, r);
   1843 
   1844 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1845 		/* SYSTEM FAILURE, SYSTEM FAILURE */
   1846 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1847 		ifp->if_flags &= ~IFF_UP;
   1848 		wpi_stop(ifp, 1);
   1849 		return;
   1850 	}
   1851 
   1852 	if (r & WPI_RX_INTR)
   1853 		wpi_notif_intr(sc);
   1854 
   1855 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1856 		wakeup(sc);
   1857 
   1858  out:
   1859 	/* re-enable interrupts */
   1860 	if (ifp->if_flags & IFF_UP)
   1861 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1862 }
   1863 
   1864 static uint8_t
   1865 wpi_plcp_signal(int rate)
   1866 {
   1867 	switch (rate) {
   1868 	/* CCK rates (returned values are device-dependent) */
   1869 	case 2:		return 10;
   1870 	case 4:		return 20;
   1871 	case 11:	return 55;
   1872 	case 22:	return 110;
   1873 
   1874 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1875 	/* R1-R4, (u)ral is R4-R1 */
   1876 	case 12:	return 0xd;
   1877 	case 18:	return 0xf;
   1878 	case 24:	return 0x5;
   1879 	case 36:	return 0x7;
   1880 	case 48:	return 0x9;
   1881 	case 72:	return 0xb;
   1882 	case 96:	return 0x1;
   1883 	case 108:	return 0x3;
   1884 
   1885 	/* unsupported rates (should not get there) */
   1886 	default:	return 0;
   1887 	}
   1888 }
   1889 
   1890 /* quickly determine if a given rate is CCK or OFDM */
   1891 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1892 
   1893 static int
   1894 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1895     int ac)
   1896 {
   1897 	struct ieee80211com *ic = &sc->sc_ic;
   1898 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1899 	struct wpi_tx_desc *desc;
   1900 	struct wpi_tx_data *data;
   1901 	struct wpi_tx_cmd *cmd;
   1902 	struct wpi_cmd_data *tx;
   1903 	struct ieee80211_frame *wh;
   1904 	struct ieee80211_key *k;
   1905 	const struct chanAccParams *cap;
   1906 	struct mbuf *mnew;
   1907 	int i, rate, error, hdrlen, noack = 0;
   1908 
   1909 	desc = &ring->desc[ring->cur];
   1910 	data = &ring->data[ring->cur];
   1911 
   1912 	wh = mtod(m0, struct ieee80211_frame *);
   1913 
   1914 	if (ieee80211_has_qos(wh)) {
   1915 		cap = &ic->ic_wme.wme_chanParams;
   1916 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1917 	}
   1918 
   1919 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1920 		k = ieee80211_crypto_encap(ic, ni, m0);
   1921 		if (k == NULL) {
   1922 			m_freem(m0);
   1923 			return ENOBUFS;
   1924 		}
   1925 
   1926 		/* packet header may have moved, reset our local pointer */
   1927 		wh = mtod(m0, struct ieee80211_frame *);
   1928 	}
   1929 
   1930 	hdrlen = ieee80211_anyhdrsize(wh);
   1931 
   1932 	/* pickup a rate */
   1933 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1934 	    IEEE80211_FC0_TYPE_MGT) {
   1935 		/* mgmt frames are sent at the lowest available bit-rate */
   1936 		rate = ni->ni_rates.rs_rates[0];
   1937 	} else {
   1938 		if (ic->ic_fixed_rate != -1) {
   1939 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1940 			    rs_rates[ic->ic_fixed_rate];
   1941 		} else
   1942 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1943 	}
   1944 	rate &= IEEE80211_RATE_VAL;
   1945 
   1946 	if (sc->sc_drvbpf != NULL) {
   1947 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1948 
   1949 		tap->wt_flags = 0;
   1950 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1951 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1952 		tap->wt_rate = rate;
   1953 		tap->wt_hwqueue = ac;
   1954 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1955 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1956 
   1957 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1958 	}
   1959 
   1960 	cmd = &ring->cmd[ring->cur];
   1961 	cmd->code = WPI_CMD_TX_DATA;
   1962 	cmd->flags = 0;
   1963 	cmd->qid = ring->qid;
   1964 	cmd->idx = ring->cur;
   1965 
   1966 	tx = (struct wpi_cmd_data *)cmd->data;
   1967 	/* no need to zero tx, all fields are reinitialized here */
   1968 	tx->flags = 0;
   1969 
   1970 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1971 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1972 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1973 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1974 
   1975 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1976 
   1977 	/* retrieve destination node's id */
   1978 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1979 		WPI_ID_BSS;
   1980 
   1981 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1982 	    IEEE80211_FC0_TYPE_MGT) {
   1983 		/* tell h/w to set timestamp in probe responses */
   1984 		if ((wh->i_fc[0] &
   1985 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1986 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1987 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1988 
   1989 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1990 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1991 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1992 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1993 			tx->timeout = htole16(3);
   1994 		else
   1995 			tx->timeout = htole16(2);
   1996 	} else
   1997 		tx->timeout = htole16(0);
   1998 
   1999 	tx->rate = wpi_plcp_signal(rate);
   2000 
   2001 	/* be very persistant at sending frames out */
   2002 	tx->rts_ntries = 7;
   2003 	tx->data_ntries = 15;
   2004 
   2005 	tx->ofdm_mask = 0xff;
   2006 	tx->cck_mask = 0x0f;
   2007 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2008 
   2009 	tx->len = htole16(m0->m_pkthdr.len);
   2010 
   2011 	/* save and trim IEEE802.11 header */
   2012 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   2013 	m_adj(m0, hdrlen);
   2014 
   2015 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2016 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2017 	if (error != 0 && error != EFBIG) {
   2018 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   2019 		    error);
   2020 		m_freem(m0);
   2021 		return error;
   2022 	}
   2023 	if (error != 0) {
   2024 		/* too many fragments, linearize */
   2025 
   2026 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   2027 		if (mnew == NULL) {
   2028 			m_freem(m0);
   2029 			return ENOMEM;
   2030 		}
   2031 		M_COPY_PKTHDR(mnew, m0);
   2032 		if (m0->m_pkthdr.len > MHLEN) {
   2033 			MCLGET(mnew, M_DONTWAIT);
   2034 			if (!(mnew->m_flags & M_EXT)) {
   2035 				m_freem(m0);
   2036 				m_freem(mnew);
   2037 				return ENOMEM;
   2038 			}
   2039 		}
   2040 
   2041 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   2042 		m_freem(m0);
