if_xge.c revision 1.25 1 1.25 ozaki /* $NetBSD: if_xge.c,v 1.25 2016/12/15 09:28:05 ozaki-r Exp $ */
2 1.1 ragge
3 1.1 ragge /*
4 1.1 ragge * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 1.1 ragge * All rights reserved.
6 1.1 ragge *
7 1.1 ragge * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 1.1 ragge *
9 1.1 ragge * Redistribution and use in source and binary forms, with or without
10 1.1 ragge * modification, are permitted provided that the following conditions
11 1.1 ragge * are met:
12 1.1 ragge * 1. Redistributions of source code must retain the above copyright
13 1.1 ragge * notice, this list of conditions and the following disclaimer.
14 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 ragge * notice, this list of conditions and the following disclaimer in the
16 1.1 ragge * documentation and/or other materials provided with the distribution.
17 1.1 ragge * 3. All advertising materials mentioning features or use of this software
18 1.1 ragge * must display the following acknowledgement:
19 1.1 ragge * This product includes software developed for the NetBSD Project by
20 1.1 ragge * SUNET, Swedish University Computer Network.
21 1.1 ragge * 4. The name of SUNET may not be used to endorse or promote products
22 1.1 ragge * derived from this software without specific prior written permission.
23 1.1 ragge *
24 1.1 ragge * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1 ragge * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1 ragge * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SUNET
28 1.1 ragge * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1 ragge * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 ragge * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 ragge * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1 ragge * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 ragge * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1 ragge * POSSIBILITY OF SUCH DAMAGE.
35 1.1 ragge */
36 1.1 ragge
37 1.1 ragge /*
38 1.1 ragge * Device driver for the S2io Xframe Ten Gigabit Ethernet controller.
39 1.1 ragge *
40 1.1 ragge * TODO (in no specific order):
41 1.1 ragge * HW VLAN support.
42 1.1 ragge * IPv6 HW cksum.
43 1.1 ragge */
44 1.1 ragge
45 1.1 ragge #include <sys/cdefs.h>
46 1.25 ozaki __KERNEL_RCSID(0, "$NetBSD: if_xge.c,v 1.25 2016/12/15 09:28:05 ozaki-r Exp $");
47 1.1 ragge
48 1.1 ragge
49 1.1 ragge #include <sys/param.h>
50 1.1 ragge #include <sys/systm.h>
51 1.1 ragge #include <sys/mbuf.h>
52 1.1 ragge #include <sys/malloc.h>
53 1.1 ragge #include <sys/kernel.h>
54 1.1 ragge #include <sys/socket.h>
55 1.1 ragge #include <sys/device.h>
56 1.1 ragge
57 1.1 ragge #include <net/if.h>
58 1.1 ragge #include <net/if_dl.h>
59 1.1 ragge #include <net/if_media.h>
60 1.1 ragge #include <net/if_ether.h>
61 1.1 ragge
62 1.1 ragge #include <net/bpf.h>
63 1.1 ragge
64 1.6 ad #include <sys/bus.h>
65 1.6 ad #include <sys/intr.h>
66 1.1 ragge #include <machine/endian.h>
67 1.1 ragge
68 1.1 ragge #include <dev/mii/mii.h>
69 1.1 ragge #include <dev/mii/miivar.h>
70 1.1 ragge
71 1.1 ragge #include <dev/pci/pcivar.h>
72 1.1 ragge #include <dev/pci/pcireg.h>
73 1.1 ragge #include <dev/pci/pcidevs.h>
74 1.1 ragge
75 1.1 ragge #include <sys/proc.h>
76 1.1 ragge
77 1.1 ragge #include <dev/pci/if_xgereg.h>
78 1.1 ragge
79 1.1 ragge /*
80 1.1 ragge * Some tunable constants, tune with care!
81 1.1 ragge */
82 1.1 ragge #define RX_MODE RX_MODE_1 /* Receive mode (buffer usage, see below) */
83 1.1 ragge #define NRXDESCS 1016 /* # of receive descriptors (requested) */
84 1.1 ragge #define NTXDESCS 8192 /* Number of transmit descriptors */
85 1.1 ragge #define NTXFRAGS 100 /* Max fragments per packet */
86 1.1 ragge #define XGE_EVENT_COUNTERS /* Instrumentation */
87 1.1 ragge
88 1.1 ragge /*
89 1.1 ragge * Receive buffer modes; 1, 3 or 5 buffers.
90 1.1 ragge */
91 1.1 ragge #define RX_MODE_1 1
92 1.1 ragge #define RX_MODE_3 3
93 1.1 ragge #define RX_MODE_5 5
94 1.1 ragge
95 1.1 ragge /*
96 1.1 ragge * Use clever macros to avoid a bunch of #ifdef's.
97 1.1 ragge */
98 1.1 ragge #define XCONCAT3(x,y,z) x ## y ## z
99 1.1 ragge #define CONCAT3(x,y,z) XCONCAT3(x,y,z)
100 1.1 ragge #define NDESC_BUFMODE CONCAT3(NDESC_,RX_MODE,BUFMODE)
101 1.1 ragge #define rxd_4k CONCAT3(rxd,RX_MODE,_4k)
102 1.1 ragge #define rxdesc ___CONCAT(rxd,RX_MODE)
103 1.1 ragge
104 1.1 ragge #define NEXTTX(x) (((x)+1) % NTXDESCS)
105 1.1 ragge #define NRXFRAGS RX_MODE /* hardware imposed frags */
106 1.1 ragge #define NRXPAGES ((NRXDESCS/NDESC_BUFMODE)+1)
107 1.1 ragge #define NRXREAL (NRXPAGES*NDESC_BUFMODE)
108 1.1 ragge #define RXMAPSZ (NRXPAGES*PAGE_SIZE)
109 1.1 ragge
110 1.1 ragge #ifdef XGE_EVENT_COUNTERS
111 1.1 ragge #define XGE_EVCNT_INCR(ev) (ev)->ev_count++
112 1.1 ragge #else
113 1.1 ragge #define XGE_EVCNT_INCR(ev) /* nothing */
114 1.1 ragge #endif
115 1.1 ragge
116 1.1 ragge /*
117 1.1 ragge * Magics to fix a bug when the mac address can't be read correctly.
118 1.1 ragge * Comes from the Linux driver.
119 1.1 ragge */
120 1.1 ragge static uint64_t fix_mac[] = {
121 1.1 ragge 0x0060000000000000ULL, 0x0060600000000000ULL,
122 1.1 ragge 0x0040600000000000ULL, 0x0000600000000000ULL,
123 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
124 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
125 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
126 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
127 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
128 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
129 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
130 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
131 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
132 1.1 ragge 0x0020600000000000ULL, 0x0060600000000000ULL,
133 1.1 ragge 0x0020600000000000ULL, 0x0000600000000000ULL,
134 1.1 ragge 0x0040600000000000ULL, 0x0060600000000000ULL,
135 1.1 ragge };
136 1.1 ragge
137 1.1 ragge
138 1.1 ragge struct xge_softc {
139 1.17 chs device_t sc_dev;
140 1.1 ragge struct ethercom sc_ethercom;
141 1.1 ragge #define sc_if sc_ethercom.ec_if
142 1.1 ragge bus_dma_tag_t sc_dmat;
143 1.1 ragge bus_space_tag_t sc_st;
144 1.1 ragge bus_space_handle_t sc_sh;
145 1.1 ragge bus_space_tag_t sc_txt;
146 1.1 ragge bus_space_handle_t sc_txh;
147 1.1 ragge void *sc_ih;
148 1.1 ragge
149 1.1 ragge struct ifmedia xena_media;
150 1.1 ragge pcireg_t sc_pciregs[16];
151 1.1 ragge
152 1.1 ragge /* Transmit structures */
153 1.1 ragge struct txd *sc_txd[NTXDESCS]; /* transmit frags array */
154 1.1 ragge bus_addr_t sc_txdp[NTXDESCS]; /* bus address of transmit frags */
155 1.1 ragge bus_dmamap_t sc_txm[NTXDESCS]; /* transmit frags map */
156 1.1 ragge struct mbuf *sc_txb[NTXDESCS]; /* transmit mbuf pointer */
157 1.1 ragge int sc_nexttx, sc_lasttx;
158 1.1 ragge bus_dmamap_t sc_txmap; /* transmit descriptor map */
159 1.1 ragge
160 1.1 ragge /* Receive data */
161 1.1 ragge bus_dmamap_t sc_rxmap; /* receive descriptor map */
162 1.1 ragge struct rxd_4k *sc_rxd_4k[NRXPAGES]; /* receive desc pages */
163 1.1 ragge bus_dmamap_t sc_rxm[NRXREAL]; /* receive buffer map */
164 1.1 ragge struct mbuf *sc_rxb[NRXREAL]; /* mbufs on receive descriptors */
165 1.1 ragge int sc_nextrx; /* next descriptor to check */
166 1.1 ragge
167 1.1 ragge #ifdef XGE_EVENT_COUNTERS
168 1.1 ragge struct evcnt sc_intr; /* # of interrupts */
169 1.1 ragge struct evcnt sc_txintr; /* # of transmit interrupts */
170 1.1 ragge struct evcnt sc_rxintr; /* # of receive interrupts */
171 1.1 ragge struct evcnt sc_txqe; /* # of xmit intrs when board queue empty */
172 1.1 ragge #endif
173 1.1 ragge };
174 1.1 ragge
175 1.12 cegger static int xge_match(device_t parent, cfdata_t cf, void *aux);
176 1.12 cegger static void xge_attach(device_t parent, device_t self, void *aux);
177 1.1 ragge static int xge_alloc_txmem(struct xge_softc *);
178 1.1 ragge static int xge_alloc_rxmem(struct xge_softc *);
179 1.1 ragge static void xge_start(struct ifnet *);
180 1.1 ragge static void xge_stop(struct ifnet *, int);
181 1.1 ragge static int xge_add_rxbuf(struct xge_softc *, int);
182 1.1 ragge static void xge_mcast_filter(struct xge_softc *sc);
183 1.1 ragge static int xge_setup_xgxs(struct xge_softc *sc);
184 1.5 christos static int xge_ioctl(struct ifnet *ifp, u_long cmd, void *data);
185 1.1 ragge static int xge_init(struct ifnet *ifp);
186 1.1 ragge static void xge_ifmedia_status(struct ifnet *, struct ifmediareq *);
187 1.1 ragge static int xge_xgmii_mediachange(struct ifnet *);
188 1.1 ragge static int xge_intr(void *);
189 1.1 ragge
190 1.1 ragge /*
191 1.1 ragge * Helpers to address registers.
