if_wpi.c revision 1.9.2.4 1 /* $NetBSD: if_wpi.c,v 1.9.2.4 2007/08/20 18:37:16 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini (at) free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.9.2.4 2007/08/20 18:37:16 ad Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27 #include "bpfilter.h"
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/kauth.h>
39 #include <sys/callout.h>
40
41 #include <machine/bus.h>
42 #include <machine/endian.h>
43 #include <machine/intr.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47 #include <dev/pci/pcidevs.h>
48
49 #if NBPFILTER > 0
50 #include <net/bpf.h>
51 #endif
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67
68 #include <dev/firmload.h>
69
70 #include <dev/pci/if_wpireg.h>
71 #include <dev/pci/if_wpivar.h>
72
73 #ifdef WPI_DEBUG
74 #define DPRINTF(x) if (wpi_debug > 0) printf x
75 #define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
76 int wpi_debug = 1;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 /*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85 static const struct ieee80211_rateset wpi_rateset_11a =
86 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88 static const struct ieee80211_rateset wpi_rateset_11b =
89 { 4, { 2, 4, 11, 22 } };
90
91 static const struct ieee80211_rateset wpi_rateset_11g =
92 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94 static int wpi_match(struct device *, struct cfdata *, void *);
95 static void wpi_attach(struct device *, struct device *, void *);
96 static int wpi_detach(struct device*, int);
97 static void wpi_power(int, void *);
98 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
99 void **, bus_size_t, bus_size_t, int);
100 static void wpi_dma_contig_free(struct wpi_dma_info *);
101 static int wpi_alloc_shared(struct wpi_softc *);
102 static void wpi_free_shared(struct wpi_softc *);
103 static int wpi_alloc_fwmem(struct wpi_softc *);
104 static void wpi_free_fwmem(struct wpi_softc *);
105 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
106 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
107 static int wpi_alloc_rpool(struct wpi_softc *);
108 static void wpi_free_rpool(struct wpi_softc *);
109 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
110 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
111 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
112 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
113 int);
114 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
115 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
116 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
117 static void wpi_newassoc(struct ieee80211_node *, int);
118 static int wpi_media_change(struct ifnet *);
119 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
120 static void wpi_mem_lock(struct wpi_softc *);
121 static void wpi_mem_unlock(struct wpi_softc *);
122 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
123 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
124 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
125 const uint32_t *, int);
126 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
127 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
128 static int wpi_load_firmware(struct wpi_softc *);
129 static void wpi_calib_timeout(void *);
130 static void wpi_iter_func(void *, struct ieee80211_node *);
131 static void wpi_power_calibration(struct wpi_softc *, int);
132 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
133 struct wpi_rx_data *);
134 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
135 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
136 static void wpi_notif_intr(struct wpi_softc *);
137 static int wpi_intr(void *);
138 static void wpi_read_eeprom(struct wpi_softc *);
139 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
140 static void wpi_read_eeprom_group(struct wpi_softc *, int);
141 static uint8_t wpi_plcp_signal(int);
142 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
143 struct ieee80211_node *, int);
144 static void wpi_start(struct ifnet *);
145 static void wpi_watchdog(struct ifnet *);
146 static int wpi_ioctl(struct ifnet *, u_long, void *);
147 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
148 static int wpi_wme_update(struct ieee80211com *);
149 static int wpi_mrr_setup(struct wpi_softc *);
150 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
151 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
152 static int wpi_set_txpower(struct wpi_softc *,
153 struct ieee80211_channel *, int);
154 static int wpi_get_power_index(struct wpi_softc *,
155 struct wpi_power_group *, struct ieee80211_channel *, int);
156 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
157 static int wpi_auth(struct wpi_softc *);
158 static int wpi_scan(struct wpi_softc *, uint16_t);
159 static int wpi_config(struct wpi_softc *);
160 static void wpi_stop_master(struct wpi_softc *);
161 static int wpi_power_up(struct wpi_softc *);
162 static int wpi_reset(struct wpi_softc *);
163 static void wpi_hw_config(struct wpi_softc *);
164 static int wpi_init(struct ifnet *);
165 static void wpi_stop(struct ifnet *, int);
166
167 CFATTACH_DECL(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
168 wpi_detach, NULL);
169
170 static int
171 wpi_match(struct device *parent, struct cfdata *match __unused, void *aux)
172 {
173 struct pci_attach_args *pa = aux;
174
175 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
176 return 0;
177
178 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
179 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
180 return 1;
181
182 return 0;
183 }
184
185 /* Base Address Register */
186 #define WPI_PCI_BAR0 0x10
187
188 static void
189 wpi_attach(struct device *parent __unused, struct device *self, void *aux)
190 {
191 struct wpi_softc *sc = (struct wpi_softc *)self;
192 struct ieee80211com *ic = &sc->sc_ic;
193 struct ifnet *ifp = &sc->sc_ec.ec_if;
194 struct pci_attach_args *pa = aux;
195 const char *intrstr;
196 char devinfo[256];
197 bus_space_tag_t memt;
198 bus_space_handle_t memh;
199 pci_intr_handle_t ih;
200 pcireg_t data;
201 int error, ac, revision;
202
203 sc->sc_pct = pa->pa_pc;
204 sc->sc_pcitag = pa->pa_tag;
205
206 callout_init(&sc->calib_to, 0);
207
208 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
209 revision = PCI_REVISION(pa->pa_class);
210 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
211
212 /* clear device specific PCI configuration register 0x41 */
213 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
214 data &= ~0x0000ff00;
215 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
216
217 /* enable bus-mastering */
218 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
219 data |= PCI_COMMAND_MASTER_ENABLE;
220 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
221
222 /* map the register window */
223 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
224 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
225 if (error != 0) {
226 aprint_error("%s: could not map memory space\n",
227 sc->sc_dev.dv_xname);
228 return;
229 }
230
231 sc->sc_st = memt;
232 sc->sc_sh = memh;
233 sc->sc_dmat = pa->pa_dmat;
234
235 if (pci_intr_map(pa, &ih) != 0) {
236 aprint_error("%s: could not map interrupt\n",
237 sc->sc_dev.dv_xname);
238 return;
239 }
240
241 intrstr = pci_intr_string(sc->sc_pct, ih);
242 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
243 if (sc->sc_ih == NULL) {
244 aprint_error("%s: could not establish interrupt",
245 sc->sc_dev.dv_xname);
246 if (intrstr != NULL)
247 aprint_error(" at %s", intrstr);
248 aprint_error("\n");
249 return;
250 }
251 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
252
253 if (wpi_reset(sc) != 0) {
254 aprint_error("%s: could not reset adapter\n",
255 sc->sc_dev.dv_xname);
256 return;
257 }
258
259 /*
260 * Allocate DMA memory for firmware transfers.
261 */
262 if ((error = wpi_alloc_fwmem(sc)) != 0) {
263 aprint_error(": could not allocate firmware memory\n");
264 return;
265 }
266
267 /*
268 * Allocate shared page and Tx/Rx rings.
269 */
270 if ((error = wpi_alloc_shared(sc)) != 0) {
271 aprint_error("%s: could not allocate shared area\n",
272 sc->sc_dev.dv_xname);
273 goto fail1;
274 }
275
276 if ((error = wpi_alloc_rpool(sc)) != 0) {
277 aprint_error("%s: could not allocate Rx buffers\n",
278 sc->sc_dev.dv_xname);
279 goto fail2;
280 }
281
282 for (ac = 0; ac < 4; ac++) {
283 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
284 if (error != 0) {
285 aprint_error("%s: could not allocate Tx ring %d\n",
286 sc->sc_dev.dv_xname, ac);
287 goto fail3;
288 }
289 }
290
291 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
292 if (error != 0) {
293 aprint_error("%s: could not allocate command ring\n",
294 sc->sc_dev.dv_xname);
295 goto fail3;
296 }
297
298 error = wpi_alloc_tx_ring(sc, &sc->svcq, WPI_SVC_RING_COUNT, 5);
299 if (error != 0) {
300 aprint_error("%s: could not allocate service ring\n",
301 sc->sc_dev.dv_xname);
302 goto fail4;
303 }
304
305 if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
306 aprint_error("%s: could not allocate Rx ring\n",
307 sc->sc_dev.dv_xname);
308 goto fail5;
309 }
310
311 ic->ic_ifp = ifp;
312 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
313 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
314 ic->ic_state = IEEE80211_S_INIT;
315
316 /* set device capabilities */
317 ic->ic_caps =
318 IEEE80211_C_IBSS | /* IBSS mode support */
319 IEEE80211_C_WPA | /* 802.11i */
320 IEEE80211_C_MONITOR | /* monitor mode supported */
321 IEEE80211_C_TXPMGT | /* tx power management */
322 IEEE80211_C_SHSLOT | /* short slot time supported */
323 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
324 IEEE80211_C_WME; /* 802.11e */
325
326 /* read supported channels and MAC address from EEPROM */
327 wpi_read_eeprom(sc);
328
329 /* set supported .11a, .11b, .11g rates */
330 ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
331 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
332 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
333
334 ic->ic_ibss_chan = &ic->ic_channels[0];
335
336 ifp->if_softc = sc;
337 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
338 ifp->if_init = wpi_init;
339 ifp->if_stop = wpi_stop;
340 ifp->if_ioctl = wpi_ioctl;
341 ifp->if_start = wpi_start;
342 ifp->if_watchdog = wpi_watchdog;
343 IFQ_SET_READY(&ifp->if_snd);
344 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
345
346 if_attach(ifp);
347 ieee80211_ifattach(ic);
348 /* override default methods */
349 ic->ic_node_alloc = wpi_node_alloc;
350 ic->ic_newassoc = wpi_newassoc;
351 ic->ic_wme.wme_update = wpi_wme_update;
352
353 /* override state transition machine */
354 sc->sc_newstate = ic->ic_newstate;
355 ic->ic_newstate = wpi_newstate;
356 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
357
358 sc->amrr.amrr_min_success_threshold = 1;
359 sc->amrr.amrr_max_success_threshold = 15;
360
361 /* set powerhook */
362 sc->powerhook = powerhook_establish(sc->sc_dev.dv_xname, wpi_power, sc);
363
364 #if NBPFILTER > 0
365 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
366 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
367 &sc->sc_drvbpf);
368
369 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
370 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
371 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
372
373 sc->sc_txtap_len = sizeof sc->sc_txtapu;
374 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
375 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
376 #endif
377
378 ieee80211_announce(ic);
379
380 return;
381
382 fail5: wpi_free_tx_ring(sc, &sc->svcq);
383 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
384 fail3: while (--ac >= 0)
385 wpi_free_tx_ring(sc, &sc->txq[ac]);
386 wpi_free_rpool(sc);
387 fail2: wpi_free_shared(sc);
388 fail1: wpi_free_fwmem(sc);
389 }
390
391 static int
392 wpi_detach(struct device* self, int flags __unused)
393 {
394 struct wpi_softc *sc = (struct wpi_softc *)self;
395 struct ifnet *ifp = sc->sc_ic.ic_ifp;
396 int ac;
397
398 wpi_stop(ifp, 1);
399
400 #if NBPFILTER > 0
401 if (ifp != NULL)
402 bpfdetach(ifp);
403 #endif
404 ieee80211_ifdetach(&sc->sc_ic);
405 if (ifp != NULL)
406 if_detach(ifp);
407
408 for (ac = 0; ac < 4; ac++)
409 wpi_free_tx_ring(sc, &sc->txq[ac]);
410 wpi_free_tx_ring(sc, &sc->cmdq);
411 wpi_free_tx_ring(sc, &sc->svcq);
412 wpi_free_rx_ring(sc, &sc->rxq);
413 wpi_free_rpool(sc);
414 wpi_free_shared(sc);
415
416 if (sc->sc_ih != NULL) {
417 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
418 sc->sc_ih = NULL;
419 }
420
421 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
422
423 return 0;
424 }
425
426 static void
427 wpi_power(int why, void *arg)
428 {
429 struct wpi_softc *sc = arg;
430 struct ifnet *ifp;
431 pcireg_t data;
432 int s;
433
434 if (why != PWR_RESUME)
435 return;
436
437 /* clear device specific PCI configuration register 0x41 */
438 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
439 data &= ~0x0000ff00;
440 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
441
442 s = splnet();
443 ifp = sc->sc_ic.ic_ifp;
444 if (ifp->if_flags & IFF_UP) {
445 ifp->if_init(ifp);
446 if (ifp->if_flags & IFF_RUNNING)
447 ifp->if_start(ifp);
448 }
449 splx(s);
450 }
451
452 static int
453 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
454 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
455 {
456 int nsegs, error;
457
458 dma->tag = tag;
459 dma->size = size;
460
461 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
462 if (error != 0)
463 goto fail;
464
465 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
466 flags);
467 if (error != 0)
468 goto fail;
469
470 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
471 if (error != 0)
472 goto fail;
473
474 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
475 if (error != 0)
476 goto fail;
477
478 memset(dma->vaddr, 0, size);
479
480 dma->paddr = dma->map->dm_segs[0].ds_addr;
481 if (kvap != NULL)
482 *kvap = dma->vaddr;
483
484 return 0;
485
486 fail: wpi_dma_contig_free(dma);
487 return error;
488 }
489
490 static void
491 wpi_dma_contig_free(struct wpi_dma_info *dma)
492 {
493 if (dma->map != NULL) {
494 if (dma->vaddr != NULL) {
495 bus_dmamap_unload(dma->tag, dma->map);
496 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
497 bus_dmamem_free(dma->tag, &dma->seg, 1);
498 dma->vaddr = NULL;
499 }
500 bus_dmamap_destroy(dma->tag, dma->map);
501 dma->map = NULL;
502 }
503 }
504
505 /*
506 * Allocate a shared page between host and NIC.
