if_wpi.c revision 1.81 1 /* $NetBSD: if_wpi.c,v 1.81 2018/08/20 02:33:17 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.81 2018/08/20 02:33:17 riastradh Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 #include <sys/kthread.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51
52 #include <dev/sysmon/sysmonvar.h>
53
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_ether.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_amrr.h>
69 #include <net80211/ieee80211_radiotap.h>
70
71 #include <dev/firmload.h>
72
73 #include <dev/pci/if_wpireg.h>
74 #include <dev/pci/if_wpivar.h>
75
76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
77 static once_t wpi_firmware_init;
78 static kmutex_t wpi_firmware_mutex;
79 static size_t wpi_firmware_users;
80 static uint8_t *wpi_firmware_image;
81 static size_t wpi_firmware_size;
82
83 static int wpi_match(device_t, cfdata_t, void *);
84 static void wpi_attach(device_t, device_t, void *);
85 static int wpi_detach(device_t , int);
86 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
87 void **, bus_size_t, bus_size_t, int);
88 static void wpi_dma_contig_free(struct wpi_dma_info *);
89 static int wpi_alloc_shared(struct wpi_softc *);
90 static void wpi_free_shared(struct wpi_softc *);
91 static int wpi_alloc_fwmem(struct wpi_softc *);
92 static void wpi_free_fwmem(struct wpi_softc *);
93 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
94 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
95 static int wpi_alloc_rpool(struct wpi_softc *);
96 static void wpi_free_rpool(struct wpi_softc *);
97 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
98 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
99 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
100 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
101 int, int);
102 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
103 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
104 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
105 static void wpi_newassoc(struct ieee80211_node *, int);
106 static int wpi_media_change(struct ifnet *);
107 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
108 static void wpi_mem_lock(struct wpi_softc *);
109 static void wpi_mem_unlock(struct wpi_softc *);
110 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
111 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
112 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
113 const uint32_t *, int);
114 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
115 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
116 static int wpi_cache_firmware(struct wpi_softc *);
117 static void wpi_release_firmware(void);
118 static int wpi_load_firmware(struct wpi_softc *);
119 static void wpi_calib_timeout(void *);
120 static void wpi_iter_func(void *, struct ieee80211_node *);
121 static void wpi_power_calibration(struct wpi_softc *, int);
122 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
123 struct wpi_rx_data *);
124 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
125 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
126 static void wpi_notif_intr(struct wpi_softc *);
127 static int wpi_intr(void *);
128 static void wpi_softintr(void *);
129 static void wpi_read_eeprom(struct wpi_softc *);
130 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
131 static void wpi_read_eeprom_group(struct wpi_softc *, int);
132 static uint8_t wpi_plcp_signal(int);
133 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
134 struct ieee80211_node *, int);
135 static void wpi_start(struct ifnet *);
136 static void wpi_watchdog(struct ifnet *);
137 static int wpi_ioctl(struct ifnet *, u_long, void *);
138 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
139 static int wpi_wme_update(struct ieee80211com *);
140 static int wpi_mrr_setup(struct wpi_softc *);
141 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
142 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
143 static int wpi_set_txpower(struct wpi_softc *,
144 struct ieee80211_channel *, int);
145 static int wpi_get_power_index(struct wpi_softc *,
146 struct wpi_power_group *, struct ieee80211_channel *, int);
147 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
148 static int wpi_auth(struct wpi_softc *);
149 static int wpi_scan(struct wpi_softc *);
150 static int wpi_config(struct wpi_softc *);
151 static void wpi_stop_master(struct wpi_softc *);
152 static int wpi_power_up(struct wpi_softc *);
153 static int wpi_reset(struct wpi_softc *);
154 static void wpi_hw_config(struct wpi_softc *);
155 static int wpi_init(struct ifnet *);
156 static void wpi_stop(struct ifnet *, int);
157 static bool wpi_resume(device_t, const pmf_qual_t *);
158 static int wpi_getrfkill(struct wpi_softc *);
159 static void wpi_sysctlattach(struct wpi_softc *);
160 static void wpi_rsw_thread(void *);
161
162 #ifdef WPI_DEBUG
163 #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0)
164 #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0)
165 int wpi_debug = 1;
166 #else
167 #define DPRINTF(x)
168 #define DPRINTFN(n, x)
169 #endif
170
171 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
172 wpi_detach, NULL);
173
174 static int
175 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
176 {
177 struct pci_attach_args *pa = aux;
178
179 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
180 return 0;
181
182 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
183 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
184 return 1;
185
186 return 0;
187 }
188
189 /* Base Address Register */
190 #define WPI_PCI_BAR0 0x10
191
192 static int
193 wpi_attach_once(void)
194 {
195
196 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
197 return 0;
198 }
199
200 static void
201 wpi_attach(device_t parent __unused, device_t self, void *aux)
202 {
203 struct wpi_softc *sc = device_private(self);
204 struct ieee80211com *ic = &sc->sc_ic;
205 struct ifnet *ifp = &sc->sc_ec.ec_if;
206 struct pci_attach_args *pa = aux;
207 const char *intrstr;
208 bus_space_tag_t memt;
209 bus_space_handle_t memh;
210 pcireg_t data;
211 int ac, error;
212 char intrbuf[PCI_INTRSTR_LEN];
213
214 RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
215 sc->fw_used = false;
216
217 sc->sc_dev = self;
218 sc->sc_pct = pa->pa_pc;
219 sc->sc_pcitag = pa->pa_tag;
220
221 sc->sc_rsw_status = WPI_RSW_UNKNOWN;
222 sc->sc_rsw.smpsw_name = device_xname(self);
223 sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
224 error = sysmon_pswitch_register(&sc->sc_rsw);
225 if (error) {
226 aprint_error_dev(self,
227 "unable to register radio switch with sysmon\n");
228 return;
229 }
230 mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
231 cv_init(&sc->sc_rsw_cv, "wpirsw");
232 if (kthread_create(PRI_NONE, 0, NULL,
233 wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
234 aprint_error_dev(self, "couldn't create switch thread\n");
235 }
236
237 callout_init(&sc->calib_to, 0);
238 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
239
240 pci_aprint_devinfo(pa, NULL);
241
242 /* enable bus-mastering */
243 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
244 data |= PCI_COMMAND_MASTER_ENABLE;
245 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
246
247 /* map the register window */
248 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
249 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
250 if (error != 0) {
251 aprint_error_dev(self, "could not map memory space\n");
252 return;
253 }
254
255 sc->sc_st = memt;
256 sc->sc_sh = memh;
257 sc->sc_dmat = pa->pa_dmat;
258
259 sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc);
260 if (sc->sc_soft_ih == NULL) {
261 aprint_error_dev(self, "could not establish softint\n");
262 goto unmap;
263 }
264
265 if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
266 aprint_error_dev(self, "could not map interrupt\n");
267 goto failsi;
268 }
269
270 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
271 sizeof(intrbuf));
272 sc->sc_ih = pci_intr_establish(sc->sc_pct, sc->sc_pihp[0], IPL_NET,
273 wpi_intr, sc);
274 if (sc->sc_ih == NULL) {
275 aprint_error_dev(self, "could not establish interrupt");
276 if (intrstr != NULL)
277 aprint_error(" at %s", intrstr);
278 aprint_error("\n");
279 goto failia;
280 }
281 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
282
283 /*
284 * Put adapter into a known state.
285 */
286 if ((error = wpi_reset(sc)) != 0) {
287 aprint_error_dev(self, "could not reset adapter\n");
288 goto failih;
289 }
290
291 /*
292 * Allocate DMA memory for firmware transfers.
293 */
294 if ((error = wpi_alloc_fwmem(sc)) != 0) {
295 aprint_error_dev(self, "could not allocate firmware memory\n");
296 goto failih;
297 }
298
299 /*
300 * Allocate shared page and Tx/Rx rings.
301 */
302 if ((error = wpi_alloc_shared(sc)) != 0) {
303 aprint_error_dev(self, "could not allocate shared area\n");
304 goto fail1;
305 }
306
307 if ((error = wpi_alloc_rpool(sc)) != 0) {
308 aprint_error_dev(self, "could not allocate Rx buffers\n");
309 goto fail2;
310 }
311
312 for (ac = 0; ac < 4; ac++) {
313 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
314 ac);
315 if (error != 0) {
316 aprint_error_dev(self,
317 "could not allocate Tx ring %d\n", ac);
318 goto fail3;
319 }
320 }
321
322 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
323 if (error != 0) {
324 aprint_error_dev(self, "could not allocate command ring\n");
325 goto fail3;
326 }
327
328 error = wpi_alloc_rx_ring(sc, &sc->rxq);
329 if (error != 0) {
330 aprint_error_dev(self, "could not allocate Rx ring\n");
331 goto fail4;
332 }
333
334 ic->ic_ifp = ifp;
335 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
336 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
337 ic->ic_state = IEEE80211_S_INIT;
338
339 /* set device capabilities */
340 ic->ic_caps =
341 IEEE80211_C_WPA | /* 802.11i */
342 IEEE80211_C_MONITOR | /* monitor mode supported */
343 IEEE80211_C_TXPMGT | /* tx power management */
344 IEEE80211_C_SHSLOT | /* short slot time supported */
345 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
346 IEEE80211_C_WME; /* 802.11e */
347
348 /* read supported channels and MAC address from EEPROM */
349 wpi_read_eeprom(sc);
350
351 /* set supported .11a, .11b and .11g rates */
352 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
353 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
354 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
355
356 /* IBSS channel undefined for now */
357 ic->ic_ibss_chan = &ic->ic_channels[0];
358
359 ifp->if_softc = sc;
360 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
361 ifp->if_init = wpi_init;
362 ifp->if_stop = wpi_stop;
363 ifp->if_ioctl = wpi_ioctl;
364 ifp->if_start = wpi_start;
365 ifp->if_watchdog = wpi_watchdog;
366 IFQ_SET_READY(&ifp->if_snd);
367 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
368
369 error = if_initialize(ifp);
370 if (error != 0) {
371 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
372 error);
373 goto fail5;
374 }
375 ieee80211_ifattach(ic);
376 /* Use common softint-based if_input */
377 ifp->if_percpuq = if_percpuq_create(ifp);
378 if_register(ifp);
379
380 /* override default methods */
381 ic->ic_node_alloc = wpi_node_alloc;
382 ic->ic_newassoc = wpi_newassoc;
383 ic->ic_wme.wme_update = wpi_wme_update;
384
385 /* override state transition machine */
386 sc->sc_newstate = ic->ic_newstate;
387 ic->ic_newstate = wpi_newstate;
388 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
389
390 sc->amrr.amrr_min_success_threshold = 1;
391 sc->amrr.amrr_max_success_threshold = 15;
392
393 wpi_sysctlattach(sc);
394
395 if (pmf_device_register(self, NULL, wpi_resume))
396 pmf_class_network_register(self, ifp);
397 else
398 aprint_error_dev(self, "couldn't establish power handler\n");
399
400 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
401 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
402 &sc->sc_drvbpf);
403
404 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
405 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
406 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
407
408 sc->sc_txtap_len = sizeof sc->sc_txtapu;
409 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
410 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
411
412 ieee80211_announce(ic);
413
414 return;
415
416 /* free allocated memory if something failed during attachment */
417 fail5: wpi_free_rx_ring(sc, &sc->rxq);
418 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
419 fail3: while (--ac >= 0)
420 wpi_free_tx_ring(sc, &sc->txq[ac]);
421 wpi_free_rpool(sc);
422 fail2: wpi_free_shared(sc);
423 fail1: wpi_free_fwmem(sc);
424 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
425 sc->sc_ih = NULL;
426 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
427 sc->sc_pihp = NULL;
428 failsi: softint_disestablish(sc->sc_soft_ih);
429 sc->sc_soft_ih = NULL;
430 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
431 }
432
433 static int
434 wpi_detach(device_t self, int flags __unused)
435 {
436 struct wpi_softc *sc = device_private(self);
437 struct ifnet *ifp = sc->sc_ic.ic_ifp;
438 int ac;
439
440 wpi_stop(ifp, 1);
441
442 if (ifp != NULL)
443 bpf_detach(ifp);
444 ieee80211_ifdetach(&sc->sc_ic);
445 if (ifp != NULL)
446 if_detach(ifp);
447
448 for (ac = 0; ac < 4; ac++)
449 wpi_free_tx_ring(sc, &sc->txq[ac]);
450 wpi_free_tx_ring(sc, &sc->cmdq);
451 wpi_free_rx_ring(sc, &sc->rxq);
452 wpi_free_rpool(sc);
453 wpi_free_shared(sc);
454
455 if (sc->sc_ih != NULL) {
456 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
457 sc->sc_ih = NULL;
458 }
459 if (sc->sc_pihp != NULL) {
460 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
461 sc->sc_pihp = NULL;
462 }
463 if (sc->sc_soft_ih != NULL) {
464 softint_disestablish(sc->sc_soft_ih);
465 sc->sc_soft_ih = NULL;
466 }
467
468 mutex_enter(&sc->sc_rsw_mtx);
469 sc->sc_dying = 1;
470 cv_signal(&sc->sc_rsw_cv);
471 while (sc->sc_rsw_lwp != NULL)
472 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
473 mutex_exit(&sc->sc_rsw_mtx);
474 sysmon_pswitch_unregister(&sc->sc_rsw);
475
476 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
477
478 if (sc->fw_used) {
479 sc->fw_used = false;
480 wpi_release_firmware();
481 }
482 cv_destroy(&sc->sc_rsw_cv);
483 mutex_destroy(&sc->sc_rsw_mtx);
484 return 0;
485 }
486
487 static int
488 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
489 bus_size_t size, bus_size_t alignment, int flags)
490 {
491 int nsegs, error;
492
493 dma->tag = tag;
494 dma->size = size;
495
496 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
497 if (error != 0)
498 goto fail;
499
500 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
501 flags);
502 if (error != 0)
503 goto fail;
504
505 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
506 if (error != 0)
507 goto fail;
508
509 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
510 if (error != 0)
511 goto fail;
512
513 memset(dma->vaddr, 0, size);
514 bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
515
516 dma->paddr = dma->map->dm_segs[0].ds_addr;
517 if (kvap != NULL)
518 *kvap = dma->vaddr;
519
520 return 0;
521
522 fail: wpi_dma_contig_free(dma);
523 return error;
524 }
525
526 static void
527 wpi_dma_contig_free(struct wpi_dma_info *dma)
528 {
529 if (dma->map != NULL) {
530 if (dma->vaddr != NULL) {
531 bus_dmamap_unload(dma->tag, dma->map);
532 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
533 bus_dmamem_free(dma->tag, &dma->seg, 1);
534 dma->vaddr = NULL;
535 }
536 bus_dmamap_destroy(dma->tag, dma->map);
537 dma->map = NULL;
538 }
539 }
540
541 /*
542 * Allocate a shared page between host and NIC.