   2043 		mnew->m_len = mnew->m_pkthdr.len;
   2044 		m0 = mnew;
   2045 
   2046 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2047 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2048 		if (error != 0) {
   2049 			aprint_error_dev(sc->sc_dev,
   2050 			    "could not map mbuf (error %d)\n", error);
   2051 			m_freem(m0);
   2052 			return error;
   2053 		}
   2054 	}
   2055 
   2056 	data->m = m0;
   2057 	data->ni = ni;
   2058 
   2059 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   2060 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   2061 
   2062 	/* first scatter/gather segment is used by the tx data command */
   2063 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   2064 	    (1 + data->map->dm_nsegs) << 24);
   2065 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2066 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2067 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   2068 	    ((hdrlen + 3) & ~3));
   2069 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   2070 		desc->segs[i].addr =
   2071 		    htole32(data->map->dm_segs[i - 1].ds_addr);
   2072 		desc->segs[i].len  =
   2073 		    htole32(data->map->dm_segs[i - 1].ds_len);
   2074 	}
   2075 
   2076 	ring->queued++;
   2077 
   2078 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2079 	    data->map->dm_mapsize,
   2080 	    BUS_DMASYNC_PREWRITE);
   2081 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
   2082 	    ring->cmd_dma.size,
   2083 	    BUS_DMASYNC_PREWRITE);
   2084 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2085 	    ring->desc_dma.size,
   2086 	    BUS_DMASYNC_PREWRITE);
   2087 
   2088 	/* kick ring */
   2089 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   2090 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2091 
   2092 	return 0;
   2093 }
   2094 
   2095 static void
   2096 wpi_start(struct ifnet *ifp)
   2097 {
   2098 	struct wpi_softc *sc = ifp->if_softc;
   2099 	struct ieee80211com *ic = &sc->sc_ic;
   2100 	struct ieee80211_node *ni;
   2101 	struct ether_header *eh;
   2102 	struct mbuf *m0;
   2103 	int ac;
   2104 
   2105 	/*
   2106 	 * net80211 may still try to send management frames even if the
   2107 	 * IFF_RUNNING flag is not set...
   2108 	 */
   2109 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   2110 		return;
   2111 
   2112 	for (;;) {
   2113 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   2114 		if (m0 != NULL) {
   2115 
   2116 			ni = M_GETCTX(m0, struct ieee80211_node *);
   2117 			M_CLEARCTX(m0);
   2118 
   2119 			/* management frames go into ring 0 */
   2120 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   2121 				ifp->if_oerrors++;
   2122 				continue;
   2123 			}
   2124 			bpf_mtap3(ic->ic_rawbpf, m0);
   2125 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   2126 				ifp->if_oerrors++;
   2127 				break;
   2128 			}
   2129 		} else {
   2130 			if (ic->ic_state != IEEE80211_S_RUN)
   2131 				break;
   2132 			IFQ_POLL(&ifp->if_snd, m0);
   2133 			if (m0 == NULL)
   2134 				break;
   2135 
   2136 			if (m0->m_len < sizeof (*eh) &&
   2137 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
   2138 				ifp->if_oerrors++;
   2139 				continue;
   2140 			}
   2141 			eh = mtod(m0, struct ether_header *);
   2142 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   2143 			if (ni == NULL) {
   2144 				m_freem(m0);
   2145 				ifp->if_oerrors++;
   2146 				continue;
   2147 			}
   2148 
   2149 			/* classify mbuf so we can find which tx ring to use */
   2150 			if (ieee80211_classify(ic, m0, ni) != 0) {
   2151 				m_freem(m0);
   2152 				ieee80211_free_node(ni);
   2153 				ifp->if_oerrors++;
   2154 				continue;
   2155 			}
   2156 
   2157 			/* no QoS encapsulation for EAPOL frames */
   2158 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   2159 			    M_WME_GETAC(m0) : WME_AC_BE;
   2160 
   2161 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   2162 				/* there is no place left in this ring */
   2163 				ifp->if_flags |= IFF_OACTIVE;
   2164 				break;
   2165 			}
   2166 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   2167 			bpf_mtap(ifp, m0);
   2168 			m0 = ieee80211_encap(ic, m0, ni);
   2169 			if (m0 == NULL) {
   2170 				ieee80211_free_node(ni);
   2171 				ifp->if_oerrors++;
   2172 				continue;
   2173 			}
   2174 			bpf_mtap3(ic->ic_rawbpf, m0);
   2175 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   2176 				ieee80211_free_node(ni);
   2177 				ifp->if_oerrors++;
   2178 				break;
   2179 			}
   2180 		}
   2181 
   2182 		sc->sc_tx_timer = 5;
   2183 		ifp->if_timer = 1;
   2184 	}
   2185 }
   2186 
   2187 static void
   2188 wpi_watchdog(struct ifnet *ifp)
   2189 {
   2190 	struct wpi_softc *sc = ifp->if_softc;
   2191 
   2192 	ifp->if_timer = 0;
   2193 
   2194 	if (sc->sc_tx_timer > 0) {
   2195 		if (--sc->sc_tx_timer == 0) {
   2196 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2197 			ifp->if_flags &= ~IFF_UP;
   2198 			wpi_stop(ifp, 1);
   2199 			ifp->if_oerrors++;
   2200 			return;
   2201 		}
   2202 		ifp->if_timer = 1;
   2203 	}
   2204 
   2205 	ieee80211_watchdog(&sc->sc_ic);
   2206 }
   2207 
   2208 static int
   2209 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2210 {
   2211 #define IS_RUNNING(ifp) \
   2212 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2213 
   2214 	struct wpi_softc *sc = ifp->if_softc;
   2215 	struct ieee80211com *ic = &sc->sc_ic;
   2216 	int s, error = 0;
   2217 
   2218 	s = splnet();
   2219 
   2220 	switch (cmd) {
   2221 	case SIOCSIFFLAGS:
   2222 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2223 			break;
   2224 		if (ifp->if_flags & IFF_UP) {
   2225 			if (!(ifp->if_flags & IFF_RUNNING))
   2226 				wpi_init(ifp);
   2227 		} else {
   2228 			if (ifp->if_flags & IFF_RUNNING)
   2229 				wpi_stop(ifp, 1);
   2230 		}
   2231 		break;
   2232 
   2233 	case SIOCADDMULTI:
   2234 	case SIOCDELMULTI:
   2235 		/* XXX no h/w multicast filter? --dyoung */
   2236 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2237 			/* setup multicast filter, etc */
   2238 			error = 0;
   2239 		}
   2240 		break;
   2241 
   2242 	default:
   2243 		error = ieee80211_ioctl(ic, cmd, data);
   2244 	}
   2245 
   2246 	if (error == ENETRESET) {
   2247 		if (IS_RUNNING(ifp) &&
   2248 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2249 			wpi_init(ifp);
   2250 		error = 0;
   2251 	}
   2252 
   2253 	splx(s);
   2254 	return error;
   2255 
   2256 #undef IS_RUNNING
   2257 }
   2258 
   2259 /*
   2260  * Extract various information from EEPROM.