192 1.1 ragge */
193 1.1 ragge #define PIF_WCSR(csr, val) pif_wcsr(sc, csr, val)
194 1.1 ragge #define PIF_RCSR(csr) pif_rcsr(sc, csr)
195 1.1 ragge #define TXP_WCSR(csr, val) txp_wcsr(sc, csr, val)
196 1.1 ragge #define PIF_WKEY(csr, val) pif_wkey(sc, csr, val)
197 1.1 ragge
198 1.1 ragge static inline void
199 1.1 ragge pif_wcsr(struct xge_softc *sc, bus_size_t csr, uint64_t val)
200 1.1 ragge {
201 1.1 ragge uint32_t lval, hval;
202 1.1 ragge
203 1.1 ragge lval = val&0xffffffff;
204 1.1 ragge hval = val>>32;
205 1.18 christos bus_space_write_4(sc->sc_st, sc->sc_sh, csr, lval);
206 1.1 ragge bus_space_write_4(sc->sc_st, sc->sc_sh, csr+4, hval);
207 1.1 ragge }
208 1.1 ragge
209 1.1 ragge static inline uint64_t
210 1.1 ragge pif_rcsr(struct xge_softc *sc, bus_size_t csr)
211 1.1 ragge {
212 1.1 ragge uint64_t val, val2;
213 1.1 ragge val = bus_space_read_4(sc->sc_st, sc->sc_sh, csr);
214 1.1 ragge val2 = bus_space_read_4(sc->sc_st, sc->sc_sh, csr+4);
215 1.1 ragge val |= (val2 << 32);
216 1.1 ragge return val;
217 1.1 ragge }
218 1.1 ragge
219 1.1 ragge static inline void
220 1.1 ragge txp_wcsr(struct xge_softc *sc, bus_size_t csr, uint64_t val)
221 1.1 ragge {
222 1.1 ragge uint32_t lval, hval;
223 1.1 ragge
224 1.1 ragge lval = val&0xffffffff;
225 1.1 ragge hval = val>>32;
226 1.18 christos bus_space_write_4(sc->sc_txt, sc->sc_txh, csr, lval);
227 1.1 ragge bus_space_write_4(sc->sc_txt, sc->sc_txh, csr+4, hval);
228 1.1 ragge }
229 1.1 ragge
230 1.1 ragge
231 1.1 ragge static inline void
232 1.1 ragge pif_wkey(struct xge_softc *sc, bus_size_t csr, uint64_t val)
233 1.1 ragge {
234 1.1 ragge uint32_t lval, hval;
235 1.1 ragge
236 1.1 ragge lval = val&0xffffffff;
237 1.1 ragge hval = val>>32;
238 1.1 ragge PIF_WCSR(RMAC_CFG_KEY, RMAC_KEY_VALUE);
239 1.18 christos bus_space_write_4(sc->sc_st, sc->sc_sh, csr, lval);
240 1.1 ragge PIF_WCSR(RMAC_CFG_KEY, RMAC_KEY_VALUE);
241 1.1 ragge bus_space_write_4(sc->sc_st, sc->sc_sh, csr+4, hval);
242 1.1 ragge }
243 1.1 ragge
244 1.1 ragge
245 1.17 chs CFATTACH_DECL_NEW(xge, sizeof(struct xge_softc),
246 1.1 ragge xge_match, xge_attach, NULL, NULL);
247 1.1 ragge
248 1.17 chs #define XNAME device_xname(sc->sc_dev)
249 1.1 ragge
250 1.1 ragge #define XGE_RXSYNC(desc, what) \
251 1.1 ragge bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap, \
252 1.1 ragge (desc/NDESC_BUFMODE) * XGE_PAGE + sizeof(struct rxdesc) * \
253 1.1 ragge (desc%NDESC_BUFMODE), sizeof(struct rxdesc), what)
254 1.1 ragge #define XGE_RXD(desc) &sc->sc_rxd_4k[desc/NDESC_BUFMODE]-> \
255 1.1 ragge r4_rxd[desc%NDESC_BUFMODE]
256 1.1 ragge
257 1.1 ragge /*
258 1.1 ragge * Non-tunable constants.
259 1.1 ragge */
260 1.1 ragge #define XGE_MAX_MTU 9600
261 1.1 ragge #define XGE_IP_MAXPACKET 65535 /* same as IP_MAXPACKET */
262 1.1 ragge
263 1.1 ragge static int
264 1.12 cegger xge_match(device_t parent, cfdata_t cf, void *aux)
265 1.1 ragge {
266 1.1 ragge struct pci_attach_args *pa = aux;
267 1.1 ragge
268 1.1 ragge if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S2IO &&
269 1.1 ragge PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S2IO_XFRAME)
270 1.1 ragge return (1);
271 1.1 ragge
272 1.1 ragge return (0);
273 1.1 ragge }
274 1.1 ragge
275 1.1 ragge void
276 1.12 cegger xge_attach(device_t parent, device_t self, void *aux)
277 1.1 ragge {
278 1.1 ragge struct pci_attach_args *pa = aux;
279 1.1 ragge struct xge_softc *sc;
280 1.1 ragge struct ifnet *ifp;
281 1.1 ragge pcireg_t memtype;
282 1.1 ragge pci_intr_handle_t ih;
283 1.1 ragge const char *intrstr = NULL;
284 1.1 ragge pci_chipset_tag_t pc = pa->pa_pc;
285 1.1 ragge uint8_t enaddr[ETHER_ADDR_LEN];
286 1.1 ragge uint64_t val;
287 1.1 ragge int i;
288 1.19 christos char intrbuf[PCI_INTRSTR_LEN];
289 1.1 ragge
290 1.13 cegger sc = device_private(self);
291 1.17 chs sc->sc_dev = self;
292 1.1 ragge sc->sc_dmat = pa->pa_dmat;
293 1.1 ragge
294 1.1 ragge /* Get BAR0 address */
295 1.1 ragge memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, XGE_PIF_BAR);
296 1.1 ragge if (pci_mapreg_map(pa, XGE_PIF_BAR, memtype, 0,
297 1.1 ragge &sc->sc_st, &sc->sc_sh, 0, 0)) {
298 1.1 ragge aprint_error("%s: unable to map PIF BAR registers\n", XNAME);
299 1.1 ragge return;
300 1.1 ragge }
301 1.1 ragge
302 1.1 ragge memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, XGE_TXP_BAR);
303 1.1 ragge if (pci_mapreg_map(pa, XGE_TXP_BAR, memtype, 0,
304 1.1 ragge &sc->sc_txt, &sc->sc_txh, 0, 0)) {
305 1.1 ragge aprint_error("%s: unable to map TXP BAR registers\n", XNAME);
306 1.1 ragge return;
307 1.1 ragge }
308 1.1 ragge
309 1.1 ragge /* Save PCI config space */
310 1.1 ragge for (i = 0; i < 64; i += 4)
311 1.1 ragge sc->sc_pciregs[i/4] = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
312 1.1 ragge
313 1.1 ragge #if BYTE_ORDER == LITTLE_ENDIAN
314 1.1 ragge val = (uint64_t)0xFFFFFFFFFFFFFFFFULL;
315 1.1 ragge val &= ~(TxF_R_SE|RxF_W_SE);
316 1.1 ragge PIF_WCSR(SWAPPER_CTRL, val);
317 1.1 ragge PIF_WCSR(SWAPPER_CTRL, val);
318 1.1 ragge #elif BYTE_ORDER == BIG_ENDIAN
319 1.1 ragge /* do nothing */
320 1.1 ragge #else
321 1.1 ragge #error bad endianness!
322 1.1 ragge #endif
323 1.1 ragge
324 1.23 msaitoh if ((val = PIF_RCSR(PIF_RD_SWAPPER_Fb)) != SWAPPER_MAGIC) {
325 1.23 msaitoh aprint_error("%s: failed configuring endian, %llx != %llx!\n",
326 1.1 ragge XNAME, (unsigned long long)val, SWAPPER_MAGIC);
327 1.23 msaitoh return;
328 1.23 msaitoh }
329 1.1 ragge
330 1.1 ragge /*
331 1.1 ragge * The MAC addr may be all FF's, which is not good.
332 1.18 christos * Resolve it by writing some magics to GPIO_CONTROL and
333 1.1 ragge * force a chip reset to read in the serial eeprom again.
334 1.1 ragge */
335 1.1 ragge for (i = 0; i < sizeof(fix_mac)/sizeof(fix_mac[0]); i++) {
336 1.1 ragge PIF_WCSR(GPIO_CONTROL, fix_mac[i]);
337 1.1 ragge PIF_RCSR(GPIO_CONTROL);
338 1.1 ragge }
339 1.1 ragge
340 1.1 ragge /*
341 1.1 ragge * Reset the chip and restore the PCI registers.