543 */
544 static int
545 wpi_alloc_shared(struct wpi_softc *sc)
546 {
547 int error;
548
549 /* must be aligned on a 4K-page boundary */
550 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
551 (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
552 BUS_DMA_NOWAIT);
553 if (error != 0)
554 aprint_error_dev(sc->sc_dev,
555 "could not allocate shared area DMA memory\n");
556
557 return error;
558 }
559
560 static void
561 wpi_free_shared(struct wpi_softc *sc)
562 {
563 wpi_dma_contig_free(&sc->shared_dma);
564 }
565
566 /*
567 * Allocate DMA-safe memory for firmware transfer.
568 */
569 static int
570 wpi_alloc_fwmem(struct wpi_softc *sc)
571 {
572 int error;
573
574 /* allocate enough contiguous space to store text and data */
575 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
576 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
577 BUS_DMA_NOWAIT);
578
579 if (error != 0)
580 aprint_error_dev(sc->sc_dev,
581 "could not allocate firmware transfer area DMA memory\n");
582 return error;
583 }
584
585 static void
586 wpi_free_fwmem(struct wpi_softc *sc)
587 {
588 wpi_dma_contig_free(&sc->fw_dma);
589 }
590
591 static struct wpi_rbuf *
592 wpi_alloc_rbuf(struct wpi_softc *sc)
593 {
594 struct wpi_rbuf *rbuf;
595
596 mutex_enter(&sc->rxq.freelist_mtx);
597 rbuf = SLIST_FIRST(&sc->rxq.freelist);
598 if (rbuf != NULL) {
599 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
600 }
601 mutex_exit(&sc->rxq.freelist_mtx);
602
603 return rbuf;
604 }
605
606 /*
607 * This is called automatically by the network stack when the mbuf to which our
608 * Rx buffer is attached is freed.
609 */
610 static void
611 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
612 {
613 struct wpi_rbuf *rbuf = arg;
614 struct wpi_softc *sc = rbuf->sc;
615
616 /* put the buffer back in the free list */
617
618 mutex_enter(&sc->rxq.freelist_mtx);
619 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
620 mutex_exit(&sc->rxq.freelist_mtx);
621
622 if (__predict_true(m != NULL))
623 pool_cache_put(mb_cache, m);
624 }
625
626 static int
627 wpi_alloc_rpool(struct wpi_softc *sc)
628 {
629 struct wpi_rx_ring *ring = &sc->rxq;
630 int i, error;
631
632 /* allocate a big chunk of DMA'able memory.. */
633 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
634 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
635 if (error != 0) {
636 aprint_normal_dev(sc->sc_dev,
637 "could not allocate Rx buffers DMA memory\n");
638 return error;
639 }
640
641 /* ..and split it into 3KB chunks */
642 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
643 SLIST_INIT(&ring->freelist);
644 for (i = 0; i < WPI_RBUF_COUNT; i++) {
645 struct wpi_rbuf *rbuf = &ring->rbuf[i];
646
647 rbuf->sc = sc; /* backpointer for callbacks */
648 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
649 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
650
651 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
652 }
653
654 return 0;
655 }
656
657 static void
658 wpi_free_rpool(struct wpi_softc *sc)
659 {
660 mutex_destroy(&sc->rxq.freelist_mtx);
661 wpi_dma_contig_free(&sc->rxq.buf_dma);
662 }
663
664 static int
665 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
666 {
667 bus_size_t size;
668 int i, error;
669
670 ring->cur = 0;
671
672 size = WPI_RX_RING_COUNT * sizeof (uint32_t);
673 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
674 (void **)&ring->desc, size,
675 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
676 if (error != 0) {
677 aprint_error_dev(sc->sc_dev,
678 "could not allocate rx ring DMA memory\n");
679 goto fail;
680 }
681
682 /*
683 * Setup Rx buffers.
684 */
685 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
686 struct wpi_rx_data *data = &ring->data[i];
687 struct wpi_rbuf *rbuf;
688
689 error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
690 WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
691 if (error) {
692 aprint_error_dev(sc->sc_dev,
693 "could not allocate rx dma map\n");
694 goto fail;
695 }
696
697 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
698 if (data->m == NULL) {
699 aprint_error_dev(sc->sc_dev,
700 "could not allocate rx mbuf\n");
701 error = ENOMEM;
702 goto fail;
703 }
704 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
705 m_freem(data->m);
706 data->m = NULL;
707 aprint_error_dev(sc->sc_dev,
708 "could not allocate rx cluster\n");
709 error = ENOMEM;
710 goto fail;
711 }
712 /* attach Rx buffer to mbuf */
713 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
714 rbuf);
715 data->m->m_flags |= M_EXT_RW;
716
717 error = bus_dmamap_load(sc->sc_dmat, data->map,
718 mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
719 BUS_DMA_NOWAIT | BUS_DMA_READ);
720 if (error) {
721 aprint_error_dev(sc->sc_dev,
722 "could not load mbuf: %d\n", error);
723 goto fail;
724 }
725
726 ring->desc[i] = htole32(rbuf->paddr);
727 }
728
729 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
730 BUS_DMASYNC_PREWRITE);
731
732 return 0;
733
734 fail: wpi_free_rx_ring(sc, ring);
735 return error;
736 }
737
738 static void
739 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
740 {
741 int ntries;
742
743 wpi_mem_lock(sc);
744
745 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
746 for (ntries = 0; ntries < 100; ntries++) {
747 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
748 break;
749 DELAY(10);
750 }
751 #ifdef WPI_DEBUG
752 if (ntries == 100 && wpi_debug > 0)
753 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
754 #endif
755 wpi_mem_unlock(sc);
756
757 ring->cur = 0;
758 }
759
760 static void
761 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
762 {
763 int i;
764
765 wpi_dma_contig_free(&ring->desc_dma);
766
767 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
768 if (ring->data[i].m != NULL) {
769 bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
770 m_freem(ring->data[i].m);
771 }
772 if (ring->data[i].map != NULL) {
773 bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
774 }
775 }
776 }
777
778 static int
779 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
780 int qid)
781 {
782 int i, error;
783
784 ring->qid = qid;
785 ring->count = count;
786 ring->queued = 0;
787 ring->cur = 0;
788
789 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
790 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
791 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
792 if (error != 0) {
793 aprint_error_dev(sc->sc_dev,
794 "could not allocate tx ring DMA memory\n");
795 goto fail;
796 }
797
798 /* update shared page with ring's base address */
799 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
800 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
801 sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
802
803 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
804 (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
805 BUS_DMA_NOWAIT);
806 if (error != 0) {
807 aprint_error_dev(sc->sc_dev,
808 "could not allocate tx cmd DMA memory\n");
809 goto fail;
810 }
811
812 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
813 M_NOWAIT | M_ZERO);
814 if (ring->data == NULL) {
815 aprint_error_dev(sc->sc_dev,
816 "could not allocate tx data slots\n");
817 goto fail;
818 }
819
820 for (i = 0; i < count; i++) {
821 struct wpi_tx_data *data = &ring->data[i];
822
823 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
824 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
825 &data->map);
826 if (error != 0) {
827 aprint_error_dev(sc->sc_dev,
828 "could not create tx buf DMA map\n");
829 goto fail;
830 }
831 }
832
833 return 0;
834
835 fail: wpi_free_tx_ring(sc, ring);
836 return error;
837 }
838
839 static void
840 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
841 {
842 int i, ntries;
843
844 wpi_mem_lock(sc);
845
846 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
847 for (ntries = 0; ntries < 100; ntries++) {
848 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
849 break;
850 DELAY(10);
851 }
852 #ifdef WPI_DEBUG
853 if (ntries == 100 && wpi_debug > 0) {
854 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
855 ring->qid);
856 }
857 #endif
858 wpi_mem_unlock(sc);
859
860 for (i = 0; i < ring->count; i++) {
861 struct wpi_tx_data *data = &ring->data[i];
862
863 if (data->m != NULL) {
864 bus_dmamap_unload(sc->sc_dmat, data->map);
865 m_freem(data->m);
866 data->m = NULL;
867 }
868 }
869
870 ring->queued = 0;
871 ring->cur = 0;
872 }
873
874 static void
875 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
876 {
877 int i;
878
879 wpi_dma_contig_free(&ring->desc_dma);
880 wpi_dma_contig_free(&ring->cmd_dma);
881
882 if (ring->data != NULL) {
883 for (i = 0; i < ring->count; i++) {
884 struct wpi_tx_data *data = &ring->data[i];
885
886 if (data->m != NULL) {
887 bus_dmamap_unload(sc->sc_dmat, data->map);
888 m_freem(data->m);
889 }
890 }
891 free(ring->data, M_DEVBUF);
892 }
893 }
894
895 /*ARGUSED*/
896 static struct ieee80211_node *
897 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
898 {
899 struct wpi_node *wn;
900
901 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
902
903 return (struct ieee80211_node *)wn;
904 }
905
906 static void
907 wpi_newassoc(struct ieee80211_node *ni, int isnew)
908 {
909 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
910 int i;
911
912 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
913
914 /* set rate to some reasonable initial value */
915 for (i = ni->ni_rates.rs_nrates - 1;
916 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
917 i--);
918 ni->ni_txrate = i;
919 }
920
921 static int
922 wpi_media_change(struct ifnet *ifp)
923 {
924 int error;
925
926 error = ieee80211_media_change(ifp);
927 if (error != ENETRESET)
928 return error;
929
930 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
931 wpi_init(ifp);
932
933 return 0;
934 }
935
936 static int
937 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
938 {
939 struct ifnet *ifp = ic->ic_ifp;
940 struct wpi_softc *sc = ifp->if_softc;
941 struct ieee80211_node *ni;
942 enum ieee80211_state ostate = ic->ic_state;
943 int error;
944
945 callout_stop(&sc->calib_to);
946
947 switch (nstate) {
948 case IEEE80211_S_SCAN:
949
950 if (sc->is_scanning)
951 break;
952
953 sc->is_scanning = true;
954
955 if (ostate != IEEE80211_S_SCAN) {
956 /* make the link LED blink while we're scanning */
957 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
958 }
959
960 if ((error = wpi_scan(sc)) != 0) {
961 aprint_error_dev(sc->sc_dev,
962 "could not initiate scan\n");
963 return error;
964 }
965 break;
966
967 case IEEE80211_S_ASSOC:
968 if (ic->ic_state != IEEE80211_S_RUN)
969 break;
970 /* FALLTHROUGH */
971 case IEEE80211_S_AUTH:
972 /* reset state to handle reassociations correctly */
973 sc->config.associd = 0;
974 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
975
976 if ((error = wpi_auth(sc)) != 0) {
977 aprint_error_dev(sc->sc_dev,
978 "could not send authentication request\n");
979 return error;
980 }
981 break;
982
983 case IEEE80211_S_RUN:
984 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
985 /* link LED blinks while monitoring */
986 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
987 break;
988 }
989 ni = ic->ic_bss;
990
991 if (ic->ic_opmode != IEEE80211_M_STA) {
992 (void) wpi_auth(sc); /* XXX */
993 wpi_setup_beacon(sc, ni);
994 }
995
996 wpi_enable_tsf(sc, ni);
997
998 /* update adapter's configuration */
999 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
1000 /* short preamble/slot time are negotiated when associating */
1001 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
1002 WPI_CONFIG_SHSLOT);
1003 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1004 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
1005 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1006 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
1007 sc->config.filter |= htole32(WPI_FILTER_BSS);
1008 if (ic->ic_opmode != IEEE80211_M_STA)
1009 sc->config.filter |= htole32(WPI_FILTER_BEACON);
1010
1011 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
1012
1013 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
1014 sc->config.flags));
1015 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
1016 sizeof (struct wpi_config), 1);
1017 if (error != 0) {
1018 aprint_error_dev(sc->sc_dev,
1019 "could not update configuration\n");
1020 return error;
1021 }
1022
1023 /* configuration has changed, set Tx power accordingly */
1024 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
1025 aprint_error_dev(sc->sc_dev,
1026 "could not set Tx power\n");
1027 return error;
1028 }
1029
1030 if (ic->ic_opmode == IEEE80211_M_STA) {
1031 /* fake a join to init the tx rate */
1032 wpi_newassoc(ni, 1);
1033 }
1034
1035 /* start periodic calibration timer */
1036 sc->calib_cnt = 0;
1037 callout_schedule(&sc->calib_to, hz/2);
1038
1039 /* link LED always on while associated */
1040 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1041 break;
1042
1043 case IEEE80211_S_INIT:
1044 sc->is_scanning = false;
1045 break;
1046 }
1047
1048 return sc->sc_newstate(ic, nstate, arg);
1049 }
1050
1051 /*
1052 * Grab exclusive access to NIC memory.