   2261  */
   2262 static void
   2263 wpi_read_eeprom(struct wpi_softc *sc)
   2264 {
   2265 	struct ieee80211com *ic = &sc->sc_ic;
   2266 	char domain[4];
   2267 	int i;
   2268 
   2269 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2270 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2271 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2272 
   2273 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2274 	    sc->type));
   2275 
   2276 	/* read and print regulatory domain */
   2277 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2278 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
   2279 
   2280 	/* read and print MAC address */
   2281 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2282 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2283 
   2284 	/* read the list of authorized channels */
   2285 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2286 		wpi_read_eeprom_channels(sc, i);
   2287 
   2288 	/* read the list of power groups */
   2289 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2290 		wpi_read_eeprom_group(sc, i);
   2291 }
   2292 
   2293 static void
   2294 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2295 {
   2296 	struct ieee80211com *ic = &sc->sc_ic;
   2297 	const struct wpi_chan_band *band = &wpi_bands[n];
   2298 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2299 	int chan, i;
   2300 
   2301 	wpi_read_prom_data(sc, band->addr, channels,
   2302 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2303 
   2304 	for (i = 0; i < band->nchan; i++) {
   2305 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2306 			continue;
   2307 
   2308 		chan = band->chan[i];
   2309 
   2310 		if (n == 0) {	/* 2GHz band */
   2311 			ic->ic_channels[chan].ic_freq =
   2312 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2313 			ic->ic_channels[chan].ic_flags =
   2314 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2315 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2316 
   2317 		} else {	/* 5GHz band */
   2318 			/*
   2319 			 * Some 3945ABG adapters support channels 7, 8, 11
   2320 			 * and 12 in the 2GHz *and* 5GHz bands.
   2321 			 * Because of limitations in our net80211(9) stack,
   2322 			 * we can't support these channels in 5GHz band.
   2323 			 */
   2324 			if (chan <= 14)
   2325 				continue;
   2326 
   2327 			ic->ic_channels[chan].ic_freq =
   2328 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2329 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2330 		}
   2331 
   2332 		/* is active scan allowed on this channel? */
   2333 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2334 			ic->ic_channels[chan].ic_flags |=
   2335 			    IEEE80211_CHAN_PASSIVE;
   2336 		}
   2337 
   2338 		/* save maximum allowed power for this channel */
   2339 		sc->maxpwr[chan] = channels[i].maxpwr;
   2340 
   2341 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2342 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2343 	}
   2344 }
   2345 
   2346 static void
   2347 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2348 {
   2349 	struct wpi_power_group *group = &sc->groups[n];
   2350 	struct wpi_eeprom_group rgroup;
   2351 	int i;
   2352 
   2353 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2354 	    sizeof rgroup);
   2355 
   2356 	/* save power group information */
   2357 	group->chan   = rgroup.chan;
   2358 	group->maxpwr = rgroup.maxpwr;
   2359 	/* temperature at which the samples were taken */
   2360 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2361 
   2362 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2363 	    group->chan, group->maxpwr, group->temp));
   2364 
   2365 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2366 		group->samples[i].index = rgroup.samples[i].index;
   2367 		group->samples[i].power = rgroup.samples[i].power;
   2368 
   2369 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2370 		    group->samples[i].index, group->samples[i].power));
   2371 	}
   2372 }
   2373 
   2374 /*
   2375  * Send a command to the firmware.
   2376  */
   2377 static int
   2378 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2379 {
   2380 	struct wpi_tx_ring *ring = &sc->cmdq;
   2381 	struct wpi_tx_desc *desc;
   2382 	struct wpi_tx_cmd *cmd;
   2383 	struct wpi_dma_info *dma;
   2384 
   2385 	KASSERT(size <= sizeof cmd->data);
   2386 
   2387 	desc = &ring->desc[ring->cur];
   2388 	cmd = &ring->cmd[ring->cur];
   2389 
   2390 	cmd->code = code;
   2391 	cmd->flags = 0;
   2392 	cmd->qid = ring->qid;
   2393 	cmd->idx = ring->cur;
   2394 	memcpy(cmd->data, buf, size);
   2395 
   2396 	dma = &ring->cmd_dma;
   2397 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   2398 
   2399 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2400 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2401 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2402 	desc->segs[0].len  = htole32(4 + size);
   2403 
   2404 	dma = &ring->desc_dma;
   2405 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   2406 
   2407 	/* kick cmd ring */
   2408 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2409 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2410 
   2411 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2412 }
   2413 
   2414 static int
   2415 wpi_wme_update(struct ieee80211com *ic)
   2416 {
   2417 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2418 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2419 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2420 	const struct wmeParams *wmep;
   2421 	struct wpi_wme_setup wme;
   2422 	int ac;
   2423 
   2424 	/* don't override default WME values if WME is not actually enabled */
   2425 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2426 		return 0;
   2427 
   2428 	wme.flags = 0;
   2429 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2430 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2431 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2432 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2433 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2434 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2435 
   2436 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2437 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2438 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2439 	}
   2440 
   2441 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2442 #undef WPI_USEC
   2443 #undef WPI_EXP2
   2444 }
   2445 
   2446 /*
   2447  * Configure h/w multi-rate retries.
