Home | History | Annotate | Line # | Download | only in pci
if_wpi.c revision 1.80.2.3
      1 /*	$NetBSD: if_wpi.c,v 1.80.2.3 2020/04/13 08:04:27 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2006, 2007
      5  *	Damien Bergamini <damien.bergamini (at) free.fr>
      6  *
      7  * Permission to use, copy, modify, and distribute this software for any
      8  * purpose with or without fee is hereby granted, provided that the above
      9  * copyright notice and this permission notice appear in all copies.
     10  *
     11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     18  */
     19 
     20 #include <sys/cdefs.h>
     21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.80.2.3 2020/04/13 08:04:27 martin Exp $");
     22 
     23 /*
     24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
     25  */
     26 
     27 
     28 #include <sys/param.h>
     29 #include <sys/sockio.h>
     30 #include <sys/sysctl.h>
     31 #include <sys/mbuf.h>
     32 #include <sys/kernel.h>
     33 #include <sys/socket.h>
     34 #include <sys/systm.h>
     35 #include <sys/malloc.h>
     36 #include <sys/mutex.h>
     37 #include <sys/once.h>
     38 #include <sys/conf.h>
     39 #include <sys/kauth.h>
     40 #include <sys/callout.h>
     41 #include <sys/proc.h>
     42 #include <sys/kthread.h>
     43 
     44 #include <sys/bus.h>
     45 #include <machine/endian.h>
     46 #include <sys/intr.h>
     47 
     48 #include <dev/pci/pcireg.h>
     49 #include <dev/pci/pcivar.h>
     50 #include <dev/pci/pcidevs.h>
     51 
     52 #include <dev/sysmon/sysmonvar.h>
     53 
     54 #include <net/bpf.h>
     55 #include <net/if.h>
     56 #include <net/if_arp.h>
     57 #include <net/if_dl.h>
     58 #include <net/if_ether.h>
     59 #include <net/if_media.h>
     60 #include <net/if_types.h>
     61 
     62 #include <netinet/in.h>
     63 #include <netinet/in_systm.h>
     64 #include <netinet/in_var.h>
     65 #include <netinet/ip.h>
     66 
     67 #include <net80211/ieee80211_var.h>
     68 #include <net80211/ieee80211_amrr.h>
     69 #include <net80211/ieee80211_radiotap.h>
     70 
     71 #include <dev/firmload.h>
     72 
     73 #include <dev/pci/if_wpireg.h>
     74 #include <dev/pci/if_wpivar.h>
     75 
     76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
     77 static once_t wpi_firmware_init;
     78 static kmutex_t wpi_firmware_mutex;
     79 static size_t wpi_firmware_users;
     80 static uint8_t *wpi_firmware_image;
     81 static size_t wpi_firmware_size;
     82 
     83 static int	wpi_match(device_t, cfdata_t, void *);
     84 static void	wpi_attach(device_t, device_t, void *);
     85 static int	wpi_detach(device_t , int);
     86 static int	wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
     87 		    void **, bus_size_t, bus_size_t, int);
     88 static void	wpi_dma_contig_free(struct wpi_dma_info *);
     89 static int	wpi_alloc_shared(struct wpi_softc *);
     90 static void	wpi_free_shared(struct wpi_softc *);
     91 static int	wpi_alloc_fwmem(struct wpi_softc *);
     92 static void	wpi_free_fwmem(struct wpi_softc *);
     93 static struct	wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
     94 static void	wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
     95 static int	wpi_alloc_rpool(struct wpi_softc *);
     96 static void	wpi_free_rpool(struct wpi_softc *);
     97 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
     98 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
     99 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
    100 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
    101 		    int, int);
    102 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    103 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
    104 static struct	ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
    105 static void	wpi_newassoc(struct ieee80211_node *, int);
    106 static int	wpi_media_change(struct ifnet *);
    107 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
    108 static void	wpi_mem_lock(struct wpi_softc *);
    109 static void	wpi_mem_unlock(struct wpi_softc *);
    110 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
    111 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
    112 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
    113 		    const uint32_t *, int);
    114 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
    115 static int	wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
    116 static int	wpi_cache_firmware(struct wpi_softc *);
    117 static void	wpi_release_firmware(void);
    118 static int	wpi_load_firmware(struct wpi_softc *);
    119 static void	wpi_calib_timeout(void *);
    120 static void	wpi_iter_func(void *, struct ieee80211_node *);
    121 static void	wpi_power_calibration(struct wpi_softc *, int);
    122 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
    123 		    struct wpi_rx_data *);
    124 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
    125 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
    126 static void	wpi_notif_intr(struct wpi_softc *);
    127 static int	wpi_intr(void *);
    128 static void	wpi_softintr(void *);
    129 static void	wpi_read_eeprom(struct wpi_softc *);
    130 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
    131 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
    132 static uint8_t	wpi_plcp_signal(int);
    133 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
    134 		    struct ieee80211_node *, int);
    135 static void	wpi_start(struct ifnet *);
    136 static void	wpi_watchdog(struct ifnet *);
    137 static int	wpi_ioctl(struct ifnet *, u_long, void *);
    138 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
    139 static int	wpi_wme_update(struct ieee80211com *);
    140 static int	wpi_mrr_setup(struct wpi_softc *);
    141 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
    142 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
    143 static int	wpi_set_txpower(struct wpi_softc *,
    144 		    struct ieee80211_channel *, int);
    145 static int	wpi_get_power_index(struct wpi_softc *,
    146 		    struct wpi_power_group *, struct ieee80211_channel *, int);
    147 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
    148 static int	wpi_auth(struct wpi_softc *);
    149 static int	wpi_scan(struct wpi_softc *);
    150 static int	wpi_config(struct wpi_softc *);
    151 static void	wpi_stop_master(struct wpi_softc *);
    152 static int	wpi_power_up(struct wpi_softc *);
    153 static int	wpi_reset(struct wpi_softc *);
    154 static void	wpi_hw_config(struct wpi_softc *);
    155 static int	wpi_init(struct ifnet *);
    156 static void	wpi_stop(struct ifnet *, int);
    157 static bool	wpi_resume(device_t, const pmf_qual_t *);
    158 static int	wpi_getrfkill(struct wpi_softc *);
    159 static void	wpi_sysctlattach(struct wpi_softc *);
    160 static void	wpi_rsw_thread(void *);
    161 
    162 #ifdef WPI_DEBUG
    163 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
    164 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
    165 int wpi_debug = 1;
    166 #else
    167 #define DPRINTF(x)
    168 #define DPRINTFN(n, x)
    169 #endif
    170 
    171 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
    172 	wpi_detach, NULL);
    173 
    174 static int
    175 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
    176 {
    177 	struct pci_attach_args *pa = aux;
    178 
    179 	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
    180 		return 0;
    181 
    182 	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
    183 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
    184 		return 1;
    185 
    186 	return 0;
    187 }
    188 
    189 /* Base Address Register */
    190 #define WPI_PCI_BAR0	0x10
    191 
    192 static int
    193 wpi_attach_once(void)
    194 {
    195 
    196 	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
    197 	return 0;
    198 }
    199 
    200 static void
    201 wpi_attach(device_t parent __unused, device_t self, void *aux)
    202 {
    203 	struct wpi_softc *sc = device_private(self);
    204 	struct ieee80211com *ic = &sc->sc_ic;
    205 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    206 	struct pci_attach_args *pa = aux;
    207 	const char *intrstr;
    208 	bus_space_tag_t memt;
    209 	bus_space_handle_t memh;
    210 	pcireg_t data;
    211 	int ac, error;
    212 	char intrbuf[PCI_INTRSTR_LEN];
    213 
    214 	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
    215 	sc->fw_used = false;
    216 
    217 	sc->sc_dev = self;
    218 	sc->sc_pct = pa->pa_pc;
    219 	sc->sc_pcitag = pa->pa_tag;
    220 
    221 	sc->sc_rsw_status = WPI_RSW_UNKNOWN;
    222 	sc->sc_rsw.smpsw_name = device_xname(self);
    223 	sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
    224 	error = sysmon_pswitch_register(&sc->sc_rsw);
    225 	if (error) {
    226 		aprint_error_dev(self,
    227 		    "unable to register radio switch with sysmon\n");
    228 		return;
    229 	}
    230 	mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
    231 	cv_init(&sc->sc_rsw_cv, "wpirsw");
    232 	sc->sc_rsw_suspend = false;
    233 	sc->sc_rsw_suspended = false;
    234 	if (kthread_create(PRI_NONE, 0, NULL,
    235 	    wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
    236 		aprint_error_dev(self, "couldn't create switch thread\n");
    237 	}
    238 
    239 	callout_init(&sc->calib_to, 0);
    240 	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
    241 
    242 	pci_aprint_devinfo(pa, NULL);
    243 
    244 	/* enable bus-mastering */
    245 	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
    246 	data |= PCI_COMMAND_MASTER_ENABLE;
    247 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
    248 
    249 	/* map the register window */
    250 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
    251 	    PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
    252 	if (error != 0) {
    253 		aprint_error_dev(self, "could not map memory space\n");
    254 		return;
    255 	}
    256 
    257 	sc->sc_st = memt;
    258 	sc->sc_sh = memh;
    259 	sc->sc_dmat = pa->pa_dmat;
    260 
    261 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc);
    262 	if (sc->sc_soft_ih == NULL) {
    263 		aprint_error_dev(self, "could not establish softint\n");
    264 		goto unmap;
    265 	}
    266 
    267 	if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
    268 		aprint_error_dev(self, "could not map interrupt\n");
    269 		goto failsi;
    270 	}
    271 
    272 	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
    273 	    sizeof(intrbuf));
    274 	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
    275 	    IPL_NET, wpi_intr, sc, device_xname(self));
    276 	if (sc->sc_ih == NULL) {
    277 		aprint_error_dev(self, "could not establish interrupt");
    278 		if (intrstr != NULL)
    279 			aprint_error(" at %s", intrstr);
    280 		aprint_error("\n");
    281 		goto failia;
    282 	}
    283 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    284 
    285 	/*
    286 	 * Put adapter into a known state.
    287 	 */
    288 	if ((error = wpi_reset(sc)) != 0) {
    289 		aprint_error_dev(self, "could not reset adapter\n");
    290 		goto failih;
    291 	}
    292 
    293 	/*
    294 	 * Allocate DMA memory for firmware transfers.
    295 	 */
    296 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
    297 		aprint_error_dev(self, "could not allocate firmware memory\n");
    298 		goto failih;
    299 	}
    300 
    301 	/*
    302 	 * Allocate shared page and Tx/Rx rings.
