if_xge.c revision 1.19.6.1 1 1.19.6.1 skrll /* $NetBSD: if_xge.c,v 1.19.6.1 2015/06/06 14:40:09 skrll Exp $ */
2 1.1 ragge
3 1.1 ragge /*
4 1.1 ragge * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 1.1 ragge * All rights reserved.
6 1.1 ragge *
7 1.1 ragge * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 1.1 ragge *
9 1.1 ragge * Redistribution and use in source and binary forms, with or without
10 1.1 ragge * modification, are permitted provided that the following conditions
11 1.1 ragge * are met:
12 1.1 ragge * 1. Redistributions of source code must retain the above copyright
13 1.1 ragge * notice, this list of conditions and the following disclaimer.
14 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 ragge * notice, this list of conditions and the following disclaimer in the
16 1.1 ragge * documentation and/or other materials provided with the distribution.
17 1.1 ragge * 3. All advertising materials mentioning features or use of this software
18 1.1 ragge * must display the following acknowledgement:
19 1.1 ragge * This product includes software developed for the NetBSD Project by
20 1.1 ragge * SUNET, Swedish University Computer Network.
21 1.1 ragge * 4. The name of SUNET may not be used to endorse or promote products
22 1.1 ragge * derived from this software without specific prior written permission.
23 1.1 ragge *
24 1.1 ragge * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1 ragge * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1 ragge * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SUNET
28 1.1 ragge * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1 ragge * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 ragge * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 ragge * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1 ragge * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 ragge * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1 ragge * POSSIBILITY OF SUCH DAMAGE.
35 1.1 ragge */
36 1.1 ragge
37 1.1 ragge /*
38 1.1 ragge * Device driver for the S2io Xframe Ten Gigabit Ethernet controller.
39 1.1 ragge *
40 1.1 ragge * TODO (in no specific order):
41 1.1 ragge * HW VLAN support.
42 1.1 ragge * IPv6 HW cksum.
43 1.1 ragge */
44 1.1 ragge
45 1.1 ragge #include <sys/cdefs.h>
46 1.19.6.1 skrll __KERNEL_RCSID(0, "$NetBSD: if_xge.c,v 1.19.6.1 2015/06/06 14:40:09 skrll Exp $");
47 1.1 ragge
48 1.1 ragge
49 1.1 ragge #include <sys/param.h>
50 1.1 ragge #include <sys/systm.h>
51 1.1 ragge #include <sys/mbuf.h>
52 1.1 ragge #include <sys/malloc.h>
53 1.1 ragge #include <sys/kernel.h>
54 1.1 ragge #include <sys/socket.h>
55 1.1 ragge #include <sys/device.h>
56 1.1 ragge
57 1.1 ragge #include <net/if.h>
58 1.1 ragge #include <net/if_dl.h>
59 1.1 ragge #include <net/if_media.h>
60 1.1 ragge #include <net/if_ether.h>
61 1.1 ragge
62 1.1 ragge #include <net/bpf.h>
63 1.1 ragge
64 1.6 ad #include <sys/bus.h>
65 1.6 ad #include <sys/intr.h>
66 1.1 ragge #include <machine/endian.h>
67 1.1 ragge
68 1.1 ragge #include <dev/mii/mii.h>
69 1.1 ragge #include <dev/mii/miivar.h>
70 1.1 ragge
71 1.1 ragge #include <dev/pci/pcivar.h>
72 1.1 ragge #include <dev/pci/pcireg.h>
73 1.1 ragge #include <dev/pci/pcidevs.h>
74 1.1 ragge
75 1.1 ragge #include <sys/proc.h>
76 1.1 ragge
77 1.1 ragge #include <dev/pci/if_xgereg.h>
78 1.1 ragge
79 1.1 ragge /*
80 1.1 ragge * Some tunable constants, tune with care!
81 1.1 ragge */
82 1.1 ragge #define RX_MODE RX_MODE_1 /* Receive mode (buffer usage, see below) */
83 1.1 ragge #define NRXDESCS 1016 /* # of receive descriptors (requested) */
84 1.1 ragge #define NTXDESCS 8192 /* Number of transmit descriptors */
85 1.1 ragge #define NTXFRAGS 100 /* Max fragments per packet */
86 1.1 ragge #define XGE_EVENT_COUNTERS /* Instrumentation */
87 1.1 ragge
88 1.1 ragge /*
89 1.1 ragge * Receive buffer modes; 1, 3 or 5 buffers.
90 1.1 ragge */
91 1.1 ragge #define RX_MODE_1 1
92 1.1 ragge #define RX_MODE_3 3
93 1.1 ragge #define RX_MODE_5 5
94 1.1 ragge
95 1.1 ragge /*
96 1.1 ragge * Use clever macros to avoid a bunch of #ifdef's.
97 1.1 ragge */
98 1.1 ragge #define XCONCAT3(x,y,z) x ## y ## z
99 1.1 ragge #define CONCAT3(x,y,z) XCONCAT3(x,y,z)
100 1.1 ragge #define NDESC_BUFMODE CONCAT3(NDESC_,RX_MODE,BUFMODE)
101 1.1 ragge #define rxd_4k CONCAT3(rxd,RX_MODE,_4k)
102 1.1 ragge #define rxdesc ___CONCAT(rxd,RX_MODE)
103 1.1 ragge
104 1.1 ragge #define NEXTTX(x) (((x)+1) % NTXDESCS)
105 1.1 ragge #define NRXFRAGS RX_MODE /* hardware imposed frags */
106 1.1 ragge #define NRXPAGES ((NRXDESCS/NDESC_BUFMODE)+1)
107 1.1 ragge #define NRXREAL (NRXPAGES*NDESC_BUFMODE)
108 1.1 ragge #define RXMAPSZ (NRXPAGES*PAGE_SIZE)
109 1.1 ragge
110 1.1 ragge #ifdef XGE_EVENT_COUNTERS
111 1.1 ragge #define XGE_EVCNT_INCR(ev) (ev)->ev_count++
112 1.1 ragge #else
113 1.1 ragge #define XGE_EVCNT_INCR(ev) /* nothing */
114 1.1 ragge #endif
115 1.1 ragge
116 1.1 ragge /*
117 1.1 ragge * Magics to fix a bug when the mac address can't be read correctly.
118 1.1 ragge * Comes from the Linux driver.
119 1.1 ragge */
120 1.1 ragge static uint64_t fix_mac[] = {
121 1.1 ragge 0x0060000000000000ULL, 0x0060600000000000ULL,
122 1.1 ragge 0x0040600000000000ULL, 0x0000600000000000ULL,
123 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
124 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
125 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
126 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
127 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
128 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
129 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
130 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
131 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
132 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
133 1.1 ragge 0x0020600000000000ULL, 0x0000600000000000ULL,
134 1.1 ragge 0x0040600000000000ULL, 0x0060600000000000ULL,
135 1.1 ragge };
136 1.1 ragge
137 1.1 ragge
138 1.1 ragge struct xge_softc {
139 1.17 chs device_t sc_dev;
140 1.1 ragge struct ethercom sc_ethercom;
141 1.1 ragge #define sc_if sc_ethercom.ec_if
142 1.1 ragge bus_dma_tag_t sc_dmat;
143 1.1 ragge bus_space_tag_t sc_st;
144 1.1 ragge bus_space_handle_t sc_sh;
145 1.1 ragge bus_space_tag_t sc_txt;
146 1.1 ragge bus_space_handle_t sc_txh;
147 1.1 ragge void *sc_ih;
148 1.1 ragge
149 1.1 ragge struct ifmedia xena_media;
150 1.1 ragge pcireg_t sc_pciregs[16];
151 1.1 ragge
152 1.1 ragge /* Transmit structures */
153 1.1 ragge struct txd *sc_txd[NTXDESCS]; /* transmit frags array */
154 1.1 ragge bus_addr_t sc_txdp[NTXDESCS]; /* bus address of transmit frags */
155 1.1 ragge bus_dmamap_t sc_txm[NTXDESCS]; /* transmit frags map */
156 1.1 ragge struct mbuf *sc_txb[NTXDESCS]; /* transmit mbuf pointer */
157 1.1 ragge int sc_nexttx, sc_lasttx;
158 1.1 ragge bus_dmamap_t sc_txmap; /* transmit descriptor map */
159 1.1 ragge
160 1.1 ragge /* Receive data */
161 1.1 ragge bus_dmamap_t sc_rxmap; /* receive descriptor map */
162 1.1 ragge struct rxd_4k *sc_rxd_4k[NRXPAGES]; /* receive desc pages */
163 1.1 ragge bus_dmamap_t sc_rxm[NRXREAL]; /* receive buffer map */
164 1.1 ragge struct mbuf *sc_rxb[NRXREAL]; /* mbufs on receive descriptors */
165 1.1 ragge int sc_nextrx; /* next descriptor to check */
166 1.1 ragge
167 1.1 ragge #ifdef XGE_EVENT_COUNTERS
168 1.1 ragge struct evcnt sc_intr; /* # of interrupts */
169 1.1 ragge struct evcnt sc_txintr; /* # of transmit interrupts */
170 1.1 ragge struct evcnt sc_rxintr; /* # of receive interrupts */
171 1.1 ragge struct evcnt sc_txqe; /* # of xmit intrs when board queue empty */
172 1.1 ragge #endif
173 1.1 ragge };
174 1.1 ragge
175 1.12 cegger static int xge_match(device_t parent, cfdata_t cf, void *aux);
176 1.12 cegger static void xge_attach(device_t parent, device_t self, void *aux);
177 1.1 ragge static int xge_alloc_txmem(struct xge_softc *);
178 1.1 ragge static int xge_alloc_rxmem(struct xge_softc *);
179 1.1 ragge static void xge_start(struct ifnet *);
180 1.1 ragge static void xge_stop(struct ifnet *, int);
181 1.1 ragge static int xge_add_rxbuf(struct xge_softc *, int);
182 1.1 ragge static void xge_mcast_filter(struct xge_softc *sc);
183 1.1 ragge static int xge_setup_xgxs(struct xge_softc *sc);
184 1.5 christos static int xge_ioctl(struct ifnet *ifp, u_long cmd, void *data);
185 1.1 ragge static int xge_init(struct ifnet *ifp);
186 1.1 ragge static void xge_ifmedia_status(struct ifnet *, struct ifmediareq *);
187 1.1 ragge static int xge_xgmii_mediachange(struct ifnet *);
188 1.1 ragge static int xge_intr(void *);
189 1.1 ragge
190 1.1 ragge /*
191 1.1 ragge * Helpers to address registers.