1053 */
1054 static void
1055 wpi_mem_lock(struct wpi_softc *sc)
1056 {
1057 uint32_t tmp;
1058 int ntries;
1059
1060 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1061 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1062
1063 /* spin until we actually get the lock */
1064 for (ntries = 0; ntries < 1000; ntries++) {
1065 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1066 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1067 break;
1068 DELAY(10);
1069 }
1070 if (ntries == 1000)
1071 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1072 }
1073
1074 /*
1075 * Release lock on NIC memory.
1076 */
1077 static void
1078 wpi_mem_unlock(struct wpi_softc *sc)
1079 {
1080 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1081 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1082 }
1083
1084 static uint32_t
1085 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1086 {
1087 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1088 return WPI_READ(sc, WPI_READ_MEM_DATA);
1089 }
1090
1091 static void
1092 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1093 {
1094 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1095 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1096 }
1097
1098 static void
1099 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1100 const uint32_t *data, int wlen)
1101 {
1102 for (; wlen > 0; wlen--, data++, addr += 4)
1103 wpi_mem_write(sc, addr, *data);
1104 }
1105
1106 /*
1107 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1108 * instead of using the traditional bit-bang method.
1109 */
1110 static int
1111 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1112 {
1113 uint8_t *out = data;
1114 uint32_t val;
1115 int ntries;
1116
1117 wpi_mem_lock(sc);
1118 for (; len > 0; len -= 2, addr++) {
1119 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1120
1121 for (ntries = 0; ntries < 10; ntries++) {
1122 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1123 WPI_EEPROM_READY)
1124 break;
1125 DELAY(5);
1126 }
1127 if (ntries == 10) {
1128 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1129 return ETIMEDOUT;
1130 }
1131 *out++ = val >> 16;
1132 if (len > 1)
1133 *out++ = val >> 24;
1134 }
1135 wpi_mem_unlock(sc);
1136
1137 return 0;
1138 }
1139
1140 /*
1141 * The firmware boot code is small and is intended to be copied directly into
1142 * the NIC internal memory.
1143 */
1144 int
1145 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1146 {
1147 int ntries;
1148
1149 size /= sizeof (uint32_t);
1150
1151 wpi_mem_lock(sc);
1152
1153 /* copy microcode image into NIC memory */
1154 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1155 (const uint32_t *)ucode, size);
1156
1157 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1158 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1159 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1160
1161 /* run microcode */
1162 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1163
1164 /* wait for transfer to complete */
1165 for (ntries = 0; ntries < 1000; ntries++) {
1166 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1167 break;
1168 DELAY(10);
1169 }
1170 if (ntries == 1000) {
1171 wpi_mem_unlock(sc);
1172 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1173 return ETIMEDOUT;
1174 }
1175 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1176
1177 wpi_mem_unlock(sc);
1178
1179 return 0;
1180 }
1181
1182 static int
1183 wpi_cache_firmware(struct wpi_softc *sc)
1184 {
1185 const char *const fwname = wpi_firmware_name;
1186 firmware_handle_t fw;
1187 int error;
1188
1189 /* sc is used here only to report error messages. */
1190
1191 mutex_enter(&wpi_firmware_mutex);
1192
1193 if (wpi_firmware_users == SIZE_MAX) {
1194 mutex_exit(&wpi_firmware_mutex);
1195 return ENFILE; /* Too many of something in the system... */
1196 }
1197 if (wpi_firmware_users++) {
1198 KASSERT(wpi_firmware_image != NULL);
1199 KASSERT(wpi_firmware_size > 0);
1200 mutex_exit(&wpi_firmware_mutex);
1201 return 0; /* Already good to go. */
1202 }
1203
1204 KASSERT(wpi_firmware_image == NULL);
1205 KASSERT(wpi_firmware_size == 0);
1206
1207 /* load firmware image from disk */
1208 if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1209 aprint_error_dev(sc->sc_dev,
1210 "could not open firmware file %s: %d\n", fwname, error);
1211 goto fail0;
1212 }
1213
1214 wpi_firmware_size = firmware_get_size(fw);
1215
1216 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1217 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1218 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1219 WPI_FW_BOOT_TEXT_MAXSZ) {
1220 aprint_error_dev(sc->sc_dev,
1221 "firmware file %s too large: %zu bytes\n",
1222 fwname, wpi_firmware_size);
1223 error = EFBIG;
1224 goto fail1;
1225 }
1226
1227 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1228 aprint_error_dev(sc->sc_dev,
1229 "firmware file %s too small: %zu bytes\n",
1230 fwname, wpi_firmware_size);
1231 error = EINVAL;
1232 goto fail1;
1233 }
1234
1235 wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1236 if (wpi_firmware_image == NULL) {
1237 aprint_error_dev(sc->sc_dev,
1238 "not enough memory for firmware file %s\n", fwname);
1239 error = ENOMEM;
1240 goto fail1;
1241 }
1242
1243 error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1244 if (error != 0) {
1245 aprint_error_dev(sc->sc_dev,
1246 "error reading firmware file %s: %d\n", fwname, error);
1247 goto fail2;
1248 }
1249
1250 /* Success! */
1251 firmware_close(fw);
1252 mutex_exit(&wpi_firmware_mutex);
1253 return 0;
1254
1255 fail2:
1256 firmware_free(wpi_firmware_image, wpi_firmware_size);
1257 wpi_firmware_image = NULL;
1258 fail1:
1259 wpi_firmware_size = 0;
1260 firmware_close(fw);
1261 fail0:
1262 KASSERT(wpi_firmware_users == 1);
1263 wpi_firmware_users = 0;
1264 KASSERT(wpi_firmware_image == NULL);
1265 KASSERT(wpi_firmware_size == 0);
1266
1267 mutex_exit(&wpi_firmware_mutex);
1268 return error;
1269 }
1270
1271 static void
1272 wpi_release_firmware(void)
1273 {
1274
1275 mutex_enter(&wpi_firmware_mutex);
1276
1277 KASSERT(wpi_firmware_users > 0);
1278 KASSERT(wpi_firmware_image != NULL);
1279 KASSERT(wpi_firmware_size != 0);
1280
1281 if (--wpi_firmware_users == 0) {
1282 firmware_free(wpi_firmware_image, wpi_firmware_size);
1283 wpi_firmware_image = NULL;
1284 wpi_firmware_size = 0;
1285 }
1286
1287 mutex_exit(&wpi_firmware_mutex);
1288 }
1289
1290 static int
1291 wpi_load_firmware(struct wpi_softc *sc)
1292 {
1293 struct wpi_dma_info *dma = &sc->fw_dma;
1294 struct wpi_firmware_hdr hdr;
1295 const uint8_t *init_text, *init_data, *main_text, *main_data;
1296 const uint8_t *boot_text;
1297 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1298 uint32_t boot_textsz;
1299 size_t size;
1300 int error;
1301
1302 if (!sc->fw_used) {
1303 if ((error = wpi_cache_firmware(sc)) != 0)
1304 return error;
1305 sc->fw_used = true;
1306 }
1307
1308 KASSERT(sc->fw_used);
1309 KASSERT(wpi_firmware_image != NULL);
1310 KASSERT(wpi_firmware_size > sizeof(hdr));
1311
1312 memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1313
1314 main_textsz = le32toh(hdr.main_textsz);
1315 main_datasz = le32toh(hdr.main_datasz);
1316 init_textsz = le32toh(hdr.init_textsz);
1317 init_datasz = le32toh(hdr.init_datasz);
1318 boot_textsz = le32toh(hdr.boot_textsz);
1319
1320 /* sanity-check firmware segments sizes */
1321 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1322 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1323 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1324 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1325 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1326 (boot_textsz & 3) != 0) {
1327 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1328 error = EINVAL;
1329 goto free_firmware;
1330 }
1331
1332 /* check that all firmware segments are present */
1333 size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1334 main_datasz + init_textsz + init_datasz + boot_textsz;
1335 if (wpi_firmware_size < size) {
1336 aprint_error_dev(sc->sc_dev,
1337 "firmware file truncated: %zu bytes, expected %zu bytes\n",
1338 wpi_firmware_size, size);
1339 error = EINVAL;
1340 goto free_firmware;
1341 }
1342
1343 /* get pointers to firmware segments */
1344 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1345 main_data = main_text + main_textsz;
1346 init_text = main_data + main_datasz;
1347 init_data = init_text + init_textsz;
1348 boot_text = init_data + init_datasz;
1349
1350 /* copy initialization images into pre-allocated DMA-safe memory */
1351 memcpy(dma->vaddr, init_data, init_datasz);
1352 memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1353 init_textsz);
1354
1355 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1356
1357 /* tell adapter where to find initialization images */
1358 wpi_mem_lock(sc);
1359 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1360 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1361 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1362 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1363 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1364 wpi_mem_unlock(sc);
1365
1366 /* load firmware boot code */
1367 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1368 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1369 return error;
1370 }
1371
1372 /* now press "execute" ;-) */
1373 WPI_WRITE(sc, WPI_RESET, 0);
1374
1375 /* wait at most one second for first alive notification */
1376 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1377 /* this isn't what was supposed to happen.. */
1378 aprint_error_dev(sc->sc_dev,
1379 "timeout waiting for adapter to initialize\n");
1380 }
1381
1382 /* copy runtime images into pre-allocated DMA-safe memory */
1383 memcpy(dma->vaddr, main_data, main_datasz);
1384 memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1385 main_textsz);
1386
1387 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1388
1389 /* tell adapter where to find runtime images */
1390 wpi_mem_lock(sc);
1391 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1392 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1393 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1394 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1395 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1396 wpi_mem_unlock(sc);
1397
1398 /* wait at most one second for second alive notification */
1399 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1400 /* this isn't what was supposed to happen.. */
1401 aprint_error_dev(sc->sc_dev,
1402 "timeout waiting for adapter to initialize\n");
1403 }
1404
1405 return error;
1406
1407 free_firmware:
1408 sc->fw_used = false;
1409 wpi_release_firmware();
1410 return error;
1411 }
1412
1413 static void
1414 wpi_calib_timeout(void *arg)
1415 {
1416 struct wpi_softc *sc = arg;
1417 struct ieee80211com *ic = &sc->sc_ic;
1418 int temp, s;
1419
1420 /* automatic rate control triggered every 500ms */
1421 if (ic->ic_fixed_rate == -1) {
1422 s = splnet();
1423 if (ic->ic_opmode == IEEE80211_M_STA)
1424 wpi_iter_func(sc, ic->ic_bss);
1425 else
1426 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1427 splx(s);
1428 }
1429
1430 /* update sensor data */
1431 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1432
1433 /* automatic power calibration every 60s */
1434 if (++sc->calib_cnt >= 120) {
1435 wpi_power_calibration(sc, temp);
1436 sc->calib_cnt = 0;
1437 }
1438
1439 callout_schedule(&sc->calib_to, hz/2);
1440 }
1441
1442 static void
1443 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1444 {
1445 struct wpi_softc *sc = arg;
1446 struct wpi_node *wn = (struct wpi_node *)ni;
1447
1448 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1449 }
1450
1451 /*
1452 * This function is called periodically (every 60 seconds) to adjust output
1453 * power to temperature changes.
