Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.78.2.2
      1 /*	$NetBSD: if_wpi.c,v 1.78.2.2 2019/07/27 17:11:09 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007
      5  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.78.2.2 2019/07/27 17:11:09 martin Exp $");
     22 
     23 /*
     24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25  */
     26 
     27 
     28 #include <sys/param.h>
     29 #include <sys/sockio.h>
     30 #include <sys/sysctl.h>
     31 #include <sys/mbuf.h>
     32 #include <sys/kernel.h>
     33 #include <sys/socket.h>
     34 #include <sys/systm.h>
     35 #include <sys/malloc.h>
     36 #include <sys/mutex.h>
     37 #include <sys/once.h>
     38 #include <sys/conf.h>
     39 #include <sys/kauth.h>
     40 #include <sys/callout.h>
     41 #include <sys/proc.h>
     42 #include <sys/kthread.h>
     43 
     44 #include <sys/bus.h>
     45 #include <machine/endian.h>
     46 #include <sys/intr.h>
     47 
     48 #include <dev/pci/pcireg.h>
     49 #include <dev/pci/pcivar.h>
     50 #include <dev/pci/pcidevs.h>
     51 
     52 #include <dev/sysmon/sysmonvar.h>
     53 
     54 #include <net/bpf.h>
     55 #include <net/if.h>
     56 #include <net/if_arp.h>
     57 #include <net/if_dl.h>
     58 #include <net/if_ether.h>
     59 #include <net/if_media.h>
     60 #include <net/if_types.h>
     61 
     62 #include <netinet/in.h>
     63 #include <netinet/in_systm.h>
     64 #include <netinet/in_var.h>
     65 #include <netinet/ip.h>
     66 
     67 #include <net80211/ieee80211_var.h>
     68 #include <net80211/ieee80211_amrr.h>
     69 #include <net80211/ieee80211_radiotap.h>
     70 
     71 #include <dev/firmload.h>
     72 
     73 #include <dev/pci/if_wpireg.h>
     74 #include <dev/pci/if_wpivar.h>
     75 
     76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
     77 static once_t wpi_firmware_init;
     78 static kmutex_t wpi_firmware_mutex;
     79 static size_t wpi_firmware_users;
     80 static uint8_t *wpi_firmware_image;
     81 static size_t wpi_firmware_size;
     82 
     83 static int	wpi_match(device_t, cfdata_t, void *);
     84 static void	wpi_attach(device_t, device_t, void *);
     85 static int	wpi_detach(device_t , int);
     86 static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
     87 		    void **, bus_size_t, bus_size_t, int);
     88 static void	wpi_dma_contig_free(struct wpi_dma_info *);
     89 static int	wpi_alloc_shared(struct wpi_softc *);
     90 static void	wpi_free_shared(struct wpi_softc *);
     91 static int	wpi_alloc_fwmem(struct wpi_softc *);
     92 static void	wpi_free_fwmem(struct wpi_softc *);
     93 static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
     94 static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
     95 static int	wpi_alloc_rpool(struct wpi_softc *);
     96 static void	wpi_free_rpool(struct wpi_softc *);
     97 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
     98 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
     99 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    100 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
    101 		    int, int);
    102 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    103 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    104 static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    105 static void	wpi_newassoc(struct ieee80211_node *, int);
    106 static int	wpi_media_change(struct ifnet *);
    107 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    108 static void	wpi_mem_lock(struct wpi_softc *);
    109 static void	wpi_mem_unlock(struct wpi_softc *);
    110 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
    111 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    112 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    113 		    const uint32_t *, int);
    114 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    115 static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    116 static int	wpi_cache_firmware(struct wpi_softc *);
    117 static void	wpi_release_firmware(void);
    118 static int	wpi_load_firmware(struct wpi_softc *);
    119 static void	wpi_calib_timeout(void *);
    120 static void	wpi_iter_func(void *, struct ieee80211_node *);
    121 static void	wpi_power_calibration(struct wpi_softc *, int);
    122 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    123 		    struct wpi_rx_data *);
    124 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    125 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    126 static void	wpi_notif_intr(struct wpi_softc *);
    127 static int	wpi_intr(void *);
    128 static void	wpi_softintr(void *);
    129 static void	wpi_read_eeprom(struct wpi_softc *);
    130 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
    131 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
    132 static uint8_t	wpi_plcp_signal(int);
    133 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
    134 		    struct ieee80211_node *, int);
    135 static void	wpi_start(struct ifnet *);
    136 static void	wpi_watchdog(struct ifnet *);
    137 static int	wpi_ioctl(struct ifnet *, u_long, void *);
    138 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    139 static int	wpi_wme_update(struct ieee80211com *);
    140 static int	wpi_mrr_setup(struct wpi_softc *);
    141 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    142 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    143 static int	wpi_set_txpower(struct wpi_softc *,
    144 		    struct ieee80211_channel *, int);
    145 static int	wpi_get_power_index(struct wpi_softc *,
    146 		    struct wpi_power_group *, struct ieee80211_channel *, int);
    147 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    148 static int	wpi_auth(struct wpi_softc *);
    149 static int	wpi_scan(struct wpi_softc *);
    150 static int	wpi_config(struct wpi_softc *);
    151 static void	wpi_stop_master(struct wpi_softc *);
    152 static int	wpi_power_up(struct wpi_softc *);
    153 static int	wpi_reset(struct wpi_softc *);
    154 static void	wpi_hw_config(struct wpi_softc *);
    155 static int	wpi_init(struct ifnet *);
    156 static void	wpi_stop(struct ifnet *, int);
    157 static bool	wpi_resume(device_t, const pmf_qual_t *);
    158 static int	wpi_getrfkill(struct wpi_softc *);
    159 static void	wpi_sysctlattach(struct wpi_softc *);
    160 static void	wpi_rsw_thread(void *);
    161 
    162 #ifdef WPI_DEBUG
    163 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
    164 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
    165 int wpi_debug = 1;
    166 #else
    167 #define DPRINTF(x)
    168 #define DPRINTFN(n, x)
    169 #endif
    170 
    171 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    172 	wpi_detach, NULL);
    173 
    174 static int
    175 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
    176 {
    177 	struct pci_attach_args *pa = aux;
    178 
    179 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    180 		return 0;
    181 
    182 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    183 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    184 		return 1;
    185 
    186 	return 0;
    187 }
    188 
    189 /* Base Address Register */
    190 #define WPI_PCI_BAR0	0x10
    191 
    192 static int
    193 wpi_attach_once(void)
    194 {
    195 
    196 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
    197 	return 0;
    198 }
    199 
    200 static void
    201 wpi_attach(device_t parent __unused, device_t self, void *aux)
    202 {
    203 	struct wpi_softc *sc = device_private(self);
    204 	struct ieee80211com *ic = &sc->sc_ic;
    205 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    206 	struct pci_attach_args *pa = aux;
    207 	const char *intrstr;
    208 	bus_space_tag_t memt;
    209 	bus_space_handle_t memh;
    210 	pcireg_t data;
    211 	int ac, error;
    212 	char intrbuf[PCI_INTRSTR_LEN];
    213 
    214 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
    215 	sc->fw_used = false;
    216 
    217 	sc->sc_dev = self;
    218 	sc->sc_pct = pa->pa_pc;
    219 	sc->sc_pcitag = pa->pa_tag;
    220 
    221 	sc->sc_rsw_status = WPI_RSW_UNKNOWN;
    222 	sc->sc_rsw.smpsw_name = device_xname(self);
    223 	sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
    224 	error = sysmon_pswitch_register(&sc->sc_rsw);
    225 	if (error) {
    226 		aprint_error_dev(self,
    227 		    "unable to register radio switch with sysmon\n");
    228 		return;
    229 	}
    230 	mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
    231 	cv_init(&sc->sc_rsw_cv, "wpirsw");
    232 	if (kthread_create(PRI_NONE, 0, NULL,
    233 	    wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
    234 		aprint_error_dev(self, "couldn't create switch thread\n");
    235 	}
    236 
    237 	callout_init(&sc->calib_to, 0);
    238 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    239 
    240 	pci_aprint_devinfo(pa, NULL);
    241 
    242 	/* enable bus-mastering */
    243 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    244 	data |= PCI_COMMAND_MASTER_ENABLE;
    245 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    246 
    247 	/* map the register window */
    248 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    249 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    250 	if (error != 0) {
    251 		aprint_error_dev(self, "could not map memory space\n");
    252 		return;
    253 	}
    254 
    255 	sc->sc_st = memt;
    256 	sc->sc_sh = memh;
    257 	sc->sc_dmat = pa->pa_dmat;
    258 
    259 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc);
    260 	if (sc->sc_soft_ih == NULL) {
    261 		aprint_error_dev(self, "could not establish softint\n");
    262 		goto unmap;
    263 	}
    264 
    265 	if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
    266 		aprint_error_dev(self, "could not map interrupt\n");
    267 		goto failsi;
    268 	}
    269 
    270 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
    271 	    sizeof(intrbuf));
    272 	sc->sc_ih = pci_intr_establish(sc->sc_pct, sc->sc_pihp[0], IPL_NET,
    273 	    wpi_intr, sc);
    274 	if (sc->sc_ih == NULL) {
    275 		aprint_error_dev(self, "could not establish interrupt");
    276 		if (intrstr != NULL)
    277 			aprint_error(" at %s", intrstr);
    278 		aprint_error("\n");
    279 		goto failia;
    280 	}
    281 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    282 
    283 	/*
    284 	 * Put adapter into a known state.
    285 	 */
    286 	if ((error = wpi_reset(sc)) != 0) {
    287 		aprint_error_dev(self, "could not reset adapter\n");
    288 		goto failih;
    289 	}
    290 
    291 	/*
    292 	 * Allocate DMA memory for firmware transfers.
    293 	 */
    294 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
    295 		aprint_error_dev(self, "could not allocate firmware memory\n");
    296 		goto failih;
    297 	}
    298 
    299 	/*
    300 	 * Allocate shared page and Tx/Rx rings.