192 1.1 ragge */
193 1.1 ragge #define PIF_WCSR(csr, val) pif_wcsr(sc, csr, val)
194 1.1 ragge #define PIF_RCSR(csr) pif_rcsr(sc, csr)
195 1.1 ragge #define TXP_WCSR(csr, val) txp_wcsr(sc, csr, val)
196 1.1 ragge #define PIF_WKEY(csr, val) pif_wkey(sc, csr, val)
197 1.1 ragge
198 1.1 ragge static inline void
199 1.1 ragge pif_wcsr(struct xge_softc *sc, bus_size_t csr, uint64_t val)
200 1.1 ragge {
201 1.1 ragge uint32_t lval, hval;
202 1.1 ragge
203 1.1 ragge lval = val&0xffffffff;
204 1.1 ragge hval = val>>32;
205 1.18 christos bus_space_write_4(sc->sc_st, sc->sc_sh, csr, lval);
206 1.1 ragge bus_space_write_4(sc->sc_st, sc->sc_sh, csr+4, hval);
207 1.1 ragge }
208 1.1 ragge
209 1.1 ragge static inline uint64_t
210 1.1 ragge pif_rcsr(struct xge_softc *sc, bus_size_t csr)
211 1.1 ragge {
212 1.1 ragge uint64_t val, val2;
213 1.1 ragge val = bus_space_read_4(sc->sc_st, sc->sc_sh, csr);
214 1.1 ragge val2 = bus_space_read_4(sc->sc_st, sc->sc_sh, csr+4);
215 1.1 ragge val |= (val2 << 32);
216 1.1 ragge return val;
217 1.1 ragge }
218 1.1 ragge
219 1.1 ragge static inline void
220 1.1 ragge txp_wcsr(struct xge_softc *sc, bus_size_t csr, uint64_t val)
221 1.1 ragge {
222 1.1 ragge uint32_t lval, hval;
223 1.1 ragge
224 1.1 ragge lval = val&0xffffffff;
225 1.1 ragge hval = val>>32;
226 1.18 christos bus_space_write_4(sc->sc_txt, sc->sc_txh, csr, lval);
227 1.1 ragge bus_space_write_4(sc->sc_txt, sc->sc_txh, csr+4, hval);
228 1.1 ragge }
229 1.1 ragge
230 1.1 ragge
231 1.1 ragge static inline void
232 1.1 ragge pif_wkey(struct xge_softc *sc, bus_size_t csr, uint64_t val)
233 1.1 ragge {
234 1.1 ragge uint32_t lval, hval;
235 1.1 ragge
236 1.1 ragge lval = val&0xffffffff;
237 1.1 ragge hval = val>>32;
238 1.1 ragge PIF_WCSR(RMAC_CFG_KEY, RMAC_KEY_VALUE);
239 1.18 christos bus_space_write_4(sc->sc_st, sc->sc_sh, csr, lval);
240 1.1 ragge PIF_WCSR(RMAC_CFG_KEY, RMAC_KEY_VALUE);
241 1.1 ragge bus_space_write_4(sc->sc_st, sc->sc_sh, csr+4, hval);
242 1.1 ragge }
243 1.1 ragge
244 1.1 ragge
245 1.17 chs CFATTACH_DECL_NEW(xge, sizeof(struct xge_softc),
246 1.1 ragge xge_match, xge_attach, NULL, NULL);
247 1.1 ragge
248 1.17 chs #define XNAME device_xname(sc->sc_dev)
249 1.1 ragge
250 1.1 ragge #define XGE_RXSYNC(desc, what) \
251 1.1 ragge bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap, \
252 1.1 ragge (desc/NDESC_BUFMODE) * XGE_PAGE + sizeof(struct rxdesc) * \
253 1.1 ragge (desc%NDESC_BUFMODE), sizeof(struct rxdesc), what)
254 1.1 ragge #define XGE_RXD(desc) &sc->sc_rxd_4k[desc/NDESC_BUFMODE]-> \
255 1.1 ragge r4_rxd[desc%NDESC_BUFMODE]
256 1.1 ragge
257 1.1 ragge /*
258 1.1 ragge * Non-tunable constants.
259 1.1 ragge */
260 1.1 ragge #define XGE_MAX_MTU 9600
261 1.1 ragge #define XGE_IP_MAXPACKET 65535 /* same as IP_MAXPACKET */
262 1.1 ragge
263 1.1 ragge static int
264 1.12 cegger xge_match(device_t parent, cfdata_t cf, void *aux)
265 1.1 ragge {
266 1.1 ragge struct pci_attach_args *pa = aux;
267 1.1 ragge
268 1.1 ragge if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S2IO &&
269 1.1 ragge PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S2IO_XFRAME)
270 1.1 ragge return (1);
271 1.1 ragge
272 1.1 ragge return (0);
273 1.1 ragge }
274 1.1 ragge
275 1.1 ragge void
276 1.12 cegger xge_attach(device_t parent, device_t self, void *aux)
277 1.1 ragge {
278 1.1 ragge struct pci_attach_args *pa = aux;
279 1.1 ragge struct xge_softc *sc;
280 1.1 ragge struct ifnet *ifp;
281 1.1 ragge pcireg_t memtype;
282 1.1 ragge pci_intr_handle_t ih;
283 1.1 ragge const char *intrstr = NULL;
284 1.1 ragge pci_chipset_tag_t pc = pa->pa_pc;
285 1.1 ragge uint8_t enaddr[ETHER_ADDR_LEN];
286 1.1 ragge uint64_t val;
287 1.1 ragge int i;
288 1.19 christos char intrbuf[PCI_INTRSTR_LEN];
289 1.1 ragge
290 1.13 cegger sc = device_private(self);
291 1.17 chs sc->sc_dev = self;
292 1.1 ragge sc->sc_dmat = pa->pa_dmat;
293 1.1 ragge
294 1.1 ragge /* Get BAR0 address */
295 1.1 ragge memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, XGE_PIF_BAR);
296 1.1 ragge if (pci_mapreg_map(pa, XGE_PIF_BAR, memtype, 0,
297 1.1 ragge &sc->sc_st, &sc->sc_sh, 0, 0)) {
298 1.1 ragge aprint_error("%s: unable to map PIF BAR registers\n", XNAME);
299 1.1 ragge return;
300 1.1 ragge }
301 1.1 ragge
302 1.1 ragge memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, XGE_TXP_BAR);
303 1.1 ragge if (pci_mapreg_map(pa, XGE_TXP_BAR, memtype, 0,
304 1.1 ragge &sc->sc_txt, &sc->sc_txh, 0, 0)) {
305 1.1 ragge aprint_error("%s: unable to map TXP BAR registers\n", XNAME);
306 1.1 ragge return;
307 1.1 ragge }
308 1.1 ragge
309 1.1 ragge /* Save PCI config space */
310 1.1 ragge for (i = 0; i < 64; i += 4)
311 1.1 ragge sc->sc_pciregs[i/4] = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
312 1.1 ragge
313 1.1 ragge #if BYTE_ORDER == LITTLE_ENDIAN
314 1.1 ragge val = (uint64_t)0xFFFFFFFFFFFFFFFFULL;
315 1.1 ragge val &= ~(TxF_R_SE|RxF_W_SE);
316 1.1 ragge PIF_WCSR(SWAPPER_CTRL, val);
317 1.1 ragge PIF_WCSR(SWAPPER_CTRL, val);
318 1.1 ragge #elif BYTE_ORDER == BIG_ENDIAN
319 1.1 ragge /* do nothing */
320 1.1 ragge #else
321 1.1 ragge #error bad endianness!
322 1.1 ragge #endif
323 1.1 ragge
324 1.1 ragge if ((val = PIF_RCSR(PIF_RD_SWAPPER_Fb)) != SWAPPER_MAGIC)
325 1.1 ragge return printf("%s: failed configuring endian, %llx != %llx!\n",
326 1.1 ragge XNAME, (unsigned long long)val, SWAPPER_MAGIC);
327 1.1 ragge
328 1.1 ragge /*
329 1.1 ragge * The MAC addr may be all FF's, which is not good.
330 1.18 christos * Resolve it by writing some magics to GPIO_CONTROL and
331 1.1 ragge * force a chip reset to read in the serial eeprom again.
332 1.1 ragge */
333 1.1 ragge for (i = 0; i < sizeof(fix_mac)/sizeof(fix_mac[0]); i++) {
334 1.1 ragge PIF_WCSR(GPIO_CONTROL, fix_mac[i]);
335 1.1 ragge PIF_RCSR(GPIO_CONTROL);
336 1.1 ragge }
337 1.1 ragge
338 1.1 ragge /*
339 1.1 ragge * Reset the chip and restore the PCI registers.