    303 	 */
    304 	if ((error = wpi_alloc_shared(sc)) != 0) {
    305 		aprint_error_dev(self, "could not allocate shared area\n");
    306 		goto fail1;
    307 	}
    308 
    309 	if ((error = wpi_alloc_rpool(sc)) != 0) {
    310 		aprint_error_dev(self, "could not allocate Rx buffers\n");
    311 		goto fail2;
    312 	}
    313 
    314 	for (ac = 0; ac < 4; ac++) {
    315 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
    316 		    ac);
    317 		if (error != 0) {
    318 			aprint_error_dev(self,
    319 			    "could not allocate Tx ring %d\n", ac);
    320 			goto fail3;
    321 		}
    322 	}
    323 
    324 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
    325 	if (error != 0) {
    326 		aprint_error_dev(self, "could not allocate command ring\n");
    327 		goto fail3;
    328 	}
    329 
    330 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
    331 	if (error != 0) {
    332 		aprint_error_dev(self, "could not allocate Rx ring\n");
    333 		goto fail4;
    334 	}
    335 
    336 	ic->ic_ifp = ifp;
    337 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
    338 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
    339 	ic->ic_state = IEEE80211_S_INIT;
    340 
    341 	/* set device capabilities */
    342 	ic->ic_caps =
    343 	    IEEE80211_C_WPA |		/* 802.11i */
    344 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    345 	    IEEE80211_C_TXPMGT |	/* tx power management */
    346 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    347 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    348 	    IEEE80211_C_WME;		/* 802.11e */
    349 
    350 	/* read supported channels and MAC address from EEPROM */
    351 	wpi_read_eeprom(sc);
    352 
    353 	/* set supported .11a, .11b and .11g rates */
    354 	ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
    355 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    356 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    357 
    358 	/* IBSS channel undefined for now */
    359 	ic->ic_ibss_chan = &ic->ic_channels[0];
    360 
    361 	ifp->if_softc = sc;
    362 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    363 	ifp->if_init = wpi_init;
    364 	ifp->if_stop = wpi_stop;
    365 	ifp->if_ioctl = wpi_ioctl;
    366 	ifp->if_start = wpi_start;
    367 	ifp->if_watchdog = wpi_watchdog;
    368 	IFQ_SET_READY(&ifp->if_snd);
    369 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    370 
    371 	error = if_initialize(ifp);
    372 	if (error != 0) {
    373 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
    374 		    error);
    375 		goto fail5;
    376 	}
    377 	ieee80211_ifattach(ic);
    378 	/* Use common softint-based if_input */
    379 	ifp->if_percpuq = if_percpuq_create(ifp);
    380 	if_register(ifp);
    381 
    382 	/* override default methods */
    383 	ic->ic_node_alloc = wpi_node_alloc;
    384 	ic->ic_newassoc = wpi_newassoc;
    385 	ic->ic_wme.wme_update = wpi_wme_update;
    386 
    387 	/* override state transition machine */
    388 	sc->sc_newstate = ic->ic_newstate;
    389 	ic->ic_newstate = wpi_newstate;
    390 
    391 	/* XXX media locking needs revisiting */
    392 	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
    393 	ieee80211_media_init_with_lock(ic,
    394 	    wpi_media_change, ieee80211_media_status, &sc->sc_media_mtx);
    395 
    396 	sc->amrr.amrr_min_success_threshold =  1;
    397 	sc->amrr.amrr_max_success_threshold = 15;
    398 
    399 	wpi_sysctlattach(sc);
    400 
    401 	if (pmf_device_register(self, NULL, wpi_resume))
    402 		pmf_class_network_register(self, ifp);
    403 	else
    404 		aprint_error_dev(self, "couldn't establish power handler\n");
    405 
    406 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    407 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
    408 	    &sc->sc_drvbpf);
    409 
    410 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
    411 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    412 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
    413 
    414 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
    415 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    416 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
    417 
    418 	ieee80211_announce(ic);
    419 
    420 	return;
    421 
    422 	/* free allocated memory if something failed during attachment */
    423 fail5:	wpi_free_rx_ring(sc, &sc->rxq);
    424 fail4:	wpi_free_tx_ring(sc, &sc->cmdq);
    425 fail3:	while (--ac >= 0)
    426 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    427 	wpi_free_rpool(sc);
    428 fail2:	wpi_free_shared(sc);
    429 fail1:	wpi_free_fwmem(sc);
    430 failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    431 	sc->sc_ih = NULL;
    432 failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    433 	sc->sc_pihp = NULL;
    434 failsi:	softint_disestablish(sc->sc_soft_ih);
    435 	sc->sc_soft_ih = NULL;
    436 unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    437 }
    438 
    439 static int
    440 wpi_detach(device_t self, int flags __unused)
    441 {
    442 	struct wpi_softc *sc = device_private(self);
    443 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
    444 	int ac;
    445 
    446 	wpi_stop(ifp, 1);
    447 
    448 	if (ifp != NULL)
    449 		bpf_detach(ifp);
    450 	ieee80211_ifdetach(&sc->sc_ic);
    451 	if (ifp != NULL)
    452 		if_detach(ifp);
    453 
    454 	for (ac = 0; ac < 4; ac++)
    455 		wpi_free_tx_ring(sc, &sc->txq[ac]);
    456 	wpi_free_tx_ring(sc, &sc->cmdq);
    457 	wpi_free_rx_ring(sc, &sc->rxq);
    458 	wpi_free_rpool(sc);
    459 	wpi_free_shared(sc);
    460 
    461 	if (sc->sc_ih != NULL) {
    462 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
    463 		sc->sc_ih = NULL;
    464 	}
    465 	if (sc->sc_pihp != NULL) {
    466 		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
    467 		sc->sc_pihp = NULL;
    468 	}
    469 	if (sc->sc_soft_ih != NULL) {
    470 		softint_disestablish(sc->sc_soft_ih);
    471 		sc->sc_soft_ih = NULL;
    472 	}
    473 
    474 	mutex_enter(&sc->sc_rsw_mtx);
    475 	sc->sc_dying = 1;
    476 	cv_signal(&sc->sc_rsw_cv);
    477 	while (sc->sc_rsw_lwp != NULL)
    478 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
    479 	mutex_exit(&sc->sc_rsw_mtx);
    480 	sysmon_pswitch_unregister(&sc->sc_rsw);
    481 
    482 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
    483 
    484 	if (sc->fw_used) {
    485 		sc->fw_used = false;
    486 		wpi_release_firmware();
    487 	}
    488 	cv_destroy(&sc->sc_rsw_cv);
    489 	mutex_destroy(&sc->sc_rsw_mtx);
    490 	return 0;
    491 }
    492 
    493 static int
    494 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
    495     bus_size_t size, bus_size_t alignment, int flags)
    496 {
    497 	int nsegs, error;
    498 
    499 	dma->tag = tag;
    500 	dma->size = size;
    501 
    502 	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
    503 	if (error != 0)
    504 		goto fail;
    505 
    506 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
    507 	    flags);
    508 	if (error != 0)
    509 		goto fail;
    510 
    511 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
    512 	if (error != 0)
    513 		goto fail;
    514 
    515 	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
    516 	if (error != 0)
    517 		goto fail;
    518 
    519 	memset(dma->vaddr, 0, size);
    520 	bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
    521 
    522 	dma->paddr = dma->map->dm_segs[0].ds_addr;
    523 	if (kvap != NULL)
    524 		*kvap = dma->vaddr;
    525 
    526 	return 0;
    527 
    528 fail:	wpi_dma_contig_free(dma);
    529 	return error;
    530 }
    531 
    532 static void
    533 wpi_dma_contig_free(struct wpi_dma_info *dma)
    534 {
    535 	if (dma->map != NULL) {
    536 		if (dma->vaddr != NULL) {
    537 			bus_dmamap_unload(dma->tag, dma->map);
    538 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
    539 			bus_dmamem_free(dma->tag, &dma->seg, 1);
    540 			dma->vaddr = NULL;
    541 		}
    542 		bus_dmamap_destroy(dma->tag, dma->map);
    543 		dma->map = NULL;
    544 	}
    545 }
    546 
    547 /*
    548  * Allocate a shared page between host and NIC.
    549  */
    550 static int
    551 wpi_alloc_shared(struct wpi_softc *sc)
    552 {
    553 	int error;
    554 
    555 	/* must be aligned on a 4K-page boundary */
    556 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
    557 	    (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
    558 	    BUS_DMA_NOWAIT);
    559 	if (error != 0)
    560 		aprint_error_dev(sc->sc_dev,
    561 		    "could not allocate shared area DMA memory\n");
    562 
    563 	return error;
    564 }
    565 
    566 static void
    567 wpi_free_shared(struct wpi_softc *sc)
    568 {
    569 	wpi_dma_contig_free(&sc->shared_dma);
    570 }
    571 
    572 /*
    573  * Allocate DMA-safe memory for firmware transfer.
    574  */
    575 static int
    576 wpi_alloc_fwmem(struct wpi_softc *sc)
    577 {
    578 	int error;
    579 
    580 	/* allocate enough contiguous space to store text and data */
    581 	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
    582 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
    583 	    BUS_DMA_NOWAIT);
    584 
    585 	if (error != 0)
    586 		aprint_error_dev(sc->sc_dev,
    587 		    "could not allocate firmware transfer area DMA memory\n");
    588 	return error;
    589 }
    590 
    591 static void
    592 wpi_free_fwmem(struct wpi_softc *sc)
    593 {
    594 	wpi_dma_contig_free(&sc->fw_dma);
    595 }
    596 
    597 static struct wpi_rbuf *
    598 wpi_alloc_rbuf(struct wpi_softc *sc)
    599 {
    600 	struct wpi_rbuf *rbuf;
    601 
    602 	mutex_enter(&sc->rxq.freelist_mtx);
    603 	rbuf = SLIST_FIRST(&sc->rxq.freelist);
    604 	if (rbuf != NULL) {
    605 		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
    606 	}
    607 	mutex_exit(&sc->rxq.freelist_mtx);
    608 
    609 	return rbuf;
    610 }
    611 
    612 /*
    613  * This is called automatically by the network stack when the mbuf to which our
    614  * Rx buffer is attached is freed.
    615  */
    616 static void
    617 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
    618 {
    619 	struct wpi_rbuf *rbuf = arg;
    620 	struct wpi_softc *sc = rbuf->sc;
    621 
    622 	/* put the buffer back in the free list */
    623 
    624 	mutex_enter(&sc->rxq.freelist_mtx);
    625 	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
    626 	mutex_exit(&sc->rxq.freelist_mtx);
    627 
    628 	if (__predict_true(m != NULL))
    629 		pool_cache_put(mb_cache, m);
    630 }
    631 
    632 static int
    633 wpi_alloc_rpool(struct wpi_softc *sc)
    634 {
    635 	struct wpi_rx_ring *ring = &sc->rxq;
    636 	int i, error;
    637 
    638 	/* allocate a big chunk of DMA'able memory.. */
    639 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
    640 	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
    641 	if (error != 0) {
    642 		aprint_normal_dev(sc->sc_dev,
    643 		    "could not allocate Rx buffers DMA memory\n");
    644 		return error;
    645 	}
    646 
    647 	/* ..and split it into 3KB chunks */
    648 	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
    649 	SLIST_INIT(&ring->freelist);
    650 	for (i = 0; i < WPI_RBUF_COUNT; i++) {
    651 		struct wpi_rbuf *rbuf = &ring->rbuf[i];
    652 
    653 		rbuf->sc = sc;	/* backpointer for callbacks */
    654 		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
    655 		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
    656 
    657 		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
    658 	}
    659 
    660 	return 0;
    661 }
    662 
    663 static void
    664 wpi_free_rpool(struct wpi_softc *sc)
    665 {
    666 	mutex_destroy(&sc->rxq.freelist_mtx);
    667 	wpi_dma_contig_free(&sc->rxq.buf_dma);
    668 }
    669 
    670 static int
    671 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    672 {
    673 	bus_size_t size;
    674 	int i, error;
    675 
    676 	ring->cur = 0;
    677 
    678 	size = WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc);
    679 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    680 	    (void **)&ring->desc, size,
    681 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    682 	if (error != 0) {
    683 		aprint_error_dev(sc->sc_dev,
    684 		    "could not allocate rx ring DMA memory\n");
    685 		goto fail;
    686 	}
    687 
    688 	/*
    689 	 * Setup Rx buffers.
    690 	 */
    691 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    692 		struct wpi_rx_data *data = &ring->data[i];
    693 		struct wpi_rbuf *rbuf;
    694 
    695 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
    696 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
    697 		if (error) {
    698 			aprint_error_dev(sc->sc_dev,
    699 			    "could not allocate rx dma map\n");
    700 			goto fail;
    701 		}
    702 
    703 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    704 		if (data->m == NULL) {
    705 			aprint_error_dev(sc->sc_dev,
    706 			    "could not allocate rx mbuf\n");
    707 			error = ENOMEM;
    708 			goto fail;
    709 		}
    710 		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
    711 			m_freem(data->m);
    712 			data->m = NULL;
    713 			aprint_error_dev(sc->sc_dev,
    714 			    "could not allocate rx cluster\n");
    715 			error = ENOMEM;
    716 			goto fail;
    717 		}
    718 		/* attach Rx buffer to mbuf */
    719 		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
    720 		    rbuf);
    721 		data->m->m_flags |= M_EXT_RW;
    722 
    723 		error = bus_dmamap_load(sc->sc_dmat, data->map,
    724 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
    725 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
    726 		if (error) {
    727 			aprint_error_dev(sc->sc_dev,
    728 			    "could not load mbuf: %d\n", error);
    729 			goto fail;
    730 		}
    731 
    732 		ring->desc[i] = htole32(rbuf->paddr);
    733 	}
    734 
    735 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
    736 	    BUS_DMASYNC_PREWRITE);
    737 
    738 	return 0;
    739 
    740 fail:	wpi_free_rx_ring(sc, ring);
    741 	return error;
    742 }
    743 
    744 static void
    745 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    746 {
    747 	int ntries;
    748 
    749 	wpi_mem_lock(sc);
    750 
    751 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
    752 	for (ntries = 0; ntries < 100; ntries++) {
    753 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
    754 			break;
    755 		DELAY(10);
    756 	}
    757 #ifdef WPI_DEBUG
    758 	if (ntries == 100 && wpi_debug > 0)
    759 		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
    760 #endif
    761 	wpi_mem_unlock(sc);
    762 
    763 	ring->cur = 0;
    764 }
    765 
    766 static void
    767 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
    768 {
    769 	int i;
    770 
    771 	wpi_dma_contig_free(&ring->desc_dma);
    772 
    773 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
    774 		if (ring->data[i].m != NULL) {
    775 			bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
    776 			m_freem(ring->data[i].m);
    777 		}
    778 		if (ring->data[i].map != NULL) {
    779 			bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
    780 		}
    781 	}
    782 }
    783 
    784 static int
    785 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
    786     int qid)
    787 {
    788 	int i, error;
    789 
    790 	ring->qid = qid;
    791 	ring->count = count;
    792 	ring->queued = 0;
    793 	ring->cur = 0;
    794 
    795 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
    796 	    (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
    797 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
    798 	if (error != 0) {
    799 		aprint_error_dev(sc->sc_dev,
    800 		    "could not allocate tx ring DMA memory\n");
    801 		goto fail;
    802 	}
    803 
    804 	/* update shared page with ring's base address */
    805 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
    806 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
    807 	    sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
    808 
    809 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
    810 	    (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
    811 	    BUS_DMA_NOWAIT);
    812 	if (error != 0) {
    813 		aprint_error_dev(sc->sc_dev,
    814 		    "could not allocate tx cmd DMA memory\n");
    815 		goto fail;
    816 	}
    817 
    818 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
    819 	    M_WAITOK | M_ZERO);
    820 
    821 	for (i = 0; i < count; i++) {
    822 		struct wpi_tx_data *data = &ring->data[i];
    823 
    824 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    825 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
    826 		    &data->map);
    827 		if (error != 0) {
    828 			aprint_error_dev(sc->sc_dev,
    829 			    "could not create tx buf DMA map\n");
    830 			goto fail;
    831 		}
    832 	}
    833 
    834 	return 0;
    835 
    836 fail:	wpi_free_tx_ring(sc, ring);
    837 	return error;
    838 }
    839 
    840 static void
    841 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    842 {
    843 	int i, ntries;
    844 
    845 	wpi_mem_lock(sc);
    846 
    847 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
    848 	for (ntries = 0; ntries < 100; ntries++) {
    849 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
    850 			break;
    851 		DELAY(10);
    852 	}
    853 #ifdef WPI_DEBUG
    854 	if (ntries == 100 && wpi_debug > 0) {
    855 		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
    856 		    ring->qid);
    857 	}
    858 #endif
    859 	wpi_mem_unlock(sc);
    860 
    861 	for (i = 0; i < ring->count; i++) {
    862 		struct wpi_tx_data *data = &ring->data[i];
    863 
    864 		if (data->m != NULL) {
    865 			bus_dmamap_unload(sc->sc_dmat, data->map);
    866 			m_freem(data->m);
    867 			data->m = NULL;
    868 		}
    869 	}
    870 
    871 	ring->queued = 0;
    872 	ring->cur = 0;
    873 }
    874 
    875 static void
    876 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
    877 {
    878 	int i;
    879 
    880 	wpi_dma_contig_free(&ring->desc_dma);
    881 	wpi_dma_contig_free(&ring->cmd_dma);
    882 
    883 	if (ring->data != NULL) {
    884 		for (i = 0; i < ring->count; i++) {
    885 			struct wpi_tx_data *data = &ring->data[i];
    886 
    887 			if (data->m != NULL) {