342 1.1 ragge */
343 1.1 ragge PIF_WCSR(SW_RESET, 0xa5a5a50000000000ULL);
344 1.1 ragge DELAY(500000);
345 1.1 ragge for (i = 0; i < 64; i += 4)
346 1.1 ragge pci_conf_write(pa->pa_pc, pa->pa_tag, i, sc->sc_pciregs[i/4]);
347 1.1 ragge
348 1.1 ragge /*
349 1.1 ragge * Restore the byte order registers.
350 1.1 ragge */
351 1.1 ragge #if BYTE_ORDER == LITTLE_ENDIAN
352 1.1 ragge val = (uint64_t)0xFFFFFFFFFFFFFFFFULL;
353 1.1 ragge val &= ~(TxF_R_SE|RxF_W_SE);
354 1.1 ragge PIF_WCSR(SWAPPER_CTRL, val);
355 1.1 ragge PIF_WCSR(SWAPPER_CTRL, val);
356 1.1 ragge #elif BYTE_ORDER == BIG_ENDIAN
357 1.1 ragge /* do nothing */
358 1.1 ragge #else
359 1.1 ragge #error bad endianness!
360 1.1 ragge #endif
361 1.1 ragge
362 1.23 msaitoh if ((val = PIF_RCSR(PIF_RD_SWAPPER_Fb)) != SWAPPER_MAGIC) {
363 1.23 msaitoh aprint_error("%s: failed configuring endian2, %llx != %llx!\n",
364 1.1 ragge XNAME, (unsigned long long)val, SWAPPER_MAGIC);
365 1.23 msaitoh return;
366 1.23 msaitoh }
367 1.1 ragge
368 1.1 ragge /*
369 1.1 ragge * XGXS initialization.
370 1.1 ragge */
371 1.1 ragge /* 29, reset */
372 1.1 ragge PIF_WCSR(SW_RESET, 0);
373 1.1 ragge DELAY(500000);
374 1.1 ragge
375 1.1 ragge /* 30, configure XGXS transceiver */
376 1.1 ragge xge_setup_xgxs(sc);
377 1.1 ragge
378 1.1 ragge /* 33, program MAC address (not needed here) */
379 1.1 ragge /* Get ethernet address */
380 1.1 ragge PIF_WCSR(RMAC_ADDR_CMD_MEM,
381 1.1 ragge RMAC_ADDR_CMD_MEM_STR|RMAC_ADDR_CMD_MEM_OFF(0));
382 1.1 ragge while (PIF_RCSR(RMAC_ADDR_CMD_MEM) & RMAC_ADDR_CMD_MEM_STR)
383 1.1 ragge ;
384 1.1 ragge val = PIF_RCSR(RMAC_ADDR_DATA0_MEM);
385 1.1 ragge for (i = 0; i < ETHER_ADDR_LEN; i++)
386 1.1 ragge enaddr[i] = (uint8_t)(val >> (56 - (8*i)));
387 1.1 ragge
388 1.1 ragge /*
389 1.1 ragge * Get memory for transmit descriptor lists.
390 1.1 ragge */
391 1.23 msaitoh if (xge_alloc_txmem(sc)) {
392 1.23 msaitoh aprint_error("%s: failed allocating txmem.\n", XNAME);
393 1.23 msaitoh return;
394 1.23 msaitoh }
395 1.1 ragge
396 1.1 ragge /* 9 and 10 - set FIFO number/prio */
397 1.1 ragge PIF_WCSR(TX_FIFO_P0, TX_FIFO_LEN0(NTXDESCS));
398 1.1 ragge PIF_WCSR(TX_FIFO_P1, 0ULL);
399 1.1 ragge PIF_WCSR(TX_FIFO_P2, 0ULL);
400 1.1 ragge PIF_WCSR(TX_FIFO_P3, 0ULL);
401 1.1 ragge
402 1.1 ragge /* 11, XXX set round-robin prio? */
403 1.1 ragge
404 1.1 ragge /* 12, enable transmit FIFO */
405 1.1 ragge val = PIF_RCSR(TX_FIFO_P0);
406 1.1 ragge val |= TX_FIFO_ENABLE;
407 1.1 ragge PIF_WCSR(TX_FIFO_P0, val);
408 1.1 ragge
409 1.1 ragge /* 13, disable some error checks */
410 1.1 ragge PIF_WCSR(TX_PA_CFG,
411 1.1 ragge TX_PA_CFG_IFR|TX_PA_CFG_ISO|TX_PA_CFG_ILC|TX_PA_CFG_ILE);
412 1.1 ragge
413 1.1 ragge /*
414 1.1 ragge * Create transmit DMA maps.
415 1.1 ragge * Make them large for TSO.
416 1.1 ragge */
417 1.1 ragge for (i = 0; i < NTXDESCS; i++) {
418 1.1 ragge if (bus_dmamap_create(sc->sc_dmat, XGE_IP_MAXPACKET,
419 1.23 msaitoh NTXFRAGS, MCLBYTES, 0, 0, &sc->sc_txm[i])) {
420 1.23 msaitoh aprint_error("%s: cannot create TX DMA maps\n", XNAME);
421 1.23 msaitoh return;
422 1.23 msaitoh }
423 1.1 ragge }
424 1.1 ragge
425 1.1 ragge sc->sc_lasttx = NTXDESCS-1;
426 1.1 ragge
427 1.1 ragge /*
428 1.1 ragge * RxDMA initialization.
429 1.1 ragge * Only use one out of 8 possible receive queues.
430 1.1 ragge */
431 1.23 msaitoh if (xge_alloc_rxmem(sc)) { /* allocate rx descriptor memory */
432 1.23 msaitoh aprint_error("%s: failed allocating rxmem\n", XNAME);
433 1.23 msaitoh return;
434 1.23 msaitoh }
435 1.1 ragge
436 1.1 ragge /* Create receive buffer DMA maps */
437 1.1 ragge for (i = 0; i < NRXREAL; i++) {
438 1.1 ragge if (bus_dmamap_create(sc->sc_dmat, XGE_MAX_MTU,
439 1.23 msaitoh NRXFRAGS, MCLBYTES, 0, 0, &sc->sc_rxm[i])) {
440 1.23 msaitoh aprint_error("%s: cannot create RX DMA maps\n", XNAME);
441 1.23 msaitoh return;
442 1.23 msaitoh }
443 1.1 ragge }
444 1.1 ragge
445 1.1 ragge /* allocate mbufs to receive descriptors */
446 1.1 ragge for (i = 0; i < NRXREAL; i++)
447 1.1 ragge if (xge_add_rxbuf(sc, i))
448 1.1 ragge panic("out of mbufs too early");
449 1.1 ragge
450 1.1 ragge /* 14, setup receive ring priority */
451 1.1 ragge PIF_WCSR(RX_QUEUE_PRIORITY, 0ULL); /* only use one ring */
452 1.1 ragge
453 1.1 ragge /* 15, setup receive ring round-robin calendar */
454 1.1 ragge PIF_WCSR(RX_W_ROUND_ROBIN_0, 0ULL); /* only use one ring */
455 1.1 ragge PIF_WCSR(RX_W_ROUND_ROBIN_1, 0ULL);
456 1.1 ragge PIF_WCSR(RX_W_ROUND_ROBIN_2, 0ULL);
457 1.1 ragge PIF_WCSR(RX_W_ROUND_ROBIN_3, 0ULL);
458 1.1 ragge PIF_WCSR(RX_W_ROUND_ROBIN_4, 0ULL);
459 1.1 ragge
460 1.1 ragge /* 16, write receive ring start address */
461 1.1 ragge PIF_WCSR(PRC_RXD0_0, (uint64_t)sc->sc_rxmap->dm_segs[0].ds_addr);
462 1.1 ragge /* PRC_RXD0_[1-7] are not used */
463 1.1 ragge
464 1.1 ragge /* 17, Setup alarm registers */
465 1.1 ragge PIF_WCSR(PRC_ALARM_ACTION, 0ULL); /* Default everything to retry */
466 1.1 ragge
467 1.1 ragge /* 18, init receive ring controller */
468 1.1 ragge #if RX_MODE == RX_MODE_1
469 1.1 ragge val = RING_MODE_1;
470 1.1 ragge #elif RX_MODE == RX_MODE_3
471 1.1 ragge val = RING_MODE_3;
472 1.1 ragge #else /* RX_MODE == RX_MODE_5 */
473 1.1 ragge val = RING_MODE_5;
474 1.1 ragge #endif
475 1.1 ragge PIF_WCSR(PRC_CTRL_0, RC_IN_SVC|val);
476 1.1 ragge /* leave 1-7 disabled */
477 1.1 ragge /* XXXX snoop configuration? */
478 1.1 ragge
479 1.1 ragge /* 19, set chip memory assigned to the queue */
480 1.1 ragge PIF_WCSR(RX_QUEUE_CFG, MC_QUEUE(0, 64)); /* all 64M to queue 0 */
481 1.1 ragge
482 1.1 ragge /* 20, setup RLDRAM parameters */
483 1.1 ragge /* do not touch it for now */
484 1.1 ragge
485 1.1 ragge /* 21, setup pause frame thresholds */
486 1.1 ragge /* so not touch the defaults */
487 1.1 ragge /* XXX - must 0xff be written as stated in the manual? */
488 1.1 ragge
489 1.1 ragge /* 22, configure RED */
490 1.1 ragge /* we do not want to drop packets, so ignore */
491 1.1 ragge
492 1.1 ragge /* 23, initiate RLDRAM */
493 1.1 ragge val = PIF_RCSR(MC_RLDRAM_MRS);
494 1.1 ragge val |= MC_QUEUE_SIZE_ENABLE|MC_RLDRAM_MRS_ENABLE;
495 1.1 ragge PIF_WCSR(MC_RLDRAM_MRS, val);
496 1.1 ragge DELAY(1000);
497 1.1 ragge
498 1.1 ragge /*
499 1.1 ragge * Setup interrupt policies.