507 */
508 static int
509 wpi_alloc_shared(struct wpi_softc *sc)
510 {
511 int error;
512 /* must be aligned on a 4K-page boundary */
513 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
514 (void **)&sc->shared, sizeof (struct wpi_shared),
515 WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
516 if (error != 0)
517 aprint_error(
518 "%s: could not allocate shared area DMA memory\n",
519 sc->sc_dev.dv_xname);
520
521 return error;
522 }
523
524 static void
525 wpi_free_shared(struct wpi_softc *sc)
526 {
527 wpi_dma_contig_free(&sc->shared_dma);
528 }
529
530 /*
531 * Allocate DMA-safe memory for firmware transfer.
532 */
533 static int
534 wpi_alloc_fwmem(struct wpi_softc *sc)
535 {
536 int error;
537 /* allocate enough contiguous space to store text and data */
538 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
539 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
540 BUS_DMA_NOWAIT);
541
542 if (error != 0)
543 aprint_error(
544 "%s: could not allocate firmware transfer area"
545 "DMA memory\n", sc->sc_dev.dv_xname);
546 return error;
547 }
548
549 static void
550 wpi_free_fwmem(struct wpi_softc *sc)
551 {
552 wpi_dma_contig_free(&sc->fw_dma);
553 }
554
555
556 static struct wpi_rbuf *
557 wpi_alloc_rbuf(struct wpi_softc *sc)
558 {
559 struct wpi_rbuf *rbuf;
560
561 rbuf = SLIST_FIRST(&sc->rxq.freelist);
562 if (rbuf == NULL)
563 return NULL;
564 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
565 sc->rxq.nb_free_entries --;
566
567 return rbuf;
568 }
569
570 /*
571 * This is called automatically by the network stack when the mbuf to which our
572 * Rx buffer is attached is freed.
573 */
574 static void
575 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
576 {
577 struct wpi_rbuf *rbuf = arg;
578 struct wpi_softc *sc = rbuf->sc;
579 int s;
580
581 /* put the buffer back in the free list */
582
583 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
584 sc->rxq.nb_free_entries ++;
585
586 if (__predict_true(m != NULL)) {
587 s = splvm();
588 pool_cache_put(&mbpool_cache, m);
589 splx(s);
590 }
591 }
592
593 static int
594 wpi_alloc_rpool(struct wpi_softc *sc)
595 {
596 struct wpi_rx_ring *ring = &sc->rxq;
597 struct wpi_rbuf *rbuf;
598 int i, error;
599
600 /* allocate a big chunk of DMA'able memory.. */
601 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
602 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
603 if (error != 0) {
604 aprint_normal("%s: could not allocate Rx buffers DMA memory\n",
605 sc->sc_dev.dv_xname);
606 return error;
607 }
608
609 /* ..and split it into 3KB chunks */
610 SLIST_INIT(&ring->freelist);
611 for (i = 0; i < WPI_RBUF_COUNT; i++) {
612 rbuf = &ring->rbuf[i];
613 rbuf->sc = sc; /* backpointer for callbacks */
614 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
615 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
616
617 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
618 }
619
620 ring->nb_free_entries = WPI_RBUF_COUNT;
621 return 0;
622 }
623
624 static void
625 wpi_free_rpool(struct wpi_softc *sc)
626 {
627 wpi_dma_contig_free(&sc->rxq.buf_dma);
628 }
629
630 static int
631 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
632 {
633 struct wpi_rx_data *data;
634 struct wpi_rbuf *rbuf;
635 int i, error;
636
637 ring->cur = 0;
638
639 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
640 (void **)&ring->desc,
641 WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
642 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
643 if (error != 0) {
644 aprint_error("%s: could not allocate rx ring DMA memory\n",
645 sc->sc_dev.dv_xname);
646 goto fail;
647 }
648
649 /*
650 * Setup Rx buffers.
651 */
652 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
653 data = &ring->data[i];
654
655 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
656 if (data->m == NULL) {
657 aprint_error("%s: could not allocate rx mbuf\n",
658 sc->sc_dev.dv_xname);
659 error = ENOMEM;
660 goto fail;
661 }
662 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
663 m_freem(data->m);
664 data->m = NULL;
665 aprint_error("%s: could not allocate rx cluster\n",
666 sc->sc_dev.dv_xname);
667 error = ENOMEM;
668 goto fail;
669 }
670 /* attach Rx buffer to mbuf */
671 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
672 rbuf);
673 data->m->m_flags |= M_EXT_RW;
674
675 ring->desc[i] = htole32(rbuf->paddr);
676 }
677
678 return 0;
679
680 fail: wpi_free_rx_ring(sc, ring);
681 return error;
682 }
683
684 static void
685 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
686 {
687 int ntries;
688
689 wpi_mem_lock(sc);
690
691 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
692 for (ntries = 0; ntries < 100; ntries++) {
693 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
694 break;
695 DELAY(10);
696 }
697 #ifdef WPI_DEBUG
698 if (ntries == 100 && wpi_debug > 0)
699 aprint_error("%s: timeout resetting Rx ring\n",
700 sc->sc_dev.dv_xname);
701 #endif
702 wpi_mem_unlock(sc);
703
704 ring->cur = 0;
705 }
706
707 static void
708 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
709 {
710 int i;
711
712 wpi_dma_contig_free(&ring->desc_dma);
713
714 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
715 if (ring->data[i].m != NULL)
716 m_freem(ring->data[i].m);
717 }
718 }
719
720 static int
721 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
722 int qid)
723 {
724 struct wpi_tx_data *data;
725 int i, error;
726
727 ring->qid = qid;
728 ring->count = count;
729 ring->queued = 0;
730 ring->cur = 0;
731
732 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
733 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
734 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
735 if (error != 0) {
736 aprint_error("%s: could not allocate tx ring DMA memory\n",
737 sc->sc_dev.dv_xname);
738 goto fail;
739 }
740
741 /* update shared page with ring's base address */
742 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
743
744 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
745 (void **)&ring->cmd,
746 count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
747 if (error != 0) {
748 aprint_error("%s: could not allocate tx cmd DMA memory\n",
749 sc->sc_dev.dv_xname);
750 goto fail;
751 }
752
753 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
754 M_NOWAIT);
755 if (ring->data == NULL) {
756 aprint_error("%s: could not allocate tx data slots\n",
757 sc->sc_dev.dv_xname);
758 goto fail;
759 }
760
761 memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
762
763 for (i = 0; i < count; i++) {
764 data = &ring->data[i];
765
766 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
767 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
768 &data->map);
769 if (error != 0) {
770 aprint_error("%s: could not create tx buf DMA map\n",
771 sc->sc_dev.dv_xname);
772 goto fail;
773 }
774 }
775
776 return 0;
777
778 fail: wpi_free_tx_ring(sc, ring);
779 return error;
780 }
781
782 static void
783 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
784 {
785 struct wpi_tx_data *data;
786 int i, ntries;
787
788 wpi_mem_lock(sc);
789
790 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
791 for (ntries = 0; ntries < 100; ntries++) {
792 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
793 break;
794 DELAY(10);
795 }
796 #ifdef WPI_DEBUG
797 if (ntries == 100 && wpi_debug > 0) {
798 aprint_error("%s: timeout resetting Tx ring %d\n",
799 sc->sc_dev.dv_xname, ring->qid);
800 }
801 #endif
802 wpi_mem_unlock(sc);
803
804 for (i = 0; i < ring->count; i++) {
805 data = &ring->data[i];
806
807 if (data->m != NULL) {
808 bus_dmamap_unload(sc->sc_dmat, data->map);
809 m_freem(data->m);
810 data->m = NULL;
811 }
812 }
813
814 ring->queued = 0;
815 ring->cur = 0;
816 }
817
818 static void
819 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
820 {
821 struct wpi_tx_data *data;
822 int i;
823
824 wpi_dma_contig_free(&ring->desc_dma);
825 wpi_dma_contig_free(&ring->cmd_dma);
826
827 if (ring->data != NULL) {
828 for (i = 0; i < ring->count; i++) {
829 data = &ring->data[i];
830
831 if (data->m != NULL) {
832 bus_dmamap_unload(sc->sc_dmat, data->map);
833 m_freem(data->m);
834 }
835 }
836 free(ring->data, M_DEVBUF);
837 }
838 }
839
840 /*ARGUSED*/
841 static struct ieee80211_node *
842 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
843 {
844 struct wpi_node *wn;
845
846 wn = malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT);
847
848 if (wn != NULL)
849 memset(wn, 0, sizeof (struct wpi_node));
850 return (struct ieee80211_node *)wn;
851 }
852
853 static void
854 wpi_newassoc(struct ieee80211_node *ni, int isnew)
855 {
856 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
857 int i;
858
859 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
860
861 /* set rate to some reasonable initial value */
862 for (i = ni->ni_rates.rs_nrates - 1;
863 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
864 i--);
865 ni->ni_txrate = i;
866 }
867
868 static int
869 wpi_media_change(struct ifnet *ifp)
870 {
871 int error;
872
873 error = ieee80211_media_change(ifp);
874 if (error != ENETRESET)
875 return error;
876
877 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
878 wpi_init(ifp);
879
880 return 0;
881 }
882
883 static int
884 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
885 {
886 struct ifnet *ifp = ic->ic_ifp;
887 struct wpi_softc *sc = ifp->if_softc;
888 struct ieee80211_node *ni;
889 int error;
890
891 callout_stop(&sc->calib_to);
892
893 switch (nstate) {
894 case IEEE80211_S_SCAN:
895 ieee80211_node_table_reset(&ic->ic_scan);
896 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
897
898 /* make the link LED blink while we're scanning */
899 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
900
901 if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
902 aprint_error("%s: could not initiate scan\n",
903 sc->sc_dev.dv_xname);
904 ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
905 return error;
906 }
907
908 ic->ic_state = nstate;
909 return 0;
910
911 case IEEE80211_S_ASSOC:
912 if (ic->ic_state != IEEE80211_S_RUN)
913 break;
914 /* FALLTHROUGH */
915 case IEEE80211_S_AUTH:
916 sc->config.associd = 0;
917 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
918 if ((error = wpi_auth(sc)) != 0) {
919 aprint_error("%s: could not send authentication request\n",
920 sc->sc_dev.dv_xname);
921 return error;
922 }
923 break;
924
925 case IEEE80211_S_RUN:
926 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
927 /* link LED blinks while monitoring */
928 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
929 break;
930 }
931
932 ni = ic->ic_bss;
933
934 if (ic->ic_opmode != IEEE80211_M_STA) {
935 (void) wpi_auth(sc); /* XXX */
936 wpi_setup_beacon(sc, ni);
937 }
938
939 wpi_enable_tsf(sc, ni);
940
941 /* update adapter's configuration */
942 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
943 /* short preamble/slot time are negotiated when associating */
944 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
945 WPI_CONFIG_SHSLOT);