    888 				bus_dmamap_unload(sc->sc_dmat, data->map);
    889 				m_freem(data->m);
    890 			}
    891 		}
    892 		free(ring->data, M_DEVBUF);
    893 	}
    894 }
    895 
    896 /*ARGUSED*/
    897 static struct ieee80211_node *
    898 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
    899 {
    900 	struct wpi_node *wn;
    901 
    902 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
    903 
    904 	return (struct ieee80211_node *)wn;
    905 }
    906 
    907 static void
    908 wpi_newassoc(struct ieee80211_node *ni, int isnew)
    909 {
    910 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    911 	int i;
    912 
    913 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
    914 
    915 	/* set rate to some reasonable initial value */
    916 	for (i = ni->ni_rates.rs_nrates - 1;
    917 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    918 	     i--);
    919 	ni->ni_txrate = i;
    920 }
    921 
    922 static int
    923 wpi_media_change(struct ifnet *ifp)
    924 {
    925 	int error;
    926 
    927 	error = ieee80211_media_change(ifp);
    928 	if (error != ENETRESET)
    929 		return error;
    930 
    931 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    932 		wpi_init(ifp);
    933 
    934 	return 0;
    935 }
    936 
    937 static int
    938 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    939 {
    940 	struct ifnet *ifp = ic->ic_ifp;
    941 	struct wpi_softc *sc = ifp->if_softc;
    942 	struct ieee80211_node *ni;
    943 	enum ieee80211_state ostate = ic->ic_state;
    944 	int error;
    945 
    946 	callout_stop(&sc->calib_to);
    947 
    948 	switch (nstate) {
    949 	case IEEE80211_S_SCAN:
    950 
    951 		if (sc->is_scanning)
    952 			break;
    953 
    954 		sc->is_scanning = true;
    955 
    956 		if (ostate != IEEE80211_S_SCAN) {
    957 			/* make the link LED blink while we're scanning */
    958 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
    959 		}
    960 
    961 		if ((error = wpi_scan(sc)) != 0) {
    962 			aprint_error_dev(sc->sc_dev,
    963 			    "could not initiate scan\n");
    964 			return error;
    965 		}
    966 		break;
    967 
    968 	case IEEE80211_S_ASSOC:
    969 		if (ic->ic_state != IEEE80211_S_RUN)
    970 			break;
    971 		/* FALLTHROUGH */
    972 	case IEEE80211_S_AUTH:
    973 		/* reset state to handle reassociations correctly */
    974 		sc->config.associd = 0;
    975 		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
    976 
    977 		if ((error = wpi_auth(sc)) != 0) {
    978 			aprint_error_dev(sc->sc_dev,
    979 			    "could not send authentication request\n");
    980 			return error;
    981 		}
    982 		break;
    983 
    984 	case IEEE80211_S_RUN:
    985 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
    986 			/* link LED blinks while monitoring */
    987 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
    988 			break;
    989 		}
    990 		ni = ic->ic_bss;
    991 
    992 		if (ic->ic_opmode != IEEE80211_M_STA) {
    993 			(void) wpi_auth(sc);    /* XXX */
    994 			wpi_setup_beacon(sc, ni);
    995 		}
    996 
    997 		wpi_enable_tsf(sc, ni);
    998 
    999 		/* update adapter's configuration */
   1000 		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
   1001 		/* short preamble/slot time are negotiated when associating */
   1002 		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
   1003 		    WPI_CONFIG_SHSLOT);
   1004 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1005 			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
   1006 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
   1007 			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
   1008 		sc->config.filter |= htole32(WPI_FILTER_BSS);
   1009 		if (ic->ic_opmode != IEEE80211_M_STA)
   1010 			sc->config.filter |= htole32(WPI_FILTER_BEACON);
   1011 
   1012 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
   1013 
   1014 		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
   1015 		    sc->config.flags));
   1016 		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   1017 		    sizeof (struct wpi_config), 1);
   1018 		if (error != 0) {
   1019 			aprint_error_dev(sc->sc_dev,
   1020 			    "could not update configuration\n");
   1021 			return error;
   1022 		}
   1023 
   1024 		/* configuration has changed, set Tx power accordingly */
   1025 		if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
   1026 			aprint_error_dev(sc->sc_dev,
   1027 			    "could not set Tx power\n");
   1028 			return error;
   1029 		}
   1030 
   1031 		if (ic->ic_opmode == IEEE80211_M_STA) {
   1032 			/* fake a join to init the tx rate */
   1033 			wpi_newassoc(ni, 1);
   1034 		}
   1035 
   1036 		/* start periodic calibration timer */
   1037 		sc->calib_cnt = 0;
   1038 		callout_schedule(&sc->calib_to, hz/2);
   1039 
   1040 		/* link LED always on while associated */
   1041 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
   1042 		break;
   1043 
   1044 	case IEEE80211_S_INIT:
   1045 		sc->is_scanning = false;
   1046 		break;
   1047 	}
   1048 
   1049 	return sc->sc_newstate(ic, nstate, arg);
   1050 }
   1051 
   1052 /*
   1053  * Grab exclusive access to NIC memory.
   1054  */
   1055 static void
   1056 wpi_mem_lock(struct wpi_softc *sc)
   1057 {
   1058 	uint32_t tmp;
   1059 	int ntries;
   1060 
   1061 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1062 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
   1063 
   1064 	/* spin until we actually get the lock */
   1065 	for (ntries = 0; ntries < 1000; ntries++) {
   1066 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
   1067 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
   1068 			break;
   1069 		DELAY(10);
   1070 	}
   1071 	if (ntries == 1000)
   1072 		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
   1073 }
   1074 
   1075 /*
   1076  * Release lock on NIC memory.
   1077  */
   1078 static void
   1079 wpi_mem_unlock(struct wpi_softc *sc)
   1080 {
   1081 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
   1082 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
   1083 }
   1084 
   1085 static uint32_t
   1086 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
   1087 {
   1088 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
   1089 	return WPI_READ(sc, WPI_READ_MEM_DATA);
   1090 }
   1091 
   1092 static void
   1093 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
   1094 {
   1095 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
   1096 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
   1097 }
   1098 
   1099 static void
   1100 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
   1101     const uint32_t *data, int wlen)
   1102 {
   1103 	for (; wlen > 0; wlen--, data++, addr += 4)
   1104 		wpi_mem_write(sc, addr, *data);
   1105 }
   1106 
   1107 /*
   1108  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
   1109  * instead of using the traditional bit-bang method.
   1110  */
   1111 static int
   1112 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
   1113 {
   1114 	uint8_t *out = data;
   1115 	uint32_t val;
   1116 	int ntries;
   1117 
   1118 	wpi_mem_lock(sc);
   1119 	for (; len > 0; len -= 2, addr++) {
   1120 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
   1121 
   1122 		for (ntries = 0; ntries < 10; ntries++) {
   1123 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
   1124 			    WPI_EEPROM_READY)
   1125 				break;
   1126 			DELAY(5);
   1127 		}
   1128 		if (ntries == 10) {
   1129 			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
   1130 			return ETIMEDOUT;
   1131 		}
   1132 		*out++ = val >> 16;
   1133 		if (len > 1)
   1134 			*out++ = val >> 24;
   1135 	}
   1136 	wpi_mem_unlock(sc);
   1137 
   1138 	return 0;
   1139 }
   1140 
   1141 /*
   1142  * The firmware boot code is small and is intended to be copied directly into
   1143  * the NIC internal memory.
   1144  */
   1145 int
   1146 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
   1147 {
   1148 	int ntries;
   1149 
   1150 	size /= sizeof (uint32_t);
   1151 
   1152 	wpi_mem_lock(sc);
   1153 
   1154 	/* copy microcode image into NIC memory */
   1155 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
   1156 	    (const uint32_t *)ucode, size);
   1157 
   1158 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
   1159 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
   1160 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
   1161 
   1162 	/* run microcode */
   1163 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
   1164 
   1165 	/* wait for transfer to complete */
   1166 	for (ntries = 0; ntries < 1000; ntries++) {
   1167 		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
   1168 			break;
   1169 		DELAY(10);
   1170 	}
   1171 	if (ntries == 1000) {
   1172 		wpi_mem_unlock(sc);
   1173 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1174 		return ETIMEDOUT;
   1175 	}
   1176 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
   1177 
   1178 	wpi_mem_unlock(sc);
   1179 
   1180 	return 0;
   1181 }
   1182 
   1183 static int
   1184 wpi_cache_firmware(struct wpi_softc *sc)
   1185 {
   1186 	const char *const fwname = wpi_firmware_name;
   1187 	firmware_handle_t fw;
   1188 	int error;
   1189 
   1190 	/* sc is used here only to report error messages.  */
   1191 
   1192 	mutex_enter(&wpi_firmware_mutex);
   1193 
   1194 	if (wpi_firmware_users == SIZE_MAX) {
   1195 		mutex_exit(&wpi_firmware_mutex);
   1196 		return ENFILE;	/* Too many of something in the system...  */
   1197 	}
   1198 	if (wpi_firmware_users++) {
   1199 		KASSERT(wpi_firmware_image != NULL);
   1200 		KASSERT(wpi_firmware_size > 0);
   1201 		mutex_exit(&wpi_firmware_mutex);
   1202 		return 0;	/* Already good to go.  */
   1203 	}
   1204 
   1205 	KASSERT(wpi_firmware_image == NULL);
   1206 	KASSERT(wpi_firmware_size == 0);
   1207 
   1208 	/* load firmware image from disk */
   1209 	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
   1210 		aprint_error_dev(sc->sc_dev,
   1211 		    "could not open firmware file %s: %d\n", fwname, error);
   1212 		goto fail0;
   1213 	}
   1214 
   1215 	wpi_firmware_size = firmware_get_size(fw);
   1216 
   1217 	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
   1218 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
   1219 	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
   1220 	    WPI_FW_BOOT_TEXT_MAXSZ) {
   1221 		aprint_error_dev(sc->sc_dev,
   1222 		    "firmware file %s too large: %zu bytes\n",
   1223 		    fwname, wpi_firmware_size);
   1224 		error = EFBIG;
   1225 		goto fail1;
   1226 	}
   1227 
   1228 	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
   1229 		aprint_error_dev(sc->sc_dev,
   1230 		    "firmware file %s too small: %zu bytes\n",
   1231 		    fwname, wpi_firmware_size);
   1232 		error = EINVAL;
   1233 		goto fail1;
   1234 	}
   1235 
   1236 	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
   1237 	if (wpi_firmware_image == NULL) {
   1238 		aprint_error_dev(sc->sc_dev,
   1239 		    "not enough memory for firmware file %s\n", fwname);
   1240 		error = ENOMEM;
   1241 		goto fail1;
   1242 	}
   1243 
   1244 	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
   1245 	if (error != 0) {
   1246 		aprint_error_dev(sc->sc_dev,
   1247 		    "error reading firmware file %s: %d\n", fwname, error);
   1248 		goto fail2;
   1249 	}
   1250 
   1251 	/* Success!  */
   1252 	firmware_close(fw);
   1253 	mutex_exit(&wpi_firmware_mutex);
   1254 	return 0;
   1255 
   1256 fail2:
   1257 	firmware_free(wpi_firmware_image, wpi_firmware_size);
   1258 	wpi_firmware_image = NULL;
   1259 fail1:
   1260 	wpi_firmware_size = 0;
   1261 	firmware_close(fw);
   1262 fail0:
   1263 	KASSERT(wpi_firmware_users == 1);
   1264 	wpi_firmware_users = 0;
   1265 	KASSERT(wpi_firmware_image == NULL);
   1266 	KASSERT(wpi_firmware_size == 0);
   1267 
   1268 	mutex_exit(&wpi_firmware_mutex);
   1269 	return error;
   1270 }
   1271 
   1272 static void
   1273 wpi_release_firmware(void)
   1274 {
   1275 
   1276 	mutex_enter(&wpi_firmware_mutex);
   1277 
   1278 	KASSERT(wpi_firmware_users > 0);
   1279 	KASSERT(wpi_firmware_image != NULL);
   1280 	KASSERT(wpi_firmware_size != 0);
   1281 
   1282 	if (--wpi_firmware_users == 0) {
   1283 		firmware_free(wpi_firmware_image, wpi_firmware_size);
   1284 		wpi_firmware_image = NULL;
   1285 		wpi_firmware_size = 0;
   1286 	}
   1287 
   1288 	mutex_exit(&wpi_firmware_mutex);
   1289 }
   1290 
   1291 static int
   1292 wpi_load_firmware(struct wpi_softc *sc)
   1293 {
   1294 	struct wpi_dma_info *dma = &sc->fw_dma;
   1295 	struct wpi_firmware_hdr hdr;
   1296 	const uint8_t *init_text, *init_data, *main_text, *main_data;
   1297 	const uint8_t *boot_text;
   1298 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
   1299 	uint32_t boot_textsz;
   1300 	size_t size;
   1301 	int error;
   1302 
   1303 	if (!sc->fw_used) {
   1304 		if ((error = wpi_cache_firmware(sc)) != 0)
   1305 			return error;
   1306 		sc->fw_used = true;
   1307 	}
   1308 
   1309 	KASSERT(sc->fw_used);
   1310 	KASSERT(wpi_firmware_image != NULL);
   1311 	KASSERT(wpi_firmware_size > sizeof(hdr));
   1312 
   1313 	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
   1314 
   1315 	main_textsz = le32toh(hdr.main_textsz);
   1316 	main_datasz = le32toh(hdr.main_datasz);
   1317 	init_textsz = le32toh(hdr.init_textsz);
   1318 	init_datasz = le32toh(hdr.init_datasz);
   1319 	boot_textsz = le32toh(hdr.boot_textsz);
   1320 
   1321 	/* sanity-check firmware segments sizes */
   1322 	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
   1323 	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
   1324 	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
   1325 	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
   1326 	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
   1327 	    (boot_textsz & 3) != 0) {
   1328 		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
   1329 		error = EINVAL;
   1330 		goto free_firmware;
   1331 	}
   1332 
   1333 	/* check that all firmware segments are present */
   1334 	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
   1335 	    main_datasz + init_textsz + init_datasz + boot_textsz;
   1336 	if (wpi_firmware_size < size) {
   1337 		aprint_error_dev(sc->sc_dev,
   1338 		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
   1339 		    wpi_firmware_size, size);
   1340 		error = EINVAL;
   1341 		goto free_firmware;
   1342 	}
   1343 
   1344 	/* get pointers to firmware segments */
   1345 	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
   1346 	main_data = main_text + main_textsz;
   1347 	init_text = main_data + main_datasz;
   1348 	init_data = init_text + init_textsz;
   1349 	boot_text = init_data + init_datasz;
   1350 
   1351 	/* copy initialization images into pre-allocated DMA-safe memory */
   1352 	memcpy(dma->vaddr, init_data, init_datasz);
   1353 	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
   1354 	    init_textsz);
   1355 
   1356 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   1357 
   1358 	/* tell adapter where to find initialization images */
   1359 	wpi_mem_lock(sc);
   1360 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1361 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
   1362 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1363 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
   1364 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
   1365 	wpi_mem_unlock(sc);
   1366 
   1367 	/* load firmware boot code */
   1368 	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
   1369 		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
   1370 		return error;
   1371 	}
   1372 
   1373 	/* now press "execute" ;-) */
   1374 	WPI_WRITE(sc, WPI_RESET, 0);
   1375 
   1376 	/* wait at most one second for first alive notification */
   1377 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1378 		/* this isn't what was supposed to happen.. */
   1379 		aprint_error_dev(sc->sc_dev,
   1380 		    "timeout waiting for adapter to initialize\n");
   1381 	}
   1382 
   1383 	/* copy runtime images into pre-allocated DMA-safe memory */
   1384 	memcpy(dma->vaddr, main_data, main_datasz);
   1385 	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
   1386 	    main_textsz);
   1387 
   1388 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   1389 
   1390 	/* tell adapter where to find runtime images */
   1391 	wpi_mem_lock(sc);
   1392 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
   1393 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
   1394 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
   1395 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
   1396 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
   1397 	wpi_mem_unlock(sc);
   1398 
   1399 	/* wait at most one second for second alive notification */
   1400 	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
   1401 		/* this isn't what was supposed to happen.. */
   1402 		aprint_error_dev(sc->sc_dev,
   1403 		    "timeout waiting for adapter to initialize\n");
   1404 	}
   1405 
   1406 	return error;
   1407 
   1408 free_firmware:
   1409 	sc->fw_used = false;
   1410 	wpi_release_firmware();
   1411 	return error;
   1412 }
   1413 
   1414 static void
   1415 wpi_calib_timeout(void *arg)
   1416 {
   1417 	struct wpi_softc *sc = arg;
   1418 	struct ieee80211com *ic = &sc->sc_ic;
   1419 	int temp, s;
   1420 
   1421 	/* automatic rate control triggered every 500ms */
   1422 	if (ic->ic_fixed_rate == -1) {
   1423 		s = splnet();
   1424 		if (ic->ic_opmode == IEEE80211_M_STA)
   1425 			wpi_iter_func(sc, ic->ic_bss);
   1426 		else
   1427 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
   1428 		splx(s);
   1429 	}
   1430 
   1431 	/* update sensor data */
   1432 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
   1433 
   1434 	/* automatic power calibration every 60s */
   1435 	if (++sc->calib_cnt >= 120) {
   1436 		wpi_power_calibration(sc, temp);
   1437 		sc->calib_cnt = 0;
   1438 	}
   1439 
   1440 	callout_schedule(&sc->calib_to, hz/2);
   1441 }
   1442 
   1443 static void
   1444 wpi_iter_func(void *arg, struct ieee80211_node *ni)
   1445 {
   1446 	struct wpi_softc *sc = arg;
   1447 	struct wpi_node *wn = (struct wpi_node *)ni;
   1448 
   1449 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
   1450 }
   1451 
   1452 /*
   1453  * This function is called periodically (every 60 seconds) to adjust output
   1454  * power to temperature changes.