500 1.1 ragge */
501 1.1 ragge /* 40, Transmit interrupts */
502 1.1 ragge PIF_WCSR(TTI_DATA1_MEM, TX_TIMER_VAL(0x1ff) | TX_TIMER_AC |
503 1.1 ragge TX_URNG_A(5) | TX_URNG_B(20) | TX_URNG_C(48));
504 1.1 ragge PIF_WCSR(TTI_DATA2_MEM,
505 1.1 ragge TX_UFC_A(25) | TX_UFC_B(64) | TX_UFC_C(128) | TX_UFC_D(512));
506 1.1 ragge PIF_WCSR(TTI_COMMAND_MEM, TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE);
507 1.1 ragge while (PIF_RCSR(TTI_COMMAND_MEM) & TTI_CMD_MEM_STROBE)
508 1.1 ragge ;
509 1.1 ragge
510 1.1 ragge /* 41, Receive interrupts */
511 1.1 ragge PIF_WCSR(RTI_DATA1_MEM, RX_TIMER_VAL(0x800) | RX_TIMER_AC |
512 1.1 ragge RX_URNG_A(5) | RX_URNG_B(20) | RX_URNG_C(50));
513 1.1 ragge PIF_WCSR(RTI_DATA2_MEM,
514 1.1 ragge RX_UFC_A(64) | RX_UFC_B(128) | RX_UFC_C(256) | RX_UFC_D(512));
515 1.1 ragge PIF_WCSR(RTI_COMMAND_MEM, RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE);
516 1.1 ragge while (PIF_RCSR(RTI_COMMAND_MEM) & RTI_CMD_MEM_STROBE)
517 1.1 ragge ;
518 1.1 ragge
519 1.1 ragge /*
520 1.1 ragge * Setup media stuff.
521 1.1 ragge */
522 1.1 ragge ifmedia_init(&sc->xena_media, IFM_IMASK, xge_xgmii_mediachange,
523 1.1 ragge xge_ifmedia_status);
524 1.1 ragge ifmedia_add(&sc->xena_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
525 1.1 ragge ifmedia_set(&sc->xena_media, IFM_ETHER|IFM_10G_LR);
526 1.1 ragge
527 1.1 ragge aprint_normal("%s: Ethernet address %s\n", XNAME,
528 1.1 ragge ether_sprintf(enaddr));
529 1.1 ragge
530 1.1 ragge ifp = &sc->sc_ethercom.ec_if;
531 1.17 chs strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
532 1.1 ragge ifp->if_baudrate = 10000000000LL;
533 1.1 ragge ifp->if_init = xge_init;
534 1.1 ragge ifp->if_stop = xge_stop;
535 1.1 ragge ifp->if_softc = sc;
536 1.1 ragge ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
537 1.1 ragge ifp->if_ioctl = xge_ioctl;
538 1.1 ragge ifp->if_start = xge_start;
539 1.1 ragge IFQ_SET_MAXLEN(&ifp->if_snd, max(NTXDESCS - 1, IFQ_MAXLEN));
540 1.1 ragge IFQ_SET_READY(&ifp->if_snd);
541 1.1 ragge
542 1.1 ragge /*
543 1.1 ragge * Offloading capabilities.
544 1.1 ragge */
545 1.1 ragge sc->sc_ethercom.ec_capabilities |=
546 1.1 ragge ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
547 1.1 ragge ifp->if_capabilities |=
548 1.1 ragge IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_IPv4_Tx |
549 1.1 ragge IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv4_Tx |
550 1.1 ragge IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv4_Tx | IFCAP_TSOv4;
551 1.1 ragge
552 1.1 ragge /*
553 1.1 ragge * Attach the interface.
554 1.1 ragge */
555 1.1 ragge if_attach(ifp);
556 1.24 ozaki if_deferred_start_init(ifp, NULL);
557 1.1 ragge ether_ifattach(ifp, enaddr);
558 1.1 ragge
559 1.1 ragge /*
560 1.1 ragge * Setup interrupt vector before initializing.
561 1.1 ragge */
562 1.23 msaitoh if (pci_intr_map(pa, &ih)) {
563 1.23 msaitoh aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
564 1.23 msaitoh return;
565 1.23 msaitoh }
566 1.19 christos intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
567 1.1 ragge if ((sc->sc_ih =
568 1.23 msaitoh pci_intr_establish(pc, ih, IPL_NET, xge_intr, sc)) == NULL) {
569 1.23 msaitoh aprint_error_dev(sc->sc_dev,
570 1.23 msaitoh "unable to establish interrupt at %s\n",
571 1.9 cegger intrstr ? intrstr : "<unknown>");
572 1.23 msaitoh return;
573 1.23 msaitoh }
574 1.17 chs aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
575 1.1 ragge
576 1.1 ragge #ifdef XGE_EVENT_COUNTERS
577 1.1 ragge evcnt_attach_dynamic(&sc->sc_intr, EVCNT_TYPE_MISC,
578 1.1 ragge NULL, XNAME, "intr");
579 1.1 ragge evcnt_attach_dynamic(&sc->sc_txintr, EVCNT_TYPE_MISC,
580 1.1 ragge NULL, XNAME, "txintr");
581 1.1 ragge evcnt_attach_dynamic(&sc->sc_rxintr, EVCNT_TYPE_MISC,
582 1.1 ragge NULL, XNAME, "rxintr");
583 1.1 ragge evcnt_attach_dynamic(&sc->sc_txqe, EVCNT_TYPE_MISC,
584 1.1 ragge NULL, XNAME, "txqe");
585 1.1 ragge #endif
586 1.1 ragge }
587 1.1 ragge
588 1.1 ragge void
589 1.1 ragge xge_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
590 1.1 ragge {
591 1.1 ragge struct xge_softc *sc = ifp->if_softc;
592 1.1 ragge uint64_t reg;
593 1.1 ragge
594 1.1 ragge ifmr->ifm_status = IFM_AVALID;
595 1.1 ragge ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
596 1.1 ragge
597 1.1 ragge reg = PIF_RCSR(ADAPTER_STATUS);
598 1.18 christos if ((reg & (RMAC_REMOTE_FAULT|RMAC_LOCAL_FAULT)) == 0)
599 1.1 ragge ifmr->ifm_status |= IFM_ACTIVE;
600 1.1 ragge }
601 1.1 ragge
602 1.1 ragge int
603 1.4 christos xge_xgmii_mediachange(struct ifnet *ifp)
604 1.1 ragge {
605 1.1 ragge return 0;
606 1.1 ragge }
607 1.1 ragge
608 1.1 ragge static void
609 1.1 ragge xge_enable(struct xge_softc *sc)
610 1.1 ragge {
611 1.1 ragge uint64_t val;
612 1.1 ragge
613 1.1 ragge /* 2, enable adapter */
614 1.1 ragge val = PIF_RCSR(ADAPTER_CONTROL);
615 1.1 ragge val |= ADAPTER_EN;
616 1.1 ragge PIF_WCSR(ADAPTER_CONTROL, val);
617 1.1 ragge
618 1.1 ragge /* 3, light the card enable led */
619 1.1 ragge val = PIF_RCSR(ADAPTER_CONTROL);
620 1.1 ragge val |= LED_ON;
621 1.1 ragge PIF_WCSR(ADAPTER_CONTROL, val);
622 1.1 ragge printf("%s: link up\n", XNAME);
623 1.1 ragge
624 1.1 ragge }
625 1.1 ragge
626 1.18 christos int
627 1.1 ragge xge_init(struct ifnet *ifp)
628 1.1 ragge {
629 1.1 ragge struct xge_softc *sc = ifp->if_softc;
630 1.1 ragge uint64_t val;
631 1.1 ragge
632 1.1 ragge if (ifp->if_flags & IFF_RUNNING)
633 1.1 ragge return 0;
634 1.1 ragge
635 1.1 ragge /* 31+32, setup MAC config */
636 1.1 ragge PIF_WKEY(MAC_CFG, TMAC_EN|RMAC_EN|TMAC_APPEND_PAD|RMAC_STRIP_FCS|
637 1.1 ragge RMAC_BCAST_EN|RMAC_DISCARD_PFRM|RMAC_PROM_EN);
638 1.1 ragge
639 1.1 ragge DELAY(1000);
640 1.1 ragge
641 1.1 ragge /* 54, ensure that the adapter is 'quiescent' */
642 1.1 ragge val = PIF_RCSR(ADAPTER_STATUS);
643 1.1 ragge if ((val & QUIESCENT) != QUIESCENT) {
644 1.1 ragge char buf[200];
645 1.1 ragge printf("%s: adapter not quiescent, aborting\n", XNAME);
646 1.1 ragge val = (val & QUIESCENT) ^ QUIESCENT;
647 1.10 christos snprintb(buf, sizeof buf, QUIESCENT_BMSK, val);
648 1.1 ragge printf("%s: ADAPTER_STATUS missing bits %s\n", XNAME, buf);
649 1.1 ragge return 1;
650 1.1 ragge }
651 1.1 ragge
652 1.1 ragge /* 56, enable the transmit laser */
653 1.1 ragge val = PIF_RCSR(ADAPTER_CONTROL);
654 1.1 ragge val |= EOI_TX_ON;
655 1.1 ragge PIF_WCSR(ADAPTER_CONTROL, val);
656 1.1 ragge
657 1.1 ragge xge_enable(sc);
658 1.1 ragge /*
659 1.1 ragge * Enable all interrupts
660 1.1 ragge */
661 1.1 ragge PIF_WCSR(TX_TRAFFIC_MASK, 0);
662 1.1 ragge PIF_WCSR(RX_TRAFFIC_MASK, 0);
663 1.1 ragge PIF_WCSR(GENERAL_INT_MASK, 0);
664 1.1 ragge PIF_WCSR(TXPIC_INT_MASK, 0);
665 1.1 ragge PIF_WCSR(RXPIC_INT_MASK, 0);