946 if (ic->ic_flags & IEEE80211_F_SHSLOT)
947 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
948 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
949 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
950 sc->config.filter |= htole32(WPI_FILTER_BSS);
951 if (ic->ic_opmode != IEEE80211_M_STA)
952 sc->config.filter |= htole32(WPI_FILTER_BEACON);
953
954 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
955
956 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
957 sc->config.flags));
958 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
959 sizeof (struct wpi_config), 1);
960 if (error != 0) {
961 aprint_error("%s: could not update configuration\n",
962 sc->sc_dev.dv_xname);
963 return error;
964 }
965
966 /* configuration has changed, set Tx power accordingly */
967 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
968 aprint_error("%s: could not set Tx power\n",
969 sc->sc_dev.dv_xname);
970 return error;
971 }
972
973 if (ic->ic_opmode == IEEE80211_M_STA) {
974 /* fake a join to init the tx rate */
975 wpi_newassoc(ni, 1);
976 }
977
978 /* start periodic calibration timer */
979 sc->calib_cnt = 0;
980 callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
981
982 /* link LED always on while associated */
983 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
984 break;
985
986 case IEEE80211_S_INIT:
987 break;
988 }
989
990 return sc->sc_newstate(ic, nstate, arg);
991 }
992
993 /*
994 * Grab exclusive access to NIC memory.
995 */
996 static void
997 wpi_mem_lock(struct wpi_softc *sc)
998 {
999 uint32_t tmp;
1000 int ntries;
1001
1002 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1003 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1004
1005 /* spin until we actually get the lock */
1006 for (ntries = 0; ntries < 1000; ntries++) {
1007 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1008 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1009 break;
1010 DELAY(10);
1011 }
1012 if (ntries == 1000)
1013 aprint_error("%s: could not lock memory\n", sc->sc_dev.dv_xname);
1014 }
1015
1016 /*
1017 * Release lock on NIC memory.
1018 */
1019 static void
1020 wpi_mem_unlock(struct wpi_softc *sc)
1021 {
1022 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1023 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1024 }
1025
1026 static uint32_t
1027 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1028 {
1029 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1030 return WPI_READ(sc, WPI_READ_MEM_DATA);
1031 }
1032
1033 static void
1034 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1035 {
1036 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1037 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1038 }
1039
1040 static void
1041 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1042 const uint32_t *data, int wlen)
1043 {
1044 for (; wlen > 0; wlen--, data++, addr += 4)
1045 wpi_mem_write(sc, addr, *data);
1046 }
1047
1048
1049 /*
1050 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1051 * instead of using the traditional bit-bang method.
1052 */
1053 static int
1054 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1055 {
1056 uint8_t *out = data;
1057 uint32_t val;
1058 int ntries;
1059
1060 wpi_mem_lock(sc);
1061 for (; len > 0; len -= 2, addr++) {
1062 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1063
1064 for (ntries = 0; ntries < 10; ntries++) {
1065 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1066 WPI_EEPROM_READY)
1067 break;
1068 DELAY(5);
1069 }
1070 if (ntries == 10) {
1071 aprint_error("%s: could not read EEPROM\n",
1072 sc->sc_dev.dv_xname);
1073 return ETIMEDOUT;
1074 }
1075 *out++ = val >> 16;
1076 if (len > 1)
1077 *out++ = val >> 24;
1078 }
1079 wpi_mem_unlock(sc);
1080
1081 return 0;
1082 }
1083
1084 /*
1085 * The firmware boot code is small and is intended to be copied directly into
1086 * the NIC internal memory.
1087 */
1088 int
1089 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1090 {
1091 int ntries;
1092
1093 size /= sizeof (uint32_t);
1094
1095 wpi_mem_lock(sc);
1096
1097 /* copy microcode image into NIC memory */
1098 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1099 (const uint32_t *)ucode, size);
1100
1101 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1102 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1103 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1104
1105 /* run microcode */
1106 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1107
1108 /* wait for transfer to complete */
1109 for (ntries = 0; ntries < 1000; ntries++) {
1110 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1111 break;
1112 DELAY(10);
1113 }
1114 if (ntries == 1000) {
1115 wpi_mem_unlock(sc);
1116 printf("%s: could not load boot firmware\n",
1117 sc->sc_dev.dv_xname);
1118 return ETIMEDOUT;
1119 }
1120 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1121
1122 wpi_mem_unlock(sc);
1123
1124 return 0;
1125 }
1126
1127 static int
1128 wpi_load_firmware(struct wpi_softc *sc)
1129 {
1130 struct wpi_dma_info *dma = &sc->fw_dma;
1131 struct wpi_firmware_hdr hdr;
1132 const uint8_t *init_text, *init_data, *main_text, *main_data;
1133 const uint8_t *boot_text;
1134 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1135 uint32_t boot_textsz;
1136 firmware_handle_t fw;
1137 u_char *dfw;
1138 size_t size;
1139 int error;
1140
1141 /* load firmware image from disk */
1142 if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw) != 0)) {
1143 aprint_error("%s: could not read firmware file\n",
1144 sc->sc_dev.dv_xname);
1145 goto fail1;
1146 }
1147
1148 size = firmware_get_size(fw);
1149
1150 /* extract firmware header information */
1151 if (size < sizeof (struct wpi_firmware_hdr)) {
1152 aprint_error("%s: truncated firmware header: %zu bytes\n",
1153 sc->sc_dev.dv_xname, size);
1154 error = EINVAL;
1155 goto fail2;
1156 }
1157
1158 if ((error = firmware_read(fw, 0, &hdr,
1159 sizeof (struct wpi_firmware_hdr))) != 0) {
1160 aprint_error("%s: can't get firmware header\n",
1161 sc->sc_dev.dv_xname);
1162 goto fail2;
1163 }
1164
1165 main_textsz = le32toh(hdr.main_textsz);
1166 main_datasz = le32toh(hdr.main_datasz);
1167 init_textsz = le32toh(hdr.init_textsz);
1168 init_datasz = le32toh(hdr.init_datasz);
1169 boot_textsz = le32toh(hdr.boot_textsz);
1170
1171 /* sanity-check firmware segments sizes */
1172 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1173 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1174 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1175 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1176 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1177 (boot_textsz & 3) != 0) {
1178 printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname);
1179 error = EINVAL;
1180 goto fail2;
1181 }
1182
1183 /* check that all firmware segments are present */
1184 if (size < sizeof (struct wpi_firmware_hdr) + main_textsz +
1185 main_datasz + init_textsz + init_datasz + boot_textsz) {
1186 aprint_error("%s: firmware file too short: %zu bytes\n",
1187 sc->sc_dev.dv_xname, size);
1188 error = EINVAL;
1189 goto fail2;
1190 }
1191
1192 dfw = firmware_malloc(size);
1193 if (dfw == NULL) {
1194 aprint_error("%s: not enough memory to stock firmware\n",
1195 sc->sc_dev.dv_xname);
1196 error = ENOMEM;
1197 goto fail2;
1198 }
1199
1200 if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
1201 aprint_error("%s: can't get firmware\n",
1202 sc->sc_dev.dv_xname);
1203 goto fail2;
1204 }
1205
1206 /* get pointers to firmware segments */
1207 main_text = dfw + sizeof (struct wpi_firmware_hdr);
1208 main_data = main_text + main_textsz;
1209 init_text = main_data + main_datasz;
1210 init_data = init_text + init_textsz;
1211 boot_text = init_data + init_datasz;
1212
1213 /* copy initialization images into pre-allocated DMA-safe memory */
1214 memcpy(dma->vaddr, init_data, init_datasz);
1215 memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1216
1217 /* tell adapter where to find initialization images */
1218 wpi_mem_lock(sc);
1219 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1220 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1221 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1222 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1223 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1224 wpi_mem_unlock(sc);
1225
1226 /* load firmware boot code */
1227 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1228 printf("%s: could not load boot firmware\n",
1229 sc->sc_dev.dv_xname);
1230 goto fail3;
1231 }
1232
1233 /* now press "execute" ;-) */
1234 WPI_WRITE(sc, WPI_RESET, 0);
1235
1236 /* ..and wait at most one second for adapter to initialize */
1237 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1238 /* this isn't what was supposed to happen.. */
1239 aprint_error("%s: timeout waiting for adapter to initialize\n",
1240 sc->sc_dev.dv_xname);
1241 }
1242
1243 /* copy runtime images into pre-allocated DMA-safe memory */
1244 memcpy(dma->vaddr, main_data, main_datasz);
1245 memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1246
1247 /* tell adapter where to find runtime images */
1248 wpi_mem_lock(sc);
1249 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1250 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1251 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1252 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1253 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1254 wpi_mem_unlock(sc);
1255
1256 /* wait at most one second for second alive notification */
1257 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1258 /* this isn't what was supposed to happen.. */
1259 printf("%s: timeout waiting for adapter to initialize\n",
1260 sc->sc_dev.dv_xname);
1261 }
1262
1263
1264 fail3: firmware_free(dfw,size);
1265 fail2: firmware_close(fw);
1266 fail1: return error;
1267 }
1268
1269 static void
1270 wpi_calib_timeout(void *arg)
1271 {
1272 struct wpi_softc *sc = arg;
1273 struct ieee80211com *ic = &sc->sc_ic;
1274 int temp, s;
1275
1276 /* automatic rate control triggered every 500ms */
1277 if (ic->ic_fixed_rate == -1) {
1278 s = splnet();
1279 if (ic->ic_opmode == IEEE80211_M_STA)
1280 wpi_iter_func(sc, ic->ic_bss);
1281 else
1282 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1283 splx(s);
1284 }
1285
1286 /* update sensor data */
1287 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1288
1289 /* automatic power calibration every 60s */
1290 if (++sc->calib_cnt >= 120) {
1291 wpi_power_calibration(sc, temp);
1292 sc->calib_cnt = 0;
1293 }
1294
1295 callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
1296 }
1297
1298 static void
1299 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1300 {
1301 struct wpi_softc *sc = arg;
1302 struct wpi_node *wn = (struct wpi_node *)ni;
1303
1304 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1305 }
1306
1307 /*
1308 * This function is called periodically (every 60 seconds) to adjust output
1309 * power to temperature changes.
