if_wpi.c revision 1.85 1 /* $NetBSD: if_wpi.c,v 1.85 2018/12/22 14:07:53 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.85 2018/12/22 14:07:53 maxv Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 #include <sys/kthread.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51
52 #include <dev/sysmon/sysmonvar.h>
53
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_ether.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_amrr.h>
69 #include <net80211/ieee80211_radiotap.h>
70
71 #include <dev/firmload.h>
72
73 #include <dev/pci/if_wpireg.h>
74 #include <dev/pci/if_wpivar.h>
75
76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
77 static once_t wpi_firmware_init;
78 static kmutex_t wpi_firmware_mutex;
79 static size_t wpi_firmware_users;
80 static uint8_t *wpi_firmware_image;
81 static size_t wpi_firmware_size;
82
83 static int wpi_match(device_t, cfdata_t, void *);
84 static void wpi_attach(device_t, device_t, void *);
85 static int wpi_detach(device_t , int);
86 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
87 void **, bus_size_t, bus_size_t, int);
88 static void wpi_dma_contig_free(struct wpi_dma_info *);
89 static int wpi_alloc_shared(struct wpi_softc *);
90 static void wpi_free_shared(struct wpi_softc *);
91 static int wpi_alloc_fwmem(struct wpi_softc *);
92 static void wpi_free_fwmem(struct wpi_softc *);
93 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
94 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
95 static int wpi_alloc_rpool(struct wpi_softc *);
96 static void wpi_free_rpool(struct wpi_softc *);
97 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
98 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
99 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
100 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
101 int, int);
102 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
103 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
104 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
105 static void wpi_newassoc(struct ieee80211_node *, int);
106 static int wpi_media_change(struct ifnet *);
107 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
108 static void wpi_mem_lock(struct wpi_softc *);
109 static void wpi_mem_unlock(struct wpi_softc *);
110 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
111 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
112 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
113 const uint32_t *, int);
114 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
115 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
116 static int wpi_cache_firmware(struct wpi_softc *);
117 static void wpi_release_firmware(void);
118 static int wpi_load_firmware(struct wpi_softc *);
119 static void wpi_calib_timeout(void *);
120 static void wpi_iter_func(void *, struct ieee80211_node *);
121 static void wpi_power_calibration(struct wpi_softc *, int);
122 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
123 struct wpi_rx_data *);
124 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
125 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
126 static void wpi_notif_intr(struct wpi_softc *);
127 static int wpi_intr(void *);
128 static void wpi_softintr(void *);
129 static void wpi_read_eeprom(struct wpi_softc *);
130 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
131 static void wpi_read_eeprom_group(struct wpi_softc *, int);
132 static uint8_t wpi_plcp_signal(int);
133 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
134 struct ieee80211_node *, int);
135 static void wpi_start(struct ifnet *);
136 static void wpi_watchdog(struct ifnet *);
137 static int wpi_ioctl(struct ifnet *, u_long, void *);
138 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
139 static int wpi_wme_update(struct ieee80211com *);
140 static int wpi_mrr_setup(struct wpi_softc *);
141 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
142 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
143 static int wpi_set_txpower(struct wpi_softc *,
144 struct ieee80211_channel *, int);
145 static int wpi_get_power_index(struct wpi_softc *,
146 struct wpi_power_group *, struct ieee80211_channel *, int);
147 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
148 static int wpi_auth(struct wpi_softc *);
149 static int wpi_scan(struct wpi_softc *);
150 static int wpi_config(struct wpi_softc *);
151 static void wpi_stop_master(struct wpi_softc *);
152 static int wpi_power_up(struct wpi_softc *);
153 static int wpi_reset(struct wpi_softc *);
154 static void wpi_hw_config(struct wpi_softc *);
155 static int wpi_init(struct ifnet *);
156 static void wpi_stop(struct ifnet *, int);
157 static bool wpi_resume(device_t, const pmf_qual_t *);
158 static int wpi_getrfkill(struct wpi_softc *);
159 static void wpi_sysctlattach(struct wpi_softc *);
160 static void wpi_rsw_thread(void *);
161
162 #ifdef WPI_DEBUG
163 #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0)
164 #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0)
165 int wpi_debug = 1;
166 #else
167 #define DPRINTF(x)
168 #define DPRINTFN(n, x)
169 #endif
170
171 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
172 wpi_detach, NULL);
173
174 static int
175 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
176 {
177 struct pci_attach_args *pa = aux;
178
179 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
180 return 0;
181
182 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
183 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
184 return 1;
185
186 return 0;
187 }
188
189 /* Base Address Register */
190 #define WPI_PCI_BAR0 0x10
191
192 static int
193 wpi_attach_once(void)
194 {
195
196 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
197 return 0;
198 }
199
200 static void
201 wpi_attach(device_t parent __unused, device_t self, void *aux)
202 {
203 struct wpi_softc *sc = device_private(self);
204 struct ieee80211com *ic = &sc->sc_ic;
205 struct ifnet *ifp = &sc->sc_ec.ec_if;
206 struct pci_attach_args *pa = aux;
207 const char *intrstr;
208 bus_space_tag_t memt;
209 bus_space_handle_t memh;
210 pcireg_t data;
211 int ac, error;
212 char intrbuf[PCI_INTRSTR_LEN];
213
214 RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
215 sc->fw_used = false;
216
217 sc->sc_dev = self;
218 sc->sc_pct = pa->pa_pc;
219 sc->sc_pcitag = pa->pa_tag;
220
221 sc->sc_rsw_status = WPI_RSW_UNKNOWN;
222 sc->sc_rsw.smpsw_name = device_xname(self);
223 sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
224 error = sysmon_pswitch_register(&sc->sc_rsw);
225 if (error) {
226 aprint_error_dev(self,
227 "unable to register radio switch with sysmon\n");
228 return;
229 }
230 mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
231 cv_init(&sc->sc_rsw_cv, "wpirsw");
232 sc->sc_rsw_suspend = false;
233 sc->sc_rsw_suspended = false;
234 if (kthread_create(PRI_NONE, 0, NULL,
235 wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
236 aprint_error_dev(self, "couldn't create switch thread\n");
237 }
238
239 callout_init(&sc->calib_to, 0);
240 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
241
242 pci_aprint_devinfo(pa, NULL);
243
244 /* enable bus-mastering */
245 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
246 data |= PCI_COMMAND_MASTER_ENABLE;
247 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
248
249 /* map the register window */
250 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
251 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
252 if (error != 0) {
253 aprint_error_dev(self, "could not map memory space\n");
254 return;
255 }
256
257 sc->sc_st = memt;
258 sc->sc_sh = memh;
259 sc->sc_dmat = pa->pa_dmat;
260
261 sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc);
262 if (sc->sc_soft_ih == NULL) {
263 aprint_error_dev(self, "could not establish softint\n");
264 goto unmap;
265 }
266
267 if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
268 aprint_error_dev(self, "could not map interrupt\n");
269 goto failsi;
270 }
271
272 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
273 sizeof(intrbuf));
274 sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
275 IPL_NET, wpi_intr, sc, device_xname(self));
276 if (sc->sc_ih == NULL) {
277 aprint_error_dev(self, "could not establish interrupt");
278 if (intrstr != NULL)
279 aprint_error(" at %s", intrstr);
280 aprint_error("\n");
281 goto failia;
282 }
283 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
284
285 /*
286 * Put adapter into a known state.
287 */
288 if ((error = wpi_reset(sc)) != 0) {
289 aprint_error_dev(self, "could not reset adapter\n");
290 goto failih;
291 }
292
293 /*
294 * Allocate DMA memory for firmware transfers.
295 */
296 if ((error = wpi_alloc_fwmem(sc)) != 0) {
297 aprint_error_dev(self, "could not allocate firmware memory\n");
298 goto failih;
299 }
300
301 /*
302 * Allocate shared page and Tx/Rx rings.
303 */
304 if ((error = wpi_alloc_shared(sc)) != 0) {
305 aprint_error_dev(self, "could not allocate shared area\n");
306 goto fail1;
307 }
308
309 if ((error = wpi_alloc_rpool(sc)) != 0) {
310 aprint_error_dev(self, "could not allocate Rx buffers\n");
311 goto fail2;
312 }
313
314 for (ac = 0; ac < 4; ac++) {
315 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
316 ac);
317 if (error != 0) {
318 aprint_error_dev(self,
319 "could not allocate Tx ring %d\n", ac);
320 goto fail3;
321 }
322 }
323
324 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
325 if (error != 0) {
326 aprint_error_dev(self, "could not allocate command ring\n");
327 goto fail3;
328 }
329
330 error = wpi_alloc_rx_ring(sc, &sc->rxq);
331 if (error != 0) {
332 aprint_error_dev(self, "could not allocate Rx ring\n");
333 goto fail4;
334 }
335
336 ic->ic_ifp = ifp;
337 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
338 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
339 ic->ic_state = IEEE80211_S_INIT;
340
341 /* set device capabilities */
342 ic->ic_caps =
343 IEEE80211_C_WPA | /* 802.11i */
344 IEEE80211_C_MONITOR | /* monitor mode supported */
345 IEEE80211_C_TXPMGT | /* tx power management */
346 IEEE80211_C_SHSLOT | /* short slot time supported */
347 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
348 IEEE80211_C_WME; /* 802.11e */
349
350 /* read supported channels and MAC address from EEPROM */
351 wpi_read_eeprom(sc);
352
353 /* set supported .11a, .11b and .11g rates */
354 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
355 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
356 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
357
358 /* IBSS channel undefined for now */
359 ic->ic_ibss_chan = &ic->ic_channels[0];
360
361 ifp->if_softc = sc;
362 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
363 ifp->if_init = wpi_init;
364 ifp->if_stop = wpi_stop;
365 ifp->if_ioctl = wpi_ioctl;
366 ifp->if_start = wpi_start;
367 ifp->if_watchdog = wpi_watchdog;
368 IFQ_SET_READY(&ifp->if_snd);
369 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
370
371 error = if_initialize(ifp);
372 if (error != 0) {
373 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
374 error);
375 goto fail5;
376 }
377 ieee80211_ifattach(ic);
378 /* Use common softint-based if_input */
379 ifp->if_percpuq = if_percpuq_create(ifp);
380 if_register(ifp);
381
382 /* override default methods */
383 ic->ic_node_alloc = wpi_node_alloc;
384 ic->ic_newassoc = wpi_newassoc;
385 ic->ic_wme.wme_update = wpi_wme_update;
386
387 /* override state transition machine */
388 sc->sc_newstate = ic->ic_newstate;
389 ic->ic_newstate = wpi_newstate;
390 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
391
392 sc->amrr.amrr_min_success_threshold = 1;
393 sc->amrr.amrr_max_success_threshold = 15;
394
395 wpi_sysctlattach(sc);
396
397 if (pmf_device_register(self, NULL, wpi_resume))
398 pmf_class_network_register(self, ifp);
399 else
400 aprint_error_dev(self, "couldn't establish power handler\n");
401
402 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
403 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
404 &sc->sc_drvbpf);
405
406 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
407 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
408 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
409
410 sc->sc_txtap_len = sizeof sc->sc_txtapu;
411 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
412 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
413
414 ieee80211_announce(ic);
415
416 return;
417
418 /* free allocated memory if something failed during attachment */
419 fail5: wpi_free_rx_ring(sc, &sc->rxq);
420 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
421 fail3: while (--ac >= 0)
422 wpi_free_tx_ring(sc, &sc->txq[ac]);
423 wpi_free_rpool(sc);
424 fail2: wpi_free_shared(sc);
425 fail1: wpi_free_fwmem(sc);
426 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
427 sc->sc_ih = NULL;
428 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
429 sc->sc_pihp = NULL;
430 failsi: softint_disestablish(sc->sc_soft_ih);
431 sc->sc_soft_ih = NULL;
432 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
433 }
434
435 static int
436 wpi_detach(device_t self, int flags __unused)
437 {
438 struct wpi_softc *sc = device_private(self);
439 struct ifnet *ifp = sc->sc_ic.ic_ifp;
440 int ac;
441
442 wpi_stop(ifp, 1);
443
444 if (ifp != NULL)
445 bpf_detach(ifp);
446 ieee80211_ifdetach(&sc->sc_ic);
447 if (ifp != NULL)
448 if_detach(ifp);
449
450 for (ac = 0; ac < 4; ac++)
451 wpi_free_tx_ring(sc, &sc->txq[ac]);
452 wpi_free_tx_ring(sc, &sc->cmdq);
453 wpi_free_rx_ring(sc, &sc->rxq);
454 wpi_free_rpool(sc);
455 wpi_free_shared(sc);
456
457 if (sc->sc_ih != NULL) {
458 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
459 sc->sc_ih = NULL;
460 }
461 if (sc->sc_pihp != NULL) {
462 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
463 sc->sc_pihp = NULL;
464 }
465 if (sc->sc_soft_ih != NULL) {
466 softint_disestablish(sc->sc_soft_ih);
467 sc->sc_soft_ih = NULL;
468 }
469
470 mutex_enter(&sc->sc_rsw_mtx);
471 sc->sc_dying = 1;
472 cv_signal(&sc->sc_rsw_cv);
473 while (sc->sc_rsw_lwp != NULL)
474 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
475 mutex_exit(&sc->sc_rsw_mtx);
476 sysmon_pswitch_unregister(&sc->sc_rsw);
477
478 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
479
480 if (sc->fw_used) {
481 sc->fw_used = false;
482 wpi_release_firmware();
483 }
484 cv_destroy(&sc->sc_rsw_cv);
485 mutex_destroy(&sc->sc_rsw_mtx);
486 return 0;
487 }
488
489 static int
490 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
491 bus_size_t size, bus_size_t alignment, int flags)
492 {
493 int nsegs, error;
494
495 dma->tag = tag;
496 dma->size = size;
497
498 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
499 if (error != 0)
500 goto fail;
501
502 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
503 flags);
504 if (error != 0)
505 goto fail;
506
507 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
508 if (error != 0)
509 goto fail;
510
511 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
512 if (error != 0)
513 goto fail;
514
515 memset(dma->vaddr, 0, size);
516 bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
517
518 dma->paddr = dma->map->dm_segs[0].ds_addr;
519 if (kvap != NULL)
520 *kvap = dma->vaddr;
521
522 return 0;
523
524 fail: wpi_dma_contig_free(dma);
525 return error;
526 }
527
528 static void
529 wpi_dma_contig_free(struct wpi_dma_info *dma)
530 {
531 if (dma->map != NULL) {
532 if (dma->vaddr != NULL) {
533 bus_dmamap_unload(dma->tag, dma->map);
534 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
535 bus_dmamem_free(dma->tag, &dma->seg, 1);
536 dma->vaddr = NULL;
537 }
538 bus_dmamap_destroy(dma->tag, dma->map);
539 dma->map = NULL;
540 }
541 }
542
543 /*
544 * Allocate a shared page between host and NIC.