340 1.1 ragge */
341 1.1 ragge PIF_WCSR(SW_RESET, 0xa5a5a50000000000ULL);
342 1.1 ragge DELAY(500000);
343 1.1 ragge for (i = 0; i < 64; i += 4)
344 1.1 ragge pci_conf_write(pa->pa_pc, pa->pa_tag, i, sc->sc_pciregs[i/4]);
345 1.1 ragge
346 1.1 ragge /*
347 1.1 ragge * Restore the byte order registers.
348 1.1 ragge */
349 1.1 ragge #if BYTE_ORDER == LITTLE_ENDIAN
350 1.1 ragge val = (uint64_t)0xFFFFFFFFFFFFFFFFULL;
351 1.1 ragge val &= ~(TxF_R_SE|RxF_W_SE);
352 1.1 ragge PIF_WCSR(SWAPPER_CTRL, val);
353 1.1 ragge PIF_WCSR(SWAPPER_CTRL, val);
354 1.1 ragge #elif BYTE_ORDER == BIG_ENDIAN
355 1.1 ragge /* do nothing */
356 1.1 ragge #else
357 1.1 ragge #error bad endianness!
358 1.1 ragge #endif
359 1.1 ragge
360 1.1 ragge if ((val = PIF_RCSR(PIF_RD_SWAPPER_Fb)) != SWAPPER_MAGIC)
361 1.1 ragge return printf("%s: failed configuring endian2, %llx != %llx!\n",
362 1.1 ragge XNAME, (unsigned long long)val, SWAPPER_MAGIC);
363 1.1 ragge
364 1.1 ragge /*
365 1.1 ragge * XGXS initialization.
366 1.1 ragge */
367 1.1 ragge /* 29, reset */
368 1.1 ragge PIF_WCSR(SW_RESET, 0);
369 1.1 ragge DELAY(500000);
370 1.1 ragge
371 1.1 ragge /* 30, configure XGXS transceiver */
372 1.1 ragge xge_setup_xgxs(sc);
373 1.1 ragge
374 1.1 ragge /* 33, program MAC address (not needed here) */
375 1.1 ragge /* Get ethernet address */
376 1.1 ragge PIF_WCSR(RMAC_ADDR_CMD_MEM,
377 1.1 ragge RMAC_ADDR_CMD_MEM_STR|RMAC_ADDR_CMD_MEM_OFF(0));
378 1.1 ragge while (PIF_RCSR(RMAC_ADDR_CMD_MEM) & RMAC_ADDR_CMD_MEM_STR)
379 1.1 ragge ;
380 1.1 ragge val = PIF_RCSR(RMAC_ADDR_DATA0_MEM);
381 1.1 ragge for (i = 0; i < ETHER_ADDR_LEN; i++)
382 1.1 ragge enaddr[i] = (uint8_t)(val >> (56 - (8*i)));
383 1.1 ragge
384 1.1 ragge /*
385 1.1 ragge * Get memory for transmit descriptor lists.
386 1.1 ragge */
387 1.1 ragge if (xge_alloc_txmem(sc))
388 1.1 ragge return printf("%s: failed allocating txmem.\n", XNAME);
389 1.1 ragge
390 1.1 ragge /* 9 and 10 - set FIFO number/prio */
391 1.1 ragge PIF_WCSR(TX_FIFO_P0, TX_FIFO_LEN0(NTXDESCS));
392 1.1 ragge PIF_WCSR(TX_FIFO_P1, 0ULL);
393 1.1 ragge PIF_WCSR(TX_FIFO_P2, 0ULL);
394 1.1 ragge PIF_WCSR(TX_FIFO_P3, 0ULL);
395 1.1 ragge
396 1.1 ragge /* 11, XXX set round-robin prio? */
397 1.1 ragge
398 1.1 ragge /* 12, enable transmit FIFO */
399 1.1 ragge val = PIF_RCSR(TX_FIFO_P0);
400 1.1 ragge val |= TX_FIFO_ENABLE;
401 1.1 ragge PIF_WCSR(TX_FIFO_P0, val);
402 1.1 ragge
403 1.1 ragge /* 13, disable some error checks */
404 1.1 ragge PIF_WCSR(TX_PA_CFG,
405 1.1 ragge TX_PA_CFG_IFR|TX_PA_CFG_ISO|TX_PA_CFG_ILC|TX_PA_CFG_ILE);
406 1.1 ragge
407 1.1 ragge /*
408 1.1 ragge * Create transmit DMA maps.
409 1.1 ragge * Make them large for TSO.
410 1.1 ragge */
411 1.1 ragge for (i = 0; i < NTXDESCS; i++) {
412 1.1 ragge if (bus_dmamap_create(sc->sc_dmat, XGE_IP_MAXPACKET,
413 1.1 ragge NTXFRAGS, MCLBYTES, 0, 0, &sc->sc_txm[i]))
414 1.1 ragge return printf("%s: cannot create TX DMA maps\n", XNAME);
415 1.1 ragge }
416 1.1 ragge
417 1.1 ragge sc->sc_lasttx = NTXDESCS-1;
418 1.1 ragge
419 1.1 ragge /*
420 1.1 ragge * RxDMA initialization.
421 1.1 ragge * Only use one out of 8 possible receive queues.
422 1.1 ragge */
423 1.1 ragge if (xge_alloc_rxmem(sc)) /* allocate rx descriptor memory */
424 1.1 ragge return printf("%s: failed allocating rxmem\n", XNAME);
425 1.1 ragge
426 1.1 ragge /* Create receive buffer DMA maps */
427 1.1 ragge for (i = 0; i < NRXREAL; i++) {
428 1.1 ragge if (bus_dmamap_create(sc->sc_dmat, XGE_MAX_MTU,
429 1.1 ragge NRXFRAGS, MCLBYTES, 0, 0, &sc->sc_rxm[i]))
430 1.1 ragge return printf("%s: cannot create RX DMA maps\n", XNAME);
431 1.1 ragge }
432 1.1 ragge
433 1.1 ragge /* allocate mbufs to receive descriptors */
434 1.1 ragge for (i = 0; i < NRXREAL; i++)
435 1.1 ragge if (xge_add_rxbuf(sc, i))
436 1.1 ragge panic("out of mbufs too early");
437 1.1 ragge
438 1.1 ragge /* 14, setup receive ring priority */
439 1.1 ragge PIF_WCSR(RX_QUEUE_PRIORITY, 0ULL); /* only use one ring */
440 1.1 ragge
441 1.1 ragge /* 15, setup receive ring round-robin calendar */
442 1.1 ragge PIF_WCSR(RX_W_ROUND_ROBIN_0, 0ULL); /* only use one ring */
443 1.1 ragge PIF_WCSR(RX_W_ROUND_ROBIN_1, 0ULL);
444 1.1 ragge PIF_WCSR(RX_W_ROUND_ROBIN_2, 0ULL);
445 1.1 ragge PIF_WCSR(RX_W_ROUND_ROBIN_3, 0ULL);
446 1.1 ragge PIF_WCSR(RX_W_ROUND_ROBIN_4, 0ULL);
447 1.1 ragge
448 1.1 ragge /* 16, write receive ring start address */
449 1.1 ragge PIF_WCSR(PRC_RXD0_0, (uint64_t)sc->sc_rxmap->dm_segs[0].ds_addr);
450 1.1 ragge /* PRC_RXD0_[1-7] are not used */
451 1.1 ragge
452 1.1 ragge /* 17, Setup alarm registers */
453 1.1 ragge PIF_WCSR(PRC_ALARM_ACTION, 0ULL); /* Default everything to retry */
454 1.1 ragge
455 1.1 ragge /* 18, init receive ring controller */
456 1.1 ragge #if RX_MODE == RX_MODE_1
457 1.1 ragge val = RING_MODE_1;
458 1.1 ragge #elif RX_MODE == RX_MODE_3
459 1.1 ragge val = RING_MODE_3;
460 1.1 ragge #else /* RX_MODE == RX_MODE_5 */
461 1.1 ragge val = RING_MODE_5;
462 1.1 ragge #endif
463 1.1 ragge PIF_WCSR(PRC_CTRL_0, RC_IN_SVC|val);
464 1.1 ragge /* leave 1-7 disabled */
465 1.1 ragge /* XXXX snoop configuration? */
466 1.1 ragge
467 1.1 ragge /* 19, set chip memory assigned to the queue */
468 1.1 ragge PIF_WCSR(RX_QUEUE_CFG, MC_QUEUE(0, 64)); /* all 64M to queue 0 */
469 1.1 ragge
470 1.1 ragge /* 20, setup RLDRAM parameters */
471 1.1 ragge /* do not touch it for now */
472 1.1 ragge
473 1.1 ragge /* 21, setup pause frame thresholds */
474 1.1 ragge /* so not touch the defaults */
475 1.1 ragge /* XXX - must 0xff be written as stated in the manual? */
476 1.1 ragge
477 1.1 ragge /* 22, configure RED */
478 1.1 ragge /* we do not want to drop packets, so ignore */
479 1.1 ragge
480 1.1 ragge /* 23, initiate RLDRAM */
481 1.1 ragge val = PIF_RCSR(MC_RLDRAM_MRS);
482 1.1 ragge val |= MC_QUEUE_SIZE_ENABLE|MC_RLDRAM_MRS_ENABLE;
483 1.1 ragge PIF_WCSR(MC_RLDRAM_MRS, val);
484 1.1 ragge DELAY(1000);
485 1.1 ragge
486 1.1 ragge /*
487 1.1 ragge * Setup interrupt policies.