   1455  */
   1456 void
   1457 wpi_power_calibration(struct wpi_softc *sc, int temp)
   1458 {
   1459 	/* sanity-check read value */
   1460 	if (temp < -260 || temp > 25) {
   1461 		/* this can't be correct, ignore */
   1462 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
   1463 		return;
   1464 	}
   1465 
   1466 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
   1467 
   1468 	/* adjust Tx power if need be */
   1469 	if (abs(temp - sc->temp) <= 6)
   1470 		return;
   1471 
   1472 	sc->temp = temp;
   1473 
   1474 	if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
   1475 		/* just warn, too bad for the automatic calibration... */
   1476 		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
   1477 	}
   1478 }
   1479 
   1480 static void
   1481 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
   1482     struct wpi_rx_data *data)
   1483 {
   1484 	struct ieee80211com *ic = &sc->sc_ic;
   1485 	struct ifnet *ifp = ic->ic_ifp;
   1486 	struct wpi_rx_ring *ring = &sc->rxq;
   1487 	struct wpi_rx_stat *stat;
   1488 	struct wpi_rx_head *head;
   1489 	struct wpi_rx_tail *tail;
   1490 	struct wpi_rbuf *rbuf;
   1491 	struct ieee80211_frame *wh;
   1492 	struct ieee80211_node *ni;
   1493 	struct mbuf *m, *mnew;
   1494 	int data_off, error, s;
   1495 
   1496 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1497 	    BUS_DMASYNC_POSTREAD);
   1498 	stat = (struct wpi_rx_stat *)(desc + 1);
   1499 
   1500 	if (stat->len > WPI_STAT_MAXLEN) {
   1501 		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
   1502 		if_statinc(ifp, if_ierrors);
   1503 		return;
   1504 	}
   1505 
   1506 	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
   1507 	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
   1508 
   1509 	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
   1510 	    "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
   1511 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
   1512 	    le64toh(tail->tstamp)));
   1513 
   1514 	/*
   1515 	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
   1516 	 * to radiotap in monitor mode).
   1517 	 */
   1518 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
   1519 		DPRINTF(("rx tail flags error %x\n",
   1520 		    le32toh(tail->flags)));
   1521 		if_statinc(ifp, if_ierrors);
   1522 		return;
   1523 	}
   1524 
   1525 	/* Compute where are the useful datas */
   1526 	data_off = (char*)(head + 1) - mtod(data->m, char*);
   1527 
   1528 	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1529 	if (mnew == NULL) {
   1530 		if_statinc(ifp, if_ierrors);
   1531 		return;
   1532 	}
   1533 
   1534 	rbuf = wpi_alloc_rbuf(sc);
   1535 	if (rbuf == NULL) {
   1536 		m_freem(mnew);
   1537 		if_statinc(ifp, if_ierrors);
   1538 		return;
   1539 	}
   1540 
   1541 	/* attach Rx buffer to mbuf */
   1542 	MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
   1543 		rbuf);
   1544 	mnew->m_flags |= M_EXT_RW;
   1545 
   1546 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1547 
   1548 	error = bus_dmamap_load(sc->sc_dmat, data->map,
   1549 	    mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
   1550 	    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1551 	if (error) {
   1552 		device_printf(sc->sc_dev,
   1553 		    "couldn't load rx mbuf: %d\n", error);
   1554 		m_freem(mnew);
   1555 		if_statinc(ifp, if_ierrors);
   1556 
   1557 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1558 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
   1559 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1560 		if (error)
   1561 			panic("%s: bus_dmamap_load failed: %d\n",
   1562 			    device_xname(sc->sc_dev), error);
   1563 		return;
   1564 	}
   1565 
   1566 	/* new mbuf loaded successfully */
   1567 	m = data->m;
   1568 	data->m = mnew;
   1569 
   1570 	/* update Rx descriptor */
   1571 	ring->desc[ring->cur] = htole32(rbuf->paddr);
   1572 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   1573 	    ring->desc_dma.size,
   1574 	    BUS_DMASYNC_PREWRITE);
   1575 
   1576 	m->m_data = (char*)m->m_data + data_off;
   1577 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
   1578 
   1579 	/* finalize mbuf */
   1580 	m_set_rcvif(m, ifp);
   1581 
   1582 	s = splnet();
   1583 
   1584 	if (sc->sc_drvbpf != NULL) {
   1585 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
   1586 
   1587 		tap->wr_flags = 0;
   1588 		tap->wr_chan_freq =
   1589 		    htole16(ic->ic_channels[head->chan].ic_freq);
   1590 		tap->wr_chan_flags =
   1591 		    htole16(ic->ic_channels[head->chan].ic_flags);
   1592 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
   1593 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
   1594 		tap->wr_tsft = tail->tstamp;
   1595 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
   1596 		switch (head->rate) {
   1597 		/* CCK rates */
   1598 		case  10: tap->wr_rate =   2; break;
   1599 		case  20: tap->wr_rate =   4; break;
   1600 		case  55: tap->wr_rate =  11; break;
   1601 		case 110: tap->wr_rate =  22; break;
   1602 		/* OFDM rates */
   1603 		case 0xd: tap->wr_rate =  12; break;
   1604 		case 0xf: tap->wr_rate =  18; break;
   1605 		case 0x5: tap->wr_rate =  24; break;
   1606 		case 0x7: tap->wr_rate =  36; break;
   1607 		case 0x9: tap->wr_rate =  48; break;
   1608 		case 0xb: tap->wr_rate =  72; break;
   1609 		case 0x1: tap->wr_rate =  96; break;
   1610 		case 0x3: tap->wr_rate = 108; break;
   1611 		/* unknown rate: should not happen */
   1612 		default:  tap->wr_rate =   0;
   1613 		}
   1614 		if (le16toh(head->flags) & 0x4)
   1615 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1616 
   1617 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
   1618 	}
   1619 
   1620 	/* grab a reference to the source node */
   1621 	wh = mtod(m, struct ieee80211_frame *);
   1622 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1623 
   1624 	/* send the frame to the 802.11 layer */
   1625 	ieee80211_input(ic, m, ni, stat->rssi, 0);
   1626 
   1627 	/* release node reference */
   1628 	ieee80211_free_node(ni);
   1629 
   1630 	splx(s);
   1631 }
   1632 
   1633 static void
   1634 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1635 {
   1636 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1637 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
   1638 	struct wpi_tx_data *data = &ring->data[desc->idx];
   1639 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
   1640 	struct wpi_node *wn = (struct wpi_node *)data->ni;
   1641 	int s;
   1642 
   1643 	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
   1644 	    "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
   1645 	    stat->nkill, stat->rate, le32toh(stat->duration),
   1646 	    le32toh(stat->status)));
   1647 
   1648 	s = splnet();
   1649 
   1650 	/*
   1651 	 * Update rate control statistics for the node.
   1652 	 * XXX we should not count mgmt frames since they're always sent at
   1653 	 * the lowest available bit-rate.
