if_wpi.c revision 1.80.2.2 1 /* $NetBSD: if_wpi.c,v 1.80.2.2 2020/04/08 14:08:09 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.80.2.2 2020/04/08 14:08:09 martin Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 #include <sys/kthread.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51
52 #include <dev/sysmon/sysmonvar.h>
53
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_ether.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_amrr.h>
69 #include <net80211/ieee80211_radiotap.h>
70
71 #include <dev/firmload.h>
72
73 #include <dev/pci/if_wpireg.h>
74 #include <dev/pci/if_wpivar.h>
75
76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
77 static once_t wpi_firmware_init;
78 static kmutex_t wpi_firmware_mutex;
79 static size_t wpi_firmware_users;
80 static uint8_t *wpi_firmware_image;
81 static size_t wpi_firmware_size;
82
83 static int wpi_match(device_t, cfdata_t, void *);
84 static void wpi_attach(device_t, device_t, void *);
85 static int wpi_detach(device_t , int);
86 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
87 void **, bus_size_t, bus_size_t, int);
88 static void wpi_dma_contig_free(struct wpi_dma_info *);
89 static int wpi_alloc_shared(struct wpi_softc *);
90 static void wpi_free_shared(struct wpi_softc *);
91 static int wpi_alloc_fwmem(struct wpi_softc *);
92 static void wpi_free_fwmem(struct wpi_softc *);
93 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
94 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
95 static int wpi_alloc_rpool(struct wpi_softc *);
96 static void wpi_free_rpool(struct wpi_softc *);
97 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
98 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
99 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
100 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
101 int, int);
102 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
103 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
104 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
105 static void wpi_newassoc(struct ieee80211_node *, int);
106 static int wpi_media_change(struct ifnet *);
107 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
108 static void wpi_mem_lock(struct wpi_softc *);
109 static void wpi_mem_unlock(struct wpi_softc *);
110 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
111 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
112 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
113 const uint32_t *, int);
114 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
115 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
116 static int wpi_cache_firmware(struct wpi_softc *);
117 static void wpi_release_firmware(void);
118 static int wpi_load_firmware(struct wpi_softc *);
119 static void wpi_calib_timeout(void *);
120 static void wpi_iter_func(void *, struct ieee80211_node *);
121 static void wpi_power_calibration(struct wpi_softc *, int);
122 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
123 struct wpi_rx_data *);
124 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
125 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
126 static void wpi_notif_intr(struct wpi_softc *);
127 static int wpi_intr(void *);
128 static void wpi_softintr(void *);
129 static void wpi_read_eeprom(struct wpi_softc *);
130 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
131 static void wpi_read_eeprom_group(struct wpi_softc *, int);
132 static uint8_t wpi_plcp_signal(int);
133 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
134 struct ieee80211_node *, int);
135 static void wpi_start(struct ifnet *);
136 static void wpi_watchdog(struct ifnet *);
137 static int wpi_ioctl(struct ifnet *, u_long, void *);
138 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
139 static int wpi_wme_update(struct ieee80211com *);
140 static int wpi_mrr_setup(struct wpi_softc *);
141 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
142 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
143 static int wpi_set_txpower(struct wpi_softc *,
144 struct ieee80211_channel *, int);
145 static int wpi_get_power_index(struct wpi_softc *,
146 struct wpi_power_group *, struct ieee80211_channel *, int);
147 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
148 static int wpi_auth(struct wpi_softc *);
149 static int wpi_scan(struct wpi_softc *);
150 static int wpi_config(struct wpi_softc *);
151 static void wpi_stop_master(struct wpi_softc *);
152 static int wpi_power_up(struct wpi_softc *);
153 static int wpi_reset(struct wpi_softc *);
154 static void wpi_hw_config(struct wpi_softc *);
155 static int wpi_init(struct ifnet *);
156 static void wpi_stop(struct ifnet *, int);
157 static bool wpi_resume(device_t, const pmf_qual_t *);
158 static int wpi_getrfkill(struct wpi_softc *);
159 static void wpi_sysctlattach(struct wpi_softc *);
160 static void wpi_rsw_thread(void *);
161
162 #ifdef WPI_DEBUG
163 #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0)
164 #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0)
165 int wpi_debug = 1;
166 #else
167 #define DPRINTF(x)
168 #define DPRINTFN(n, x)
169 #endif
170
171 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
172 wpi_detach, NULL);
173
174 static int
175 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
176 {
177 struct pci_attach_args *pa = aux;
178
179 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
180 return 0;
181
182 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
183 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
184 return 1;
185
186 return 0;
187 }
188
189 /* Base Address Register */
190 #define WPI_PCI_BAR0 0x10
191
192 static int
193 wpi_attach_once(void)
194 {
195
196 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
197 return 0;
198 }
199
200 static void
201 wpi_attach(device_t parent __unused, device_t self, void *aux)
202 {
203 struct wpi_softc *sc = device_private(self);
204 struct ieee80211com *ic = &sc->sc_ic;
205 struct ifnet *ifp = &sc->sc_ec.ec_if;
206 struct pci_attach_args *pa = aux;
207 const char *intrstr;
208 bus_space_tag_t memt;
209 bus_space_handle_t memh;
210 pcireg_t data;
211 int ac, error;
212 char intrbuf[PCI_INTRSTR_LEN];
213
214 RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
215 sc->fw_used = false;
216
217 sc->sc_dev = self;
218 sc->sc_pct = pa->pa_pc;
219 sc->sc_pcitag = pa->pa_tag;
220
221 sc->sc_rsw_status = WPI_RSW_UNKNOWN;
222 sc->sc_rsw.smpsw_name = device_xname(self);
223 sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
224 error = sysmon_pswitch_register(&sc->sc_rsw);
225 if (error) {
226 aprint_error_dev(self,
227 "unable to register radio switch with sysmon\n");
228 return;
229 }
230 mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
231 cv_init(&sc->sc_rsw_cv, "wpirsw");
232 sc->sc_rsw_suspend = false;
233 sc->sc_rsw_suspended = false;
234 if (kthread_create(PRI_NONE, 0, NULL,
235 wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
236 aprint_error_dev(self, "couldn't create switch thread\n");
237 }
238
239 callout_init(&sc->calib_to, 0);
240 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
241
242 pci_aprint_devinfo(pa, NULL);
243
244 /* enable bus-mastering */
245 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
246 data |= PCI_COMMAND_MASTER_ENABLE;
247 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
248
249 /* map the register window */
250 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
251 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
252 if (error != 0) {
253 aprint_error_dev(self, "could not map memory space\n");
254 return;
255 }
256
257 sc->sc_st = memt;
258 sc->sc_sh = memh;
259 sc->sc_dmat = pa->pa_dmat;
260
261 sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc);
262 if (sc->sc_soft_ih == NULL) {
263 aprint_error_dev(self, "could not establish softint\n");
264 goto unmap;
265 }
266
267 if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
268 aprint_error_dev(self, "could not map interrupt\n");
269 goto failsi;
270 }
271
272 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
273 sizeof(intrbuf));
274 sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
275 IPL_NET, wpi_intr, sc, device_xname(self));
276 if (sc->sc_ih == NULL) {
277 aprint_error_dev(self, "could not establish interrupt");
278 if (intrstr != NULL)
279 aprint_error(" at %s", intrstr);
280 aprint_error("\n");
281 goto failia;
282 }
283 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
284
285 /*
286 * Put adapter into a known state.
287 */
288 if ((error = wpi_reset(sc)) != 0) {
289 aprint_error_dev(self, "could not reset adapter\n");
290 goto failih;
291 }
292
293 /*
294 * Allocate DMA memory for firmware transfers.
295 */
296 if ((error = wpi_alloc_fwmem(sc)) != 0) {
297 aprint_error_dev(self, "could not allocate firmware memory\n");
298 goto failih;
299 }
300
301 /*
302 * Allocate shared page and Tx/Rx rings.
303 */
304 if ((error = wpi_alloc_shared(sc)) != 0) {
305 aprint_error_dev(self, "could not allocate shared area\n");
306 goto fail1;
307 }
308
309 if ((error = wpi_alloc_rpool(sc)) != 0) {
310 aprint_error_dev(self, "could not allocate Rx buffers\n");
311 goto fail2;
312 }
313
314 for (ac = 0; ac < 4; ac++) {
315 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
316 ac);
317 if (error != 0) {
318 aprint_error_dev(self,
319 "could not allocate Tx ring %d\n", ac);
320 goto fail3;
321 }
322 }
323
324 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
325 if (error != 0) {
326 aprint_error_dev(self, "could not allocate command ring\n");
327 goto fail3;
328 }
329
330 error = wpi_alloc_rx_ring(sc, &sc->rxq);
331 if (error != 0) {
332 aprint_error_dev(self, "could not allocate Rx ring\n");
333 goto fail4;
334 }
335
336 ic->ic_ifp = ifp;
337 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
338 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
339 ic->ic_state = IEEE80211_S_INIT;
340
341 /* set device capabilities */
342 ic->ic_caps =
343 IEEE80211_C_WPA | /* 802.11i */
344 IEEE80211_C_MONITOR | /* monitor mode supported */
345 IEEE80211_C_TXPMGT | /* tx power management */
346 IEEE80211_C_SHSLOT | /* short slot time supported */
347 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
348 IEEE80211_C_WME; /* 802.11e */
349
350 /* read supported channels and MAC address from EEPROM */
351 wpi_read_eeprom(sc);
352
353 /* set supported .11a, .11b and .11g rates */
354 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
355 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
356 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
357
358 /* IBSS channel undefined for now */
359 ic->ic_ibss_chan = &ic->ic_channels[0];
360
361 ifp->if_softc = sc;
362 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
363 ifp->if_init = wpi_init;
364 ifp->if_stop = wpi_stop;
365 ifp->if_ioctl = wpi_ioctl;
366 ifp->if_start = wpi_start;
367 ifp->if_watchdog = wpi_watchdog;
368 IFQ_SET_READY(&ifp->if_snd);
369 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
370
371 error = if_initialize(ifp);
372 if (error != 0) {
373 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
374 error);
375 goto fail5;
376 }
377 ieee80211_ifattach(ic);
378 /* Use common softint-based if_input */
379 ifp->if_percpuq = if_percpuq_create(ifp);
380 if_register(ifp);
381
382 /* override default methods */
383 ic->ic_node_alloc = wpi_node_alloc;
384 ic->ic_newassoc = wpi_newassoc;
385 ic->ic_wme.wme_update = wpi_wme_update;
386
387 /* override state transition machine */
388 sc->sc_newstate = ic->ic_newstate;
389 ic->ic_newstate = wpi_newstate;
390
391 /* XXX media locking needs revisiting */
392 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
393 ieee80211_media_init_with_lock(ic,
394 wpi_media_change, ieee80211_media_status, &sc->sc_media_mtx);
395
396 sc->amrr.amrr_min_success_threshold = 1;
397 sc->amrr.amrr_max_success_threshold = 15;
398
399 wpi_sysctlattach(sc);
400
401 if (pmf_device_register(self, NULL, wpi_resume))
402 pmf_class_network_register(self, ifp);
403 else
404 aprint_error_dev(self, "couldn't establish power handler\n");
405
406 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
407 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
408 &sc->sc_drvbpf);
409
410 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
411 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
412 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
413
414 sc->sc_txtap_len = sizeof sc->sc_txtapu;
415 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
416 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
417
418 ieee80211_announce(ic);
419
420 return;
421
422 /* free allocated memory if something failed during attachment */
423 fail5: wpi_free_rx_ring(sc, &sc->rxq);
424 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
425 fail3: while (--ac >= 0)
426 wpi_free_tx_ring(sc, &sc->txq[ac]);
427 wpi_free_rpool(sc);
428 fail2: wpi_free_shared(sc);
429 fail1: wpi_free_fwmem(sc);
430 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
431 sc->sc_ih = NULL;
432 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
433 sc->sc_pihp = NULL;
434 failsi: softint_disestablish(sc->sc_soft_ih);
435 sc->sc_soft_ih = NULL;
436 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
437 }
438
439 static int
440 wpi_detach(device_t self, int flags __unused)
441 {
442 struct wpi_softc *sc = device_private(self);
443 struct ifnet *ifp = sc->sc_ic.ic_ifp;
444 int ac;
445
446 wpi_stop(ifp, 1);
447
448 if (ifp != NULL)
449 bpf_detach(ifp);
450 ieee80211_ifdetach(&sc->sc_ic);
451 if (ifp != NULL)
452 if_detach(ifp);
453
454 for (ac = 0; ac < 4; ac++)
455 wpi_free_tx_ring(sc, &sc->txq[ac]);
456 wpi_free_tx_ring(sc, &sc->cmdq);
457 wpi_free_rx_ring(sc, &sc->rxq);
458 wpi_free_rpool(sc);
459 wpi_free_shared(sc);
460
461 if (sc->sc_ih != NULL) {
462 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
463 sc->sc_ih = NULL;
464 }
465 if (sc->sc_pihp != NULL) {
466 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
467 sc->sc_pihp = NULL;
468 }
469 if (sc->sc_soft_ih != NULL) {
470 softint_disestablish(sc->sc_soft_ih);
471 sc->sc_soft_ih = NULL;
472 }
473
474 mutex_enter(&sc->sc_rsw_mtx);
475 sc->sc_dying = 1;
476 cv_signal(&sc->sc_rsw_cv);
477 while (sc->sc_rsw_lwp != NULL)
478 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
479 mutex_exit(&sc->sc_rsw_mtx);
480 sysmon_pswitch_unregister(&sc->sc_rsw);
481
482 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
483
484 if (sc->fw_used) {
485 sc->fw_used = false;
486 wpi_release_firmware();
487 }
488 cv_destroy(&sc->sc_rsw_cv);
489 mutex_destroy(&sc->sc_rsw_mtx);
490 return 0;
491 }
492
493 static int
494 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
495 bus_size_t size, bus_size_t alignment, int flags)
496 {
497 int nsegs, error;
498
499 dma->tag = tag;
500 dma->size = size;
501
502 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
503 if (error != 0)
504 goto fail;
505
506 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
507 flags);
508 if (error != 0)
509 goto fail;
510
511 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
512 if (error != 0)
513 goto fail;
514
515 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
516 if (error != 0)
517 goto fail;
518
519 memset(dma->vaddr, 0, size);
520 bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
521
522 dma->paddr = dma->map->dm_segs[0].ds_addr;
523 if (kvap != NULL)
524 *kvap = dma->vaddr;
525
526 return 0;
527
528 fail: wpi_dma_contig_free(dma);
529 return error;
530 }
531
532 static void
533 wpi_dma_contig_free(struct wpi_dma_info *dma)
534 {
535 if (dma->map != NULL) {
536 if (dma->vaddr != NULL) {
537 bus_dmamap_unload(dma->tag, dma->map);
538 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
539 bus_dmamem_free(dma->tag, &dma->seg, 1);
540 dma->vaddr = NULL;
541 }
542 bus_dmamap_destroy(dma->tag, dma->map);
543 dma->map = NULL;
544 }
545 }
546
547 /*
548 * Allocate a shared page between host and NIC.