488 1.1 ragge */
489 1.1 ragge /* 40, Transmit interrupts */
490 1.1 ragge PIF_WCSR(TTI_DATA1_MEM, TX_TIMER_VAL(0x1ff) | TX_TIMER_AC |
491 1.1 ragge TX_URNG_A(5) | TX_URNG_B(20) | TX_URNG_C(48));
492 1.1 ragge PIF_WCSR(TTI_DATA2_MEM,
493 1.1 ragge TX_UFC_A(25) | TX_UFC_B(64) | TX_UFC_C(128) | TX_UFC_D(512));
494 1.1 ragge PIF_WCSR(TTI_COMMAND_MEM, TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE);
495 1.1 ragge while (PIF_RCSR(TTI_COMMAND_MEM) & TTI_CMD_MEM_STROBE)
496 1.1 ragge ;
497 1.1 ragge
498 1.1 ragge /* 41, Receive interrupts */
499 1.1 ragge PIF_WCSR(RTI_DATA1_MEM, RX_TIMER_VAL(0x800) | RX_TIMER_AC |
500 1.1 ragge RX_URNG_A(5) | RX_URNG_B(20) | RX_URNG_C(50));
501 1.1 ragge PIF_WCSR(RTI_DATA2_MEM,
502 1.1 ragge RX_UFC_A(64) | RX_UFC_B(128) | RX_UFC_C(256) | RX_UFC_D(512));
503 1.1 ragge PIF_WCSR(RTI_COMMAND_MEM, RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE);
504 1.1 ragge while (PIF_RCSR(RTI_COMMAND_MEM) & RTI_CMD_MEM_STROBE)
505 1.1 ragge ;
506 1.1 ragge
507 1.1 ragge /*
508 1.1 ragge * Setup media stuff.
509 1.1 ragge */
510 1.1 ragge ifmedia_init(&sc->xena_media, IFM_IMASK, xge_xgmii_mediachange,
511 1.1 ragge xge_ifmedia_status);
512 1.1 ragge ifmedia_add(&sc->xena_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
513 1.1 ragge ifmedia_set(&sc->xena_media, IFM_ETHER|IFM_10G_LR);
514 1.1 ragge
515 1.1 ragge aprint_normal("%s: Ethernet address %s\n", XNAME,
516 1.1 ragge ether_sprintf(enaddr));
517 1.1 ragge
518 1.1 ragge ifp = &sc->sc_ethercom.ec_if;
519 1.17 chs strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
520 1.1 ragge ifp->if_baudrate = 10000000000LL;
521 1.1 ragge ifp->if_init = xge_init;
522 1.1 ragge ifp->if_stop = xge_stop;
523 1.1 ragge ifp->if_softc = sc;
524 1.1 ragge ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
525 1.1 ragge ifp->if_ioctl = xge_ioctl;
526 1.1 ragge ifp->if_start = xge_start;
527 1.1 ragge IFQ_SET_MAXLEN(&ifp->if_snd, max(NTXDESCS - 1, IFQ_MAXLEN));
528 1.1 ragge IFQ_SET_READY(&ifp->if_snd);
529 1.1 ragge
530 1.1 ragge /*
531 1.1 ragge * Offloading capabilities.
532 1.1 ragge */
533 1.1 ragge sc->sc_ethercom.ec_capabilities |=
534 1.1 ragge ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
535 1.1 ragge ifp->if_capabilities |=
536 1.1 ragge IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_IPv4_Tx |
537 1.1 ragge IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv4_Tx |
538 1.1 ragge IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv4_Tx | IFCAP_TSOv4;
539 1.1 ragge
540 1.1 ragge /*
541 1.1 ragge * Attach the interface.
542 1.1 ragge */
543 1.1 ragge if_attach(ifp);
544 1.1 ragge ether_ifattach(ifp, enaddr);
545 1.1 ragge
546 1.1 ragge /*
547 1.1 ragge * Setup interrupt vector before initializing.
548 1.1 ragge */
549 1.1 ragge if (pci_intr_map(pa, &ih))
550 1.17 chs return aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
551 1.19 christos intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
552 1.1 ragge if ((sc->sc_ih =
553 1.1 ragge pci_intr_establish(pc, ih, IPL_NET, xge_intr, sc)) == NULL)
554 1.17 chs return aprint_error_dev(sc->sc_dev, "unable to establish interrupt at %s\n",
555 1.9 cegger intrstr ? intrstr : "<unknown>");
556 1.17 chs aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
557 1.1 ragge
558 1.1 ragge #ifdef XGE_EVENT_COUNTERS
559 1.1 ragge evcnt_attach_dynamic(&sc->sc_intr, EVCNT_TYPE_MISC,
560 1.1 ragge NULL, XNAME, "intr");
561 1.1 ragge evcnt_attach_dynamic(&sc->sc_txintr, EVCNT_TYPE_MISC,
562 1.1 ragge NULL, XNAME, "txintr");
563 1.1 ragge evcnt_attach_dynamic(&sc->sc_rxintr, EVCNT_TYPE_MISC,
564 1.1 ragge NULL, XNAME, "rxintr");
565 1.1 ragge evcnt_attach_dynamic(&sc->sc_txqe, EVCNT_TYPE_MISC,
566 1.1 ragge NULL, XNAME, "txqe");
567 1.1 ragge #endif
568 1.1 ragge }
569 1.1 ragge
570 1.1 ragge void
571 1.1 ragge xge_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
572 1.1 ragge {
573 1.1 ragge struct xge_softc *sc = ifp->if_softc;
574 1.1 ragge uint64_t reg;
575 1.1 ragge
576 1.1 ragge ifmr->ifm_status = IFM_AVALID;
577 1.1 ragge ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
578 1.1 ragge
579 1.1 ragge reg = PIF_RCSR(ADAPTER_STATUS);
580 1.18 christos if ((reg & (RMAC_REMOTE_FAULT|RMAC_LOCAL_FAULT)) == 0)
581 1.1 ragge ifmr->ifm_status |= IFM_ACTIVE;
582 1.1 ragge }
583 1.1 ragge
584 1.1 ragge int
585 1.4 christos xge_xgmii_mediachange(struct ifnet *ifp)
586 1.1 ragge {
587 1.1 ragge return 0;
588 1.1 ragge }
589 1.1 ragge
590 1.1 ragge static void
591 1.1 ragge xge_enable(struct xge_softc *sc)
592 1.1 ragge {
593 1.1 ragge uint64_t val;
594 1.1 ragge
595 1.1 ragge /* 2, enable adapter */
596 1.1 ragge val = PIF_RCSR(ADAPTER_CONTROL);
597 1.1 ragge val |= ADAPTER_EN;
598 1.1 ragge PIF_WCSR(ADAPTER_CONTROL, val);
599 1.1 ragge
600 1.1 ragge /* 3, light the card enable led */
601 1.1 ragge val = PIF_RCSR(ADAPTER_CONTROL);
602 1.1 ragge val |= LED_ON;
603 1.1 ragge PIF_WCSR(ADAPTER_CONTROL, val);
604 1.1 ragge printf("%s: link up\n", XNAME);
605 1.1 ragge
606 1.1 ragge }
607 1.1 ragge
608 1.18 christos int
609 1.1 ragge xge_init(struct ifnet *ifp)
610 1.1 ragge {
611 1.1 ragge struct xge_softc *sc = ifp->if_softc;
612 1.1 ragge uint64_t val;
613 1.1 ragge
614 1.1 ragge if (ifp->if_flags & IFF_RUNNING)
615 1.1 ragge return 0;
616 1.1 ragge
617 1.1 ragge /* 31+32, setup MAC config */
618 1.1 ragge PIF_WKEY(MAC_CFG, TMAC_EN|RMAC_EN|TMAC_APPEND_PAD|RMAC_STRIP_FCS|
619 1.1 ragge RMAC_BCAST_EN|RMAC_DISCARD_PFRM|RMAC_PROM_EN);
620 1.1 ragge
621 1.1 ragge DELAY(1000);
622 1.1 ragge
623 1.1 ragge /* 54, ensure that the adapter is 'quiescent' */
624 1.1 ragge val = PIF_RCSR(ADAPTER_STATUS);
625 1.1 ragge if ((val & QUIESCENT) != QUIESCENT) {
626 1.1 ragge char buf[200];
627 1.1 ragge printf("%s: adapter not quiescent, aborting\n", XNAME);
628 1.1 ragge val = (val & QUIESCENT) ^ QUIESCENT;
629 1.10 christos snprintb(buf, sizeof buf, QUIESCENT_BMSK, val);
630 1.1 ragge printf("%s: ADAPTER_STATUS missing bits %s\n", XNAME, buf);
631 1.1 ragge return 1;
632 1.1 ragge }
633 1.1 ragge
634 1.1 ragge /* 56, enable the transmit laser */
635 1.1 ragge val = PIF_RCSR(ADAPTER_CONTROL);
636 1.1 ragge val |= EOI_TX_ON;
637 1.1 ragge PIF_WCSR(ADAPTER_CONTROL, val);
638 1.1 ragge
639 1.1 ragge xge_enable(sc);
640 1.1 ragge /*
641 1.1 ragge * Enable all interrupts
642 1.1 ragge */
643 1.1 ragge PIF_WCSR(TX_TRAFFIC_MASK, 0);
644 1.1 ragge PIF_WCSR(RX_TRAFFIC_MASK, 0);
645 1.1 ragge PIF_WCSR(GENERAL_INT_MASK, 0);
646 1.1 ragge PIF_WCSR(TXPIC_INT_MASK, 0);
647 1.1 ragge PIF_WCSR(RXPIC_INT_MASK, 0);
648 1.1 ragge PIF_WCSR(MAC_INT_MASK, MAC_TMAC_INT); /* only from RMAC */
649 1.1 ragge PIF_WCSR(MAC_RMAC_ERR_MASK, ~RMAC_LINK_STATE_CHANGE_INT);