    301 	 */
    302 	if ((error = wpi_alloc_shared(sc)) != 0) {
    303 		aprint_error_dev(self, "could not allocate shared area\n");
    304 		goto fail1;
    305 	}
    306 
    307 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    308 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    309 		goto fail2;
    310 	}
    311 
    312 	for (ac = 0; ac < 4; ac++) {
    313 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
    314 		    ac);
    315 		if (error != 0) {
    316 			aprint_error_dev(self,
    317 			    "could not allocate Tx ring %d\n", ac);
    318 			goto fail3;
    319 		}
    320 	}
    321 
    322 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    323 	if (error != 0) {
    324 		aprint_error_dev(self, "could not allocate command ring\n");
    325 		goto fail3;
    326 	}
    327 
    328 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
    329 	if (error != 0) {
    330 		aprint_error_dev(self, "could not allocate Rx ring\n");
    331 		goto fail4;
    332 	}
    333 
    334 	ic->ic_ifp = ifp;
    335 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    336 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    337 	ic->ic_state = IEEE80211_S_INIT;
    338 
    339 	/* set device capabilities */
    340 	ic->ic_caps =
    341 	    IEEE80211_C_WPA |		/* 802.11i */
    342 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    343 	    IEEE80211_C_TXPMGT |	/* tx power management */
    344 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    345 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    346 	    IEEE80211_C_WME;		/* 802.11e */
    347 
    348 	/* read supported channels and MAC address from EEPROM */
    349 	wpi_read_eeprom(sc);
    350 
    351 	/* set supported .11a, .11b and .11g rates */
    352 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
    353 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    354 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    355 
    356 	/* IBSS channel undefined for now */
    357 	ic->ic_ibss_chan = &ic->ic_channels[0];
    358 
    359 	ifp->if_softc = sc;
    360 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    361 	ifp->if_init = wpi_init;
    362 	ifp->if_stop = wpi_stop;
    363 	ifp->if_ioctl = wpi_ioctl;
    364 	ifp->if_start = wpi_start;
    365 	ifp->if_watchdog = wpi_watchdog;
    366 	IFQ_SET_READY(&ifp->if_snd);
    367 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    368 
    369 	error = if_initialize(ifp);
    370 	if (error != 0) {
    371 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
    372 		    error);
    373 		goto fail5;
    374 	}
    375 	ieee80211_ifattach(ic);
    376 	/* Use common softint-based if_input */
    377 	ifp->if_percpuq = if_percpuq_create(ifp);
    378 	if_register(ifp);
    379 
    380 	/* override default methods */
    381 	ic->ic_node_alloc = wpi_node_alloc;
    382 	ic->ic_newassoc = wpi_newassoc;
    383 	ic->ic_wme.wme_update = wpi_wme_update;
    384 
    385 	/* override state transition machine */
    386 	sc->sc_newstate = ic->ic_newstate;
    387 	ic->ic_newstate = wpi_newstate;
    388 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
    389 
    390 	sc->amrr.amrr_min_success_threshold =  1;
    391 	sc->amrr.amrr_max_success_threshold = 15;
    392 
    393 	wpi_sysctlattach(sc);
    394 
    395 	if (pmf_device_register(self, NULL, wpi_resume))
    396 		pmf_class_network_register(self, ifp);
    397 	else
    398 		aprint_error_dev(self, "couldn't establish power handler\n");
    399 
    400 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    401 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    402 	    &sc->sc_drvbpf);
    403 
    404 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    405 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    406 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    407 
    408 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    409 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    410 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    411 
    412 	ieee80211_announce(ic);
    413 
    414 	return;
    415 
    416 	/* free allocated memory if something failed during attachment */
    417 fail5:	wpi_free_rx_ring(sc, &sc->rxq);
    418 fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
    419 fail3:	while (--ac >= 0)
    420 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    421 	wpi_free_rpool(sc);
    422 fail2:	wpi_free_shared(sc);
    423 fail1:	wpi_free_fwmem(sc);
    424 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    425 	sc->sc_ih = NULL;
    426 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    427 	sc->sc_pihp = NULL;
    428 failsi:	softint_disestablish(sc->sc_soft_ih);
    429 	sc->sc_soft_ih = NULL;
    430 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    431 }
    432 
    433 static int
    434 wpi_detach(device_t self, int flags __unused)
    435 {
    436 	struct wpi_softc *sc = device_private(self);
    437 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    438 	int ac;
    439 
    440 	wpi_stop(ifp, 1);
    441 
    442 	if (ifp != NULL)
    443 		bpf_detach(ifp);
    444 	ieee80211_ifdetach(&sc->sc_ic);
    445 	if (ifp != NULL)
    446 		if_detach(ifp);
    447 
    448 	for (ac = 0; ac < 4; ac++)
    449 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    450 	wpi_free_tx_ring(sc, &sc->cmdq);
    451 	wpi_free_rx_ring(sc, &sc->rxq);
    452 	wpi_free_rpool(sc);
    453 	wpi_free_shared(sc);
    454 
    455 	if (sc->sc_ih != NULL) {
    456 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    457 		sc->sc_ih = NULL;
    458 	}
    459 	if (sc->sc_pihp != NULL) {
    460 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    461 		sc->sc_pihp = NULL;
    462 	}
    463 	if (sc->sc_soft_ih != NULL) {
    464 		softint_disestablish(sc->sc_soft_ih);
    465 		sc->sc_soft_ih = NULL;
    466 	}
    467 
    468 	mutex_enter(&sc->sc_rsw_mtx);
    469 	sc->sc_dying = 1;
    470 	cv_signal(&sc->sc_rsw_cv);
    471 	while (sc->sc_rsw_lwp != NULL)
    472 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
    473 	mutex_exit(&sc->sc_rsw_mtx);
    474 	sysmon_pswitch_unregister(&sc->sc_rsw);
    475 
    476 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    477 
    478 	if (sc->fw_used) {
    479 		sc->fw_used = false;
    480 		wpi_release_firmware();
    481 	}
    482 	cv_destroy(&sc->sc_rsw_cv);
    483 	mutex_destroy(&sc->sc_rsw_mtx);
    484 	return 0;
    485 }
    486 
    487 static int
    488 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
    489     bus_size_t size, bus_size_t alignment, int flags)
    490 {
    491 	int nsegs, error;
    492 
    493 	dma->tag = tag;
    494 	dma->size = size;
    495 
    496 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    497 	if (error != 0)
    498 		goto fail;
    499 
    500 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    501 	    flags);
    502 	if (error != 0)
    503 		goto fail;
    504 
    505 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    506 	if (error != 0)
    507 		goto fail;
    508 
    509 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    510 	if (error != 0)
    511 		goto fail;
    512 
    513 	memset(dma->vaddr, 0, size);
    514 	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
    515 
    516 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    517 	if (kvap != NULL)
    518 		*kvap = dma->vaddr;
    519 
    520 	return 0;
    521 
    522 fail:	wpi_dma_contig_free(dma);
    523 	return error;
    524 }
    525 
    526 static void
    527 wpi_dma_contig_free(struct wpi_dma_info *dma)
    528 {
    529 	if (dma->map != NULL) {
    530 		if (dma->vaddr != NULL) {
    531 			bus_dmamap_unload(dma->tag, dma->map);
    532 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    533 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    534 			dma->vaddr = NULL;
    535 		}
    536 		bus_dmamap_destroy(dma->tag, dma->map);
    537 		dma->map = NULL;
    538 	}
    539 }
    540 
    541 /*
    542  * Allocate a shared page between host and NIC.
    543  */
    544 static int
    545 wpi_alloc_shared(struct wpi_softc *sc)
    546 {
    547 	int error;
    548 
    549 	/* must be aligned on a 4K-page boundary */
    550 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    551 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
    552 	    BUS_DMA_NOWAIT);
    553 	if (error != 0)
    554 		aprint_error_dev(sc->sc_dev,
    555 		    "could not allocate shared area DMA memory\n");
    556 
    557 	return error;
    558 }
    559 
    560 static void
    561 wpi_free_shared(struct wpi_softc *sc)
    562 {
    563 	wpi_dma_contig_free(&sc->shared_dma);
    564 }
    565 
    566 /*
    567  * Allocate DMA-safe memory for firmware transfer.
    568  */
    569 static int
    570 wpi_alloc_fwmem(struct wpi_softc *sc)
    571 {
    572 	int error;
    573 
    574 	/* allocate enough contiguous space to store text and data */
    575 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    576 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    577 	    BUS_DMA_NOWAIT);
    578 
    579 	if (error != 0)
    580 		aprint_error_dev(sc->sc_dev,
    581 		    "could not allocate firmware transfer area DMA memory\n");
    582 	return error;
    583 }
    584 
    585 static void
    586 wpi_free_fwmem(struct wpi_softc *sc)
    587 {
    588 	wpi_dma_contig_free(&sc->fw_dma);
    589 }
    590 
    591 static struct wpi_rbuf *
    592 wpi_alloc_rbuf(struct wpi_softc *sc)
    593 {
    594 	struct wpi_rbuf *rbuf;
    595 
    596 	mutex_enter(&sc->rxq.freelist_mtx);
    597 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    598 	if (rbuf != NULL) {
    599 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    600 	}
    601 	mutex_exit(&sc->rxq.freelist_mtx);
    602 
    603 	return rbuf;
    604 }
    605 
    606 /*
    607  * This is called automatically by the network stack when the mbuf to which our
    608  * Rx buffer is attached is freed.
    609  */
    610 static void
    611 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    612 {
    613 	struct wpi_rbuf *rbuf = arg;
    614 	struct wpi_softc *sc = rbuf->sc;
    615 
    616 	/* put the buffer back in the free list */
    617 
    618 	mutex_enter(&sc->rxq.freelist_mtx);
    619 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    620 	mutex_exit(&sc->rxq.freelist_mtx);
    621 
    622 	if (__predict_true(m != NULL))
    623 		pool_cache_put(mb_cache, m);
    624 }
    625 
    626 static int
    627 wpi_alloc_rpool(struct wpi_softc *sc)
    628 {
    629 	struct wpi_rx_ring *ring = &sc->rxq;
    630 	int i, error;
    631 
    632 	/* allocate a big chunk of DMA'able memory.. */
    633 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    634 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    635 	if (error != 0) {
    636 		aprint_normal_dev(sc->sc_dev,
    637 		    "could not allocate Rx buffers DMA memory\n");
    638 		return error;
    639 	}
    640 
    641 	/* ..and split it into 3KB chunks */
    642 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
    643 	SLIST_INIT(&ring->freelist);
    644 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    645 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
    646 
    647 		rbuf->sc = sc;	/* backpointer for callbacks */
    648 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    649 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    650 
    651 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    652 	}
    653 
    654 	return 0;
    655 }
    656 
    657 static void
    658 wpi_free_rpool(struct wpi_softc *sc)
    659 {
    660 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    661 }
    662 
    663 static int
    664 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    665 {
    666 	bus_size_t size;
    667 	int i, error;
    668 
    669 	ring->cur = 0;
    670 
    671 	size = WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc);
    672 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    673 	    (void **)&ring->desc, size,
    674 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    675 	if (error != 0) {
    676 		aprint_error_dev(sc->sc_dev,
    677 		    "could not allocate rx ring DMA memory\n");
    678 		goto fail;
    679 	}
    680 
    681 	/*
    682 	 * Setup Rx buffers.
    683 	 */
    684 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    685 		struct wpi_rx_data *data = &ring->data[i];
    686 		struct wpi_rbuf *rbuf;
    687 
    688 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
    689 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
    690 		if (error) {
    691 			aprint_error_dev(sc->sc_dev,
    692 			    "could not allocate rx dma map\n");
    693 			goto fail;
    694 		}
    695 
    696 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    697 		if (data->m == NULL) {
    698 			aprint_error_dev(sc->sc_dev,
    699 			    "could not allocate rx mbuf\n");
    700 			error = ENOMEM;
    701 			goto fail;
    702 		}
    703 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    704 			m_freem(data->m);
    705 			data->m = NULL;
    706 			aprint_error_dev(sc->sc_dev,
    707 			    "could not allocate rx cluster\n");
    708 			error = ENOMEM;
    709 			goto fail;
    710 		}
    711 		/* attach Rx buffer to mbuf */
    712 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    713 		    rbuf);
    714 		data->m->m_flags |= M_EXT_RW;
    715 
    716 		error = bus_dmamap_load(sc->sc_dmat, data->map,
    717 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
    718 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
    719 		if (error) {
    720 			aprint_error_dev(sc->sc_dev,
    721 			    "could not load mbuf: %d\n", error);
    722 			goto fail;
    723 		}
    724 
    725 		ring->desc[i] = htole32(rbuf->paddr);
    726 	}
    727 
    728 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
    729 	    BUS_DMASYNC_PREWRITE);
    730 
    731 	return 0;
    732 
    733 fail:	wpi_free_rx_ring(sc, ring);
    734 	return error;
    735 }
    736 
    737 static void
    738 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    739 {
    740 	int ntries;
    741 
    742 	wpi_mem_lock(sc);
    743 
    744 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    745 	for (ntries = 0; ntries < 100; ntries++) {
    746 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    747 			break;
    748 		DELAY(10);
    749 	}
    750 #ifdef WPI_DEBUG
    751 	if (ntries == 100 && wpi_debug > 0)
    752 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    753 #endif
    754 	wpi_mem_unlock(sc);
    755 
    756 	ring->cur = 0;
    757 }
    758 
    759 static void
    760 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    761 {
    762 	int i;
    763 
    764 	wpi_dma_contig_free(&ring->desc_dma);
    765 
    766 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    767 		if (ring->data[i].m != NULL) {
    768 			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
    769 			m_freem(ring->data[i].m);
    770 		}
    771 		if (ring->data[i].map != NULL) {
    772 			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
    773 		}
    774 	}
    775 }
    776 
    777 static int
    778 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    779     int qid)
    780 {
    781 	int i, error;
    782 
    783 	ring->qid = qid;
    784 	ring->count = count;
    785 	ring->queued = 0;
    786 	ring->cur = 0;
    787 
    788 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    789 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    790 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    791 	if (error != 0) {
    792 		aprint_error_dev(sc->sc_dev,
    793 		    "could not allocate tx ring DMA memory\n");
    794 		goto fail;
    795 	}
    796 
    797 	/* update shared page with ring's base address */
    798 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    799 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
    800 	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
    801 
    802 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    803 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
    804 	    BUS_DMA_NOWAIT);
    805 	if (error != 0) {
    806 		aprint_error_dev(sc->sc_dev,
    807 		    "could not allocate tx cmd DMA memory\n");
    808 		goto fail;
    809 	}
    810 
    811 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    812 	    M_NOWAIT | M_ZERO);
    813 	if (ring->data == NULL) {
    814 		aprint_error_dev(sc->sc_dev,
    815 		    "could not allocate tx data slots\n");
    816 		goto fail;
    817 	}
    818 
    819 	for (i = 0; i < count; i++) {
    820 		struct wpi_tx_data *data = &ring->data[i];
    821 
    822 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    823 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    824 		    &data->map);
    825 		if (error != 0) {
    826 			aprint_error_dev(sc->sc_dev,
    827 			    "could not create tx buf DMA map\n");
    828 			goto fail;
    829 		}
    830 	}
    831 
    832 	return 0;
    833 
    834 fail:	wpi_free_tx_ring(sc, ring);
    835 	return error;
    836 }
    837 
    838 static void
    839 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    840 {
    841 	int i, ntries;
    842 
    843 	wpi_mem_lock(sc);
    844 
    845 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    846 	for (ntries = 0; ntries < 100; ntries++) {
    847 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    848 			break;
    849 		DELAY(10);
    850 	}
    851 #ifdef WPI_DEBUG
    852 	if (ntries == 100 && wpi_debug > 0) {
    853 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    854 		    ring->qid);
    855 	}
    856 #endif
    857 	wpi_mem_unlock(sc);
    858 
    859 	for (i = 0; i < ring->count; i++) {
    860 		struct wpi_tx_data *data = &ring->data[i];
    861 
    862 		if (data->m != NULL) {
    863 			bus_dmamap_unload(sc->sc_dmat, data->map);
    864 			m_freem(data->m);
    865 			data->m = NULL;
    866 		}
    867 	}
    868 
    869 	ring->queued = 0;
    870 	ring->cur = 0;
    871 }
    872 
    873 static void
    874 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    875 {
    876 	int i;
    877 
    878 	wpi_dma_contig_free(&ring->desc_dma);
    879 	wpi_dma_contig_free(&ring->cmd_dma);
    880 
    881 	if (ring->data != NULL) {
    882 		for (i = 0; i < ring->count; i++) {