1310 */
1311 void
1312 wpi_power_calibration(struct wpi_softc *sc, int temp)
1313 {
1314 /* sanity-check read value */
1315 if (temp < -260 || temp > 25) {
1316 /* this can't be correct, ignore */
1317 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1318 return;
1319 }
1320
1321 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1322
1323 /* adjust Tx power if need be */
1324 if (abs(temp - sc->temp) <= 6)
1325 return;
1326
1327 sc->temp = temp;
1328
1329 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1330 /* just warn, too bad for the automatic calibration... */
1331 aprint_error("%s: could not adjust Tx power\n",
1332 sc->sc_dev.dv_xname);
1333 }
1334 }
1335
1336 static void
1337 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1338 struct wpi_rx_data *data)
1339 {
1340 struct ieee80211com *ic = &sc->sc_ic;
1341 struct ifnet *ifp = ic->ic_ifp;
1342 struct wpi_rx_ring *ring = &sc->rxq;
1343 struct wpi_rx_stat *stat;
1344 struct wpi_rx_head *head;
1345 struct wpi_rx_tail *tail;
1346 struct wpi_rbuf *rbuf;
1347 struct ieee80211_frame *wh;
1348 struct ieee80211_node *ni;
1349 struct mbuf *m, *mnew;
1350 int data_off ;
1351
1352 stat = (struct wpi_rx_stat *)(desc + 1);
1353
1354 if (stat->len > WPI_STAT_MAXLEN) {
1355 aprint_error("%s: invalid rx statistic header\n",
1356 sc->sc_dev.dv_xname);
1357 ifp->if_ierrors++;
1358 return;
1359 }
1360
1361 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1362 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1363
1364 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1365 "chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1366 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1367 le64toh(tail->tstamp)));
1368
1369 /*
1370 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1371 * to radiotap in monitor mode).
1372 */
1373 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1374 DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1375 ifp->if_ierrors++;
1376 return;
1377 }
1378
1379 /* Compute where are the useful datas */
1380 data_off = (char*)(head + 1) - mtod(data->m, char*);
1381
1382 /*
1383 * If the number of free entry is too low
1384 * just dup the data->m socket and reuse the same rbuf entry
1385 */
1386 if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1387
1388 /* Prepare the mbuf for the m_dup */
1389 data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1390 data->m->m_data = (char*) data->m->m_data + data_off;
1391
1392 m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1393
1394 /* Restore the m_data pointer for future use */
1395 data->m->m_data = (char*) data->m->m_data - data_off;
1396
1397 if (m == NULL) {
1398 ifp->if_ierrors++;
1399 return;
1400 }
1401 } else {
1402
1403 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1404 if (mnew == NULL) {
1405 ifp->if_ierrors++;
1406 return;
1407 }
1408
1409 rbuf = wpi_alloc_rbuf(sc);
1410 KASSERT(rbuf != NULL);
1411
1412 /* attach Rx buffer to mbuf */
1413 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1414 rbuf);
1415 mnew->m_flags |= M_EXT_RW;
1416
1417 m = data->m;
1418 data->m = mnew;
1419
1420 /* update Rx descriptor */
1421 ring->desc[ring->cur] = htole32(rbuf->paddr);
1422
1423 m->m_data = (char*)m->m_data + data_off;
1424 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1425 }
1426
1427 /* finalize mbuf */
1428 m->m_pkthdr.rcvif = ifp;
1429
1430 #if NBPFILTER > 0
1431 if (sc->sc_drvbpf != NULL) {
1432 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1433
1434 tap->wr_flags = 0;
1435 tap->wr_chan_freq =
1436 htole16(ic->ic_channels[head->chan].ic_freq);
1437 tap->wr_chan_flags =
1438 htole16(ic->ic_channels[head->chan].ic_flags);
1439 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1440 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1441 tap->wr_tsft = tail->tstamp;
1442 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1443 switch (head->rate) {
1444 /* CCK rates */
1445 case 10: tap->wr_rate = 2; break;
1446 case 20: tap->wr_rate = 4; break;
1447 case 55: tap->wr_rate = 11; break;
1448 case 110: tap->wr_rate = 22; break;
1449 /* OFDM rates */
1450 case 0xd: tap->wr_rate = 12; break;
1451 case 0xf: tap->wr_rate = 18; break;
1452 case 0x5: tap->wr_rate = 24; break;
1453 case 0x7: tap->wr_rate = 36; break;
1454 case 0x9: tap->wr_rate = 48; break;
1455 case 0xb: tap->wr_rate = 72; break;
1456 case 0x1: tap->wr_rate = 96; break;
1457 case 0x3: tap->wr_rate = 108; break;
1458 /* unknown rate: should not happen */
1459 default: tap->wr_rate = 0;
1460 }
1461 if (le16toh(head->flags) & 0x4)
1462 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1463
1464 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1465 }
1466 #endif
1467
1468 /* grab a reference to the source node */
1469 wh = mtod(m, struct ieee80211_frame *);
1470 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1471
1472 /* send the frame to the 802.11 layer */
1473 ieee80211_input(ic, m, ni, stat->rssi, 0);
1474
1475 /* release node reference */
1476 ieee80211_free_node(ni);
1477 }
1478
1479 static void
1480 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1481 {
1482 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1483 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1484 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1485 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1486 struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1487
1488 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1489 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1490 stat->nkill, stat->rate, le32toh(stat->duration),
1491 le32toh(stat->status)));
1492
1493 /*
1494 * Update rate control statistics for the node.
1495 * XXX we should not count mgmt frames since they're always sent at
1496 * the lowest available bit-rate.
1497 */
1498 wn->amn.amn_txcnt++;
1499 if (stat->ntries > 0) {
1500 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1501 wn->amn.amn_retrycnt++;
1502 }
1503
1504 if ((le32toh(stat->status) & 0xff) != 1)
1505 ifp->if_oerrors++;
1506 else
1507 ifp->if_opackets++;
1508
1509 bus_dmamap_unload(sc->sc_dmat, txdata->map);
1510 m_freem(txdata->m);
1511 txdata->m = NULL;
1512 ieee80211_free_node(txdata->ni);
1513 txdata->ni = NULL;
1514
1515 ring->queued--;
1516
1517 sc->sc_tx_timer = 0;
1518 ifp->if_flags &= ~IFF_OACTIVE;
1519 wpi_start(ifp);
1520 }
1521
1522 static void
1523 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1524 {
1525 struct wpi_tx_ring *ring = &sc->cmdq;
1526 struct wpi_tx_data *data;
1527
1528 if ((desc->qid & 7) != 4)
1529 return; /* not a command ack */
1530
1531 data = &ring->data[desc->idx];
1532
1533 /* if the command was mapped in a mbuf, free it */
1534 if (data->m != NULL) {
1535 bus_dmamap_unload(sc->sc_dmat, data->map);
1536 m_freem(data->m);
1537 data->m = NULL;
1538 }
1539
1540 wakeup(&ring->cmd[desc->idx]);
1541 }
1542
1543 static void
1544 wpi_notif_intr(struct wpi_softc *sc)
1545 {
1546 struct ieee80211com *ic = &sc->sc_ic;
1547 struct ifnet *ifp = ic->ic_ifp;
1548 struct wpi_rx_desc *desc;
1549 struct wpi_rx_data *data;
1550 uint32_t hw;
1551
1552 hw = le32toh(sc->shared->next);
1553 while (sc->rxq.cur != hw) {
1554 data = &sc->rxq.data[sc->rxq.cur];
1555
1556 desc = mtod(data->m, struct wpi_rx_desc *);
1557
1558 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1559 "len=%d\n", desc->qid, desc->idx, desc->flags,
1560 desc->type, le32toh(desc->len)));
1561
1562 if (!(desc->qid & 0x80)) /* reply to a command */
1563 wpi_cmd_intr(sc, desc);
1564
1565 switch (desc->type) {
1566 case WPI_RX_DONE:
1567 /* a 802.11 frame was received */
1568 wpi_rx_intr(sc, desc, data);
1569 break;
1570
1571 case WPI_TX_DONE:
1572 /* a 802.11 frame has been transmitted */
1573 wpi_tx_intr(sc, desc);
1574 break;
1575
1576 case WPI_UC_READY:
1577 {
1578 struct wpi_ucode_info *uc =
1579 (struct wpi_ucode_info *)(desc + 1);
1580
1581 /* the microcontroller is ready */
1582 DPRINTF(("microcode alive notification version %x "
1583 "alive %x\n", le32toh(uc->version),
1584 le32toh(uc->valid)));
1585
1586 if (le32toh(uc->valid) != 1) {
1587 aprint_error("%s: microcontroller "
1588 "initialization failed\n",
1589 sc->sc_dev.dv_xname);
1590 }
1591 break;
1592 }
1593 case WPI_STATE_CHANGED:
1594 {
1595 uint32_t *status = (uint32_t *)(desc + 1);
1596
1597 /* enabled/disabled notification */
1598 DPRINTF(("state changed to %x\n", le32toh(*status)));
1599
1600 if (le32toh(*status) & 1) {
1601 /* the radio button has to be pushed */
1602 aprint_error("%s: Radio transmitter is off\n",
1603 sc->sc_dev.dv_xname);
1604 /* turn the interface down */
1605 ifp->if_flags &= ~IFF_UP;
1606 wpi_stop(ifp, 1);
1607 return; /* no further processing */
1608 }
1609 break;
1610 }
1611 case WPI_START_SCAN:
1612 {
1613 struct wpi_start_scan *scan =
1614 (struct wpi_start_scan *)(desc + 1);
1615
1616 DPRINTFN(2, ("scanning channel %d status %x\n",
1617 scan->chan, le32toh(scan->status)));
1618
1619 /* fix current channel */
1620 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1621 break;
1622 }
1623 case WPI_STOP_SCAN:
1624 {
1625 struct wpi_stop_scan *scan =
1626 (struct wpi_stop_scan *)(desc + 1);
1627
1628 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1629 scan->nchan, scan->status, scan->chan));
1630
1631 if (scan->status == 1 && scan->chan <= 14) {
1632 /*
1633 * We just finished scanning 802.11g channels,
1634 * start scanning 802.11a ones.