1454 */
1455 void
1456 wpi_power_calibration(struct wpi_softc *sc, int temp)
1457 {
1458 /* sanity-check read value */
1459 if (temp < -260 || temp > 25) {
1460 /* this can't be correct, ignore */
1461 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1462 return;
1463 }
1464
1465 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1466
1467 /* adjust Tx power if need be */
1468 if (abs(temp - sc->temp) <= 6)
1469 return;
1470
1471 sc->temp = temp;
1472
1473 if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1474 /* just warn, too bad for the automatic calibration... */
1475 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1476 }
1477 }
1478
1479 static void
1480 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1481 struct wpi_rx_data *data)
1482 {
1483 struct ieee80211com *ic = &sc->sc_ic;
1484 struct ifnet *ifp = ic->ic_ifp;
1485 struct wpi_rx_ring *ring = &sc->rxq;
1486 struct wpi_rx_stat *stat;
1487 struct wpi_rx_head *head;
1488 struct wpi_rx_tail *tail;
1489 struct wpi_rbuf *rbuf;
1490 struct ieee80211_frame *wh;
1491 struct ieee80211_node *ni;
1492 struct mbuf *m, *mnew;
1493 int data_off, error, s;
1494
1495 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1496 BUS_DMASYNC_POSTREAD);
1497 stat = (struct wpi_rx_stat *)(desc + 1);
1498
1499 if (stat->len > WPI_STAT_MAXLEN) {
1500 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1501 ifp->if_ierrors++;
1502 return;
1503 }
1504
1505 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1506 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1507
1508 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1509 "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1510 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1511 le64toh(tail->tstamp)));
1512
1513 /*
1514 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1515 * to radiotap in monitor mode).
1516 */
1517 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1518 DPRINTF(("rx tail flags error %x\n",
1519 le32toh(tail->flags)));
1520 ifp->if_ierrors++;
1521 return;
1522 }
1523
1524 /* Compute where are the useful datas */
1525 data_off = (char*)(head + 1) - mtod(data->m, char*);
1526
1527 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1528 if (mnew == NULL) {
1529 ifp->if_ierrors++;
1530 return;
1531 }
1532
1533 rbuf = wpi_alloc_rbuf(sc);
1534 if (rbuf == NULL) {
1535 m_freem(mnew);
1536 ifp->if_ierrors++;
1537 return;
1538 }
1539
1540 /* attach Rx buffer to mbuf */
1541 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1542 rbuf);
1543 mnew->m_flags |= M_EXT_RW;
1544
1545 bus_dmamap_unload(sc->sc_dmat, data->map);
1546
1547 error = bus_dmamap_load(sc->sc_dmat, data->map,
1548 mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1549 BUS_DMA_NOWAIT | BUS_DMA_READ);
1550 if (error) {
1551 device_printf(sc->sc_dev,
1552 "couldn't load rx mbuf: %d\n", error);
1553 m_freem(mnew);
1554 ifp->if_ierrors++;
1555
1556 error = bus_dmamap_load(sc->sc_dmat, data->map,
1557 mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1558 BUS_DMA_NOWAIT | BUS_DMA_READ);
1559 if (error)
1560 panic("%s: bus_dmamap_load failed: %d\n",
1561 device_xname(sc->sc_dev), error);
1562 return;
1563 }
1564
1565 /* new mbuf loaded successfully */
1566 m = data->m;
1567 data->m = mnew;
1568
1569 /* update Rx descriptor */
1570 ring->desc[ring->cur] = htole32(rbuf->paddr);
1571 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1572 ring->desc_dma.size,
1573 BUS_DMASYNC_PREWRITE);
1574
1575 m->m_data = (char*)m->m_data + data_off;
1576 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1577
1578 /* finalize mbuf */
1579 m_set_rcvif(m, ifp);
1580
1581 s = splnet();
1582
1583 if (sc->sc_drvbpf != NULL) {
1584 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1585
1586 tap->wr_flags = 0;
1587 tap->wr_chan_freq =
1588 htole16(ic->ic_channels[head->chan].ic_freq);
1589 tap->wr_chan_flags =
1590 htole16(ic->ic_channels[head->chan].ic_flags);
1591 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1592 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1593 tap->wr_tsft = tail->tstamp;
1594 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1595 switch (head->rate) {
1596 /* CCK rates */
1597 case 10: tap->wr_rate = 2; break;
1598 case 20: tap->wr_rate = 4; break;
1599 case 55: tap->wr_rate = 11; break;
1600 case 110: tap->wr_rate = 22; break;
1601 /* OFDM rates */
1602 case 0xd: tap->wr_rate = 12; break;
1603 case 0xf: tap->wr_rate = 18; break;
1604 case 0x5: tap->wr_rate = 24; break;
1605 case 0x7: tap->wr_rate = 36; break;
1606 case 0x9: tap->wr_rate = 48; break;
1607 case 0xb: tap->wr_rate = 72; break;
1608 case 0x1: tap->wr_rate = 96; break;
1609 case 0x3: tap->wr_rate = 108; break;
1610 /* unknown rate: should not happen */
1611 default: tap->wr_rate = 0;
1612 }
1613 if (le16toh(head->flags) & 0x4)
1614 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1615
1616 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1617 }
1618
1619 /* grab a reference to the source node */
1620 wh = mtod(m, struct ieee80211_frame *);
1621 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1622
1623 /* send the frame to the 802.11 layer */
1624 ieee80211_input(ic, m, ni, stat->rssi, 0);
1625
1626 /* release node reference */
1627 ieee80211_free_node(ni);
1628
1629 splx(s);
1630 }
1631
1632 static void
1633 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1634 {
1635 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1636 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1637 struct wpi_tx_data *data = &ring->data[desc->idx];
1638 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1639 struct wpi_node *wn = (struct wpi_node *)data->ni;
1640 int s;
1641
1642 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1643 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1644 stat->nkill, stat->rate, le32toh(stat->duration),
1645 le32toh(stat->status)));
1646
1647 s = splnet();
1648
1649 /*
1650 * Update rate control statistics for the node.
1651 * XXX we should not count mgmt frames since they're always sent at
1652 * the lowest available bit-rate.
1653 */
1654 wn->amn.amn_txcnt++;
1655 if (stat->ntries > 0) {
1656 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1657 wn->amn.amn_retrycnt++;
1658 }
1659
1660 if ((le32toh(stat->status) & 0xff) != 1)
1661 ifp->if_oerrors++;
1662 else
1663 ifp->if_opackets++;
1664
1665 bus_dmamap_unload(sc->sc_dmat, data->map);
1666 m_freem(data->m);
1667 data->m = NULL;
1668 ieee80211_free_node(data->ni);
1669 data->ni = NULL;
1670
1671 ring->queued--;
1672
1673 sc->sc_tx_timer = 0;
1674 ifp->if_flags &= ~IFF_OACTIVE;
1675 wpi_start(ifp); /* in softint */
1676
1677 splx(s);
1678 }
1679
1680 static void
1681 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1682 {
1683 struct wpi_tx_ring *ring = &sc->cmdq;
1684 struct wpi_tx_data *data;
1685
1686 if ((desc->qid & 7) != 4)
1687 return; /* not a command ack */
1688
1689 data = &ring->data[desc->idx];
1690
1691 /* if the command was mapped in a mbuf, free it */
1692 if (data->m != NULL) {
1693 bus_dmamap_unload(sc->sc_dmat, data->map);
1694 m_freem(data->m);
1695 data->m = NULL;
1696 }
1697
1698 wakeup(&ring->cmd[desc->idx]);
1699 }
1700
1701 static void
1702 wpi_notif_intr(struct wpi_softc *sc)
1703 {
1704 struct ieee80211com *ic = &sc->sc_ic;
1705 struct ifnet *ifp = ic->ic_ifp;
1706 uint32_t hw;
1707 int s;
1708
1709 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1710 sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1711
1712 hw = le32toh(sc->shared->next);
1713 while (sc->rxq.cur != hw) {
1714 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1715 struct wpi_rx_desc *desc;
1716
1717 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1718 BUS_DMASYNC_POSTREAD);
1719 desc = mtod(data->m, struct wpi_rx_desc *);
1720
1721 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1722 "len=%d\n", desc->qid, desc->idx, desc->flags,
1723 desc->type, le32toh(desc->len)));
1724
1725 if (!(desc->qid & 0x80)) /* reply to a command */
1726 wpi_cmd_intr(sc, desc);
1727
1728 switch (desc->type) {
1729 case WPI_RX_DONE:
1730 /* a 802.11 frame was received */
1731 wpi_rx_intr(sc, desc, data);
1732 break;
1733
1734 case WPI_TX_DONE:
1735 /* a 802.11 frame has been transmitted */
1736 wpi_tx_intr(sc, desc);
1737 break;
1738
1739 case WPI_UC_READY:
1740 {
1741 struct wpi_ucode_info *uc =
1742 (struct wpi_ucode_info *)(desc + 1);
1743
1744 /* the microcontroller is ready */
1745 DPRINTF(("microcode alive notification version %x "
1746 "alive %x\n", le32toh(uc->version),
1747 le32toh(uc->valid)));
1748
1749 if (le32toh(uc->valid) != 1) {
1750 aprint_error_dev(sc->sc_dev,
1751 "microcontroller initialization failed\n");
1752 }
1753 break;
1754 }
1755 case WPI_STATE_CHANGED:
1756 {
1757 uint32_t *status = (uint32_t *)(desc + 1);
1758
1759 /* enabled/disabled notification */
1760 DPRINTF(("state changed to %x\n", le32toh(*status)));
1761
1762 if (le32toh(*status) & 1) {
1763 s = splnet();
1764 /* the radio button has to be pushed */
1765 /* wake up thread to signal powerd */
1766 cv_signal(&sc->sc_rsw_cv);
1767 aprint_error_dev(sc->sc_dev,
1768 "Radio transmitter is off\n");
1769 /* turn the interface down */
1770 ifp->if_flags &= ~IFF_UP;
1771 wpi_stop(ifp, 1);
1772 splx(s);
1773 return; /* no further processing */
1774 }
1775 break;
1776 }
1777 case WPI_START_SCAN:
1778 {
1779 #if 0
1780 struct wpi_start_scan *scan =
1781 (struct wpi_start_scan *)(desc + 1);
1782
1783 DPRINTFN(2, ("scanning channel %d status %x\n",
1784 scan->chan, le32toh(scan->status)));
1785
1786 /* fix current channel */
1787 ic->ic_curchan = &ic->ic_channels[scan->chan];
1788 #endif
1789 break;
1790 }
1791 case WPI_STOP_SCAN:
1792 {
1793 #ifdef WPI_DEBUG
1794 struct wpi_stop_scan *scan =
1795 (struct wpi_stop_scan *)(desc + 1);
1796 #endif
1797
1798 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1799 scan->nchan, scan->status, scan->chan));
1800
1801 s = splnet();
1802 sc->is_scanning = false;
1803 if (ic->ic_state == IEEE80211_S_SCAN)
1804 ieee80211_next_scan(ic);
1805 splx(s);
1806 break;
1807 }
1808 }
1809
1810 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1811 }
1812
1813 /* tell the firmware what we have processed */
1814 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1815 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1816 }
1817
1818 static int
1819 wpi_intr(void *arg)
1820 {
1821 struct wpi_softc *sc = arg;
1822 uint32_t r;
1823
1824 r = WPI_READ(sc, WPI_INTR);
1825 if (r == 0 || r == 0xffffffff)
1826 return 0; /* not for us */
1827
1828 DPRINTFN(6, ("interrupt reg %x\n", r));
1829
1830 /* disable interrupts */
1831 WPI_WRITE(sc, WPI_MASK, 0);
1832
1833 softint_schedule(sc->sc_soft_ih);
1834 return 1;
1835 }
1836
1837 static void
1838 wpi_softintr(void *arg)
1839 {
1840 struct wpi_softc *sc = arg;
1841 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1842 uint32_t r;
1843
1844 r = WPI_READ(sc, WPI_INTR);
1845 if (r == 0 || r == 0xffffffff)
1846 goto out;
1847
1848 /* ack interrupts */
1849 WPI_WRITE(sc, WPI_INTR, r);
1850
1851 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1852 /* SYSTEM FAILURE, SYSTEM FAILURE */
1853 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1854 ifp->if_flags &= ~IFF_UP;
1855 wpi_stop(ifp, 1);
1856 return;
1857 }
1858
1859 if (r & WPI_RX_INTR)