    883 			struct wpi_tx_data *data = &ring->data[i];
    884 
    885 			if (data->m != NULL) {
    886 				bus_dmamap_unload(sc->sc_dmat, data->map);
    887 				m_freem(data->m);
    888 			}
    889 		}
    890 		free(ring->data, M_DEVBUF);
    891 	}
    892 }
    893 
    894 /*ARGUSED*/
    895 static struct ieee80211_node *
    896 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    897 {
    898 	struct wpi_node *wn;
    899 
    900 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
    901 
    902 	return (struct ieee80211_node *)wn;
    903 }
    904 
    905 static void
    906 wpi_newassoc(struct ieee80211_node *ni, int isnew)
    907 {
    908 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    909 	int i;
    910 
    911 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    912 
    913 	/* set rate to some reasonable initial value */
    914 	for (i = ni->ni_rates.rs_nrates - 1;
    915 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    916 	     i--);
    917 	ni->ni_txrate = i;
    918 }
    919 
    920 static int
    921 wpi_media_change(struct ifnet *ifp)
    922 {
    923 	int error;
    924 
    925 	error = ieee80211_media_change(ifp);
    926 	if (error != ENETRESET)
    927 		return error;
    928 
    929 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    930 		wpi_init(ifp);
    931 
    932 	return 0;
    933 }
    934 
    935 static int
    936 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    937 {
    938 	struct ifnet *ifp = ic->ic_ifp;
    939 	struct wpi_softc *sc = ifp->if_softc;
    940 	struct ieee80211_node *ni;
    941 	enum ieee80211_state ostate = ic->ic_state;
    942 	int error;
    943 
    944 	callout_stop(&sc->calib_to);
    945 
    946 	switch (nstate) {
    947 	case IEEE80211_S_SCAN:
    948 
    949 		if (sc->is_scanning)
    950 			break;
    951 
    952 		sc->is_scanning = true;
    953 
    954 		if (ostate != IEEE80211_S_SCAN) {
    955 			/* make the link LED blink while we're scanning */
    956 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    957 		}
    958 
    959 		if ((error = wpi_scan(sc)) != 0) {
    960 			aprint_error_dev(sc->sc_dev,
    961 			    "could not initiate scan\n");
    962 			return error;
    963 		}
    964 		break;
    965 
    966 	case IEEE80211_S_ASSOC:
    967 		if (ic->ic_state != IEEE80211_S_RUN)
    968 			break;
    969 		/* FALLTHROUGH */
    970 	case IEEE80211_S_AUTH:
    971 		/* reset state to handle reassociations correctly */
    972 		sc->config.associd = 0;
    973 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    974 
    975 		if ((error = wpi_auth(sc)) != 0) {
    976 			aprint_error_dev(sc->sc_dev,
    977 			    "could not send authentication request\n");
    978 			return error;
    979 		}
    980 		break;
    981 
    982 	case IEEE80211_S_RUN:
    983 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    984 			/* link LED blinks while monitoring */
    985 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    986 			break;
    987 		}
    988 		ni = ic->ic_bss;
    989 
    990 		if (ic->ic_opmode != IEEE80211_M_STA) {
    991 			(void) wpi_auth(sc);    /* XXX */
    992 			wpi_setup_beacon(sc, ni);
    993 		}
    994 
    995 		wpi_enable_tsf(sc, ni);
    996 
    997 		/* update adapter's configuration */
    998 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
    999 		/* short preamble/slot time are negotiated when associating */
   1000 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
   1001 		    WPI_CONFIG_SHSLOT);
   1002 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1003 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
   1004 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   1005 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
   1006 		sc->config.filter |= htole32(WPI_FILTER_BSS);
   1007 		if (ic->ic_opmode != IEEE80211_M_STA)
   1008 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
   1009 
   1010 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
   1011 
   1012 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
   1013 		    sc->config.flags));
   1014 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   1015 		    sizeof (struct wpi_config), 1);
   1016 		if (error != 0) {
   1017 			aprint_error_dev(sc->sc_dev,
   1018 			    "could not update configuration\n");
   1019 			return error;
   1020 		}
   1021 
   1022 		/* configuration has changed, set Tx power accordingly */
   1023 		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
   1024 			aprint_error_dev(sc->sc_dev,
   1025 			    "could not set Tx power\n");
   1026 			return error;
   1027 		}
   1028 
   1029 		if (ic->ic_opmode == IEEE80211_M_STA) {
   1030 			/* fake a join to init the tx rate */
   1031 			wpi_newassoc(ni, 1);
   1032 		}
   1033 
   1034 		/* start periodic calibration timer */
   1035 		sc->calib_cnt = 0;
   1036 		callout_schedule(&sc->calib_to, hz/2);
   1037 
   1038 		/* link LED always on while associated */
   1039 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
   1040 		break;
   1041 
   1042 	case IEEE80211_S_INIT:
   1043 		sc->is_scanning = false;
   1044 		break;
   1045 	}
   1046 
   1047 	return sc->sc_newstate(ic, nstate, arg);
   1048 }
   1049 
   1050 /*
   1051  * Grab exclusive access to NIC memory.
   1052  */
   1053 static void
   1054 wpi_mem_lock(struct wpi_softc *sc)
   1055 {
   1056 	uint32_t tmp;
   1057 	int ntries;
   1058 
   1059 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1060 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
   1061 
   1062 	/* spin until we actually get the lock */
   1063 	for (ntries = 0; ntries < 1000; ntries++) {
   1064 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
   1065 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
   1066 			break;
   1067 		DELAY(10);
   1068 	}
   1069 	if (ntries == 1000)
   1070 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
   1071 }
   1072 
   1073 /*
   1074  * Release lock on NIC memory.
   1075  */
   1076 static void
   1077 wpi_mem_unlock(struct wpi_softc *sc)
   1078 {
   1079 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1080 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1081 }
   1082 
   1083 static uint32_t
   1084 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1085 {
   1086 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1087 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1088 }
   1089 
   1090 static void
   1091 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1092 {
   1093 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1094 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1095 }
   1096 
   1097 static void
   1098 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1099     const uint32_t *data, int wlen)
   1100 {
   1101 	for (; wlen > 0; wlen--, data++, addr += 4)
   1102 		wpi_mem_write(sc, addr, *data);
   1103 }
   1104 
   1105 /*
   1106  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1107  * instead of using the traditional bit-bang method.
   1108  */
   1109 static int
   1110 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1111 {
   1112 	uint8_t *out = data;
   1113 	uint32_t val;
   1114 	int ntries;
   1115 
   1116 	wpi_mem_lock(sc);
   1117 	for (; len > 0; len -= 2, addr++) {
   1118 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1119 
   1120 		for (ntries = 0; ntries < 10; ntries++) {
   1121 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1122 			    WPI_EEPROM_READY)
   1123 				break;
   1124 			DELAY(5);
   1125 		}
   1126 		if (ntries == 10) {
   1127 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1128 			return ETIMEDOUT;
   1129 		}
   1130 		*out++ = val >> 16;
   1131 		if (len > 1)
   1132 			*out++ = val >> 24;
   1133 	}
   1134 	wpi_mem_unlock(sc);
   1135 
   1136 	return 0;
   1137 }
   1138 
   1139 /*
   1140  * The firmware boot code is small and is intended to be copied directly into
   1141  * the NIC internal memory.
   1142  */
   1143 int
   1144 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1145 {
   1146 	int ntries;
   1147 
   1148 	size /= sizeof (uint32_t);
   1149 
   1150 	wpi_mem_lock(sc);
   1151 
   1152 	/* copy microcode image into NIC memory */
   1153 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1154 	    (const uint32_t *)ucode, size);
   1155 
   1156 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1157 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1158 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1159 
   1160 	/* run microcode */
   1161 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1162 
   1163 	/* wait for transfer to complete */
   1164 	for (ntries = 0; ntries < 1000; ntries++) {
   1165 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1166 			break;
   1167 		DELAY(10);
   1168 	}
   1169 	if (ntries == 1000) {
   1170 		wpi_mem_unlock(sc);
   1171 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1172 		return ETIMEDOUT;
   1173 	}
   1174 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1175 
   1176 	wpi_mem_unlock(sc);
   1177 
   1178 	return 0;
   1179 }
   1180 
   1181 static int
   1182 wpi_cache_firmware(struct wpi_softc *sc)
   1183 {
   1184 	const char *const fwname = wpi_firmware_name;
   1185 	firmware_handle_t fw;
   1186 	int error;
   1187 
   1188 	/* sc is used here only to report error messages.  */
   1189 
   1190 	mutex_enter(&wpi_firmware_mutex);
   1191 
   1192 	if (wpi_firmware_users == SIZE_MAX) {
   1193 		mutex_exit(&wpi_firmware_mutex);
   1194 		return ENFILE;	/* Too many of something in the system...  */
   1195 	}
   1196 	if (wpi_firmware_users++) {
   1197 		KASSERT(wpi_firmware_image != NULL);
   1198 		KASSERT(wpi_firmware_size > 0);
   1199 		mutex_exit(&wpi_firmware_mutex);
   1200 		return 0;	/* Already good to go.  */
   1201 	}
   1202 
   1203 	KASSERT(wpi_firmware_image == NULL);
   1204 	KASSERT(wpi_firmware_size == 0);
   1205 
   1206 	/* load firmware image from disk */
   1207 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
   1208 		aprint_error_dev(sc->sc_dev,
   1209 		    "could not open firmware file %s: %d\n", fwname, error);
   1210 		goto fail0;
   1211 	}
   1212 
   1213 	wpi_firmware_size = firmware_get_size(fw);
   1214 
   1215 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
   1216 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
   1217 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
   1218 	    WPI_FW_BOOT_TEXT_MAXSZ) {
   1219 		aprint_error_dev(sc->sc_dev,
   1220 		    "firmware file %s too large: %zu bytes\n",
   1221 		    fwname, wpi_firmware_size);
   1222 		error = EFBIG;
   1223 		goto fail1;
   1224 	}
   1225 
   1226 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
   1227 		aprint_error_dev(sc->sc_dev,
   1228 		    "firmware file %s too small: %zu bytes\n",
   1229 		    fwname, wpi_firmware_size);
   1230 		error = EINVAL;
   1231 		goto fail1;
   1232 	}
   1233 
   1234 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
   1235 	if (wpi_firmware_image == NULL) {
   1236 		aprint_error_dev(sc->sc_dev,
   1237 		    "not enough memory for firmware file %s\n", fwname);
   1238 		error = ENOMEM;
   1239 		goto fail1;
   1240 	}
   1241 
   1242 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
   1243 	if (error != 0) {
   1244 		aprint_error_dev(sc->sc_dev,
   1245 		    "error reading firmware file %s: %d\n", fwname, error);
   1246 		goto fail2;
   1247 	}
   1248 
   1249 	/* Success!  */
   1250 	firmware_close(fw);
   1251 	mutex_exit(&wpi_firmware_mutex);
   1252 	return 0;
   1253 
   1254 fail2:
   1255 	firmware_free(wpi_firmware_image, wpi_firmware_size);
   1256 	wpi_firmware_image = NULL;
   1257 fail1:
   1258 	wpi_firmware_size = 0;
   1259 	firmware_close(fw);
   1260 fail0:
   1261 	KASSERT(wpi_firmware_users == 1);
   1262 	wpi_firmware_users = 0;
   1263 	KASSERT(wpi_firmware_image == NULL);
   1264 	KASSERT(wpi_firmware_size == 0);
   1265 
   1266 	mutex_exit(&wpi_firmware_mutex);
   1267 	return error;
   1268 }
   1269 
   1270 static void
   1271 wpi_release_firmware(void)
   1272 {
   1273 
   1274 	mutex_enter(&wpi_firmware_mutex);
   1275 
   1276 	KASSERT(wpi_firmware_users > 0);
   1277 	KASSERT(wpi_firmware_image != NULL);
   1278 	KASSERT(wpi_firmware_size != 0);
   1279 
   1280 	if (--wpi_firmware_users == 0) {
   1281 		firmware_free(wpi_firmware_image, wpi_firmware_size);
   1282 		wpi_firmware_image = NULL;
   1283 		wpi_firmware_size = 0;
   1284 	}
   1285 
   1286 	mutex_exit(&wpi_firmware_mutex);
   1287 }
   1288 
   1289 static int
   1290 wpi_load_firmware(struct wpi_softc *sc)
   1291 {
   1292 	struct wpi_dma_info *dma = &sc->fw_dma;
   1293 	struct wpi_firmware_hdr hdr;
   1294 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1295 	const uint8_t *boot_text;
   1296 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1297 	uint32_t boot_textsz;
   1298 	size_t size;
   1299 	int error;
   1300 
   1301 	if (!sc->fw_used) {
   1302 		if ((error = wpi_cache_firmware(sc)) != 0)
   1303 			return error;
   1304 		sc->fw_used = true;
   1305 	}
   1306 
   1307 	KASSERT(sc->fw_used);
   1308 	KASSERT(wpi_firmware_image != NULL);
   1309 	KASSERT(wpi_firmware_size > sizeof(hdr));
   1310 
   1311 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
   1312 
   1313 	main_textsz = le32toh(hdr.main_textsz);
   1314 	main_datasz = le32toh(hdr.main_datasz);
   1315 	init_textsz = le32toh(hdr.init_textsz);
   1316 	init_datasz = le32toh(hdr.init_datasz);
   1317 	boot_textsz = le32toh(hdr.boot_textsz);
   1318 
   1319 	/* sanity-check firmware segments sizes */
   1320 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1321 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1322 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1323 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1324 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1325 	    (boot_textsz & 3) != 0) {
   1326 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1327 		error = EINVAL;
   1328 		goto free_firmware;
   1329 	}
   1330 
   1331 	/* check that all firmware segments are present */
   1332 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
   1333 	    main_datasz + init_textsz + init_datasz + boot_textsz;
   1334 	if (wpi_firmware_size < size) {
   1335 		aprint_error_dev(sc->sc_dev,
   1336 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
   1337 		    wpi_firmware_size, size);
   1338 		error = EINVAL;
   1339 		goto free_firmware;
   1340 	}
   1341 
   1342 	/* get pointers to firmware segments */
   1343 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
   1344 	main_data = main_text + main_textsz;
   1345 	init_text = main_data + main_datasz;
   1346 	init_data = init_text + init_textsz;
   1347 	boot_text = init_data + init_datasz;
   1348 
   1349 	/* copy initialization images into pre-allocated DMA-safe memory */
   1350 	memcpy(dma->vaddr, init_data, init_datasz);
   1351 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
   1352 	    init_textsz);
   1353 
   1354 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   1355 
   1356 	/* tell adapter where to find initialization images */
   1357 	wpi_mem_lock(sc);
   1358 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1359 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1360 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1361 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1362 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1363 	wpi_mem_unlock(sc);
   1364 
   1365 	/* load firmware boot code */
   1366 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1367 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1368 		return error;
   1369 	}
   1370 
   1371 	/* now press "execute" ;-) */
   1372 	WPI_WRITE(sc, WPI_RESET, 0);
   1373 
   1374 	/* wait at most one second for first alive notification */
   1375 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1376 		/* this isn't what was supposed to happen.. */
   1377 		aprint_error_dev(sc->sc_dev,
   1378 		    "timeout waiting for adapter to initialize\n");
   1379 	}
   1380 
   1381 	/* copy runtime images into pre-allocated DMA-safe memory */
   1382 	memcpy(dma->vaddr, main_data, main_datasz);
   1383 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
   1384 	    main_textsz);
   1385 
   1386 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   1387 
   1388 	/* tell adapter where to find runtime images */
   1389 	wpi_mem_lock(sc);
   1390 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1391 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1392 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1393 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1394 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1395 	wpi_mem_unlock(sc);
   1396 
   1397 	/* wait at most one second for second alive notification */
   1398 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1399 		/* this isn't what was supposed to happen.. */
   1400 		aprint_error_dev(sc->sc_dev,
   1401 		    "timeout waiting for adapter to initialize\n");
   1402 	}
   1403 
   1404 	return error;
   1405 
   1406 free_firmware:
   1407 	sc->fw_used = false;
   1408 	wpi_release_firmware();
   1409 	return error;
   1410 }
   1411 
   1412 static void
   1413 wpi_calib_timeout(void *arg)
   1414 {
   1415 	struct wpi_softc *sc = arg;
   1416 	struct ieee80211com *ic = &sc->sc_ic;
   1417 	int temp, s;
   1418 
   1419 	/* automatic rate control triggered every 500ms */
   1420 	if (ic->ic_fixed_rate == -1) {
   1421 		s = splnet();
   1422 		if (ic->ic_opmode == IEEE80211_M_STA)
   1423 			wpi_iter_func(sc, ic->ic_bss);
   1424 		else
   1425 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1426 		splx(s);
   1427 	}
   1428 
   1429 	/* update sensor data */
   1430 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1431 
   1432 	/* automatic power calibration every 60s */
   1433 	if (++sc->calib_cnt >= 120) {
   1434 		wpi_power_calibration(sc, temp);
   1435 		sc->calib_cnt = 0;
   1436 	}
   1437 
   1438 	callout_schedule(&sc->calib_to, hz/2);
   1439 }
   1440 
   1441 static void
   1442 wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1443 {
   1444 	struct wpi_softc *sc = arg;
   1445 	struct wpi_node *wn = (struct wpi_node *)ni;
   1446 
   1447 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1448 }
   1449 
   1450 /*
   1451  * This function is called periodically (every 60 seconds) to adjust output
   1452  * power to temperature changes.