545 */
546 static int
547 wpi_alloc_shared(struct wpi_softc *sc)
548 {
549 int error;
550
551 /* must be aligned on a 4K-page boundary */
552 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
553 (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
554 BUS_DMA_NOWAIT);
555 if (error != 0)
556 aprint_error_dev(sc->sc_dev,
557 "could not allocate shared area DMA memory\n");
558
559 return error;
560 }
561
562 static void
563 wpi_free_shared(struct wpi_softc *sc)
564 {
565 wpi_dma_contig_free(&sc->shared_dma);
566 }
567
568 /*
569 * Allocate DMA-safe memory for firmware transfer.
570 */
571 static int
572 wpi_alloc_fwmem(struct wpi_softc *sc)
573 {
574 int error;
575
576 /* allocate enough contiguous space to store text and data */
577 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
578 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
579 BUS_DMA_NOWAIT);
580
581 if (error != 0)
582 aprint_error_dev(sc->sc_dev,
583 "could not allocate firmware transfer area DMA memory\n");
584 return error;
585 }
586
587 static void
588 wpi_free_fwmem(struct wpi_softc *sc)
589 {
590 wpi_dma_contig_free(&sc->fw_dma);
591 }
592
593 static struct wpi_rbuf *
594 wpi_alloc_rbuf(struct wpi_softc *sc)
595 {
596 struct wpi_rbuf *rbuf;
597
598 mutex_enter(&sc->rxq.freelist_mtx);
599 rbuf = SLIST_FIRST(&sc->rxq.freelist);
600 if (rbuf != NULL) {
601 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
602 }
603 mutex_exit(&sc->rxq.freelist_mtx);
604
605 return rbuf;
606 }
607
608 /*
609 * This is called automatically by the network stack when the mbuf to which our
610 * Rx buffer is attached is freed.
611 */
612 static void
613 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
614 {
615 struct wpi_rbuf *rbuf = arg;
616 struct wpi_softc *sc = rbuf->sc;
617
618 /* put the buffer back in the free list */
619
620 mutex_enter(&sc->rxq.freelist_mtx);
621 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
622 mutex_exit(&sc->rxq.freelist_mtx);
623
624 if (__predict_true(m != NULL))
625 pool_cache_put(mb_cache, m);
626 }
627
628 static int
629 wpi_alloc_rpool(struct wpi_softc *sc)
630 {
631 struct wpi_rx_ring *ring = &sc->rxq;
632 int i, error;
633
634 /* allocate a big chunk of DMA'able memory.. */
635 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
636 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
637 if (error != 0) {
638 aprint_normal_dev(sc->sc_dev,
639 "could not allocate Rx buffers DMA memory\n");
640 return error;
641 }
642
643 /* ..and split it into 3KB chunks */
644 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
645 SLIST_INIT(&ring->freelist);
646 for (i = 0; i < WPI_RBUF_COUNT; i++) {
647 struct wpi_rbuf *rbuf = &ring->rbuf[i];
648
649 rbuf->sc = sc; /* backpointer for callbacks */
650 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
651 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
652
653 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
654 }
655
656 return 0;
657 }
658
659 static void
660 wpi_free_rpool(struct wpi_softc *sc)
661 {
662 mutex_destroy(&sc->rxq.freelist_mtx);
663 wpi_dma_contig_free(&sc->rxq.buf_dma);
664 }
665
666 static int
667 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
668 {
669 bus_size_t size;
670 int i, error;
671
672 ring->cur = 0;
673
674 size = WPI_RX_RING_COUNT * sizeof (uint32_t);
675 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
676 (void **)&ring->desc, size,
677 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
678 if (error != 0) {
679 aprint_error_dev(sc->sc_dev,
680 "could not allocate rx ring DMA memory\n");
681 goto fail;
682 }
683
684 /*
685 * Setup Rx buffers.
686 */
687 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
688 struct wpi_rx_data *data = &ring->data[i];
689 struct wpi_rbuf *rbuf;
690
691 error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
692 WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
693 if (error) {
694 aprint_error_dev(sc->sc_dev,
695 "could not allocate rx dma map\n");
696 goto fail;
697 }
698
699 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
700 if (data->m == NULL) {
701 aprint_error_dev(sc->sc_dev,
702 "could not allocate rx mbuf\n");
703 error = ENOMEM;
704 goto fail;
705 }
706 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
707 m_freem(data->m);
708 data->m = NULL;
709 aprint_error_dev(sc->sc_dev,
710 "could not allocate rx cluster\n");
711 error = ENOMEM;
712 goto fail;
713 }
714 /* attach Rx buffer to mbuf */
715 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
716 rbuf);
717 data->m->m_flags |= M_EXT_RW;
718
719 error = bus_dmamap_load(sc->sc_dmat, data->map,
720 mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
721 BUS_DMA_NOWAIT | BUS_DMA_READ);
722 if (error) {
723 aprint_error_dev(sc->sc_dev,
724 "could not load mbuf: %d\n", error);
725 goto fail;
726 }
727
728 ring->desc[i] = htole32(rbuf->paddr);
729 }
730
731 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
732 BUS_DMASYNC_PREWRITE);
733
734 return 0;
735
736 fail: wpi_free_rx_ring(sc, ring);
737 return error;
738 }
739
740 static void
741 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
742 {
743 int ntries;
744
745 wpi_mem_lock(sc);
746
747 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
748 for (ntries = 0; ntries < 100; ntries++) {
749 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
750 break;
751 DELAY(10);
752 }
753 #ifdef WPI_DEBUG
754 if (ntries == 100 && wpi_debug > 0)
755 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
756 #endif
757 wpi_mem_unlock(sc);
758
759 ring->cur = 0;
760 }
761
762 static void
763 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
764 {
765 int i;
766
767 wpi_dma_contig_free(&ring->desc_dma);
768
769 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
770 if (ring->data[i].m != NULL) {
771 bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
772 m_freem(ring->data[i].m);
773 }
774 if (ring->data[i].map != NULL) {
775 bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
776 }
777 }
778 }
779
780 static int
781 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
782 int qid)
783 {
784 int i, error;
785
786 ring->qid = qid;
787 ring->count = count;
788 ring->queued = 0;
789 ring->cur = 0;
790
791 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
792 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
793 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
794 if (error != 0) {
795 aprint_error_dev(sc->sc_dev,
796 "could not allocate tx ring DMA memory\n");
797 goto fail;
798 }
799
800 /* update shared page with ring's base address */
801 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
802 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
803 sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
804
805 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
806 (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
807 BUS_DMA_NOWAIT);
808 if (error != 0) {
809 aprint_error_dev(sc->sc_dev,
810 "could not allocate tx cmd DMA memory\n");
811 goto fail;
812 }
813
814 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
815 M_NOWAIT | M_ZERO);
816 if (ring->data == NULL) {
817 aprint_error_dev(sc->sc_dev,
818 "could not allocate tx data slots\n");
819 goto fail;
820 }
821
822 for (i = 0; i < count; i++) {
823 struct wpi_tx_data *data = &ring->data[i];
824
825 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
826 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
827 &data->map);
828 if (error != 0) {
829 aprint_error_dev(sc->sc_dev,
830 "could not create tx buf DMA map\n");
831 goto fail;
832 }
833 }
834
835 return 0;
836
837 fail: wpi_free_tx_ring(sc, ring);
838 return error;
839 }
840
841 static void
842 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
843 {
844 int i, ntries;
845
846 wpi_mem_lock(sc);
847
848 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
849 for (ntries = 0; ntries < 100; ntries++) {
850 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
851 break;
852 DELAY(10);
853 }
854 #ifdef WPI_DEBUG
855 if (ntries == 100 && wpi_debug > 0) {
856 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
857 ring->qid);
858 }
859 #endif
860 wpi_mem_unlock(sc);
861
862 for (i = 0; i < ring->count; i++) {
863 struct wpi_tx_data *data = &ring->data[i];
864
865 if (data->m != NULL) {
866 bus_dmamap_unload(sc->sc_dmat, data->map);
867 m_freem(data->m);
868 data->m = NULL;
869 }
870 }
871
872 ring->queued = 0;
873 ring->cur = 0;
874 }
875
876 static void
877 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
878 {
879 int i;
880
881 wpi_dma_contig_free(&ring->desc_dma);
882 wpi_dma_contig_free(&ring->cmd_dma);
883
884 if (ring->data != NULL) {
885 for (i = 0; i < ring->count; i++) {
886 struct wpi_tx_data *data = &ring->data[i];
887
888 if (data->m != NULL) {
889 bus_dmamap_unload(sc->sc_dmat, data->map);
890 m_freem(data->m);
891 }
892 }
893 free(ring->data, M_DEVBUF);
894 }
895 }
896
897 /*ARGUSED*/
898 static struct ieee80211_node *
899 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
900 {
901 struct wpi_node *wn;
902
903 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
904
905 return (struct ieee80211_node *)wn;
906 }
907
908 static void
909 wpi_newassoc(struct ieee80211_node *ni, int isnew)
910 {
911 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
912 int i;
913
914 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
915
916 /* set rate to some reasonable initial value */
917 for (i = ni->ni_rates.rs_nrates - 1;
918 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
919 i--);
920 ni->ni_txrate = i;
921 }
922
923 static int
924 wpi_media_change(struct ifnet *ifp)
925 {
926 int error;
927
928 error = ieee80211_media_change(ifp);
929 if (error != ENETRESET)
930 return error;
931
932 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
933 wpi_init(ifp);
934
935 return 0;
936 }
937
938 static int
939 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
940 {
941 struct ifnet *ifp = ic->ic_ifp;
942 struct wpi_softc *sc = ifp->if_softc;
943 struct ieee80211_node *ni;
944 enum ieee80211_state ostate = ic->ic_state;
945 int error;
946
947 callout_stop(&sc->calib_to);
948
949 switch (nstate) {
950 case IEEE80211_S_SCAN:
951
952 if (sc->is_scanning)
953 break;
954
955 sc->is_scanning = true;
956
957 if (ostate != IEEE80211_S_SCAN) {
958 /* make the link LED blink while we're scanning */
959 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
960 }
961
962 if ((error = wpi_scan(sc)) != 0) {
963 aprint_error_dev(sc->sc_dev,
964 "could not initiate scan\n");
965 return error;
966 }
967 break;
968
969 case IEEE80211_S_ASSOC:
970 if (ic->ic_state != IEEE80211_S_RUN)
971 break;
972 /* FALLTHROUGH */
973 case IEEE80211_S_AUTH:
974 /* reset state to handle reassociations correctly */
975 sc->config.associd = 0;
976 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
977
978 if ((error = wpi_auth(sc)) != 0) {
979 aprint_error_dev(sc->sc_dev,
980 "could not send authentication request\n");
981 return error;
982 }
983 break;
984
985 case IEEE80211_S_RUN:
986 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
987 /* link LED blinks while monitoring */
988 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
989 break;
990 }
991 ni = ic->ic_bss;
992
993 if (ic->ic_opmode != IEEE80211_M_STA) {
994 (void) wpi_auth(sc); /* XXX */
995 wpi_setup_beacon(sc, ni);
996 }
997
998 wpi_enable_tsf(sc, ni);
999
1000 /* update adapter's configuration */
1001 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
1002 /* short preamble/slot time are negotiated when associating */
1003 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
1004 WPI_CONFIG_SHSLOT);
1005 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1006 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
1007 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1008 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
1009 sc->config.filter |= htole32(WPI_FILTER_BSS);
1010 if (ic->ic_opmode != IEEE80211_M_STA)
1011 sc->config.filter |= htole32(WPI_FILTER_BEACON);
1012
1013 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
1014
1015 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
1016 sc->config.flags));
1017 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
1018 sizeof (struct wpi_config), 1);
1019 if (error != 0) {
1020 aprint_error_dev(sc->sc_dev,
1021 "could not update configuration\n");
1022 return error;
1023 }
1024
1025 /* configuration has changed, set Tx power accordingly */
1026 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
1027 aprint_error_dev(sc->sc_dev,
1028 "could not set Tx power\n");
1029 return error;
1030 }
1031
1032 if (ic->ic_opmode == IEEE80211_M_STA) {
1033 /* fake a join to init the tx rate */
1034 wpi_newassoc(ni, 1);
1035 }
1036
1037 /* start periodic calibration timer */
1038 sc->calib_cnt = 0;
1039 callout_schedule(&sc->calib_to, hz/2);
1040
1041 /* link LED always on while associated */
1042 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1043 break;
1044
1045 case IEEE80211_S_INIT:
1046 sc->is_scanning = false;
1047 break;
1048 }
1049
1050 return sc->sc_newstate(ic, nstate, arg);
1051 }
1052
1053 /*
1054 * Grab exclusive access to NIC memory.