549 */
550 static int
551 wpi_alloc_shared(struct wpi_softc *sc)
552 {
553 int error;
554
555 /* must be aligned on a 4K-page boundary */
556 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
557 (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
558 BUS_DMA_NOWAIT);
559 if (error != 0)
560 aprint_error_dev(sc->sc_dev,
561 "could not allocate shared area DMA memory\n");
562
563 return error;
564 }
565
566 static void
567 wpi_free_shared(struct wpi_softc *sc)
568 {
569 wpi_dma_contig_free(&sc->shared_dma);
570 }
571
572 /*
573 * Allocate DMA-safe memory for firmware transfer.
574 */
575 static int
576 wpi_alloc_fwmem(struct wpi_softc *sc)
577 {
578 int error;
579
580 /* allocate enough contiguous space to store text and data */
581 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
582 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
583 BUS_DMA_NOWAIT);
584
585 if (error != 0)
586 aprint_error_dev(sc->sc_dev,
587 "could not allocate firmware transfer area DMA memory\n");
588 return error;
589 }
590
591 static void
592 wpi_free_fwmem(struct wpi_softc *sc)
593 {
594 wpi_dma_contig_free(&sc->fw_dma);
595 }
596
597 static struct wpi_rbuf *
598 wpi_alloc_rbuf(struct wpi_softc *sc)
599 {
600 struct wpi_rbuf *rbuf;
601
602 mutex_enter(&sc->rxq.freelist_mtx);
603 rbuf = SLIST_FIRST(&sc->rxq.freelist);
604 if (rbuf != NULL) {
605 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
606 }
607 mutex_exit(&sc->rxq.freelist_mtx);
608
609 return rbuf;
610 }
611
612 /*
613 * This is called automatically by the network stack when the mbuf to which our
614 * Rx buffer is attached is freed.
615 */
616 static void
617 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
618 {
619 struct wpi_rbuf *rbuf = arg;
620 struct wpi_softc *sc = rbuf->sc;
621
622 /* put the buffer back in the free list */
623
624 mutex_enter(&sc->rxq.freelist_mtx);
625 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
626 mutex_exit(&sc->rxq.freelist_mtx);
627
628 if (__predict_true(m != NULL))
629 pool_cache_put(mb_cache, m);
630 }
631
632 static int
633 wpi_alloc_rpool(struct wpi_softc *sc)
634 {
635 struct wpi_rx_ring *ring = &sc->rxq;
636 int i, error;
637
638 /* allocate a big chunk of DMA'able memory.. */
639 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
640 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
641 if (error != 0) {
642 aprint_normal_dev(sc->sc_dev,
643 "could not allocate Rx buffers DMA memory\n");
644 return error;
645 }
646
647 /* ..and split it into 3KB chunks */
648 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
649 SLIST_INIT(&ring->freelist);
650 for (i = 0; i < WPI_RBUF_COUNT; i++) {
651 struct wpi_rbuf *rbuf = &ring->rbuf[i];
652
653 rbuf->sc = sc; /* backpointer for callbacks */
654 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
655 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
656
657 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
658 }
659
660 return 0;
661 }
662
663 static void
664 wpi_free_rpool(struct wpi_softc *sc)
665 {
666 mutex_destroy(&sc->rxq.freelist_mtx);
667 wpi_dma_contig_free(&sc->rxq.buf_dma);
668 }
669
670 static int
671 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
672 {
673 bus_size_t size;
674 int i, error;
675
676 ring->cur = 0;
677
678 size = WPI_RX_RING_COUNT * sizeof (uint32_t);
679 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
680 (void **)&ring->desc, size,
681 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
682 if (error != 0) {
683 aprint_error_dev(sc->sc_dev,
684 "could not allocate rx ring DMA memory\n");
685 goto fail;
686 }
687
688 /*
689 * Setup Rx buffers.
690 */
691 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
692 struct wpi_rx_data *data = &ring->data[i];
693 struct wpi_rbuf *rbuf;
694
695 error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
696 WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
697 if (error) {
698 aprint_error_dev(sc->sc_dev,
699 "could not allocate rx dma map\n");
700 goto fail;
701 }
702
703 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
704 if (data->m == NULL) {
705 aprint_error_dev(sc->sc_dev,
706 "could not allocate rx mbuf\n");
707 error = ENOMEM;
708 goto fail;
709 }
710 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
711 m_freem(data->m);
712 data->m = NULL;
713 aprint_error_dev(sc->sc_dev,
714 "could not allocate rx cluster\n");
715 error = ENOMEM;
716 goto fail;
717 }
718 /* attach Rx buffer to mbuf */
719 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
720 rbuf);
721 data->m->m_flags |= M_EXT_RW;
722
723 error = bus_dmamap_load(sc->sc_dmat, data->map,
724 mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
725 BUS_DMA_NOWAIT | BUS_DMA_READ);
726 if (error) {
727 aprint_error_dev(sc->sc_dev,
728 "could not load mbuf: %d\n", error);
729 goto fail;
730 }
731
732 ring->desc[i] = htole32(rbuf->paddr);
733 }
734
735 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
736 BUS_DMASYNC_PREWRITE);
737
738 return 0;
739
740 fail: wpi_free_rx_ring(sc, ring);
741 return error;
742 }
743
744 static void
745 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
746 {
747 int ntries;
748
749 wpi_mem_lock(sc);
750
751 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
752 for (ntries = 0; ntries < 100; ntries++) {
753 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
754 break;
755 DELAY(10);
756 }
757 #ifdef WPI_DEBUG
758 if (ntries == 100 && wpi_debug > 0)
759 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
760 #endif
761 wpi_mem_unlock(sc);
762
763 ring->cur = 0;
764 }
765
766 static void
767 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
768 {
769 int i;
770
771 wpi_dma_contig_free(&ring->desc_dma);
772
773 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
774 if (ring->data[i].m != NULL) {
775 bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
776 m_freem(ring->data[i].m);
777 }
778 if (ring->data[i].map != NULL) {
779 bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
780 }
781 }
782 }
783
784 static int
785 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
786 int qid)
787 {
788 int i, error;
789
790 ring->qid = qid;
791 ring->count = count;
792 ring->queued = 0;
793 ring->cur = 0;
794
795 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
796 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
797 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
798 if (error != 0) {
799 aprint_error_dev(sc->sc_dev,
800 "could not allocate tx ring DMA memory\n");
801 goto fail;
802 }
803
804 /* update shared page with ring's base address */
805 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
806 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
807 sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
808
809 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
810 (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
811 BUS_DMA_NOWAIT);
812 if (error != 0) {
813 aprint_error_dev(sc->sc_dev,
814 "could not allocate tx cmd DMA memory\n");
815 goto fail;
816 }
817
818 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
819 M_NOWAIT | M_ZERO);
820 if (ring->data == NULL) {
821 aprint_error_dev(sc->sc_dev,
822 "could not allocate tx data slots\n");
823 goto fail;
824 }
825
826 for (i = 0; i < count; i++) {
827 struct wpi_tx_data *data = &ring->data[i];
828
829 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
830 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
831 &data->map);
832 if (error != 0) {
833 aprint_error_dev(sc->sc_dev,
834 "could not create tx buf DMA map\n");
835 goto fail;
836 }
837 }
838
839 return 0;
840
841 fail: wpi_free_tx_ring(sc, ring);
842 return error;
843 }
844
845 static void
846 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
847 {
848 int i, ntries;
849
850 wpi_mem_lock(sc);
851
852 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
853 for (ntries = 0; ntries < 100; ntries++) {
854 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
855 break;
856 DELAY(10);
857 }
858 #ifdef WPI_DEBUG
859 if (ntries == 100 && wpi_debug > 0) {
860 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
861 ring->qid);
862 }
863 #endif
864 wpi_mem_unlock(sc);
865
866 for (i = 0; i < ring->count; i++) {
867 struct wpi_tx_data *data = &ring->data[i];
868
869 if (data->m != NULL) {
870 bus_dmamap_unload(sc->sc_dmat, data->map);
871 m_freem(data->m);
872 data->m = NULL;
873 }
874 }
875
876 ring->queued = 0;
877 ring->cur = 0;
878 }
879
880 static void
881 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
882 {
883 int i;
884
885 wpi_dma_contig_free(&ring->desc_dma);
886 wpi_dma_contig_free(&ring->cmd_dma);
887
888 if (ring->data != NULL) {
889 for (i = 0; i < ring->count; i++) {
890 struct wpi_tx_data *data = &ring->data[i];
891
892 if (data->m != NULL) {
893 bus_dmamap_unload(sc->sc_dmat, data->map);
894 m_freem(data->m);
895 }
896 }
897 free(ring->data, M_DEVBUF);
898 }
899 }
900
901 /*ARGUSED*/
902 static struct ieee80211_node *
903 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
904 {
905 struct wpi_node *wn;
906
907 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
908
909 return (struct ieee80211_node *)wn;
910 }
911
912 static void
913 wpi_newassoc(struct ieee80211_node *ni, int isnew)
914 {
915 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
916 int i;
917
918 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
919
920 /* set rate to some reasonable initial value */
921 for (i = ni->ni_rates.rs_nrates - 1;
922 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
923 i--);
924 ni->ni_txrate = i;
925 }
926
927 static int
928 wpi_media_change(struct ifnet *ifp)
929 {
930 int error;
931
932 error = ieee80211_media_change(ifp);
933 if (error != ENETRESET)
934 return error;
935
936 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
937 wpi_init(ifp);
938
939 return 0;
940 }
941
942 static int
943 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
944 {
945 struct ifnet *ifp = ic->ic_ifp;
946 struct wpi_softc *sc = ifp->if_softc;
947 struct ieee80211_node *ni;
948 enum ieee80211_state ostate = ic->ic_state;
949 int error;
950
951 callout_stop(&sc->calib_to);
952
953 switch (nstate) {
954 case IEEE80211_S_SCAN:
955
956 if (sc->is_scanning)
957 break;
958
959 sc->is_scanning = true;
960
961 if (ostate != IEEE80211_S_SCAN) {
962 /* make the link LED blink while we're scanning */
963 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
964 }
965
966 if ((error = wpi_scan(sc)) != 0) {
967 aprint_error_dev(sc->sc_dev,
968 "could not initiate scan\n");
969 return error;
970 }
971 break;
972
973 case IEEE80211_S_ASSOC:
974 if (ic->ic_state != IEEE80211_S_RUN)
975 break;
976 /* FALLTHROUGH */
977 case IEEE80211_S_AUTH:
978 /* reset state to handle reassociations correctly */
979 sc->config.associd = 0;
980 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
981
982 if ((error = wpi_auth(sc)) != 0) {
983 aprint_error_dev(sc->sc_dev,
984 "could not send authentication request\n");
985 return error;
986 }
987 break;
988
989 case IEEE80211_S_RUN:
990 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
991 /* link LED blinks while monitoring */
992 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
993 break;
994 }
995 ni = ic->ic_bss;
996
997 if (ic->ic_opmode != IEEE80211_M_STA) {
998 (void) wpi_auth(sc); /* XXX */
999 wpi_setup_beacon(sc, ni);
1000 }
1001
1002 wpi_enable_tsf(sc, ni);
1003
1004 /* update adapter's configuration */
1005 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
1006 /* short preamble/slot time are negotiated when associating */
1007 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
1008 WPI_CONFIG_SHSLOT);
1009 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1010 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
1011 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1012 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
1013 sc->config.filter |= htole32(WPI_FILTER_BSS);
1014 if (ic->ic_opmode != IEEE80211_M_STA)
1015 sc->config.filter |= htole32(WPI_FILTER_BEACON);
1016
1017 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
1018
1019 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
1020 sc->config.flags));
1021 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
1022 sizeof (struct wpi_config), 1);
1023 if (error != 0) {
1024 aprint_error_dev(sc->sc_dev,
1025 "could not update configuration\n");
1026 return error;
1027 }
1028
1029 /* configuration has changed, set Tx power accordingly */
1030 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
1031 aprint_error_dev(sc->sc_dev,
1032 "could not set Tx power\n");
1033 return error;
1034 }
1035
1036 if (ic->ic_opmode == IEEE80211_M_STA) {
1037 /* fake a join to init the tx rate */
1038 wpi_newassoc(ni, 1);
1039 }
1040
1041 /* start periodic calibration timer */
1042 sc->calib_cnt = 0;
1043 callout_schedule(&sc->calib_to, hz/2);
1044
1045 /* link LED always on while associated */
1046 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1047 break;
1048
1049 case IEEE80211_S_INIT:
1050 sc->is_scanning = false;
1051 break;
1052 }
1053
1054 return sc->sc_newstate(ic, nstate, arg);
1055 }
1056
1057 /*
1058 * Grab exclusive access to NIC memory.