   1453  */
   1454 void
   1455 wpi_power_calibration(struct wpi_softc *sc, int temp)
   1456 {
   1457 	/* sanity-check read value */
   1458 	if (temp < -260 || temp > 25) {
   1459 		/* this can't be correct, ignore */
   1460 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1461 		return;
   1462 	}
   1463 
   1464 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1465 
   1466 	/* adjust Tx power if need be */
   1467 	if (abs(temp - sc->temp) <= 6)
   1468 		return;
   1469 
   1470 	sc->temp = temp;
   1471 
   1472 	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
   1473 		/* just warn, too bad for the automatic calibration... */
   1474 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1475 	}
   1476 }
   1477 
   1478 static void
   1479 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1480     struct wpi_rx_data *data)
   1481 {
   1482 	struct ieee80211com *ic = &sc->sc_ic;
   1483 	struct ifnet *ifp = ic->ic_ifp;
   1484 	struct wpi_rx_ring *ring = &sc->rxq;
   1485 	struct wpi_rx_stat *stat;
   1486 	struct wpi_rx_head *head;
   1487 	struct wpi_rx_tail *tail;
   1488 	struct wpi_rbuf *rbuf;
   1489 	struct ieee80211_frame *wh;
   1490 	struct ieee80211_node *ni;
   1491 	struct mbuf *m, *mnew;
   1492 	int data_off, error, s;
   1493 
   1494 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1495 	    BUS_DMASYNC_POSTREAD);
   1496 	stat = (struct wpi_rx_stat *)(desc + 1);
   1497 
   1498 	if (stat->len > WPI_STAT_MAXLEN) {
   1499 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1500 		ifp->if_ierrors++;
   1501 		return;
   1502 	}
   1503 
   1504 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1505 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1506 
   1507 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1508 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
   1509 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1510 	    le64toh(tail->tstamp)));
   1511 
   1512 	/*
   1513 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1514 	 * to radiotap in monitor mode).
   1515 	 */
   1516 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1517 		DPRINTF(("rx tail flags error %x\n",
   1518 		    le32toh(tail->flags)));
   1519 		ifp->if_ierrors++;
   1520 		return;
   1521 	}
   1522 
   1523 	/* Compute where are the useful datas */
   1524 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1525 
   1526 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1527 	if (mnew == NULL) {
   1528 		ifp->if_ierrors++;
   1529 		return;
   1530 	}
   1531 
   1532 	rbuf = wpi_alloc_rbuf(sc);
   1533 	if (rbuf == NULL) {
   1534 		m_freem(mnew);
   1535 		ifp->if_ierrors++;
   1536 		return;
   1537 	}
   1538 
   1539 	/* attach Rx buffer to mbuf */
   1540 	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1541 		rbuf);
   1542 	mnew->m_flags |= M_EXT_RW;
   1543 
   1544 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1545 
   1546 	error = bus_dmamap_load(sc->sc_dmat, data->map,
   1547 	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
   1548 	    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1549 	if (error) {
   1550 		device_printf(sc->sc_dev,
   1551 		    "couldn't load rx mbuf: %d\n", error);
   1552 		m_freem(mnew);
   1553 		ifp->if_ierrors++;
   1554 
   1555 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1556 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
   1557 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1558 		if (error)
   1559 			panic("%s: bus_dmamap_load failed: %d\n",
   1560 			    device_xname(sc->sc_dev), error);
   1561 		return;
   1562 	}
   1563 
   1564 	/* new mbuf loaded successfully */
   1565 	m = data->m;
   1566 	data->m = mnew;
   1567 
   1568 	/* update Rx descriptor */
   1569 	ring->desc[ring->cur] = htole32(rbuf->paddr);
   1570 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1571 	    ring->desc_dma.size,
   1572 	    BUS_DMASYNC_PREWRITE);
   1573 
   1574 	m->m_data = (char*)m->m_data + data_off;
   1575 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1576 
   1577 	/* finalize mbuf */
   1578 	m_set_rcvif(m, ifp);
   1579 
   1580 	s = splnet();
   1581 
   1582 	if (sc->sc_drvbpf != NULL) {
   1583 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1584 
   1585 		tap->wr_flags = 0;
   1586 		tap->wr_chan_freq =
   1587 		    htole16(ic->ic_channels[head->chan].ic_freq);
   1588 		tap->wr_chan_flags =
   1589 		    htole16(ic->ic_channels[head->chan].ic_flags);
   1590 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1591 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1592 		tap->wr_tsft = tail->tstamp;
   1593 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1594 		switch (head->rate) {
   1595 		/* CCK rates */
   1596 		case  10: tap->wr_rate =   2; break;
   1597 		case  20: tap->wr_rate =   4; break;
   1598 		case  55: tap->wr_rate =  11; break;
   1599 		case 110: tap->wr_rate =  22; break;
   1600 		/* OFDM rates */
   1601 		case 0xd: tap->wr_rate =  12; break;
   1602 		case 0xf: tap->wr_rate =  18; break;
   1603 		case 0x5: tap->wr_rate =  24; break;
   1604 		case 0x7: tap->wr_rate =  36; break;
   1605 		case 0x9: tap->wr_rate =  48; break;
   1606 		case 0xb: tap->wr_rate =  72; break;
   1607 		case 0x1: tap->wr_rate =  96; break;
   1608 		case 0x3: tap->wr_rate = 108; break;
   1609 		/* unknown rate: should not happen */
   1610 		default:  tap->wr_rate =   0;
   1611 		}
   1612 		if (le16toh(head->flags) & 0x4)
   1613 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1614 
   1615 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1616 	}
   1617 
   1618 	/* grab a reference to the source node */
   1619 	wh = mtod(m, struct ieee80211_frame *);
   1620 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1621 
   1622 	/* send the frame to the 802.11 layer */
   1623 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1624 
   1625 	/* release node reference */
   1626 	ieee80211_free_node(ni);
   1627 
   1628 	splx(s);
   1629 }
   1630 
   1631 static void
   1632 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1633 {
   1634 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1635 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1636 	struct wpi_tx_data *data = &ring->data[desc->idx];
   1637 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1638 	struct wpi_node *wn = (struct wpi_node *)data->ni;
   1639 	int s;
   1640 
   1641 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1642 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1643 	    stat->nkill, stat->rate, le32toh(stat->duration),
   1644 	    le32toh(stat->status)));
   1645 
   1646 	s = splnet();
   1647 
   1648 	/*
   1649 	 * Update rate control statistics for the node.
   1650 	 * XXX we should not count mgmt frames since they're always sent at
   1651 	 * the lowest available bit-rate.