1055 */
1056 static void
1057 wpi_mem_lock(struct wpi_softc *sc)
1058 {
1059 uint32_t tmp;
1060 int ntries;
1061
1062 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1063 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1064
1065 /* spin until we actually get the lock */
1066 for (ntries = 0; ntries < 1000; ntries++) {
1067 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1068 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1069 break;
1070 DELAY(10);
1071 }
1072 if (ntries == 1000)
1073 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1074 }
1075
1076 /*
1077 * Release lock on NIC memory.
1078 */
1079 static void
1080 wpi_mem_unlock(struct wpi_softc *sc)
1081 {
1082 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1083 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1084 }
1085
1086 static uint32_t
1087 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1088 {
1089 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1090 return WPI_READ(sc, WPI_READ_MEM_DATA);
1091 }
1092
1093 static void
1094 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1095 {
1096 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1097 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1098 }
1099
1100 static void
1101 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1102 const uint32_t *data, int wlen)
1103 {
1104 for (; wlen > 0; wlen--, data++, addr += 4)
1105 wpi_mem_write(sc, addr, *data);
1106 }
1107
1108 /*
1109 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1110 * instead of using the traditional bit-bang method.
1111 */
1112 static int
1113 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1114 {
1115 uint8_t *out = data;
1116 uint32_t val;
1117 int ntries;
1118
1119 wpi_mem_lock(sc);
1120 for (; len > 0; len -= 2, addr++) {
1121 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1122
1123 for (ntries = 0; ntries < 10; ntries++) {
1124 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1125 WPI_EEPROM_READY)
1126 break;
1127 DELAY(5);
1128 }
1129 if (ntries == 10) {
1130 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1131 return ETIMEDOUT;
1132 }
1133 *out++ = val >> 16;
1134 if (len > 1)
1135 *out++ = val >> 24;
1136 }
1137 wpi_mem_unlock(sc);
1138
1139 return 0;
1140 }
1141
1142 /*
1143 * The firmware boot code is small and is intended to be copied directly into
1144 * the NIC internal memory.
1145 */
1146 int
1147 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1148 {
1149 int ntries;
1150
1151 size /= sizeof (uint32_t);
1152
1153 wpi_mem_lock(sc);
1154
1155 /* copy microcode image into NIC memory */
1156 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1157 (const uint32_t *)ucode, size);
1158
1159 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1160 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1161 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1162
1163 /* run microcode */
1164 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1165
1166 /* wait for transfer to complete */
1167 for (ntries = 0; ntries < 1000; ntries++) {
1168 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1169 break;
1170 DELAY(10);
1171 }
1172 if (ntries == 1000) {
1173 wpi_mem_unlock(sc);
1174 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1175 return ETIMEDOUT;
1176 }
1177 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1178
1179 wpi_mem_unlock(sc);
1180
1181 return 0;
1182 }
1183
1184 static int
1185 wpi_cache_firmware(struct wpi_softc *sc)
1186 {
1187 const char *const fwname = wpi_firmware_name;
1188 firmware_handle_t fw;
1189 int error;
1190
1191 /* sc is used here only to report error messages. */
1192
1193 mutex_enter(&wpi_firmware_mutex);
1194
1195 if (wpi_firmware_users == SIZE_MAX) {
1196 mutex_exit(&wpi_firmware_mutex);
1197 return ENFILE; /* Too many of something in the system... */
1198 }
1199 if (wpi_firmware_users++) {
1200 KASSERT(wpi_firmware_image != NULL);
1201 KASSERT(wpi_firmware_size > 0);
1202 mutex_exit(&wpi_firmware_mutex);
1203 return 0; /* Already good to go. */
1204 }
1205
1206 KASSERT(wpi_firmware_image == NULL);
1207 KASSERT(wpi_firmware_size == 0);
1208
1209 /* load firmware image from disk */
1210 if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1211 aprint_error_dev(sc->sc_dev,
1212 "could not open firmware file %s: %d\n", fwname, error);
1213 goto fail0;
1214 }
1215
1216 wpi_firmware_size = firmware_get_size(fw);
1217
1218 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1219 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1220 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1221 WPI_FW_BOOT_TEXT_MAXSZ) {
1222 aprint_error_dev(sc->sc_dev,
1223 "firmware file %s too large: %zu bytes\n",
1224 fwname, wpi_firmware_size);
1225 error = EFBIG;
1226 goto fail1;
1227 }
1228
1229 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1230 aprint_error_dev(sc->sc_dev,
1231 "firmware file %s too small: %zu bytes\n",
1232 fwname, wpi_firmware_size);
1233 error = EINVAL;
1234 goto fail1;
1235 }
1236
1237 wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1238 if (wpi_firmware_image == NULL) {
1239 aprint_error_dev(sc->sc_dev,
1240 "not enough memory for firmware file %s\n", fwname);
1241 error = ENOMEM;
1242 goto fail1;
1243 }
1244
1245 error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1246 if (error != 0) {
1247 aprint_error_dev(sc->sc_dev,
1248 "error reading firmware file %s: %d\n", fwname, error);
1249 goto fail2;
1250 }
1251
1252 /* Success! */
1253 firmware_close(fw);
1254 mutex_exit(&wpi_firmware_mutex);
1255 return 0;
1256
1257 fail2:
1258 firmware_free(wpi_firmware_image, wpi_firmware_size);
1259 wpi_firmware_image = NULL;
1260 fail1:
1261 wpi_firmware_size = 0;
1262 firmware_close(fw);
1263 fail0:
1264 KASSERT(wpi_firmware_users == 1);
1265 wpi_firmware_users = 0;
1266 KASSERT(wpi_firmware_image == NULL);
1267 KASSERT(wpi_firmware_size == 0);
1268
1269 mutex_exit(&wpi_firmware_mutex);
1270 return error;
1271 }
1272
1273 static void
1274 wpi_release_firmware(void)
1275 {
1276
1277 mutex_enter(&wpi_firmware_mutex);
1278
1279 KASSERT(wpi_firmware_users > 0);
1280 KASSERT(wpi_firmware_image != NULL);
1281 KASSERT(wpi_firmware_size != 0);
1282
1283 if (--wpi_firmware_users == 0) {
1284 firmware_free(wpi_firmware_image, wpi_firmware_size);
1285 wpi_firmware_image = NULL;
1286 wpi_firmware_size = 0;
1287 }
1288
1289 mutex_exit(&wpi_firmware_mutex);
1290 }
1291
1292 static int
1293 wpi_load_firmware(struct wpi_softc *sc)
1294 {
1295 struct wpi_dma_info *dma = &sc->fw_dma;
1296 struct wpi_firmware_hdr hdr;
1297 const uint8_t *init_text, *init_data, *main_text, *main_data;
1298 const uint8_t *boot_text;
1299 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1300 uint32_t boot_textsz;
1301 size_t size;
1302 int error;
1303
1304 if (!sc->fw_used) {
1305 if ((error = wpi_cache_firmware(sc)) != 0)
1306 return error;
1307 sc->fw_used = true;
1308 }
1309
1310 KASSERT(sc->fw_used);
1311 KASSERT(wpi_firmware_image != NULL);
1312 KASSERT(wpi_firmware_size > sizeof(hdr));
1313
1314 memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1315
1316 main_textsz = le32toh(hdr.main_textsz);
1317 main_datasz = le32toh(hdr.main_datasz);
1318 init_textsz = le32toh(hdr.init_textsz);
1319 init_datasz = le32toh(hdr.init_datasz);
1320 boot_textsz = le32toh(hdr.boot_textsz);
1321
1322 /* sanity-check firmware segments sizes */
1323 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1324 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1325 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1326 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1327 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1328 (boot_textsz & 3) != 0) {
1329 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1330 error = EINVAL;
1331 goto free_firmware;
1332 }
1333
1334 /* check that all firmware segments are present */
1335 size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1336 main_datasz + init_textsz + init_datasz + boot_textsz;
1337 if (wpi_firmware_size < size) {
1338 aprint_error_dev(sc->sc_dev,
1339 "firmware file truncated: %zu bytes, expected %zu bytes\n",
1340 wpi_firmware_size, size);
1341 error = EINVAL;
1342 goto free_firmware;
1343 }
1344
1345 /* get pointers to firmware segments */
1346 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1347 main_data = main_text + main_textsz;
1348 init_text = main_data + main_datasz;
1349 init_data = init_text + init_textsz;
1350 boot_text = init_data + init_datasz;
1351
1352 /* copy initialization images into pre-allocated DMA-safe memory */
1353 memcpy(dma->vaddr, init_data, init_datasz);
1354 memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1355 init_textsz);
1356
1357 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1358
1359 /* tell adapter where to find initialization images */
1360 wpi_mem_lock(sc);
1361 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1362 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1363 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1364 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1365 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1366 wpi_mem_unlock(sc);
1367
1368 /* load firmware boot code */
1369 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1370 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1371 return error;
1372 }
1373
1374 /* now press "execute" ;-) */
1375 WPI_WRITE(sc, WPI_RESET, 0);
1376
1377 /* wait at most one second for first alive notification */
1378 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1379 /* this isn't what was supposed to happen.. */
1380 aprint_error_dev(sc->sc_dev,
1381 "timeout waiting for adapter to initialize\n");
1382 }
1383
1384 /* copy runtime images into pre-allocated DMA-safe memory */
1385 memcpy(dma->vaddr, main_data, main_datasz);
1386 memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1387 main_textsz);
1388
1389 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1390
1391 /* tell adapter where to find runtime images */
1392 wpi_mem_lock(sc);
1393 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1394 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1395 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1396 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1397 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1398 wpi_mem_unlock(sc);
1399
1400 /* wait at most one second for second alive notification */
1401 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1402 /* this isn't what was supposed to happen.. */
1403 aprint_error_dev(sc->sc_dev,
1404 "timeout waiting for adapter to initialize\n");
1405 }
1406
1407 return error;
1408
1409 free_firmware:
1410 sc->fw_used = false;
1411 wpi_release_firmware();
1412 return error;
1413 }
1414
1415 static void
1416 wpi_calib_timeout(void *arg)
1417 {
1418 struct wpi_softc *sc = arg;
1419 struct ieee80211com *ic = &sc->sc_ic;
1420 int temp, s;
1421
1422 /* automatic rate control triggered every 500ms */
1423 if (ic->ic_fixed_rate == -1) {
1424 s = splnet();
1425 if (ic->ic_opmode == IEEE80211_M_STA)
1426 wpi_iter_func(sc, ic->ic_bss);
1427 else
1428 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1429 splx(s);
1430 }
1431
1432 /* update sensor data */
1433 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1434
1435 /* automatic power calibration every 60s */
1436 if (++sc->calib_cnt >= 120) {
1437 wpi_power_calibration(sc, temp);
1438 sc->calib_cnt = 0;
1439 }
1440
1441 callout_schedule(&sc->calib_to, hz/2);
1442 }
1443
1444 static void
1445 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1446 {
1447 struct wpi_softc *sc = arg;
1448 struct wpi_node *wn = (struct wpi_node *)ni;
1449
1450 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1451 }
1452
1453 /*
1454 * This function is called periodically (every 60 seconds) to adjust output
1455 * power to temperature changes.