   1654 	 */
   1655 	wn->amn.amn_txcnt++;
   1656 	if (stat->ntries > 0) {
   1657 		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
   1658 		wn->amn.amn_retrycnt++;
   1659 	}
   1660 
   1661 	if ((le32toh(stat->status) & 0xff) != 1)
   1662 		if_statinc(ifp, if_oerrors);
   1663 	else
   1664 		if_statinc(ifp, if_opackets);
   1665 
   1666 	bus_dmamap_unload(sc->sc_dmat, data->map);
   1667 	m_freem(data->m);
   1668 	data->m = NULL;
   1669 	ieee80211_free_node(data->ni);
   1670 	data->ni = NULL;
   1671 
   1672 	ring->queued--;
   1673 
   1674 	sc->sc_tx_timer = 0;
   1675 	ifp->if_flags &= ~IFF_OACTIVE;
   1676 	wpi_start(ifp); /* in softint */
   1677 
   1678 	splx(s);
   1679 }
   1680 
   1681 static void
   1682 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
   1683 {
   1684 	struct wpi_tx_ring *ring = &sc->cmdq;
   1685 	struct wpi_tx_data *data;
   1686 
   1687 	if ((desc->qid & 7) != 4)
   1688 		return;	/* not a command ack */
   1689 
   1690 	data = &ring->data[desc->idx];
   1691 
   1692 	/* if the command was mapped in a mbuf, free it */
   1693 	if (data->m != NULL) {
   1694 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1695 		m_freem(data->m);
   1696 		data->m = NULL;
   1697 	}
   1698 
   1699 	wakeup(&ring->cmd[desc->idx]);
   1700 }
   1701 
   1702 static void
   1703 wpi_notif_intr(struct wpi_softc *sc)
   1704 {
   1705 	struct ieee80211com *ic = &sc->sc_ic;
   1706 	struct ifnet *ifp =  ic->ic_ifp;
   1707 	uint32_t hw;
   1708 	int s;
   1709 
   1710 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
   1711 	    sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
   1712 
   1713 	hw = le32toh(sc->shared->next);
   1714 	while (sc->rxq.cur != hw) {
   1715 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
   1716 		struct wpi_rx_desc *desc;
   1717 
   1718 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1719 		    BUS_DMASYNC_POSTREAD);
   1720 		desc = mtod(data->m, struct wpi_rx_desc *);
   1721 
   1722 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
   1723 		    "len=%d\n", desc->qid, desc->idx, desc->flags,
   1724 		    desc->type, le32toh(desc->len)));
   1725 
   1726 		if (!(desc->qid & 0x80))	/* reply to a command */
   1727 			wpi_cmd_intr(sc, desc);
   1728 
   1729 		switch (desc->type) {
   1730 		case WPI_RX_DONE:
   1731 			/* a 802.11 frame was received */
   1732 			wpi_rx_intr(sc, desc, data);
   1733 			break;
   1734 
   1735 		case WPI_TX_DONE:
   1736 			/* a 802.11 frame has been transmitted */
   1737 			wpi_tx_intr(sc, desc);
   1738 			break;
   1739 
   1740 		case WPI_UC_READY:
   1741 		{
   1742 			struct wpi_ucode_info *uc =
   1743 			    (struct wpi_ucode_info *)(desc + 1);
   1744 
   1745 			/* the microcontroller is ready */
   1746 			DPRINTF(("microcode alive notification version %x "
   1747 			    "alive %x\n", le32toh(uc->version),
   1748 			    le32toh(uc->valid)));
   1749 
   1750 			if (le32toh(uc->valid) != 1) {
   1751 				aprint_error_dev(sc->sc_dev,
   1752 				    "microcontroller initialization failed\n");
   1753 			}
   1754 			break;
   1755 		}
   1756 		case WPI_STATE_CHANGED:
   1757 		{
   1758 			uint32_t *status = (uint32_t *)(desc + 1);
   1759 
   1760 			/* enabled/disabled notification */
   1761 			DPRINTF(("state changed to %x\n", le32toh(*status)));
   1762 
   1763 			if (le32toh(*status) & 1) {
   1764 				s = splnet();
   1765 				/* the radio button has to be pushed */
   1766 				/* wake up thread to signal powerd */
   1767 				cv_signal(&sc->sc_rsw_cv);
   1768 				aprint_error_dev(sc->sc_dev,
   1769 				    "Radio transmitter is off\n");
   1770 				/* turn the interface down */
   1771 				ifp->if_flags &= ~IFF_UP;
   1772 				wpi_stop(ifp, 1);
   1773 				splx(s);
   1774 				return;	/* no further processing */
   1775 			}
   1776 			break;
   1777 		}
   1778 		case WPI_START_SCAN:
   1779 		{
   1780 #if 0
   1781 			struct wpi_start_scan *scan =
   1782 			    (struct wpi_start_scan *)(desc + 1);
   1783 
   1784 			DPRINTFN(2, ("scanning channel %d status %x\n",
   1785 			    scan->chan, le32toh(scan->status)));
   1786 
   1787 			/* fix current channel */
   1788 			ic->ic_curchan = &ic->ic_channels[scan->chan];
   1789 #endif
   1790 			break;
   1791 		}
   1792 		case WPI_STOP_SCAN:
   1793 		{
   1794 #ifdef WPI_DEBUG
   1795 			struct wpi_stop_scan *scan =
   1796 			    (struct wpi_stop_scan *)(desc + 1);
   1797 #endif
   1798 
   1799 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
   1800 			    scan->nchan, scan->status, scan->chan));
   1801 
   1802 			s = splnet();
   1803 			sc->is_scanning = false;
   1804 			if (ic->ic_state == IEEE80211_S_SCAN)
   1805 				ieee80211_next_scan(ic);
   1806 			splx(s);
   1807 			break;
   1808 		}
   1809 		}
   1810 
   1811 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
   1812 	}
   1813 
   1814 	/* tell the firmware what we have processed */
   1815 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
   1816 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
   1817 }
   1818 
   1819 static int
   1820 wpi_intr(void *arg)
   1821 {
   1822 	struct wpi_softc *sc = arg;
   1823 	uint32_t r;
   1824 
   1825 	r = WPI_READ(sc, WPI_INTR);
   1826 	if (r == 0 || r == 0xffffffff)
   1827 		return 0;	/* not for us */
   1828 
   1829 	DPRINTFN(6, ("interrupt reg %x\n", r));
   1830 
   1831 	/* disable interrupts */
   1832 	WPI_WRITE(sc, WPI_MASK, 0);
   1833 
   1834 	softint_schedule(sc->sc_soft_ih);
   1835 	return 1;
   1836 }
   1837 
   1838 static void
   1839 wpi_softintr(void *arg)
   1840 {
   1841 	struct wpi_softc *sc = arg;
   1842 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   1843 	uint32_t r;
   1844 
   1845 	r = WPI_READ(sc, WPI_INTR);
   1846 	if (r == 0 || r == 0xffffffff)
   1847 		goto out;
   1848 
   1849 	/* ack interrupts */
   1850 	WPI_WRITE(sc, WPI_INTR, r);
   1851 
   1852 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
   1853 		/* SYSTEM FAILURE, SYSTEM FAILURE */
   1854 		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
   1855 		ifp->if_flags &= ~IFF_UP;
   1856 		wpi_stop(ifp, 1);
   1857 		return;
   1858 	}
   1859 
   1860 	if (r & WPI_RX_INTR)
   1861 		wpi_notif_intr(sc);
   1862 
   1863 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
   1864 		wakeup(sc);
   1865 
   1866  out:
   1867 	/* re-enable interrupts */
   1868 	if (ifp->if_flags & IFF_UP)
   1869 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   1870 }
   1871 
   1872 static uint8_t
   1873 wpi_plcp_signal(int rate)
   1874 {
   1875 	switch (rate) {
   1876 	/* CCK rates (returned values are device-dependent) */
   1877 	case 2:		return 10;
   1878 	case 4:		return 20;
   1879 	case 11:	return 55;
   1880 	case 22:	return 110;
   1881 
   1882 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1883 	/* R1-R4, (u)ral is R4-R1 */
   1884 	case 12:	return 0xd;
   1885 	case 18:	return 0xf;
   1886 	case 24:	return 0x5;
   1887 	case 36:	return 0x7;
   1888 	case 48:	return 0x9;
   1889 	case 72:	return 0xb;
   1890 	case 96:	return 0x1;
   1891 	case 108:	return 0x3;
   1892 
   1893 	/* unsupported rates (should not get there) */
   1894 	default:	return 0;
   1895 	}
   1896 }
   1897 
   1898 /* quickly determine if a given rate is CCK or OFDM */
   1899 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1900 
   1901 static int
   1902 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
   1903     int ac)
   1904 {
   1905 	struct ieee80211com *ic = &sc->sc_ic;
   1906 	struct wpi_tx_ring *ring = &sc->txq[ac];
   1907 	struct wpi_tx_desc *desc;
   1908 	struct wpi_tx_data *data;
   1909 	struct wpi_tx_cmd *cmd;
   1910 	struct wpi_cmd_data *tx;
   1911 	struct ieee80211_frame *wh;
   1912 	struct ieee80211_key *k;
   1913 	const struct chanAccParams *cap;
   1914 	struct mbuf *mnew;
   1915 	int i, rate, error, hdrlen, noack = 0;
   1916 
   1917 	desc = &ring->desc[ring->cur];
   1918 	data = &ring->data[ring->cur];
   1919 
   1920 	wh = mtod(m0, struct ieee80211_frame *);
   1921 
   1922 	if (ieee80211_has_qos(wh)) {
   1923 		cap = &ic->ic_wme.wme_chanParams;
   1924 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
   1925 	}
   1926 
   1927 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1928 		k = ieee80211_crypto_encap(ic, ni, m0);
   1929 		if (k == NULL) {
   1930 			m_freem(m0);
   1931 			return ENOBUFS;
   1932 		}
   1933 
   1934 		/* packet header may have moved, reset our local pointer */
   1935 		wh = mtod(m0, struct ieee80211_frame *);
   1936 	}
   1937 
   1938 	hdrlen = ieee80211_anyhdrsize(wh);
   1939 
   1940 	/* pickup a rate */
   1941 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1942 	    IEEE80211_FC0_TYPE_MGT) {
   1943 		/* mgmt frames are sent at the lowest available bit-rate */
   1944 		rate = ni->ni_rates.rs_rates[0];
   1945 	} else {
   1946 		if (ic->ic_fixed_rate != -1) {
   1947 			rate = ic->ic_sup_rates[ic->ic_curmode].
   1948 			    rs_rates[ic->ic_fixed_rate];
   1949 		} else
   1950 			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1951 	}
   1952 	rate &= IEEE80211_RATE_VAL;
   1953 
   1954 	if (sc->sc_drvbpf != NULL) {
   1955 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
   1956 
   1957 		tap->wt_flags = 0;
   1958 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
   1959 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
   1960 		tap->wt_rate = rate;
   1961 		tap->wt_hwqueue = ac;
   1962 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
   1963 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
   1964 
   1965 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
   1966 	}
   1967 
   1968 	cmd = &ring->cmd[ring->cur];
   1969 	cmd->code = WPI_CMD_TX_DATA;
   1970 	cmd->flags = 0;
   1971 	cmd->qid = ring->qid;
   1972 	cmd->idx = ring->cur;
   1973 
   1974 	tx = (struct wpi_cmd_data *)cmd->data;
   1975 	/* no need to zero tx, all fields are reinitialized here */
   1976 	tx->flags = 0;
   1977 
   1978 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1979 		tx->flags |= htole32(WPI_TX_NEED_ACK);
   1980 	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
   1981 		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
   1982 
   1983 	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
   1984 
   1985 	/* retrieve destination node's id */
   1986 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
   1987 		WPI_ID_BSS;
   1988 
   1989 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1990 	    IEEE80211_FC0_TYPE_MGT) {
   1991 		/* tell h/w to set timestamp in probe responses */
   1992 		if ((wh->i_fc[0] &
   1993 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1994 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1995 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
   1996 
   1997 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1998 			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
   1999 			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   2000 			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
   2001 			tx->timeout = htole16(3);
   2002 		else
   2003 			tx->timeout = htole16(2);
   2004 	} else
   2005 		tx->timeout = htole16(0);
   2006 
   2007 	tx->rate = wpi_plcp_signal(rate);
   2008 
   2009 	/* be very persistant at sending frames out */
   2010 	tx->rts_ntries = 7;
   2011 	tx->data_ntries = 15;
   2012 
   2013 	tx->ofdm_mask = 0xff;
   2014 	tx->cck_mask = 0x0f;
   2015 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2016 
   2017 	tx->len = htole16(m0->m_pkthdr.len);
   2018 
   2019 	/* save and trim IEEE802.11 header */
   2020 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
   2021 	m_adj(m0, hdrlen);
   2022 
   2023 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2024 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2025 	if (error != 0 && error != EFBIG) {
   2026 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   2027 		    error);
   2028 		m_freem(m0);
   2029 		return error;
   2030 	}
   2031 	if (error != 0) {
   2032 		/* too many fragments, linearize */
   2033 
   2034 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   2035 		if (mnew == NULL) {
   2036 			m_freem(m0);
   2037 			return ENOMEM;
   2038 		}
   2039 		m_copy_pkthdr(mnew, m0);
   2040 		if (m0->m_pkthdr.len > MHLEN) {
   2041 			MCLGET(mnew, M_DONTWAIT);
   2042 			if (!(mnew->m_flags & M_EXT)) {
   2043 				m_freem(m0);
   2044 				m_freem(mnew);
   2045 				return ENOMEM;
   2046 			}
   2047 		}
   2048 
   2049 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   2050 		m_freem(m0);
   2051 		mnew->m_len = mnew->m_pkthdr.len;
   2052 		m0 = mnew;
   2053 
   2054 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2055 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   2056 		if (error != 0) {
   2057 			aprint_error_dev(sc->sc_dev,
   2058 			    "could not map mbuf (error %d)\n", error);
   2059 			m_freem(m0);
   2060 			return error;
   2061 		}
   2062 	}
   2063 
   2064 	data->m = m0;
   2065 	data->ni = ni;
   2066 
   2067 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
   2068 	    ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
   2069 
   2070 	/* first scatter/gather segment is used by the tx data command */
   2071 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
   2072 	    (1 + data->map->dm_nsegs) << 24);
   2073 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2074 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2075 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
   2076 	    ((hdrlen + 3) & ~3));
   2077 	for (i = 1; i <= data->map->dm_nsegs; i++) {
   2078 		desc->segs[i].addr =
   2079 		    htole32(data->map->dm_segs[i - 1].ds_addr);
   2080 		desc->segs[i].len  =
   2081 		    htole32(data->map->dm_segs[i - 1].ds_len);
   2082 	}
   2083 
   2084 	ring->queued++;
   2085 
   2086 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   2087 	    data->map->dm_mapsize,
   2088 	    BUS_DMASYNC_PREWRITE);
   2089 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
   2090 	    ring->cmd_dma.size,
   2091 	    BUS_DMASYNC_PREWRITE);
   2092 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2093 	    ring->desc_dma.size,
   2094 	    BUS_DMASYNC_PREWRITE);
   2095 
   2096 	/* kick ring */
   2097 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
   2098 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2099 
   2100 	return 0;
   2101 }
   2102 
   2103 static void
   2104 wpi_start(struct ifnet *ifp)
   2105 {
   2106 	struct wpi_softc *sc = ifp->if_softc;
   2107 	struct ieee80211com *ic = &sc->sc_ic;
   2108 	struct ieee80211_node *ni;
   2109 	struct ether_header *eh;
   2110 	struct mbuf *m0;
   2111 	int ac;
   2112 
   2113 	/*
   2114 	 * net80211 may still try to send management frames even if the
   2115 	 * IFF_RUNNING flag is not set...
   2116 	 */
   2117 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   2118 		return;
   2119 
   2120 	for (;;) {
   2121 		IF_DEQUEUE(&ic->ic_mgtq, m0);
   2122 		if (m0 != NULL) {
   2123 
   2124 			ni = M_GETCTX(m0, struct ieee80211_node *);
   2125 			M_CLEARCTX(m0);
   2126 
   2127 			/* management frames go into ring 0 */
   2128 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
   2129 				if_statinc(ifp, if_oerrors);
   2130 				continue;
   2131 			}
   2132 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
   2133 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
   2134 				if_statinc(ifp, if_oerrors);
   2135 				break;
   2136 			}
   2137 		} else {
   2138 			if (ic->ic_state != IEEE80211_S_RUN)
   2139 				break;
   2140 			IFQ_POLL(&ifp->if_snd, m0);
   2141 			if (m0 == NULL)
   2142 				break;
   2143 
   2144 			if (m0->m_len < sizeof (*eh) &&
   2145 			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
   2146 				if_statinc(ifp, if_oerrors);
   2147 				continue;
   2148 			}
   2149 			eh = mtod(m0, struct ether_header *);
   2150 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   2151 			if (ni == NULL) {
   2152 				m_freem(m0);
   2153 				if_statinc(ifp, if_oerrors);
   2154 				continue;
   2155 			}
   2156 
   2157 			/* classify mbuf so we can find which tx ring to use */
   2158 			if (ieee80211_classify(ic, m0, ni) != 0) {
   2159 				m_freem(m0);
   2160 				ieee80211_free_node(ni);
   2161 				if_statinc(ifp, if_oerrors);
   2162 				continue;
   2163 			}
   2164 
   2165 			/* no QoS encapsulation for EAPOL frames */
   2166 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
   2167 			    M_WME_GETAC(m0) : WME_AC_BE;
   2168 
   2169 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
   2170 				/* there is no place left in this ring */
   2171 				ifp->if_flags |= IFF_OACTIVE;
   2172 				break;
   2173 			}
   2174 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   2175 			bpf_mtap(ifp, m0, BPF_D_OUT);
   2176 			m0 = ieee80211_encap(ic, m0, ni);
   2177 			if (m0 == NULL) {
   2178 				ieee80211_free_node(ni);
   2179 				if_statinc(ifp, if_oerrors);
   2180 				continue;
   2181 			}
   2182 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
   2183 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
   2184 				ieee80211_free_node(ni);
   2185 				if_statinc(ifp, if_oerrors);
   2186 				break;
   2187 			}
   2188 		}
   2189 
   2190 		sc->sc_tx_timer = 5;
   2191 		ifp->if_timer = 1;
   2192 	}
   2193 }
   2194 
   2195 static void
   2196 wpi_watchdog(struct ifnet *ifp)
   2197 {
   2198 	struct wpi_softc *sc = ifp->if_softc;
   2199 
   2200 	ifp->if_timer = 0;
   2201 
   2202 	if (sc->sc_tx_timer > 0) {
   2203 		if (--sc->sc_tx_timer == 0) {
   2204 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   2205 			ifp->if_flags &= ~IFF_UP;
   2206 			wpi_stop(ifp, 1);
   2207 			if_statinc(ifp, if_oerrors);
   2208 			return;
   2209 		}
   2210 		ifp->if_timer = 1;
   2211 	}
   2212 
   2213 	ieee80211_watchdog(&sc->sc_ic);
   2214 }
   2215 
   2216 static int
   2217 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2218 {
   2219 #define IS_RUNNING(ifp) \
   2220 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
   2221 
   2222 	struct wpi_softc *sc = ifp->if_softc;
   2223 	struct ieee80211com *ic = &sc->sc_ic;
   2224 	int s, error = 0;
   2225 
   2226 	s = splnet();
   2227 
   2228 	switch (cmd) {
   2229 	case SIOCSIFFLAGS:
   2230 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2231 			break;
   2232 		if (ifp->if_flags & IFF_UP) {
   2233 			if (!(ifp->if_flags & IFF_RUNNING))
   2234 				wpi_init(ifp);
   2235 		} else {
   2236 			if (ifp->if_flags & IFF_RUNNING)
   2237 				wpi_stop(ifp, 1);
   2238 		}
   2239 		break;
   2240 
   2241 	case SIOCADDMULTI:
   2242 	case SIOCDELMULTI:
   2243 		/* XXX no h/w multicast filter? --dyoung */
   2244 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2245 			/* setup multicast filter, etc */
   2246 			error = 0;
   2247 		}
   2248 		break;
   2249 
   2250 	default:
   2251 		error = ieee80211_ioctl(ic, cmd, data);
   2252 	}
   2253 
   2254 	if (error == ENETRESET) {
   2255 		if (IS_RUNNING(ifp) &&
   2256 			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
   2257 			wpi_init(ifp);
   2258 		error = 0;
   2259 	}
   2260 
   2261 	splx(s);
   2262 	return error;
   2263 
   2264 #undef IS_RUNNING
   2265 }
   2266 
   2267 /*
   2268  * Extract various information from EEPROM.