   2448  */
   2449 static int
   2450 wpi_mrr_setup(struct wpi_softc *sc)
   2451 {
   2452 	struct ieee80211com *ic = &sc->sc_ic;
   2453 	struct wpi_mrr_setup mrr;
   2454 	int i, error;
   2455 
   2456 	/* CCK rates (not used with 802.11a) */
   2457 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2458 		mrr.rates[i].flags = 0;
   2459 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2460 		/* fallback to the immediate lower CCK rate (if any) */
   2461 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2462 		/* try one time at this rate before falling back to "next" */
   2463 		mrr.rates[i].ntries = 1;
   2464 	}
   2465 
   2466 	/* OFDM rates (not used with 802.11b) */
   2467 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2468 		mrr.rates[i].flags = 0;
   2469 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2470 		/* fallback to the immediate lower rate (if any) */
   2471 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2472 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2473 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2474 			WPI_OFDM6 : WPI_CCK2) :
   2475 		    i - 1;
   2476 		/* try one time at this rate before falling back to "next" */
   2477 		mrr.rates[i].ntries = 1;
   2478 	}
   2479 
   2480 	/* setup MRR for control frames */
   2481 	mrr.which = htole32(WPI_MRR_CTL);
   2482 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2483 	if (error != 0) {
   2484 		aprint_error_dev(sc->sc_dev,
   2485 		    "could not setup MRR for control frames\n");
   2486 		return error;
   2487 	}
   2488 
   2489 	/* setup MRR for data frames */
   2490 	mrr.which = htole32(WPI_MRR_DATA);
   2491 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2492 	if (error != 0) {
   2493 		aprint_error_dev(sc->sc_dev,
   2494 		    "could not setup MRR for data frames\n");
   2495 		return error;
   2496 	}
   2497 
   2498 	return 0;
   2499 }
   2500 
   2501 static void
   2502 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2503 {
   2504 	struct wpi_cmd_led led;
   2505 
   2506 	led.which = which;
   2507 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2508 	led.off = off;
   2509 	led.on = on;
   2510 
   2511 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2512 }
   2513 
   2514 static void
   2515 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2516 {
   2517 	struct wpi_cmd_tsf tsf;
   2518 	uint64_t val, mod;
   2519 
   2520 	memset(&tsf, 0, sizeof tsf);
   2521 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   2522 	tsf.bintval = htole16(ni->ni_intval);
   2523 	tsf.lintval = htole16(10);
   2524 
   2525 	/* compute remaining time until next beacon */
   2526 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   2527 	mod = le64toh(tsf.tstamp) % val;
   2528 	tsf.binitval = htole32((uint32_t)(val - mod));
   2529 
   2530 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
   2531 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2532 
   2533 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2534 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2535 }
   2536 
   2537 /*
   2538  * Update Tx power to match what is defined for channel `c'.
   2539  */
   2540 static int
   2541 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2542 {
   2543 	struct ieee80211com *ic = &sc->sc_ic;
   2544 	struct wpi_power_group *group;
   2545 	struct wpi_cmd_txpower txpower;
   2546 	u_int chan;
   2547 	int i;
   2548 
   2549 	/* get channel number */
   2550 	chan = ieee80211_chan2ieee(ic, c);
   2551 
   2552 	/* find the power group to which this channel belongs */
   2553 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2554 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2555 			if (chan <= group->chan)
   2556 				break;
   2557 	} else
   2558 		group = &sc->groups[0];
   2559 
   2560 	memset(&txpower, 0, sizeof txpower);
   2561 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2562 	txpower.chan = htole16(chan);
   2563 
   2564 	/* set Tx power for all OFDM and CCK rates */
   2565 	for (i = 0; i <= 11 ; i++) {
   2566 		/* retrieve Tx power for this channel/rate combination */
   2567 		int idx = wpi_get_power_index(sc, group, c,
   2568 		    wpi_ridx_to_rate[i]);
   2569 
   2570 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2571 
   2572 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2573 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2574 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2575 		} else {
   2576 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2577 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2578 		}
   2579 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2580 		    wpi_ridx_to_rate[i], idx));
   2581 	}
   2582 
   2583 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2584 }
   2585 
   2586 /*
   2587  * Determine Tx power index for a given channel/rate combination.
   2588  * This takes into account the regulatory information from EEPROM and the
   2589  * current temperature.
   2590  */
   2591 static int
   2592 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2593     struct ieee80211_channel *c, int rate)
   2594 {
   2595 /* fixed-point arithmetic division using a n-bit fractional part */
   2596 #define fdivround(a, b, n)	\
   2597 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2598 
   2599 /* linear interpolation */
   2600 #define interpolate(x, x1, y1, x2, y2, n)	\
   2601 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2602 
   2603 	struct ieee80211com *ic = &sc->sc_ic;
   2604 	struct wpi_power_sample *sample;
   2605 	int pwr, idx;
   2606 	u_int chan;
   2607 
   2608 	/* get channel number */
   2609 	chan = ieee80211_chan2ieee(ic, c);
   2610 
   2611 	/* default power is group's maximum power - 3dB */
   2612 	pwr = group->maxpwr / 2;
   2613 
   2614 	/* decrease power for highest OFDM rates to reduce distortion */
   2615 	switch (rate) {
   2616 	case 72:	/* 36Mb/s */
   2617 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2618 		break;
   2619 	case 96:	/* 48Mb/s */
   2620 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2621 		break;
   2622 	case 108:	/* 54Mb/s */
   2623 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2624 		break;
   2625 	}
   2626 
   2627 	/* never exceed channel's maximum allowed Tx power */
   2628 	pwr = min(pwr, sc->maxpwr[chan]);
   2629 
   2630 	/* retrieve power index into gain tables from samples */
   2631 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2632 		if (pwr > sample[1].power)
   2633 			break;
   2634 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2635 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2636 	    sample[1].power, sample[1].index, 19);
   2637 
   2638 	/*-
   2639 	 * Adjust power index based on current temperature:
   2640 	 * - if cooler than factory-calibrated: decrease output power
   2641 	 * - if warmer than factory-calibrated: increase output power
   2642 	 */
   2643 	idx -= (sc->temp - group->temp) * 11 / 100;
   2644 
   2645 	/* decrease power for CCK rates (-5dB) */
   2646 	if (!WPI_RATE_IS_OFDM(rate))
   2647 		idx += 10;
   2648 
   2649 	/* keep power index in a valid range */
   2650 	if (idx < 0)
   2651 		return 0;
   2652 	if (idx > WPI_MAX_PWR_INDEX)
   2653 		return WPI_MAX_PWR_INDEX;
   2654 	return idx;
   2655 
   2656 #undef interpolate
   2657 #undef fdivround
   2658 }
   2659 
   2660 /*
   2661  * Build a beacon frame that the firmware will broadcast periodically in
   2662  * IBSS or HostAP modes.