1860 wpi_notif_intr(sc);
1861
1862 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1863 wakeup(sc);
1864
1865 out:
1866 /* re-enable interrupts */
1867 if (ifp->if_flags & IFF_UP)
1868 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1869 }
1870
1871 static uint8_t
1872 wpi_plcp_signal(int rate)
1873 {
1874 switch (rate) {
1875 /* CCK rates (returned values are device-dependent) */
1876 case 2: return 10;
1877 case 4: return 20;
1878 case 11: return 55;
1879 case 22: return 110;
1880
1881 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1882 /* R1-R4, (u)ral is R4-R1 */
1883 case 12: return 0xd;
1884 case 18: return 0xf;
1885 case 24: return 0x5;
1886 case 36: return 0x7;
1887 case 48: return 0x9;
1888 case 72: return 0xb;
1889 case 96: return 0x1;
1890 case 108: return 0x3;
1891
1892 /* unsupported rates (should not get there) */
1893 default: return 0;
1894 }
1895 }
1896
1897 /* quickly determine if a given rate is CCK or OFDM */
1898 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1899
1900 static int
1901 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1902 int ac)
1903 {
1904 struct ieee80211com *ic = &sc->sc_ic;
1905 struct wpi_tx_ring *ring = &sc->txq[ac];
1906 struct wpi_tx_desc *desc;
1907 struct wpi_tx_data *data;
1908 struct wpi_tx_cmd *cmd;
1909 struct wpi_cmd_data *tx;
1910 struct ieee80211_frame *wh;
1911 struct ieee80211_key *k;
1912 const struct chanAccParams *cap;
1913 struct mbuf *mnew;
1914 int i, rate, error, hdrlen, noack = 0;
1915
1916 desc = &ring->desc[ring->cur];
1917 data = &ring->data[ring->cur];
1918
1919 wh = mtod(m0, struct ieee80211_frame *);
1920
1921 if (ieee80211_has_qos(wh)) {
1922 cap = &ic->ic_wme.wme_chanParams;
1923 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1924 }
1925
1926 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1927 k = ieee80211_crypto_encap(ic, ni, m0);
1928 if (k == NULL) {
1929 m_freem(m0);
1930 return ENOBUFS;
1931 }
1932
1933 /* packet header may have moved, reset our local pointer */
1934 wh = mtod(m0, struct ieee80211_frame *);
1935 }
1936
1937 hdrlen = ieee80211_anyhdrsize(wh);
1938
1939 /* pickup a rate */
1940 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1941 IEEE80211_FC0_TYPE_MGT) {
1942 /* mgmt frames are sent at the lowest available bit-rate */
1943 rate = ni->ni_rates.rs_rates[0];
1944 } else {
1945 if (ic->ic_fixed_rate != -1) {
1946 rate = ic->ic_sup_rates[ic->ic_curmode].
1947 rs_rates[ic->ic_fixed_rate];
1948 } else
1949 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1950 }
1951 rate &= IEEE80211_RATE_VAL;
1952
1953 if (sc->sc_drvbpf != NULL) {
1954 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1955
1956 tap->wt_flags = 0;
1957 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1958 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1959 tap->wt_rate = rate;
1960 tap->wt_hwqueue = ac;
1961 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1962 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1963
1964 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1965 }
1966
1967 cmd = &ring->cmd[ring->cur];
1968 cmd->code = WPI_CMD_TX_DATA;
1969 cmd->flags = 0;
1970 cmd->qid = ring->qid;
1971 cmd->idx = ring->cur;
1972
1973 tx = (struct wpi_cmd_data *)cmd->data;
1974 /* no need to zero tx, all fields are reinitialized here */
1975 tx->flags = 0;
1976
1977 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1978 tx->flags |= htole32(WPI_TX_NEED_ACK);
1979 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1980 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1981
1982 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1983
1984 /* retrieve destination node's id */
1985 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1986 WPI_ID_BSS;
1987
1988 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1989 IEEE80211_FC0_TYPE_MGT) {
1990 /* tell h/w to set timestamp in probe responses */
1991 if ((wh->i_fc[0] &
1992 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1993 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1994 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1995
1996 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1997 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1998 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1999 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
2000 tx->timeout = htole16(3);
2001 else
2002 tx->timeout = htole16(2);
2003 } else
2004 tx->timeout = htole16(0);
2005
2006 tx->rate = wpi_plcp_signal(rate);
2007
2008 /* be very persistant at sending frames out */
2009 tx->rts_ntries = 7;
2010 tx->data_ntries = 15;
2011
2012 tx->ofdm_mask = 0xff;
2013 tx->cck_mask = 0x0f;
2014 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2015
2016 tx->len = htole16(m0->m_pkthdr.len);
2017
2018 /* save and trim IEEE802.11 header */
2019 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2020 m_adj(m0, hdrlen);
2021
2022 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2023 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2024 if (error != 0 && error != EFBIG) {
2025 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2026 error);
2027 m_freem(m0);
2028 return error;
2029 }
2030 if (error != 0) {
2031 /* too many fragments, linearize */
2032
2033 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2034 if (mnew == NULL) {
2035 m_freem(m0);
2036 return ENOMEM;
2037 }
2038 M_COPY_PKTHDR(mnew, m0);
2039 if (m0->m_pkthdr.len > MHLEN) {
2040 MCLGET(mnew, M_DONTWAIT);
2041 if (!(mnew->m_flags & M_EXT)) {
2042 m_freem(m0);
2043 m_freem(mnew);
2044 return ENOMEM;
2045 }
2046 }
2047
2048 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2049 m_freem(m0);
2050 mnew->m_len = mnew->m_pkthdr.len;
2051 m0 = mnew;
2052
2053 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2054 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2055 if (error != 0) {
2056 aprint_error_dev(sc->sc_dev,
2057 "could not map mbuf (error %d)\n", error);
2058 m_freem(m0);
2059 return error;
2060 }
2061 }
2062
2063 data->m = m0;
2064 data->ni = ni;
2065
2066 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2067 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2068
2069 /* first scatter/gather segment is used by the tx data command */
2070 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2071 (1 + data->map->dm_nsegs) << 24);
2072 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2073 ring->cur * sizeof (struct wpi_tx_cmd));
2074 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
2075 ((hdrlen + 3) & ~3));
2076 for (i = 1; i <= data->map->dm_nsegs; i++) {
2077 desc->segs[i].addr =
2078 htole32(data->map->dm_segs[i - 1].ds_addr);
2079 desc->segs[i].len =
2080 htole32(data->map->dm_segs[i - 1].ds_len);
2081 }
2082
2083 ring->queued++;
2084
2085 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2086 data->map->dm_mapsize,
2087 BUS_DMASYNC_PREWRITE);
2088 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
2089 ring->cmd_dma.size,
2090 BUS_DMASYNC_PREWRITE);
2091 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2092 ring->desc_dma.size,
2093 BUS_DMASYNC_PREWRITE);
2094
2095 /* kick ring */
2096 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2097 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2098
2099 return 0;
2100 }
2101
2102 static void
2103 wpi_start(struct ifnet *ifp)
2104 {
2105 struct wpi_softc *sc = ifp->if_softc;
2106 struct ieee80211com *ic = &sc->sc_ic;
2107 struct ieee80211_node *ni;
2108 struct ether_header *eh;
2109 struct mbuf *m0;
2110 int ac;
2111
2112 /*
2113 * net80211 may still try to send management frames even if the
2114 * IFF_RUNNING flag is not set...
2115 */
2116 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2117 return;
2118
2119 for (;;) {
2120 IF_DEQUEUE(&ic->ic_mgtq, m0);
2121 if (m0 != NULL) {
2122
2123 ni = M_GETCTX(m0, struct ieee80211_node *);
2124 M_CLEARCTX(m0);
2125
2126 /* management frames go into ring 0 */
2127 if (sc->txq[0].queued > sc->txq[0].count - 8) {
2128 ifp->if_oerrors++;
2129 continue;
2130 }
2131 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2132 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2133 ifp->if_oerrors++;
2134 break;
2135 }
2136 } else {
2137 if (ic->ic_state != IEEE80211_S_RUN)
2138 break;
2139 IFQ_POLL(&ifp->if_snd, m0);
2140 if (m0 == NULL)
2141 break;
2142
2143 if (m0->m_len < sizeof (*eh) &&
2144 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2145 ifp->if_oerrors++;
2146 continue;
2147 }
2148 eh = mtod(m0, struct ether_header *);
2149 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2150 if (ni == NULL) {
2151 m_freem(m0);
2152 ifp->if_oerrors++;
2153 continue;
2154 }
2155
2156 /* classify mbuf so we can find which tx ring to use */
2157 if (ieee80211_classify(ic, m0, ni) != 0) {
2158 m_freem(m0);
2159 ieee80211_free_node(ni);
2160 ifp->if_oerrors++;
2161 continue;
2162 }
2163
2164 /* no QoS encapsulation for EAPOL frames */
2165 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2166 M_WME_GETAC(m0) : WME_AC_BE;
2167
2168 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2169 /* there is no place left in this ring */
2170 ifp->if_flags |= IFF_OACTIVE;
2171 break;
2172 }
2173 IFQ_DEQUEUE(&ifp->if_snd, m0);
2174 bpf_mtap(ifp, m0, BPF_D_OUT);
2175 m0 = ieee80211_encap(ic, m0, ni);
2176 if (m0 == NULL) {
2177 ieee80211_free_node(ni);
2178 ifp->if_oerrors++;
2179 continue;
2180 }
2181 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2182 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2183 ieee80211_free_node(ni);
2184 ifp->if_oerrors++;
2185 break;
2186 }
2187 }
2188
2189 sc->sc_tx_timer = 5;
2190 ifp->if_timer = 1;
2191 }
2192 }
2193
2194 static void
2195 wpi_watchdog(struct ifnet *ifp)
2196 {
2197 struct wpi_softc *sc = ifp->if_softc;
2198
2199 ifp->if_timer = 0;
2200
2201 if (sc->sc_tx_timer > 0) {
2202 if (--sc->sc_tx_timer == 0) {
2203 aprint_error_dev(sc->sc_dev, "device timeout\n");
2204 ifp->if_flags &= ~IFF_UP;
2205 wpi_stop(ifp, 1);
2206 ifp->if_oerrors++;
2207 return;
2208 }
2209 ifp->if_timer = 1;
2210 }
2211
2212 ieee80211_watchdog(&sc->sc_ic);
2213 }
2214
2215 static int
2216 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2217 {
2218 #define IS_RUNNING(ifp) \
2219 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2220
2221 struct wpi_softc *sc = ifp->if_softc;
2222 struct ieee80211com *ic = &sc->sc_ic;
2223 int s, error = 0;
2224
2225 s = splnet();
2226
2227 switch (cmd) {
2228 case SIOCSIFFLAGS:
2229 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2230 break;
2231 if (ifp->if_flags & IFF_UP) {
2232 if (!(ifp->if_flags & IFF_RUNNING))
2233 wpi_init(ifp);
2234 } else {
2235 if (ifp->if_flags & IFF_RUNNING)
2236 wpi_stop(ifp, 1);
2237 }
2238 break;
2239
2240 case SIOCADDMULTI:
2241 case SIOCDELMULTI:
2242 /* XXX no h/w multicast filter? --dyoung */
2243 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2244 /* setup multicast filter, etc */
2245 error = 0;
2246 }
2247 break;
2248
2249 default:
2250 error = ieee80211_ioctl(ic, cmd, data);
2251 }
2252
2253 if (error == ENETRESET) {
2254 if (IS_RUNNING(ifp) &&
2255 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2256 wpi_init(ifp);
2257 error = 0;
2258 }
2259
2260 splx(s);
2261 return error;
2262
2263 #undef IS_RUNNING
2264 }
2265
2266 /*
2267 * Extract various information from EEPROM.