   2269  */
   2270 static void
   2271 wpi_read_eeprom(struct wpi_softc *sc)
   2272 {
   2273 	struct ieee80211com *ic = &sc->sc_ic;
   2274 	char domain[4];
   2275 	int i;
   2276 
   2277 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
   2278 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
   2279 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
   2280 
   2281 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
   2282 	    sc->type));
   2283 
   2284 	/* read and print regulatory domain */
   2285 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
   2286 	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
   2287 
   2288 	/* read and print MAC address */
   2289 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
   2290 	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
   2291 
   2292 	/* read the list of authorized channels */
   2293 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
   2294 		wpi_read_eeprom_channels(sc, i);
   2295 
   2296 	/* read the list of power groups */
   2297 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
   2298 		wpi_read_eeprom_group(sc, i);
   2299 }
   2300 
   2301 static void
   2302 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
   2303 {
   2304 	struct ieee80211com *ic = &sc->sc_ic;
   2305 	const struct wpi_chan_band *band = &wpi_bands[n];
   2306 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
   2307 	int chan, i;
   2308 
   2309 	wpi_read_prom_data(sc, band->addr, channels,
   2310 	    band->nchan * sizeof (struct wpi_eeprom_chan));
   2311 
   2312 	for (i = 0; i < band->nchan; i++) {
   2313 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
   2314 			continue;
   2315 
   2316 		chan = band->chan[i];
   2317 
   2318 		if (n == 0) {	/* 2GHz band */
   2319 			ic->ic_channels[chan].ic_freq =
   2320 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
   2321 			ic->ic_channels[chan].ic_flags =
   2322 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
   2323 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
   2324 
   2325 		} else {	/* 5GHz band */
   2326 			/*
   2327 			 * Some 3945ABG adapters support channels 7, 8, 11
   2328 			 * and 12 in the 2GHz *and* 5GHz bands.
   2329 			 * Because of limitations in our net80211(9) stack,
   2330 			 * we can't support these channels in 5GHz band.
   2331 			 */
   2332 			if (chan <= 14)
   2333 				continue;
   2334 
   2335 			ic->ic_channels[chan].ic_freq =
   2336 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
   2337 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
   2338 		}
   2339 
   2340 		/* is active scan allowed on this channel? */
   2341 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
   2342 			ic->ic_channels[chan].ic_flags |=
   2343 			    IEEE80211_CHAN_PASSIVE;
   2344 		}
   2345 
   2346 		/* save maximum allowed power for this channel */
   2347 		sc->maxpwr[chan] = channels[i].maxpwr;
   2348 
   2349 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
   2350 		    chan, channels[i].flags, sc->maxpwr[chan]));
   2351 	}
   2352 }
   2353 
   2354 static void
   2355 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
   2356 {
   2357 	struct wpi_power_group *group = &sc->groups[n];
   2358 	struct wpi_eeprom_group rgroup;
   2359 	int i;
   2360 
   2361 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
   2362 	    sizeof rgroup);
   2363 
   2364 	/* save power group information */
   2365 	group->chan   = rgroup.chan;
   2366 	group->maxpwr = rgroup.maxpwr;
   2367 	/* temperature at which the samples were taken */
   2368 	group->temp   = (int16_t)le16toh(rgroup.temp);
   2369 
   2370 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
   2371 	    group->chan, group->maxpwr, group->temp));
   2372 
   2373 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
   2374 		group->samples[i].index = rgroup.samples[i].index;
   2375 		group->samples[i].power = rgroup.samples[i].power;
   2376 
   2377 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
   2378 		    group->samples[i].index, group->samples[i].power));
   2379 	}
   2380 }
   2381 
   2382 /*
   2383  * Send a command to the firmware.
   2384  */
   2385 static int
   2386 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
   2387 {
   2388 	struct wpi_tx_ring *ring = &sc->cmdq;
   2389 	struct wpi_tx_desc *desc;
   2390 	struct wpi_tx_cmd *cmd;
   2391 	struct wpi_dma_info *dma;
   2392 
   2393 	KASSERT(size <= sizeof cmd->data);
   2394 
   2395 	desc = &ring->desc[ring->cur];
   2396 	cmd = &ring->cmd[ring->cur];
   2397 
   2398 	cmd->code = code;
   2399 	cmd->flags = 0;
   2400 	cmd->qid = ring->qid;
   2401 	cmd->idx = ring->cur;
   2402 	memcpy(cmd->data, buf, size);
   2403 
   2404 	dma = &ring->cmd_dma;
   2405 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   2406 
   2407 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
   2408 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2409 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2410 	desc->segs[0].len  = htole32(4 + size);
   2411 
   2412 	dma = &ring->desc_dma;
   2413 	bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
   2414 
   2415 	/* kick cmd ring */
   2416 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2417 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2418 
   2419 	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
   2420 }
   2421 
   2422 static int
   2423 wpi_wme_update(struct ieee80211com *ic)
   2424 {
   2425 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
   2426 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
   2427 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
   2428 	const struct wmeParams *wmep;
   2429 	struct wpi_wme_setup wme;
   2430 	int ac;
   2431 
   2432 	/* don't override default WME values if WME is not actually enabled */
   2433 	if (!(ic->ic_flags & IEEE80211_F_WME))
   2434 		return 0;
   2435 
   2436 	wme.flags = 0;
   2437 	for (ac = 0; ac < WME_NUM_AC; ac++) {
   2438 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
   2439 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
   2440 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
   2441 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
   2442 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
   2443 
   2444 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
   2445 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
   2446 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
   2447 	}
   2448 
   2449 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
   2450 #undef WPI_USEC
   2451 #undef WPI_EXP2
   2452 }
   2453 
   2454 /*
   2455  * Configure h/w multi-rate retries.
   2456  */
   2457 static int
   2458 wpi_mrr_setup(struct wpi_softc *sc)
   2459 {
   2460 	struct ieee80211com *ic = &sc->sc_ic;
   2461 	struct wpi_mrr_setup mrr;
   2462 	int i, error;
   2463 
   2464 	/* CCK rates (not used with 802.11a) */
   2465 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
   2466 		mrr.rates[i].flags = 0;
   2467 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2468 		/* fallback to the immediate lower CCK rate (if any) */
   2469 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
   2470 		/* try one time at this rate before falling back to "next" */
   2471 		mrr.rates[i].ntries = 1;
   2472 	}
   2473 
   2474 	/* OFDM rates (not used with 802.11b) */
   2475 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
   2476 		mrr.rates[i].flags = 0;
   2477 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
   2478 		/* fallback to the immediate lower rate (if any) */
   2479 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
   2480 		mrr.rates[i].next = (i == WPI_OFDM6) ?
   2481 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
   2482 			WPI_OFDM6 : WPI_CCK2) :
   2483 		    i - 1;
   2484 		/* try one time at this rate before falling back to "next" */
   2485 		mrr.rates[i].ntries = 1;
   2486 	}
   2487 
   2488 	/* setup MRR for control frames */
   2489 	mrr.which = htole32(WPI_MRR_CTL);
   2490 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2491 	if (error != 0) {
   2492 		aprint_error_dev(sc->sc_dev,
   2493 		    "could not setup MRR for control frames\n");
   2494 		return error;
   2495 	}
   2496 
   2497 	/* setup MRR for data frames */
   2498 	mrr.which = htole32(WPI_MRR_DATA);
   2499 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
   2500 	if (error != 0) {
   2501 		aprint_error_dev(sc->sc_dev,
   2502 		    "could not setup MRR for data frames\n");
   2503 		return error;
   2504 	}
   2505 
   2506 	return 0;
   2507 }
   2508 
   2509 static void
   2510 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
   2511 {
   2512 	struct wpi_cmd_led led;
   2513 
   2514 	led.which = which;
   2515 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
   2516 	led.off = off;
   2517 	led.on = on;
   2518 
   2519 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
   2520 }
   2521 
   2522 static void
   2523 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
   2524 {
   2525 	struct wpi_cmd_tsf tsf;
   2526 	uint64_t val, mod;
   2527 
   2528 	memset(&tsf, 0, sizeof tsf);
   2529 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
   2530 	tsf.bintval = htole16(ni->ni_intval);
   2531 	tsf.lintval = htole16(10);
   2532 
   2533 	/* compute remaining time until next beacon */
   2534 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
   2535 	mod = le64toh(tsf.tstamp) % val;
   2536 	tsf.binitval = htole32((uint32_t)(val - mod));
   2537 
   2538 	DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
   2539 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
   2540 
   2541 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
   2542 		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
   2543 }
   2544 
   2545 /*
   2546  * Update Tx power to match what is defined for channel `c'.
   2547  */
   2548 static int
   2549 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
   2550 {
   2551 	struct ieee80211com *ic = &sc->sc_ic;
   2552 	struct wpi_power_group *group;
   2553 	struct wpi_cmd_txpower txpower;
   2554 	u_int chan;
   2555 	int i;
   2556 
   2557 	/* get channel number */
   2558 	chan = ieee80211_chan2ieee(ic, c);
   2559 
   2560 	/* find the power group to which this channel belongs */
   2561 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2562 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
   2563 			if (chan <= group->chan)
   2564 				break;
   2565 	} else
   2566 		group = &sc->groups[0];
   2567 
   2568 	memset(&txpower, 0, sizeof txpower);
   2569 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
   2570 	txpower.chan = htole16(chan);
   2571 
   2572 	/* set Tx power for all OFDM and CCK rates */
   2573 	for (i = 0; i <= 11 ; i++) {
   2574 		/* retrieve Tx power for this channel/rate combination */
   2575 		int idx = wpi_get_power_index(sc, group, c,
   2576 		    wpi_ridx_to_rate[i]);
   2577 
   2578 		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
   2579 
   2580 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2581 			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
   2582 			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
   2583 		} else {
   2584 			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
   2585 			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
   2586 		}
   2587 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
   2588 		    wpi_ridx_to_rate[i], idx));
   2589 	}
   2590 
   2591 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
   2592 }
   2593 
   2594 /*
   2595  * Determine Tx power index for a given channel/rate combination.
   2596  * This takes into account the regulatory information from EEPROM and the
   2597  * current temperature.
   2598  */
   2599 static int
   2600 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
   2601     struct ieee80211_channel *c, int rate)
   2602 {
   2603 /* fixed-point arithmetic division using a n-bit fractional part */
   2604 #define fdivround(a, b, n)	\
   2605 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
   2606 
   2607 /* linear interpolation */
   2608 #define interpolate(x, x1, y1, x2, y2, n)	\
   2609 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
   2610 
   2611 	struct ieee80211com *ic = &sc->sc_ic;
   2612 	struct wpi_power_sample *sample;
   2613 	int pwr, idx;
   2614 	u_int chan;
   2615 
   2616 	/* get channel number */
   2617 	chan = ieee80211_chan2ieee(ic, c);
   2618 
   2619 	/* default power is group's maximum power - 3dB */
   2620 	pwr = group->maxpwr / 2;
   2621 
   2622 	/* decrease power for highest OFDM rates to reduce distortion */
   2623 	switch (rate) {
   2624 	case 72:	/* 36Mb/s */
   2625 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
   2626 		break;
   2627 	case 96:	/* 48Mb/s */
   2628 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
   2629 		break;
   2630 	case 108:	/* 54Mb/s */
   2631 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
   2632 		break;
   2633 	}
   2634 
   2635 	/* never exceed channel's maximum allowed Tx power */
   2636 	pwr = uimin(pwr, sc->maxpwr[chan]);
   2637 
   2638 	/* retrieve power index into gain tables from samples */
   2639 	for (sample = group->samples; sample < &group->samples[3]; sample++)
   2640 		if (pwr > sample[1].power)
   2641 			break;
   2642 	/* fixed-point linear interpolation using a 19-bit fractional part */
   2643 	idx = interpolate(pwr, sample[0].power, sample[0].index,
   2644 	    sample[1].power, sample[1].index, 19);
   2645 
   2646 	/*-
   2647 	 * Adjust power index based on current temperature:
   2648 	 * - if cooler than factory-calibrated: decrease output power
   2649 	 * - if warmer than factory-calibrated: increase output power
   2650 	 */
   2651 	idx -= (sc->temp - group->temp) * 11 / 100;
   2652 
   2653 	/* decrease power for CCK rates (-5dB) */
   2654 	if (!WPI_RATE_IS_OFDM(rate))
   2655 		idx += 10;
   2656 
   2657 	/* keep power index in a valid range */
   2658 	if (idx < 0)
   2659 		return 0;
   2660 	if (idx > WPI_MAX_PWR_INDEX)
   2661 		return WPI_MAX_PWR_INDEX;
   2662 	return idx;
   2663 
   2664 #undef interpolate
   2665 #undef fdivround
   2666 }
   2667 
   2668 /*
   2669  * Build a beacon frame that the firmware will broadcast periodically in
   2670  * IBSS or HostAP modes.