   1652 	 */
   1653 	wn->amn.amn_txcnt++;
   1654 	if (stat->ntries > 0) {
   1655 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1656 		wn->amn.amn_retrycnt++;
   1657 	}
   1658 
   1659 	if ((le32toh(stat->status) & 0xff) != 1)
   1660 		ifp->if_oerrors++;
   1661 	else
   1662 		ifp->if_opackets++;
   1663 
   1664 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1665 	m_freem(data->m);
   1666 	data->m = NULL;
   1667 	ieee80211_free_node(data->ni);
   1668 	data->ni = NULL;
   1669 
   1670 	ring->queued--;
   1671 
   1672 	sc->sc_tx_timer = 0;
   1673 	ifp->if_flags &= ~IFF_OACTIVE;
   1674 	wpi_start(ifp); /* in softint */
   1675 
   1676 	splx(s);
   1677 }
   1678 
   1679 static void
   1680 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1681 {
   1682 	struct wpi_tx_ring *ring = &sc->cmdq;
   1683 	struct wpi_tx_data *data;
   1684 
   1685 	if ((desc->qid & 7) != 4)
   1686 		return;	/* not a command ack */
   1687 
   1688 	data = &ring->data[desc->idx];
   1689 
   1690 	/* if the command was mapped in a mbuf, free it */
   1691 	if (data->m != NULL) {
   1692 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1693 		m_freem(data->m);
   1694 		data->m = NULL;
   1695 	}
   1696 
   1697 	wakeup(&ring->cmd[desc->idx]);
   1698 }
   1699 
   1700 static void
   1701 wpi_notif_intr(struct wpi_softc *sc)
   1702 {
   1703 	struct ieee80211com *ic = &sc->sc_ic;
   1704 	struct ifnet *ifp =  ic->ic_ifp;
   1705 	uint32_t hw;
   1706 	int s;
   1707 
   1708 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
   1709 	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
   1710 
   1711 	hw = le32toh(sc->shared->next);
   1712 	while (sc->rxq.cur != hw) {
   1713 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   1714 		struct wpi_rx_desc *desc;
   1715 
   1716 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1717 		    BUS_DMASYNC_POSTREAD);
   1718 		desc = mtod(data->m, struct wpi_rx_desc *);
   1719 
   1720 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1721 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
   1722 		    desc->type, le32toh(desc->len)));
   1723 
   1724 		if (!(desc->qid & 0x80))	/* reply to a command */
   1725 			wpi_cmd_intr(sc, desc);
   1726 
   1727 		switch (desc->type) {
   1728 		case WPI_RX_DONE:
   1729 			/* a 802.11 frame was received */
   1730 			wpi_rx_intr(sc, desc, data);
   1731 			break;
   1732 
   1733 		case WPI_TX_DONE:
   1734 			/* a 802.11 frame has been transmitted */
   1735 			wpi_tx_intr(sc, desc);
   1736 			break;
   1737 
   1738 		case WPI_UC_READY:
   1739 		{
   1740 			struct wpi_ucode_info *uc =
   1741 			    (struct wpi_ucode_info *)(desc + 1);
   1742 
   1743 			/* the microcontroller is ready */
   1744 			DPRINTF(("microcode alive notification version %x "
   1745 			    "alive %x\n", le32toh(uc->version),
   1746 			    le32toh(uc->valid)));
   1747 
   1748 			if (le32toh(uc->valid) != 1) {
   1749 				aprint_error_dev(sc->sc_dev,
   1750 				    "microcontroller initialization failed\n");
   1751 			}
   1752 			break;
   1753 		}
   1754 		case WPI_STATE_CHANGED:
   1755 		{
   1756 			uint32_t *status = (uint32_t *)(desc + 1);
   1757 
   1758 			/* enabled/disabled notification */
   1759 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1760 
   1761 			if (le32toh(*status) & 1) {
   1762 				s = splnet();
   1763 				/* the radio button has to be pushed */
   1764 				/* wake up thread to signal powerd */
   1765 				cv_signal(&sc->sc_rsw_cv);
   1766 				aprint_error_dev(sc->sc_dev,
   1767 				    "Radio transmitter is off\n");
   1768 				/* turn the interface down */
   1769 				ifp->if_flags &= ~IFF_UP;
   1770 				wpi_stop(ifp, 1);
   1771 				splx(s);
   1772 				return;	/* no further processing */
   1773 			}
   1774 			break;
   1775 		}
   1776 		case WPI_START_SCAN:
   1777 		{
   1778 #if 0
   1779 			struct wpi_start_scan *scan =
   1780 			    (struct wpi_start_scan *)(desc + 1);
   1781 
   1782 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1783 			    scan->chan, le32toh(scan->status)));
   1784 
   1785 			/* fix current channel */
   1786 			ic->ic_curchan = &ic->ic_channels[scan->chan];
   1787 #endif
   1788 			break;
   1789 		}
   1790 		case WPI_STOP_SCAN:
   1791 		{
   1792 #ifdef WPI_DEBUG
   1793 			struct wpi_stop_scan *scan =
   1794 			    (struct wpi_stop_scan *)(desc + 1);
   1795 #endif
   1796 
   1797 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1798 			    scan->nchan, scan->status, scan->chan));
   1799 
   1800 			s = splnet();
   1801 			sc->is_scanning = false;
   1802 			if (ic->ic_state == IEEE80211_S_SCAN)
   1803 				ieee80211_next_scan(ic);
   1804 			splx(s);
   1805 			break;
   1806 		}
   1807 		}
   1808 
   1809 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1810 	}
   1811 
   1812 	/* tell the firmware what we have processed */
   1813 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1814 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1815 }
   1816 
   1817 static int
   1818 wpi_intr(void *arg)
   1819 {
   1820 	struct wpi_softc *sc = arg;
   1821 	uint32_t r;
   1822 
   1823 	r = WPI_READ(sc, WPI_INTR);
   1824 	if (r == 0 || r == 0xffffffff)
   1825 		return 0;	/* not for us */
   1826 
   1827 	DPRINTFN(6, ("interrupt reg %x\n", r));
   1828 
   1829 	/* disable interrupts */
   1830 	WPI_WRITE(sc, WPI_MASK, 0);
   1831 
   1832 	softint_schedule(sc->sc_soft_ih);
   1833 	return 1;
   1834 }
   1835 
   1836 static void
   1837 wpi_softintr(void *arg)
   1838 {
   1839 	struct wpi_softc *sc = arg;
   1840 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1841 	uint32_t r;
   1842 
   1843 	r = WPI_READ(sc, WPI_INTR);
   1844 	if (r == 0 || r == 0xffffffff)
   1845 		goto out;
   1846 
   1847 	/* ack interrupts */
   1848 	WPI_WRITE(sc, WPI_INTR, r);
   1849 
   1850 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1851 		/* SYSTEM FAILURE, SYSTEM FAILURE */
   1852 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1853 		ifp->if_flags &= ~IFF_UP;
   1854 		wpi_stop(ifp, 1);
   1855 		return;
   1856 	}
   1857 
   1858 	if (r & WPI_RX_INTR)
   1859 		wpi_notif_intr(sc);
   1860 
   1861 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1862 		wakeup(sc);
   1863 
   1864  out:
   1865 	/* re-enable interrupts */
   1866 	if (ifp->if_flags & IFF_UP)
   1867 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1868 }
   1869 
   1870 static uint8_t
   1871 wpi_plcp_signal(int rate)
   1872 {
   1873 	switch (rate) {
   1874 	/* CCK rates (returned values are device-dependent) */
   1875 	case 2:		return 10;
   1876 	case 4:		return 20;
   1877 	case 11:	return 55;
   1878 	case 22:	return 110;
   1879 
   1880 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1881 	/* R1-R4, (u)ral is R4-R1 */
   1882 	case 12:	return 0xd;
   1883 	case 18:	return 0xf;
   1884 	case 24:	return 0x5;
   1885 	case 36:	return 0x7;
   1886 	case 48:	return 0x9;
   1887 	case 72:	return 0xb;
   1888 	case 96:	return 0x1;
   1889 	case 108:	return 0x3;
   1890 
   1891 	/* unsupported rates (should not get there) */
   1892 	default:	return 0;
   1893 	}
   1894 }
   1895 
   1896 /* quickly determine if a given rate is CCK or OFDM */
   1897 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1898 
   1899 static int
   1900 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1901     int ac)
   1902 {
   1903 	struct ieee80211com *ic = &sc->sc_ic;
   1904 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1905 	struct wpi_tx_desc *desc;
   1906 	struct wpi_tx_data *data;
   1907 	struct wpi_tx_cmd *cmd;
   1908 	struct wpi_cmd_data *tx;
   1909 	struct ieee80211_frame *wh;
   1910 	struct ieee80211_key *k;
   1911 	const struct chanAccParams *cap;
   1912 	struct mbuf *mnew;
   1913 	int i, rate, error, hdrlen, noack = 0;
   1914 
   1915 	desc = &ring->desc[ring->cur];
   1916 	data = &ring->data[ring->cur];
   1917 
   1918 	wh = mtod(m0, struct ieee80211_frame *);
   1919 
   1920 	if (ieee80211_has_qos(wh)) {
   1921 		cap = &ic->ic_wme.wme_chanParams;
   1922 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1923 	}
   1924 
   1925 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1926 		k = ieee80211_crypto_encap(ic, ni, m0);
   1927 		if (k == NULL) {
   1928 			m_freem(m0);
   1929 			return ENOBUFS;
   1930 		}
   1931 
   1932 		/* packet header may have moved, reset our local pointer */
   1933 		wh = mtod(m0, struct ieee80211_frame *);
   1934 	}
   1935 
   1936 	hdrlen = ieee80211_anyhdrsize(wh);
   1937 
   1938 	/* pickup a rate */
   1939 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1940 	    IEEE80211_FC0_TYPE_MGT) {
   1941 		/* mgmt frames are sent at the lowest available bit-rate */
   1942 		rate = ni->ni_rates.rs_rates[0];
   1943 	} else {
   1944 		if (ic->ic_fixed_rate != -1) {
   1945 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1946 			    rs_rates[ic->ic_fixed_rate];
   1947 		} else
   1948 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1949 	}
   1950 	rate &= IEEE80211_RATE_VAL;
   1951 
   1952 	if (sc->sc_drvbpf != NULL) {
   1953 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1954 
   1955 		tap->wt_flags = 0;
   1956 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1957 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1958 		tap->wt_rate = rate;
   1959 		tap->wt_hwqueue = ac;
   1960 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1961 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1962 
   1963 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1964 	}
   1965 
   1966 	cmd = &ring->cmd[ring->cur];
   1967 	cmd->code = WPI_CMD_TX_DATA;
   1968 	cmd->flags = 0;
   1969 	cmd->qid = ring->qid;
   1970 	cmd->idx = ring->cur;
   1971 
   1972 	tx = (struct wpi_cmd_data *)cmd->data;
   1973 	/* no need to zero tx, all fields are reinitialized here */
   1974 	tx->flags = 0;
   1975 
   1976 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1977 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1978 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1979 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1980 
   1981 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1982 
   1983 	/* retrieve destination node's id */
   1984 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1985 		WPI_ID_BSS;
   1986 
   1987 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1988 	    IEEE80211_FC0_TYPE_MGT) {
   1989 		/* tell h/w to set timestamp in probe responses */
   1990 		if ((wh->i_fc[0] &
   1991 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1992 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1993 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1994 
   1995 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1996 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1997 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1998 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   1999 			tx->timeout = htole16(3);
   2000 		else
   2001 			tx->timeout = htole16(2);
   2002 	} else
   2003 		tx->timeout = htole16(0);
   2004 
   2005 	tx->rate = wpi_plcp_signal(rate);
   2006 
   2007 	/* be very persistant at sending frames out */
   2008 	tx->rts_ntries = 7;
   2009 	tx->data_ntries = 15;
   2010 
   2011 	tx->ofdm_mask = 0xff;
   2012 	tx->cck_mask = 0x0f;
   2013 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2014 
   2015 	tx->len = htole16(m0->m_pkthdr.len);
   2016 
   2017 	/* save and trim IEEE802.11 header */
   2018 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   2019 	m_adj(m0, hdrlen);
   2020 
   2021 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2022 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2023 	if (error != 0 && error != EFBIG) {
   2024 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   2025 		    error);
   2026 		m_freem(m0);
   2027 		return error;
   2028 	}
   2029 	if (error != 0) {
   2030 		/* too many fragments, linearize */
   2031 
   2032 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   2033 		if (mnew == NULL) {
   2034 			m_freem(m0);
   2035 			return ENOMEM;
   2036 		}
   2037 		M_COPY_PKTHDR(mnew, m0);
   2038 		if (m0->m_pkthdr.len > MHLEN) {
   2039 			MCLGET(mnew, M_DONTWAIT);
   2040 			if (!(mnew->m_flags & M_EXT)) {
   2041 				m_freem(m0);
   2042 				m_freem(mnew);
   2043 				return ENOMEM;
   2044 			}
   2045 		}
   2046 
   2047 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   2048 		m_freem(m0);
   2049 		mnew->m_len = mnew->m_pkthdr.len;
   2050 		m0 = mnew;
   2051 
   2052 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2053 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2054 		if (error != 0) {
   2055 			aprint_error_dev(sc->sc_dev,
   2056 			    "could not map mbuf (error %d)\n", error);
   2057 			m_freem(m0);
   2058 			return error;
   2059 		}
   2060 	}
   2061 
   2062 	data->m = m0;
   2063 	data->ni = ni;
   2064 
   2065 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   2066 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   2067 
   2068 	/* first scatter/gather segment is used by the tx data command */
   2069 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   2070 	    (1 + data->map->dm_nsegs) << 24);
   2071 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2072 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2073 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   2074 	    ((hdrlen + 3) & ~3));
   2075 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   2076 		desc->segs[i].addr =
   2077 		    htole32(data->map->dm_segs[i - 1].ds_addr);
   2078 		desc->segs[i].len  =
   2079 		    htole32(data->map->dm_segs[i - 1].ds_len);
   2080 	}
   2081 
   2082 	ring->queued++;
   2083 
   2084 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2085 	    data->map->dm_mapsize,
   2086 	    BUS_DMASYNC_PREWRITE);
   2087 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
   2088 	    ring->cmd_dma.size,
   2089 	    BUS_DMASYNC_PREWRITE);
   2090 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2091 	    ring->desc_dma.size,
   2092 	    BUS_DMASYNC_PREWRITE);
   2093 
   2094 	/* kick ring */
   2095 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   2096 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2097 
   2098 	return 0;
   2099 }
   2100 
   2101 static void
   2102 wpi_start(struct ifnet *ifp)
   2103 {
   2104 	struct wpi_softc *sc = ifp->if_softc;
   2105 	struct ieee80211com *ic = &sc->sc_ic;
   2106 	struct ieee80211_node *ni;
   2107 	struct ether_header *eh;
   2108 	struct mbuf *m0;
   2109 	int ac;
   2110 
   2111 	/*
   2112 	 * net80211 may still try to send management frames even if the
   2113 	 * IFF_RUNNING flag is not set...