2268 */
2269 static void
2270 wpi_read_eeprom(struct wpi_softc *sc)
2271 {
2272 struct ieee80211com *ic = &sc->sc_ic;
2273 char domain[4];
2274 int i;
2275
2276 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2277 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2278 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2279
2280 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2281 sc->type));
2282
2283 /* read and print regulatory domain */
2284 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2285 aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2286
2287 /* read and print MAC address */
2288 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2289 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2290
2291 /* read the list of authorized channels */
2292 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2293 wpi_read_eeprom_channels(sc, i);
2294
2295 /* read the list of power groups */
2296 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2297 wpi_read_eeprom_group(sc, i);
2298 }
2299
2300 static void
2301 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2302 {
2303 struct ieee80211com *ic = &sc->sc_ic;
2304 const struct wpi_chan_band *band = &wpi_bands[n];
2305 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2306 int chan, i;
2307
2308 wpi_read_prom_data(sc, band->addr, channels,
2309 band->nchan * sizeof (struct wpi_eeprom_chan));
2310
2311 for (i = 0; i < band->nchan; i++) {
2312 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2313 continue;
2314
2315 chan = band->chan[i];
2316
2317 if (n == 0) { /* 2GHz band */
2318 ic->ic_channels[chan].ic_freq =
2319 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2320 ic->ic_channels[chan].ic_flags =
2321 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2322 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2323
2324 } else { /* 5GHz band */
2325 /*
2326 * Some 3945ABG adapters support channels 7, 8, 11
2327 * and 12 in the 2GHz *and* 5GHz bands.
2328 * Because of limitations in our net80211(9) stack,
2329 * we can't support these channels in 5GHz band.
2330 */
2331 if (chan <= 14)
2332 continue;
2333
2334 ic->ic_channels[chan].ic_freq =
2335 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2336 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2337 }
2338
2339 /* is active scan allowed on this channel? */
2340 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2341 ic->ic_channels[chan].ic_flags |=
2342 IEEE80211_CHAN_PASSIVE;
2343 }
2344
2345 /* save maximum allowed power for this channel */
2346 sc->maxpwr[chan] = channels[i].maxpwr;
2347
2348 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2349 chan, channels[i].flags, sc->maxpwr[chan]));
2350 }
2351 }
2352
2353 static void
2354 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2355 {
2356 struct wpi_power_group *group = &sc->groups[n];
2357 struct wpi_eeprom_group rgroup;
2358 int i;
2359
2360 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2361 sizeof rgroup);
2362
2363 /* save power group information */
2364 group->chan = rgroup.chan;
2365 group->maxpwr = rgroup.maxpwr;
2366 /* temperature at which the samples were taken */
2367 group->temp = (int16_t)le16toh(rgroup.temp);
2368
2369 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2370 group->chan, group->maxpwr, group->temp));
2371
2372 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2373 group->samples[i].index = rgroup.samples[i].index;
2374 group->samples[i].power = rgroup.samples[i].power;
2375
2376 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2377 group->samples[i].index, group->samples[i].power));
2378 }
2379 }
2380
2381 /*
2382 * Send a command to the firmware.
2383 */
2384 static int
2385 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2386 {
2387 struct wpi_tx_ring *ring = &sc->cmdq;
2388 struct wpi_tx_desc *desc;
2389 struct wpi_tx_cmd *cmd;
2390 struct wpi_dma_info *dma;
2391
2392 KASSERT(size <= sizeof cmd->data);
2393
2394 desc = &ring->desc[ring->cur];
2395 cmd = &ring->cmd[ring->cur];
2396
2397 cmd->code = code;
2398 cmd->flags = 0;
2399 cmd->qid = ring->qid;
2400 cmd->idx = ring->cur;
2401 memcpy(cmd->data, buf, size);
2402
2403 dma = &ring->cmd_dma;
2404 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2405
2406 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2407 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2408 ring->cur * sizeof (struct wpi_tx_cmd));
2409 desc->segs[0].len = htole32(4 + size);
2410
2411 dma = &ring->desc_dma;
2412 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2413
2414 /* kick cmd ring */
2415 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2416 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2417
2418 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2419 }
2420
2421 static int
2422 wpi_wme_update(struct ieee80211com *ic)
2423 {
2424 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2425 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2426 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2427 const struct wmeParams *wmep;
2428 struct wpi_wme_setup wme;
2429 int ac;
2430
2431 /* don't override default WME values if WME is not actually enabled */
2432 if (!(ic->ic_flags & IEEE80211_F_WME))
2433 return 0;
2434
2435 wme.flags = 0;
2436 for (ac = 0; ac < WME_NUM_AC; ac++) {
2437 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2438 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2439 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2440 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2441 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2442
2443 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2444 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2445 wme.ac[ac].cwmax, wme.ac[ac].txop));
2446 }
2447
2448 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2449 #undef WPI_USEC
2450 #undef WPI_EXP2
2451 }
2452
2453 /*
2454 * Configure h/w multi-rate retries.
2455 */
2456 static int
2457 wpi_mrr_setup(struct wpi_softc *sc)
2458 {
2459 struct ieee80211com *ic = &sc->sc_ic;
2460 struct wpi_mrr_setup mrr;
2461 int i, error;
2462
2463 /* CCK rates (not used with 802.11a) */
2464 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2465 mrr.rates[i].flags = 0;
2466 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2467 /* fallback to the immediate lower CCK rate (if any) */
2468 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2469 /* try one time at this rate before falling back to "next" */
2470 mrr.rates[i].ntries = 1;
2471 }
2472
2473 /* OFDM rates (not used with 802.11b) */
2474 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2475 mrr.rates[i].flags = 0;
2476 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2477 /* fallback to the immediate lower rate (if any) */
2478 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2479 mrr.rates[i].next = (i == WPI_OFDM6) ?
2480 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2481 WPI_OFDM6 : WPI_CCK2) :
2482 i - 1;
2483 /* try one time at this rate before falling back to "next" */
2484 mrr.rates[i].ntries = 1;
2485 }
2486
2487 /* setup MRR for control frames */
2488 mrr.which = htole32(WPI_MRR_CTL);
2489 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2490 if (error != 0) {
2491 aprint_error_dev(sc->sc_dev,
2492 "could not setup MRR for control frames\n");
2493 return error;
2494 }
2495
2496 /* setup MRR for data frames */
2497 mrr.which = htole32(WPI_MRR_DATA);
2498 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2499 if (error != 0) {
2500 aprint_error_dev(sc->sc_dev,
2501 "could not setup MRR for data frames\n");
2502 return error;
2503 }
2504
2505 return 0;
2506 }
2507
2508 static void
2509 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2510 {
2511 struct wpi_cmd_led led;
2512
2513 led.which = which;
2514 led.unit = htole32(100000); /* on/off in unit of 100ms */
2515 led.off = off;
2516 led.on = on;
2517
2518 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2519 }
2520
2521 static void
2522 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2523 {
2524 struct wpi_cmd_tsf tsf;
2525 uint64_t val, mod;
2526
2527 memset(&tsf, 0, sizeof tsf);
2528 memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2529 tsf.bintval = htole16(ni->ni_intval);
2530 tsf.lintval = htole16(10);
2531
2532 /* compute remaining time until next beacon */
2533 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2534 mod = le64toh(tsf.tstamp) % val;
2535 tsf.binitval = htole32((uint32_t)(val - mod));
2536
2537 DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2538 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2539
2540 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2541 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2542 }
2543
2544 /*
2545 * Update Tx power to match what is defined for channel `c'.
2546 */
2547 static int
2548 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2549 {
2550 struct ieee80211com *ic = &sc->sc_ic;
2551 struct wpi_power_group *group;
2552 struct wpi_cmd_txpower txpower;
2553 u_int chan;
2554 int i;
2555
2556 /* get channel number */
2557 chan = ieee80211_chan2ieee(ic, c);
2558
2559 /* find the power group to which this channel belongs */
2560 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2561 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2562 if (chan <= group->chan)
2563 break;
2564 } else
2565 group = &sc->groups[0];
2566
2567 memset(&txpower, 0, sizeof txpower);
2568 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2569 txpower.chan = htole16(chan);
2570
2571 /* set Tx power for all OFDM and CCK rates */
2572 for (i = 0; i <= 11 ; i++) {
2573 /* retrieve Tx power for this channel/rate combination */
2574 int idx = wpi_get_power_index(sc, group, c,
2575 wpi_ridx_to_rate[i]);
2576
2577 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2578
2579 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2580 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2581 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2582 } else {
2583 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2584 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2585 }
2586 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2587 wpi_ridx_to_rate[i], idx));
2588 }
2589
2590 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2591 }
2592
2593 /*
2594 * Determine Tx power index for a given channel/rate combination.
2595 * This takes into account the regulatory information from EEPROM and the
2596 * current temperature.
2597 */
2598 static int
2599 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2600 struct ieee80211_channel *c, int rate)
2601 {
2602 /* fixed-point arithmetic division using a n-bit fractional part */
2603 #define fdivround(a, b, n) \
2604 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2605
2606 /* linear interpolation */
2607 #define interpolate(x, x1, y1, x2, y2, n) \
2608 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2609
2610 struct ieee80211com *ic = &sc->sc_ic;
2611 struct wpi_power_sample *sample;
2612 int pwr, idx;
2613 u_int chan;
2614
2615 /* get channel number */
2616 chan = ieee80211_chan2ieee(ic, c);
2617
2618 /* default power is group's maximum power - 3dB */
2619 pwr = group->maxpwr / 2;
2620
2621 /* decrease power for highest OFDM rates to reduce distortion */
2622 switch (rate) {
2623 case 72: /* 36Mb/s */
2624 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2625 break;
2626 case 96: /* 48Mb/s */
2627 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2628 break;
2629 case 108: /* 54Mb/s */
2630 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2631 break;
2632 }
2633
2634 /* never exceed channel's maximum allowed Tx power */
2635 pwr = min(pwr, sc->maxpwr[chan]);
2636
2637 /* retrieve power index into gain tables from samples */
2638 for (sample = group->samples; sample < &group->samples[3]; sample++)
2639 if (pwr > sample[1].power)
2640 break;
2641 /* fixed-point linear interpolation using a 19-bit fractional part */
2642 idx = interpolate(pwr, sample[0].power, sample[0].index,
2643 sample[1].power, sample[1].index, 19);
2644
2645 /*-
2646 * Adjust power index based on current temperature:
2647 * - if cooler than factory-calibrated: decrease output power
2648 * - if warmer than factory-calibrated: increase output power
2649 */
2650 idx -= (sc->temp - group->temp) * 11 / 100;
2651
2652 /* decrease power for CCK rates (-5dB) */
2653 if (!WPI_RATE_IS_OFDM(rate))
2654 idx += 10;
2655
2656 /* keep power index in a valid range */
2657 if (idx < 0)
2658 return 0;
2659 if (idx > WPI_MAX_PWR_INDEX)
2660 return WPI_MAX_PWR_INDEX;
2661 return idx;
2662
2663 #undef interpolate
2664 #undef fdivround
2665 }
2666
2667 /*
2668 * Build a beacon frame that the firmware will broadcast periodically in
2669 * IBSS or HostAP modes.