   2663  */
   2664 static int
   2665 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2666 {
   2667 	struct ieee80211com *ic = &sc->sc_ic;
   2668 	struct wpi_tx_ring *ring = &sc->cmdq;
   2669 	struct wpi_tx_desc *desc;
   2670 	struct wpi_tx_data *data;
   2671 	struct wpi_tx_cmd *cmd;
   2672 	struct wpi_cmd_beacon *bcn;
   2673 	struct ieee80211_beacon_offsets bo;
   2674 	struct mbuf *m0;
   2675 	int error;
   2676 
   2677 	desc = &ring->desc[ring->cur];
   2678 	data = &ring->data[ring->cur];
   2679 
   2680 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2681 	if (m0 == NULL) {
   2682 		aprint_error_dev(sc->sc_dev,
   2683 		    "could not allocate beacon frame\n");
   2684 		return ENOMEM;
   2685 	}
   2686 
   2687 	cmd = &ring->cmd[ring->cur];
   2688 	cmd->code = WPI_CMD_SET_BEACON;
   2689 	cmd->flags = 0;
   2690 	cmd->qid = ring->qid;
   2691 	cmd->idx = ring->cur;
   2692 
   2693 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2694 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2695 	bcn->id = WPI_ID_BROADCAST;
   2696 	bcn->ofdm_mask = 0xff;
   2697 	bcn->cck_mask = 0x0f;
   2698 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2699 	bcn->len = htole16(m0->m_pkthdr.len);
   2700 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2701 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2702 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2703 
   2704 	/* save and trim IEEE802.11 header */
   2705 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2706 	m_adj(m0, sizeof (struct ieee80211_frame));
   2707 
   2708 	/* assume beacon frame is contiguous */
   2709 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2710 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   2711 	if (error != 0) {
   2712 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2713 		m_freem(m0);
   2714 		return error;
   2715 	}
   2716 
   2717 	data->m = m0;
   2718 
   2719 	/* first scatter/gather segment is used by the beacon command */
   2720 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2721 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2722 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2723 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2724 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2725 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2726 
   2727 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2728 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2729 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2730 	    BUS_DMASYNC_PREWRITE);
   2731 
   2732 	/* kick cmd ring */
   2733 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2734 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2735 
   2736 	return 0;
   2737 }
   2738 
   2739 static int
   2740 wpi_auth(struct wpi_softc *sc)
   2741 {
   2742 	struct ieee80211com *ic = &sc->sc_ic;
   2743 	struct ieee80211_node *ni = ic->ic_bss;
   2744 	struct wpi_node_info node;
   2745 	int error;
   2746 
   2747 	/* update adapter's configuration */
   2748 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2749 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2750 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2751 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2752 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2753 		    WPI_CONFIG_24GHZ);
   2754 	}
   2755 	switch (ic->ic_curmode) {
   2756 	case IEEE80211_MODE_11A:
   2757 		sc->config.cck_mask  = 0;
   2758 		sc->config.ofdm_mask = 0x15;
   2759 		break;
   2760 	case IEEE80211_MODE_11B:
   2761 		sc->config.cck_mask  = 0x03;
   2762 		sc->config.ofdm_mask = 0;
   2763 		break;
   2764 	default:	/* assume 802.11b/g */
   2765 		sc->config.cck_mask  = 0x0f;
   2766 		sc->config.ofdm_mask = 0x15;
   2767 	}
   2768 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2769 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2770 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2771 	    sizeof (struct wpi_config), 1);
   2772 	if (error != 0) {
   2773 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2774 		return error;
   2775 	}
   2776 
   2777 	/* configuration has changed, set Tx power accordingly */
   2778 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2779 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2780 		return error;
   2781 	}
   2782 
   2783 	/* add default node */
   2784 	memset(&node, 0, sizeof node);
   2785 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2786 	node.id = WPI_ID_BSS;
   2787 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2788 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2789 	node.action = htole32(WPI_ACTION_SET_RATE);
   2790 	node.antenna = WPI_ANTENNA_BOTH;
   2791 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2792 	if (error != 0) {
   2793 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2794 		return error;
   2795 	}
   2796 
   2797 	return 0;
   2798 }
   2799 
   2800 /*
   2801  * Send a scan request to the firmware.  Since this command is huge, we map it
   2802  * into a mbuf instead of using the pre-allocated set of commands.
   2803  */
   2804 static int
   2805 wpi_scan(struct wpi_softc *sc)
   2806 {
   2807 	struct ieee80211com *ic = &sc->sc_ic;
   2808 	struct wpi_tx_ring *ring = &sc->cmdq;
   2809 	struct wpi_tx_desc *desc;
   2810 	struct wpi_tx_data *data;
   2811 	struct wpi_tx_cmd *cmd;
   2812 	struct wpi_scan_hdr *hdr;
   2813 	struct wpi_scan_chan *chan;
   2814 	struct ieee80211_frame *wh;
   2815 	struct ieee80211_rateset *rs;
   2816 	struct ieee80211_channel *c;
   2817 	uint8_t *frm;
   2818 	int pktlen, error, nrates;
   2819 
   2820 	if (ic->ic_curchan == NULL)
   2821 		return EIO;
   2822 
   2823 	desc = &ring->desc[ring->cur];
   2824 	data = &ring->data[ring->cur];
   2825 
   2826 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2827 	if (data->m == NULL) {
   2828 		aprint_error_dev(sc->sc_dev,
   2829 		    "could not allocate mbuf for scan command\n");
   2830 		return ENOMEM;
   2831 	}
   2832 	MCLGET(data->m, M_DONTWAIT);
   2833 	if (!(data->m->m_flags & M_EXT)) {
   2834 		m_freem(data->m);
   2835 		data->m = NULL;
   2836 		aprint_error_dev(sc->sc_dev,
   2837 		    "could not allocate mbuf for scan command\n");
   2838 		return ENOMEM;
   2839 	}
   2840 
   2841 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2842 	cmd->code = WPI_CMD_SCAN;
   2843 	cmd->flags = 0;
   2844 	cmd->qid = ring->qid;
   2845 	cmd->idx = ring->cur;
   2846 
   2847 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2848 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2849 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
   2850 	hdr->cmd.id = WPI_ID_BROADCAST;
   2851 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
   2852 	/*
   2853 	 * Move to the next channel if no packets are received within 5 msecs
   2854 	 * after sending the probe request (this helps to reduce the duration
   2855 	 * of active scans).