1456 */
1457 void
1458 wpi_power_calibration(struct wpi_softc *sc, int temp)
1459 {
1460 /* sanity-check read value */
1461 if (temp < -260 || temp > 25) {
1462 /* this can't be correct, ignore */
1463 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1464 return;
1465 }
1466
1467 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1468
1469 /* adjust Tx power if need be */
1470 if (abs(temp - sc->temp) <= 6)
1471 return;
1472
1473 sc->temp = temp;
1474
1475 if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1476 /* just warn, too bad for the automatic calibration... */
1477 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1478 }
1479 }
1480
1481 static void
1482 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1483 struct wpi_rx_data *data)
1484 {
1485 struct ieee80211com *ic = &sc->sc_ic;
1486 struct ifnet *ifp = ic->ic_ifp;
1487 struct wpi_rx_ring *ring = &sc->rxq;
1488 struct wpi_rx_stat *stat;
1489 struct wpi_rx_head *head;
1490 struct wpi_rx_tail *tail;
1491 struct wpi_rbuf *rbuf;
1492 struct ieee80211_frame *wh;
1493 struct ieee80211_node *ni;
1494 struct mbuf *m, *mnew;
1495 int data_off, error, s;
1496
1497 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1498 BUS_DMASYNC_POSTREAD);
1499 stat = (struct wpi_rx_stat *)(desc + 1);
1500
1501 if (stat->len > WPI_STAT_MAXLEN) {
1502 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1503 ifp->if_ierrors++;
1504 return;
1505 }
1506
1507 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1508 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1509
1510 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1511 "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1512 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1513 le64toh(tail->tstamp)));
1514
1515 /*
1516 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1517 * to radiotap in monitor mode).
1518 */
1519 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1520 DPRINTF(("rx tail flags error %x\n",
1521 le32toh(tail->flags)));
1522 ifp->if_ierrors++;
1523 return;
1524 }
1525
1526 /* Compute where are the useful datas */
1527 data_off = (char*)(head + 1) - mtod(data->m, char*);
1528
1529 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1530 if (mnew == NULL) {
1531 ifp->if_ierrors++;
1532 return;
1533 }
1534
1535 rbuf = wpi_alloc_rbuf(sc);
1536 if (rbuf == NULL) {
1537 m_freem(mnew);
1538 ifp->if_ierrors++;
1539 return;
1540 }
1541
1542 /* attach Rx buffer to mbuf */
1543 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1544 rbuf);
1545 mnew->m_flags |= M_EXT_RW;
1546
1547 bus_dmamap_unload(sc->sc_dmat, data->map);
1548
1549 error = bus_dmamap_load(sc->sc_dmat, data->map,
1550 mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1551 BUS_DMA_NOWAIT | BUS_DMA_READ);
1552 if (error) {
1553 device_printf(sc->sc_dev,
1554 "couldn't load rx mbuf: %d\n", error);
1555 m_freem(mnew);
1556 ifp->if_ierrors++;
1557
1558 error = bus_dmamap_load(sc->sc_dmat, data->map,
1559 mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1560 BUS_DMA_NOWAIT | BUS_DMA_READ);
1561 if (error)
1562 panic("%s: bus_dmamap_load failed: %d\n",
1563 device_xname(sc->sc_dev), error);
1564 return;
1565 }
1566
1567 /* new mbuf loaded successfully */
1568 m = data->m;
1569 data->m = mnew;
1570
1571 /* update Rx descriptor */
1572 ring->desc[ring->cur] = htole32(rbuf->paddr);
1573 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1574 ring->desc_dma.size,
1575 BUS_DMASYNC_PREWRITE);
1576
1577 m->m_data = (char*)m->m_data + data_off;
1578 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1579
1580 /* finalize mbuf */
1581 m_set_rcvif(m, ifp);
1582
1583 s = splnet();
1584
1585 if (sc->sc_drvbpf != NULL) {
1586 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1587
1588 tap->wr_flags = 0;
1589 tap->wr_chan_freq =
1590 htole16(ic->ic_channels[head->chan].ic_freq);
1591 tap->wr_chan_flags =
1592 htole16(ic->ic_channels[head->chan].ic_flags);
1593 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1594 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1595 tap->wr_tsft = tail->tstamp;
1596 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1597 switch (head->rate) {
1598 /* CCK rates */
1599 case 10: tap->wr_rate = 2; break;
1600 case 20: tap->wr_rate = 4; break;
1601 case 55: tap->wr_rate = 11; break;
1602 case 110: tap->wr_rate = 22; break;
1603 /* OFDM rates */
1604 case 0xd: tap->wr_rate = 12; break;
1605 case 0xf: tap->wr_rate = 18; break;
1606 case 0x5: tap->wr_rate = 24; break;
1607 case 0x7: tap->wr_rate = 36; break;
1608 case 0x9: tap->wr_rate = 48; break;
1609 case 0xb: tap->wr_rate = 72; break;
1610 case 0x1: tap->wr_rate = 96; break;
1611 case 0x3: tap->wr_rate = 108; break;
1612 /* unknown rate: should not happen */
1613 default: tap->wr_rate = 0;
1614 }
1615 if (le16toh(head->flags) & 0x4)
1616 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1617
1618 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1619 }
1620
1621 /* grab a reference to the source node */
1622 wh = mtod(m, struct ieee80211_frame *);
1623 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1624
1625 /* send the frame to the 802.11 layer */
1626 ieee80211_input(ic, m, ni, stat->rssi, 0);
1627
1628 /* release node reference */
1629 ieee80211_free_node(ni);
1630
1631 splx(s);
1632 }
1633
1634 static void
1635 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1636 {
1637 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1638 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1639 struct wpi_tx_data *data = &ring->data[desc->idx];
1640 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1641 struct wpi_node *wn = (struct wpi_node *)data->ni;
1642 int s;
1643
1644 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1645 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1646 stat->nkill, stat->rate, le32toh(stat->duration),
1647 le32toh(stat->status)));
1648
1649 s = splnet();
1650
1651 /*
1652 * Update rate control statistics for the node.
1653 * XXX we should not count mgmt frames since they're always sent at
1654 * the lowest available bit-rate.
1655 */
1656 wn->amn.amn_txcnt++;
1657 if (stat->ntries > 0) {
1658 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1659 wn->amn.amn_retrycnt++;
1660 }
1661
1662 if ((le32toh(stat->status) & 0xff) != 1)
1663 ifp->if_oerrors++;
1664 else
1665 ifp->if_opackets++;
1666
1667 bus_dmamap_unload(sc->sc_dmat, data->map);
1668 m_freem(data->m);
1669 data->m = NULL;
1670 ieee80211_free_node(data->ni);
1671 data->ni = NULL;
1672
1673 ring->queued--;
1674
1675 sc->sc_tx_timer = 0;
1676 ifp->if_flags &= ~IFF_OACTIVE;
1677 wpi_start(ifp); /* in softint */
1678
1679 splx(s);
1680 }
1681
1682 static void
1683 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1684 {
1685 struct wpi_tx_ring *ring = &sc->cmdq;
1686 struct wpi_tx_data *data;
1687
1688 if ((desc->qid & 7) != 4)
1689 return; /* not a command ack */
1690
1691 data = &ring->data[desc->idx];
1692
1693 /* if the command was mapped in a mbuf, free it */
1694 if (data->m != NULL) {
1695 bus_dmamap_unload(sc->sc_dmat, data->map);
1696 m_freem(data->m);
1697 data->m = NULL;
1698 }
1699
1700 wakeup(&ring->cmd[desc->idx]);
1701 }
1702
1703 static void
1704 wpi_notif_intr(struct wpi_softc *sc)
1705 {
1706 struct ieee80211com *ic = &sc->sc_ic;
1707 struct ifnet *ifp = ic->ic_ifp;
1708 uint32_t hw;
1709 int s;
1710
1711 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1712 sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1713
1714 hw = le32toh(sc->shared->next);
1715 while (sc->rxq.cur != hw) {
1716 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1717 struct wpi_rx_desc *desc;
1718
1719 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1720 BUS_DMASYNC_POSTREAD);
1721 desc = mtod(data->m, struct wpi_rx_desc *);
1722
1723 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1724 "len=%d\n", desc->qid, desc->idx, desc->flags,
1725 desc->type, le32toh(desc->len)));
1726
1727 if (!(desc->qid & 0x80)) /* reply to a command */
1728 wpi_cmd_intr(sc, desc);
1729
1730 switch (desc->type) {
1731 case WPI_RX_DONE:
1732 /* a 802.11 frame was received */
1733 wpi_rx_intr(sc, desc, data);
1734 break;
1735
1736 case WPI_TX_DONE:
1737 /* a 802.11 frame has been transmitted */
1738 wpi_tx_intr(sc, desc);
1739 break;
1740
1741 case WPI_UC_READY:
1742 {
1743 struct wpi_ucode_info *uc =
1744 (struct wpi_ucode_info *)(desc + 1);
1745
1746 /* the microcontroller is ready */
1747 DPRINTF(("microcode alive notification version %x "
1748 "alive %x\n", le32toh(uc->version),
1749 le32toh(uc->valid)));
1750
1751 if (le32toh(uc->valid) != 1) {
1752 aprint_error_dev(sc->sc_dev,
1753 "microcontroller initialization failed\n");
1754 }
1755 break;
1756 }
1757 case WPI_STATE_CHANGED:
1758 {
1759 uint32_t *status = (uint32_t *)(desc + 1);
1760
1761 /* enabled/disabled notification */
1762 DPRINTF(("state changed to %x\n", le32toh(*status)));
1763
1764 if (le32toh(*status) & 1) {
1765 s = splnet();
1766 /* the radio button has to be pushed */
1767 /* wake up thread to signal powerd */
1768 cv_signal(&sc->sc_rsw_cv);
1769 aprint_error_dev(sc->sc_dev,
1770 "Radio transmitter is off\n");
1771 /* turn the interface down */
1772 ifp->if_flags &= ~IFF_UP;
1773 wpi_stop(ifp, 1);
1774 splx(s);
1775 return; /* no further processing */
1776 }
1777 break;
1778 }
1779 case WPI_START_SCAN:
1780 {
1781 #if 0
1782 struct wpi_start_scan *scan =
1783 (struct wpi_start_scan *)(desc + 1);
1784
1785 DPRINTFN(2, ("scanning channel %d status %x\n",
1786 scan->chan, le32toh(scan->status)));
1787
1788 /* fix current channel */
1789 ic->ic_curchan = &ic->ic_channels[scan->chan];
1790 #endif
1791 break;
1792 }
1793 case WPI_STOP_SCAN:
1794 {
1795 #ifdef WPI_DEBUG
1796 struct wpi_stop_scan *scan =
1797 (struct wpi_stop_scan *)(desc + 1);
1798 #endif
1799
1800 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1801 scan->nchan, scan->status, scan->chan));
1802
1803 s = splnet();
1804 sc->is_scanning = false;
1805 if (ic->ic_state == IEEE80211_S_SCAN)
1806 ieee80211_next_scan(ic);
1807 splx(s);
1808 break;
1809 }
1810 }
1811
1812 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1813 }
1814
1815 /* tell the firmware what we have processed */
1816 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1817 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1818 }
1819
1820 static int
1821 wpi_intr(void *arg)
1822 {
1823 struct wpi_softc *sc = arg;
1824 uint32_t r;
1825
1826 r = WPI_READ(sc, WPI_INTR);
1827 if (r == 0 || r == 0xffffffff)
1828 return 0; /* not for us */
1829
1830 DPRINTFN(6, ("interrupt reg %x\n", r));
1831
1832 /* disable interrupts */
1833 WPI_WRITE(sc, WPI_MASK, 0);
1834
1835 softint_schedule(sc->sc_soft_ih);
1836 return 1;
1837 }
1838
1839 static void
1840 wpi_softintr(void *arg)
1841 {
1842 struct wpi_softc *sc = arg;
1843 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1844 uint32_t r;
1845
1846 r = WPI_READ(sc, WPI_INTR);
1847 if (r == 0 || r == 0xffffffff)
1848 goto out;
1849
1850 /* ack interrupts */
1851 WPI_WRITE(sc, WPI_INTR, r);
1852
1853 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1854 /* SYSTEM FAILURE, SYSTEM FAILURE */
1855 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1856 ifp->if_flags &= ~IFF_UP;
1857 wpi_stop(ifp, 1);
1858 return;
1859 }
1860
1861 if (r & WPI_RX_INTR)
