Home | History | Annotate | Line # | Download | only in igc
if_igc.c revision 1.1
      1  1.1  rin /*	$OpenBSD: if_igc.c,v 1.13 2023/04/28 10:18:57 bluhm Exp $	*/
      2  1.1  rin /*-
      3  1.1  rin  * SPDX-License-Identifier: BSD-2-Clause
      4  1.1  rin  *
      5  1.1  rin  * Copyright (c) 2016 Nicole Graziano <nicole (at) nextbsd.org>
      6  1.1  rin  * All rights reserved.
      7  1.1  rin  * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
      8  1.1  rin  *
      9  1.1  rin  * Redistribution and use in source and binary forms, with or without
     10  1.1  rin  * modification, are permitted provided that the following conditions
     11  1.1  rin  * are met:
     12  1.1  rin  * 1. Redistributions of source code must retain the above copyright
     13  1.1  rin  *    notice, this list of conditions and the following disclaimer.
     14  1.1  rin  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.1  rin  *    notice, this list of conditions and the following disclaimer in the
     16  1.1  rin  *    documentation and/or other materials provided with the distribution.
     17  1.1  rin  *
     18  1.1  rin  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  1.1  rin  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  1.1  rin  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  1.1  rin  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  1.1  rin  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  1.1  rin  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  1.1  rin  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  1.1  rin  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  1.1  rin  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  1.1  rin  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  1.1  rin  * SUCH DAMAGE.
     29  1.1  rin  */
     30  1.1  rin 
     31  1.1  rin #include "bpfilter.h"
     32  1.1  rin #include "vlan.h"
     33  1.1  rin 
     34  1.1  rin #include <sys/param.h>
     35  1.1  rin #include <sys/systm.h>
     36  1.1  rin #include <sys/sockio.h>
     37  1.1  rin #include <sys/mbuf.h>
     38  1.1  rin #include <sys/malloc.h>
     39  1.1  rin #include <sys/kernel.h>
     40  1.1  rin #include <sys/socket.h>
     41  1.1  rin #include <sys/device.h>
     42  1.1  rin #include <sys/endian.h>
     43  1.1  rin #include <sys/intrmap.h>
     44  1.1  rin 
     45  1.1  rin #include <net/if.h>
     46  1.1  rin #include <net/if_media.h>
     47  1.1  rin #include <net/toeplitz.h>
     48  1.1  rin 
     49  1.1  rin #include <netinet/in.h>
     50  1.1  rin #include <netinet/if_ether.h>
     51  1.1  rin #include <netinet/ip.h>
     52  1.1  rin #include <netinet/ip6.h>
     53  1.1  rin 
     54  1.1  rin #if NBPFILTER > 0
     55  1.1  rin #include <net/bpf.h>
     56  1.1  rin #endif
     57  1.1  rin 
     58  1.1  rin #include <machine/bus.h>
     59  1.1  rin #include <machine/intr.h>
     60  1.1  rin 
     61  1.1  rin #include <dev/pci/pcivar.h>
     62  1.1  rin #include <dev/pci/pcireg.h>
     63  1.1  rin #include <dev/pci/pcidevs.h>
     64  1.1  rin #include <dev/pci/if_igc.h>
     65  1.1  rin #include <dev/pci/igc_hw.h>
     66  1.1  rin 
     67  1.1  rin const struct pci_matchid igc_devices[] = {
     68  1.1  rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I220_V },
     69  1.1  rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I221_V },
     70  1.1  rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_BLANK_NVM },
     71  1.1  rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_I },