650 1.1 ragge
651 1.1 ragge
652 1.1 ragge /* Done... */
653 1.1 ragge ifp->if_flags |= IFF_RUNNING;
654 1.1 ragge ifp->if_flags &= ~IFF_OACTIVE;
655 1.1 ragge
656 1.1 ragge return 0;
657 1.1 ragge }
658 1.1 ragge
659 1.1 ragge static void
660 1.4 christos xge_stop(struct ifnet *ifp, int disable)
661 1.1 ragge {
662 1.1 ragge struct xge_softc *sc = ifp->if_softc;
663 1.1 ragge uint64_t val;
664 1.1 ragge
665 1.1 ragge val = PIF_RCSR(ADAPTER_CONTROL);
666 1.1 ragge val &= ~ADAPTER_EN;
667 1.1 ragge PIF_WCSR(ADAPTER_CONTROL, val);
668 1.1 ragge
669 1.1 ragge while ((PIF_RCSR(ADAPTER_STATUS) & QUIESCENT) != QUIESCENT)
670 1.1 ragge ;
671 1.1 ragge }
672 1.1 ragge
673 1.1 ragge int
674 1.1 ragge xge_intr(void *pv)
675 1.1 ragge {
676 1.1 ragge struct xge_softc *sc = pv;
677 1.1 ragge struct txd *txd;
678 1.1 ragge struct ifnet *ifp = &sc->sc_if;
679 1.1 ragge bus_dmamap_t dmp;
680 1.1 ragge uint64_t val;
681 1.1 ragge int i, lasttx, plen;
682 1.1 ragge
683 1.1 ragge val = PIF_RCSR(GENERAL_INT_STATUS);
684 1.1 ragge if (val == 0)
685 1.1 ragge return 0; /* no interrupt here */
686 1.1 ragge
687 1.1 ragge XGE_EVCNT_INCR(&sc->sc_intr);
688 1.1 ragge
689 1.1 ragge PIF_WCSR(GENERAL_INT_STATUS, val);
690 1.1 ragge
691 1.1 ragge if ((val = PIF_RCSR(MAC_RMAC_ERR_REG)) & RMAC_LINK_STATE_CHANGE_INT) {
692 1.1 ragge /* Wait for quiescence */
693 1.1 ragge printf("%s: link down\n", XNAME);
694 1.1 ragge while ((PIF_RCSR(ADAPTER_STATUS) & QUIESCENT) != QUIESCENT)
695 1.1 ragge ;
696 1.1 ragge PIF_WCSR(MAC_RMAC_ERR_REG, RMAC_LINK_STATE_CHANGE_INT);
697 1.18 christos
698 1.1 ragge val = PIF_RCSR(ADAPTER_STATUS);
699 1.1 ragge if ((val & (RMAC_REMOTE_FAULT|RMAC_LOCAL_FAULT)) == 0)
700 1.1 ragge xge_enable(sc); /* Only if link restored */
701 1.1 ragge }
702 1.1 ragge
703 1.1 ragge if ((val = PIF_RCSR(TX_TRAFFIC_INT))) {
704 1.1 ragge XGE_EVCNT_INCR(&sc->sc_txintr);
705 1.1 ragge PIF_WCSR(TX_TRAFFIC_INT, val); /* clear interrupt bits */
706 1.1 ragge }
707 1.1 ragge /*
708 1.1 ragge * Collect sent packets.
709 1.1 ragge */
710 1.1 ragge lasttx = sc->sc_lasttx;
711 1.1 ragge while ((i = NEXTTX(sc->sc_lasttx)) != sc->sc_nexttx) {
712 1.1 ragge txd = sc->sc_txd[i];
713 1.1 ragge dmp = sc->sc_txm[i];
714 1.1 ragge
715 1.1 ragge bus_dmamap_sync(sc->sc_dmat, dmp, 0,
716 1.1 ragge dmp->dm_mapsize,
717 1.1 ragge BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
718 1.1 ragge
719 1.1 ragge if (txd->txd_control1 & TXD_CTL1_OWN) {
720 1.1 ragge bus_dmamap_sync(sc->sc_dmat, dmp, 0,
721 1.1 ragge dmp->dm_mapsize, BUS_DMASYNC_PREREAD);
722 1.1 ragge break;
723 1.1 ragge }
724 1.1 ragge bus_dmamap_unload(sc->sc_dmat, dmp);
725 1.1 ragge m_freem(sc->sc_txb[i]);
726 1.1 ragge ifp->if_opackets++;
727 1.1 ragge sc->sc_lasttx = i;
728 1.1 ragge }
729 1.1 ragge if (i == sc->sc_nexttx) {
730 1.1 ragge XGE_EVCNT_INCR(&sc->sc_txqe);
731 1.1 ragge }
732 1.1 ragge
733 1.1 ragge if (sc->sc_lasttx != lasttx)
734 1.1 ragge ifp->if_flags &= ~IFF_OACTIVE;
735 1.1 ragge
736 1.1 ragge xge_start(ifp); /* Try to get more packets on the wire */
737 1.1 ragge
738 1.1 ragge if ((val = PIF_RCSR(RX_TRAFFIC_INT))) {
739 1.1 ragge XGE_EVCNT_INCR(&sc->sc_rxintr);
740 1.1 ragge PIF_WCSR(RX_TRAFFIC_INT, val); /* clear interrupt bits */
741 1.1 ragge }
742 1.1 ragge
743 1.1 ragge for (;;) {
744 1.1 ragge struct rxdesc *rxd;
745 1.1 ragge struct mbuf *m;
746 1.1 ragge
747 1.1 ragge XGE_RXSYNC(sc->sc_nextrx,
748 1.1 ragge BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
749 1.1 ragge
750 1.1 ragge rxd = XGE_RXD(sc->sc_nextrx);
751 1.1 ragge if (rxd->rxd_control1 & RXD_CTL1_OWN) {
752 1.1 ragge XGE_RXSYNC(sc->sc_nextrx, BUS_DMASYNC_PREREAD);
753 1.1 ragge break;
754 1.1 ragge }
755 1.1 ragge
756 1.1 ragge /* got a packet */
757 1.1 ragge m = sc->sc_rxb[sc->sc_nextrx];
758 1.1 ragge #if RX_MODE == RX_MODE_1
759 1.1 ragge plen = m->m_len = RXD_CTL2_BUF0SIZ(rxd->rxd_control2);
760 1.1 ragge #elif RX_MODE == RX_MODE_3
761 1.1 ragge #error Fix rxmodes in xge_intr
762 1.1 ragge #elif RX_MODE == RX_MODE_5
763 1.1 ragge plen = m->m_len = RXD_CTL2_BUF0SIZ(rxd->rxd_control2);
764 1.1 ragge plen += m->m_next->m_len = RXD_CTL2_BUF1SIZ(rxd->rxd_control2);
765 1.1 ragge plen += m->m_next->m_next->m_len =
766 1.1 ragge RXD_CTL2_BUF2SIZ(rxd->rxd_control2);
767 1.1 ragge plen += m->m_next->m_next->m_next->m_len =
768 1.1 ragge RXD_CTL3_BUF3SIZ(rxd->rxd_control3);
769 1.1 ragge plen += m->m_next->m_next->m_next->m_next->m_len =
770 1.1 ragge RXD_CTL3_BUF4SIZ(rxd->rxd_control3);
771 1.1 ragge #endif
772 1.1 ragge m->m_pkthdr.rcvif = ifp;
773 1.1 ragge m->m_pkthdr.len = plen;
774 1.1 ragge
775 1.1 ragge val = rxd->rxd_control1;
776 1.1 ragge
777 1.1 ragge if (xge_add_rxbuf(sc, sc->sc_nextrx)) {
778 1.1 ragge /* Failed, recycle this mbuf */
779 1.1 ragge #if RX_MODE == RX_MODE_1
780 1.1 ragge rxd->rxd_control2 = RXD_MKCTL2(MCLBYTES, 0, 0);
781 1.1 ragge rxd->rxd_control1 = RXD_CTL1_OWN;
782 1.1 ragge #elif RX_MODE == RX_MODE_3
783 1.1 ragge #elif RX_MODE == RX_MODE_5
784 1.1 ragge #endif
785 1.1 ragge XGE_RXSYNC(sc->sc_nextrx,
786 1.1 ragge BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
787 1.1 ragge ifp->if_ierrors++;
788 1.1 ragge break;
789 1.1 ragge }
790 1.1 ragge
791 1.1 ragge ifp->if_ipackets++;
792 1.1 ragge
793 1.1 ragge if (RXD_CTL1_PROTOS(val) & (RXD_CTL1_P_IPv4|RXD_CTL1_P_IPv6)) {
794 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
795 1.1 ragge if (RXD_CTL1_L3CSUM(val) != 0xffff)
796 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
797 1.1 ragge }
798 1.1 ragge if (RXD_CTL1_PROTOS(val) & RXD_CTL1_P_TCP) {
799 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_TCPv6;
800 1.1 ragge if (RXD_CTL1_L4CSUM(val) != 0xffff)
801 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
802 1.1 ragge }
803 1.1 ragge if (RXD_CTL1_PROTOS(val) & RXD_CTL1_P_UDP) {
804 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_UDPv4|M_CSUM_UDPv6;
805 1.1 ragge if (RXD_CTL1_L4CSUM(val) != 0xffff)
806 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
807 1.1 ragge }
808 1.1 ragge
809 1.15 joerg bpf_mtap(ifp, m);
810 1.1 ragge
811 1.1 ragge (*ifp->if_input)(ifp, m);
812 1.1 ragge
813 1.1 ragge if (++sc->sc_nextrx == NRXREAL)
814 1.1 ragge sc->sc_nextrx = 0;
815 1.1 ragge
816 1.1 ragge }
817 1.1 ragge
818 1.1 ragge return 0;
819 1.1 ragge }
820 1.1 ragge
821 1.18 christos int
822 1.5 christos xge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
823 1.1 ragge {
824 1.1 ragge struct xge_softc *sc = ifp->if_softc;
825 1.1 ragge struct ifreq *ifr = (struct ifreq *) data;
826 1.1 ragge int s, error = 0;
827 1.1 ragge
828 1.1 ragge s = splnet();
829 1.1 ragge
830 1.1 ragge switch (cmd) {