   2856 	 */
   2857 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
   2858 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2859 
   2860 	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
   2861 		hdr->crc_threshold = htole16(1);
   2862 		/* send probe requests at 6Mbps */
   2863 		hdr->cmd.rate = wpi_plcp_signal(12);
   2864 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   2865 	} else {
   2866 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2867 		/* send probe requests at 1Mbps */
   2868 		hdr->cmd.rate = wpi_plcp_signal(2);
   2869 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   2870 	}
   2871 
   2872 	/* for directed scans, firmware inserts the essid IE itself */
   2873 	if (ic->ic_des_esslen != 0) {
   2874 		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2875 		hdr->essid[0].len = ic->ic_des_esslen;
   2876 		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2877 	}
   2878 
   2879 	/*
   2880 	 * Build a probe request frame.  Most of the following code is a
   2881 	 * copy & paste of what is done in net80211.
   2882 	 */
   2883 	wh = (struct ieee80211_frame *)(hdr + 1);
   2884 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2885 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2886 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2887 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2888 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2889 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2890 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2891 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2892 
   2893 	frm = (uint8_t *)(wh + 1);
   2894 
   2895 	/* add empty essid IE (firmware generates it for directed scans) */
   2896 	*frm++ = IEEE80211_ELEMID_SSID;
   2897 	*frm++ = 0;
   2898 
   2899 	/* add supported rates IE */
   2900 	*frm++ = IEEE80211_ELEMID_RATES;
   2901 	nrates = rs->rs_nrates;
   2902 	if (nrates > IEEE80211_RATE_SIZE)
   2903 		nrates = IEEE80211_RATE_SIZE;
   2904 	*frm++ = nrates;
   2905 	memcpy(frm, rs->rs_rates, nrates);
   2906 	frm += nrates;
   2907 
   2908 	/* add supported xrates IE */
   2909 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2910 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2911 		*frm++ = IEEE80211_ELEMID_XRATES;
   2912 		*frm++ = nrates;
   2913 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2914 		frm += nrates;
   2915 	}
   2916 
   2917 	/* setup length of probe request */
   2918 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
   2919 
   2920 	chan = (struct wpi_scan_chan *)frm;
   2921 	c = ic->ic_curchan;
   2922 
   2923 	chan->chan = ieee80211_chan2ieee(ic, c);
   2924 	chan->flags = 0;
   2925 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2926 		chan->flags |= WPI_CHAN_ACTIVE;
   2927 		if (ic->ic_des_esslen != 0)
   2928 			chan->flags |= WPI_CHAN_DIRECT;
   2929 	}
   2930 	chan->dsp_gain = 0x6e;
   2931 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2932 		chan->rf_gain = 0x3b;
   2933 		chan->active  = htole16(10);
   2934 		chan->passive = htole16(110);
   2935 	} else {
   2936 		chan->rf_gain = 0x28;
   2937 		chan->active  = htole16(20);
   2938 		chan->passive = htole16(120);
   2939 	}
   2940 	hdr->nchan++;
   2941 	chan++;
   2942 
   2943 	frm += sizeof (struct wpi_scan_chan);
   2944 
   2945 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2946 	pktlen = frm - (uint8_t *)cmd;
   2947 
   2948 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
   2949 	    BUS_DMA_NOWAIT);
   2950 	if (error != 0) {
   2951 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2952 		m_freem(data->m);
   2953 		data->m = NULL;
   2954 		return error;
   2955 	}
   2956 
   2957 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2958 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2959 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2960 
   2961 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2962 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2963 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2964 	    BUS_DMASYNC_PREWRITE);
   2965 
   2966 	/* kick cmd ring */
   2967 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2968 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2969 
   2970 	return 0;	/* will be notified async. of failure/success */
   2971 }
   2972 
   2973 static int
   2974 wpi_config(struct wpi_softc *sc)
   2975 {
   2976 	struct ieee80211com *ic = &sc->sc_ic;
   2977 	struct ifnet *ifp = ic->ic_ifp;
   2978 	struct wpi_power power;
   2979 	struct wpi_bluetooth bluetooth;
   2980 	struct wpi_node_info node;
   2981 	int error;
   2982 
   2983 	memset(&power, 0, sizeof power);
   2984 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2985 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2986 	if (error != 0) {
   2987 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2988 		return error;
   2989 	}
   2990 
   2991 	/* configure bluetooth coexistence */
   2992 	memset(&bluetooth, 0, sizeof bluetooth);
   2993 	bluetooth.flags = 3;
   2994 	bluetooth.lead = 0xaa;
   2995 	bluetooth.kill = 1;
   2996 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   2997 	    0);
   2998 	if (error != 0) {
   2999 		aprint_error_dev(sc->sc_dev,
   3000 			"could not configure bluetooth coexistence\n");
   3001 		return error;
   3002 	}
   3003 
   3004 	/* configure adapter */
   3005 	memset(&sc->config, 0, sizeof (struct wpi_config));
   3006 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   3007 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   3008 	/* set default channel */
   3009 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
   3010 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   3011 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
   3012 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   3013 		    WPI_CONFIG_24GHZ);
   3014 	}
   3015 	sc->config.filter = 0;
   3016 	switch (ic->ic_opmode) {
   3017 	case IEEE80211_M_STA:
   3018 		sc->config.mode = WPI_MODE_STA;
   3019 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   3020 		break;
   3021 	case IEEE80211_M_IBSS:
   3022 	case IEEE80211_M_AHDEMO:
   3023 		sc->config.mode = WPI_MODE_IBSS;
   3024 		break;
   3025 	case IEEE80211_M_HOSTAP:
   3026 		sc->config.mode = WPI_MODE_HOSTAP;
   3027 		break;
   3028 	case IEEE80211_M_MONITOR:
   3029 		sc->config.mode = WPI_MODE_MONITOR;
   3030 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   3031 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   3032 		break;
   3033 	}
   3034 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   3035 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   3036 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   3037 	    sizeof (struct wpi_config), 0);