1635 */
1636 if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1637 break;
1638 }
1639 ieee80211_end_scan(ic);
1640 break;
1641 }
1642 }
1643
1644 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1645 }
1646
1647 /* tell the firmware what we have processed */
1648 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1649 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1650 }
1651
1652 static int
1653 wpi_intr(void *arg)
1654 {
1655 struct wpi_softc *sc = arg;
1656 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1657 uint32_t r;
1658
1659 r = WPI_READ(sc, WPI_INTR);
1660 if (r == 0 || r == 0xffffffff)
1661 return 0; /* not for us */
1662
1663 DPRINTFN(5, ("interrupt reg %x\n", r));
1664
1665 /* disable interrupts */
1666 WPI_WRITE(sc, WPI_MASK, 0);
1667 /* ack interrupts */
1668 WPI_WRITE(sc, WPI_INTR, r);
1669
1670 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1671 aprint_error("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
1672 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1673 wpi_stop(sc->sc_ic.ic_ifp, 1);
1674 return 1;
1675 }
1676
1677 if (r & WPI_RX_INTR)
1678 wpi_notif_intr(sc);
1679
1680 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1681 wakeup(sc);
1682
1683 /* re-enable interrupts */
1684 if (ifp->if_flags & IFF_UP)
1685 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1686
1687 return 1;
1688 }
1689
1690 static uint8_t
1691 wpi_plcp_signal(int rate)
1692 {
1693 switch (rate) {
1694 /* CCK rates (returned values are device-dependent) */
1695 case 2: return 10;
1696 case 4: return 20;
1697 case 11: return 55;
1698 case 22: return 110;
1699
1700 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1701 /* R1-R4, (u)ral is R4-R1 */
1702 case 12: return 0xd;
1703 case 18: return 0xf;
1704 case 24: return 0x5;
1705 case 36: return 0x7;
1706 case 48: return 0x9;
1707 case 72: return 0xb;
1708 case 96: return 0x1;
1709 case 108: return 0x3;
1710
1711 /* unsupported rates (should not get there) */
1712 default: return 0;
1713 }
1714 }
1715
1716 /* quickly determine if a given rate is CCK or OFDM */
1717 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1718
1719 static int
1720 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1721 int ac)
1722 {
1723 struct ieee80211com *ic = &sc->sc_ic;
1724 struct wpi_tx_ring *ring = &sc->txq[ac];
1725 struct wpi_tx_desc *desc;
1726 struct wpi_tx_data *data;
1727 struct wpi_tx_cmd *cmd;
1728 struct wpi_cmd_data *tx;
1729 struct ieee80211_frame *wh;
1730 struct ieee80211_key *k;
1731 const struct chanAccParams *cap;
1732 struct mbuf *mnew;
1733 int i, error, rate, hdrlen, noack = 0;
1734
1735 desc = &ring->desc[ring->cur];
1736 data = &ring->data[ring->cur];
1737
1738 wh = mtod(m0, struct ieee80211_frame *);
1739
1740 if (IEEE80211_QOS_HAS_SEQ(wh)) {
1741 hdrlen = sizeof (struct ieee80211_qosframe);
1742 cap = &ic->ic_wme.wme_chanParams;
1743 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1744 } else
1745 hdrlen = sizeof (struct ieee80211_frame);
1746
1747 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1748 k = ieee80211_crypto_encap(ic, ni, m0);
1749 if (k == NULL) {
1750 m_freem(m0);
1751 return ENOBUFS;
1752 }
1753
1754 /* packet header may have moved, reset our local pointer */
1755 wh = mtod(m0, struct ieee80211_frame *);
1756 }
1757
1758 /* pickup a rate */
1759 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1760 IEEE80211_FC0_TYPE_MGT) {
1761 /* mgmt frames are sent at the lowest available bit-rate */
1762 rate = ni->ni_rates.rs_rates[0];
1763 } else {
1764 if (ic->ic_fixed_rate != -1) {
1765 rate = ic->ic_sup_rates[ic->ic_curmode].
1766 rs_rates[ic->ic_fixed_rate];
1767 } else
1768 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1769 }
1770 rate &= IEEE80211_RATE_VAL;
1771
1772
1773 #if NBPFILTER > 0
1774 if (sc->sc_drvbpf != NULL) {
1775 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1776
1777 tap->wt_flags = 0;
1778 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1779 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1780 tap->wt_rate = rate;
1781 tap->wt_hwqueue = ac;
1782 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1783 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1784
1785 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1786 }
1787 #endif
1788
1789 cmd = &ring->cmd[ring->cur];
1790 cmd->code = WPI_CMD_TX_DATA;
1791 cmd->flags = 0;
1792 cmd->qid = ring->qid;
1793 cmd->idx = ring->cur;
1794
1795 tx = (struct wpi_cmd_data *)cmd->data;
1796 tx->flags = 0;
1797
1798 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1799 tx->flags |= htole32(WPI_TX_NEED_ACK);
1800 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1801 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1802
1803 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1804
1805 /* retrieve destination node's id */
1806 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1807 WPI_ID_BSS;
1808
1809 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1810 IEEE80211_FC0_TYPE_MGT) {
1811 /* tell h/w to set timestamp in probe responses */
1812 if ((wh->i_fc[0] &
1813 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1814 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1815 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1816
1817 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1818 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1819 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1820 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1821 tx->timeout = htole16(3);
1822 else
1823 tx->timeout = htole16(2);
1824 } else
1825 tx->timeout = htole16(0);
1826
1827 tx->rate = wpi_plcp_signal(rate);
1828
1829 /* be very persistant at sending frames out */
1830 tx->rts_ntries = 7;
1831 tx->data_ntries = 15;
1832
1833 tx->ofdm_mask = 0xff;
1834 tx->cck_mask = 0xf;
1835 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1836
1837 tx->len = htole16(m0->m_pkthdr.len);
1838
1839 /* save and trim IEEE802.11 header */
1840 m_copydata(m0, 0, hdrlen, (void *)&tx->wh);
1841 m_adj(m0, hdrlen);
1842
1843 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1844 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1845 if (error != 0 && error != EFBIG) {
1846 aprint_error("%s: could not map mbuf (error %d)\n",
1847 sc->sc_dev.dv_xname, error);
1848 m_freem(m0);
1849 return error;
1850 }
1851 if (error != 0) {
1852 /* too many fragments, linearize */
1853 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1854 if (mnew == NULL) {
1855 m_freem(m0);
1856 return ENOMEM;
1857 }
1858
1859 M_COPY_PKTHDR(mnew, m0);
1860 if (m0->m_pkthdr.len > MHLEN) {
1861 MCLGET(mnew, M_DONTWAIT);
1862 if (!(mnew->m_flags & M_EXT)) {
1863 m_freem(m0);
1864 m_freem(mnew);
1865 return ENOMEM;
1866 }
1867 }
1868
1869 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1870 m_freem(m0);
1871 mnew->m_len = mnew->m_pkthdr.len;
1872 m0 = mnew;
1873
1874 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1875 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1876 if (error != 0) {
1877 aprint_error("%s: could not map mbuf (error %d)\n",
1878 sc->sc_dev.dv_xname, error);
1879 m_freem(m0);
1880 return error;
1881 }
1882 }
1883
1884 data->m = m0;
1885 data->ni = ni;
1886
1887 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1888 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1889
1890 /* first scatter/gather segment is used by the tx data command */
1891 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1892 (1 + data->map->dm_nsegs) << 24);
1893 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1894 ring->cur * sizeof (struct wpi_tx_cmd));
1895 /*XXX The next line might be wrong. I don't use hdrlen*/
1896 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data));
1897
1898 for (i = 1; i <= data->map->dm_nsegs; i++) {
1899 desc->segs[i].addr =
1900 htole32(data->map->dm_segs[i - 1].ds_addr);
1901 desc->segs[i].len =
1902 htole32(data->map->dm_segs[i - 1].ds_len);
1903 }
1904
1905 ring->queued++;
1906
1907 /* kick ring */
1908 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1909 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1910
1911 return 0;
1912 }
1913
1914 static void
1915 wpi_start(struct ifnet *ifp)
1916 {
1917 struct wpi_softc *sc = ifp->if_softc;
1918 struct ieee80211com *ic = &sc->sc_ic;
1919 struct ieee80211_node *ni;
1920 struct ether_header *eh;
1921 struct mbuf *m0;
1922 int ac;
1923
1924 /*
1925 * net80211 may still try to send management frames even if the
1926 * IFF_RUNNING flag is not set...
1927 */
1928 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1929 return;
1930
1931 for (;;) {
1932 IF_POLL(&ic->ic_mgtq, m0);
1933 if (m0 != NULL) {
1934 IF_DEQUEUE(&ic->ic_mgtq, m0);
1935
1936 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1937 m0->m_pkthdr.rcvif = NULL;
1938
1939 /* management frames go into ring 0 */
1940 if (sc->txq[0].queued > sc->txq[0].count - 8) {
1941 ifp->if_oerrors++;
1942 continue;
1943 }
1944 #if NBPFILTER > 0
1945 if (ic->ic_rawbpf != NULL)
1946 bpf_mtap(ic->ic_rawbpf, m0);
1947 #endif
1948 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
1949 ifp->if_oerrors++;
1950 break;
1951 }
1952 } else {
1953 if (ic->ic_state != IEEE80211_S_RUN)
1954 break;
1955 IFQ_POLL(&ifp->if_snd, m0);
1956 if (m0 == NULL)
1957 break;
1958
1959 if (m0->m_len < sizeof (*eh) &&
1960 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
1961 ifp->if_oerrors++;
1962 continue;
1963 }
1964 eh = mtod(m0, struct ether_header *);
1965 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1966 if (ni == NULL) {
1967 m_freem(m0);
1968 ifp->if_oerrors++;
1969 continue;
1970 }
1971
1972 /* classify mbuf so we can find which tx ring to use */
1973 if (ieee80211_classify(ic, m0, ni) != 0) {
1974 m_freem(m0);
1975 ieee80211_free_node(ni);
1976 ifp->if_oerrors++;
1977 continue;
1978 }
1979
1980 /* no QoS encapsulation for EAPOL frames */
1981 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1982 M_WME_GETAC(m0) : WME_AC_BE;
1983
1984 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1985 /* there is no place left in this ring */
1986 ifp->if_flags |= IFF_OACTIVE;
1987 break;
1988 }
1989 IFQ_DEQUEUE(&ifp->if_snd, m0);
1990 #if NBPFILTER > 0
1991 if (ifp->if_bpf != NULL)
1992 bpf_mtap(ifp->if_bpf, m0);
1993 #endif
1994 m0 = ieee80211_encap(ic, m0, ni);
1995 if (m0 == NULL) {
1996 ieee80211_free_node(ni);
1997 ifp->if_oerrors++;
1998 continue;
1999 }
2000 #if NBPFILTER > 0
2001 if (ic->ic_rawbpf != NULL)
2002 bpf_mtap(ic->ic_rawbpf, m0);
2003 #endif
2004 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2005 ieee80211_free_node(ni);
2006 ifp->if_oerrors++;
2007 break;
2008 }
2009 }
2010
2011 sc->sc_tx_timer = 5;
2012 ifp->if_timer = 1;
2013 }
2014 }
2015
2016 static void
2017 wpi_watchdog(struct ifnet *ifp)
2018 {
2019 struct wpi_softc *sc = ifp->if_softc;
2020
2021 ifp->if_timer = 0;
2022
2023 if (sc->sc_tx_timer > 0) {
2024 if (--sc->sc_tx_timer == 0) {
2025 aprint_error("%s: device timeout\n",
2026 sc->sc_dev.dv_xname);
2027 ifp->if_oerrors++;
2028 ifp->if_flags &= ~IFF_UP;
2029 wpi_stop(ifp, 1);
2030 return;
2031 }
2032 ifp->if_timer = 1;
2033 }
2034
2035 ieee80211_watchdog(&sc->sc_ic);
2036 }
2037
2038 static int
2039 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2040 {
2041 #define IS_RUNNING(ifp) \
2042 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2043
2044 struct wpi_softc *sc = ifp->if_softc;
2045 struct ieee80211com *ic = &sc->sc_ic;
2046 struct ifreq *ifr = (struct ifreq *)data;
2047 int s, error = 0;
2048
2049 s = splnet();
2050
2051 switch (cmd) {
2052 case SIOCSIFFLAGS:
2053 if (ifp->if_flags & IFF_UP) {
2054 if (!(ifp->if_flags & IFF_RUNNING))
2055 wpi_init(ifp);
2056 } else {
2057 if (ifp->if_flags & IFF_RUNNING)
2058 wpi_stop(ifp, 1);
2059 }
2060 break;
2061
2062 case SIOCADDMULTI:
2063 case SIOCDELMULTI:
2064 error = (cmd == SIOCADDMULTI) ?