1059 */
1060 static void
1061 wpi_mem_lock(struct wpi_softc *sc)
1062 {
1063 uint32_t tmp;
1064 int ntries;
1065
1066 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1067 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1068
1069 /* spin until we actually get the lock */
1070 for (ntries = 0; ntries < 1000; ntries++) {
1071 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1072 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1073 break;
1074 DELAY(10);
1075 }
1076 if (ntries == 1000)
1077 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1078 }
1079
1080 /*
1081 * Release lock on NIC memory.
1082 */
1083 static void
1084 wpi_mem_unlock(struct wpi_softc *sc)
1085 {
1086 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1087 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1088 }
1089
1090 static uint32_t
1091 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1092 {
1093 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1094 return WPI_READ(sc, WPI_READ_MEM_DATA);
1095 }
1096
1097 static void
1098 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1099 {
1100 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1101 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1102 }
1103
1104 static void
1105 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1106 const uint32_t *data, int wlen)
1107 {
1108 for (; wlen > 0; wlen--, data++, addr += 4)
1109 wpi_mem_write(sc, addr, *data);
1110 }
1111
1112 /*
1113 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1114 * instead of using the traditional bit-bang method.
1115 */
1116 static int
1117 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1118 {
1119 uint8_t *out = data;
1120 uint32_t val;
1121 int ntries;
1122
1123 wpi_mem_lock(sc);
1124 for (; len > 0; len -= 2, addr++) {
1125 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1126
1127 for (ntries = 0; ntries < 10; ntries++) {
1128 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1129 WPI_EEPROM_READY)
1130 break;
1131 DELAY(5);
1132 }
1133 if (ntries == 10) {
1134 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1135 return ETIMEDOUT;
1136 }
1137 *out++ = val >> 16;
1138 if (len > 1)
1139 *out++ = val >> 24;
1140 }
1141 wpi_mem_unlock(sc);
1142
1143 return 0;
1144 }
1145
1146 /*
1147 * The firmware boot code is small and is intended to be copied directly into
1148 * the NIC internal memory.
1149 */
1150 int
1151 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1152 {
1153 int ntries;
1154
1155 size /= sizeof (uint32_t);
1156
1157 wpi_mem_lock(sc);
1158
1159 /* copy microcode image into NIC memory */
1160 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1161 (const uint32_t *)ucode, size);
1162
1163 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1164 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1165 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1166
1167 /* run microcode */
1168 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1169
1170 /* wait for transfer to complete */
1171 for (ntries = 0; ntries < 1000; ntries++) {
1172 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1173 break;
1174 DELAY(10);
1175 }
1176 if (ntries == 1000) {
1177 wpi_mem_unlock(sc);
1178 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1179 return ETIMEDOUT;
1180 }
1181 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1182
1183 wpi_mem_unlock(sc);
1184
1185 return 0;
1186 }
1187
1188 static int
1189 wpi_cache_firmware(struct wpi_softc *sc)
1190 {
1191 const char *const fwname = wpi_firmware_name;
1192 firmware_handle_t fw;
1193 int error;
1194
1195 /* sc is used here only to report error messages. */
1196
1197 mutex_enter(&wpi_firmware_mutex);
1198
1199 if (wpi_firmware_users == SIZE_MAX) {
1200 mutex_exit(&wpi_firmware_mutex);
1201 return ENFILE; /* Too many of something in the system... */
1202 }
1203 if (wpi_firmware_users++) {
1204 KASSERT(wpi_firmware_image != NULL);
1205 KASSERT(wpi_firmware_size > 0);
1206 mutex_exit(&wpi_firmware_mutex);
1207 return 0; /* Already good to go. */
1208 }
1209
1210 KASSERT(wpi_firmware_image == NULL);
1211 KASSERT(wpi_firmware_size == 0);
1212
1213 /* load firmware image from disk */
1214 if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1215 aprint_error_dev(sc->sc_dev,
1216 "could not open firmware file %s: %d\n", fwname, error);
1217 goto fail0;
1218 }
1219
1220 wpi_firmware_size = firmware_get_size(fw);
1221
1222 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1223 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1224 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1225 WPI_FW_BOOT_TEXT_MAXSZ) {
1226 aprint_error_dev(sc->sc_dev,
1227 "firmware file %s too large: %zu bytes\n",
1228 fwname, wpi_firmware_size);
1229 error = EFBIG;
1230 goto fail1;
1231 }
1232
1233 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1234 aprint_error_dev(sc->sc_dev,
1235 "firmware file %s too small: %zu bytes\n",
1236 fwname, wpi_firmware_size);
1237 error = EINVAL;
1238 goto fail1;
1239 }
1240
1241 wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1242 if (wpi_firmware_image == NULL) {
1243 aprint_error_dev(sc->sc_dev,
1244 "not enough memory for firmware file %s\n", fwname);
1245 error = ENOMEM;
1246 goto fail1;
1247 }
1248
1249 error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1250 if (error != 0) {
1251 aprint_error_dev(sc->sc_dev,
1252 "error reading firmware file %s: %d\n", fwname, error);
1253 goto fail2;
1254 }
1255
1256 /* Success! */
1257 firmware_close(fw);
1258 mutex_exit(&wpi_firmware_mutex);
1259 return 0;
1260
1261 fail2:
1262 firmware_free(wpi_firmware_image, wpi_firmware_size);
1263 wpi_firmware_image = NULL;
1264 fail1:
1265 wpi_firmware_size = 0;
1266 firmware_close(fw);
1267 fail0:
1268 KASSERT(wpi_firmware_users == 1);
1269 wpi_firmware_users = 0;
1270 KASSERT(wpi_firmware_image == NULL);
1271 KASSERT(wpi_firmware_size == 0);
1272
1273 mutex_exit(&wpi_firmware_mutex);
1274 return error;
1275 }
1276
1277 static void
1278 wpi_release_firmware(void)
1279 {
1280
1281 mutex_enter(&wpi_firmware_mutex);
1282
1283 KASSERT(wpi_firmware_users > 0);
1284 KASSERT(wpi_firmware_image != NULL);
1285 KASSERT(wpi_firmware_size != 0);
1286
1287 if (--wpi_firmware_users == 0) {
1288 firmware_free(wpi_firmware_image, wpi_firmware_size);
1289 wpi_firmware_image = NULL;
1290 wpi_firmware_size = 0;
1291 }
1292
1293 mutex_exit(&wpi_firmware_mutex);
1294 }
1295
1296 static int
1297 wpi_load_firmware(struct wpi_softc *sc)
1298 {
1299 struct wpi_dma_info *dma = &sc->fw_dma;
1300 struct wpi_firmware_hdr hdr;
1301 const uint8_t *init_text, *init_data, *main_text, *main_data;
1302 const uint8_t *boot_text;
1303 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1304 uint32_t boot_textsz;
1305 size_t size;
1306 int error;
1307
1308 if (!sc->fw_used) {
1309 if ((error = wpi_cache_firmware(sc)) != 0)
1310 return error;
1311 sc->fw_used = true;
1312 }
1313
1314 KASSERT(sc->fw_used);
1315 KASSERT(wpi_firmware_image != NULL);
1316 KASSERT(wpi_firmware_size > sizeof(hdr));
1317
1318 memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1319
1320 main_textsz = le32toh(hdr.main_textsz);
1321 main_datasz = le32toh(hdr.main_datasz);
1322 init_textsz = le32toh(hdr.init_textsz);
1323 init_datasz = le32toh(hdr.init_datasz);
1324 boot_textsz = le32toh(hdr.boot_textsz);
1325
1326 /* sanity-check firmware segments sizes */
1327 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1328 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1329 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1330 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1331 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1332 (boot_textsz & 3) != 0) {
1333 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1334 error = EINVAL;
1335 goto free_firmware;
1336 }
1337
1338 /* check that all firmware segments are present */
1339 size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1340 main_datasz + init_textsz + init_datasz + boot_textsz;
1341 if (wpi_firmware_size < size) {
1342 aprint_error_dev(sc->sc_dev,
1343 "firmware file truncated: %zu bytes, expected %zu bytes\n",
1344 wpi_firmware_size, size);
1345 error = EINVAL;
1346 goto free_firmware;
1347 }
1348
1349 /* get pointers to firmware segments */
1350 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1351 main_data = main_text + main_textsz;
1352 init_text = main_data + main_datasz;
1353 init_data = init_text + init_textsz;
1354 boot_text = init_data + init_datasz;
1355
1356 /* copy initialization images into pre-allocated DMA-safe memory */
1357 memcpy(dma->vaddr, init_data, init_datasz);
1358 memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1359 init_textsz);
1360
1361 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1362
1363 /* tell adapter where to find initialization images */
1364 wpi_mem_lock(sc);
1365 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1366 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1367 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1368 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1369 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1370 wpi_mem_unlock(sc);
1371
1372 /* load firmware boot code */
1373 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1374 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1375 return error;
1376 }
1377
1378 /* now press "execute" ;-) */
1379 WPI_WRITE(sc, WPI_RESET, 0);
1380
1381 /* wait at most one second for first alive notification */
1382 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1383 /* this isn't what was supposed to happen.. */
1384 aprint_error_dev(sc->sc_dev,
1385 "timeout waiting for adapter to initialize\n");
1386 }
1387
1388 /* copy runtime images into pre-allocated DMA-safe memory */
1389 memcpy(dma->vaddr, main_data, main_datasz);
1390 memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1391 main_textsz);
1392
1393 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1394
1395 /* tell adapter where to find runtime images */
1396 wpi_mem_lock(sc);
1397 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1398 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1399 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1400 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1401 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1402 wpi_mem_unlock(sc);
1403
1404 /* wait at most one second for second alive notification */
1405 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1406 /* this isn't what was supposed to happen.. */
1407 aprint_error_dev(sc->sc_dev,
1408 "timeout waiting for adapter to initialize\n");
1409 }
1410
1411 return error;
1412
1413 free_firmware:
1414 sc->fw_used = false;
1415 wpi_release_firmware();
1416 return error;
1417 }
1418
1419 static void
1420 wpi_calib_timeout(void *arg)
1421 {
1422 struct wpi_softc *sc = arg;
1423 struct ieee80211com *ic = &sc->sc_ic;
1424 int temp, s;
1425
1426 /* automatic rate control triggered every 500ms */
1427 if (ic->ic_fixed_rate == -1) {
1428 s = splnet();
1429 if (ic->ic_opmode == IEEE80211_M_STA)
1430 wpi_iter_func(sc, ic->ic_bss);
1431 else
1432 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1433 splx(s);
1434 }
1435
1436 /* update sensor data */
1437 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1438
1439 /* automatic power calibration every 60s */
1440 if (++sc->calib_cnt >= 120) {
1441 wpi_power_calibration(sc, temp);
1442 sc->calib_cnt = 0;
1443 }
1444
1445 callout_schedule(&sc->calib_to, hz/2);
1446 }
1447
1448 static void
1449 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1450 {
1451 struct wpi_softc *sc = arg;
1452 struct wpi_node *wn = (struct wpi_node *)ni;
1453
1454 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1455 }
1456
1457 /*
1458 * This function is called periodically (every 60 seconds) to adjust output
1459 * power to temperature changes.