831 1.1 ragge case SIOCSIFMTU:
832 1.8 dyoung if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > XGE_MAX_MTU)
833 1.1 ragge error = EINVAL;
834 1.8 dyoung else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET){
835 1.1 ragge PIF_WCSR(RMAC_MAX_PYLD_LEN,
836 1.1 ragge RMAC_PYLD_LEN(ifr->ifr_mtu));
837 1.8 dyoung error = 0;
838 1.1 ragge }
839 1.1 ragge break;
840 1.1 ragge
841 1.1 ragge case SIOCGIFMEDIA:
842 1.1 ragge case SIOCSIFMEDIA:
843 1.1 ragge error = ifmedia_ioctl(ifp, ifr, &sc->xena_media, cmd);
844 1.1 ragge break;
845 1.1 ragge
846 1.1 ragge default:
847 1.8 dyoung if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
848 1.8 dyoung break;
849 1.8 dyoung
850 1.8 dyoung error = 0;
851 1.8 dyoung
852 1.8 dyoung if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
853 1.8 dyoung ;
854 1.8 dyoung else if (ifp->if_flags & IFF_RUNNING) {
855 1.1 ragge /* Change multicast list */
856 1.1 ragge xge_mcast_filter(sc);
857 1.1 ragge }
858 1.1 ragge break;
859 1.1 ragge }
860 1.1 ragge
861 1.1 ragge splx(s);
862 1.1 ragge return(error);
863 1.1 ragge }
864 1.1 ragge
865 1.1 ragge void
866 1.1 ragge xge_mcast_filter(struct xge_softc *sc)
867 1.1 ragge {
868 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if;
869 1.1 ragge struct ethercom *ec = &sc->sc_ethercom;
870 1.1 ragge struct ether_multi *enm;
871 1.1 ragge struct ether_multistep step;
872 1.1 ragge int i, numaddr = 1; /* first slot used for card unicast address */
873 1.1 ragge uint64_t val;
874 1.1 ragge
875 1.1 ragge ETHER_FIRST_MULTI(step, ec, enm);
876 1.1 ragge while (enm != NULL) {
877 1.1 ragge if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
878 1.1 ragge /* Skip ranges */
879 1.1 ragge goto allmulti;
880 1.1 ragge }
881 1.1 ragge if (numaddr == MAX_MCAST_ADDR)
882 1.1 ragge goto allmulti;
883 1.1 ragge for (val = 0, i = 0; i < ETHER_ADDR_LEN; i++) {
884 1.1 ragge val <<= 8;
885 1.1 ragge val |= enm->enm_addrlo[i];
886 1.1 ragge }
887 1.1 ragge PIF_WCSR(RMAC_ADDR_DATA0_MEM, val << 16);
888 1.1 ragge PIF_WCSR(RMAC_ADDR_DATA1_MEM, 0xFFFFFFFFFFFFFFFFULL);
889 1.1 ragge PIF_WCSR(RMAC_ADDR_CMD_MEM, RMAC_ADDR_CMD_MEM_WE|
890 1.1 ragge RMAC_ADDR_CMD_MEM_STR|RMAC_ADDR_CMD_MEM_OFF(numaddr));
891 1.1 ragge while (PIF_RCSR(RMAC_ADDR_CMD_MEM) & RMAC_ADDR_CMD_MEM_STR)
892 1.1 ragge ;
893 1.1 ragge numaddr++;
894 1.1 ragge ETHER_NEXT_MULTI(step, enm);
895 1.1 ragge }
896 1.1 ragge /* set the remaining entries to the broadcast address */
897 1.1 ragge for (i = numaddr; i < MAX_MCAST_ADDR; i++) {
898 1.1 ragge PIF_WCSR(RMAC_ADDR_DATA0_MEM, 0xffffffffffff0000ULL);
899 1.1 ragge PIF_WCSR(RMAC_ADDR_DATA1_MEM, 0xFFFFFFFFFFFFFFFFULL);
900 1.1 ragge PIF_WCSR(RMAC_ADDR_CMD_MEM, RMAC_ADDR_CMD_MEM_WE|
901 1.1 ragge RMAC_ADDR_CMD_MEM_STR|RMAC_ADDR_CMD_MEM_OFF(i));
902 1.1 ragge while (PIF_RCSR(RMAC_ADDR_CMD_MEM) & RMAC_ADDR_CMD_MEM_STR)
903 1.1 ragge ;
904 1.1 ragge }
905 1.1 ragge ifp->if_flags &= ~IFF_ALLMULTI;
906 1.1 ragge return;
907 1.1 ragge
908 1.1 ragge allmulti:
909 1.1 ragge /* Just receive everything with the multicast bit set */
910 1.1 ragge ifp->if_flags |= IFF_ALLMULTI;
911 1.1 ragge PIF_WCSR(RMAC_ADDR_DATA0_MEM, 0x8000000000000000ULL);
912 1.1 ragge PIF_WCSR(RMAC_ADDR_DATA1_MEM, 0xF000000000000000ULL);
913 1.1 ragge PIF_WCSR(RMAC_ADDR_CMD_MEM, RMAC_ADDR_CMD_MEM_WE|
914 1.1 ragge RMAC_ADDR_CMD_MEM_STR|RMAC_ADDR_CMD_MEM_OFF(1));
915 1.1 ragge while (PIF_RCSR(RMAC_ADDR_CMD_MEM) & RMAC_ADDR_CMD_MEM_STR)
916 1.1 ragge ;
917 1.1 ragge }
918 1.1 ragge
919 1.18 christos void
920 1.1 ragge xge_start(struct ifnet *ifp)
921 1.1 ragge {
922 1.1 ragge struct xge_softc *sc = ifp->if_softc;
923 1.1 ragge struct txd *txd = NULL; /* XXX - gcc */
924 1.1 ragge bus_dmamap_t dmp;
925 1.1 ragge struct mbuf *m;
926 1.1 ragge uint64_t par, lcr;
927 1.1 ragge int nexttx = 0, ntxd, error, i;
928 1.1 ragge
929 1.1 ragge if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
930 1.1 ragge return;
931 1.1 ragge
932 1.1 ragge par = lcr = 0;
933 1.1 ragge for (;;) {
934 1.1 ragge IFQ_POLL(&ifp->if_snd, m);
935 1.1 ragge if (m == NULL)
936 1.1 ragge break; /* out of packets */
937 1.1 ragge
938 1.1 ragge if (sc->sc_nexttx == sc->sc_lasttx)
939 1.1 ragge break; /* No more space */
940 1.1 ragge
941 1.1 ragge nexttx = sc->sc_nexttx;
942 1.1 ragge dmp = sc->sc_txm[nexttx];
943 1.1 ragge
944 1.1 ragge if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmp, m,
945 1.1 ragge BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0) {
946 1.1 ragge printf("%s: bus_dmamap_load_mbuf error %d\n",
947 1.1 ragge XNAME, error);
948 1.1 ragge break;
949 1.1 ragge }
950 1.1 ragge IFQ_DEQUEUE(&ifp->if_snd, m);
951 1.1 ragge
952 1.1 ragge bus_dmamap_sync(sc->sc_dmat, dmp, 0, dmp->dm_mapsize,
953 1.1 ragge BUS_DMASYNC_PREWRITE);
954 1.1 ragge
955 1.1 ragge txd = sc->sc_txd[nexttx];
956 1.1 ragge sc->sc_txb[nexttx] = m;
957 1.1 ragge for (i = 0; i < dmp->dm_nsegs; i++) {
958 1.1 ragge if (dmp->dm_segs[i].ds_len == 0)
959 1.1 ragge continue;
960 1.1 ragge txd->txd_control1 = dmp->dm_segs[i].ds_len;
961 1.1 ragge txd->txd_control2 = 0;
962 1.1 ragge txd->txd_bufaddr = dmp->dm_segs[i].ds_addr;
963 1.1 ragge txd++;
964 1.1 ragge }
965 1.1 ragge ntxd = txd - sc->sc_txd[nexttx] - 1;
966 1.1 ragge txd = sc->sc_txd[nexttx];
967 1.1 ragge txd->txd_control1 |= TXD_CTL1_OWN|TXD_CTL1_GCF;
968 1.1 ragge txd->txd_control2 = TXD_CTL2_UTIL;
969 1.1 ragge if (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
970 1.1 ragge txd->txd_control1 |= TXD_CTL1_MSS(m->m_pkthdr.segsz);
971 1.1 ragge txd->txd_control1 |= TXD_CTL1_LSO;
972 1.1 ragge }
973 1.1 ragge
974 1.1 ragge if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
975 1.1 ragge txd->txd_control2 |= TXD_CTL2_CIPv4;
976 1.1 ragge if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4)
977 1.1 ragge txd->txd_control2 |= TXD_CTL2_CTCP;
978 1.1 ragge if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4)
979 1.1 ragge txd->txd_control2 |= TXD_CTL2_CUDP;
980 1.1 ragge txd[ntxd].txd_control1 |= TXD_CTL1_GCL;
981 1.1 ragge
982 1.1 ragge bus_dmamap_sync(sc->sc_dmat, dmp, 0, dmp->dm_mapsize,
983 1.1 ragge BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
984 1.1 ragge
985 1.1 ragge par = sc->sc_txdp[nexttx];
986 1.1 ragge lcr = TXDL_NUMTXD(ntxd) | TXDL_LGC_FIRST | TXDL_LGC_LAST;
987 1.1 ragge if (m->m_pkthdr.csum_flags & M_CSUM_TSOv4)
988 1.1 ragge lcr |= TXDL_SFF;
989 1.1 ragge TXP_WCSR(TXDL_PAR, par);
990 1.1 ragge TXP_WCSR(TXDL_LCR, lcr);
991 1.1 ragge
992 1.15 joerg bpf_mtap(ifp, m);
993 1.1 ragge
994 1.1 ragge sc->sc_nexttx = NEXTTX(nexttx);
995 1.1 ragge }
996 1.1 ragge }
997 1.1 ragge
998 1.1 ragge /*
999 1.1 ragge * Allocate DMA memory for transmit descriptor fragments.