666 1.1 ragge PIF_WCSR(MAC_INT_MASK, MAC_TMAC_INT); /* only from RMAC */
667 1.1 ragge PIF_WCSR(MAC_RMAC_ERR_MASK, ~RMAC_LINK_STATE_CHANGE_INT);
668 1.1 ragge
669 1.1 ragge
670 1.1 ragge /* Done... */
671 1.1 ragge ifp->if_flags |= IFF_RUNNING;
672 1.1 ragge ifp->if_flags &= ~IFF_OACTIVE;
673 1.1 ragge
674 1.1 ragge return 0;
675 1.1 ragge }
676 1.1 ragge
677 1.1 ragge static void
678 1.4 christos xge_stop(struct ifnet *ifp, int disable)
679 1.1 ragge {
680 1.1 ragge struct xge_softc *sc = ifp->if_softc;
681 1.1 ragge uint64_t val;
682 1.1 ragge
683 1.1 ragge val = PIF_RCSR(ADAPTER_CONTROL);
684 1.1 ragge val &= ~ADAPTER_EN;
685 1.1 ragge PIF_WCSR(ADAPTER_CONTROL, val);
686 1.1 ragge
687 1.1 ragge while ((PIF_RCSR(ADAPTER_STATUS) & QUIESCENT) != QUIESCENT)
688 1.1 ragge ;
689 1.1 ragge }
690 1.1 ragge
691 1.1 ragge int
692 1.1 ragge xge_intr(void *pv)
693 1.1 ragge {
694 1.1 ragge struct xge_softc *sc = pv;
695 1.1 ragge struct txd *txd;
696 1.1 ragge struct ifnet *ifp = &sc->sc_if;
697 1.1 ragge bus_dmamap_t dmp;
698 1.1 ragge uint64_t val;
699 1.1 ragge int i, lasttx, plen;
700 1.1 ragge
701 1.1 ragge val = PIF_RCSR(GENERAL_INT_STATUS);
702 1.1 ragge if (val == 0)
703 1.1 ragge return 0; /* no interrupt here */
704 1.1 ragge
705 1.1 ragge XGE_EVCNT_INCR(&sc->sc_intr);
706 1.1 ragge
707 1.1 ragge PIF_WCSR(GENERAL_INT_STATUS, val);
708 1.1 ragge
709 1.1 ragge if ((val = PIF_RCSR(MAC_RMAC_ERR_REG)) & RMAC_LINK_STATE_CHANGE_INT) {
710 1.1 ragge /* Wait for quiescence */
711 1.1 ragge printf("%s: link down\n", XNAME);
712 1.1 ragge while ((PIF_RCSR(ADAPTER_STATUS) & QUIESCENT) != QUIESCENT)
713 1.1 ragge ;
714 1.1 ragge PIF_WCSR(MAC_RMAC_ERR_REG, RMAC_LINK_STATE_CHANGE_INT);
715 1.23 msaitoh
716 1.1 ragge val = PIF_RCSR(ADAPTER_STATUS);
717 1.1 ragge if ((val & (RMAC_REMOTE_FAULT|RMAC_LOCAL_FAULT)) == 0)
718 1.1 ragge xge_enable(sc); /* Only if link restored */
719 1.1 ragge }
720 1.1 ragge
721 1.1 ragge if ((val = PIF_RCSR(TX_TRAFFIC_INT))) {
722 1.1 ragge XGE_EVCNT_INCR(&sc->sc_txintr);
723 1.1 ragge PIF_WCSR(TX_TRAFFIC_INT, val); /* clear interrupt bits */
724 1.1 ragge }
725 1.1 ragge /*
726 1.1 ragge * Collect sent packets.
727 1.1 ragge */
728 1.1 ragge lasttx = sc->sc_lasttx;
729 1.1 ragge while ((i = NEXTTX(sc->sc_lasttx)) != sc->sc_nexttx) {
730 1.1 ragge txd = sc->sc_txd[i];
731 1.1 ragge dmp = sc->sc_txm[i];
732 1.1 ragge
733 1.1 ragge bus_dmamap_sync(sc->sc_dmat, dmp, 0,
734 1.1 ragge dmp->dm_mapsize,
735 1.1 ragge BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
736 1.1 ragge
737 1.1 ragge if (txd->txd_control1 & TXD_CTL1_OWN) {
738 1.1 ragge bus_dmamap_sync(sc->sc_dmat, dmp, 0,
739 1.1 ragge dmp->dm_mapsize, BUS_DMASYNC_PREREAD);
740 1.1 ragge break;
741 1.1 ragge }
742 1.1 ragge bus_dmamap_unload(sc->sc_dmat, dmp);
743 1.1 ragge m_freem(sc->sc_txb[i]);
744 1.1 ragge ifp->if_opackets++;
745 1.1 ragge sc->sc_lasttx = i;
746 1.1 ragge }
747 1.1 ragge if (i == sc->sc_nexttx) {
748 1.1 ragge XGE_EVCNT_INCR(&sc->sc_txqe);
749 1.1 ragge }
750 1.1 ragge
751 1.1 ragge if (sc->sc_lasttx != lasttx)
752 1.1 ragge ifp->if_flags &= ~IFF_OACTIVE;
753 1.1 ragge
754 1.24 ozaki if_schedule_deferred_start(ifp); /* Try to get more packets on the wire */
755 1.1 ragge
756 1.1 ragge if ((val = PIF_RCSR(RX_TRAFFIC_INT))) {
757 1.1 ragge XGE_EVCNT_INCR(&sc->sc_rxintr);
758 1.1 ragge PIF_WCSR(RX_TRAFFIC_INT, val); /* clear interrupt bits */
759 1.1 ragge }
760 1.1 ragge
761 1.1 ragge for (;;) {
762 1.1 ragge struct rxdesc *rxd;
763 1.1 ragge struct mbuf *m;
764 1.1 ragge
765 1.1 ragge XGE_RXSYNC(sc->sc_nextrx,
766 1.1 ragge BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
767 1.1 ragge
768 1.1 ragge rxd = XGE_RXD(sc->sc_nextrx);
769 1.1 ragge if (rxd->rxd_control1 & RXD_CTL1_OWN) {
770 1.1 ragge XGE_RXSYNC(sc->sc_nextrx, BUS_DMASYNC_PREREAD);
771 1.1 ragge break;
772 1.1 ragge }
773 1.1 ragge
774 1.1 ragge /* got a packet */
775 1.1 ragge m = sc->sc_rxb[sc->sc_nextrx];
776 1.1 ragge #if RX_MODE == RX_MODE_1
777 1.1 ragge plen = m->m_len = RXD_CTL2_BUF0SIZ(rxd->rxd_control2);
778 1.1 ragge #elif RX_MODE == RX_MODE_3
779 1.1 ragge #error Fix rxmodes in xge_intr
780 1.1 ragge #elif RX_MODE == RX_MODE_5
781 1.1 ragge plen = m->m_len = RXD_CTL2_BUF0SIZ(rxd->rxd_control2);
782 1.1 ragge plen += m->m_next->m_len = RXD_CTL2_BUF1SIZ(rxd->rxd_control2);
783 1.1 ragge plen += m->m_next->m_next->m_len =
784 1.1 ragge RXD_CTL2_BUF2SIZ(rxd->rxd_control2);
785 1.1 ragge plen += m->m_next->m_next->m_next->m_len =
786 1.1 ragge RXD_CTL3_BUF3SIZ(rxd->rxd_control3);
787 1.1 ragge plen += m->m_next->m_next->m_next->m_next->m_len =
788 1.1 ragge RXD_CTL3_BUF4SIZ(rxd->rxd_control3);
789 1.1 ragge #endif
790 1.22 ozaki m_set_rcvif(m, ifp);
791 1.1 ragge m->m_pkthdr.len = plen;
792 1.1 ragge
793 1.1 ragge val = rxd->rxd_control1;
794 1.1 ragge
795 1.1 ragge if (xge_add_rxbuf(sc, sc->sc_nextrx)) {
796 1.1 ragge /* Failed, recycle this mbuf */
797 1.1 ragge #if RX_MODE == RX_MODE_1
798 1.1 ragge rxd->rxd_control2 = RXD_MKCTL2(MCLBYTES, 0, 0);
799 1.1 ragge rxd->rxd_control1 = RXD_CTL1_OWN;
800 1.1 ragge #elif RX_MODE == RX_MODE_3
801 1.1 ragge #elif RX_MODE == RX_MODE_5
802 1.1 ragge #endif
803 1.1 ragge XGE_RXSYNC(sc->sc_nextrx,
804 1.1 ragge BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
805 1.1 ragge ifp->if_ierrors++;
806 1.1 ragge break;
807 1.1 ragge }
808 1.1 ragge
809 1.1 ragge if (RXD_CTL1_PROTOS(val) & (RXD_CTL1_P_IPv4|RXD_CTL1_P_IPv6)) {
810 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
811 1.1 ragge if (RXD_CTL1_L3CSUM(val) != 0xffff)
812 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
813 1.1 ragge }
814 1.1 ragge if (RXD_CTL1_PROTOS(val) & RXD_CTL1_P_TCP) {
815 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_TCPv6;
816 1.1 ragge if (RXD_CTL1_L4CSUM(val) != 0xffff)
817 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
818 1.1 ragge }
819 1.1 ragge if (RXD_CTL1_PROTOS(val) & RXD_CTL1_P_UDP) {
820 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_UDPv4|M_CSUM_UDPv6;
821 1.1 ragge if (RXD_CTL1_L4CSUM(val) != 0xffff)
822 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
823 1.1 ragge }
824 1.1 ragge
825 1.21 ozaki if_percpuq_enqueue(ifp->if_percpuq, m);
826 1.1 ragge
827 1.1 ragge if (++sc->sc_nextrx == NRXREAL)
828 1.1 ragge sc->sc_nextrx = 0;
829 1.1 ragge
830 1.1 ragge }
831 1.1 ragge
832 1.1 ragge return 0;
833 1.1 ragge }
834 1.1 ragge
835 1.18 christos int
836 1.5 christos xge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
837 1.1 ragge {
838 1.1 ragge struct xge_softc *sc = ifp->if_softc;
839 1.1 ragge struct ifreq *ifr = (struct ifreq *) data;
840 1.1 ragge int s, error = 0;
841 1.1 ragge
842 1.1 ragge s = splnet();
843 1.1 ragge
844 1.1 ragge switch (cmd) {