2065 ether_addmulti(ifr, &sc->sc_ec) :
2066 ether_delmulti(ifr, &sc->sc_ec);
2067 if (error == ENETRESET) {
2068 /* setup multicast filter, etc */
2069 error = 0;
2070 }
2071 break;
2072
2073 default:
2074 error = ieee80211_ioctl(ic, cmd, data);
2075 }
2076
2077 if (error == ENETRESET) {
2078 if (IS_RUNNING(ifp) &&
2079 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2080 wpi_init(ifp);
2081 error = 0;
2082 }
2083
2084 splx(s);
2085 return error;
2086
2087 #undef IS_RUNNING
2088 }
2089
2090 /*
2091 * Extract various information from EEPROM.
2092 */
2093 static void
2094 wpi_read_eeprom(struct wpi_softc *sc)
2095 {
2096 struct ieee80211com *ic = &sc->sc_ic;
2097 char domain[4];
2098 int i;
2099
2100 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2101 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2102 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2103
2104 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2105 sc->type));
2106
2107 /* read and print regulatory domain */
2108 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2109 aprint_normal(", %.4s", domain);
2110
2111 /* read and print MAC address */
2112 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2113 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2114
2115 /* read the list of authorized channels */
2116 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2117 wpi_read_eeprom_channels(sc, i);
2118
2119 /* read the list of power groups */
2120 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2121 wpi_read_eeprom_group(sc, i);
2122 }
2123
2124 static void
2125 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2126 {
2127 struct ieee80211com *ic = &sc->sc_ic;
2128 const struct wpi_chan_band *band = &wpi_bands[n];
2129 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2130 int chan, i;
2131
2132 wpi_read_prom_data(sc, band->addr, channels,
2133 band->nchan * sizeof (struct wpi_eeprom_chan));
2134
2135 for (i = 0; i < band->nchan; i++) {
2136 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2137 continue;
2138
2139 chan = band->chan[i];
2140
2141 if (n == 0) { /* 2GHz band */
2142 ic->ic_channels[chan].ic_freq =
2143 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2144 ic->ic_channels[chan].ic_flags =
2145 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2146 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2147
2148 } else { /* 5GHz band */
2149 /*
2150 * Some 3945abg adapters support channels 7, 8, 11
2151 * and 12 in the 2GHz *and* 5GHz bands.
2152 * Because of limitations in our net80211(9) stack,
2153 * we can't support these channels in 5GHz band.
2154 */
2155 if (chan <= 14)
2156 continue;
2157
2158 ic->ic_channels[chan].ic_freq =
2159 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2160 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2161 }
2162
2163 /* is active scan allowed on this channel? */
2164 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2165 ic->ic_channels[chan].ic_flags |=
2166 IEEE80211_CHAN_PASSIVE;
2167 }
2168
2169 /* save maximum allowed power for this channel */
2170 sc->maxpwr[chan] = channels[i].maxpwr;
2171
2172 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2173 chan, channels[i].flags, sc->maxpwr[chan]));
2174 }
2175 }
2176
2177 static void
2178 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2179 {
2180 struct wpi_power_group *group = &sc->groups[n];
2181 struct wpi_eeprom_group rgroup;
2182 int i;
2183
2184 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2185 sizeof rgroup);
2186
2187 /* save power group information */
2188 group->chan = rgroup.chan;
2189 group->maxpwr = rgroup.maxpwr;
2190 /* temperature at which the samples were taken */
2191 group->temp = (int16_t)le16toh(rgroup.temp);
2192
2193 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2194 group->chan, group->maxpwr, group->temp));
2195
2196 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2197 group->samples[i].index = rgroup.samples[i].index;
2198 group->samples[i].power = rgroup.samples[i].power;
2199
2200 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2201 group->samples[i].index, group->samples[i].power));
2202 }
2203 }
2204
2205 /*
2206 * Send a command to the firmware.
2207 */
2208 static int
2209 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2210 {
2211 struct wpi_tx_ring *ring = &sc->cmdq;
2212 struct wpi_tx_desc *desc;
2213 struct wpi_tx_cmd *cmd;
2214
2215 KASSERT(size <= sizeof cmd->data);
2216
2217 desc = &ring->desc[ring->cur];
2218 cmd = &ring->cmd[ring->cur];
2219
2220 cmd->code = code;
2221 cmd->flags = 0;
2222 cmd->qid = ring->qid;
2223 cmd->idx = ring->cur;
2224 memcpy(cmd->data, buf, size);
2225
2226 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2227 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2228 ring->cur * sizeof (struct wpi_tx_cmd));
2229 desc->segs[0].len = htole32(4 + size);
2230
2231 /* kick cmd ring */
2232 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2233 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2234
2235 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2236 }
2237
2238 static int
2239 wpi_wme_update(struct ieee80211com *ic)
2240 {
2241 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2242 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2243 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2244 const struct wmeParams *wmep;
2245 struct wpi_wme_setup wme;
2246 int ac;
2247
2248 /* don't override default WME values if WME is not actually enabled */
2249 if (!(ic->ic_flags & IEEE80211_F_WME))
2250 return 0;
2251
2252 wme.flags = 0;
2253 for (ac = 0; ac < WME_NUM_AC; ac++) {
2254 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2255 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2256 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2257 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2258 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2259
2260 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2261 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2262 wme.ac[ac].cwmax, wme.ac[ac].txop));
2263 }
2264
2265 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2266 #undef WPI_USEC
2267 #undef WPI_EXP2
2268 }
2269
2270 /*
2271 * Configure h/w multi-rate retries.
2272 */
2273 static int
2274 wpi_mrr_setup(struct wpi_softc *sc)
2275 {
2276 struct ieee80211com *ic = &sc->sc_ic;
2277 struct wpi_mrr_setup mrr;
2278 int i, error;
2279
2280 /* CCK rates (not used with 802.11a) */
2281 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2282 mrr.rates[i].flags = 0;
2283 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2284 /* fallback to the immediate lower CCK rate (if any) */
2285 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2286 /* try one time at this rate before falling back to "next" */
2287 mrr.rates[i].ntries = 1;
2288 }
2289
2290 /* OFDM rates (not used with 802.11b) */
2291 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2292 mrr.rates[i].flags = 0;
2293 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2294 /* fallback to the immediate lower rate (if any) */
2295 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2296 mrr.rates[i].next = (i == WPI_OFDM6) ?
2297 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2298 WPI_OFDM6 : WPI_CCK2) :
2299 i - 1;
2300 /* try one time at this rate before falling back to "next" */
2301 mrr.rates[i].ntries = 1;
2302 }
2303
2304 /* setup MRR for control frames */
2305 mrr.which = htole32(WPI_MRR_CTL);
2306 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2307 if (error != 0) {
2308 aprint_error("%s: could not setup MRR for control frames\n",
2309 sc->sc_dev.dv_xname);
2310 return error;
2311 }
2312
2313 /* setup MRR for data frames */
2314 mrr.which = htole32(WPI_MRR_DATA);
2315 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2316 if (error != 0) {
2317 aprint_error("%s: could not setup MRR for data frames\n",
2318 sc->sc_dev.dv_xname);
2319 return error;
2320 }
2321
2322 return 0;
2323 }
2324
2325 static void
2326 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2327 {
2328 struct wpi_cmd_led led;
2329
2330 led.which = which;
2331 led.unit = htole32(100000); /* on/off in unit of 100ms */
2332 led.off = off;
2333 led.on = on;
2334
2335 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2336 }
2337
2338 static void
2339 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2340 {
2341 struct wpi_cmd_tsf tsf;
2342 uint64_t val, mod;
2343
2344 memset(&tsf, 0, sizeof tsf);
2345 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2346 tsf.bintval = htole16(ni->ni_intval);
2347 tsf.lintval = htole16(10);
2348
2349 /* compute remaining time until next beacon */
2350 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2351 mod = le64toh(tsf.tstamp) % val;
2352 tsf.binitval = htole32((uint32_t)(val - mod));
2353
2354 DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2355 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2356
2357 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2358 aprint_error("%s: could not enable TSF\n", sc->sc_dev.dv_xname);
2359 }
2360
2361 /*
2362 * Update Tx power to match what is defined for channel `c'.
2363 */
2364 static int
2365 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2366 {
2367 struct ieee80211com *ic = &sc->sc_ic;
2368 struct wpi_power_group *group;
2369 struct wpi_cmd_txpower txpower;
2370 u_int chan;
2371 int i;
2372
2373 /* get channel number */
2374 chan = ieee80211_chan2ieee(ic, c);
2375
2376 /* find the power group to which this channel belongs */
2377 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2378 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2379 if (chan <= group->chan)
2380 break;
2381 } else
2382 group = &sc->groups[0];
2383
2384 memset(&txpower, 0, sizeof txpower);
2385 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2386 txpower.chan = htole16(chan);
2387
2388 /* set Tx power for all OFDM and CCK rates */
2389 for (i = 0; i <= 11 ; i++) {
2390 /* retrieve Tx power for this channel/rate combination */
2391 int idx = wpi_get_power_index(sc, group, c,
2392 wpi_ridx_to_rate[i]);
2393
2394 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2395
2396 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2397 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2398 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2399 } else {
2400 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2401 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2402 }
2403 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2404 wpi_ridx_to_rate[i], idx));
2405 }
2406
2407 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2408 }
2409
2410 /*
2411 * Determine Tx power index for a given channel/rate combination.
2412 * This takes into account the regulatory information from EEPROM and the
2413 * current temperature.