1460 */
1461 void
1462 wpi_power_calibration(struct wpi_softc *sc, int temp)
1463 {
1464 /* sanity-check read value */
1465 if (temp < -260 || temp > 25) {
1466 /* this can't be correct, ignore */
1467 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1468 return;
1469 }
1470
1471 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1472
1473 /* adjust Tx power if need be */
1474 if (abs(temp - sc->temp) <= 6)
1475 return;
1476
1477 sc->temp = temp;
1478
1479 if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1480 /* just warn, too bad for the automatic calibration... */
1481 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1482 }
1483 }
1484
1485 static void
1486 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1487 struct wpi_rx_data *data)
1488 {
1489 struct ieee80211com *ic = &sc->sc_ic;
1490 struct ifnet *ifp = ic->ic_ifp;
1491 struct wpi_rx_ring *ring = &sc->rxq;
1492 struct wpi_rx_stat *stat;
1493 struct wpi_rx_head *head;
1494 struct wpi_rx_tail *tail;
1495 struct wpi_rbuf *rbuf;
1496 struct ieee80211_frame *wh;
1497 struct ieee80211_node *ni;
1498 struct mbuf *m, *mnew;
1499 int data_off, error, s;
1500
1501 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1502 BUS_DMASYNC_POSTREAD);
1503 stat = (struct wpi_rx_stat *)(desc + 1);
1504
1505 if (stat->len > WPI_STAT_MAXLEN) {
1506 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1507 if_statinc(ifp, if_ierrors);
1508 return;
1509 }
1510
1511 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1512 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1513
1514 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1515 "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1516 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1517 le64toh(tail->tstamp)));
1518
1519 /*
1520 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1521 * to radiotap in monitor mode).
1522 */
1523 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1524 DPRINTF(("rx tail flags error %x\n",
1525 le32toh(tail->flags)));
1526 if_statinc(ifp, if_ierrors);
1527 return;
1528 }
1529
1530 /* Compute where are the useful datas */
1531 data_off = (char*)(head + 1) - mtod(data->m, char*);
1532
1533 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1534 if (mnew == NULL) {
1535 if_statinc(ifp, if_ierrors);
1536 return;
1537 }
1538
1539 rbuf = wpi_alloc_rbuf(sc);
1540 if (rbuf == NULL) {
1541 m_freem(mnew);
1542 if_statinc(ifp, if_ierrors);
1543 return;
1544 }
1545
1546 /* attach Rx buffer to mbuf */
1547 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1548 rbuf);
1549 mnew->m_flags |= M_EXT_RW;
1550
1551 bus_dmamap_unload(sc->sc_dmat, data->map);
1552
1553 error = bus_dmamap_load(sc->sc_dmat, data->map,
1554 mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1555 BUS_DMA_NOWAIT | BUS_DMA_READ);
1556 if (error) {
1557 device_printf(sc->sc_dev,
1558 "couldn't load rx mbuf: %d\n", error);
1559 m_freem(mnew);
1560 if_statinc(ifp, if_ierrors);
1561
1562 error = bus_dmamap_load(sc->sc_dmat, data->map,
1563 mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1564 BUS_DMA_NOWAIT | BUS_DMA_READ);
1565 if (error)
1566 panic("%s: bus_dmamap_load failed: %d\n",
1567 device_xname(sc->sc_dev), error);
1568 return;
1569 }
1570
1571 /* new mbuf loaded successfully */
1572 m = data->m;
1573 data->m = mnew;
1574
1575 /* update Rx descriptor */
1576 ring->desc[ring->cur] = htole32(rbuf->paddr);
1577 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1578 ring->desc_dma.size,
1579 BUS_DMASYNC_PREWRITE);
1580
1581 m->m_data = (char*)m->m_data + data_off;
1582 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1583
1584 /* finalize mbuf */
1585 m_set_rcvif(m, ifp);
1586
1587 s = splnet();
1588
1589 if (sc->sc_drvbpf != NULL) {
1590 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1591
1592 tap->wr_flags = 0;
1593 tap->wr_chan_freq =
1594 htole16(ic->ic_channels[head->chan].ic_freq);
1595 tap->wr_chan_flags =
1596 htole16(ic->ic_channels[head->chan].ic_flags);
1597 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1598 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1599 tap->wr_tsft = tail->tstamp;
1600 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1601 switch (head->rate) {
1602 /* CCK rates */
1603 case 10: tap->wr_rate = 2; break;
1604 case 20: tap->wr_rate = 4; break;
1605 case 55: tap->wr_rate = 11; break;
1606 case 110: tap->wr_rate = 22; break;
1607 /* OFDM rates */
1608 case 0xd: tap->wr_rate = 12; break;
1609 case 0xf: tap->wr_rate = 18; break;
1610 case 0x5: tap->wr_rate = 24; break;
1611 case 0x7: tap->wr_rate = 36; break;
1612 case 0x9: tap->wr_rate = 48; break;
1613 case 0xb: tap->wr_rate = 72; break;
1614 case 0x1: tap->wr_rate = 96; break;
1615 case 0x3: tap->wr_rate = 108; break;
1616 /* unknown rate: should not happen */
1617 default: tap->wr_rate = 0;
1618 }
1619 if (le16toh(head->flags) & 0x4)
1620 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1621
1622 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1623 }
1624
1625 /* grab a reference to the source node */
1626 wh = mtod(m, struct ieee80211_frame *);
1627 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1628
1629 /* send the frame to the 802.11 layer */
1630 ieee80211_input(ic, m, ni, stat->rssi, 0);
1631
1632 /* release node reference */
1633 ieee80211_free_node(ni);
1634
1635 splx(s);
1636 }
1637
1638 static void
1639 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1640 {
1641 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1642 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1643 struct wpi_tx_data *data = &ring->data[desc->idx];
1644 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1645 struct wpi_node *wn = (struct wpi_node *)data->ni;
1646 int s;
1647
1648 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1649 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1650 stat->nkill, stat->rate, le32toh(stat->duration),
1651 le32toh(stat->status)));
1652
1653 s = splnet();
1654
1655 /*
1656 * Update rate control statistics for the node.
1657 * XXX we should not count mgmt frames since they're always sent at
1658 * the lowest available bit-rate.
1659 */
1660 wn->amn.amn_txcnt++;
1661 if (stat->ntries > 0) {
1662 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1663 wn->amn.amn_retrycnt++;
1664 }
1665
1666 if ((le32toh(stat->status) & 0xff) != 1)
1667 if_statinc(ifp, if_oerrors);
1668 else
1669 if_statinc(ifp, if_opackets);
1670
1671 bus_dmamap_unload(sc->sc_dmat, data->map);
1672 m_freem(data->m);
1673 data->m = NULL;
1674 ieee80211_free_node(data->ni);
1675 data->ni = NULL;
1676
1677 ring->queued--;
1678
1679 sc->sc_tx_timer = 0;
1680 ifp->if_flags &= ~IFF_OACTIVE;
1681 wpi_start(ifp); /* in softint */
1682
1683 splx(s);
1684 }
1685
1686 static void
1687 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1688 {
1689 struct wpi_tx_ring *ring = &sc->cmdq;
1690 struct wpi_tx_data *data;
1691
1692 if ((desc->qid & 7) != 4)
1693 return; /* not a command ack */
1694
1695 data = &ring->data[desc->idx];
1696
1697 /* if the command was mapped in a mbuf, free it */
1698 if (data->m != NULL) {
1699 bus_dmamap_unload(sc->sc_dmat, data->map);
1700 m_freem(data->m);
1701 data->m = NULL;
1702 }
1703
1704 wakeup(&ring->cmd[desc->idx]);
1705 }
1706
1707 static void
1708 wpi_notif_intr(struct wpi_softc *sc)
1709 {
1710 struct ieee80211com *ic = &sc->sc_ic;
1711 struct ifnet *ifp = ic->ic_ifp;
1712 uint32_t hw;
1713 int s;
1714
1715 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1716 sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1717
1718 hw = le32toh(sc->shared->next);
1719 while (sc->rxq.cur != hw) {
1720 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1721 struct wpi_rx_desc *desc;
1722
1723 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1724 BUS_DMASYNC_POSTREAD);
1725 desc = mtod(data->m, struct wpi_rx_desc *);
1726
1727 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1728 "len=%d\n", desc->qid, desc->idx, desc->flags,
1729 desc->type, le32toh(desc->len)));
1730
1731 if (!(desc->qid & 0x80)) /* reply to a command */
1732 wpi_cmd_intr(sc, desc);
1733
1734 switch (desc->type) {
1735 case WPI_RX_DONE:
1736 /* a 802.11 frame was received */
1737 wpi_rx_intr(sc, desc, data);
1738 break;
1739
1740 case WPI_TX_DONE:
1741 /* a 802.11 frame has been transmitted */
1742 wpi_tx_intr(sc, desc);
1743 break;
1744
1745 case WPI_UC_READY:
1746 {
1747 struct wpi_ucode_info *uc =
1748 (struct wpi_ucode_info *)(desc + 1);
1749
1750 /* the microcontroller is ready */
1751 DPRINTF(("microcode alive notification version %x "
1752 "alive %x\n", le32toh(uc->version),
1753 le32toh(uc->valid)));
1754
1755 if (le32toh(uc->valid) != 1) {
1756 aprint_error_dev(sc->sc_dev,
1757 "microcontroller initialization failed\n");
1758 }
1759 break;
1760 }
1761 case WPI_STATE_CHANGED:
1762 {
1763 uint32_t *status = (uint32_t *)(desc + 1);
1764
1765 /* enabled/disabled notification */
1766 DPRINTF(("state changed to %x\n", le32toh(*status)));
1767
1768 if (le32toh(*status) & 1) {
1769 s = splnet();
1770 /* the radio button has to be pushed */
1771 /* wake up thread to signal powerd */
1772 cv_signal(&sc->sc_rsw_cv);
1773 aprint_error_dev(sc->sc_dev,
1774 "Radio transmitter is off\n");
1775 /* turn the interface down */
1776 ifp->if_flags &= ~IFF_UP;
1777 wpi_stop(ifp, 1);
1778 splx(s);
1779 return; /* no further processing */
1780 }
1781 break;
1782 }
1783 case WPI_START_SCAN:
1784 {
1785 #if 0
1786 struct wpi_start_scan *scan =
1787 (struct wpi_start_scan *)(desc + 1);
1788
1789 DPRINTFN(2, ("scanning channel %d status %x\n",
1790 scan->chan, le32toh(scan->status)));
1791
1792 /* fix current channel */
1793 ic->ic_curchan = &ic->ic_channels[scan->chan];
1794 #endif
1795 break;
1796 }
1797 case WPI_STOP_SCAN:
1798 {
1799 #ifdef WPI_DEBUG
1800 struct wpi_stop_scan *scan =
1801 (struct wpi_stop_scan *)(desc + 1);
1802 #endif
1803
1804 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1805 scan->nchan, scan->status, scan->chan));
1806
1807 s = splnet();
1808 sc->is_scanning = false;
1809 if (ic->ic_state == IEEE80211_S_SCAN)
1810 ieee80211_next_scan(ic);
1811 splx(s);
1812 break;
1813 }
1814 }
1815
1816 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1817 }
1818
1819 /* tell the firmware what we have processed */
1820 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1821 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1822 }
1823
1824 static int
1825 wpi_intr(void *arg)
1826 {
1827 struct wpi_softc *sc = arg;
1828 uint32_t r;
1829
1830 r = WPI_READ(sc, WPI_INTR);
1831 if (r == 0 || r == 0xffffffff)
1832 return 0; /* not for us */
1833
1834 DPRINTFN(6, ("interrupt reg %x\n", r));
1835
1836 /* disable interrupts */
1837 WPI_WRITE(sc, WPI_MASK, 0);
1838
1839 softint_schedule(sc->sc_soft_ih);
1840 return 1;
1841 }
1842
1843 static void
1844 wpi_softintr(void *arg)
1845 {
1846 struct wpi_softc *sc = arg;
1847 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1848 uint32_t r;
1849
1850 r = WPI_READ(sc, WPI_INTR);
1851 if (r == 0 || r == 0xffffffff)
1852 goto out;
1853
1854 /* ack interrupts */
1855 WPI_WRITE(sc, WPI_INTR, r);
1856
1857 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1858 /* SYSTEM FAILURE, SYSTEM FAILURE */
1859 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1860 ifp->if_flags &= ~IFF_UP;
1861 wpi_stop(ifp, 1);
1862 return;
1863 }
1864
1865 if (r & WPI_RX_INTR)