845 1.1 ragge case SIOCSIFMTU:
846 1.8 dyoung if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > XGE_MAX_MTU)
847 1.1 ragge error = EINVAL;
848 1.8 dyoung else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET){
849 1.1 ragge PIF_WCSR(RMAC_MAX_PYLD_LEN,
850 1.1 ragge RMAC_PYLD_LEN(ifr->ifr_mtu));
851 1.8 dyoung error = 0;
852 1.1 ragge }
853 1.1 ragge break;
854 1.1 ragge
855 1.1 ragge case SIOCGIFMEDIA:
856 1.1 ragge case SIOCSIFMEDIA:
857 1.1 ragge error = ifmedia_ioctl(ifp, ifr, &sc->xena_media, cmd);
858 1.1 ragge break;
859 1.1 ragge
860 1.1 ragge default:
861 1.8 dyoung if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
862 1.8 dyoung break;
863 1.8 dyoung
864 1.8 dyoung error = 0;
865 1.8 dyoung
866 1.8 dyoung if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
867 1.8 dyoung ;
868 1.8 dyoung else if (ifp->if_flags & IFF_RUNNING) {
869 1.1 ragge /* Change multicast list */
870 1.1 ragge xge_mcast_filter(sc);
871 1.1 ragge }
872 1.1 ragge break;
873 1.1 ragge }
874 1.1 ragge
875 1.1 ragge splx(s);
876 1.1 ragge return(error);
877 1.1 ragge }
878 1.1 ragge
879 1.1 ragge void
880 1.1 ragge xge_mcast_filter(struct xge_softc *sc)
881 1.1 ragge {
882 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if;
883 1.1 ragge struct ethercom *ec = &sc->sc_ethercom;
884 1.1 ragge struct ether_multi *enm;
885 1.1 ragge struct ether_multistep step;
886 1.1 ragge int i, numaddr = 1; /* first slot used for card unicast address */
887 1.1 ragge uint64_t val;
888 1.1 ragge
889 1.1 ragge ETHER_FIRST_MULTI(step, ec, enm);
890 1.1 ragge while (enm != NULL) {
891 1.1 ragge if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
892 1.1 ragge /* Skip ranges */
893 1.1 ragge goto allmulti;
894 1.1 ragge }
895 1.1 ragge if (numaddr == MAX_MCAST_ADDR)
896 1.1 ragge goto allmulti;
897 1.1 ragge for (val = 0, i = 0; i < ETHER_ADDR_LEN; i++) {
898 1.1 ragge val <<= 8;
899 1.1 ragge val |= enm->enm_addrlo[i];
900 1.1 ragge }
901 1.1 ragge PIF_WCSR(RMAC_ADDR_DATA0_MEM, val << 16);
902 1.1 ragge PIF_WCSR(RMAC_ADDR_DATA1_MEM, 0xFFFFFFFFFFFFFFFFULL);
903 1.1 ragge PIF_WCSR(RMAC_ADDR_CMD_MEM, RMAC_ADDR_CMD_MEM_WE|
904 1.1 ragge RMAC_ADDR_CMD_MEM_STR|RMAC_ADDR_CMD_MEM_OFF(numaddr));
905 1.1 ragge while (PIF_RCSR(RMAC_ADDR_CMD_MEM) & RMAC_ADDR_CMD_MEM_STR)
906 1.1 ragge ;
907 1.1 ragge numaddr++;
908 1.1 ragge ETHER_NEXT_MULTI(step, enm);
909 1.1 ragge }
910 1.1 ragge /* set the remaining entries to the broadcast address */
911 1.1 ragge for (i = numaddr; i < MAX_MCAST_ADDR; i++) {
912 1.1 ragge PIF_WCSR(RMAC_ADDR_DATA0_MEM, 0xffffffffffff0000ULL);
913 1.1 ragge PIF_WCSR(RMAC_ADDR_DATA1_MEM, 0xFFFFFFFFFFFFFFFFULL);
914 1.1 ragge PIF_WCSR(RMAC_ADDR_CMD_MEM, RMAC_ADDR_CMD_MEM_WE|
915 1.1 ragge RMAC_ADDR_CMD_MEM_STR|RMAC_ADDR_CMD_MEM_OFF(i));
916 1.1 ragge while (PIF_RCSR(RMAC_ADDR_CMD_MEM) & RMAC_ADDR_CMD_MEM_STR)
917 1.1 ragge ;
918 1.1 ragge }
919 1.1 ragge ifp->if_flags &= ~IFF_ALLMULTI;
920 1.1 ragge return;
921 1.1 ragge
922 1.1 ragge allmulti:
923 1.1 ragge /* Just receive everything with the multicast bit set */
924 1.1 ragge ifp->if_flags |= IFF_ALLMULTI;
925 1.1 ragge PIF_WCSR(RMAC_ADDR_DATA0_MEM, 0x8000000000000000ULL);
926 1.1 ragge PIF_WCSR(RMAC_ADDR_DATA1_MEM, 0xF000000000000000ULL);
927 1.1 ragge PIF_WCSR(RMAC_ADDR_CMD_MEM, RMAC_ADDR_CMD_MEM_WE|
928 1.1 ragge RMAC_ADDR_CMD_MEM_STR|RMAC_ADDR_CMD_MEM_OFF(1));
929 1.1 ragge while (PIF_RCSR(RMAC_ADDR_CMD_MEM) & RMAC_ADDR_CMD_MEM_STR)
930 1.1 ragge ;
931 1.1 ragge }
932 1.1 ragge
933 1.18 christos void
934 1.1 ragge xge_start(struct ifnet *ifp)
935 1.1 ragge {
936 1.1 ragge struct xge_softc *sc = ifp->if_softc;
937 1.1 ragge struct txd *txd = NULL; /* XXX - gcc */
938 1.1 ragge bus_dmamap_t dmp;
939 1.1 ragge struct mbuf *m;
940 1.1 ragge uint64_t par, lcr;
941 1.1 ragge int nexttx = 0, ntxd, error, i;
942 1.1 ragge
943 1.1 ragge if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
944 1.1 ragge return;
945 1.1 ragge
946 1.1 ragge par = lcr = 0;
947 1.1 ragge for (;;) {
948 1.1 ragge IFQ_POLL(&ifp->if_snd, m);
949 1.1 ragge if (m == NULL)
950 1.1 ragge break; /* out of packets */
951 1.1 ragge
952 1.1 ragge if (sc->sc_nexttx == sc->sc_lasttx)
953 1.1 ragge break; /* No more space */
954 1.1 ragge
955 1.1 ragge nexttx = sc->sc_nexttx;
956 1.1 ragge dmp = sc->sc_txm[nexttx];
957 1.1 ragge
958 1.1 ragge if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmp, m,
959 1.1 ragge BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0) {
960 1.1 ragge printf("%s: bus_dmamap_load_mbuf error %d\n",
961 1.1 ragge XNAME, error);
962 1.1 ragge break;
963 1.1 ragge }
964 1.1 ragge IFQ_DEQUEUE(&ifp->if_snd, m);
965 1.1 ragge
966 1.1 ragge bus_dmamap_sync(sc->sc_dmat, dmp, 0, dmp->dm_mapsize,
967 1.1 ragge BUS_DMASYNC_PREWRITE);
968 1.1 ragge
969 1.1 ragge txd = sc->sc_txd[nexttx];
970 1.1 ragge sc->sc_txb[nexttx] = m;
971 1.1 ragge for (i = 0; i < dmp->dm_nsegs; i++) {
972 1.1 ragge if (dmp->dm_segs[i].ds_len == 0)
973 1.1 ragge continue;
974 1.1 ragge txd->txd_control1 = dmp->dm_segs[i].ds_len;
975 1.1 ragge txd->txd_control2 = 0;
976 1.1 ragge txd->txd_bufaddr = dmp->dm_segs[i].ds_addr;
977 1.1 ragge txd++;
978 1.1 ragge }
979 1.1 ragge ntxd = txd - sc->sc_txd[nexttx] - 1;
980 1.1 ragge txd = sc->sc_txd[nexttx];
981 1.1 ragge txd->txd_control1 |= TXD_CTL1_OWN|TXD_CTL1_GCF;
982 1.1 ragge txd->txd_control2 = TXD_CTL2_UTIL;
983 1.1 ragge if (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
984 1.1 ragge txd->txd_control1 |= TXD_CTL1_MSS(m->m_pkthdr.segsz);
985 1.1 ragge txd->txd_control1 |= TXD_CTL1_LSO;
986 1.1 ragge }
987 1.1 ragge
988 1.1 ragge if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
989 1.1 ragge txd->txd_control2 |= TXD_CTL2_CIPv4;
990 1.1 ragge if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4)
991 1.1 ragge txd->txd_control2 |= TXD_CTL2_CTCP;
992 1.1 ragge if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4)
993 1.1 ragge txd->txd_control2 |= TXD_CTL2_CUDP;
994 1.1 ragge txd[ntxd].txd_control1 |= TXD_CTL1_GCL;
995 1.1 ragge
996 1.1 ragge bus_dmamap_sync(sc->sc_dmat, dmp, 0, dmp->dm_mapsize,
997 1.1 ragge BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
998 1.1 ragge
999 1.1 ragge par = sc->sc_txdp[nexttx];
1000 1.1 ragge lcr = TXDL_NUMTXD(ntxd) | TXDL_LGC_FIRST | TXDL_LGC_LAST;
1001 1.1 ragge if (m->m_pkthdr.csum_flags & M_CSUM_TSOv4)
1002 1.1 ragge lcr |= TXDL_SFF;
1003 1.1 ragge TXP_WCSR(TXDL_PAR, par);
1004 1.1 ragge TXP_WCSR(TXDL_LCR, lcr);
1005 1.1 ragge
1006 1.15 joerg bpf_mtap(ifp, m);
1007 1.1 ragge
1008 1.1 ragge sc->sc_nexttx = NEXTTX(nexttx);
1009 1.1 ragge }
1010 1.1 ragge }
1011 1.1 ragge
1012 1.1 ragge /*
1013 1.1 ragge * Allocate DMA memory for transmit descriptor fragments.