2414 */
2415 static int
2416 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2417 struct ieee80211_channel *c, int rate)
2418 {
2419 /* fixed-point arithmetic division using a n-bit fractional part */
2420 #define fdivround(a, b, n) \
2421 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2422
2423 /* linear interpolation */
2424 #define interpolate(x, x1, y1, x2, y2, n) \
2425 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2426
2427 struct ieee80211com *ic = &sc->sc_ic;
2428 struct wpi_power_sample *sample;
2429 int pwr, idx;
2430 u_int chan;
2431
2432 /* get channel number */
2433 chan = ieee80211_chan2ieee(ic, c);
2434
2435 /* default power is group's maximum power - 3dB */
2436 pwr = group->maxpwr / 2;
2437
2438 /* decrease power for highest OFDM rates to reduce distortion */
2439 switch (rate) {
2440 case 72: /* 36Mb/s */
2441 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2442 break;
2443 case 96: /* 48Mb/s */
2444 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2445 break;
2446 case 108: /* 54Mb/s */
2447 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2448 break;
2449 }
2450
2451 /* never exceed channel's maximum allowed Tx power */
2452 pwr = min(pwr, sc->maxpwr[chan]);
2453
2454 /* retrieve power index into gain tables from samples */
2455 for (sample = group->samples; sample < &group->samples[3]; sample++)
2456 if (pwr > sample[1].power)
2457 break;
2458 /* fixed-point linear interpolation using a 19-bit fractional part */
2459 idx = interpolate(pwr, sample[0].power, sample[0].index,
2460 sample[1].power, sample[1].index, 19);
2461
2462 /*
2463 * Adjust power index based on current temperature:
2464 * - if cooler than factory-calibrated: decrease output power
2465 * - if warmer than factory-calibrated: increase output power
2466 */
2467 idx -= (sc->temp - group->temp) * 11 / 100;
2468
2469 /* decrease power for CCK rates (-5dB) */
2470 if (!WPI_RATE_IS_OFDM(rate))
2471 idx += 10;
2472
2473 /* keep power index in a valid range */
2474 if (idx < 0)
2475 return 0;
2476 if (idx > WPI_MAX_PWR_INDEX)
2477 return WPI_MAX_PWR_INDEX;
2478 return idx;
2479
2480 #undef interpolate
2481 #undef fdivround
2482 }
2483
2484 /*
2485 * Build a beacon frame that the firmware will broadcast periodically in
2486 * IBSS or HostAP modes.
2487 */
2488 static int
2489 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2490 {
2491 struct ieee80211com *ic = &sc->sc_ic;
2492 struct wpi_tx_ring *ring = &sc->cmdq;
2493 struct wpi_tx_desc *desc;
2494 struct wpi_tx_data *data;
2495 struct wpi_tx_cmd *cmd;
2496 struct wpi_cmd_beacon *bcn;
2497 struct ieee80211_beacon_offsets bo;
2498 struct mbuf *m0;
2499 int error;
2500
2501 desc = &ring->desc[ring->cur];
2502 data = &ring->data[ring->cur];
2503
2504 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2505 if (m0 == NULL) {
2506 aprint_error("%s: could not allocate beacon frame\n",
2507 sc->sc_dev.dv_xname);
2508 return ENOMEM;
2509 }
2510
2511 cmd = &ring->cmd[ring->cur];
2512 cmd->code = WPI_CMD_SET_BEACON;
2513 cmd->flags = 0;
2514 cmd->qid = ring->qid;
2515 cmd->idx = ring->cur;
2516
2517 bcn = (struct wpi_cmd_beacon *)cmd->data;
2518 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2519 bcn->id = WPI_ID_BROADCAST;
2520 bcn->ofdm_mask = 0xff;
2521 bcn->cck_mask = 0x0f;
2522 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2523 bcn->len = htole16(m0->m_pkthdr.len);
2524 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2525 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2526 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2527
2528 /* save and trim IEEE802.11 header */
2529 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2530 m_adj(m0, sizeof (struct ieee80211_frame));
2531
2532 /* assume beacon frame is contiguous */
2533 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2534 BUS_DMA_READ | BUS_DMA_NOWAIT);
2535 if (error) {
2536 aprint_error("%s: could not map beacon\n", sc->sc_dev.dv_xname);
2537 m_freem(m0);
2538 return error;
2539 }
2540
2541 data->m = m0;
2542
2543 /* first scatter/gather segment is used by the beacon command */
2544 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2545 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2546 ring->cur * sizeof (struct wpi_tx_cmd));
2547 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2548 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2549 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2550
2551 /* kick cmd ring */
2552 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2553 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2554
2555 return 0;
2556 }
2557
2558 static int
2559 wpi_auth(struct wpi_softc *sc)
2560 {
2561 struct ieee80211com *ic = &sc->sc_ic;
2562 struct ieee80211_node *ni = ic->ic_bss;
2563 struct wpi_node_info node;
2564 int error;
2565
2566 /* update adapter's configuration */
2567 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2568 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2569 sc->config.flags = htole32(WPI_CONFIG_TSF);
2570 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2571 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2572 WPI_CONFIG_24GHZ);
2573 }
2574 switch (ic->ic_curmode) {
2575 case IEEE80211_MODE_11A:
2576 sc->config.cck_mask = 0;
2577 sc->config.ofdm_mask = 0x15;
2578 break;
2579 case IEEE80211_MODE_11B:
2580 sc->config.cck_mask = 0x03;
2581 sc->config.ofdm_mask = 0;
2582 break;
2583 default: /* assume 802.11b/g */
2584 sc->config.cck_mask = 0x0f;
2585 sc->config.ofdm_mask = 0x15;
2586 }
2587
2588 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2589 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2590 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2591 sizeof (struct wpi_config), 1);
2592 if (error != 0) {
2593 aprint_error("%s: could not configure\n", sc->sc_dev.dv_xname);
2594 return error;
2595 }
2596
2597 /* configuration has changed, set Tx power accordingly */
2598 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2599 aprint_error("%s: could not set Tx power\n", sc->sc_dev.dv_xname);
2600 return error;
2601 }
2602
2603 /* add default node */
2604 memset(&node, 0, sizeof node);
2605 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2606 node.id = WPI_ID_BSS;
2607 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2608 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2609 node.action = htole32(WPI_ACTION_SET_RATE);
2610 node.antenna = WPI_ANTENNA_BOTH;
2611 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2612 if (error != 0) {
2613 aprint_error("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
2614 return error;
2615 }
2616
2617 return 0;
2618 }
2619
2620 /*
2621 * Send a scan request to the firmware. Since this command is huge, we map it
2622 * into a mbuf instead of using the pre-allocated set of commands.
2623 */
2624 static int
2625 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2626 {
2627 struct ieee80211com *ic = &sc->sc_ic;
2628 struct wpi_tx_ring *ring = &sc->cmdq;
2629 struct wpi_tx_desc *desc;
2630 struct wpi_tx_data *data;
2631 struct wpi_tx_cmd *cmd;
2632 struct wpi_scan_hdr *hdr;
2633 struct wpi_scan_chan *chan;
2634 struct ieee80211_frame *wh;
2635 struct ieee80211_rateset *rs;
2636 struct ieee80211_channel *c;
2637 enum ieee80211_phymode mode;
2638 uint8_t *frm;
2639 int nrates, pktlen, error;
2640
2641 desc = &ring->desc[ring->cur];
2642 data = &ring->data[ring->cur];
2643
2644 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2645 if (data->m == NULL) {
2646 aprint_error("%s: could not allocate mbuf for scan command\n",
2647 sc->sc_dev.dv_xname);
2648 return ENOMEM;
2649 }
2650
2651 MCLGET(data->m, M_DONTWAIT);
2652 if (!(data->m->m_flags & M_EXT)) {
2653 m_freem(data->m);
2654 data->m = NULL;
2655 aprint_error("%s: could not allocate mbuf for scan command\n",
2656 sc->sc_dev.dv_xname);
2657 return ENOMEM;
2658 }
2659
2660 cmd = mtod(data->m, struct wpi_tx_cmd *);
2661 cmd->code = WPI_CMD_SCAN;
2662 cmd->flags = 0;
2663 cmd->qid = ring->qid;
2664 cmd->idx = ring->cur;
2665
2666 hdr = (struct wpi_scan_hdr *)cmd->data;
2667 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2668 hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2669 hdr->id = WPI_ID_BROADCAST;
2670 hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2671
2672 /*
2673 * Move to the next channel if no packets are received within 5 msecs
2674 * after sending the probe request (this helps to reduce the duration
2675 * of active scans).
2676 */
2677 hdr->quiet = htole16(5); /* timeout in milliseconds */
2678 hdr->plcp_threshold = htole16(1); /* min # of packets */
2679
2680 if (flags & IEEE80211_CHAN_A) {
2681 hdr->crc_threshold = htole16(1);
2682 /* send probe requests at 6Mbps */
2683 hdr->rate = wpi_plcp_signal(12);
2684 } else {
2685 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2686 /* send probe requests at 1Mbps */
2687 hdr->rate = wpi_plcp_signal(2);
2688 }
2689
2690 /* for directed scans, firmware inserts the essid IE itself */
2691 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2692 hdr->essid[0].len = ic->ic_des_esslen;
2693 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2694
2695 /*
2696 * Build a probe request frame. Most of the following code is a
2697 * copy & paste of what is done in net80211.