1000 1.1 ragge * Only one map is used for all descriptors.
1001 1.1 ragge */
1002 1.1 ragge int
1003 1.1 ragge xge_alloc_txmem(struct xge_softc *sc)
1004 1.1 ragge {
1005 1.1 ragge struct txd *txp;
1006 1.1 ragge bus_dma_segment_t seg;
1007 1.1 ragge bus_addr_t txdp;
1008 1.5 christos void *kva;
1009 1.1 ragge int i, rseg, state;
1010 1.1 ragge
1011 1.1 ragge #define TXMAPSZ (NTXDESCS*NTXFRAGS*sizeof(struct txd))
1012 1.1 ragge state = 0;
1013 1.1 ragge if (bus_dmamem_alloc(sc->sc_dmat, TXMAPSZ, PAGE_SIZE, 0,
1014 1.1 ragge &seg, 1, &rseg, BUS_DMA_NOWAIT))
1015 1.1 ragge goto err;
1016 1.1 ragge state++;
1017 1.1 ragge if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, TXMAPSZ, &kva,
1018 1.1 ragge BUS_DMA_NOWAIT))
1019 1.1 ragge goto err;
1020 1.1 ragge
1021 1.1 ragge state++;
1022 1.1 ragge if (bus_dmamap_create(sc->sc_dmat, TXMAPSZ, 1, TXMAPSZ, 0,
1023 1.1 ragge BUS_DMA_NOWAIT, &sc->sc_txmap))
1024 1.1 ragge goto err;
1025 1.1 ragge state++;
1026 1.1 ragge if (bus_dmamap_load(sc->sc_dmat, sc->sc_txmap,
1027 1.1 ragge kva, TXMAPSZ, NULL, BUS_DMA_NOWAIT))
1028 1.1 ragge goto err;
1029 1.1 ragge
1030 1.1 ragge /* setup transmit array pointers */
1031 1.1 ragge txp = (struct txd *)kva;
1032 1.1 ragge txdp = seg.ds_addr;
1033 1.1 ragge for (txp = (struct txd *)kva, i = 0; i < NTXDESCS; i++) {
1034 1.1 ragge sc->sc_txd[i] = txp;
1035 1.1 ragge sc->sc_txdp[i] = txdp;
1036 1.1 ragge txp += NTXFRAGS;
1037 1.1 ragge txdp += (NTXFRAGS * sizeof(struct txd));
1038 1.1 ragge }
1039 1.1 ragge
1040 1.1 ragge return 0;
1041 1.1 ragge
1042 1.1 ragge err:
1043 1.1 ragge if (state > 2)
1044 1.1 ragge bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap);
1045 1.1 ragge if (state > 1)
1046 1.1 ragge bus_dmamem_unmap(sc->sc_dmat, kva, TXMAPSZ);
1047 1.1 ragge if (state > 0)
1048 1.1 ragge bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1049 1.1 ragge return ENOBUFS;
1050 1.1 ragge }
1051 1.1 ragge
1052 1.1 ragge /*
1053 1.1 ragge * Allocate DMA memory for receive descriptor,
1054 1.1 ragge * only one map is used for all descriptors.
1055 1.1 ragge * link receive descriptor pages together.
1056 1.1 ragge */
1057 1.1 ragge int
1058 1.1 ragge xge_alloc_rxmem(struct xge_softc *sc)
1059 1.1 ragge {
1060 1.1 ragge struct rxd_4k *rxpp;
1061 1.1 ragge bus_dma_segment_t seg;
1062 1.5 christos void *kva;
1063 1.1 ragge int i, rseg, state;
1064 1.1 ragge
1065 1.1 ragge /* sanity check */
1066 1.1 ragge if (sizeof(struct rxd_4k) != XGE_PAGE) {
1067 1.1 ragge printf("bad compiler struct alignment, %d != %d\n",
1068 1.1 ragge (int)sizeof(struct rxd_4k), XGE_PAGE);
1069 1.1 ragge return EINVAL;
1070 1.1 ragge }
1071 1.1 ragge
1072 1.1 ragge state = 0;
1073 1.1 ragge if (bus_dmamem_alloc(sc->sc_dmat, RXMAPSZ, PAGE_SIZE, 0,
1074 1.1 ragge &seg, 1, &rseg, BUS_DMA_NOWAIT))
1075 1.1 ragge goto err;
1076 1.1 ragge state++;
1077 1.1 ragge if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, RXMAPSZ, &kva,
1078 1.1 ragge BUS_DMA_NOWAIT))
1079 1.1 ragge goto err;
1080 1.1 ragge
1081 1.1 ragge state++;
1082 1.1 ragge if (bus_dmamap_create(sc->sc_dmat, RXMAPSZ, 1, RXMAPSZ, 0,
1083 1.1 ragge BUS_DMA_NOWAIT, &sc->sc_rxmap))
1084 1.1 ragge goto err;
1085 1.1 ragge state++;
1086 1.1 ragge if (bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap,
1087 1.1 ragge kva, RXMAPSZ, NULL, BUS_DMA_NOWAIT))
1088 1.1 ragge goto err;
1089 1.1 ragge
1090 1.1 ragge /* setup receive page link pointers */
1091 1.1 ragge for (rxpp = (struct rxd_4k *)kva, i = 0; i < NRXPAGES; i++, rxpp++) {
1092 1.1 ragge sc->sc_rxd_4k[i] = rxpp;
1093 1.1 ragge rxpp->r4_next = (uint64_t)sc->sc_rxmap->dm_segs[0].ds_addr +
1094 1.1 ragge (i*sizeof(struct rxd_4k)) + sizeof(struct rxd_4k);
1095 1.1 ragge }
1096 1.18 christos sc->sc_rxd_4k[NRXPAGES-1]->r4_next =
1097 1.1 ragge (uint64_t)sc->sc_rxmap->dm_segs[0].ds_addr;
1098 1.1 ragge
1099 1.1 ragge return 0;
1100 1.1 ragge
1101 1.1 ragge err:
1102 1.1 ragge if (state > 2)
1103 1.1 ragge bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap);
1104 1.1 ragge if (state > 1)
1105 1.1 ragge bus_dmamem_unmap(sc->sc_dmat, kva, TXMAPSZ);
1106 1.1 ragge if (state > 0)
1107 1.1 ragge bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1108 1.1 ragge return ENOBUFS;
1109 1.1 ragge }
1110 1.1 ragge
1111 1.1 ragge
1112 1.1 ragge /*
1113 1.1 ragge * Add a new mbuf chain to descriptor id.
1114 1.1 ragge */
1115 1.1 ragge int
1116 1.1 ragge xge_add_rxbuf(struct xge_softc *sc, int id)
1117 1.1 ragge {
1118 1.1 ragge struct rxdesc *rxd;
1119 1.1 ragge struct mbuf *m[5];
1120 1.1 ragge int page, desc, error;
1121 1.1 ragge #if RX_MODE == RX_MODE_5
1122 1.1 ragge int i;
1123 1.1 ragge #endif
1124 1.1 ragge
1125 1.1 ragge page = id/NDESC_BUFMODE;
1126 1.1 ragge desc = id%NDESC_BUFMODE;
1127 1.1 ragge
1128 1.1 ragge rxd = &sc->sc_rxd_4k[page]->r4_rxd[desc];
1129 1.1 ragge
1130 1.1 ragge /*
1131 1.1 ragge * Allocate mbufs.
1132 1.1 ragge * Currently five mbufs and two clusters are used,
1133 1.1 ragge * the hardware will put (ethernet, ip, tcp/udp) headers in
1134 1.1 ragge * their own buffer and the clusters are only used for data.
1135 1.1 ragge */
1136 1.1 ragge #if RX_MODE == RX_MODE_1
1137 1.1 ragge MGETHDR(m[0], M_DONTWAIT, MT_DATA);
1138 1.1 ragge if (m[0] == NULL)
1139 1.1 ragge return ENOBUFS;
1140 1.1 ragge MCLGET(m[0], M_DONTWAIT);
1141 1.1 ragge if ((m[0]->m_flags & M_EXT) == 0) {
1142 1.1 ragge m_freem(m[0]);
1143 1.1 ragge return ENOBUFS;
1144 1.1 ragge }
1145 1.1 ragge m[0]->m_len = m[0]->m_pkthdr.len = m[0]->m_ext.ext_size;
1146 1.1 ragge #elif RX_MODE == RX_MODE_3
1147 1.1 ragge #error missing rxmode 3.