   3038 	if (error != 0) {
   3039 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   3040 		return error;
   3041 	}
   3042 
   3043 	/* configuration has changed, set Tx power accordingly */
   3044 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
   3045 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   3046 		return error;
   3047 	}
   3048 
   3049 	/* add broadcast node */
   3050 	memset(&node, 0, sizeof node);
   3051 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   3052 	node.id = WPI_ID_BROADCAST;
   3053 	node.rate = wpi_plcp_signal(2);
   3054 	node.action = htole32(WPI_ACTION_SET_RATE);
   3055 	node.antenna = WPI_ANTENNA_BOTH;
   3056 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   3057 	if (error != 0) {
   3058 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   3059 		return error;
   3060 	}
   3061 
   3062 	if ((error = wpi_mrr_setup(sc)) != 0) {
   3063 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   3064 		return error;
   3065 	}
   3066 
   3067 	return 0;
   3068 }
   3069 
   3070 static void
   3071 wpi_stop_master(struct wpi_softc *sc)
   3072 {
   3073 	uint32_t tmp;
   3074 	int ntries;
   3075 
   3076 	tmp = WPI_READ(sc, WPI_RESET);
   3077 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   3078 
   3079 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   3080 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   3081 		return;	/* already asleep */
   3082 
   3083 	for (ntries = 0; ntries < 100; ntries++) {
   3084 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   3085 			break;
   3086 		DELAY(10);
   3087 	}
   3088 	if (ntries == 100) {
   3089 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   3090 	}
   3091 }
   3092 
   3093 static int
   3094 wpi_power_up(struct wpi_softc *sc)
   3095 {
   3096 	uint32_t tmp;
   3097 	int ntries;
   3098 
   3099 	wpi_mem_lock(sc);
   3100 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   3101 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   3102 	wpi_mem_unlock(sc);
   3103 
   3104 	for (ntries = 0; ntries < 5000; ntries++) {
   3105 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   3106 			break;
   3107 		DELAY(10);
   3108 	}
   3109 	if (ntries == 5000) {
   3110 		aprint_error_dev(sc->sc_dev,
   3111 		    "timeout waiting for NIC to power up\n");
   3112 		return ETIMEDOUT;
   3113 	}
   3114 	return 0;
   3115 }
   3116 
   3117 static int
   3118 wpi_reset(struct wpi_softc *sc)
   3119 {
   3120 	uint32_t tmp;
   3121 	int ntries;
   3122 
   3123 	/* clear any pending interrupts */
   3124 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3125 
   3126 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   3127 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   3128 
   3129 	tmp = WPI_READ(sc, WPI_CHICKEN);
   3130 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   3131 
   3132 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   3133 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   3134 
   3135 	/* wait for clock stabilization */
   3136 	for (ntries = 0; ntries < 1000; ntries++) {
   3137 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   3138 			break;
   3139 		DELAY(10);
   3140 	}
   3141 	if (ntries == 1000) {
   3142 		aprint_error_dev(sc->sc_dev,
   3143 		    "timeout waiting for clock stabilization\n");
   3144 		return ETIMEDOUT;
   3145 	}
   3146 
   3147 	/* initialize EEPROM */
   3148 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   3149 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   3150 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   3151 		return EIO;
   3152 	}
   3153 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   3154 
   3155 	return 0;
   3156 }
   3157 
   3158 static void
   3159 wpi_hw_config(struct wpi_softc *sc)
   3160 {
   3161 	uint32_t rev, hw;
   3162 
   3163 	/* voodoo from the reference driver */
   3164 	hw = WPI_READ(sc, WPI_HWCONFIG);
   3165 
   3166 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   3167 	rev = PCI_REVISION(rev);
   3168 	if ((rev & 0xc0) == 0x40)
   3169 		hw |= WPI_HW_ALM_MB;
   3170 	else if (!(rev & 0x80))
   3171 		hw |= WPI_HW_ALM_MM;
   3172 
   3173 	if (sc->cap == 0x80)
   3174 		hw |= WPI_HW_SKU_MRC;
   3175 
   3176 	hw &= ~WPI_HW_REV_D;
   3177 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   3178 		hw |= WPI_HW_REV_D;
   3179 
   3180 	if (sc->type > 1)
   3181 		hw |= WPI_HW_TYPE_B;
   3182 
   3183 	DPRINTF(("setting h/w config %x\n", hw));
   3184 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   3185 }
   3186 
   3187 static int
   3188 wpi_init(struct ifnet *ifp)
   3189 {
   3190 	struct wpi_softc *sc = ifp->if_softc;
   3191 	struct ieee80211com *ic = &sc->sc_ic;
   3192 	uint32_t tmp;
   3193 	int qid, ntries, error;
   3194 
   3195 	wpi_stop(ifp,1);
   3196 	(void)wpi_reset(sc);
   3197 
   3198 	wpi_mem_lock(sc);
   3199 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   3200 	DELAY(20);
   3201 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   3202 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   3203 	wpi_mem_unlock(sc);
   3204 
   3205 	(void)wpi_power_up(sc);
   3206 	wpi_hw_config(sc);
   3207 
   3208 	/* init Rx ring */
   3209 	wpi_mem_lock(sc);
   3210 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   3211 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   3212 	    offsetof(struct wpi_shared, next));
   3213 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3214 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3215 	wpi_mem_unlock(sc);
   3216 
   3217 	/* init Tx rings */
   3218 	wpi_mem_lock(sc);
   3219 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
   3220 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
   3221 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
   3222 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3223 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3224 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3225 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3226 
   3227 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3228 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3229 
   3230 	for (qid = 0; qid < 6; qid++) {
   3231 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3232 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3233 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3234 	}
   3235 	wpi_mem_unlock(sc);
   3236 
   3237 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3238 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3239 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3240 
   3241 	/* clear any pending interrupts */