1014 1.1 ragge * Only one map is used for all descriptors.
1015 1.1 ragge */
1016 1.1 ragge int
1017 1.1 ragge xge_alloc_txmem(struct xge_softc *sc)
1018 1.1 ragge {
1019 1.1 ragge struct txd *txp;
1020 1.1 ragge bus_dma_segment_t seg;
1021 1.1 ragge bus_addr_t txdp;
1022 1.5 christos void *kva;
1023 1.1 ragge int i, rseg, state;
1024 1.1 ragge
1025 1.1 ragge #define TXMAPSZ (NTXDESCS*NTXFRAGS*sizeof(struct txd))
1026 1.1 ragge state = 0;
1027 1.1 ragge if (bus_dmamem_alloc(sc->sc_dmat, TXMAPSZ, PAGE_SIZE, 0,
1028 1.1 ragge &seg, 1, &rseg, BUS_DMA_NOWAIT))
1029 1.1 ragge goto err;
1030 1.1 ragge state++;
1031 1.1 ragge if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, TXMAPSZ, &kva,
1032 1.1 ragge BUS_DMA_NOWAIT))
1033 1.1 ragge goto err;
1034 1.1 ragge
1035 1.1 ragge state++;
1036 1.1 ragge if (bus_dmamap_create(sc->sc_dmat, TXMAPSZ, 1, TXMAPSZ, 0,
1037 1.1 ragge BUS_DMA_NOWAIT, &sc->sc_txmap))
1038 1.1 ragge goto err;
1039 1.1 ragge state++;
1040 1.1 ragge if (bus_dmamap_load(sc->sc_dmat, sc->sc_txmap,
1041 1.1 ragge kva, TXMAPSZ, NULL, BUS_DMA_NOWAIT))
1042 1.1 ragge goto err;
1043 1.1 ragge
1044 1.1 ragge /* setup transmit array pointers */
1045 1.1 ragge txp = (struct txd *)kva;
1046 1.1 ragge txdp = seg.ds_addr;
1047 1.1 ragge for (txp = (struct txd *)kva, i = 0; i < NTXDESCS; i++) {
1048 1.1 ragge sc->sc_txd[i] = txp;
1049 1.1 ragge sc->sc_txdp[i] = txdp;
1050 1.1 ragge txp += NTXFRAGS;
1051 1.1 ragge txdp += (NTXFRAGS * sizeof(struct txd));
1052 1.1 ragge }
1053 1.1 ragge
1054 1.1 ragge return 0;
1055 1.1 ragge
1056 1.1 ragge err:
1057 1.1 ragge if (state > 2)
1058 1.1 ragge bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap);
1059 1.1 ragge if (state > 1)
1060 1.1 ragge bus_dmamem_unmap(sc->sc_dmat, kva, TXMAPSZ);
1061 1.1 ragge if (state > 0)
1062 1.1 ragge bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1063 1.1 ragge return ENOBUFS;
1064 1.1 ragge }
1065 1.1 ragge
1066 1.1 ragge /*
1067 1.1 ragge * Allocate DMA memory for receive descriptor,
1068 1.1 ragge * only one map is used for all descriptors.
1069 1.1 ragge * link receive descriptor pages together.
1070 1.1 ragge */
1071 1.1 ragge int
1072 1.1 ragge xge_alloc_rxmem(struct xge_softc *sc)
1073 1.1 ragge {
1074 1.1 ragge struct rxd_4k *rxpp;
1075 1.1 ragge bus_dma_segment_t seg;
1076 1.5 christos void *kva;
1077 1.1 ragge int i, rseg, state;
1078 1.1 ragge
1079 1.1 ragge /* sanity check */
1080 1.1 ragge if (sizeof(struct rxd_4k) != XGE_PAGE) {
1081 1.1 ragge printf("bad compiler struct alignment, %d != %d\n",
1082 1.1 ragge (int)sizeof(struct rxd_4k), XGE_PAGE);
1083 1.1 ragge return EINVAL;
1084 1.1 ragge }
1085 1.1 ragge
1086 1.1 ragge state = 0;
1087 1.1 ragge if (bus_dmamem_alloc(sc->sc_dmat, RXMAPSZ, PAGE_SIZE, 0,
1088 1.1 ragge &seg, 1, &rseg, BUS_DMA_NOWAIT))
1089 1.1 ragge goto err;
1090 1.1 ragge state++;
1091 1.1 ragge if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, RXMAPSZ, &kva,
1092 1.1 ragge BUS_DMA_NOWAIT))
1093 1.1 ragge goto err;
1094 1.1 ragge
1095 1.1 ragge state++;
1096 1.1 ragge if (bus_dmamap_create(sc->sc_dmat, RXMAPSZ, 1, RXMAPSZ, 0,
1097 1.1 ragge BUS_DMA_NOWAIT, &sc->sc_rxmap))
1098 1.1 ragge goto err;
1099 1.1 ragge state++;
1100 1.1 ragge if (bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap,
1101 1.1 ragge kva, RXMAPSZ, NULL, BUS_DMA_NOWAIT))
1102 1.1 ragge goto err;
1103 1.1 ragge
1104 1.1 ragge /* setup receive page link pointers */
1105 1.1 ragge for (rxpp = (struct rxd_4k *)kva, i = 0; i < NRXPAGES; i++, rxpp++) {
1106 1.1 ragge sc->sc_rxd_4k[i] = rxpp;
1107 1.1 ragge rxpp->r4_next = (uint64_t)sc->sc_rxmap->dm_segs[0].ds_addr +
1108 1.1 ragge (i*sizeof(struct rxd_4k)) + sizeof(struct rxd_4k);
1109 1.1 ragge }
1110 1.18 christos sc->sc_rxd_4k[NRXPAGES-1]->r4_next =
1111 1.1 ragge (uint64_t)sc->sc_rxmap->dm_segs[0].ds_addr;
1112 1.1 ragge
1113 1.1 ragge return 0;
1114 1.1 ragge
1115 1.1 ragge err:
1116 1.1 ragge if (state > 2)
1117 1.1 ragge bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap);
1118 1.1 ragge if (state > 1)
1119 1.1 ragge bus_dmamem_unmap(sc->sc_dmat, kva, TXMAPSZ);
1120 1.1 ragge if (state > 0)
1121 1.1 ragge bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1122 1.1 ragge return ENOBUFS;
1123 1.1 ragge }
1124 1.1 ragge
1125 1.1 ragge
1126 1.1 ragge /*
1127 1.1 ragge * Add a new mbuf chain to descriptor id.
1128 1.1 ragge */
1129 1.1 ragge int
1130 1.1 ragge xge_add_rxbuf(struct xge_softc *sc, int id)
1131 1.1 ragge {
1132 1.1 ragge struct rxdesc *rxd;
1133 1.1 ragge struct mbuf *m[5];
1134 1.1 ragge int page, desc, error;
1135 1.1 ragge #if RX_MODE == RX_MODE_5
1136 1.1 ragge int i;
1137 1.1 ragge #endif
1138 1.1 ragge
1139 1.1 ragge page = id/NDESC_BUFMODE;
1140 1.1 ragge desc = id%NDESC_BUFMODE;
1141 1.1 ragge
1142 1.1 ragge rxd = &sc->sc_rxd_4k[page]->r4_rxd[desc];
1143 1.1 ragge
1144 1.1 ragge /*
1145 1.1 ragge * Allocate mbufs.
1146 1.1 ragge * Currently five mbufs and two clusters are used,
1147 1.1 ragge * the hardware will put (ethernet, ip, tcp/udp) headers in
1148 1.1 ragge * their own buffer and the clusters are only used for data.
1149 1.1 ragge */
1150 1.1 ragge #if RX_MODE == RX_MODE_1
1151 1.1 ragge MGETHDR(m[0], M_DONTWAIT, MT_DATA);
1152 1.1 ragge if (m[0] == NULL)
1153 1.1 ragge return ENOBUFS;
1154 1.1 ragge MCLGET(m[0], M_DONTWAIT);
1155 1.1 ragge if ((m[0]->m_flags & M_EXT) == 0) {
1156 1.1 ragge m_freem(m[0]);
1157 1.1 ragge return ENOBUFS;
1158 1.1 ragge }
1159 1.1 ragge m[0]->m_len = m[0]->m_pkthdr.len = m[0]->m_ext.ext_size;
1160 1.1 ragge #elif RX_MODE == RX_MODE_3
1161 1.1 ragge #error missing rxmode 3.