     72  1.1  rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_IT },
     73  1.1  rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K },
     74  1.1  rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K2 },
     75  1.1  rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LM },
     76  1.1  rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LMVP },
     77  1.1  rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_V },
     78  1.1  rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_BLANK_NVM },
     79  1.1  rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_IT },
     80  1.1  rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LM },
     81  1.1  rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_K },
     82  1.1  rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_V }
     83  1.1  rin };
     84  1.1  rin 
     85  1.1  rin /*********************************************************************
     86  1.1  rin  *  Function Prototypes
     87  1.1  rin  *********************************************************************/
     88  1.1  rin int	igc_match(struct device *, void *, void *);
     89  1.1  rin void	igc_attach(struct device *, struct device *, void *);
     90  1.1  rin int	igc_detach(struct device *, int);
     91  1.1  rin 
     92  1.1  rin void	igc_identify_hardware(struct igc_softc *);
     93  1.1  rin int	igc_allocate_pci_resources(struct igc_softc *);
     94  1.1  rin int	igc_allocate_queues(struct igc_softc *);
     95  1.1  rin void	igc_free_pci_resources(struct igc_softc *);
     96  1.1  rin void	igc_reset(struct igc_softc *);
     97  1.1  rin void	igc_init_dmac(struct igc_softc *, uint32_t);
     98  1.1  rin int	igc_allocate_msix(struct igc_softc *);
     99  1.1  rin void	igc_setup_msix(struct igc_softc *);
    100  1.1  rin int	igc_dma_malloc(struct igc_softc *, bus_size_t, struct igc_dma_alloc *);
    101  1.1  rin void	igc_dma_free(struct igc_softc *, struct igc_dma_alloc *);
    102  1.1  rin void	igc_setup_interface(struct igc_softc *);
    103  1.1  rin 
    104  1.1  rin void	igc_init(void *);
    105  1.1  rin void	igc_start(struct ifqueue *);
    106  1.1  rin int	igc_txeof(struct tx_ring *);
    107  1.1  rin void	igc_stop(struct igc_softc *);
    108  1.1  rin int	igc_ioctl(struct ifnet *, u_long, caddr_t);
    109  1.1  rin int	igc_rxrinfo(struct igc_softc *, struct if_rxrinfo *);
    110  1.1  rin int	igc_rxfill(struct rx_ring *);
    111  1.1  rin void	igc_rxrefill(void *);
    112  1.1  rin int	igc_rxeof(struct rx_ring *);
    113  1.1  rin void	igc_rx_checksum(uint32_t, struct mbuf *, uint32_t);
    114  1.1  rin void	igc_watchdog(struct ifnet *);
    115  1.1  rin void	igc_media_status(struct ifnet *, struct ifmediareq *);
    116  1.1  rin int	igc_media_change(struct ifnet *);
    117  1.1  rin void	igc_iff(struct igc_softc *);
    118  1.1  rin void	igc_update_link_status(struct igc_softc *);
    119  1.1  rin int	igc_get_buf(struct rx_ring *, int);
    120  1.1  rin int	igc_tx_ctx_setup(struct tx_ring *, struct mbuf *, int, uint32_t *);
    121  1.1  rin 
    122  1.1  rin void	igc_configure_queues(struct igc_softc *);
    123  1.1  rin void	igc_set_queues(struct igc_softc *, uint32_t, uint32_t, int);
    124  1.1  rin void	igc_enable_queue(struct igc_softc *, uint32_t);
    125  1.1  rin void	igc_enable_intr(struct igc_softc *);
    126  1.1  rin void	igc_disable_intr(struct igc_softc *);
    127  1.1  rin int	igc_intr_link(void *);
    128  1.1  rin int	igc_intr_queue(void *);
    129  1.1  rin 