1148 1.1 ragge #elif RX_MODE == RX_MODE_5
1149 1.1 ragge MGETHDR(m[0], M_DONTWAIT, MT_DATA);
1150 1.1 ragge for (i = 1; i < 5; i++) {
1151 1.1 ragge MGET(m[i], M_DONTWAIT, MT_DATA);
1152 1.1 ragge }
1153 1.1 ragge if (m[3])
1154 1.1 ragge MCLGET(m[3], M_DONTWAIT);
1155 1.1 ragge if (m[4])
1156 1.1 ragge MCLGET(m[4], M_DONTWAIT);
1157 1.18 christos if (!m[0] || !m[1] || !m[2] || !m[3] || !m[4] ||
1158 1.1 ragge ((m[3]->m_flags & M_EXT) == 0) || ((m[4]->m_flags & M_EXT) == 0)) {
1159 1.1 ragge /* Out of something */
1160 1.1 ragge for (i = 0; i < 5; i++)
1161 1.1 ragge if (m[i] != NULL)
1162 1.1 ragge m_free(m[i]);
1163 1.1 ragge return ENOBUFS;
1164 1.1 ragge }
1165 1.1 ragge /* Link'em together */
1166 1.1 ragge m[0]->m_next = m[1];
1167 1.1 ragge m[1]->m_next = m[2];
1168 1.1 ragge m[2]->m_next = m[3];
1169 1.1 ragge m[3]->m_next = m[4];
1170 1.1 ragge #else
1171 1.1 ragge #error bad mode RX_MODE
1172 1.1 ragge #endif
1173 1.1 ragge
1174 1.1 ragge if (sc->sc_rxb[id])
1175 1.1 ragge bus_dmamap_unload(sc->sc_dmat, sc->sc_rxm[id]);
1176 1.1 ragge sc->sc_rxb[id] = m[0];
1177 1.1 ragge
1178 1.1 ragge error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_rxm[id], m[0],
1179 1.1 ragge BUS_DMA_READ|BUS_DMA_NOWAIT);
1180 1.1 ragge if (error)
1181 1.1 ragge return error;
1182 1.1 ragge bus_dmamap_sync(sc->sc_dmat, sc->sc_rxm[id], 0,
1183 1.1 ragge sc->sc_rxm[id]->dm_mapsize, BUS_DMASYNC_PREREAD);
1184 1.1 ragge
1185 1.1 ragge #if RX_MODE == RX_MODE_1
1186 1.1 ragge rxd->rxd_control2 = RXD_MKCTL2(m[0]->m_len, 0, 0);
1187 1.1 ragge rxd->rxd_buf0 = (uint64_t)sc->sc_rxm[id]->dm_segs[0].ds_addr;
1188 1.1 ragge rxd->rxd_control1 = RXD_CTL1_OWN;
1189 1.1 ragge #elif RX_MODE == RX_MODE_3
1190 1.1 ragge #elif RX_MODE == RX_MODE_5
1191 1.1 ragge rxd->rxd_control3 = RXD_MKCTL3(0, m[3]->m_len, m[4]->m_len);
1192 1.1 ragge rxd->rxd_control2 = RXD_MKCTL2(m[0]->m_len, m[1]->m_len, m[2]->m_len);
1193 1.1 ragge rxd->rxd_buf0 = (uint64_t)sc->sc_rxm[id]->dm_segs[0].ds_addr;
1194 1.1 ragge rxd->rxd_buf1 = (uint64_t)sc->sc_rxm[id]->dm_segs[1].ds_addr;
1195 1.1 ragge rxd->rxd_buf2 = (uint64_t)sc->sc_rxm[id]->dm_segs[2].ds_addr;
1196 1.1 ragge rxd->rxd_buf3 = (uint64_t)sc->sc_rxm[id]->dm_segs[3].ds_addr;
1197 1.1 ragge rxd->rxd_buf4 = (uint64_t)sc->sc_rxm[id]->dm_segs[4].ds_addr;
1198 1.1 ragge rxd->rxd_control1 = RXD_CTL1_OWN;
1199 1.1 ragge #endif
1200 1.1 ragge
1201 1.1 ragge XGE_RXSYNC(id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1202 1.1 ragge return 0;
1203 1.1 ragge }
1204 1.1 ragge
1205 1.1 ragge /*
1206 1.1 ragge * These magics comes from the FreeBSD driver.
1207 1.1 ragge */
1208 1.1 ragge int
1209 1.1 ragge xge_setup_xgxs(struct xge_softc *sc)
1210 1.1 ragge {
1211 1.1 ragge /* The magic numbers are described in the users guide */
1212 1.1 ragge
1213 1.1 ragge /* Writing to MDIO 0x8000 (Global Config 0) */
1214 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x8000051500000000ULL); DELAY(50);
1215 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80000515000000E0ULL); DELAY(50);
1216 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80000515D93500E4ULL); DELAY(50);
1217 1.1 ragge
1218 1.1 ragge /* Writing to MDIO 0x8000 (Global Config 1) */
1219 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x8001051500000000ULL); DELAY(50);
1220 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80010515000000e0ULL); DELAY(50);
1221 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80010515001e00e4ULL); DELAY(50);
1222 1.1 ragge
1223 1.1 ragge /* Reset the Gigablaze */
1224 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x8002051500000000ULL); DELAY(50);
1225 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80020515000000E0ULL); DELAY(50);
1226 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80020515F21000E4ULL); DELAY(50);
1227 1.1 ragge
1228 1.1 ragge /* read the pole settings */
1229 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x8000051500000000ULL); DELAY(50);
1230 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80000515000000e0ULL); DELAY(50);
1231 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80000515000000ecULL); DELAY(50);
1232 1.1 ragge
1233 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x8001051500000000ULL); DELAY(50);
1234 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80010515000000e0ULL); DELAY(50);
1235 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80010515000000ecULL); DELAY(50);
1236 1.1 ragge
1237 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x8002051500000000ULL); DELAY(50);
1238 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80020515000000e0ULL); DELAY(50);
1239 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80020515000000ecULL); DELAY(50);
1240 1.1 ragge
1241 1.1 ragge /* Workaround for TX Lane XAUI initialization error.
1242 1.1 ragge Read Xpak PHY register 24 for XAUI lane status */
1243 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x0018040000000000ULL); DELAY(50);
1244 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x00180400000000e0ULL); DELAY(50);
1245 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x00180400000000ecULL); DELAY(50);
1246 1.1 ragge
1247 1.18 christos /*
1248 1.1 ragge * Reading the MDIO control with value 0x1804001c0F001c
1249 1.1 ragge * means the TxLanes were already in sync
1250 1.1 ragge * Reading the MDIO control with value 0x1804000c0x001c
1251 1.1 ragge * means some TxLanes are not in sync where x is a 4-bit
1252 1.1 ragge * value representing each lanes
1253 1.1 ragge */
1254 1.1 ragge #if 0
1255 1.1 ragge val = PIF_RCSR(MDIO_CONTROL);
1256 1.1 ragge if (val != 0x1804001c0F001cULL) {
1257 1.18 christos printf("%s: MDIO_CONTROL: %llx != %llx\n",
1258 1.1 ragge XNAME, val, 0x1804001c0F001cULL);
1259 1.1 ragge return 1;
1260 1.1 ragge }
1261 1.1 ragge #endif
1262 1.1 ragge
1263 1.1 ragge /* Set and remove the DTE XS INTLoopBackN */
1264 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x0000051500000000ULL); DELAY(50);
1265 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x00000515604000e0ULL); DELAY(50);
1266 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x00000515604000e4ULL); DELAY(50);
1267 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x00000515204000e4ULL); DELAY(50);
1268 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x00000515204000ecULL); DELAY(50);
1269 1.1 ragge
1270 1.1 ragge #if 0
1271 1.1 ragge /* Reading the DTX control register Should be 0x5152040001c */
1272 1.1 ragge val = PIF_RCSR(DTX_CONTROL);
1273 1.1 ragge if (val != 0x5152040001cULL) {
1274 1.18 christos printf("%s: DTX_CONTROL: %llx != %llx\n",
1275 1.1 ragge XNAME, val, 0x5152040001cULL);
1276 1.1 ragge return 1;
1277 1.1 ragge }
1278 1.1 ragge #endif
1279 1.1 ragge
1280 1.1 ragge PIF_WCSR(MDIO_CONTROL, 0x0018040000000000ULL); DELAY(50);
1281 1.1 ragge PIF_WCSR(MDIO_CONTROL, 0x00180400000000e0ULL); DELAY(50);
1282 1.1 ragge PIF_WCSR(MDIO_CONTROL, 0x00180400000000ecULL); DELAY(50);
1283 1.1 ragge
1284 1.1 ragge #if 0
1285 1.1 ragge /* Reading the MIOD control should be 0x1804001c0f001c */
1286 1.1 ragge val = PIF_RCSR(MDIO_CONTROL);
1287 1.1 ragge if (val != 0x1804001c0f001cULL) {
1288 1.1 ragge printf("%s: MDIO_CONTROL2: %llx != %llx\n",
1289 1.1 ragge XNAME, val, 0x1804001c0f001cULL);
1290 1.1 ragge return 1;
1291 1.1 ragge }
1292 1.1 ragge #endif
1293 1.1 ragge return 0;
1294 1.1 ragge }
1295