   2671  */
   2672 static int
   2673 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
   2674 {
   2675 	struct ieee80211com *ic = &sc->sc_ic;
   2676 	struct wpi_tx_ring *ring = &sc->cmdq;
   2677 	struct wpi_tx_desc *desc;
   2678 	struct wpi_tx_data *data;
   2679 	struct wpi_tx_cmd *cmd;
   2680 	struct wpi_cmd_beacon *bcn;
   2681 	struct ieee80211_beacon_offsets bo;
   2682 	struct mbuf *m0;
   2683 	int error;
   2684 
   2685 	desc = &ring->desc[ring->cur];
   2686 	data = &ring->data[ring->cur];
   2687 
   2688 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2689 	if (m0 == NULL) {
   2690 		aprint_error_dev(sc->sc_dev,
   2691 		    "could not allocate beacon frame\n");
   2692 		return ENOMEM;
   2693 	}
   2694 
   2695 	cmd = &ring->cmd[ring->cur];
   2696 	cmd->code = WPI_CMD_SET_BEACON;
   2697 	cmd->flags = 0;
   2698 	cmd->qid = ring->qid;
   2699 	cmd->idx = ring->cur;
   2700 
   2701 	bcn = (struct wpi_cmd_beacon *)cmd->data;
   2702 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
   2703 	bcn->id = WPI_ID_BROADCAST;
   2704 	bcn->ofdm_mask = 0xff;
   2705 	bcn->cck_mask = 0x0f;
   2706 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
   2707 	bcn->len = htole16(m0->m_pkthdr.len);
   2708 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2709 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2710 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
   2711 
   2712 	/* save and trim IEEE802.11 header */
   2713 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
   2714 	m_adj(m0, sizeof (struct ieee80211_frame));
   2715 
   2716 	/* assume beacon frame is contiguous */
   2717 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   2718 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   2719 	if (error != 0) {
   2720 		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
   2721 		m_freem(m0);
   2722 		return error;
   2723 	}
   2724 
   2725 	data->m = m0;
   2726 
   2727 	/* first scatter/gather segment is used by the beacon command */
   2728 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
   2729 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
   2730 	    ring->cur * sizeof (struct wpi_tx_cmd));
   2731 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
   2732 	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
   2733 	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
   2734 
   2735 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2736 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2737 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2738 	    BUS_DMASYNC_PREWRITE);
   2739 
   2740 	/* kick cmd ring */
   2741 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2742 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2743 
   2744 	return 0;
   2745 }
   2746 
   2747 static int
   2748 wpi_auth(struct wpi_softc *sc)
   2749 {
   2750 	struct ieee80211com *ic = &sc->sc_ic;
   2751 	struct ieee80211_node *ni = ic->ic_bss;
   2752 	struct wpi_node_info node;
   2753 	int error;
   2754 
   2755 	/* update adapter's configuration */
   2756 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
   2757 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
   2758 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   2759 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
   2760 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   2761 		    WPI_CONFIG_24GHZ);
   2762 	}
   2763 	switch (ic->ic_curmode) {
   2764 	case IEEE80211_MODE_11A:
   2765 		sc->config.cck_mask  = 0;
   2766 		sc->config.ofdm_mask = 0x15;
   2767 		break;
   2768 	case IEEE80211_MODE_11B:
   2769 		sc->config.cck_mask  = 0x03;
   2770 		sc->config.ofdm_mask = 0;
   2771 		break;
   2772 	default:	/* assume 802.11b/g */
   2773 		sc->config.cck_mask  = 0x0f;
   2774 		sc->config.ofdm_mask = 0x15;
   2775 	}
   2776 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
   2777 	    sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
   2778 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   2779 	    sizeof (struct wpi_config), 1);
   2780 	if (error != 0) {
   2781 		aprint_error_dev(sc->sc_dev, "could not configure\n");
   2782 		return error;
   2783 	}
   2784 
   2785 	/* configuration has changed, set Tx power accordingly */
   2786 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
   2787 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   2788 		return error;
   2789 	}
   2790 
   2791 	/* add default node */
   2792 	memset(&node, 0, sizeof node);
   2793 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
   2794 	node.id = WPI_ID_BSS;
   2795 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   2796 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
   2797 	node.action = htole32(WPI_ACTION_SET_RATE);
   2798 	node.antenna = WPI_ANTENNA_BOTH;
   2799 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
   2800 	if (error != 0) {
   2801 		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
   2802 		return error;
   2803 	}
   2804 
   2805 	return 0;
   2806 }
   2807 
   2808 /*
   2809  * Send a scan request to the firmware.  Since this command is huge, we map it
   2810  * into a mbuf instead of using the pre-allocated set of commands.
   2811  */
   2812 static int
   2813 wpi_scan(struct wpi_softc *sc)
   2814 {
   2815 	struct ieee80211com *ic = &sc->sc_ic;
   2816 	struct wpi_tx_ring *ring = &sc->cmdq;
   2817 	struct wpi_tx_desc *desc;
   2818 	struct wpi_tx_data *data;
   2819 	struct wpi_tx_cmd *cmd;
   2820 	struct wpi_scan_hdr *hdr;
   2821 	struct wpi_scan_chan *chan;
   2822 	struct ieee80211_frame *wh;
   2823 	struct ieee80211_rateset *rs;
   2824 	struct ieee80211_channel *c;
   2825 	uint8_t *frm;
   2826 	int pktlen, error, nrates;
   2827 
   2828 	if (ic->ic_curchan == NULL)
   2829 		return EIO;
   2830 
   2831 	desc = &ring->desc[ring->cur];
   2832 	data = &ring->data[ring->cur];
   2833 
   2834 	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   2835 	if (data->m == NULL) {
   2836 		aprint_error_dev(sc->sc_dev,
   2837 		    "could not allocate mbuf for scan command\n");
   2838 		return ENOMEM;
   2839 	}
   2840 	MCLGET(data->m, M_DONTWAIT);
   2841 	if (!(data->m->m_flags & M_EXT)) {
   2842 		m_freem(data->m);
   2843 		data->m = NULL;
   2844 		aprint_error_dev(sc->sc_dev,
   2845 		    "could not allocate mbuf for scan command\n");
   2846 		return ENOMEM;
   2847 	}
   2848 
   2849 	cmd = mtod(data->m, struct wpi_tx_cmd *);
   2850 	cmd->code = WPI_CMD_SCAN;
   2851 	cmd->flags = 0;
   2852 	cmd->qid = ring->qid;
   2853 	cmd->idx = ring->cur;
   2854 
   2855 	hdr = (struct wpi_scan_hdr *)cmd->data;
   2856 	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
   2857 	hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
   2858 	hdr->cmd.id = WPI_ID_BROADCAST;
   2859 	hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
   2860 	/*
   2861 	 * Move to the next channel if no packets are received within 5 msecs
   2862 	 * after sending the probe request (this helps to reduce the duration
   2863 	 * of active scans).
   2864 	 */
   2865 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
   2866 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
   2867 
   2868 	if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
   2869 		hdr->crc_threshold = htole16(1);
   2870 		/* send probe requests at 6Mbps */
   2871 		hdr->cmd.rate = wpi_plcp_signal(12);
   2872 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
   2873 	} else {
   2874 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
   2875 		/* send probe requests at 1Mbps */
   2876 		hdr->cmd.rate = wpi_plcp_signal(2);
   2877 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
   2878 	}
   2879 
   2880 	/* for directed scans, firmware inserts the essid IE itself */
   2881 	if (ic->ic_des_esslen != 0) {
   2882 		hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
   2883 		hdr->essid[0].len = ic->ic_des_esslen;
   2884 		memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
   2885 	}
   2886 
   2887 	/*
   2888 	 * Build a probe request frame.  Most of the following code is a
   2889 	 * copy & paste of what is done in net80211.
   2890 	 */
   2891 	wh = (struct ieee80211_frame *)(hdr + 1);
   2892 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   2893 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
   2894 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2895 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
   2896 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2897 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
   2898 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
   2899 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
   2900 
   2901 	frm = (uint8_t *)(wh + 1);
   2902 
   2903 	/* add empty essid IE (firmware generates it for directed scans) */
   2904 	*frm++ = IEEE80211_ELEMID_SSID;
   2905 	*frm++ = 0;
   2906 
   2907 	/* add supported rates IE */
   2908 	*frm++ = IEEE80211_ELEMID_RATES;
   2909 	nrates = rs->rs_nrates;
   2910 	if (nrates > IEEE80211_RATE_SIZE)
   2911 		nrates = IEEE80211_RATE_SIZE;
   2912 	*frm++ = nrates;
   2913 	memcpy(frm, rs->rs_rates, nrates);
   2914 	frm += nrates;
   2915 
   2916 	/* add supported xrates IE */
   2917 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   2918 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   2919 		*frm++ = IEEE80211_ELEMID_XRATES;
   2920 		*frm++ = nrates;
   2921 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   2922 		frm += nrates;
   2923 	}
   2924 
   2925 	/* setup length of probe request */
   2926 	hdr->cmd.len = htole16(frm - (uint8_t *)wh);
   2927 
   2928 	chan = (struct wpi_scan_chan *)frm;
   2929 	c = ic->ic_curchan;
   2930 
   2931 	chan->chan = ieee80211_chan2ieee(ic, c);
   2932 	chan->flags = 0;
   2933 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
   2934 		chan->flags |= WPI_CHAN_ACTIVE;
   2935 		if (ic->ic_des_esslen != 0)
   2936 			chan->flags |= WPI_CHAN_DIRECT;
   2937 	}
   2938 	chan->dsp_gain = 0x6e;
   2939 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2940 		chan->rf_gain = 0x3b;
   2941 		chan->active  = htole16(10);
   2942 		chan->passive = htole16(110);
   2943 	} else {
   2944 		chan->rf_gain = 0x28;
   2945 		chan->active  = htole16(20);
   2946 		chan->passive = htole16(120);
   2947 	}
   2948 	hdr->nchan++;
   2949 	chan++;
   2950 
   2951 	frm += sizeof (struct wpi_scan_chan);
   2952 
   2953 	hdr->len = htole16(frm - (uint8_t *)hdr);
   2954 	pktlen = frm - (uint8_t *)cmd;
   2955 
   2956 	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
   2957 	    BUS_DMA_NOWAIT);
   2958 	if (error != 0) {
   2959 		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
   2960 		m_freem(data->m);
   2961 		data->m = NULL;
   2962 		return error;
   2963 	}
   2964 
   2965 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
   2966 	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
   2967 	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
   2968 
   2969 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
   2970 	    ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   2971 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   2972 	    BUS_DMASYNC_PREWRITE);
   2973 
   2974 	/* kick cmd ring */
   2975 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
   2976 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
   2977 
   2978 	return 0;	/* will be notified async. of failure/success */
   2979 }
   2980 
   2981 static int
   2982 wpi_config(struct wpi_softc *sc)
   2983 {
   2984 	struct ieee80211com *ic = &sc->sc_ic;
   2985 	struct ifnet *ifp = ic->ic_ifp;
   2986 	struct wpi_power power;
   2987 	struct wpi_bluetooth bluetooth;
   2988 	struct wpi_node_info node;
   2989 	int error;
   2990 
   2991 	memset(&power, 0, sizeof power);
   2992 	power.flags = htole32(WPI_POWER_CAM | 0x8);
   2993 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
   2994 	if (error != 0) {
   2995 		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
   2996 		return error;
   2997 	}
   2998 
   2999 	/* configure bluetooth coexistence */
   3000 	memset(&bluetooth, 0, sizeof bluetooth);
   3001 	bluetooth.flags = 3;
   3002 	bluetooth.lead = 0xaa;
   3003 	bluetooth.kill = 1;
   3004 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
   3005 	    0);
   3006 	if (error != 0) {
   3007 		aprint_error_dev(sc->sc_dev,
   3008 			"could not configure bluetooth coexistence\n");
   3009 		return error;
   3010 	}
   3011 
   3012 	/* configure adapter */
   3013 	memset(&sc->config, 0, sizeof (struct wpi_config));
   3014 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   3015 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
   3016 	/* set default channel */
   3017 	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
   3018 	sc->config.flags = htole32(WPI_CONFIG_TSF);
   3019 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
   3020 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
   3021 		    WPI_CONFIG_24GHZ);
   3022 	}
   3023 	sc->config.filter = 0;
   3024 	switch (ic->ic_opmode) {
   3025 	case IEEE80211_M_STA:
   3026 		sc->config.mode = WPI_MODE_STA;
   3027 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
   3028 		break;
   3029 	case IEEE80211_M_IBSS:
   3030 	case IEEE80211_M_AHDEMO:
   3031 		sc->config.mode = WPI_MODE_IBSS;
   3032 		break;
   3033 	case IEEE80211_M_HOSTAP:
   3034 		sc->config.mode = WPI_MODE_HOSTAP;
   3035 		break;
   3036 	case IEEE80211_M_MONITOR:
   3037 		sc->config.mode = WPI_MODE_MONITOR;
   3038 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
   3039 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
   3040 		break;
   3041 	}
   3042 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
   3043 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
   3044 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
   3045 	    sizeof (struct wpi_config), 0);
   3046 	if (error != 0) {
   3047 		aprint_error_dev(sc->sc_dev, "configure command failed\n");
   3048 		return error;
   3049 	}
   3050 
   3051 	/* configuration has changed, set Tx power accordingly */
   3052 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