   2114 	 */
   2115 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   2116 		return;
   2117 
   2118 	for (;;) {
   2119 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   2120 		if (m0 != NULL) {
   2121 
   2122 			ni = M_GETCTX(m0, struct ieee80211_node *);
   2123 			M_CLEARCTX(m0);
   2124 
   2125 			/* management frames go into ring 0 */
   2126 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   2127 				ifp->if_oerrors++;
   2128 				continue;
   2129 			}
   2130 			bpf_mtap3(ic->ic_rawbpf, m0);
   2131 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   2132 				ifp->if_oerrors++;
   2133 				break;
   2134 			}
   2135 		} else {
   2136 			if (ic->ic_state != IEEE80211_S_RUN)
   2137 				break;
   2138 			IFQ_POLL(&ifp->if_snd, m0);
   2139 			if (m0 == NULL)
   2140 				break;
   2141 
   2142 			if (m0->m_len < sizeof (*eh) &&
   2143 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
   2144 				ifp->if_oerrors++;
   2145 				continue;
   2146 			}
   2147 			eh = mtod(m0, struct ether_header *);
   2148 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   2149 			if (ni == NULL) {
   2150 				m_freem(m0);
   2151 				ifp->if_oerrors++;
   2152 				continue;
   2153 			}
   2154 
   2155 			/* classify mbuf so we can find which tx ring to use */
   2156 			if (ieee80211_classify(ic, m0, ni) != 0) {
   2157 				m_freem(m0);
   2158 				ieee80211_free_node(ni);
   2159 				ifp->if_oerrors++;
   2160 				continue;
   2161 			}
   2162 
   2163 			/* no QoS encapsulation for EAPOL frames */
   2164 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   2165 			    M_WME_GETAC(m0) : WME_AC_BE;
   2166 
   2167 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   2168 				/* there is no place left in this ring */
   2169 				ifp->if_flags |= IFF_OACTIVE;
   2170 				break;
   2171 			}
   2172 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   2173 			bpf_mtap(ifp, m0);
   2174 			m0 = ieee80211_encap(ic, m0, ni);
   2175 			if (m0 == NULL) {
   2176 				ieee80211_free_node(ni);
   2177 				ifp->if_oerrors++;
   2178 				continue;
   2179 			}
   2180 			bpf_mtap3(ic->ic_rawbpf, m0);
   2181 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   2182 				ieee80211_free_node(ni);
   2183 				ifp->if_oerrors++;
   2184 				break;
   2185 			}
   2186 		}
   2187 
   2188 		sc->sc_tx_timer = 5;
   2189 		ifp->if_timer = 1;
   2190 	}
   2191 }
   2192 
   2193 static void
   2194 wpi_watchdog(struct ifnet *ifp)
   2195 {
   2196 	struct wpi_softc *sc = ifp->if_softc;
   2197 
   2198 	ifp->if_timer = 0;
   2199 
   2200 	if (sc->sc_tx_timer > 0) {
   2201 		if (--sc->sc_tx_timer == 0) {
   2202 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2203 			ifp->if_flags &= ~IFF_UP;
   2204 			wpi_stop(ifp, 1);
   2205 			ifp->if_oerrors++;
   2206 			return;
   2207 		}
   2208 		ifp->if_timer = 1;
   2209 	}
   2210 
   2211 	ieee80211_watchdog(&sc->sc_ic);
   2212 }
   2213 
   2214 static int
   2215 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2216 {
   2217 #define IS_RUNNING(ifp) \
   2218 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2219 
   2220 	struct wpi_softc *sc = ifp->if_softc;
   2221 	struct ieee80211com *ic = &sc->sc_ic;
   2222 	int s, error = 0;
   2223 
   2224 	s = splnet();
   2225 
   2226 	switch (cmd) {
   2227 	case SIOCSIFFLAGS:
   2228 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2229 			break;
   2230 		if (ifp->if_flags & IFF_UP) {
   2231 			if (!(ifp->if_flags & IFF_RUNNING))
   2232 				wpi_init(ifp);
   2233 		} else {
   2234 			if (ifp->if_flags & IFF_RUNNING)
   2235 				wpi_stop(ifp, 1);
   2236 		}
   2237 		break;
   2238 
   2239 	case SIOCADDMULTI:
   2240 	case SIOCDELMULTI:
   2241 		/* XXX no h/w multicast filter? --dyoung */
   2242 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2243 			/* setup multicast filter, etc */
   2244 			error = 0;
   2245 		}
   2246 		break;
   2247 
   2248 	default:
   2249 		error = ieee80211_ioctl(ic, cmd, data);
   2250 	}
   2251 
   2252 	if (error == ENETRESET) {
   2253 		if (IS_RUNNING(ifp) &&
   2254 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2255 			wpi_init(ifp);
   2256 		error = 0;
   2257 	}
   2258 
   2259 	splx(s);
   2260 	return error;
   2261 
   2262 #undef IS_RUNNING
   2263 }
   2264 
   2265 /*
   2266  * Extract various information from EEPROM.
   2267  */
   2268 static void
   2269 wpi_read_eeprom(struct wpi_softc *sc)
   2270 {
   2271 	struct ieee80211com *ic = &sc->sc_ic;
   2272 	char domain[4];
   2273 	int i;
   2274 
   2275 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2276 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2277 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2278 
   2279 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2280 	    sc->type));
   2281 
   2282 	/* read and print regulatory domain */
   2283 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2284 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
   2285 
   2286 	/* read and print MAC address */
   2287 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2288 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2289 
   2290 	/* read the list of authorized channels */
   2291 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2292 		wpi_read_eeprom_channels(sc, i);
   2293 
   2294 	/* read the list of power groups */
   2295 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2296 		wpi_read_eeprom_group(sc, i);
   2297 }
   2298 
   2299 static void
   2300 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2301 {
   2302 	struct ieee80211com *ic = &sc->sc_ic;
   2303 	const struct wpi_chan_band *band = &wpi_bands[n];
   2304 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2305 	int chan, i;
   2306 
   2307 	wpi_read_prom_data(sc, band->addr, channels,
   2308 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2309 
   2310 	for (i = 0; i < band->nchan; i++) {
   2311 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2312 			continue;
   2313 
   2314 		chan = band->chan[i];
   2315 
   2316 		if (n == 0) {	/* 2GHz band */
   2317 			ic->ic_channels[chan].ic_freq =
   2318 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2319 			ic->ic_channels[chan].ic_flags =
   2320 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2321 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2322 
   2323 		} else {	/* 5GHz band */
   2324 			/*
   2325 			 * Some 3945ABG adapters support channels 7, 8, 11
   2326 			 * and 12 in the 2GHz *and* 5GHz bands.
   2327 			 * Because of limitations in our net80211(9) stack,
   2328 			 * we can't support these channels in 5GHz band.
   2329 			 */
   2330 			if (chan <= 14)
   2331 				continue;
   2332 
   2333 			ic->ic_channels[chan].ic_freq =
   2334 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2335 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2336 		}
   2337 
   2338 		/* is active scan allowed on this channel? */
   2339 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2340 			ic->ic_channels[chan].ic_flags |=
   2341 			    IEEE80211_CHAN_PASSIVE;
   2342 		}
   2343 
   2344 		/* save maximum allowed power for this channel */
   2345 		sc->maxpwr[chan] = channels[i].maxpwr;
   2346 
   2347 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2348 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2349 	}
   2350 }
   2351 
   2352 static void
   2353 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2354 {
   2355 	struct wpi_power_group *group = &sc->groups[n];
   2356 	struct wpi_eeprom_group rgroup;
   2357 	int i;
   2358 
   2359 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2360 	    sizeof rgroup);
   2361 
   2362 	/* save power group information */
   2363 	group->chan   = rgroup.chan;
   2364 	group->maxpwr = rgroup.maxpwr;
   2365 	/* temperature at which the samples were taken */
   2366 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2367 
   2368 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2369 	    group->chan, group->maxpwr, group->temp));
   2370 
   2371 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2372 		group->samples[i].index = rgroup.samples[i].index;
   2373 		group->samples[i].power = rgroup.samples[i].power;
   2374 
   2375 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2376 		    group->samples[i].index, group->samples[i].power));
   2377 	}
   2378 }
   2379 
   2380 /*
   2381  * Send a command to the firmware.
   2382  */
   2383 static int
   2384 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2385 {
   2386 	struct wpi_tx_ring *ring = &sc->cmdq;
   2387 	struct wpi_tx_desc *desc;
   2388 	struct wpi_tx_cmd *cmd;
   2389 	struct wpi_dma_info *dma;
   2390 
   2391 	KASSERT(size <= sizeof cmd->data);
   2392 
   2393 	desc = &ring->desc[ring->cur];
   2394 	cmd = &ring->cmd[ring->cur];
   2395 
   2396 	cmd->code = code;
   2397 	cmd->flags = 0;
   2398 	cmd->qid = ring->qid;
   2399 	cmd->idx = ring->cur;
   2400 	memcpy(cmd->data, buf, size);
   2401 
   2402 	dma = &ring->cmd_dma;
   2403 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   2404 
   2405 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2406 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2407 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2408 	desc->segs[0].len  = htole32(4 + size);
   2409 
   2410 	dma = &ring->desc_dma;
   2411 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   2412 
   2413 	/* kick cmd ring */
   2414 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2415 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2416 
   2417 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2418 }
   2419 
   2420 static int
   2421 wpi_wme_update(struct ieee80211com *ic)
   2422 {
   2423 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2424 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2425 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2426 	const struct wmeParams *wmep;
   2427 	struct wpi_wme_setup wme;
   2428 	int ac;
   2429 
   2430 	/* don't override default WME values if WME is not actually enabled */
   2431 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2432 		return 0;
   2433 
   2434 	wme.flags = 0;
   2435 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2436 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2437 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2438 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2439 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2440 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2441 
   2442 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2443 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2444 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2445 	}
   2446 
   2447 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2448 #undef WPI_USEC
   2449 #undef WPI_EXP2
   2450 }
   2451 
   2452 /*
   2453  * Configure h/w multi-rate retries.
   2454  */
   2455 static int
   2456 wpi_mrr_setup(struct wpi_softc *sc)
   2457 {
   2458 	struct ieee80211com *ic = &sc->sc_ic;
   2459 	struct wpi_mrr_setup mrr;
   2460 	int i, error;
   2461 
   2462 	/* CCK rates (not used with 802.11a) */
   2463 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2464 		mrr.rates[i].flags = 0;
   2465 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2466 		/* fallback to the immediate lower CCK rate (if any) */
   2467 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2468 		/* try one time at this rate before falling back to "next" */
   2469 		mrr.rates[i].ntries = 1;
   2470 	}
   2471 
   2472 	/* OFDM rates (not used with 802.11b) */
   2473 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2474 		mrr.rates[i].flags = 0;
   2475 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2476 		/* fallback to the immediate lower rate (if any) */
   2477 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2478 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2479 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2480 			WPI_OFDM6 : WPI_CCK2) :
   2481 		    i - 1;
   2482 		/* try one time at this rate before falling back to "next" */
   2483 		mrr.rates[i].ntries = 1;
   2484 	}
   2485 
   2486 	/* setup MRR for control frames */
   2487 	mrr.which = htole32(WPI_MRR_CTL);
   2488 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2489 	if (error != 0) {
   2490 		aprint_error_dev(sc->sc_dev,
   2491 		    "could not setup MRR for control frames\n");
   2492 		return error;
   2493 	}
   2494 
   2495 	/* setup MRR for data frames */
   2496 	mrr.which = htole32(WPI_MRR_DATA);
   2497 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2498 	if (error != 0) {
   2499 		aprint_error_dev(sc->sc_dev,
   2500 		    "could not setup MRR for data frames\n");
   2501 		return error;
   2502 	}
   2503 
   2504 	return 0;
   2505 }
   2506 
   2507 static void
   2508 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2509 {
   2510 	struct wpi_cmd_led led;
   2511 
   2512 	led.which = which;
   2513 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2514 	led.off = off;
   2515 	led.on = on;
   2516 
   2517 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2518 }
   2519 
   2520 static void
   2521 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2522 {
   2523 	struct wpi_cmd_tsf tsf;
   2524 	uint64_t val, mod;
   2525 
   2526 	memset(&tsf, 0, sizeof tsf);
   2527 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   2528 	tsf.bintval = htole16(ni->ni_intval);
   2529 	tsf.lintval = htole16(10);
   2530 
   2531 	/* compute remaining time until next beacon */
   2532 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   2533 	mod = le64toh(tsf.tstamp) % val;
   2534 	tsf.binitval = htole32((uint32_t)(val - mod));
   2535 
   2536 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
   2537 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2538 
   2539 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2540 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2541 }
   2542 
   2543 /*
   2544  * Update Tx power to match what is defined for channel `c'.
   2545  */
   2546 static int
   2547 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2548 {
   2549 	struct ieee80211com *ic = &sc->sc_ic;
   2550 	struct wpi_power_group *group;
   2551 	struct wpi_cmd_txpower txpower;
   2552 	u_int chan;
   2553 	int i;
   2554 
   2555 	/* get channel number */
   2556 	chan = ieee80211_chan2ieee(ic, c);
   2557 
   2558 	/* find the power group to which this channel belongs */
   2559 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2560 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2561 			if (chan <= group->chan)
   2562 				break;
   2563 	} else
   2564 		group = &sc->groups[0];
   2565 
   2566 	memset(&txpower, 0, sizeof txpower);
   2567 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2568 	txpower.chan = htole16(chan);
   2569 
   2570 	/* set Tx power for all OFDM and CCK rates */
   2571 	for (i = 0; i <= 11 ; i++) {
   2572 		/* retrieve Tx power for this channel/rate combination */
   2573 		int idx = wpi_get_power_index(sc, group, c,
   2574 		    wpi_ridx_to_rate[i]);
   2575 
   2576 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2577 
   2578 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2579 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2580 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2581 		} else {
   2582 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2583 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2584 		}
   2585 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2586 		    wpi_ridx_to_rate[i], idx));
   2587 	}
   2588 
   2589 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2590 }
   2591 
   2592 /*
   2593  * Determine Tx power index for a given channel/rate combination.
   2594  * This takes into account the regulatory information from EEPROM and the
   2595  * current temperature.