1862 wpi_notif_intr(sc);
1863
1864 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1865 wakeup(sc);
1866
1867 out:
1868 /* re-enable interrupts */
1869 if (ifp->if_flags & IFF_UP)
1870 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1871 }
1872
1873 static uint8_t
1874 wpi_plcp_signal(int rate)
1875 {
1876 switch (rate) {
1877 /* CCK rates (returned values are device-dependent) */
1878 case 2: return 10;
1879 case 4: return 20;
1880 case 11: return 55;
1881 case 22: return 110;
1882
1883 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1884 /* R1-R4, (u)ral is R4-R1 */
1885 case 12: return 0xd;
1886 case 18: return 0xf;
1887 case 24: return 0x5;
1888 case 36: return 0x7;
1889 case 48: return 0x9;
1890 case 72: return 0xb;
1891 case 96: return 0x1;
1892 case 108: return 0x3;
1893
1894 /* unsupported rates (should not get there) */
1895 default: return 0;
1896 }
1897 }
1898
1899 /* quickly determine if a given rate is CCK or OFDM */
1900 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1901
1902 static int
1903 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1904 int ac)
1905 {
1906 struct ieee80211com *ic = &sc->sc_ic;
1907 struct wpi_tx_ring *ring = &sc->txq[ac];
1908 struct wpi_tx_desc *desc;
1909 struct wpi_tx_data *data;
1910 struct wpi_tx_cmd *cmd;
1911 struct wpi_cmd_data *tx;
1912 struct ieee80211_frame *wh;
1913 struct ieee80211_key *k;
1914 const struct chanAccParams *cap;
1915 struct mbuf *mnew;
1916 int i, rate, error, hdrlen, noack = 0;
1917
1918 desc = &ring->desc[ring->cur];
1919 data = &ring->data[ring->cur];
1920
1921 wh = mtod(m0, struct ieee80211_frame *);
1922
1923 if (ieee80211_has_qos(wh)) {
1924 cap = &ic->ic_wme.wme_chanParams;
1925 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1926 }
1927
1928 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1929 k = ieee80211_crypto_encap(ic, ni, m0);
1930 if (k == NULL) {
1931 m_freem(m0);
1932 return ENOBUFS;
1933 }
1934
1935 /* packet header may have moved, reset our local pointer */
1936 wh = mtod(m0, struct ieee80211_frame *);
1937 }
1938
1939 hdrlen = ieee80211_anyhdrsize(wh);
1940
1941 /* pickup a rate */
1942 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1943 IEEE80211_FC0_TYPE_MGT) {
1944 /* mgmt frames are sent at the lowest available bit-rate */
1945 rate = ni->ni_rates.rs_rates[0];
1946 } else {
1947 if (ic->ic_fixed_rate != -1) {
1948 rate = ic->ic_sup_rates[ic->ic_curmode].
1949 rs_rates[ic->ic_fixed_rate];
1950 } else
1951 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1952 }
1953 rate &= IEEE80211_RATE_VAL;
1954
1955 if (sc->sc_drvbpf != NULL) {
1956 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1957
1958 tap->wt_flags = 0;
1959 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1960 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1961 tap->wt_rate = rate;
1962 tap->wt_hwqueue = ac;
1963 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1964 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1965
1966 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1967 }
1968
1969 cmd = &ring->cmd[ring->cur];
1970 cmd->code = WPI_CMD_TX_DATA;
1971 cmd->flags = 0;
1972 cmd->qid = ring->qid;
1973 cmd->idx = ring->cur;
1974
1975 tx = (struct wpi_cmd_data *)cmd->data;
1976 /* no need to zero tx, all fields are reinitialized here */
1977 tx->flags = 0;
1978
1979 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1980 tx->flags |= htole32(WPI_TX_NEED_ACK);
1981 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1982 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1983
1984 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1985
1986 /* retrieve destination node's id */
1987 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1988 WPI_ID_BSS;
1989
1990 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1991 IEEE80211_FC0_TYPE_MGT) {
1992 /* tell h/w to set timestamp in probe responses */
1993 if ((wh->i_fc[0] &
1994 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1995 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1996 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1997
1998 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1999 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
2000 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2001 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
2002 tx->timeout = htole16(3);
2003 else
2004 tx->timeout = htole16(2);
2005 } else
2006 tx->timeout = htole16(0);
2007
2008 tx->rate = wpi_plcp_signal(rate);
2009
2010 /* be very persistant at sending frames out */
2011 tx->rts_ntries = 7;
2012 tx->data_ntries = 15;
2013
2014 tx->ofdm_mask = 0xff;
2015 tx->cck_mask = 0x0f;
2016 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2017
2018 tx->len = htole16(m0->m_pkthdr.len);
2019
2020 /* save and trim IEEE802.11 header */
2021 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2022 m_adj(m0, hdrlen);
2023
2024 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2025 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2026 if (error != 0 && error != EFBIG) {
2027 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2028 error);
2029 m_freem(m0);
2030 return error;
2031 }
2032 if (error != 0) {
2033 /* too many fragments, linearize */
2034
2035 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2036 if (mnew == NULL) {
2037 m_freem(m0);
2038 return ENOMEM;
2039 }
2040 m_copy_pkthdr(mnew, m0);
2041 if (m0->m_pkthdr.len > MHLEN) {
2042 MCLGET(mnew, M_DONTWAIT);
2043 if (!(mnew->m_flags & M_EXT)) {
2044 m_freem(m0);
2045 m_freem(mnew);
2046 return ENOMEM;
2047 }
2048 }
2049
2050 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2051 m_freem(m0);
2052 mnew->m_len = mnew->m_pkthdr.len;
2053 m0 = mnew;
2054
2055 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2056 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2057 if (error != 0) {
2058 aprint_error_dev(sc->sc_dev,
2059 "could not map mbuf (error %d)\n", error);
2060 m_freem(m0);
2061 return error;
2062 }
2063 }
2064
2065 data->m = m0;
2066 data->ni = ni;
2067
2068 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2069 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2070
2071 /* first scatter/gather segment is used by the tx data command */
2072 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2073 (1 + data->map->dm_nsegs) << 24);
2074 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2075 ring->cur * sizeof (struct wpi_tx_cmd));
2076 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
2077 ((hdrlen + 3) & ~3));
2078 for (i = 1; i <= data->map->dm_nsegs; i++) {
2079 desc->segs[i].addr =
2080 htole32(data->map->dm_segs[i - 1].ds_addr);
2081 desc->segs[i].len =
2082 htole32(data->map->dm_segs[i - 1].ds_len);
2083 }
2084
2085 ring->queued++;
2086
2087 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2088 data->map->dm_mapsize,
2089 BUS_DMASYNC_PREWRITE);
2090 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
2091 ring->cmd_dma.size,
2092 BUS_DMASYNC_PREWRITE);
2093 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2094 ring->desc_dma.size,
2095 BUS_DMASYNC_PREWRITE);
2096
2097 /* kick ring */
2098 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2099 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2100
2101 return 0;
2102 }
2103
2104 static void
2105 wpi_start(struct ifnet *ifp)
2106 {
2107 struct wpi_softc *sc = ifp->if_softc;
2108 struct ieee80211com *ic = &sc->sc_ic;
2109 struct ieee80211_node *ni;
2110 struct ether_header *eh;
2111 struct mbuf *m0;
2112 int ac;
2113
2114 /*
2115 * net80211 may still try to send management frames even if the
2116 * IFF_RUNNING flag is not set...
2117 */
2118 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2119 return;
2120
2121 for (;;) {
2122 IF_DEQUEUE(&ic->ic_mgtq, m0);
2123 if (m0 != NULL) {
2124
2125 ni = M_GETCTX(m0, struct ieee80211_node *);
2126 M_CLEARCTX(m0);
2127
2128 /* management frames go into ring 0 */
2129 if (sc->txq[0].queued > sc->txq[0].count - 8) {
2130 ifp->if_oerrors++;
2131 continue;
2132 }
2133 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2134 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2135 ifp->if_oerrors++;
2136 break;
2137 }
2138 } else {
2139 if (ic->ic_state != IEEE80211_S_RUN)
2140 break;
2141 IFQ_POLL(&ifp->if_snd, m0);
2142 if (m0 == NULL)
2143 break;
2144
2145 if (m0->m_len < sizeof (*eh) &&
2146 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2147 ifp->if_oerrors++;
2148 continue;
2149 }
2150 eh = mtod(m0, struct ether_header *);
2151 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2152 if (ni == NULL) {
2153 m_freem(m0);
2154 ifp->if_oerrors++;
2155 continue;
2156 }
2157
2158 /* classify mbuf so we can find which tx ring to use */
2159 if (ieee80211_classify(ic, m0, ni) != 0) {
2160 m_freem(m0);
2161 ieee80211_free_node(ni);
2162 ifp->if_oerrors++;
2163 continue;
2164 }
2165
2166 /* no QoS encapsulation for EAPOL frames */
2167 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2168 M_WME_GETAC(m0) : WME_AC_BE;
2169
2170 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2171 /* there is no place left in this ring */
2172 ifp->if_flags |= IFF_OACTIVE;
2173 break;
2174 }
2175 IFQ_DEQUEUE(&ifp->if_snd, m0);
2176 bpf_mtap(ifp, m0, BPF_D_OUT);
2177 m0 = ieee80211_encap(ic, m0, ni);
2178 if (m0 == NULL) {
2179 ieee80211_free_node(ni);
2180 ifp->if_oerrors++;
2181 continue;
2182 }
2183 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2184 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2185 ieee80211_free_node(ni);
2186 ifp->if_oerrors++;
2187 break;
2188 }
2189 }
2190
2191 sc->sc_tx_timer = 5;
2192 ifp->if_timer = 1;
2193 }
2194 }
2195
2196 static void
2197 wpi_watchdog(struct ifnet *ifp)
2198 {
2199 struct wpi_softc *sc = ifp->if_softc;
2200
2201 ifp->if_timer = 0;
2202
2203 if (sc->sc_tx_timer > 0) {
2204 if (--sc->sc_tx_timer == 0) {
2205 aprint_error_dev(sc->sc_dev, "device timeout\n");
2206 ifp->if_flags &= ~IFF_UP;
2207 wpi_stop(ifp, 1);
2208 ifp->if_oerrors++;
2209 return;
2210 }
2211 ifp->if_timer = 1;
2212 }
2213
2214 ieee80211_watchdog(&sc->sc_ic);
2215 }
2216
2217 static int
2218 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2219 {
2220 #define IS_RUNNING(ifp) \
2221 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2222
2223 struct wpi_softc *sc = ifp->if_softc;
2224 struct ieee80211com *ic = &sc->sc_ic;
2225 int s, error = 0;
2226
2227 s = splnet();
2228
2229 switch (cmd) {
2230 case SIOCSIFFLAGS:
2231 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2232 break;
2233 if (ifp->if_flags & IFF_UP) {
2234 if (!(ifp->if_flags & IFF_RUNNING))
2235 wpi_init(ifp);
2236 } else {
2237 if (ifp->if_flags & IFF_RUNNING)
2238 wpi_stop(ifp, 1);
2239 }
2240 break;
2241
2242 case SIOCADDMULTI:
2243 case SIOCDELMULTI:
2244 /* XXX no h/w multicast filter? --dyoung */
2245 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2246 /* setup multicast filter, etc */
2247 error = 0;
2248 }
2249 break;
2250
2251 default:
2252 error = ieee80211_ioctl(ic, cmd, data);
2253 }
2254
2255 if (error == ENETRESET) {
2256 if (IS_RUNNING(ifp) &&
2257 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2258 wpi_init(ifp);
2259 error = 0;
2260 }
2261
2262 splx(s);
2263 return error;
2264
2265 #undef IS_RUNNING
2266 }
2267
2268 /*
2269 * Extract various information from EEPROM.