1866 wpi_notif_intr(sc);
1867
1868 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1869 wakeup(sc);
1870
1871 out:
1872 /* re-enable interrupts */
1873 if (ifp->if_flags & IFF_UP)
1874 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1875 }
1876
1877 static uint8_t
1878 wpi_plcp_signal(int rate)
1879 {
1880 switch (rate) {
1881 /* CCK rates (returned values are device-dependent) */
1882 case 2: return 10;
1883 case 4: return 20;
1884 case 11: return 55;
1885 case 22: return 110;
1886
1887 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1888 /* R1-R4, (u)ral is R4-R1 */
1889 case 12: return 0xd;
1890 case 18: return 0xf;
1891 case 24: return 0x5;
1892 case 36: return 0x7;
1893 case 48: return 0x9;
1894 case 72: return 0xb;
1895 case 96: return 0x1;
1896 case 108: return 0x3;
1897
1898 /* unsupported rates (should not get there) */
1899 default: return 0;
1900 }
1901 }
1902
1903 /* quickly determine if a given rate is CCK or OFDM */
1904 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1905
1906 static int
1907 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1908 int ac)
1909 {
1910 struct ieee80211com *ic = &sc->sc_ic;
1911 struct wpi_tx_ring *ring = &sc->txq[ac];
1912 struct wpi_tx_desc *desc;
1913 struct wpi_tx_data *data;
1914 struct wpi_tx_cmd *cmd;
1915 struct wpi_cmd_data *tx;
1916 struct ieee80211_frame *wh;
1917 struct ieee80211_key *k;
1918 const struct chanAccParams *cap;
1919 struct mbuf *mnew;
1920 int i, rate, error, hdrlen, noack = 0;
1921
1922 desc = &ring->desc[ring->cur];
1923 data = &ring->data[ring->cur];
1924
1925 wh = mtod(m0, struct ieee80211_frame *);
1926
1927 if (ieee80211_has_qos(wh)) {
1928 cap = &ic->ic_wme.wme_chanParams;
1929 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1930 }
1931
1932 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1933 k = ieee80211_crypto_encap(ic, ni, m0);
1934 if (k == NULL) {
1935 m_freem(m0);
1936 return ENOBUFS;
1937 }
1938
1939 /* packet header may have moved, reset our local pointer */
1940 wh = mtod(m0, struct ieee80211_frame *);
1941 }
1942
1943 hdrlen = ieee80211_anyhdrsize(wh);
1944
1945 /* pickup a rate */
1946 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1947 IEEE80211_FC0_TYPE_MGT) {
1948 /* mgmt frames are sent at the lowest available bit-rate */
1949 rate = ni->ni_rates.rs_rates[0];
1950 } else {
1951 if (ic->ic_fixed_rate != -1) {
1952 rate = ic->ic_sup_rates[ic->ic_curmode].
1953 rs_rates[ic->ic_fixed_rate];
1954 } else
1955 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1956 }
1957 rate &= IEEE80211_RATE_VAL;
1958
1959 if (sc->sc_drvbpf != NULL) {
1960 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1961
1962 tap->wt_flags = 0;
1963 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1964 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1965 tap->wt_rate = rate;
1966 tap->wt_hwqueue = ac;
1967 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1968 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1969
1970 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1971 }
1972
1973 cmd = &ring->cmd[ring->cur];
1974 cmd->code = WPI_CMD_TX_DATA;
1975 cmd->flags = 0;
1976 cmd->qid = ring->qid;
1977 cmd->idx = ring->cur;
1978
1979 tx = (struct wpi_cmd_data *)cmd->data;
1980 /* no need to zero tx, all fields are reinitialized here */
1981 tx->flags = 0;
1982
1983 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1984 tx->flags |= htole32(WPI_TX_NEED_ACK);
1985 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1986 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1987
1988 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1989
1990 /* retrieve destination node's id */
1991 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1992 WPI_ID_BSS;
1993
1994 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1995 IEEE80211_FC0_TYPE_MGT) {
1996 /* tell h/w to set timestamp in probe responses */
1997 if ((wh->i_fc[0] &
1998 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1999 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
2000 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
2001
2002 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2003 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
2004 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2005 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
2006 tx->timeout = htole16(3);
2007 else
2008 tx->timeout = htole16(2);
2009 } else
2010 tx->timeout = htole16(0);
2011
2012 tx->rate = wpi_plcp_signal(rate);
2013
2014 /* be very persistant at sending frames out */
2015 tx->rts_ntries = 7;
2016 tx->data_ntries = 15;
2017
2018 tx->ofdm_mask = 0xff;
2019 tx->cck_mask = 0x0f;
2020 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2021
2022 tx->len = htole16(m0->m_pkthdr.len);
2023
2024 /* save and trim IEEE802.11 header */
2025 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2026 m_adj(m0, hdrlen);
2027
2028 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2029 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2030 if (error != 0 && error != EFBIG) {
2031 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2032 error);
2033 m_freem(m0);
2034 return error;
2035 }
2036 if (error != 0) {
2037 /* too many fragments, linearize */
2038
2039 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2040 if (mnew == NULL) {
2041 m_freem(m0);
2042 return ENOMEM;
2043 }
2044 m_copy_pkthdr(mnew, m0);
2045 if (m0->m_pkthdr.len > MHLEN) {
2046 MCLGET(mnew, M_DONTWAIT);
2047 if (!(mnew->m_flags & M_EXT)) {
2048 m_freem(m0);
2049 m_freem(mnew);
2050 return ENOMEM;
2051 }
2052 }
2053
2054 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2055 m_freem(m0);
2056 mnew->m_len = mnew->m_pkthdr.len;
2057 m0 = mnew;
2058
2059 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2060 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2061 if (error != 0) {
2062 aprint_error_dev(sc->sc_dev,
2063 "could not map mbuf (error %d)\n", error);
2064 m_freem(m0);
2065 return error;
2066 }
2067 }
2068
2069 data->m = m0;
2070 data->ni = ni;
2071
2072 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2073 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2074
2075 /* first scatter/gather segment is used by the tx data command */
2076 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2077 (1 + data->map->dm_nsegs) << 24);
2078 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2079 ring->cur * sizeof (struct wpi_tx_cmd));
2080 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
2081 ((hdrlen + 3) & ~3));
2082 for (i = 1; i <= data->map->dm_nsegs; i++) {
2083 desc->segs[i].addr =
2084 htole32(data->map->dm_segs[i - 1].ds_addr);
2085 desc->segs[i].len =
2086 htole32(data->map->dm_segs[i - 1].ds_len);
2087 }
2088
2089 ring->queued++;
2090
2091 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2092 data->map->dm_mapsize,
2093 BUS_DMASYNC_PREWRITE);
2094 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
2095 ring->cmd_dma.size,
2096 BUS_DMASYNC_PREWRITE);
2097 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2098 ring->desc_dma.size,
2099 BUS_DMASYNC_PREWRITE);
2100
2101 /* kick ring */
2102 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2103 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2104
2105 return 0;
2106 }
2107
2108 static void
2109 wpi_start(struct ifnet *ifp)
2110 {
2111 struct wpi_softc *sc = ifp->if_softc;
2112 struct ieee80211com *ic = &sc->sc_ic;
2113 struct ieee80211_node *ni;
2114 struct ether_header *eh;
2115 struct mbuf *m0;
2116 int ac;
2117
2118 /*
2119 * net80211 may still try to send management frames even if the
2120 * IFF_RUNNING flag is not set...
2121 */
2122 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2123 return;
2124
2125 for (;;) {
2126 IF_DEQUEUE(&ic->ic_mgtq, m0);
2127 if (m0 != NULL) {
2128
2129 ni = M_GETCTX(m0, struct ieee80211_node *);
2130 M_CLEARCTX(m0);
2131
2132 /* management frames go into ring 0 */
2133 if (sc->txq[0].queued > sc->txq[0].count - 8) {
2134 if_statinc(ifp, if_oerrors);
2135 continue;
2136 }
2137 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2138 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2139 if_statinc(ifp, if_oerrors);
2140 break;
2141 }
2142 } else {
2143 if (ic->ic_state != IEEE80211_S_RUN)
2144 break;
2145 IFQ_POLL(&ifp->if_snd, m0);
2146 if (m0 == NULL)
2147 break;
2148
2149 if (m0->m_len < sizeof (*eh) &&
2150 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2151 if_statinc(ifp, if_oerrors);
2152 continue;
2153 }
2154 eh = mtod(m0, struct ether_header *);
2155 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2156 if (ni == NULL) {
2157 m_freem(m0);
2158 if_statinc(ifp, if_oerrors);
2159 continue;
2160 }
2161
2162 /* classify mbuf so we can find which tx ring to use */
2163 if (ieee80211_classify(ic, m0, ni) != 0) {
2164 m_freem(m0);
2165 ieee80211_free_node(ni);
2166 if_statinc(ifp, if_oerrors);
2167 continue;
2168 }
2169
2170 /* no QoS encapsulation for EAPOL frames */
2171 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2172 M_WME_GETAC(m0) : WME_AC_BE;
2173
2174 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2175 /* there is no place left in this ring */
2176 ifp->if_flags |= IFF_OACTIVE;
2177 break;
2178 }
2179 IFQ_DEQUEUE(&ifp->if_snd, m0);
2180 bpf_mtap(ifp, m0, BPF_D_OUT);
2181 m0 = ieee80211_encap(ic, m0, ni);
2182 if (m0 == NULL) {
2183 ieee80211_free_node(ni);
2184 if_statinc(ifp, if_oerrors);
2185 continue;
2186 }
2187 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2188 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2189 ieee80211_free_node(ni);
2190 if_statinc(ifp, if_oerrors);
2191 break;
2192 }
2193 }
2194
2195 sc->sc_tx_timer = 5;
2196 ifp->if_timer = 1;
2197 }
2198 }
2199
2200 static void
2201 wpi_watchdog(struct ifnet *ifp)
2202 {
2203 struct wpi_softc *sc = ifp->if_softc;
2204
2205 ifp->if_timer = 0;
2206
2207 if (sc->sc_tx_timer > 0) {
2208 if (--sc->sc_tx_timer == 0) {
2209 aprint_error_dev(sc->sc_dev, "device timeout\n");
2210 ifp->if_flags &= ~IFF_UP;
2211 wpi_stop(ifp, 1);
2212 if_statinc(ifp, if_oerrors);
2213 return;
2214 }
2215 ifp->if_timer = 1;
2216 }
2217
2218 ieee80211_watchdog(&sc->sc_ic);
2219 }
2220
2221 static int
2222 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2223 {
2224 #define IS_RUNNING(ifp) \
2225 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2226
2227 struct wpi_softc *sc = ifp->if_softc;
2228 struct ieee80211com *ic = &sc->sc_ic;
2229 int s, error = 0;
2230
2231 s = splnet();
2232
2233 switch (cmd) {
2234 case SIOCSIFFLAGS:
2235 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2236 break;
2237 if (ifp->if_flags & IFF_UP) {
2238 if (!(ifp->if_flags & IFF_RUNNING))
2239 wpi_init(ifp);
2240 } else {
2241 if (ifp->if_flags & IFF_RUNNING)
2242 wpi_stop(ifp, 1);
2243 }
2244 break;
2245
2246 case SIOCADDMULTI:
2247 case SIOCDELMULTI:
2248 /* XXX no h/w multicast filter? --dyoung */
2249 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2250 /* setup multicast filter, etc */
2251 error = 0;
2252 }
2253 break;
2254
2255 default:
2256 error = ieee80211_ioctl(ic, cmd, data);
2257 }
2258
2259 if (error == ENETRESET) {
2260 if (IS_RUNNING(ifp) &&
2261 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2262 wpi_init(ifp);
2263 error = 0;
2264 }
2265
2266 splx(s);
2267 return error;
2268
2269 #undef IS_RUNNING
2270 }
2271
2272 /*
2273 * Extract various information from EEPROM.