    130  1.1  rin int	igc_allocate_transmit_buffers(struct tx_ring *);
    131  1.1  rin int	igc_setup_transmit_structures(struct igc_softc *);
    132  1.1  rin int	igc_setup_transmit_ring(struct tx_ring *);
    133  1.1  rin void	igc_initialize_transmit_unit(struct igc_softc *);
    134  1.1  rin void	igc_free_transmit_structures(struct igc_softc *);
    135  1.1  rin void	igc_free_transmit_buffers(struct tx_ring *);
    136  1.1  rin int	igc_allocate_receive_buffers(struct rx_ring *);
    137  1.1  rin int	igc_setup_receive_structures(struct igc_softc *);
    138  1.1  rin int	igc_setup_receive_ring(struct rx_ring *);
    139  1.1  rin void	igc_initialize_receive_unit(struct igc_softc *);
    140  1.1  rin void	igc_free_receive_structures(struct igc_softc *);
    141  1.1  rin void	igc_free_receive_buffers(struct rx_ring *);
    142  1.1  rin void	igc_initialize_rss_mapping(struct igc_softc *);
    143  1.1  rin 
    144  1.1  rin void	igc_get_hw_control(struct igc_softc *);
    145  1.1  rin void	igc_release_hw_control(struct igc_softc *);
    146  1.1  rin int	igc_is_valid_ether_addr(uint8_t *);
    147  1.1  rin 
    148  1.1  rin /*********************************************************************
    149  1.1  rin  *  OpenBSD Device Interface Entry Points
    150  1.1  rin  *********************************************************************/
    151  1.1  rin 
    152  1.1  rin struct cfdriver igc_cd = {
    153  1.1  rin 	NULL, "igc", DV_IFNET
    154  1.1  rin };
    155  1.1  rin 
    156  1.1  rin const struct cfattach igc_ca = {
    157  1.1  rin 	sizeof(struct igc_softc), igc_match, igc_attach, igc_detach
    158  1.1  rin };
    159  1.1  rin 
    160  1.1  rin /*********************************************************************
    161  1.1  rin  *  Device identification routine
    162  1.1  rin  *
    163  1.1  rin  *  igc_match determines if the driver should be loaded on
    164  1.1  rin  *  adapter based on PCI vendor/device id of the adapter.
    165  1.1  rin  *
    166  1.1  rin  *  return 0 on success, positive on failure
    167  1.1  rin  *********************************************************************/
    168  1.1  rin int
    169  1.1  rin igc_match(struct device *parent, void *match, void *aux)
    170  1.1  rin {
    171  1.1  rin 	return pci_matchbyid((struct pci_attach_args *)aux, igc_devices,
    172  1.1  rin 	    nitems(igc_devices));
    173  1.1  rin }
    174  1.1  rin 
    175  1.1  rin /*********************************************************************
    176  1.1  rin  *  Device initialization routine
    177  1.1  rin  *
    178  1.1  rin  *  The attach entry point is called when the driver is being loaded.
    179  1.1  rin  *  This routine identifies the type of hardware, allocates all resources
    180  1.1  rin  *  and initializes the hardware.
    181  1.1  rin  *
    182  1.1  rin  *  return 0 on success, positive on failure
    183  1.1  rin  *********************************************************************/
    184  1.1  rin void
    185  1.1  rin igc_attach(struct device *parent, struct device *self, void *aux)
    186  1.1  rin {
    187  1.1  rin 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    188  1.1  rin 	struct igc_softc *sc = (struct igc_softc *)self;
    189  1.1  rin 	struct igc_hw *hw = &sc->hw;
    190  1.1  rin 
    191  1.1  rin 	sc->osdep.os_sc = sc;
    192  1.1  rin 	sc->osdep.os_pa = *pa;
    193  1.1  rin 
    194  1.1  rin 	/* Determine hardware and mac info */
    195  1.1  rin 	igc_identify_hardware(sc);
    196  1.1  rin 