   3242 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3243 	/* enable interrupts */
   3244 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3245 
   3246 	/* not sure why/if this is necessary... */
   3247 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3248 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3249 
   3250 	if ((error = wpi_load_firmware(sc)) != 0)
   3251 		/* wpi_load_firmware prints error messages for us.  */
   3252 		goto fail1;
   3253 
   3254 	/* Check the status of the radio switch */
   3255 	mutex_enter(&sc->sc_rsw_mtx);
   3256 	if (wpi_getrfkill(sc)) {
   3257 		mutex_exit(&sc->sc_rsw_mtx);
   3258 		aprint_error_dev(sc->sc_dev,
   3259 		    "radio is disabled by hardware switch\n");
   3260 		ifp->if_flags &= ~IFF_UP;
   3261 		error = EBUSY;
   3262 		goto fail1;
   3263 	}
   3264 	mutex_exit(&sc->sc_rsw_mtx);
   3265 
   3266 	/* wait for thermal sensors to calibrate */
   3267 	for (ntries = 0; ntries < 1000; ntries++) {
   3268 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3269 			break;
   3270 		DELAY(10);
   3271 	}
   3272 	if (ntries == 1000) {
   3273 		aprint_error_dev(sc->sc_dev,
   3274 		    "timeout waiting for thermal sensors calibration\n");
   3275 		error = ETIMEDOUT;
   3276 		goto fail1;
   3277 	}
   3278 	DPRINTF(("temperature %d\n", sc->temp));
   3279 
   3280 	if ((error = wpi_config(sc)) != 0) {
   3281 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3282 		goto fail1;
   3283 	}
   3284 
   3285 	ifp->if_flags &= ~IFF_OACTIVE;
   3286 	ifp->if_flags |= IFF_RUNNING;
   3287 
   3288 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3289 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3290 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3291 	}
   3292 	else
   3293 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3294 
   3295 	return 0;
   3296 
   3297 fail1:	wpi_stop(ifp, 1);
   3298 	return error;
   3299 }
   3300 
   3301 static void
   3302 wpi_stop(struct ifnet *ifp, int disable)
   3303 {
   3304 	struct wpi_softc *sc = ifp->if_softc;
   3305 	struct ieee80211com *ic = &sc->sc_ic;
   3306 	uint32_t tmp;
   3307 	int ac;
   3308 
   3309 	ifp->if_timer = sc->sc_tx_timer = 0;
   3310 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3311 
   3312 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3313 
   3314 	/* disable interrupts */
   3315 	WPI_WRITE(sc, WPI_MASK, 0);
   3316 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3317 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3318 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3319 
   3320 	wpi_mem_lock(sc);
   3321 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3322 	wpi_mem_unlock(sc);
   3323 
   3324 	/* reset all Tx rings */
   3325 	for (ac = 0; ac < 4; ac++)
   3326 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3327 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3328 
   3329 	/* reset Rx ring */
   3330 	wpi_reset_rx_ring(sc, &sc->rxq);
   3331 
   3332 	wpi_mem_lock(sc);
   3333 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3334 	wpi_mem_unlock(sc);
   3335 
   3336 	DELAY(5);
   3337 
   3338 	wpi_stop_master(sc);
   3339 
   3340 	tmp = WPI_READ(sc, WPI_RESET);
   3341 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3342 }
   3343 
   3344 static bool
   3345 wpi_resume(device_t dv, const pmf_qual_t *qual)
   3346 {
   3347 	struct wpi_softc *sc = device_private(dv);
   3348 
   3349 	(void)wpi_reset(sc);
   3350 
   3351 	return true;
   3352 }
   3353 
   3354 /*
   3355  * Return whether or not the radio is enabled in hardware
   3356  * (i.e. the rfkill switch is "off").
   3357  */
   3358 static int
   3359 wpi_getrfkill(struct wpi_softc *sc)
   3360 {
   3361 	uint32_t tmp;
   3362 
   3363 	wpi_mem_lock(sc);
   3364 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3365 	wpi_mem_unlock(sc);
   3366 
   3367 	KASSERT(mutex_owned(&sc->sc_rsw_mtx));
   3368 	if (tmp & 0x01) {
   3369 		/* switch is on */
   3370 		if (sc->sc_rsw_status != WPI_RSW_ON) {
   3371 			sc->sc_rsw_status = WPI_RSW_ON;
   3372 			sysmon_pswitch_event(&sc->sc_rsw,
   3373 			    PSWITCH_EVENT_PRESSED);
   3374 		}
   3375 	} else {
   3376 		/* switch is off */
   3377 		if (sc->sc_rsw_status != WPI_RSW_OFF) {
   3378 			sc->sc_rsw_status = WPI_RSW_OFF;
   3379 			sysmon_pswitch_event(&sc->sc_rsw,
   3380 			    PSWITCH_EVENT_RELEASED);
   3381 		}
   3382 	}
   3383 
   3384 	return !(tmp & 0x01);
   3385 }
   3386 
   3387 static int
   3388 wpi_sysctl_radio(SYSCTLFN_ARGS)
   3389 {
   3390 	struct sysctlnode node;
   3391 	struct wpi_softc *sc;
   3392 	int val, error;
   3393 
   3394 	node = *rnode;
   3395 	sc = (struct wpi_softc *)node.sysctl_data;
   3396 
   3397 	mutex_enter(&sc->sc_rsw_mtx);
   3398 	val = !wpi_getrfkill(sc);
   3399 	mutex_exit(&sc->sc_rsw_mtx);
   3400 
   3401 	node.sysctl_data = &val;
   3402 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3403 
   3404 	if (error || newp == NULL)
   3405 		return error;
   3406 
   3407 	return 0;
   3408 }
   3409 
   3410 static void
   3411 wpi_sysctlattach(struct wpi_softc *sc)
   3412 {
   3413 	int rc;
   3414 	const struct sysctlnode *rnode;
   3415 	const struct sysctlnode *cnode;
   3416 
   3417 	struct sysctllog **clog = &sc->sc_sysctllog;
   3418 
   3419 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
   3420 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
   3421 	    SYSCTL_DESCR("wpi controls and statistics"),
   3422 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
   3423 		goto err;
   3424 
   3425 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3426 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
   3427 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
   3428 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
   3429 		goto err;
   3430 
   3431 #ifdef WPI_DEBUG
   3432 	/* control debugging printfs */
   3433 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3434 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
   3435 	    "debug", SYSCTL_DESCR("Enable debugging output"),
   3436 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
   3437 		goto err;
   3438 #endif
   3439 
   3440 	return;
   3441 err:
   3442 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3443 }
   3444 
   3445 static void
   3446 wpi_rsw_thread(void *arg)
   3447 {
   3448 	struct wpi_softc *sc = (struct wpi_softc *)arg;
   3449 
   3450 	mutex_enter(&sc->sc_rsw_mtx);
   3451 	for (;;) {
   3452 		cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
   3453 		if (sc->sc_dying) {
   3454 			sc->sc_rsw_lwp = NULL;
   3455 			cv_broadcast(&sc->sc_rsw_cv);
   3456 			mutex_exit(&sc->sc_rsw_mtx);
   3457 			kthread_exit(0);
   3458 		}
   3459 		wpi_getrfkill(sc);
   3460 	}
   3461 }
   3462 
   3463