2274 */
2275 static void
2276 wpi_read_eeprom(struct wpi_softc *sc)
2277 {
2278 struct ieee80211com *ic = &sc->sc_ic;
2279 char domain[4];
2280 int i;
2281
2282 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2283 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2284 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2285
2286 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2287 sc->type));
2288
2289 /* read and print regulatory domain */
2290 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2291 aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2292
2293 /* read and print MAC address */
2294 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2295 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2296
2297 /* read the list of authorized channels */
2298 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2299 wpi_read_eeprom_channels(sc, i);
2300
2301 /* read the list of power groups */
2302 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2303 wpi_read_eeprom_group(sc, i);
2304 }
2305
2306 static void
2307 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2308 {
2309 struct ieee80211com *ic = &sc->sc_ic;
2310 const struct wpi_chan_band *band = &wpi_bands[n];
2311 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2312 int chan, i;
2313
2314 wpi_read_prom_data(sc, band->addr, channels,
2315 band->nchan * sizeof (struct wpi_eeprom_chan));
2316
2317 for (i = 0; i < band->nchan; i++) {
2318 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2319 continue;
2320
2321 chan = band->chan[i];
2322
2323 if (n == 0) { /* 2GHz band */
2324 ic->ic_channels[chan].ic_freq =
2325 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2326 ic->ic_channels[chan].ic_flags =
2327 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2328 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2329
2330 } else { /* 5GHz band */
2331 /*
2332 * Some 3945ABG adapters support channels 7, 8, 11
2333 * and 12 in the 2GHz *and* 5GHz bands.
2334 * Because of limitations in our net80211(9) stack,
2335 * we can't support these channels in 5GHz band.
2336 */
2337 if (chan <= 14)
2338 continue;
2339
2340 ic->ic_channels[chan].ic_freq =
2341 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2342 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2343 }
2344
2345 /* is active scan allowed on this channel? */
2346 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2347 ic->ic_channels[chan].ic_flags |=
2348 IEEE80211_CHAN_PASSIVE;
2349 }
2350
2351 /* save maximum allowed power for this channel */
2352 sc->maxpwr[chan] = channels[i].maxpwr;
2353
2354 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2355 chan, channels[i].flags, sc->maxpwr[chan]));
2356 }
2357 }
2358
2359 static void
2360 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2361 {
2362 struct wpi_power_group *group = &sc->groups[n];
2363 struct wpi_eeprom_group rgroup;
2364 int i;
2365
2366 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2367 sizeof rgroup);
2368
2369 /* save power group information */
2370 group->chan = rgroup.chan;
2371 group->maxpwr = rgroup.maxpwr;
2372 /* temperature at which the samples were taken */
2373 group->temp = (int16_t)le16toh(rgroup.temp);
2374
2375 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2376 group->chan, group->maxpwr, group->temp));
2377
2378 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2379 group->samples[i].index = rgroup.samples[i].index;
2380 group->samples[i].power = rgroup.samples[i].power;
2381
2382 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2383 group->samples[i].index, group->samples[i].power));
2384 }
2385 }
2386
2387 /*
2388 * Send a command to the firmware.
2389 */
2390 static int
2391 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2392 {
2393 struct wpi_tx_ring *ring = &sc->cmdq;
2394 struct wpi_tx_desc *desc;
2395 struct wpi_tx_cmd *cmd;
2396 struct wpi_dma_info *dma;
2397
2398 KASSERT(size <= sizeof cmd->data);
2399
2400 desc = &ring->desc[ring->cur];
2401 cmd = &ring->cmd[ring->cur];
2402
2403 cmd->code = code;
2404 cmd->flags = 0;
2405 cmd->qid = ring->qid;
2406 cmd->idx = ring->cur;
2407 memcpy(cmd->data, buf, size);
2408
2409 dma = &ring->cmd_dma;
2410 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2411
2412 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2413 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2414 ring->cur * sizeof (struct wpi_tx_cmd));
2415 desc->segs[0].len = htole32(4 + size);
2416
2417 dma = &ring->desc_dma;
2418 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2419
2420 /* kick cmd ring */
2421 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2422 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2423
2424 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2425 }
2426
2427 static int
2428 wpi_wme_update(struct ieee80211com *ic)
2429 {
2430 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2431 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2432 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2433 const struct wmeParams *wmep;
2434 struct wpi_wme_setup wme;
2435 int ac;
2436
2437 /* don't override default WME values if WME is not actually enabled */
2438 if (!(ic->ic_flags & IEEE80211_F_WME))
2439 return 0;
2440
2441 wme.flags = 0;
2442 for (ac = 0; ac < WME_NUM_AC; ac++) {
2443 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2444 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2445 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2446 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2447 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2448
2449 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2450 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2451 wme.ac[ac].cwmax, wme.ac[ac].txop));
2452 }
2453
2454 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2455 #undef WPI_USEC
2456 #undef WPI_EXP2
2457 }
2458
2459 /*
2460 * Configure h/w multi-rate retries.
2461 */
2462 static int
2463 wpi_mrr_setup(struct wpi_softc *sc)
2464 {
2465 struct ieee80211com *ic = &sc->sc_ic;
2466 struct wpi_mrr_setup mrr;
2467 int i, error;
2468
2469 /* CCK rates (not used with 802.11a) */
2470 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2471 mrr.rates[i].flags = 0;
2472 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2473 /* fallback to the immediate lower CCK rate (if any) */
2474 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2475 /* try one time at this rate before falling back to "next" */
2476 mrr.rates[i].ntries = 1;
2477 }
2478
2479 /* OFDM rates (not used with 802.11b) */
2480 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2481 mrr.rates[i].flags = 0;
2482 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2483 /* fallback to the immediate lower rate (if any) */
2484 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2485 mrr.rates[i].next = (i == WPI_OFDM6) ?
2486 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2487 WPI_OFDM6 : WPI_CCK2) :
2488 i - 1;
2489 /* try one time at this rate before falling back to "next" */
2490 mrr.rates[i].ntries = 1;
2491 }
2492
2493 /* setup MRR for control frames */
2494 mrr.which = htole32(WPI_MRR_CTL);
2495 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2496 if (error != 0) {
2497 aprint_error_dev(sc->sc_dev,
2498 "could not setup MRR for control frames\n");
2499 return error;
2500 }
2501
2502 /* setup MRR for data frames */
2503 mrr.which = htole32(WPI_MRR_DATA);
2504 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2505 if (error != 0) {
2506 aprint_error_dev(sc->sc_dev,
2507 "could not setup MRR for data frames\n");
2508 return error;
2509 }
2510
2511 return 0;
2512 }
2513
2514 static void
2515 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2516 {
2517 struct wpi_cmd_led led;
2518
2519 led.which = which;
2520 led.unit = htole32(100000); /* on/off in unit of 100ms */
2521 led.off = off;
2522 led.on = on;
2523
2524 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2525 }
2526
2527 static void
2528 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2529 {
2530 struct wpi_cmd_tsf tsf;
2531 uint64_t val, mod;
2532
2533 memset(&tsf, 0, sizeof tsf);
2534 memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2535 tsf.bintval = htole16(ni->ni_intval);
2536 tsf.lintval = htole16(10);
2537
2538 /* compute remaining time until next beacon */
2539 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2540 mod = le64toh(tsf.tstamp) % val;
2541 tsf.binitval = htole32((uint32_t)(val - mod));
2542
2543 DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2544 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2545
2546 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2547 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2548 }
2549
2550 /*
2551 * Update Tx power to match what is defined for channel `c'.
2552 */
2553 static int
2554 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2555 {
2556 struct ieee80211com *ic = &sc->sc_ic;
2557 struct wpi_power_group *group;
2558 struct wpi_cmd_txpower txpower;
2559 u_int chan;
2560 int i;
2561
2562 /* get channel number */
2563 chan = ieee80211_chan2ieee(ic, c);
2564
2565 /* find the power group to which this channel belongs */
2566 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2567 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2568 if (chan <= group->chan)
2569 break;
2570 } else
2571 group = &sc->groups[0];
2572
2573 memset(&txpower, 0, sizeof txpower);
2574 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2575 txpower.chan = htole16(chan);
2576
2577 /* set Tx power for all OFDM and CCK rates */
2578 for (i = 0; i <= 11 ; i++) {
2579 /* retrieve Tx power for this channel/rate combination */
2580 int idx = wpi_get_power_index(sc, group, c,
2581 wpi_ridx_to_rate[i]);
2582
2583 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2584
2585 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2586 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2587 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2588 } else {
2589 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2590 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2591 }
2592 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2593 wpi_ridx_to_rate[i], idx));
2594 }
2595
2596 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2597 }
2598
2599 /*
2600 * Determine Tx power index for a given channel/rate combination.
2601 * This takes into account the regulatory information from EEPROM and the
2602 * current temperature.
2603 */
2604 static int
2605 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2606 struct ieee80211_channel *c, int rate)
2607 {
2608 /* fixed-point arithmetic division using a n-bit fractional part */
2609 #define fdivround(a, b, n) \
2610 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2611
2612 /* linear interpolation */
2613 #define interpolate(x, x1, y1, x2, y2, n) \
2614 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2615
2616 struct ieee80211com *ic = &sc->sc_ic;
2617 struct wpi_power_sample *sample;
2618 int pwr, idx;
2619 u_int chan;
2620
2621 /* get channel number */
2622 chan = ieee80211_chan2ieee(ic, c);
2623
2624 /* default power is group's maximum power - 3dB */
2625 pwr = group->maxpwr / 2;
2626
2627 /* decrease power for highest OFDM rates to reduce distortion */
2628 switch (rate) {
2629 case 72: /* 36Mb/s */
2630 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2631 break;
2632 case 96: /* 48Mb/s */
2633 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2634 break;
2635 case 108: /* 54Mb/s */
2636 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2637 break;
2638 }
2639
2640 /* never exceed channel's maximum allowed Tx power */
2641 pwr = uimin(pwr, sc->maxpwr[chan]);
2642
2643 /* retrieve power index into gain tables from samples */
2644 for (sample = group->samples; sample < &group->samples[3]; sample++)
2645 if (pwr > sample[1].power)
2646 break;
2647 /* fixed-point linear interpolation using a 19-bit fractional part */
2648 idx = interpolate(pwr, sample[0].power, sample[0].index,
2649 sample[1].power, sample[1].index, 19);
2650
2651 /*-
2652 * Adjust power index based on current temperature:
2653 * - if cooler than factory-calibrated: decrease output power
2654 * - if warmer than factory-calibrated: increase output power
2655 */
2656 idx -= (sc->temp - group->temp) * 11 / 100;
2657
2658 /* decrease power for CCK rates (-5dB) */
2659 if (!WPI_RATE_IS_OFDM(rate))
2660 idx += 10;
2661
2662 /* keep power index in a valid range */
2663 if (idx < 0)
2664 return 0;
2665 if (idx > WPI_MAX_PWR_INDEX)
2666 return WPI_MAX_PWR_INDEX;
2667 return idx;
2668
2669 #undef interpolate
2670 #undef fdivround
2671 }
2672
2673 /*
2674 * Build a beacon frame that the firmware will broadcast periodically in
2675 * IBSS or HostAP modes.