2270 */
2271 static void
2272 wpi_read_eeprom(struct wpi_softc *sc)
2273 {
2274 struct ieee80211com *ic = &sc->sc_ic;
2275 char domain[4];
2276 int i;
2277
2278 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2279 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2280 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2281
2282 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2283 sc->type));
2284
2285 /* read and print regulatory domain */
2286 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2287 aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2288
2289 /* read and print MAC address */
2290 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2291 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2292
2293 /* read the list of authorized channels */
2294 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2295 wpi_read_eeprom_channels(sc, i);
2296
2297 /* read the list of power groups */
2298 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2299 wpi_read_eeprom_group(sc, i);
2300 }
2301
2302 static void
2303 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2304 {
2305 struct ieee80211com *ic = &sc->sc_ic;
2306 const struct wpi_chan_band *band = &wpi_bands[n];
2307 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2308 int chan, i;
2309
2310 wpi_read_prom_data(sc, band->addr, channels,
2311 band->nchan * sizeof (struct wpi_eeprom_chan));
2312
2313 for (i = 0; i < band->nchan; i++) {
2314 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2315 continue;
2316
2317 chan = band->chan[i];
2318
2319 if (n == 0) { /* 2GHz band */
2320 ic->ic_channels[chan].ic_freq =
2321 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2322 ic->ic_channels[chan].ic_flags =
2323 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2324 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2325
2326 } else { /* 5GHz band */
2327 /*
2328 * Some 3945ABG adapters support channels 7, 8, 11
2329 * and 12 in the 2GHz *and* 5GHz bands.
2330 * Because of limitations in our net80211(9) stack,
2331 * we can't support these channels in 5GHz band.
2332 */
2333 if (chan <= 14)
2334 continue;
2335
2336 ic->ic_channels[chan].ic_freq =
2337 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2338 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2339 }
2340
2341 /* is active scan allowed on this channel? */
2342 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2343 ic->ic_channels[chan].ic_flags |=
2344 IEEE80211_CHAN_PASSIVE;
2345 }
2346
2347 /* save maximum allowed power for this channel */
2348 sc->maxpwr[chan] = channels[i].maxpwr;
2349
2350 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2351 chan, channels[i].flags, sc->maxpwr[chan]));
2352 }
2353 }
2354
2355 static void
2356 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2357 {
2358 struct wpi_power_group *group = &sc->groups[n];
2359 struct wpi_eeprom_group rgroup;
2360 int i;
2361
2362 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2363 sizeof rgroup);
2364
2365 /* save power group information */
2366 group->chan = rgroup.chan;
2367 group->maxpwr = rgroup.maxpwr;
2368 /* temperature at which the samples were taken */
2369 group->temp = (int16_t)le16toh(rgroup.temp);
2370
2371 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2372 group->chan, group->maxpwr, group->temp));
2373
2374 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2375 group->samples[i].index = rgroup.samples[i].index;
2376 group->samples[i].power = rgroup.samples[i].power;
2377
2378 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2379 group->samples[i].index, group->samples[i].power));
2380 }
2381 }
2382
2383 /*
2384 * Send a command to the firmware.
2385 */
2386 static int
2387 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2388 {
2389 struct wpi_tx_ring *ring = &sc->cmdq;
2390 struct wpi_tx_desc *desc;
2391 struct wpi_tx_cmd *cmd;
2392 struct wpi_dma_info *dma;
2393
2394 KASSERT(size <= sizeof cmd->data);
2395
2396 desc = &ring->desc[ring->cur];
2397 cmd = &ring->cmd[ring->cur];
2398
2399 cmd->code = code;
2400 cmd->flags = 0;
2401 cmd->qid = ring->qid;
2402 cmd->idx = ring->cur;
2403 memcpy(cmd->data, buf, size);
2404
2405 dma = &ring->cmd_dma;
2406 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2407
2408 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2409 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2410 ring->cur * sizeof (struct wpi_tx_cmd));
2411 desc->segs[0].len = htole32(4 + size);
2412
2413 dma = &ring->desc_dma;
2414 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2415
2416 /* kick cmd ring */
2417 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2418 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2419
2420 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2421 }
2422
2423 static int
2424 wpi_wme_update(struct ieee80211com *ic)
2425 {
2426 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2427 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2428 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2429 const struct wmeParams *wmep;
2430 struct wpi_wme_setup wme;
2431 int ac;
2432
2433 /* don't override default WME values if WME is not actually enabled */
2434 if (!(ic->ic_flags & IEEE80211_F_WME))
2435 return 0;
2436
2437 wme.flags = 0;
2438 for (ac = 0; ac < WME_NUM_AC; ac++) {
2439 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2440 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2441 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2442 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2443 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2444
2445 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2446 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2447 wme.ac[ac].cwmax, wme.ac[ac].txop));
2448 }
2449
2450 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2451 #undef WPI_USEC
2452 #undef WPI_EXP2
2453 }
2454
2455 /*
2456 * Configure h/w multi-rate retries.
2457 */
2458 static int
2459 wpi_mrr_setup(struct wpi_softc *sc)
2460 {
2461 struct ieee80211com *ic = &sc->sc_ic;
2462 struct wpi_mrr_setup mrr;
2463 int i, error;
2464
2465 /* CCK rates (not used with 802.11a) */
2466 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2467 mrr.rates[i].flags = 0;
2468 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2469 /* fallback to the immediate lower CCK rate (if any) */
2470 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2471 /* try one time at this rate before falling back to "next" */
2472 mrr.rates[i].ntries = 1;
2473 }
2474
2475 /* OFDM rates (not used with 802.11b) */
2476 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2477 mrr.rates[i].flags = 0;
2478 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2479 /* fallback to the immediate lower rate (if any) */
2480 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2481 mrr.rates[i].next = (i == WPI_OFDM6) ?
2482 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2483 WPI_OFDM6 : WPI_CCK2) :
2484 i - 1;
2485 /* try one time at this rate before falling back to "next" */
2486 mrr.rates[i].ntries = 1;
2487 }
2488
2489 /* setup MRR for control frames */
2490 mrr.which = htole32(WPI_MRR_CTL);
2491 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2492 if (error != 0) {
2493 aprint_error_dev(sc->sc_dev,
2494 "could not setup MRR for control frames\n");
2495 return error;
2496 }
2497
2498 /* setup MRR for data frames */
2499 mrr.which = htole32(WPI_MRR_DATA);
2500 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2501 if (error != 0) {
2502 aprint_error_dev(sc->sc_dev,
2503 "could not setup MRR for data frames\n");
2504 return error;
2505 }
2506
2507 return 0;
2508 }
2509
2510 static void
2511 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2512 {
2513 struct wpi_cmd_led led;
2514
2515 led.which = which;
2516 led.unit = htole32(100000); /* on/off in unit of 100ms */
2517 led.off = off;
2518 led.on = on;
2519
2520 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2521 }
2522
2523 static void
2524 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2525 {
2526 struct wpi_cmd_tsf tsf;
2527 uint64_t val, mod;
2528
2529 memset(&tsf, 0, sizeof tsf);
2530 memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2531 tsf.bintval = htole16(ni->ni_intval);
2532 tsf.lintval = htole16(10);
2533
2534 /* compute remaining time until next beacon */
2535 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2536 mod = le64toh(tsf.tstamp) % val;
2537 tsf.binitval = htole32((uint32_t)(val - mod));
2538
2539 DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2540 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2541
2542 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2543 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2544 }
2545
2546 /*
2547 * Update Tx power to match what is defined for channel `c'.
2548 */
2549 static int
2550 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2551 {
2552 struct ieee80211com *ic = &sc->sc_ic;
2553 struct wpi_power_group *group;
2554 struct wpi_cmd_txpower txpower;
2555 u_int chan;
2556 int i;
2557
2558 /* get channel number */
2559 chan = ieee80211_chan2ieee(ic, c);
2560
2561 /* find the power group to which this channel belongs */
2562 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2563 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2564 if (chan <= group->chan)
2565 break;
2566 } else
2567 group = &sc->groups[0];
2568
2569 memset(&txpower, 0, sizeof txpower);
2570 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2571 txpower.chan = htole16(chan);
2572
2573 /* set Tx power for all OFDM and CCK rates */
2574 for (i = 0; i <= 11 ; i++) {
2575 /* retrieve Tx power for this channel/rate combination */
2576 int idx = wpi_get_power_index(sc, group, c,
2577 wpi_ridx_to_rate[i]);
2578
2579 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2580
2581 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2582 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2583 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2584 } else {
2585 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2586 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2587 }
2588 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2589 wpi_ridx_to_rate[i], idx));
2590 }
2591
2592 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2593 }
2594
2595 /*
2596 * Determine Tx power index for a given channel/rate combination.
2597 * This takes into account the regulatory information from EEPROM and the
2598 * current temperature.
2599 */
2600 static int
2601 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2602 struct ieee80211_channel *c, int rate)
2603 {
2604 /* fixed-point arithmetic division using a n-bit fractional part */
2605 #define fdivround(a, b, n) \
2606 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2607
2608 /* linear interpolation */
2609 #define interpolate(x, x1, y1, x2, y2, n) \
2610 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2611
2612 struct ieee80211com *ic = &sc->sc_ic;
2613 struct wpi_power_sample *sample;
2614 int pwr, idx;
2615 u_int chan;
2616
2617 /* get channel number */
2618 chan = ieee80211_chan2ieee(ic, c);
2619
2620 /* default power is group's maximum power - 3dB */
2621 pwr = group->maxpwr / 2;
2622
2623 /* decrease power for highest OFDM rates to reduce distortion */
2624 switch (rate) {
2625 case 72: /* 36Mb/s */
2626 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2627 break;
2628 case 96: /* 48Mb/s */
2629 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2630 break;
2631 case 108: /* 54Mb/s */
2632 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2633 break;
2634 }
2635
2636 /* never exceed channel's maximum allowed Tx power */
2637 pwr = uimin(pwr, sc->maxpwr[chan]);
2638
2639 /* retrieve power index into gain tables from samples */
2640 for (sample = group->samples; sample < &group->samples[3]; sample++)
2641 if (pwr > sample[1].power)
2642 break;
2643 /* fixed-point linear interpolation using a 19-bit fractional part */
2644 idx = interpolate(pwr, sample[0].power, sample[0].index,
2645 sample[1].power, sample[1].index, 19);
2646
2647 /*-
2648 * Adjust power index based on current temperature:
2649 * - if cooler than factory-calibrated: decrease output power
2650 * - if warmer than factory-calibrated: increase output power
2651 */
2652 idx -= (sc->temp - group->temp) * 11 / 100;
2653
2654 /* decrease power for CCK rates (-5dB) */
2655 if (!WPI_RATE_IS_OFDM(rate))
2656 idx += 10;
2657
2658 /* keep power index in a valid range */
2659 if (idx < 0)
2660 return 0;
2661 if (idx > WPI_MAX_PWR_INDEX)
2662 return WPI_MAX_PWR_INDEX;
2663 return idx;
2664
2665 #undef interpolate
2666 #undef fdivround
2667 }
2668
2669 /*
2670 * Build a beacon frame that the firmware will broadcast periodically in
2671 * IBSS or HostAP modes.