2670 */
2671 static int
2672 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2673 {
2674 struct ieee80211com *ic = &sc->sc_ic;
2675 struct wpi_tx_ring *ring = &sc->cmdq;
2676 struct wpi_tx_desc *desc;
2677 struct wpi_tx_data *data;
2678 struct wpi_tx_cmd *cmd;
2679 struct wpi_cmd_beacon *bcn;
2680 struct ieee80211_beacon_offsets bo;
2681 struct mbuf *m0;
2682 int error;
2683
2684 desc = &ring->desc[ring->cur];
2685 data = &ring->data[ring->cur];
2686
2687 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2688 if (m0 == NULL) {
2689 aprint_error_dev(sc->sc_dev,
2690 "could not allocate beacon frame\n");
2691 return ENOMEM;
2692 }
2693
2694 cmd = &ring->cmd[ring->cur];
2695 cmd->code = WPI_CMD_SET_BEACON;
2696 cmd->flags = 0;
2697 cmd->qid = ring->qid;
2698 cmd->idx = ring->cur;
2699
2700 bcn = (struct wpi_cmd_beacon *)cmd->data;
2701 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2702 bcn->id = WPI_ID_BROADCAST;
2703 bcn->ofdm_mask = 0xff;
2704 bcn->cck_mask = 0x0f;
2705 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2706 bcn->len = htole16(m0->m_pkthdr.len);
2707 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2708 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2709 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2710
2711 /* save and trim IEEE802.11 header */
2712 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2713 m_adj(m0, sizeof (struct ieee80211_frame));
2714
2715 /* assume beacon frame is contiguous */
2716 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2717 BUS_DMA_READ | BUS_DMA_NOWAIT);
2718 if (error != 0) {
2719 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2720 m_freem(m0);
2721 return error;
2722 }
2723
2724 data->m = m0;
2725
2726 /* first scatter/gather segment is used by the beacon command */
2727 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2728 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2729 ring->cur * sizeof (struct wpi_tx_cmd));
2730 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2731 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2732 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2733
2734 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2735 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2736 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2737 BUS_DMASYNC_PREWRITE);
2738
2739 /* kick cmd ring */
2740 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2741 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2742
2743 return 0;
2744 }
2745
2746 static int
2747 wpi_auth(struct wpi_softc *sc)
2748 {
2749 struct ieee80211com *ic = &sc->sc_ic;
2750 struct ieee80211_node *ni = ic->ic_bss;
2751 struct wpi_node_info node;
2752 int error;
2753
2754 /* update adapter's configuration */
2755 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2756 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2757 sc->config.flags = htole32(WPI_CONFIG_TSF);
2758 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2759 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2760 WPI_CONFIG_24GHZ);
2761 }
2762 switch (ic->ic_curmode) {
2763 case IEEE80211_MODE_11A:
2764 sc->config.cck_mask = 0;
2765 sc->config.ofdm_mask = 0x15;
2766 break;
2767 case IEEE80211_MODE_11B:
2768 sc->config.cck_mask = 0x03;
2769 sc->config.ofdm_mask = 0;
2770 break;
2771 default: /* assume 802.11b/g */
2772 sc->config.cck_mask = 0x0f;
2773 sc->config.ofdm_mask = 0x15;
2774 }
2775 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2776 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2777 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2778 sizeof (struct wpi_config), 1);
2779 if (error != 0) {
2780 aprint_error_dev(sc->sc_dev, "could not configure\n");
2781 return error;
2782 }
2783
2784 /* configuration has changed, set Tx power accordingly */
2785 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2786 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2787 return error;
2788 }
2789
2790 /* add default node */
2791 memset(&node, 0, sizeof node);
2792 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2793 node.id = WPI_ID_BSS;
2794 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2795 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2796 node.action = htole32(WPI_ACTION_SET_RATE);
2797 node.antenna = WPI_ANTENNA_BOTH;
2798 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2799 if (error != 0) {
2800 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2801 return error;
2802 }
2803
2804 return 0;
2805 }
2806
2807 /*
2808 * Send a scan request to the firmware. Since this command is huge, we map it
2809 * into a mbuf instead of using the pre-allocated set of commands.
2810 */
2811 static int
2812 wpi_scan(struct wpi_softc *sc)
2813 {
2814 struct ieee80211com *ic = &sc->sc_ic;
2815 struct wpi_tx_ring *ring = &sc->cmdq;
2816 struct wpi_tx_desc *desc;
2817 struct wpi_tx_data *data;
2818 struct wpi_tx_cmd *cmd;
2819 struct wpi_scan_hdr *hdr;
2820 struct wpi_scan_chan *chan;
2821 struct ieee80211_frame *wh;
2822 struct ieee80211_rateset *rs;
2823 struct ieee80211_channel *c;
2824 uint8_t *frm;
2825 int pktlen, error, nrates;
2826
2827 if (ic->ic_curchan == NULL)
2828 return EIO;
2829
2830 desc = &ring->desc[ring->cur];
2831 data = &ring->data[ring->cur];
2832
2833 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2834 if (data->m == NULL) {
2835 aprint_error_dev(sc->sc_dev,
2836 "could not allocate mbuf for scan command\n");
2837 return ENOMEM;
2838 }
2839 MCLGET(data->m, M_DONTWAIT);
2840 if (!(data->m->m_flags & M_EXT)) {
2841 m_freem(data->m);
2842 data->m = NULL;
2843 aprint_error_dev(sc->sc_dev,
2844 "could not allocate mbuf for scan command\n");
2845 return ENOMEM;
2846 }
2847
2848 cmd = mtod(data->m, struct wpi_tx_cmd *);
2849 cmd->code = WPI_CMD_SCAN;
2850 cmd->flags = 0;
2851 cmd->qid = ring->qid;
2852 cmd->idx = ring->cur;
2853
2854 hdr = (struct wpi_scan_hdr *)cmd->data;
2855 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2856 hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2857 hdr->cmd.id = WPI_ID_BROADCAST;
2858 hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2859 /*
2860 * Move to the next channel if no packets are received within 5 msecs
2861 * after sending the probe request (this helps to reduce the duration
2862 * of active scans).
2863 */
2864 hdr->quiet = htole16(5); /* timeout in milliseconds */
2865 hdr->plcp_threshold = htole16(1); /* min # of packets */
2866
2867 if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2868 hdr->crc_threshold = htole16(1);
2869 /* send probe requests at 6Mbps */
2870 hdr->cmd.rate = wpi_plcp_signal(12);
2871 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2872 } else {
2873 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2874 /* send probe requests at 1Mbps */
2875 hdr->cmd.rate = wpi_plcp_signal(2);
2876 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2877 }
2878
2879 /* for directed scans, firmware inserts the essid IE itself */
2880 if (ic->ic_des_esslen != 0) {
2881 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2882 hdr->essid[0].len = ic->ic_des_esslen;
2883 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2884 }
2885
2886 /*
2887 * Build a probe request frame. Most of the following code is a
2888 * copy & paste of what is done in net80211.
2889 */
2890 wh = (struct ieee80211_frame *)(hdr + 1);
2891 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2892 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2893 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2894 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2895 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2896 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2897 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2898 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2899
2900 frm = (uint8_t *)(wh + 1);
2901
2902 /* add empty essid IE (firmware generates it for directed scans) */
2903 *frm++ = IEEE80211_ELEMID_SSID;
2904 *frm++ = 0;
2905
2906 /* add supported rates IE */
2907 *frm++ = IEEE80211_ELEMID_RATES;
2908 nrates = rs->rs_nrates;
2909 if (nrates > IEEE80211_RATE_SIZE)
2910 nrates = IEEE80211_RATE_SIZE;
2911 *frm++ = nrates;
2912 memcpy(frm, rs->rs_rates, nrates);
2913 frm += nrates;
2914
2915 /* add supported xrates IE */
2916 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2917 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2918 *frm++ = IEEE80211_ELEMID_XRATES;
2919 *frm++ = nrates;
2920 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2921 frm += nrates;
2922 }
2923
2924 /* setup length of probe request */
2925 hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2926
2927 chan = (struct wpi_scan_chan *)frm;
2928 c = ic->ic_curchan;
2929
2930 chan->chan = ieee80211_chan2ieee(ic, c);
2931 chan->flags = 0;
2932 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2933 chan->flags |= WPI_CHAN_ACTIVE;
2934 if (ic->ic_des_esslen != 0)
2935 chan->flags |= WPI_CHAN_DIRECT;
2936 }
2937 chan->dsp_gain = 0x6e;
2938 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2939 chan->rf_gain = 0x3b;
2940 chan->active = htole16(10);
2941 chan->passive = htole16(110);
2942 } else {
2943 chan->rf_gain = 0x28;
2944 chan->active = htole16(20);
2945 chan->passive = htole16(120);
2946 }
2947 hdr->nchan++;
2948 chan++;
2949
2950 frm += sizeof (struct wpi_scan_chan);
2951
2952 hdr->len = htole16(frm - (uint8_t *)hdr);
2953 pktlen = frm - (uint8_t *)cmd;
2954
2955 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2956 BUS_DMA_NOWAIT);
2957 if (error != 0) {
2958 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2959 m_freem(data->m);
2960 data->m = NULL;
2961 return error;
2962 }
2963
2964 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2965 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2966 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2967
2968 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2969 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2970 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2971 BUS_DMASYNC_PREWRITE);
2972
2973 /* kick cmd ring */
2974 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2975 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2976
2977 return 0; /* will be notified async. of failure/success */
2978 }
2979
2980 static int
2981 wpi_config(struct wpi_softc *sc)
2982 {
2983 struct ieee80211com *ic = &sc->sc_ic;
2984 struct ifnet *ifp = ic->ic_ifp;
2985 struct wpi_power power;
2986 struct wpi_bluetooth bluetooth;
2987 struct wpi_node_info node;
2988 int error;
2989
2990 memset(&power, 0, sizeof power);
2991 power.flags = htole32(WPI_POWER_CAM | 0x8);
2992 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2993 if (error != 0) {
2994 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2995 return error;
2996 }
2997
2998 /* configure bluetooth coexistence */
2999 memset(&bluetooth, 0, sizeof bluetooth);
3000 bluetooth.flags = 3;
3001 bluetooth.lead = 0xaa;
3002 bluetooth.kill = 1;
3003 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3004 0);
3005 if (error != 0) {
3006 aprint_error_dev(sc->sc_dev,
3007 "could not configure bluetooth coexistence\n");
3008 return error;
3009 }
3010
3011 /* configure adapter */
3012 memset(&sc->config, 0, sizeof (struct wpi_config));
3013 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3014 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3015 /* set default channel */
3016 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3017 sc->config.flags = htole32(WPI_CONFIG_TSF);
3018 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3019 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
3020 WPI_CONFIG_24GHZ);
3021 }
3022 sc->config.filter = 0;
3023 switch (ic->ic_opmode) {
3024 case IEEE80211_M_STA:
3025 sc->config.mode = WPI_MODE_STA;
3026 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
3027 break;
3028 case IEEE80211_M_IBSS:
3029 case IEEE80211_M_AHDEMO:
3030 sc->config.mode = WPI_MODE_IBSS;
3031 break;
3032 case IEEE80211_M_HOSTAP:
3033 sc->config.mode = WPI_MODE_HOSTAP;
3034 break;
3035 case IEEE80211_M_MONITOR:
3036 sc->config.mode = WPI_MODE_MONITOR;
3037 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