2676 */
2677 static int
2678 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2679 {
2680 struct ieee80211com *ic = &sc->sc_ic;
2681 struct wpi_tx_ring *ring = &sc->cmdq;
2682 struct wpi_tx_desc *desc;
2683 struct wpi_tx_data *data;
2684 struct wpi_tx_cmd *cmd;
2685 struct wpi_cmd_beacon *bcn;
2686 struct ieee80211_beacon_offsets bo;
2687 struct mbuf *m0;
2688 int error;
2689
2690 desc = &ring->desc[ring->cur];
2691 data = &ring->data[ring->cur];
2692
2693 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2694 if (m0 == NULL) {
2695 aprint_error_dev(sc->sc_dev,
2696 "could not allocate beacon frame\n");
2697 return ENOMEM;
2698 }
2699
2700 cmd = &ring->cmd[ring->cur];
2701 cmd->code = WPI_CMD_SET_BEACON;
2702 cmd->flags = 0;
2703 cmd->qid = ring->qid;
2704 cmd->idx = ring->cur;
2705
2706 bcn = (struct wpi_cmd_beacon *)cmd->data;
2707 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2708 bcn->id = WPI_ID_BROADCAST;
2709 bcn->ofdm_mask = 0xff;
2710 bcn->cck_mask = 0x0f;
2711 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2712 bcn->len = htole16(m0->m_pkthdr.len);
2713 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2714 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2715 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2716
2717 /* save and trim IEEE802.11 header */
2718 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2719 m_adj(m0, sizeof (struct ieee80211_frame));
2720
2721 /* assume beacon frame is contiguous */
2722 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2723 BUS_DMA_READ | BUS_DMA_NOWAIT);
2724 if (error != 0) {
2725 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2726 m_freem(m0);
2727 return error;
2728 }
2729
2730 data->m = m0;
2731
2732 /* first scatter/gather segment is used by the beacon command */
2733 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2734 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2735 ring->cur * sizeof (struct wpi_tx_cmd));
2736 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2737 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2738 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2739
2740 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2741 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2742 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2743 BUS_DMASYNC_PREWRITE);
2744
2745 /* kick cmd ring */
2746 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2747 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2748
2749 return 0;
2750 }
2751
2752 static int
2753 wpi_auth(struct wpi_softc *sc)
2754 {
2755 struct ieee80211com *ic = &sc->sc_ic;
2756 struct ieee80211_node *ni = ic->ic_bss;
2757 struct wpi_node_info node;
2758 int error;
2759
2760 /* update adapter's configuration */
2761 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2762 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2763 sc->config.flags = htole32(WPI_CONFIG_TSF);
2764 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2765 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2766 WPI_CONFIG_24GHZ);
2767 }
2768 switch (ic->ic_curmode) {
2769 case IEEE80211_MODE_11A:
2770 sc->config.cck_mask = 0;
2771 sc->config.ofdm_mask = 0x15;
2772 break;
2773 case IEEE80211_MODE_11B:
2774 sc->config.cck_mask = 0x03;
2775 sc->config.ofdm_mask = 0;
2776 break;
2777 default: /* assume 802.11b/g */
2778 sc->config.cck_mask = 0x0f;
2779 sc->config.ofdm_mask = 0x15;
2780 }
2781 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2782 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2783 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2784 sizeof (struct wpi_config), 1);
2785 if (error != 0) {
2786 aprint_error_dev(sc->sc_dev, "could not configure\n");
2787 return error;
2788 }
2789
2790 /* configuration has changed, set Tx power accordingly */
2791 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2792 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2793 return error;
2794 }
2795
2796 /* add default node */
2797 memset(&node, 0, sizeof node);
2798 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2799 node.id = WPI_ID_BSS;
2800 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2801 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2802 node.action = htole32(WPI_ACTION_SET_RATE);
2803 node.antenna = WPI_ANTENNA_BOTH;
2804 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2805 if (error != 0) {
2806 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2807 return error;
2808 }
2809
2810 return 0;
2811 }
2812
2813 /*
2814 * Send a scan request to the firmware. Since this command is huge, we map it
2815 * into a mbuf instead of using the pre-allocated set of commands.
2816 */
2817 static int
2818 wpi_scan(struct wpi_softc *sc)
2819 {
2820 struct ieee80211com *ic = &sc->sc_ic;
2821 struct wpi_tx_ring *ring = &sc->cmdq;
2822 struct wpi_tx_desc *desc;
2823 struct wpi_tx_data *data;
2824 struct wpi_tx_cmd *cmd;
2825 struct wpi_scan_hdr *hdr;
2826 struct wpi_scan_chan *chan;
2827 struct ieee80211_frame *wh;
2828 struct ieee80211_rateset *rs;
2829 struct ieee80211_channel *c;
2830 uint8_t *frm;
2831 int pktlen, error, nrates;
2832
2833 if (ic->ic_curchan == NULL)
2834 return EIO;
2835
2836 desc = &ring->desc[ring->cur];
2837 data = &ring->data[ring->cur];
2838
2839 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2840 if (data->m == NULL) {
2841 aprint_error_dev(sc->sc_dev,
2842 "could not allocate mbuf for scan command\n");
2843 return ENOMEM;
2844 }
2845 MCLGET(data->m, M_DONTWAIT);
2846 if (!(data->m->m_flags & M_EXT)) {
2847 m_freem(data->m);
2848 data->m = NULL;
2849 aprint_error_dev(sc->sc_dev,
2850 "could not allocate mbuf for scan command\n");
2851 return ENOMEM;
2852 }
2853
2854 cmd = mtod(data->m, struct wpi_tx_cmd *);
2855 cmd->code = WPI_CMD_SCAN;
2856 cmd->flags = 0;
2857 cmd->qid = ring->qid;
2858 cmd->idx = ring->cur;
2859
2860 hdr = (struct wpi_scan_hdr *)cmd->data;
2861 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2862 hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2863 hdr->cmd.id = WPI_ID_BROADCAST;
2864 hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2865 /*
2866 * Move to the next channel if no packets are received within 5 msecs
2867 * after sending the probe request (this helps to reduce the duration
2868 * of active scans).
2869 */
2870 hdr->quiet = htole16(5); /* timeout in milliseconds */
2871 hdr->plcp_threshold = htole16(1); /* min # of packets */
2872
2873 if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2874 hdr->crc_threshold = htole16(1);
2875 /* send probe requests at 6Mbps */
2876 hdr->cmd.rate = wpi_plcp_signal(12);
2877 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2878 } else {
2879 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2880 /* send probe requests at 1Mbps */
2881 hdr->cmd.rate = wpi_plcp_signal(2);
2882 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2883 }
2884
2885 /* for directed scans, firmware inserts the essid IE itself */
2886 if (ic->ic_des_esslen != 0) {
2887 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2888 hdr->essid[0].len = ic->ic_des_esslen;
2889 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2890 }
2891
2892 /*
2893 * Build a probe request frame. Most of the following code is a
2894 * copy & paste of what is done in net80211.
2895 */
2896 wh = (struct ieee80211_frame *)(hdr + 1);
2897 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2898 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2899 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2900 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2901 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2902 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2903 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2904 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2905
2906 frm = (uint8_t *)(wh + 1);
2907
2908 /* add empty essid IE (firmware generates it for directed scans) */
2909 *frm++ = IEEE80211_ELEMID_SSID;
2910 *frm++ = 0;
2911
2912 /* add supported rates IE */
2913 *frm++ = IEEE80211_ELEMID_RATES;
2914 nrates = rs->rs_nrates;
2915 if (nrates > IEEE80211_RATE_SIZE)
2916 nrates = IEEE80211_RATE_SIZE;
2917 *frm++ = nrates;
2918 memcpy(frm, rs->rs_rates, nrates);
2919 frm += nrates;
2920
2921 /* add supported xrates IE */
2922 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2923 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2924 *frm++ = IEEE80211_ELEMID_XRATES;
2925 *frm++ = nrates;
2926 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2927 frm += nrates;
2928 }
2929
2930 /* setup length of probe request */
2931 hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2932
2933 chan = (struct wpi_scan_chan *)frm;
2934 c = ic->ic_curchan;
2935
2936 chan->chan = ieee80211_chan2ieee(ic, c);
2937 chan->flags = 0;
2938 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2939 chan->flags |= WPI_CHAN_ACTIVE;
2940 if (ic->ic_des_esslen != 0)
2941 chan->flags |= WPI_CHAN_DIRECT;
2942 }
2943 chan->dsp_gain = 0x6e;
2944 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2945 chan->rf_gain = 0x3b;
2946 chan->active = htole16(10);
2947 chan->passive = htole16(110);
2948 } else {
2949 chan->rf_gain = 0x28;
2950 chan->active = htole16(20);
2951 chan->passive = htole16(120);
2952 }
2953 hdr->nchan++;
2954 chan++;
2955
2956 frm += sizeof (struct wpi_scan_chan);
2957
2958 hdr->len = htole16(frm - (uint8_t *)hdr);
2959 pktlen = frm - (uint8_t *)cmd;
2960
2961 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2962 BUS_DMA_NOWAIT);
2963 if (error != 0) {
2964 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2965 m_freem(data->m);
2966 data->m = NULL;
2967 return error;
2968 }
2969
2970 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2971 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2972 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2973
2974 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2975 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2976 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2977 BUS_DMASYNC_PREWRITE);
2978
2979 /* kick cmd ring */
2980 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2981 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2982
2983 return 0; /* will be notified async. of failure/success */
2984 }
2985
2986 static int
2987 wpi_config(struct wpi_softc *sc)
2988 {
2989 struct ieee80211com *ic = &sc->sc_ic;
2990 struct ifnet *ifp = ic->ic_ifp;
2991 struct wpi_power power;
2992 struct wpi_bluetooth bluetooth;
2993 struct wpi_node_info node;
2994 int error;
2995
2996 memset(&power, 0, sizeof power);
2997 power.flags = htole32(WPI_POWER_CAM | 0x8);
2998 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2999 if (error != 0) {
3000 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
3001 return error;
3002 }
3003
3004 /* configure bluetooth coexistence */
3005 memset(&bluetooth, 0, sizeof bluetooth);
3006 bluetooth.flags = 3;
3007 bluetooth.lead = 0xaa;
3008 bluetooth.kill = 1;
3009 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3010 0);
3011 if (error != 0) {
3012 aprint_error_dev(sc->sc_dev,
3013 "could not configure bluetooth coexistence\n");
3014 return error;
3015 }
3016
3017 /* configure adapter */
3018 memset(&sc->config, 0, sizeof (struct wpi_config));
3019 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3020 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3021 /* set default channel */
3022 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3023 sc->config.flags = htole32(WPI_CONFIG_TSF);
3024 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3025 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
3026 WPI_CONFIG_24GHZ);
3027 }
3028 sc->config.filter = 0;
3029 switch (ic->ic_opmode) {
3030 case IEEE80211_M_STA:
3031 sc->config.mode = WPI_MODE_STA;
3032 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
3033 break;
3034 case IEEE80211_M_IBSS:
3035 case IEEE80211_M_AHDEMO:
3036 sc->config.mode = WPI_MODE_IBSS;
3037 break;
3038 case IEEE80211_M_HOSTAP:
3039 sc->config.mode = WPI_MODE_HOSTAP;
3040 break;
3041 case IEEE80211_M_MONITOR:
3042 sc->config.mode = WPI_MODE_MONITOR;
3043 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
3044 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3045 break;
3046 }
3047 sc->config.cck_mask = 0x0f; /* not yet negotiated */
3048 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
3049 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
3050 sizeof (struct wpi_config), 0);
3051 if (error != 0) {
3052 aprint_error_dev(sc->sc_dev, "configure command failed\n");