2672 */
2673 static int
2674 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2675 {
2676 struct ieee80211com *ic = &sc->sc_ic;
2677 struct wpi_tx_ring *ring = &sc->cmdq;
2678 struct wpi_tx_desc *desc;
2679 struct wpi_tx_data *data;
2680 struct wpi_tx_cmd *cmd;
2681 struct wpi_cmd_beacon *bcn;
2682 struct ieee80211_beacon_offsets bo;
2683 struct mbuf *m0;
2684 int error;
2685
2686 desc = &ring->desc[ring->cur];
2687 data = &ring->data[ring->cur];
2688
2689 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2690 if (m0 == NULL) {
2691 aprint_error_dev(sc->sc_dev,
2692 "could not allocate beacon frame\n");
2693 return ENOMEM;
2694 }
2695
2696 cmd = &ring->cmd[ring->cur];
2697 cmd->code = WPI_CMD_SET_BEACON;
2698 cmd->flags = 0;
2699 cmd->qid = ring->qid;
2700 cmd->idx = ring->cur;
2701
2702 bcn = (struct wpi_cmd_beacon *)cmd->data;
2703 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2704 bcn->id = WPI_ID_BROADCAST;
2705 bcn->ofdm_mask = 0xff;
2706 bcn->cck_mask = 0x0f;
2707 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2708 bcn->len = htole16(m0->m_pkthdr.len);
2709 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2710 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2711 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2712
2713 /* save and trim IEEE802.11 header */
2714 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2715 m_adj(m0, sizeof (struct ieee80211_frame));
2716
2717 /* assume beacon frame is contiguous */
2718 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2719 BUS_DMA_READ | BUS_DMA_NOWAIT);
2720 if (error != 0) {
2721 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2722 m_freem(m0);
2723 return error;
2724 }
2725
2726 data->m = m0;
2727
2728 /* first scatter/gather segment is used by the beacon command */
2729 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2730 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2731 ring->cur * sizeof (struct wpi_tx_cmd));
2732 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2733 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2734 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2735
2736 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2737 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2738 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2739 BUS_DMASYNC_PREWRITE);
2740
2741 /* kick cmd ring */
2742 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2743 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2744
2745 return 0;
2746 }
2747
2748 static int
2749 wpi_auth(struct wpi_softc *sc)
2750 {
2751 struct ieee80211com *ic = &sc->sc_ic;
2752 struct ieee80211_node *ni = ic->ic_bss;
2753 struct wpi_node_info node;
2754 int error;
2755
2756 /* update adapter's configuration */
2757 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2758 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2759 sc->config.flags = htole32(WPI_CONFIG_TSF);
2760 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2761 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2762 WPI_CONFIG_24GHZ);
2763 }
2764 switch (ic->ic_curmode) {
2765 case IEEE80211_MODE_11A:
2766 sc->config.cck_mask = 0;
2767 sc->config.ofdm_mask = 0x15;
2768 break;
2769 case IEEE80211_MODE_11B:
2770 sc->config.cck_mask = 0x03;
2771 sc->config.ofdm_mask = 0;
2772 break;
2773 default: /* assume 802.11b/g */
2774 sc->config.cck_mask = 0x0f;
2775 sc->config.ofdm_mask = 0x15;
2776 }
2777 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2778 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2779 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2780 sizeof (struct wpi_config), 1);
2781 if (error != 0) {
2782 aprint_error_dev(sc->sc_dev, "could not configure\n");
2783 return error;
2784 }
2785
2786 /* configuration has changed, set Tx power accordingly */
2787 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2788 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2789 return error;
2790 }
2791
2792 /* add default node */
2793 memset(&node, 0, sizeof node);
2794 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2795 node.id = WPI_ID_BSS;
2796 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2797 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2798 node.action = htole32(WPI_ACTION_SET_RATE);
2799 node.antenna = WPI_ANTENNA_BOTH;
2800 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2801 if (error != 0) {
2802 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2803 return error;
2804 }
2805
2806 return 0;
2807 }
2808
2809 /*
2810 * Send a scan request to the firmware. Since this command is huge, we map it
2811 * into a mbuf instead of using the pre-allocated set of commands.
2812 */
2813 static int
2814 wpi_scan(struct wpi_softc *sc)
2815 {
2816 struct ieee80211com *ic = &sc->sc_ic;
2817 struct wpi_tx_ring *ring = &sc->cmdq;
2818 struct wpi_tx_desc *desc;
2819 struct wpi_tx_data *data;
2820 struct wpi_tx_cmd *cmd;
2821 struct wpi_scan_hdr *hdr;
2822 struct wpi_scan_chan *chan;
2823 struct ieee80211_frame *wh;
2824 struct ieee80211_rateset *rs;
2825 struct ieee80211_channel *c;
2826 uint8_t *frm;
2827 int pktlen, error, nrates;
2828
2829 if (ic->ic_curchan == NULL)
2830 return EIO;
2831
2832 desc = &ring->desc[ring->cur];
2833 data = &ring->data[ring->cur];
2834
2835 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2836 if (data->m == NULL) {
2837 aprint_error_dev(sc->sc_dev,
2838 "could not allocate mbuf for scan command\n");
2839 return ENOMEM;
2840 }
2841 MCLGET(data->m, M_DONTWAIT);
2842 if (!(data->m->m_flags & M_EXT)) {
2843 m_freem(data->m);
2844 data->m = NULL;
2845 aprint_error_dev(sc->sc_dev,
2846 "could not allocate mbuf for scan command\n");
2847 return ENOMEM;
2848 }
2849
2850 cmd = mtod(data->m, struct wpi_tx_cmd *);
2851 cmd->code = WPI_CMD_SCAN;
2852 cmd->flags = 0;
2853 cmd->qid = ring->qid;
2854 cmd->idx = ring->cur;
2855
2856 hdr = (struct wpi_scan_hdr *)cmd->data;
2857 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2858 hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2859 hdr->cmd.id = WPI_ID_BROADCAST;
2860 hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2861 /*
2862 * Move to the next channel if no packets are received within 5 msecs
2863 * after sending the probe request (this helps to reduce the duration
2864 * of active scans).
2865 */
2866 hdr->quiet = htole16(5); /* timeout in milliseconds */
2867 hdr->plcp_threshold = htole16(1); /* min # of packets */
2868
2869 if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2870 hdr->crc_threshold = htole16(1);
2871 /* send probe requests at 6Mbps */
2872 hdr->cmd.rate = wpi_plcp_signal(12);
2873 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2874 } else {
2875 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2876 /* send probe requests at 1Mbps */
2877 hdr->cmd.rate = wpi_plcp_signal(2);
2878 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2879 }
2880
2881 /* for directed scans, firmware inserts the essid IE itself */
2882 if (ic->ic_des_esslen != 0) {
2883 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2884 hdr->essid[0].len = ic->ic_des_esslen;
2885 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2886 }
2887
2888 /*
2889 * Build a probe request frame. Most of the following code is a
2890 * copy & paste of what is done in net80211.
2891 */
2892 wh = (struct ieee80211_frame *)(hdr + 1);
2893 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2894 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2895 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2896 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2897 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2898 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2899 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2900 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2901
2902 frm = (uint8_t *)(wh + 1);
2903
2904 /* add empty essid IE (firmware generates it for directed scans) */
2905 *frm++ = IEEE80211_ELEMID_SSID;
2906 *frm++ = 0;
2907
2908 /* add supported rates IE */
2909 *frm++ = IEEE80211_ELEMID_RATES;
2910 nrates = rs->rs_nrates;
2911 if (nrates > IEEE80211_RATE_SIZE)
2912 nrates = IEEE80211_RATE_SIZE;
2913 *frm++ = nrates;
2914 memcpy(frm, rs->rs_rates, nrates);
2915 frm += nrates;
2916
2917 /* add supported xrates IE */
2918 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2919 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2920 *frm++ = IEEE80211_ELEMID_XRATES;
2921 *frm++ = nrates;
2922 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2923 frm += nrates;
2924 }
2925
2926 /* setup length of probe request */
2927 hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2928
2929 chan = (struct wpi_scan_chan *)frm;
2930 c = ic->ic_curchan;
2931
2932 chan->chan = ieee80211_chan2ieee(ic, c);
2933 chan->flags = 0;
2934 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2935 chan->flags |= WPI_CHAN_ACTIVE;
2936 if (ic->ic_des_esslen != 0)
2937 chan->flags |= WPI_CHAN_DIRECT;
2938 }
2939 chan->dsp_gain = 0x6e;
2940 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2941 chan->rf_gain = 0x3b;
2942 chan->active = htole16(10);
2943 chan->passive = htole16(110);
2944 } else {
2945 chan->rf_gain = 0x28;
2946 chan->active = htole16(20);
2947 chan->passive = htole16(120);
2948 }
2949 hdr->nchan++;
2950 chan++;
2951
2952 frm += sizeof (struct wpi_scan_chan);
2953
2954 hdr->len = htole16(frm - (uint8_t *)hdr);
2955 pktlen = frm - (uint8_t *)cmd;
2956
2957 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2958 BUS_DMA_NOWAIT);
2959 if (error != 0) {
2960 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2961 m_freem(data->m);
2962 data->m = NULL;
2963 return error;
2964 }
2965
2966 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2967 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2968 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2969
2970 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2971 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2972 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2973 BUS_DMASYNC_PREWRITE);
2974
2975 /* kick cmd ring */
2976 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2977 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2978
2979 return 0; /* will be notified async. of failure/success */
2980 }
2981
2982 static int
2983 wpi_config(struct wpi_softc *sc)
2984 {
2985 struct ieee80211com *ic = &sc->sc_ic;
2986 struct ifnet *ifp = ic->ic_ifp;
2987 struct wpi_power power;
2988 struct wpi_bluetooth bluetooth;
2989 struct wpi_node_info node;
2990 int error;
2991
2992 memset(&power, 0, sizeof power);
2993 power.flags = htole32(WPI_POWER_CAM | 0x8);
2994 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2995 if (error != 0) {
2996 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2997 return error;
2998 }
2999
3000 /* configure bluetooth coexistence */
3001 memset(&bluetooth, 0, sizeof bluetooth);
3002 bluetooth.flags = 3;
3003 bluetooth.lead = 0xaa;
3004 bluetooth.kill = 1;
3005 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3006 0);
3007 if (error != 0) {
3008 aprint_error_dev(sc->sc_dev,
3009 "could not configure bluetooth coexistence\n");
3010 return error;
3011 }
3012
3013 /* configure adapter */
3014 memset(&sc->config, 0, sizeof (struct wpi_config));
3015 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3016 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3017 /* set default channel */
3018 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3019 sc->config.flags = htole32(WPI_CONFIG_TSF);
3020 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3021 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
3022 WPI_CONFIG_24GHZ);
3023 }
3024 sc->config.filter = 0;
3025 switch (ic->ic_opmode) {
3026 case IEEE80211_M_STA:
3027 sc->config.mode = WPI_MODE_STA;
3028 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
3029 break;
3030 case IEEE80211_M_IBSS:
3031 case IEEE80211_M_AHDEMO:
3032 sc->config.mode = WPI_MODE_IBSS;
3033 break;
3034 case IEEE80211_M_HOSTAP:
3035 sc->config.mode = WPI_MODE_HOSTAP;
3036 break;
3037 case IEEE80211_M_MONITOR:
3038 sc->config.mode = WPI_MODE_MONITOR;
3039 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
3040 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3041 break;
3042 }
3043 sc->config.cck_mask = 0x0f; /* not yet negotiated */
3044 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
3045 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
3046 sizeof (struct wpi_config), 0);
3047 if (error != 0) {
3048 aprint_error_dev(sc->sc_dev, "configure command failed\n");