   3053 		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
   3054 		return error;
   3055 	}
   3056 
   3057 	/* add broadcast node */
   3058 	memset(&node, 0, sizeof node);
   3059 	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
   3060 	node.id = WPI_ID_BROADCAST;
   3061 	node.rate = wpi_plcp_signal(2);
   3062 	node.action = htole32(WPI_ACTION_SET_RATE);
   3063 	node.antenna = WPI_ANTENNA_BOTH;
   3064 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
   3065 	if (error != 0) {
   3066 		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
   3067 		return error;
   3068 	}
   3069 
   3070 	if ((error = wpi_mrr_setup(sc)) != 0) {
   3071 		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
   3072 		return error;
   3073 	}
   3074 
   3075 	return 0;
   3076 }
   3077 
   3078 static void
   3079 wpi_stop_master(struct wpi_softc *sc)
   3080 {
   3081 	uint32_t tmp;
   3082 	int ntries;
   3083 
   3084 	tmp = WPI_READ(sc, WPI_RESET);
   3085 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
   3086 
   3087 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   3088 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
   3089 		return;	/* already asleep */
   3090 
   3091 	for (ntries = 0; ntries < 100; ntries++) {
   3092 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
   3093 			break;
   3094 		DELAY(10);
   3095 	}
   3096 	if (ntries == 100) {
   3097 		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
   3098 	}
   3099 }
   3100 
   3101 static int
   3102 wpi_power_up(struct wpi_softc *sc)
   3103 {
   3104 	uint32_t tmp;
   3105 	int ntries;
   3106 
   3107 	wpi_mem_lock(sc);
   3108 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
   3109 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
   3110 	wpi_mem_unlock(sc);
   3111 
   3112 	for (ntries = 0; ntries < 5000; ntries++) {
   3113 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
   3114 			break;
   3115 		DELAY(10);
   3116 	}
   3117 	if (ntries == 5000) {
   3118 		aprint_error_dev(sc->sc_dev,
   3119 		    "timeout waiting for NIC to power up\n");
   3120 		return ETIMEDOUT;
   3121 	}
   3122 	return 0;
   3123 }
   3124 
   3125 static int
   3126 wpi_reset(struct wpi_softc *sc)
   3127 {
   3128 	uint32_t tmp;
   3129 	int ntries;
   3130 
   3131 	/* clear any pending interrupts */
   3132 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3133 
   3134 	tmp = WPI_READ(sc, WPI_PLL_CTL);
   3135 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
   3136 
   3137 	tmp = WPI_READ(sc, WPI_CHICKEN);
   3138 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
   3139 
   3140 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
   3141 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
   3142 
   3143 	/* wait for clock stabilization */
   3144 	for (ntries = 0; ntries < 1000; ntries++) {
   3145 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
   3146 			break;
   3147 		DELAY(10);
   3148 	}
   3149 	if (ntries == 1000) {
   3150 		aprint_error_dev(sc->sc_dev,
   3151 		    "timeout waiting for clock stabilization\n");
   3152 		return ETIMEDOUT;
   3153 	}
   3154 
   3155 	/* initialize EEPROM */
   3156 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
   3157 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
   3158 		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
   3159 		return EIO;
   3160 	}
   3161 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
   3162 
   3163 	return 0;
   3164 }
   3165 
   3166 static void
   3167 wpi_hw_config(struct wpi_softc *sc)
   3168 {
   3169 	uint32_t rev, hw;
   3170 
   3171 	/* voodoo from the reference driver */
   3172 	hw = WPI_READ(sc, WPI_HWCONFIG);
   3173 
   3174 	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
   3175 	rev = PCI_REVISION(rev);
   3176 	if ((rev & 0xc0) == 0x40)
   3177 		hw |= WPI_HW_ALM_MB;
   3178 	else if (!(rev & 0x80))
   3179 		hw |= WPI_HW_ALM_MM;
   3180 
   3181 	if (sc->cap == 0x80)
   3182 		hw |= WPI_HW_SKU_MRC;
   3183 
   3184 	hw &= ~WPI_HW_REV_D;
   3185 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
   3186 		hw |= WPI_HW_REV_D;
   3187 
   3188 	if (sc->type > 1)
   3189 		hw |= WPI_HW_TYPE_B;
   3190 
   3191 	DPRINTF(("setting h/w config %x\n", hw));
   3192 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
   3193 }
   3194 
   3195 static int
   3196 wpi_init(struct ifnet *ifp)
   3197 {
   3198 	struct wpi_softc *sc = ifp->if_softc;
   3199 	struct ieee80211com *ic = &sc->sc_ic;
   3200 	uint32_t tmp;
   3201 	int qid, ntries, error;
   3202 
   3203 	wpi_stop(ifp,1);
   3204 	(void)wpi_reset(sc);
   3205 
   3206 	wpi_mem_lock(sc);
   3207 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
   3208 	DELAY(20);
   3209 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
   3210 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
   3211 	wpi_mem_unlock(sc);
   3212 
   3213 	(void)wpi_power_up(sc);
   3214 	wpi_hw_config(sc);
   3215 
   3216 	/* init Rx ring */
   3217 	wpi_mem_lock(sc);
   3218 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
   3219 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
   3220 	    offsetof(struct wpi_shared, next));
   3221 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
   3222 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
   3223 	wpi_mem_unlock(sc);
   3224 
   3225 	/* init Tx rings */
   3226 	wpi_mem_lock(sc);
   3227 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
   3228 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
   3229 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
   3230 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
   3231 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
   3232 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
   3233 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
   3234 
   3235 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
   3236 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
   3237 
   3238 	for (qid = 0; qid < 6; qid++) {
   3239 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
   3240 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
   3241 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
   3242 	}
   3243 	wpi_mem_unlock(sc);
   3244 
   3245 	/* clear "radio off" and "disable command" bits (reversed logic) */
   3246 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3247 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
   3248 
   3249 	/* clear any pending interrupts */
   3250 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
   3251 	/* enable interrupts */
   3252 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
   3253 
   3254 	/* not sure why/if this is necessary... */
   3255 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3256 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
   3257 
   3258 	if ((error = wpi_load_firmware(sc)) != 0)
   3259 		/* wpi_load_firmware prints error messages for us.  */
   3260 		goto fail1;
   3261 
   3262 	/* Check the status of the radio switch */
   3263 	mutex_enter(&sc->sc_rsw_mtx);
   3264 	if (wpi_getrfkill(sc)) {
   3265 		mutex_exit(&sc->sc_rsw_mtx);
   3266 		aprint_error_dev(sc->sc_dev,
   3267 		    "radio is disabled by hardware switch\n");
   3268 		ifp->if_flags &= ~IFF_UP;
   3269 		error = EBUSY;
   3270 		goto fail1;
   3271 	}
   3272 	sc->sc_rsw_suspend = false;
   3273 	cv_broadcast(&sc->sc_rsw_cv);
   3274 	while (sc->sc_rsw_suspend)
   3275 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
   3276 	mutex_exit(&sc->sc_rsw_mtx);
   3277 
   3278 	/* wait for thermal sensors to calibrate */
   3279 	for (ntries = 0; ntries < 1000; ntries++) {
   3280 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
   3281 			break;
   3282 		DELAY(10);
   3283 	}
   3284 	if (ntries == 1000) {
   3285 		aprint_error_dev(sc->sc_dev,
   3286 		    "timeout waiting for thermal sensors calibration\n");
   3287 		error = ETIMEDOUT;
   3288 		goto fail1;
   3289 	}
   3290 	DPRINTF(("temperature %d\n", sc->temp));
   3291 
   3292 	if ((error = wpi_config(sc)) != 0) {
   3293 		aprint_error_dev(sc->sc_dev, "could not configure device\n");
   3294 		goto fail1;
   3295 	}
   3296 
   3297 	ifp->if_flags &= ~IFF_OACTIVE;
   3298 	ifp->if_flags |= IFF_RUNNING;
   3299 
   3300 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   3301 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   3302 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   3303 	}
   3304 	else
   3305 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   3306 
   3307 	return 0;
   3308 
   3309 fail1:	wpi_stop(ifp, 1);
   3310 	return error;
   3311 }
   3312 
   3313 static void
   3314 wpi_stop(struct ifnet *ifp, int disable)
   3315 {
   3316 	struct wpi_softc *sc = ifp->if_softc;
   3317 	struct ieee80211com *ic = &sc->sc_ic;
   3318 	uint32_t tmp;
   3319 	int ac;
   3320 
   3321 	ifp->if_timer = sc->sc_tx_timer = 0;
   3322 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3323 
   3324 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
   3325 
   3326 	/* suspend rfkill test thread */
   3327 	mutex_enter(&sc->sc_rsw_mtx);
   3328 	sc->sc_rsw_suspend = true;
   3329 	cv_broadcast(&sc->sc_rsw_cv);
   3330 	while (!sc->sc_rsw_suspended)
   3331 		cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
   3332 	mutex_exit(&sc->sc_rsw_mtx);
   3333 
   3334 	/* disable interrupts */
   3335 	WPI_WRITE(sc, WPI_MASK, 0);
   3336 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
   3337 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
   3338 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
   3339 
   3340 	wpi_mem_lock(sc);
   3341 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
   3342 	wpi_mem_unlock(sc);
   3343 
   3344 	/* reset all Tx rings */
   3345 	for (ac = 0; ac < 4; ac++)
   3346 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
   3347 	wpi_reset_tx_ring(sc, &sc->cmdq);
   3348 
   3349 	/* reset Rx ring */
   3350 	wpi_reset_rx_ring(sc, &sc->rxq);
   3351 
   3352 	wpi_mem_lock(sc);
   3353 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
   3354 	wpi_mem_unlock(sc);
   3355 
   3356 	DELAY(5);
   3357 
   3358 	wpi_stop_master(sc);
   3359 
   3360 	tmp = WPI_READ(sc, WPI_RESET);
   3361 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
   3362 }
   3363 
   3364 static bool
   3365 wpi_resume(device_t dv, const pmf_qual_t *qual)
   3366 {
   3367 	struct wpi_softc *sc = device_private(dv);
   3368 
   3369 	(void)wpi_reset(sc);
   3370 
   3371 	return true;
   3372 }
   3373 
   3374 /*
   3375  * Return whether or not the radio is enabled in hardware
   3376  * (i.e. the rfkill switch is "off").
   3377  */
   3378 static int
   3379 wpi_getrfkill(struct wpi_softc *sc)
   3380 {
   3381 	uint32_t tmp;
   3382 
   3383 	wpi_mem_lock(sc);
   3384 	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
   3385 	wpi_mem_unlock(sc);
   3386 
   3387 	KASSERT(mutex_owned(&sc->sc_rsw_mtx));
   3388 	if (tmp & 0x01) {
   3389 		/* switch is on */
   3390 		if (sc->sc_rsw_status != WPI_RSW_ON) {
   3391 			sc->sc_rsw_status = WPI_RSW_ON;
   3392 			sysmon_pswitch_event(&sc->sc_rsw,
   3393 			    PSWITCH_EVENT_PRESSED);
   3394 		}
   3395 	} else {
   3396 		/* switch is off */
   3397 		if (sc->sc_rsw_status != WPI_RSW_OFF) {
   3398 			sc->sc_rsw_status = WPI_RSW_OFF;
   3399 			sysmon_pswitch_event(&sc->sc_rsw,
   3400 			    PSWITCH_EVENT_RELEASED);
   3401 		}
   3402 	}
   3403 
   3404 	return !(tmp & 0x01);
   3405 }
   3406 
   3407 static int
   3408 wpi_sysctl_radio(SYSCTLFN_ARGS)
   3409 {
   3410 	struct sysctlnode node;
   3411 	struct wpi_softc *sc;
   3412 	int val, error;
   3413 
   3414 	node = *rnode;
   3415 	sc = (struct wpi_softc *)node.sysctl_data;
   3416 
   3417 	mutex_enter(&sc->sc_rsw_mtx);
   3418 	val = !wpi_getrfkill(sc);
   3419 	mutex_exit(&sc->sc_rsw_mtx);
   3420 
   3421 	node.sysctl_data = &val;
   3422 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3423 
   3424 	if (error || newp == NULL)
   3425 		return error;
   3426 
   3427 	return 0;
   3428 }
   3429 
   3430 static void
   3431 wpi_sysctlattach(struct wpi_softc *sc)
   3432 {
   3433 	int rc;
   3434 	const struct sysctlnode *rnode;
   3435 	const struct sysctlnode *cnode;
   3436 
   3437 	struct sysctllog **clog = &sc->sc_sysctllog;
   3438 
   3439 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
   3440 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
   3441 	    SYSCTL_DESCR("wpi controls and statistics"),
   3442 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
   3443 		goto err;
   3444 
   3445 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3446 	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
   3447 	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
   3448 	    wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
   3449 		goto err;
   3450 
   3451 #ifdef WPI_DEBUG
   3452 	/* control debugging printfs */
   3453 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
   3454 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
   3455 	    "debug", SYSCTL_DESCR("Enable debugging output"),
   3456 	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
   3457 		goto err;
   3458 #endif
   3459 
   3460 	return;
   3461 err:
   3462 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3463 }
   3464 
   3465 static void
   3466 wpi_rsw_thread(void *arg)
   3467 {
   3468 	struct wpi_softc *sc = (struct wpi_softc *)arg;
   3469 
   3470 	mutex_enter(&sc->sc_rsw_mtx);
   3471 	for (;;) {
   3472 		cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
   3473 		if (sc->sc_dying) {
   3474 			sc->sc_rsw_lwp = NULL;
   3475 			cv_broadcast(&sc->sc_rsw_cv);
   3476 			mutex_exit(&sc->sc_rsw_mtx);
   3477 			kthread_exit(0);
   3478 		}
   3479 		if (sc->sc_rsw_suspend) {
   3480 			sc->sc_rsw_suspended = true;
   3481 			cv_broadcast(&sc->sc_rsw_cv);
   3482 			while (sc->sc_rsw_suspend || sc->sc_dying)
   3483 				cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
   3484 			sc->sc_rsw_suspended = false;
   3485 			cv_broadcast(&sc->sc_rsw_cv);
   3486 		}
   3487 		wpi_getrfkill(sc);
   3488 	}
   3489 }
   3490