   2596  */
   2597 static int
   2598 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2599     struct ieee80211_channel *c, int rate)
   2600 {
   2601 /* fixed-point arithmetic division using a n-bit fractional part */
   2602 #define fdivround(a, b, n)	\
   2603 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2604 
   2605 /* linear interpolation */
   2606 #define interpolate(x, x1, y1, x2, y2, n)	\
   2607 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2608 
   2609 	struct ieee80211com *ic = &sc->sc_ic;
   2610 	struct wpi_power_sample *sample;
   2611 	int pwr, idx;
   2612 	u_int chan;
   2613 
   2614 	/* get channel number */
   2615 	chan = ieee80211_chan2ieee(ic, c);
   2616 
   2617 	/* default power is group's maximum power - 3dB */
   2618 	pwr = group->maxpwr / 2;
   2619 
   2620 	/* decrease power for highest OFDM rates to reduce distortion */
   2621 	switch (rate) {
   2622 	case 72:	/* 36Mb/s */
   2623 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2624 		break;
   2625 	case 96:	/* 48Mb/s */
   2626 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2627 		break;
   2628 	case 108:	/* 54Mb/s */
   2629 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2630 		break;
   2631 	}
   2632 
   2633 	/* never exceed channel's maximum allowed Tx power */
   2634 	pwr = min(pwr, sc->maxpwr[chan]);
   2635 
   2636 	/* retrieve power index into gain tables from samples */
   2637 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2638 		if (pwr > sample[1].power)
   2639 			break;
   2640 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2641 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2642 	    sample[1].power, sample[1].index, 19);
   2643 
   2644 	/*-
   2645 	 * Adjust power index based on current temperature:
   2646 	 * - if cooler than factory-calibrated: decrease output power
   2647 	 * - if warmer than factory-calibrated: increase output power
   2648 	 */
   2649 	idx -= (sc->temp - group->temp) * 11 / 100;
   2650 
   2651 	/* decrease power for CCK rates (-5dB) */
   2652 	if (!WPI_RATE_IS_OFDM(rate))
   2653 		idx += 10;
   2654 
   2655 	/* keep power index in a valid range */
   2656 	if (idx < 0)
   2657 		return 0;
   2658 	if (idx > WPI_MAX_PWR_INDEX)
   2659 		return WPI_MAX_PWR_INDEX;
   2660 	return idx;
   2661 
   2662 #undef interpolate
   2663 #undef fdivround
   2664 }
   2665 
   2666 /*
   2667  * Build a beacon frame that the firmware will broadcast periodically in
   2668  * IBSS or HostAP modes.
   2669  */
   2670 static int
   2671 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2672 {
   2673 	struct ieee80211com *ic = &sc->sc_ic;
   2674 	struct wpi_tx_ring *ring = &sc->cmdq;
   2675 	struct wpi_tx_desc *desc;
   2676 	struct wpi_tx_data *data;
   2677 	struct wpi_tx_cmd *cmd;
   2678 	struct wpi_cmd_beacon *bcn;
   2679 	struct ieee80211_beacon_offsets bo;
   2680 	struct mbuf *m0;
   2681 	int error;
   2682 
   2683 	desc = &ring->desc[ring->cur];
   2684 	data = &ring->data[ring->cur];
   2685 
   2686 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2687 	if (m0 == NULL) {
   2688 		aprint_error_dev(sc->sc_dev,
   2689 		    "could not allocate beacon frame\n");
   2690 		return ENOMEM;
   2691 	}
   2692 
   2693 	cmd = &ring->cmd[ring->cur];
   2694 	cmd->code = WPI_CMD_SET_BEACON;
   2695 	cmd->flags = 0;
   2696 	cmd->qid = ring->qid;
   2697 	cmd->idx = ring->cur;
   2698 
   2699 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2700 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2701 	bcn->id = WPI_ID_BROADCAST;
   2702 	bcn->ofdm_mask = 0xff;
   2703 	bcn->cck_mask = 0x0f;
   2704 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2705 	bcn->len = htole16(m0->m_pkthdr.len);
   2706 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2707 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2708 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2709 
   2710 	/* save and trim IEEE802.11 header */
   2711 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2712 	m_adj(m0, sizeof (struct ieee80211_frame));
   2713 
   2714 	/* assume beacon frame is contiguous */
   2715 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2716 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   2717 	if (error != 0) {
   2718 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2719 		m_freem(m0);
   2720 		return error;
   2721 	}
   2722 
   2723 	data->m = m0;
   2724 
   2725 	/* first scatter/gather segment is used by the beacon command */
   2726 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2727 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2728 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2729 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2730 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2731 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2732 
   2733 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2734 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2735 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2736 	    BUS_DMASYNC_PREWRITE);
   2737 
   2738 	/* kick cmd ring */
   2739 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2740 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2741 
   2742 	return 0;
   2743 }
   2744 
   2745 static int
   2746 wpi_auth(struct wpi_softc *sc)
   2747 {
   2748 	struct ieee80211com *ic = &sc->sc_ic;
   2749 	struct ieee80211_node *ni = ic->ic_bss;
   2750 	struct wpi_node_info node;
   2751 	int error;
   2752 
   2753 	/* update adapter's configuration */
   2754 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2755 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2756 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2757 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2758 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2759 		    WPI_CONFIG_24GHZ);
   2760 	}
   2761 	switch (ic->ic_curmode) {
   2762 	case IEEE80211_MODE_11A:
   2763 		sc->config.cck_mask  = 0;
   2764 		sc->config.ofdm_mask = 0x15;
   2765 		break;
   2766 	case IEEE80211_MODE_11B:
   2767 		sc->config.cck_mask  = 0x03;
   2768 		sc->config.ofdm_mask = 0;
   2769 		break;
   2770 	default:	/* assume 802.11b/g */
   2771 		sc->config.cck_mask  = 0x0f;
   2772 		sc->config.ofdm_mask = 0x15;
   2773 	}
   2774 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2775 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2776 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2777 	    sizeof (struct wpi_config), 1);
   2778 	if (error != 0) {
   2779 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2780 		return error;
   2781 	}
   2782 
   2783 	/* configuration has changed, set Tx power accordingly */
   2784 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2785 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2786 		return error;
   2787 	}
   2788 
   2789 	/* add default node */
   2790 	memset(&node, 0, sizeof node);
   2791 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2792 	node.id = WPI_ID_BSS;
   2793 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2794 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2795 	node.action = htole32(WPI_ACTION_SET_RATE);
   2796 	node.antenna = WPI_ANTENNA_BOTH;
   2797 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2798 	if (error != 0) {
   2799 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2800 		return error;
   2801 	}
   2802 
   2803 	return 0;
   2804 }
   2805 
   2806 /*
   2807  * Send a scan request to the firmware.  Since this command is huge, we map it
   2808  * into a mbuf instead of using the pre-allocated set of commands.
   2809  */
   2810 static int
   2811 wpi_scan(struct wpi_softc *sc)
   2812 {
   2813 	struct ieee80211com *ic = &sc->sc_ic;
   2814 	struct wpi_tx_ring *ring = &sc->cmdq;
   2815 	struct wpi_tx_desc *desc;
   2816 	struct wpi_tx_data *data;
   2817 	struct wpi_tx_cmd *cmd;
   2818 	struct wpi_scan_hdr *hdr;
   2819 	struct wpi_scan_chan *chan;
   2820 	struct ieee80211_frame *wh;
   2821 	struct ieee80211_rateset *rs;
   2822 	struct ieee80211_channel *c;
   2823 	uint8_t *frm;
   2824 	int pktlen, error, nrates;
   2825 
   2826 	if (ic->ic_curchan == NULL)
   2827 		return EIO;
   2828 
   2829 	desc = &ring->desc[ring->cur];
   2830 	data = &ring->data[ring->cur];
   2831 
   2832 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2833 	if (data->m == NULL) {
   2834 		aprint_error_dev(sc->sc_dev,
   2835 		    "could not allocate mbuf for scan command\n");
   2836 		return ENOMEM;
   2837 	}
   2838 	MCLGET(data->m, M_DONTWAIT);
   2839 	if (!(data->m->m_flags & M_EXT)) {
   2840 		m_freem(data->m);
   2841 		data->m = NULL;
   2842 		aprint_error_dev(sc->sc_dev,
   2843 		    "could not allocate mbuf for scan command\n");
   2844 		return ENOMEM;
   2845 	}
   2846 
   2847 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2848 	cmd->code = WPI_CMD_SCAN;
   2849 	cmd->flags = 0;
   2850 	cmd->qid = ring->qid;
   2851 	cmd->idx = ring->cur;
   2852 
   2853 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2854 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2855 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
   2856 	hdr->cmd.id = WPI_ID_BROADCAST;
   2857 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
   2858 	/*
   2859 	 * Move to the next channel if no packets are received within 5 msecs
   2860 	 * after sending the probe request (this helps to reduce the duration
   2861 	 * of active scans).
   2862 	 */
   2863 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
   2864 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2865 
   2866 	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
   2867 		hdr->crc_threshold = htole16(1);
   2868 		/* send probe requests at 6Mbps */
   2869 		hdr->cmd.rate = wpi_plcp_signal(12);
   2870 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   2871 	} else {
   2872 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2873 		/* send probe requests at 1Mbps */
   2874 		hdr->cmd.rate = wpi_plcp_signal(2);
   2875 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   2876 	}
   2877 
   2878 	/* for directed scans, firmware inserts the essid IE itself */
   2879 	if (ic->ic_des_esslen != 0) {
   2880 		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2881 		hdr->essid[0].len = ic->ic_des_esslen;
   2882 		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2883 	}
   2884 
   2885 	/*
   2886 	 * Build a probe request frame.  Most of the following code is a
   2887 	 * copy & paste of what is done in net80211.
   2888 	 */
   2889 	wh = (struct ieee80211_frame *)(hdr + 1);
   2890 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2891 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2892 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2893 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2894 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2895 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2896 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2897 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2898 
   2899 	frm = (uint8_t *)(wh + 1);
   2900 
   2901 	/* add empty essid IE (firmware generates it for directed scans) */
   2902 	*frm++ = IEEE80211_ELEMID_SSID;
   2903 	*frm++ = 0;
   2904 
   2905 	/* add supported rates IE */
   2906 	*frm++ = IEEE80211_ELEMID_RATES;
   2907 	nrates = rs->rs_nrates;
   2908 	if (nrates > IEEE80211_RATE_SIZE)
   2909 		nrates = IEEE80211_RATE_SIZE;
   2910 	*frm++ = nrates;
   2911 	memcpy(frm, rs->rs_rates, nrates);
   2912 	frm += nrates;
   2913 
   2914 	/* add supported xrates IE */
   2915 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2916 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2917 		*frm++ = IEEE80211_ELEMID_XRATES;
   2918 		*frm++ = nrates;
   2919 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2920 		frm += nrates;
   2921 	}
   2922 
   2923 	/* setup length of probe request */
   2924 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
   2925 
   2926 	chan = (struct wpi_scan_chan *)frm;
   2927 	c = ic->ic_curchan;
   2928 
   2929 	chan->chan = ieee80211_chan2ieee(ic, c);
   2930 	chan->flags = 0;
   2931 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2932 		chan->flags |= WPI_CHAN_ACTIVE;
   2933 		if (ic->ic_des_esslen != 0)
   2934 			chan->flags |= WPI_CHAN_DIRECT;
   2935 	}
   2936 	chan->dsp_gain = 0x6e;
   2937 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2938 		chan->rf_gain = 0x3b;
   2939 		chan->active  = htole16(10);
   2940 		chan->passive = htole16(110);
   2941 	} else {
   2942 		chan->rf_gain = 0x28;
   2943 		chan->active  = htole16(20);
   2944 		chan->passive = htole16(120);
   2945 	}
   2946 	hdr->nchan++;
   2947 	chan++;
   2948 
   2949 	frm += sizeof (struct wpi_scan_chan);
   2950 
   2951 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2952 	pktlen = frm - (uint8_t *)cmd;
   2953 
   2954 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
   2955 	    BUS_DMA_NOWAIT);
   2956 	if (error != 0) {
   2957 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2958 		m_freem(data->m);
   2959 		data->m = NULL;
   2960 		return error;
   2961 	}
   2962 
   2963 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2964 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2965 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2966 
   2967 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2968 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2969 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2970 	    BUS_DMASYNC_PREWRITE);
   2971 
   2972 	/* kick cmd ring */
   2973 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2974 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2975 
   2976 	return 0;	/* will be notified async. of failure/success */
   2977 }
   2978 
   2979 static int
   2980 wpi_config(struct wpi_softc *sc)
   2981 {
   2982 	struct ieee80211com *ic = &sc->sc_ic;
   2983 	struct ifnet *ifp = ic->ic_ifp;
   2984 	struct wpi_power power;
   2985 	struct wpi_bluetooth bluetooth;
   2986 	struct wpi_node_info node;
   2987 	int error;
   2988 
   2989 	memset(&power, 0, sizeof power);
   2990 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2991 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2992 	if (error != 0) {
   2993 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2994 		return error;
   2995 	}
   2996 
   2997 	/* configure bluetooth coexistence */
   2998 	memset(&bluetooth, 0, sizeof bluetooth);
   2999 	bluetooth.flags = 3;
   3000 	bluetooth.lead = 0xaa;
   3001 	bluetooth.kill = 1;
   3002 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   3003 	    0);
   3004 	if (error != 0) {
   3005 		aprint_error_dev(sc->sc_dev,
   3006 			"could not configure bluetooth coexistence\n");
   3007 		return error;
   3008 	}
   3009 
   3010 	/* configure adapter */