3038 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3039 break;
3040 }
3041 sc->config.cck_mask = 0x0f; /* not yet negotiated */
3042 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
3043 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
3044 sizeof (struct wpi_config), 0);
3045 if (error != 0) {
3046 aprint_error_dev(sc->sc_dev, "configure command failed\n");
3047 return error;
3048 }
3049
3050 /* configuration has changed, set Tx power accordingly */
3051 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
3052 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3053 return error;
3054 }
3055
3056 /* add broadcast node */
3057 memset(&node, 0, sizeof node);
3058 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
3059 node.id = WPI_ID_BROADCAST;
3060 node.rate = wpi_plcp_signal(2);
3061 node.action = htole32(WPI_ACTION_SET_RATE);
3062 node.antenna = WPI_ANTENNA_BOTH;
3063 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3064 if (error != 0) {
3065 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3066 return error;
3067 }
3068
3069 if ((error = wpi_mrr_setup(sc)) != 0) {
3070 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
3071 return error;
3072 }
3073
3074 return 0;
3075 }
3076
3077 static void
3078 wpi_stop_master(struct wpi_softc *sc)
3079 {
3080 uint32_t tmp;
3081 int ntries;
3082
3083 tmp = WPI_READ(sc, WPI_RESET);
3084 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3085
3086 tmp = WPI_READ(sc, WPI_GPIO_CTL);
3087 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3088 return; /* already asleep */
3089
3090 for (ntries = 0; ntries < 100; ntries++) {
3091 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3092 break;
3093 DELAY(10);
3094 }
3095 if (ntries == 100) {
3096 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3097 }
3098 }
3099
3100 static int
3101 wpi_power_up(struct wpi_softc *sc)
3102 {
3103 uint32_t tmp;
3104 int ntries;
3105
3106 wpi_mem_lock(sc);
3107 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3108 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3109 wpi_mem_unlock(sc);
3110
3111 for (ntries = 0; ntries < 5000; ntries++) {
3112 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3113 break;
3114 DELAY(10);
3115 }
3116 if (ntries == 5000) {
3117 aprint_error_dev(sc->sc_dev,
3118 "timeout waiting for NIC to power up\n");
3119 return ETIMEDOUT;
3120 }
3121 return 0;
3122 }
3123
3124 static int
3125 wpi_reset(struct wpi_softc *sc)
3126 {
3127 uint32_t tmp;
3128 int ntries;
3129
3130 /* clear any pending interrupts */
3131 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3132
3133 tmp = WPI_READ(sc, WPI_PLL_CTL);
3134 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3135
3136 tmp = WPI_READ(sc, WPI_CHICKEN);
3137 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3138
3139 tmp = WPI_READ(sc, WPI_GPIO_CTL);
3140 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3141
3142 /* wait for clock stabilization */
3143 for (ntries = 0; ntries < 1000; ntries++) {
3144 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3145 break;
3146 DELAY(10);
3147 }
3148 if (ntries == 1000) {
3149 aprint_error_dev(sc->sc_dev,
3150 "timeout waiting for clock stabilization\n");
3151 return ETIMEDOUT;
3152 }
3153
3154 /* initialize EEPROM */
3155 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3156 if ((tmp & WPI_EEPROM_VERSION) == 0) {
3157 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3158 return EIO;
3159 }
3160 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3161
3162 return 0;
3163 }
3164
3165 static void
3166 wpi_hw_config(struct wpi_softc *sc)
3167 {
3168 uint32_t rev, hw;
3169
3170 /* voodoo from the reference driver */
3171 hw = WPI_READ(sc, WPI_HWCONFIG);
3172
3173 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3174 rev = PCI_REVISION(rev);
3175 if ((rev & 0xc0) == 0x40)
3176 hw |= WPI_HW_ALM_MB;
3177 else if (!(rev & 0x80))
3178 hw |= WPI_HW_ALM_MM;
3179
3180 if (sc->cap == 0x80)
3181 hw |= WPI_HW_SKU_MRC;
3182
3183 hw &= ~WPI_HW_REV_D;
3184 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3185 hw |= WPI_HW_REV_D;
3186
3187 if (sc->type > 1)
3188 hw |= WPI_HW_TYPE_B;
3189
3190 DPRINTF(("setting h/w config %x\n", hw));
3191 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3192 }
3193
3194 static int
3195 wpi_init(struct ifnet *ifp)
3196 {
3197 struct wpi_softc *sc = ifp->if_softc;
3198 struct ieee80211com *ic = &sc->sc_ic;
3199 uint32_t tmp;
3200 int qid, ntries, error;
3201
3202 wpi_stop(ifp,1);
3203 (void)wpi_reset(sc);
3204
3205 wpi_mem_lock(sc);
3206 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3207 DELAY(20);
3208 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3209 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3210 wpi_mem_unlock(sc);
3211
3212 (void)wpi_power_up(sc);
3213 wpi_hw_config(sc);
3214
3215 /* init Rx ring */
3216 wpi_mem_lock(sc);
3217 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3218 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3219 offsetof(struct wpi_shared, next));
3220 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3221 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3222 wpi_mem_unlock(sc);
3223
3224 /* init Tx rings */
3225 wpi_mem_lock(sc);
3226 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3227 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3228 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3229 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3230 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3231 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3232 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3233
3234 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3235 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3236
3237 for (qid = 0; qid < 6; qid++) {
3238 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3239 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3240 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3241 }
3242 wpi_mem_unlock(sc);
3243
3244 /* clear "radio off" and "disable command" bits (reversed logic) */
3245 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3246 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3247
3248 /* clear any pending interrupts */
3249 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3250 /* enable interrupts */
3251 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3252
3253 /* not sure why/if this is necessary... */
3254 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3255 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3256
3257 if ((error = wpi_load_firmware(sc)) != 0)
3258 /* wpi_load_firmware prints error messages for us. */
3259 goto fail1;
3260
3261 /* Check the status of the radio switch */
3262 mutex_enter(&sc->sc_rsw_mtx);
3263 if (wpi_getrfkill(sc)) {
3264 mutex_exit(&sc->sc_rsw_mtx);
3265 aprint_error_dev(sc->sc_dev,
3266 "radio is disabled by hardware switch\n");
3267 ifp->if_flags &= ~IFF_UP;
3268 error = EBUSY;
3269 goto fail1;
3270 }
3271 mutex_exit(&sc->sc_rsw_mtx);
3272
3273 /* wait for thermal sensors to calibrate */
3274 for (ntries = 0; ntries < 1000; ntries++) {
3275 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3276 break;
3277 DELAY(10);
3278 }
3279 if (ntries == 1000) {
3280 aprint_error_dev(sc->sc_dev,
3281 "timeout waiting for thermal sensors calibration\n");
3282 error = ETIMEDOUT;
3283 goto fail1;
3284 }
3285 DPRINTF(("temperature %d\n", sc->temp));
3286
3287 if ((error = wpi_config(sc)) != 0) {
3288 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3289 goto fail1;
3290 }
3291
3292 ifp->if_flags &= ~IFF_OACTIVE;
3293 ifp->if_flags |= IFF_RUNNING;
3294
3295 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3296 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3297 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3298 }
3299 else
3300 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3301
3302 return 0;
3303
3304 fail1: wpi_stop(ifp, 1);
3305 return error;
3306 }
3307
3308 static void
3309 wpi_stop(struct ifnet *ifp, int disable)
3310 {
3311 struct wpi_softc *sc = ifp->if_softc;
3312 struct ieee80211com *ic = &sc->sc_ic;
3313 uint32_t tmp;
3314 int ac;
3315
3316 ifp->if_timer = sc->sc_tx_timer = 0;
3317 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3318
3319 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3320
3321 /* disable interrupts */
3322 WPI_WRITE(sc, WPI_MASK, 0);
3323 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3324 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3325 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3326
3327 wpi_mem_lock(sc);
3328 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3329 wpi_mem_unlock(sc);
3330
3331 /* reset all Tx rings */
3332 for (ac = 0; ac < 4; ac++)
3333 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3334 wpi_reset_tx_ring(sc, &sc->cmdq);
3335
3336 /* reset Rx ring */
3337 wpi_reset_rx_ring(sc, &sc->rxq);
3338
3339 wpi_mem_lock(sc);
3340 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3341 wpi_mem_unlock(sc);
3342
3343 DELAY(5);
3344
3345 wpi_stop_master(sc);
3346
3347 tmp = WPI_READ(sc, WPI_RESET);
3348 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3349 }
3350
3351 static bool
3352 wpi_resume(device_t dv, const pmf_qual_t *qual)
3353 {
3354 struct wpi_softc *sc = device_private(dv);
3355
3356 (void)wpi_reset(sc);
3357
3358 return true;
3359 }
3360
3361 /*
3362 * Return whether or not the radio is enabled in hardware
3363 * (i.e. the rfkill switch is "off").
3364 */
3365 static int
3366 wpi_getrfkill(struct wpi_softc *sc)
3367 {
3368 uint32_t tmp;
3369
3370 wpi_mem_lock(sc);
3371 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3372 wpi_mem_unlock(sc);
3373
3374 KASSERT(mutex_owned(&sc->sc_rsw_mtx));
3375 if (tmp & 0x01) {
3376 /* switch is on */
3377 if (sc->sc_rsw_status != WPI_RSW_ON) {
3378 sc->sc_rsw_status = WPI_RSW_ON;
3379 sysmon_pswitch_event(&sc->sc_rsw,
3380 PSWITCH_EVENT_PRESSED);
3381 }
3382 } else {
3383 /* switch is off */
3384 if (sc->sc_rsw_status != WPI_RSW_OFF) {
3385 sc->sc_rsw_status = WPI_RSW_OFF;
3386 sysmon_pswitch_event(&sc->sc_rsw,
3387 PSWITCH_EVENT_RELEASED);
3388 }
3389 }
3390
3391 return !(tmp & 0x01);
3392 }
3393
3394 static int
3395 wpi_sysctl_radio(SYSCTLFN_ARGS)
3396 {
3397 struct sysctlnode node;
3398 struct wpi_softc *sc;
3399 int val, error;
3400
3401 node = *rnode;
3402 sc = (struct wpi_softc *)node.sysctl_data;
3403
3404 mutex_enter(&sc->sc_rsw_mtx);
3405 val = !wpi_getrfkill(sc);
3406 mutex_exit(&sc->sc_rsw_mtx);
3407
3408 node.sysctl_data = &val;
3409 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3410
3411 if (error || newp == NULL)
3412 return error;
3413
3414 return 0;
3415 }
3416
3417 static void
3418 wpi_sysctlattach(struct wpi_softc *sc)
3419 {
3420 int rc;
3421 const struct sysctlnode *rnode;
3422 const struct sysctlnode *cnode;
3423
3424 struct sysctllog **clog = &sc->sc_sysctllog;
3425
3426 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3427 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3428 SYSCTL_DESCR("wpi controls and statistics"),
3429 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3430 goto err;
3431
3432 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3433 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3434 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3435 wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3436 goto err;
3437
3438 #ifdef WPI_DEBUG
3439 /* control debugging printfs */
3440 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3441 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3442 "debug", SYSCTL_DESCR("Enable debugging output"),
3443 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3444 goto err;
3445 #endif
3446
3447 return;
3448 err:
3449 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3450 }
3451
3452 static void
3453 wpi_rsw_thread(void *arg)
3454 {
3455 struct wpi_softc *sc = (struct wpi_softc *)arg;
3456
3457 mutex_enter(&sc->sc_rsw_mtx);
3458 for (;;) {
3459 cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
3460 if (sc->sc_dying) {
3461 sc->sc_rsw_lwp = NULL;
3462 cv_broadcast(&sc->sc_rsw_cv);
3463 mutex_exit(&sc->sc_rsw_mtx);
3464 kthread_exit(0);
3465 }
3466 wpi_getrfkill(sc);
3467 }
3468 }
3469
3470