3053 return error;
3054 }
3055
3056 /* configuration has changed, set Tx power accordingly */
3057 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
3058 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3059 return error;
3060 }
3061
3062 /* add broadcast node */
3063 memset(&node, 0, sizeof node);
3064 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
3065 node.id = WPI_ID_BROADCAST;
3066 node.rate = wpi_plcp_signal(2);
3067 node.action = htole32(WPI_ACTION_SET_RATE);
3068 node.antenna = WPI_ANTENNA_BOTH;
3069 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3070 if (error != 0) {
3071 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3072 return error;
3073 }
3074
3075 if ((error = wpi_mrr_setup(sc)) != 0) {
3076 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
3077 return error;
3078 }
3079
3080 return 0;
3081 }
3082
3083 static void
3084 wpi_stop_master(struct wpi_softc *sc)
3085 {
3086 uint32_t tmp;
3087 int ntries;
3088
3089 tmp = WPI_READ(sc, WPI_RESET);
3090 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3091
3092 tmp = WPI_READ(sc, WPI_GPIO_CTL);
3093 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3094 return; /* already asleep */
3095
3096 for (ntries = 0; ntries < 100; ntries++) {
3097 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3098 break;
3099 DELAY(10);
3100 }
3101 if (ntries == 100) {
3102 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3103 }
3104 }
3105
3106 static int
3107 wpi_power_up(struct wpi_softc *sc)
3108 {
3109 uint32_t tmp;
3110 int ntries;
3111
3112 wpi_mem_lock(sc);
3113 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3114 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3115 wpi_mem_unlock(sc);
3116
3117 for (ntries = 0; ntries < 5000; ntries++) {
3118 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3119 break;
3120 DELAY(10);
3121 }
3122 if (ntries == 5000) {
3123 aprint_error_dev(sc->sc_dev,
3124 "timeout waiting for NIC to power up\n");
3125 return ETIMEDOUT;
3126 }
3127 return 0;
3128 }
3129
3130 static int
3131 wpi_reset(struct wpi_softc *sc)
3132 {
3133 uint32_t tmp;
3134 int ntries;
3135
3136 /* clear any pending interrupts */
3137 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3138
3139 tmp = WPI_READ(sc, WPI_PLL_CTL);
3140 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3141
3142 tmp = WPI_READ(sc, WPI_CHICKEN);
3143 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3144
3145 tmp = WPI_READ(sc, WPI_GPIO_CTL);
3146 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3147
3148 /* wait for clock stabilization */
3149 for (ntries = 0; ntries < 1000; ntries++) {
3150 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3151 break;
3152 DELAY(10);
3153 }
3154 if (ntries == 1000) {
3155 aprint_error_dev(sc->sc_dev,
3156 "timeout waiting for clock stabilization\n");
3157 return ETIMEDOUT;
3158 }
3159
3160 /* initialize EEPROM */
3161 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3162 if ((tmp & WPI_EEPROM_VERSION) == 0) {
3163 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3164 return EIO;
3165 }
3166 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3167
3168 return 0;
3169 }
3170
3171 static void
3172 wpi_hw_config(struct wpi_softc *sc)
3173 {
3174 uint32_t rev, hw;
3175
3176 /* voodoo from the reference driver */
3177 hw = WPI_READ(sc, WPI_HWCONFIG);
3178
3179 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3180 rev = PCI_REVISION(rev);
3181 if ((rev & 0xc0) == 0x40)
3182 hw |= WPI_HW_ALM_MB;
3183 else if (!(rev & 0x80))
3184 hw |= WPI_HW_ALM_MM;
3185
3186 if (sc->cap == 0x80)
3187 hw |= WPI_HW_SKU_MRC;
3188
3189 hw &= ~WPI_HW_REV_D;
3190 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3191 hw |= WPI_HW_REV_D;
3192
3193 if (sc->type > 1)
3194 hw |= WPI_HW_TYPE_B;
3195
3196 DPRINTF(("setting h/w config %x\n", hw));
3197 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3198 }
3199
3200 static int
3201 wpi_init(struct ifnet *ifp)
3202 {
3203 struct wpi_softc *sc = ifp->if_softc;
3204 struct ieee80211com *ic = &sc->sc_ic;
3205 uint32_t tmp;
3206 int qid, ntries, error;
3207
3208 wpi_stop(ifp,1);
3209 (void)wpi_reset(sc);
3210
3211 wpi_mem_lock(sc);
3212 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3213 DELAY(20);
3214 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3215 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3216 wpi_mem_unlock(sc);
3217
3218 (void)wpi_power_up(sc);
3219 wpi_hw_config(sc);
3220
3221 /* init Rx ring */
3222 wpi_mem_lock(sc);
3223 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3224 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3225 offsetof(struct wpi_shared, next));
3226 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3227 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3228 wpi_mem_unlock(sc);
3229
3230 /* init Tx rings */
3231 wpi_mem_lock(sc);
3232 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3233 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3234 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3235 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3236 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3237 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3238 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3239
3240 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3241 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3242
3243 for (qid = 0; qid < 6; qid++) {
3244 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3245 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3246 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3247 }
3248 wpi_mem_unlock(sc);
3249
3250 /* clear "radio off" and "disable command" bits (reversed logic) */
3251 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3252 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3253
3254 /* clear any pending interrupts */
3255 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3256 /* enable interrupts */
3257 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3258
3259 /* not sure why/if this is necessary... */
3260 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3261 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3262
3263 if ((error = wpi_load_firmware(sc)) != 0)
3264 /* wpi_load_firmware prints error messages for us. */
3265 goto fail1;
3266
3267 /* Check the status of the radio switch */
3268 mutex_enter(&sc->sc_rsw_mtx);
3269 if (wpi_getrfkill(sc)) {
3270 mutex_exit(&sc->sc_rsw_mtx);
3271 aprint_error_dev(sc->sc_dev,
3272 "radio is disabled by hardware switch\n");
3273 ifp->if_flags &= ~IFF_UP;
3274 error = EBUSY;
3275 goto fail1;
3276 }
3277 sc->sc_rsw_suspend = false;
3278 cv_broadcast(&sc->sc_rsw_cv);
3279 while (sc->sc_rsw_suspend)
3280 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3281 mutex_exit(&sc->sc_rsw_mtx);
3282
3283 /* wait for thermal sensors to calibrate */
3284 for (ntries = 0; ntries < 1000; ntries++) {
3285 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3286 break;
3287 DELAY(10);
3288 }
3289 if (ntries == 1000) {
3290 aprint_error_dev(sc->sc_dev,
3291 "timeout waiting for thermal sensors calibration\n");
3292 error = ETIMEDOUT;
3293 goto fail1;
3294 }
3295 DPRINTF(("temperature %d\n", sc->temp));
3296
3297 if ((error = wpi_config(sc)) != 0) {
3298 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3299 goto fail1;
3300 }
3301
3302 ifp->if_flags &= ~IFF_OACTIVE;
3303 ifp->if_flags |= IFF_RUNNING;
3304
3305 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3306 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3307 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3308 }
3309 else
3310 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3311
3312 return 0;
3313
3314 fail1: wpi_stop(ifp, 1);
3315 return error;
3316 }
3317
3318 static void
3319 wpi_stop(struct ifnet *ifp, int disable)
3320 {
3321 struct wpi_softc *sc = ifp->if_softc;
3322 struct ieee80211com *ic = &sc->sc_ic;
3323 uint32_t tmp;
3324 int ac;
3325
3326 ifp->if_timer = sc->sc_tx_timer = 0;
3327 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3328
3329 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3330
3331 /* suspend rfkill test thread */
3332 mutex_enter(&sc->sc_rsw_mtx);
3333 sc->sc_rsw_suspend = true;
3334 cv_broadcast(&sc->sc_rsw_cv);
3335 while (!sc->sc_rsw_suspended)
3336 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3337 mutex_exit(&sc->sc_rsw_mtx);
3338
3339 /* disable interrupts */
3340 WPI_WRITE(sc, WPI_MASK, 0);
3341 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3342 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3343 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3344
3345 wpi_mem_lock(sc);
3346 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3347 wpi_mem_unlock(sc);
3348
3349 /* reset all Tx rings */
3350 for (ac = 0; ac < 4; ac++)
3351 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3352 wpi_reset_tx_ring(sc, &sc->cmdq);
3353
3354 /* reset Rx ring */
3355 wpi_reset_rx_ring(sc, &sc->rxq);
3356
3357 wpi_mem_lock(sc);
3358 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3359 wpi_mem_unlock(sc);
3360
3361 DELAY(5);
3362
3363 wpi_stop_master(sc);
3364
3365 tmp = WPI_READ(sc, WPI_RESET);
3366 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3367 }
3368
3369 static bool
3370 wpi_resume(device_t dv, const pmf_qual_t *qual)
3371 {
3372 struct wpi_softc *sc = device_private(dv);
3373
3374 (void)wpi_reset(sc);
3375
3376 return true;
3377 }
3378
3379 /*
3380 * Return whether or not the radio is enabled in hardware
3381 * (i.e. the rfkill switch is "off").
3382 */
3383 static int
3384 wpi_getrfkill(struct wpi_softc *sc)
3385 {
3386 uint32_t tmp;
3387
3388 wpi_mem_lock(sc);
3389 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3390 wpi_mem_unlock(sc);
3391
3392 KASSERT(mutex_owned(&sc->sc_rsw_mtx));
3393 if (tmp & 0x01) {
3394 /* switch is on */
3395 if (sc->sc_rsw_status != WPI_RSW_ON) {
3396 sc->sc_rsw_status = WPI_RSW_ON;
3397 sysmon_pswitch_event(&sc->sc_rsw,
3398 PSWITCH_EVENT_PRESSED);
3399 }
3400 } else {
3401 /* switch is off */
3402 if (sc->sc_rsw_status != WPI_RSW_OFF) {
3403 sc->sc_rsw_status = WPI_RSW_OFF;
3404 sysmon_pswitch_event(&sc->sc_rsw,
3405 PSWITCH_EVENT_RELEASED);
3406 }
3407 }
3408
3409 return !(tmp & 0x01);
3410 }
3411
3412 static int
3413 wpi_sysctl_radio(SYSCTLFN_ARGS)
3414 {
3415 struct sysctlnode node;
3416 struct wpi_softc *sc;
3417 int val, error;
3418
3419 node = *rnode;
3420 sc = (struct wpi_softc *)node.sysctl_data;
3421
3422 mutex_enter(&sc->sc_rsw_mtx);
3423 val = !wpi_getrfkill(sc);
3424 mutex_exit(&sc->sc_rsw_mtx);
3425
3426 node.sysctl_data = &val;
3427 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3428
3429 if (error || newp == NULL)
3430 return error;
3431
3432 return 0;
3433 }
3434
3435 static void
3436 wpi_sysctlattach(struct wpi_softc *sc)
3437 {
3438 int rc;
3439 const struct sysctlnode *rnode;
3440 const struct sysctlnode *cnode;
3441
3442 struct sysctllog **clog = &sc->sc_sysctllog;
3443
3444 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3445 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3446 SYSCTL_DESCR("wpi controls and statistics"),
3447 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3448 goto err;
3449
3450 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3451 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3452 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3453 wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3454 goto err;
3455
3456 #ifdef WPI_DEBUG
3457 /* control debugging printfs */
3458 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3459 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3460 "debug", SYSCTL_DESCR("Enable debugging output"),
3461 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3462 goto err;
3463 #endif
3464
3465 return;
3466 err:
3467 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3468 }
3469
3470 static void
3471 wpi_rsw_thread(void *arg)
3472 {
3473 struct wpi_softc *sc = (struct wpi_softc *)arg;
3474
3475 mutex_enter(&sc->sc_rsw_mtx);
3476 for (;;) {
3477 cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
3478 if (sc->sc_dying) {
3479 sc->sc_rsw_lwp = NULL;
3480 cv_broadcast(&sc->sc_rsw_cv);
3481 mutex_exit(&sc->sc_rsw_mtx);
3482 kthread_exit(0);
3483 }
3484 if (sc->sc_rsw_suspend) {
3485 sc->sc_rsw_suspended = true;
3486 cv_broadcast(&sc->sc_rsw_cv);
3487 while (sc->sc_rsw_suspend || sc->sc_dying)
3488 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3489 sc->sc_rsw_suspended = false;
3490 cv_broadcast(&sc->sc_rsw_cv);
3491 }
3492 wpi_getrfkill(sc);
3493 }
3494 }
3495