   3011 	memset(&sc->config, 0, sizeof (struct wpi_config));
   3012 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   3013 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   3014 	/* set default channel */
   3015 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
   3016 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   3017 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
   3018 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   3019 		    WPI_CONFIG_24GHZ);
   3020 	}
   3021 	sc->config.filter = 0;
   3022 	switch (ic->ic_opmode) {
   3023 	case IEEE80211_M_STA:
   3024 		sc->config.mode = WPI_MODE_STA;
   3025 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   3026 		break;
   3027 	case IEEE80211_M_IBSS:
   3028 	case IEEE80211_M_AHDEMO:
   3029 		sc->config.mode = WPI_MODE_IBSS;
   3030 		break;
   3031 	case IEEE80211_M_HOSTAP:
   3032 		sc->config.mode = WPI_MODE_HOSTAP;
   3033 		break;
   3034 	case IEEE80211_M_MONITOR:
   3035 		sc->config.mode = WPI_MODE_MONITOR;
   3036 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   3037 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   3038 		break;
   3039 	}
   3040 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   3041 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   3042 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   3043 	    sizeof (struct wpi_config), 0);
   3044 	if (error != 0) {
   3045 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   3046 		return error;
   3047 	}
   3048 
   3049 	/* configuration has changed, set Tx power accordingly */
   3050 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
   3051 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   3052 		return error;
   3053 	}
   3054 
   3055 	/* add broadcast node */
   3056 	memset(&node, 0, sizeof node);
   3057 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   3058 	node.id = WPI_ID_BROADCAST;
   3059 	node.rate = wpi_plcp_signal(2);
   3060 	node.action = htole32(WPI_ACTION_SET_RATE);
   3061 	node.antenna = WPI_ANTENNA_BOTH;
   3062 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   3063 	if (error != 0) {
   3064 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   3065 		return error;
   3066 	}
   3067 
   3068 	if ((error = wpi_mrr_setup(sc)) != 0) {
   3069 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   3070 		return error;
   3071 	}
   3072 
   3073 	return 0;
   3074 }
   3075 
   3076 static void
   3077 wpi_stop_master(struct wpi_softc *sc)
   3078 {
   3079 	uint32_t tmp;
   3080 	int ntries;
   3081 
   3082 	tmp = WPI_READ(sc, WPI_RESET);
   3083 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   3084 
   3085 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   3086 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   3087 		return;	/* already asleep */
   3088 
   3089 	for (ntries = 0; ntries < 100; ntries++) {
   3090 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   3091 			break;
   3092 		DELAY(10);
   3093 	}
   3094 	if (ntries == 100) {
   3095 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   3096 	}
   3097 }
   3098 
   3099 static int
   3100 wpi_power_up(struct wpi_softc *sc)
   3101 {
   3102 	uint32_t tmp;
   3103 	int ntries;
   3104 
   3105 	wpi_mem_lock(sc);
   3106 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   3107 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   3108 	wpi_mem_unlock(sc);
   3109 
   3110 	for (ntries = 0; ntries < 5000; ntries++) {
   3111 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   3112 			break;
   3113 		DELAY(10);
   3114 	}
   3115 	if (ntries == 5000) {
   3116 		aprint_error_dev(sc->sc_dev,
   3117 		    "timeout waiting for NIC to power up\n");
   3118 		return ETIMEDOUT;
   3119 	}
   3120 	return 0;
   3121 }
   3122 
   3123 static int
   3124 wpi_reset(struct wpi_softc *sc)
   3125 {
   3126 	uint32_t tmp;
   3127 	int ntries;
   3128 
   3129 	/* clear any pending interrupts */
   3130 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3131 
   3132 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   3133 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   3134 
   3135 	tmp = WPI_READ(sc, WPI_CHICKEN);
   3136 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   3137 
   3138 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   3139 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   3140 
   3141 	/* wait for clock stabilization */
   3142 	for (ntries = 0; ntries < 1000; ntries++) {
   3143 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   3144 			break;
   3145 		DELAY(10);
   3146 	}
   3147 	if (ntries == 1000) {
   3148 		aprint_error_dev(sc->sc_dev,
   3149 		    "timeout waiting for clock stabilization\n");
   3150 		return ETIMEDOUT;
   3151 	}
   3152 
   3153 	/* initialize EEPROM */
   3154 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   3155 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   3156 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   3157 		return EIO;
   3158 	}
   3159 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   3160 
   3161 	return 0;
   3162 }
   3163 
   3164 static void
   3165 wpi_hw_config(struct wpi_softc *sc)
   3166 {
   3167 	uint32_t rev, hw;
   3168 
   3169 	/* voodoo from the reference driver */
   3170 	hw = WPI_READ(sc, WPI_HWCONFIG);
   3171 
   3172 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   3173 	rev = PCI_REVISION(rev);
   3174 	if ((rev & 0xc0) == 0x40)
   3175 		hw |= WPI_HW_ALM_MB;
   3176 	else if (!(rev & 0x80))
   3177 		hw |= WPI_HW_ALM_MM;
   3178 
   3179 	if (sc->cap == 0x80)
   3180 		hw |= WPI_HW_SKU_MRC;
   3181 
   3182 	hw &= ~WPI_HW_REV_D;
   3183 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   3184 		hw |= WPI_HW_REV_D;
   3185 
   3186 	if (sc->type > 1)
   3187 		hw |= WPI_HW_TYPE_B;
   3188 
   3189 	DPRINTF(("setting h/w config %x\n", hw));
   3190 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   3191 }
   3192 
   3193 static int
   3194 wpi_init(struct ifnet *ifp)
   3195 {
   3196 	struct wpi_softc *sc = ifp->if_softc;
   3197 	struct ieee80211com *ic = &sc->sc_ic;
   3198 	uint32_t tmp;
   3199 	int qid, ntries, error;
   3200 
   3201 	wpi_stop(ifp,1);
   3202 	(void)wpi_reset(sc);
   3203 
   3204 	wpi_mem_lock(sc);
   3205 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   3206 	DELAY(20);
   3207 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   3208 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   3209 	wpi_mem_unlock(sc);
   3210 
   3211 	(void)wpi_power_up(sc);
   3212 	wpi_hw_config(sc);
   3213 
   3214 	/* init Rx ring */
   3215 	wpi_mem_lock(sc);
   3216 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   3217 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   3218 	    offsetof(struct wpi_shared, next));
   3219 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3220 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3221 	wpi_mem_unlock(sc);
   3222 
   3223 	/* init Tx rings */
   3224 	wpi_mem_lock(sc);
   3225 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
   3226 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
   3227 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
   3228 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3229 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3230 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3231 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3232 
   3233 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3234 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3235 
   3236 	for (qid = 0; qid < 6; qid++) {
   3237 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3238 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3239 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3240 	}
   3241 	wpi_mem_unlock(sc);
   3242 
   3243 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3244 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3245 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3246 
   3247 	/* clear any pending interrupts */
   3248 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3249 	/* enable interrupts */
   3250 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3251 
   3252 	/* not sure why/if this is necessary... */
   3253 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3254 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3255 
   3256 	if ((error = wpi_load_firmware(sc)) != 0)
   3257 		/* wpi_load_firmware prints error messages for us.  */
   3258 		goto fail1;
   3259 
   3260 	/* Check the status of the radio switch */
   3261 	mutex_enter(&sc->sc_rsw_mtx);
   3262 	if (wpi_getrfkill(sc)) {
   3263 		mutex_exit(&sc->sc_rsw_mtx);
   3264 		aprint_error_dev(sc->sc_dev,
   3265 		    "radio is disabled by hardware switch\n");
   3266 		ifp->if_flags &= ~IFF_UP;
   3267 		error = EBUSY;
   3268 		goto fail1;
   3269 	}
   3270 	mutex_exit(&sc->sc_rsw_mtx);
   3271 
   3272 	/* wait for thermal sensors to calibrate */
   3273 	for (ntries = 0; ntries < 1000; ntries++) {
   3274 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3275 			break;
   3276 		DELAY(10);
   3277 	}
   3278 	if (ntries == 1000) {
   3279 		aprint_error_dev(sc->sc_dev,
   3280 		    "timeout waiting for thermal sensors calibration\n");
   3281 		error = ETIMEDOUT;
   3282 		goto fail1;
   3283 	}
   3284 	DPRINTF(("temperature %d\n", sc->temp));
   3285 
   3286 	if ((error = wpi_config(sc)) != 0) {
   3287 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3288 		goto fail1;
   3289 	}
   3290 
   3291 	ifp->if_flags &= ~IFF_OACTIVE;
   3292 	ifp->if_flags |= IFF_RUNNING;
   3293 
   3294 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3295 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3296 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3297 	}
   3298 	else
   3299 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3300 
   3301 	return 0;
   3302 
   3303 fail1:	wpi_stop(ifp, 1);
   3304 	return error;
   3305 }
   3306 
   3307 static void
   3308 wpi_stop(struct ifnet *ifp, int disable)
   3309 {
   3310 	struct wpi_softc *sc = ifp->if_softc;
   3311 	struct ieee80211com *ic = &sc->sc_ic;
   3312 	uint32_t tmp;
   3313 	int ac;
   3314 
   3315 	ifp->if_timer = sc->sc_tx_timer = 0;
   3316 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3317 
   3318 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3319 
   3320 	/* disable interrupts */
   3321 	WPI_WRITE(sc, WPI_MASK, 0);
   3322 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3323 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3324 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3325 
   3326 	wpi_mem_lock(sc);
   3327 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3328 	wpi_mem_unlock(sc);
   3329 
   3330 	/* reset all Tx rings */
   3331 	for (ac = 0; ac < 4; ac++)
   3332 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3333 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3334 
   3335 	/* reset Rx ring */
   3336 	wpi_reset_rx_ring(sc, &sc->rxq);
   3337 
   3338 	wpi_mem_lock(sc);
   3339 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3340 	wpi_mem_unlock(sc);
   3341 
   3342 	DELAY(5);
   3343 
   3344 	wpi_stop_master(sc);
   3345 
   3346 	tmp = WPI_READ(sc, WPI_RESET);
   3347 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3348 }
   3349 
   3350 static bool
   3351 wpi_resume(device_t dv, const pmf_qual_t *qual)
   3352 {
   3353 	struct wpi_softc *sc = device_private(dv);
   3354 
   3355 	(void)wpi_reset(sc);
   3356 
   3357 	return true;
   3358 }
   3359 
   3360 /*
   3361  * Return whether or not the radio is enabled in hardware
   3362  * (i.e. the rfkill switch is "off").
   3363  */
   3364 static int
   3365 wpi_getrfkill(struct wpi_softc *sc)
   3366 {
   3367 	uint32_t tmp;
   3368 
   3369 	wpi_mem_lock(sc);
   3370 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3371 	wpi_mem_unlock(sc);
   3372 
   3373 	KASSERT(mutex_owned(&sc->sc_rsw_mtx));
   3374 	if (tmp & 0x01) {
   3375 		/* switch is on */
   3376 		if (sc->sc_rsw_status != WPI_RSW_ON) {
   3377 			sc->sc_rsw_status = WPI_RSW_ON;
   3378 			sysmon_pswitch_event(&sc->sc_rsw,
   3379 			    PSWITCH_EVENT_PRESSED);
   3380 		}
   3381 	} else {
   3382 		/* switch is off */
   3383 		if (sc->sc_rsw_status != WPI_RSW_OFF) {
   3384 			sc->sc_rsw_status = WPI_RSW_OFF;
   3385 			sysmon_pswitch_event(&sc->sc_rsw,
   3386 			    PSWITCH_EVENT_RELEASED);
   3387 		}
   3388 	}
   3389 
   3390 	return !(tmp & 0x01);
   3391 }
   3392 
   3393 static int
   3394 wpi_sysctl_radio(SYSCTLFN_ARGS)
   3395 {
   3396 	struct sysctlnode node;
   3397 	struct wpi_softc *sc;
   3398 	int val, error;
   3399 
   3400 	node = *rnode;
   3401 	sc = (struct wpi_softc *)node.sysctl_data;
   3402 
   3403 	mutex_enter(&sc->sc_rsw_mtx);
   3404 	val = !wpi_getrfkill(sc);
   3405 	mutex_exit(&sc->sc_rsw_mtx);
   3406 
   3407 	node.sysctl_data = &val;
   3408 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3409 
   3410 	if (error || newp == NULL)
   3411 		return error;
   3412 
   3413 	return 0;
   3414 }
   3415 
   3416 static void
   3417 wpi_sysctlattach(struct wpi_softc *sc)
   3418 {
   3419 	int rc;
   3420 	const struct sysctlnode *rnode;
   3421 	const struct sysctlnode *cnode;
   3422 
   3423 	struct sysctllog **clog = &sc->sc_sysctllog;
   3424 
   3425 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
   3426 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
   3427 	    SYSCTL_DESCR("wpi controls and statistics"),
   3428 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
   3429 		goto err;
   3430 
   3431 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3432 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
   3433 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
   3434 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
   3435 		goto err;
   3436 
   3437 #ifdef WPI_DEBUG
   3438 	/* control debugging printfs */
   3439 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3440 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
   3441 	    "debug", SYSCTL_DESCR("Enable debugging output"),
   3442 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
   3443 		goto err;
   3444 #endif
   3445 
   3446 	return;
   3447 err:
   3448 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3449 }
   3450 
   3451 static void
   3452 wpi_rsw_thread(void *arg)
   3453 {
   3454 	struct wpi_softc *sc = (struct wpi_softc *)arg;
   3455 
   3456 	mutex_enter(&sc->sc_rsw_mtx);
   3457 	for (;;) {
   3458 		cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
   3459 		if (sc->sc_dying) {
   3460 			sc->sc_rsw_lwp = NULL;
   3461 			cv_broadcast(&sc->sc_rsw_cv);
   3462 			mutex_exit(&sc->sc_rsw_mtx);
   3463 			kthread_exit(0);
   3464 		}
   3465 		wpi_getrfkill(sc);
   3466 	}
   3467 }
   3468 
   3469