1162 1.1 ragge #elif RX_MODE == RX_MODE_5
1163 1.1 ragge MGETHDR(m[0], M_DONTWAIT, MT_DATA);
1164 1.1 ragge for (i = 1; i < 5; i++) {
1165 1.1 ragge MGET(m[i], M_DONTWAIT, MT_DATA);
1166 1.1 ragge }
1167 1.1 ragge if (m[3])
1168 1.1 ragge MCLGET(m[3], M_DONTWAIT);
1169 1.1 ragge if (m[4])
1170 1.1 ragge MCLGET(m[4], M_DONTWAIT);
1171 1.18 christos if (!m[0] || !m[1] || !m[2] || !m[3] || !m[4] ||
1172 1.1 ragge ((m[3]->m_flags & M_EXT) == 0) || ((m[4]->m_flags & M_EXT) == 0)) {
1173 1.1 ragge /* Out of something */
1174 1.1 ragge for (i = 0; i < 5; i++)
1175 1.1 ragge if (m[i] != NULL)
1176 1.1 ragge m_free(m[i]);
1177 1.1 ragge return ENOBUFS;
1178 1.1 ragge }
1179 1.1 ragge /* Link'em together */
1180 1.1 ragge m[0]->m_next = m[1];
1181 1.1 ragge m[1]->m_next = m[2];
1182 1.1 ragge m[2]->m_next = m[3];
1183 1.1 ragge m[3]->m_next = m[4];
1184 1.1 ragge #else
1185 1.1 ragge #error bad mode RX_MODE
1186 1.1 ragge #endif
1187 1.1 ragge
1188 1.1 ragge if (sc->sc_rxb[id])
1189 1.1 ragge bus_dmamap_unload(sc->sc_dmat, sc->sc_rxm[id]);
1190 1.1 ragge sc->sc_rxb[id] = m[0];
1191 1.1 ragge
1192 1.1 ragge error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_rxm[id], m[0],
1193 1.1 ragge BUS_DMA_READ|BUS_DMA_NOWAIT);
1194 1.1 ragge if (error)
1195 1.1 ragge return error;
1196 1.1 ragge bus_dmamap_sync(sc->sc_dmat, sc->sc_rxm[id], 0,
1197 1.1 ragge sc->sc_rxm[id]->dm_mapsize, BUS_DMASYNC_PREREAD);
1198 1.1 ragge
1199 1.1 ragge #if RX_MODE == RX_MODE_1
1200 1.1 ragge rxd->rxd_control2 = RXD_MKCTL2(m[0]->m_len, 0, 0);
1201 1.1 ragge rxd->rxd_buf0 = (uint64_t)sc->sc_rxm[id]->dm_segs[0].ds_addr;
1202 1.1 ragge rxd->rxd_control1 = RXD_CTL1_OWN;
1203 1.1 ragge #elif RX_MODE == RX_MODE_3
1204 1.1 ragge #elif RX_MODE == RX_MODE_5
1205 1.1 ragge rxd->rxd_control3 = RXD_MKCTL3(0, m[3]->m_len, m[4]->m_len);
1206 1.1 ragge rxd->rxd_control2 = RXD_MKCTL2(m[0]->m_len, m[1]->m_len, m[2]->m_len);
1207 1.1 ragge rxd->rxd_buf0 = (uint64_t)sc->sc_rxm[id]->dm_segs[0].ds_addr;
1208 1.1 ragge rxd->rxd_buf1 = (uint64_t)sc->sc_rxm[id]->dm_segs[1].ds_addr;
1209 1.1 ragge rxd->rxd_buf2 = (uint64_t)sc->sc_rxm[id]->dm_segs[2].ds_addr;
1210 1.1 ragge rxd->rxd_buf3 = (uint64_t)sc->sc_rxm[id]->dm_segs[3].ds_addr;
1211 1.1 ragge rxd->rxd_buf4 = (uint64_t)sc->sc_rxm[id]->dm_segs[4].ds_addr;
1212 1.1 ragge rxd->rxd_control1 = RXD_CTL1_OWN;
1213 1.1 ragge #endif
1214 1.1 ragge
1215 1.1 ragge XGE_RXSYNC(id, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1216 1.1 ragge return 0;
1217 1.1 ragge }
1218 1.1 ragge
1219 1.1 ragge /*
1220 1.1 ragge * These magics comes from the FreeBSD driver.
1221 1.1 ragge */
1222 1.1 ragge int
1223 1.1 ragge xge_setup_xgxs(struct xge_softc *sc)
1224 1.1 ragge {
1225 1.1 ragge /* The magic numbers are described in the users guide */
1226 1.1 ragge
1227 1.1 ragge /* Writing to MDIO 0x8000 (Global Config 0) */
1228 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x8000051500000000ULL); DELAY(50);
1229 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80000515000000E0ULL); DELAY(50);
1230 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80000515D93500E4ULL); DELAY(50);
1231 1.1 ragge
1232 1.1 ragge /* Writing to MDIO 0x8000 (Global Config 1) */
1233 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x8001051500000000ULL); DELAY(50);
1234 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80010515000000e0ULL); DELAY(50);
1235 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80010515001e00e4ULL); DELAY(50);
1236 1.1 ragge
1237 1.1 ragge /* Reset the Gigablaze */
1238 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x8002051500000000ULL); DELAY(50);
1239 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80020515000000E0ULL); DELAY(50);
1240 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80020515F21000E4ULL); DELAY(50);
1241 1.1 ragge
1242 1.1 ragge /* read the pole settings */
1243 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x8000051500000000ULL); DELAY(50);
1244 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80000515000000e0ULL); DELAY(50);
1245 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80000515000000ecULL); DELAY(50);
1246 1.1 ragge
1247 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x8001051500000000ULL); DELAY(50);
1248 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80010515000000e0ULL); DELAY(50);
1249 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80010515000000ecULL); DELAY(50);
1250 1.1 ragge
1251 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x8002051500000000ULL); DELAY(50);
1252 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80020515000000e0ULL); DELAY(50);
1253 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x80020515000000ecULL); DELAY(50);
1254 1.1 ragge
1255 1.1 ragge /* Workaround for TX Lane XAUI initialization error.
1256 1.1 ragge Read Xpak PHY register 24 for XAUI lane status */
1257 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x0018040000000000ULL); DELAY(50);
1258 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x00180400000000e0ULL); DELAY(50);
1259 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x00180400000000ecULL); DELAY(50);
1260 1.1 ragge
1261 1.18 christos /*
1262 1.1 ragge * Reading the MDIO control with value 0x1804001c0F001c
1263 1.1 ragge * means the TxLanes were already in sync
1264 1.1 ragge * Reading the MDIO control with value 0x1804000c0x001c
1265 1.1 ragge * means some TxLanes are not in sync where x is a 4-bit
1266 1.1 ragge * value representing each lanes
1267 1.1 ragge */
1268 1.1 ragge #if 0
1269 1.1 ragge val = PIF_RCSR(MDIO_CONTROL);
1270 1.1 ragge if (val != 0x1804001c0F001cULL) {
1271 1.18 christos printf("%s: MDIO_CONTROL: %llx != %llx\n",
1272 1.1 ragge XNAME, val, 0x1804001c0F001cULL);
1273 1.1 ragge return 1;
1274 1.1 ragge }
1275 1.1 ragge #endif
1276 1.1 ragge
1277 1.1 ragge /* Set and remove the DTE XS INTLoopBackN */
1278 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x0000051500000000ULL); DELAY(50);
1279 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x00000515604000e0ULL); DELAY(50);
1280 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x00000515604000e4ULL); DELAY(50);
1281 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x00000515204000e4ULL); DELAY(50);
1282 1.1 ragge PIF_WCSR(DTX_CONTROL, 0x00000515204000ecULL); DELAY(50);
1283 1.1 ragge
1284 1.1 ragge #if 0
1285 1.1 ragge /* Reading the DTX control register Should be 0x5152040001c */
1286 1.1 ragge val = PIF_RCSR(DTX_CONTROL);
1287 1.1 ragge if (val != 0x5152040001cULL) {
1288 1.18 christos printf("%s: DTX_CONTROL: %llx != %llx\n",
1289 1.1 ragge XNAME, val, 0x5152040001cULL);
1290 1.1 ragge return 1;
1291 1.1 ragge }
1292 1.1 ragge #endif
1293 1.1 ragge
1294 1.1 ragge PIF_WCSR(MDIO_CONTROL, 0x0018040000000000ULL); DELAY(50);
1295 1.1 ragge PIF_WCSR(MDIO_CONTROL, 0x00180400000000e0ULL); DELAY(50);
1296 1.1 ragge PIF_WCSR(MDIO_CONTROL, 0x00180400000000ecULL); DELAY(50);
1297 1.1 ragge
1298 1.1 ragge #if 0
1299 1.1 ragge /* Reading the MIOD control should be 0x1804001c0f001c */
1300 1.1 ragge val = PIF_RCSR(MDIO_CONTROL);
1301 1.1 ragge if (val != 0x1804001c0f001cULL) {
1302 1.1 ragge printf("%s: MDIO_CONTROL2: %llx != %llx\n",
1303 1.1 ragge XNAME, val, 0x1804001c0f001cULL);
1304 1.1 ragge return 1;
1305 1.1 ragge }
1306 1.1 ragge #endif
1307 1.1 ragge return 0;
1308 1.1 ragge }
1309