3049 return error;
3050 }
3051
3052 /* configuration has changed, set Tx power accordingly */
3053 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
3054 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3055 return error;
3056 }
3057
3058 /* add broadcast node */
3059 memset(&node, 0, sizeof node);
3060 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
3061 node.id = WPI_ID_BROADCAST;
3062 node.rate = wpi_plcp_signal(2);
3063 node.action = htole32(WPI_ACTION_SET_RATE);
3064 node.antenna = WPI_ANTENNA_BOTH;
3065 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3066 if (error != 0) {
3067 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3068 return error;
3069 }
3070
3071 if ((error = wpi_mrr_setup(sc)) != 0) {
3072 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
3073 return error;
3074 }
3075
3076 return 0;
3077 }
3078
3079 static void
3080 wpi_stop_master(struct wpi_softc *sc)
3081 {
3082 uint32_t tmp;
3083 int ntries;
3084
3085 tmp = WPI_READ(sc, WPI_RESET);
3086 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3087
3088 tmp = WPI_READ(sc, WPI_GPIO_CTL);
3089 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3090 return; /* already asleep */
3091
3092 for (ntries = 0; ntries < 100; ntries++) {
3093 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3094 break;
3095 DELAY(10);
3096 }
3097 if (ntries == 100) {
3098 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3099 }
3100 }
3101
3102 static int
3103 wpi_power_up(struct wpi_softc *sc)
3104 {
3105 uint32_t tmp;
3106 int ntries;
3107
3108 wpi_mem_lock(sc);
3109 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3110 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3111 wpi_mem_unlock(sc);
3112
3113 for (ntries = 0; ntries < 5000; ntries++) {
3114 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3115 break;
3116 DELAY(10);
3117 }
3118 if (ntries == 5000) {
3119 aprint_error_dev(sc->sc_dev,
3120 "timeout waiting for NIC to power up\n");
3121 return ETIMEDOUT;
3122 }
3123 return 0;
3124 }
3125
3126 static int
3127 wpi_reset(struct wpi_softc *sc)
3128 {
3129 uint32_t tmp;
3130 int ntries;
3131
3132 /* clear any pending interrupts */
3133 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3134
3135 tmp = WPI_READ(sc, WPI_PLL_CTL);
3136 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3137
3138 tmp = WPI_READ(sc, WPI_CHICKEN);
3139 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3140
3141 tmp = WPI_READ(sc, WPI_GPIO_CTL);
3142 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3143
3144 /* wait for clock stabilization */
3145 for (ntries = 0; ntries < 1000; ntries++) {
3146 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3147 break;
3148 DELAY(10);
3149 }
3150 if (ntries == 1000) {
3151 aprint_error_dev(sc->sc_dev,
3152 "timeout waiting for clock stabilization\n");
3153 return ETIMEDOUT;
3154 }
3155
3156 /* initialize EEPROM */
3157 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3158 if ((tmp & WPI_EEPROM_VERSION) == 0) {
3159 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3160 return EIO;
3161 }
3162 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3163
3164 return 0;
3165 }
3166
3167 static void
3168 wpi_hw_config(struct wpi_softc *sc)
3169 {
3170 uint32_t rev, hw;
3171
3172 /* voodoo from the reference driver */
3173 hw = WPI_READ(sc, WPI_HWCONFIG);
3174
3175 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3176 rev = PCI_REVISION(rev);
3177 if ((rev & 0xc0) == 0x40)
3178 hw |= WPI_HW_ALM_MB;
3179 else if (!(rev & 0x80))
3180 hw |= WPI_HW_ALM_MM;
3181
3182 if (sc->cap == 0x80)
3183 hw |= WPI_HW_SKU_MRC;
3184
3185 hw &= ~WPI_HW_REV_D;
3186 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3187 hw |= WPI_HW_REV_D;
3188
3189 if (sc->type > 1)
3190 hw |= WPI_HW_TYPE_B;
3191
3192 DPRINTF(("setting h/w config %x\n", hw));
3193 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3194 }
3195
3196 static int
3197 wpi_init(struct ifnet *ifp)
3198 {
3199 struct wpi_softc *sc = ifp->if_softc;
3200 struct ieee80211com *ic = &sc->sc_ic;
3201 uint32_t tmp;
3202 int qid, ntries, error;
3203
3204 wpi_stop(ifp,1);
3205 (void)wpi_reset(sc);
3206
3207 wpi_mem_lock(sc);
3208 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3209 DELAY(20);
3210 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3211 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3212 wpi_mem_unlock(sc);
3213
3214 (void)wpi_power_up(sc);
3215 wpi_hw_config(sc);
3216
3217 /* init Rx ring */
3218 wpi_mem_lock(sc);
3219 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3220 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3221 offsetof(struct wpi_shared, next));
3222 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3223 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3224 wpi_mem_unlock(sc);
3225
3226 /* init Tx rings */
3227 wpi_mem_lock(sc);
3228 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3229 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3230 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3231 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3232 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3233 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3234 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3235
3236 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3237 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3238
3239 for (qid = 0; qid < 6; qid++) {
3240 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3241 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3242 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3243 }
3244 wpi_mem_unlock(sc);
3245
3246 /* clear "radio off" and "disable command" bits (reversed logic) */
3247 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3248 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3249
3250 /* clear any pending interrupts */
3251 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3252 /* enable interrupts */
3253 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3254
3255 /* not sure why/if this is necessary... */
3256 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3257 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3258
3259 if ((error = wpi_load_firmware(sc)) != 0)
3260 /* wpi_load_firmware prints error messages for us. */
3261 goto fail1;
3262
3263 /* Check the status of the radio switch */
3264 mutex_enter(&sc->sc_rsw_mtx);
3265 if (wpi_getrfkill(sc)) {
3266 mutex_exit(&sc->sc_rsw_mtx);
3267 aprint_error_dev(sc->sc_dev,
3268 "radio is disabled by hardware switch\n");
3269 ifp->if_flags &= ~IFF_UP;
3270 error = EBUSY;
3271 goto fail1;
3272 }
3273 sc->sc_rsw_suspend = false;
3274 cv_broadcast(&sc->sc_rsw_cv);
3275 while (sc->sc_rsw_suspend)
3276 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3277 mutex_exit(&sc->sc_rsw_mtx);
3278
3279 /* wait for thermal sensors to calibrate */
3280 for (ntries = 0; ntries < 1000; ntries++) {
3281 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3282 break;
3283 DELAY(10);
3284 }
3285 if (ntries == 1000) {
3286 aprint_error_dev(sc->sc_dev,
3287 "timeout waiting for thermal sensors calibration\n");
3288 error = ETIMEDOUT;
3289 goto fail1;
3290 }
3291 DPRINTF(("temperature %d\n", sc->temp));
3292
3293 if ((error = wpi_config(sc)) != 0) {
3294 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3295 goto fail1;
3296 }
3297
3298 ifp->if_flags &= ~IFF_OACTIVE;
3299 ifp->if_flags |= IFF_RUNNING;
3300
3301 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3302 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3303 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3304 }
3305 else
3306 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3307
3308 return 0;
3309
3310 fail1: wpi_stop(ifp, 1);
3311 return error;
3312 }
3313
3314 static void
3315 wpi_stop(struct ifnet *ifp, int disable)
3316 {
3317 struct wpi_softc *sc = ifp->if_softc;
3318 struct ieee80211com *ic = &sc->sc_ic;
3319 uint32_t tmp;
3320 int ac;
3321
3322 ifp->if_timer = sc->sc_tx_timer = 0;
3323 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3324
3325 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3326
3327 /* suspend rfkill test thread */
3328 mutex_enter(&sc->sc_rsw_mtx);
3329 sc->sc_rsw_suspend = true;
3330 cv_broadcast(&sc->sc_rsw_cv);
3331 while (!sc->sc_rsw_suspended)
3332 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3333 mutex_exit(&sc->sc_rsw_mtx);
3334
3335 /* disable interrupts */
3336 WPI_WRITE(sc, WPI_MASK, 0);
3337 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3338 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3339 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3340
3341 wpi_mem_lock(sc);
3342 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3343 wpi_mem_unlock(sc);
3344
3345 /* reset all Tx rings */
3346 for (ac = 0; ac < 4; ac++)
3347 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3348 wpi_reset_tx_ring(sc, &sc->cmdq);
3349
3350 /* reset Rx ring */
3351 wpi_reset_rx_ring(sc, &sc->rxq);
3352
3353 wpi_mem_lock(sc);
3354 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3355 wpi_mem_unlock(sc);
3356
3357 DELAY(5);
3358
3359 wpi_stop_master(sc);
3360
3361 tmp = WPI_READ(sc, WPI_RESET);
3362 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3363 }
3364
3365 static bool
3366 wpi_resume(device_t dv, const pmf_qual_t *qual)
3367 {
3368 struct wpi_softc *sc = device_private(dv);
3369
3370 (void)wpi_reset(sc);
3371
3372 return true;
3373 }
3374
3375 /*
3376 * Return whether or not the radio is enabled in hardware
3377 * (i.e. the rfkill switch is "off").
3378 */
3379 static int
3380 wpi_getrfkill(struct wpi_softc *sc)
3381 {
3382 uint32_t tmp;
3383
3384 wpi_mem_lock(sc);
3385 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3386 wpi_mem_unlock(sc);
3387
3388 KASSERT(mutex_owned(&sc->sc_rsw_mtx));
3389 if (tmp & 0x01) {
3390 /* switch is on */
3391 if (sc->sc_rsw_status != WPI_RSW_ON) {
3392 sc->sc_rsw_status = WPI_RSW_ON;
3393 sysmon_pswitch_event(&sc->sc_rsw,
3394 PSWITCH_EVENT_PRESSED);
3395 }
3396 } else {
3397 /* switch is off */
3398 if (sc->sc_rsw_status != WPI_RSW_OFF) {
3399 sc->sc_rsw_status = WPI_RSW_OFF;
3400 sysmon_pswitch_event(&sc->sc_rsw,
3401 PSWITCH_EVENT_RELEASED);
3402 }
3403 }
3404
3405 return !(tmp & 0x01);
3406 }
3407
3408 static int
3409 wpi_sysctl_radio(SYSCTLFN_ARGS)
3410 {
3411 struct sysctlnode node;
3412 struct wpi_softc *sc;
3413 int val, error;
3414
3415 node = *rnode;
3416 sc = (struct wpi_softc *)node.sysctl_data;
3417
3418 mutex_enter(&sc->sc_rsw_mtx);
3419 val = !wpi_getrfkill(sc);
3420 mutex_exit(&sc->sc_rsw_mtx);
3421
3422 node.sysctl_data = &val;
3423 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3424
3425 if (error || newp == NULL)
3426 return error;
3427
3428 return 0;
3429 }
3430
3431 static void
3432 wpi_sysctlattach(struct wpi_softc *sc)
3433 {
3434 int rc;
3435 const struct sysctlnode *rnode;
3436 const struct sysctlnode *cnode;
3437
3438 struct sysctllog **clog = &sc->sc_sysctllog;
3439
3440 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3441 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3442 SYSCTL_DESCR("wpi controls and statistics"),
3443 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3444 goto err;
3445
3446 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3447 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3448 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3449 wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3450 goto err;
3451
3452 #ifdef WPI_DEBUG
3453 /* control debugging printfs */
3454 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3455 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3456 "debug", SYSCTL_DESCR("Enable debugging output"),
3457 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3458 goto err;
3459 #endif
3460
3461 return;
3462 err:
3463 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3464 }
3465
3466 static void
3467 wpi_rsw_thread(void *arg)
3468 {
3469 struct wpi_softc *sc = (struct wpi_softc *)arg;
3470
3471 mutex_enter(&sc->sc_rsw_mtx);
3472 for (;;) {
3473 cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
3474 if (sc->sc_dying) {
3475 sc->sc_rsw_lwp = NULL;
3476 cv_broadcast(&sc->sc_rsw_cv);
3477 mutex_exit(&sc->sc_rsw_mtx);
3478 kthread_exit(0);
3479 }
3480 if (sc->sc_rsw_suspend) {
3481 sc->sc_rsw_suspended = true;
3482 cv_broadcast(&sc->sc_rsw_cv);
3483 while (sc->sc_rsw_suspend || sc->sc_dying)
3484 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3485 sc->sc_rsw_suspended = false;
3486 cv_broadcast(&sc->sc_rsw_cv);
3487 }
3488 wpi_getrfkill(sc);
3489 }
3490 }
3491