2698 */
2699 wh = (struct ieee80211_frame *)(hdr + 1);
2700 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2701 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2702 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2703 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2704 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2705 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2706 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2707 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2708
2709 frm = (uint8_t *)(wh + 1);
2710
2711 /* add empty essid IE (firmware generates it for directed scans) */
2712 *frm++ = IEEE80211_ELEMID_SSID;
2713 *frm++ = 0;
2714
2715 mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2716 rs = &ic->ic_sup_rates[mode];
2717
2718 /* add supported rates IE */
2719 *frm++ = IEEE80211_ELEMID_RATES;
2720 nrates = rs->rs_nrates;
2721 if (nrates > IEEE80211_RATE_SIZE)
2722 nrates = IEEE80211_RATE_SIZE;
2723 *frm++ = nrates;
2724 memcpy(frm, rs->rs_rates, nrates);
2725 frm += nrates;
2726
2727 /* add supported xrates IE */
2728 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2729 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2730 *frm++ = IEEE80211_ELEMID_XRATES;
2731 *frm++ = nrates;
2732 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2733 frm += nrates;
2734 }
2735
2736 /* setup length of probe request */
2737 hdr->paylen = htole16(frm - (uint8_t *)wh);
2738
2739 chan = (struct wpi_scan_chan *)frm;
2740 for (c = &ic->ic_channels[1];
2741 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2742 if ((c->ic_flags & flags) != flags)
2743 continue;
2744
2745 chan->chan = ieee80211_chan2ieee(ic, c);
2746 chan->flags = 0;
2747 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2748 chan->flags |= WPI_CHAN_ACTIVE;
2749 if (ic->ic_des_esslen != 0)
2750 chan->flags |= WPI_CHAN_DIRECT;
2751 }
2752 chan->dsp_gain = 0x6e;
2753 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2754 chan->rf_gain = 0x3b;
2755 chan->active = htole16(10);
2756 chan->passive = htole16(110);
2757 } else {
2758 chan->rf_gain = 0x28;
2759 chan->active = htole16(20);
2760 chan->passive = htole16(120);
2761 }
2762 hdr->nchan++;
2763 chan++;
2764
2765 frm += sizeof (struct wpi_scan_chan);
2766 }
2767 hdr->len = htole16(frm - (uint8_t *)hdr);
2768 pktlen = frm - (uint8_t *)cmd;
2769
2770 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2771 NULL, BUS_DMA_NOWAIT);
2772 if (error) {
2773 aprint_error("%s: could not map scan command\n",
2774 sc->sc_dev.dv_xname);
2775 m_freem(data->m);
2776 data->m = NULL;
2777 return error;
2778 }
2779
2780 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2781 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2782 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2783
2784 /* kick cmd ring */
2785 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2786 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2787
2788 return 0; /* will be notified async. of failure/success */
2789 }
2790
2791 static int
2792 wpi_config(struct wpi_softc *sc)
2793 {
2794 struct ieee80211com *ic = &sc->sc_ic;
2795 struct ifnet *ifp = ic->ic_ifp;
2796 struct wpi_power power;
2797 struct wpi_bluetooth bluetooth;
2798 struct wpi_node_info node;
2799 int error;
2800
2801 memset(&power, 0, sizeof power);
2802 power.flags = htole32(WPI_POWER_CAM | 0x8);
2803 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2804 if (error != 0) {
2805 aprint_error("%s: could not set power mode\n",
2806 sc->sc_dev.dv_xname);
2807 return error;
2808 }
2809
2810 /* configure bluetooth coexistence */
2811 memset(&bluetooth, 0, sizeof bluetooth);
2812 bluetooth.flags = 3;
2813 bluetooth.lead = 0xaa;
2814 bluetooth.kill = 1;
2815 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2816 0);
2817 if (error != 0) {
2818 aprint_error(
2819 "%s: could not configure bluetooth coexistence\n",
2820 sc->sc_dev.dv_xname);
2821 return error;
2822 }
2823
2824 /* configure adapter */
2825 memset(&sc->config, 0, sizeof (struct wpi_config));
2826 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2827 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2828 /*set default channel*/
2829 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2830 sc->config.flags = htole32(WPI_CONFIG_TSF);
2831 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2832 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2833 WPI_CONFIG_24GHZ);
2834 }
2835 sc->config.filter = 0;
2836 switch (ic->ic_opmode) {
2837 case IEEE80211_M_STA:
2838 sc->config.mode = WPI_MODE_STA;
2839 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2840 break;
2841 case IEEE80211_M_IBSS:
2842 case IEEE80211_M_AHDEMO:
2843 sc->config.mode = WPI_MODE_IBSS;
2844 break;
2845 case IEEE80211_M_HOSTAP:
2846 sc->config.mode = WPI_MODE_HOSTAP;
2847 break;
2848 case IEEE80211_M_MONITOR:
2849 sc->config.mode = WPI_MODE_MONITOR;
2850 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2851 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2852 break;
2853 }
2854 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2855 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2856 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2857 sizeof (struct wpi_config), 0);
2858 if (error != 0) {
2859 aprint_error("%s: configure command failed\n",
2860 sc->sc_dev.dv_xname);
2861 return error;
2862 }
2863
2864 /* configuration has changed, set Tx power accordingly */
2865 if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2866 aprint_error("%s: could not set Tx power\n", sc->sc_dev.dv_xname);
2867 return error;
2868 }
2869
2870 /* add broadcast node */
2871 memset(&node, 0, sizeof node);
2872 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2873 node.id = WPI_ID_BROADCAST;
2874 node.rate = wpi_plcp_signal(2);
2875 node.action = htole32(WPI_ACTION_SET_RATE);
2876 node.antenna = WPI_ANTENNA_BOTH;
2877 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2878 if (error != 0) {
2879 aprint_error("%s: could not add broadcast node\n",
2880 sc->sc_dev.dv_xname);
2881 return error;
2882 }
2883
2884 if ((error = wpi_mrr_setup(sc)) != 0) {
2885 aprint_error("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
2886 return error;
2887 }
2888
2889 return 0;
2890 }
2891
2892 static void
2893 wpi_stop_master(struct wpi_softc *sc)
2894 {
2895 uint32_t tmp;
2896 int ntries;
2897
2898 tmp = WPI_READ(sc, WPI_RESET);
2899 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2900
2901 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2902 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2903 return; /* already asleep */
2904
2905 for (ntries = 0; ntries < 100; ntries++) {
2906 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2907 break;
2908 DELAY(10);
2909 }
2910 if (ntries == 100) {
2911 aprint_error("%s: timeout waiting for master\n",
2912 sc->sc_dev.dv_xname);
2913 }
2914 }
2915
2916 static int
2917 wpi_power_up(struct wpi_softc *sc)
2918 {
2919 uint32_t tmp;
2920 int ntries;
2921
2922 wpi_mem_lock(sc);
2923 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2924 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2925 wpi_mem_unlock(sc);
2926
2927 for (ntries = 0; ntries < 5000; ntries++) {
2928 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2929 break;
2930 DELAY(10);
2931 }
2932 if (ntries == 5000) {
2933 aprint_error("%s: timeout waiting for NIC to power up\n",
2934 sc->sc_dev.dv_xname);
2935 return ETIMEDOUT;
2936 }
2937 return 0;
2938 }
2939
2940 static int
2941 wpi_reset(struct wpi_softc *sc)
2942 {
2943 uint32_t tmp;
2944 int ntries;
2945
2946 /* clear any pending interrupts */
2947 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2948
2949 tmp = WPI_READ(sc, WPI_PLL_CTL);
2950 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2951
2952 tmp = WPI_READ(sc, WPI_CHICKEN);
2953 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2954
2955 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2956 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2957
2958 /* wait for clock stabilization */
2959 for (ntries = 0; ntries < 1000; ntries++) {
2960 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2961 break;
2962 DELAY(10);
2963 }
2964 if (ntries == 1000) {
2965 aprint_error("%s: timeout waiting for clock stabilization\n",
2966 sc->sc_dev.dv_xname);
2967 return ETIMEDOUT;
2968 }
2969
2970 /* initialize EEPROM */
2971 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2972 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2973 aprint_error("%s: EEPROM not found\n", sc->sc_dev.dv_xname);
2974 return EIO;
2975 }
2976 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2977
2978 return 0;
2979 }
2980
2981 static void
2982 wpi_hw_config(struct wpi_softc *sc)
2983 {
2984 uint32_t rev, hw;
2985
2986 /* voodoo from the reference driver */
2987 hw = WPI_READ(sc, WPI_HWCONFIG);
2988
2989 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
2990 rev = PCI_REVISION(rev);
2991 if ((rev & 0xc0) == 0x40)
2992 hw |= WPI_HW_ALM_MB;
2993 else if (!(rev & 0x80))
2994 hw |= WPI_HW_ALM_MM;
2995
2996 if (sc->cap == 0x80)
2997 hw |= WPI_HW_SKU_MRC;
2998
2999 hw &= ~WPI_HW_REV_D;
3000 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3001 hw |= WPI_HW_REV_D;
3002
3003 if (sc->type > 1)
3004 hw |= WPI_HW_TYPE_B;
3005
3006 DPRINTF(("setting h/w config %x\n", hw));
3007 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3008 }
3009
3010 static int
3011 wpi_init(struct ifnet *ifp)
3012 {
3013 struct wpi_softc *sc = ifp->if_softc;
3014 struct ieee80211com *ic = &sc->sc_ic;
3015 uint32_t tmp;
3016 int qid, ntries, error;
3017
3018 wpi_stop(ifp,1);
3019 (void)wpi_reset(sc);
3020
3021 wpi_mem_lock(sc);
3022 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3023 DELAY(20);
3024 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3025 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3026 wpi_mem_unlock(sc);
3027
3028 (void)wpi_power_up(sc);
3029 wpi_hw_config(sc);
3030
3031 /* init Rx ring */
3032 wpi_mem_lock(sc);
3033 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3034 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3035 offsetof(struct wpi_shared, next));
3036 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3037 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3038 wpi_mem_unlock(sc);
3039
3040 /* init Tx rings */
3041 wpi_mem_lock(sc);
3042 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3043 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3044 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3045 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3046 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3047 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3048 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3049
3050 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3051 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3052
3053 for (qid = 0; qid < 6; qid++) {
3054 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3055 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3056 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3057 }
3058 wpi_mem_unlock(sc);
3059
3060 /* clear "radio off" and "disable command" bits (reversed logic) */
3061 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3062 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3063
3064 /* clear any pending interrupts */
3065 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3066 /* enable interrupts */
3067 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3068
3069 /* not sure why/if this is necessary... */
3070 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3071 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3072
3073 if ((error = wpi_load_firmware(sc)) != 0) {
3074 aprint_error("%s: could not load firmware\n", sc->sc_dev.dv_xname);
3075 goto fail1;
3076 }
3077
3078 /* wait for thermal sensors to calibrate */
3079 for (ntries = 0; ntries < 1000; ntries++) {
3080 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3081 break;
3082 DELAY(10);
3083 }
3084 if (ntries == 1000) {
3085 aprint_error("%s: timeout waiting for thermal sensors calibration\n",
3086 sc->sc_dev.dv_xname);
3087 error = ETIMEDOUT;
3088 goto fail1;
3089 }
3090
3091 DPRINTF(("temperature %d\n", sc->temp));
3092
3093 if ((error = wpi_config(sc)) != 0) {
3094 aprint_error("%s: could not configure device\n",
3095 sc->sc_dev.dv_xname);
3096 goto fail1;
3097 }
3098
3099 ifp->if_flags &= ~IFF_OACTIVE;
3100 ifp->if_flags |= IFF_RUNNING;
3101
3102 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3103 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3104 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3105 }
3106 else
3107 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3108
3109 return 0;
3110
3111 fail1: wpi_stop(ifp, 1);
3112 return error;
3113 }
3114
3115
3116 static void
3117 wpi_stop(struct ifnet *ifp, int disable)
3118 {
3119 struct wpi_softc *sc = ifp->if_softc;
3120 struct ieee80211com *ic = &sc->sc_ic;
3121 uint32_t tmp;
3122 int ac;
3123
3124 ifp->if_timer = sc->sc_tx_timer = 0;
3125 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3126
3127 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3128
3129 /* disable interrupts */
3130 WPI_WRITE(sc, WPI_MASK, 0);
3131 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3132 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3133 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3134
3135 wpi_mem_lock(sc);
3136 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3137 wpi_mem_unlock(sc);
3138
3139 /* reset all Tx rings */
3140 for (ac = 0; ac < 4; ac++)
3141 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3142 wpi_reset_tx_ring(sc, &sc->cmdq);
3143 wpi_reset_tx_ring(sc, &sc->svcq);
3144
3145 /* reset Rx ring */
3146 wpi_reset_rx_ring(sc, &sc->rxq);
3147
3148 wpi_mem_lock(sc);
3149 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3150 wpi_mem_unlock(sc);
3151
3152 DELAY(5);
3153
3154 wpi_stop_master(sc);
3155
3156 tmp = WPI_READ(sc, WPI_RESET);
3157 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3158 }
3159