    197  1.1  rin 	sc->num_tx_desc = IGC_DEFAULT_TXD;
    198  1.1  rin 	sc->num_rx_desc = IGC_DEFAULT_RXD;
    199  1.1  rin 
    200  1.1  rin 	 /* Setup PCI resources */
    201  1.1  rin 	if (igc_allocate_pci_resources(sc))
    202  1.1  rin 		 goto err_pci;
    203  1.1  rin 
    204  1.1  rin 	/* Allocate TX/RX queues */
    205  1.1  rin 	if (igc_allocate_queues(sc))
    206  1.1  rin 		 goto err_pci;
    207  1.1  rin 
    208  1.1  rin 	/* Do shared code initialization */
    209  1.1  rin 	if (igc_setup_init_funcs(hw, true)) {
    210  1.1  rin 		printf(": Setup of shared code failed\n");
    211  1.1  rin 		goto err_pci;
    212  1.1  rin 	}
    213  1.1  rin 
    214  1.1  rin 	hw->mac.autoneg = DO_AUTO_NEG;
    215  1.1  rin 	hw->phy.autoneg_wait_to_complete = false;
    216  1.1  rin 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
    217  1.1  rin 
    218  1.1  rin 	/* Copper options. */
    219  1.1  rin 	if (hw->phy.media_type == igc_media_type_copper)
    220  1.1  rin 		hw->phy.mdix = AUTO_ALL_MODES;
    221  1.1  rin 
    222  1.1  rin 	/* Set the max frame size. */
    223  1.1  rin 	sc->hw.mac.max_frame_size = 9234;
    224  1.1  rin 
    225  1.1  rin 	/* Allocate multicast array memory. */
    226  1.1  rin 	sc->mta = mallocarray(ETHER_ADDR_LEN, MAX_NUM_MULTICAST_ADDRESSES,
    227  1.1  rin 	    M_DEVBUF, M_NOWAIT);
    228  1.1  rin 	if (sc->mta == NULL) {
    229  1.1  rin 		printf(": Can not allocate multicast setup array\n");
    230  1.1  rin 		goto err_late;
    231  1.1  rin 	}
    232  1.1  rin 
    233  1.1  rin 	/* Check SOL/IDER usage. */
    234  1.1  rin 	if (igc_check_reset_block(hw))
    235  1.1  rin 		printf(": PHY reset is blocked due to SOL/IDER session\n");
    236  1.1  rin 
    237  1.1  rin 	/* Disable Energy Efficient Ethernet. */
    238  1.1  rin 	sc->hw.dev_spec._i225.eee_disable = true;
    239  1.1  rin 
    240  1.1  rin 	igc_reset_hw(hw);
    241  1.1  rin 
    242  1.1  rin 	/* Make sure we have a good EEPROM before we read from it. */
    243  1.1  rin 	if (igc_validate_nvm_checksum(hw) < 0) {
    244  1.1  rin 		/*
    245  1.1  rin 		 * Some PCI-E parts fail the first check due to
    246  1.1  rin 		 * the link being in sleep state, call it again,
    247  1.1  rin 		 * if it fails a second time its a real issue.
    248  1.1  rin 		 */
    249  1.1  rin 		if (igc_validate_nvm_checksum(hw) < 0) {
    250  1.1  rin 			printf(": The EEPROM checksum is not valid\n");
    251  1.1  rin 			goto err_late;
    252  1.1  rin 		}
    253  1.1  rin 	}
    254  1.1  rin 
    255  1.1  rin 	/* Copy the permanent MAC address out of the EEPROM. */
    256  1.1  rin 	if (igc_read_mac_addr(hw) < 0) {
    257  1.1  rin 		printf(": EEPROM read error while reading MAC address\n");
    258  1.1  rin 		goto err_late;
    259  1.1  rin 	}
    260  1.1  rin 
    261  1.1  rin 	if (!igc_is_valid_ether_addr(hw->mac.addr)) {
    262  1.1  rin 		printf(": Invalid MAC address\n");
    263  1.1  rin 		goto err_late;
    264  1.1  rin 	}
    265  1.1  rin 
    266  1.1  rin 	memcpy(sc->sc_ac.ac_enaddr, sc->hw.mac.addr, ETHER_ADDR_LEN);
    267  1.1  rin 
    268  1.1  rin 	if (igc_allocate_msix(sc))
    269  1.1  rin 		goto err_late;
    270  1.1  rin 
    271  1.1  rin 	/* Setup OS specific network interface. */
    272  1.1  rin 	igc_setup_interface(sc);
    273  1.1  rin 
    274  1.1  rin 	igc_reset(sc);
    275  1.1  rin 	hw->mac.get_link_status = true;
    276  1.1  rin 	igc_update_link_status(sc);
    277  1.1  rin 
    278  1.1  rin 	/* The driver can now take control from firmware. */
    279  1.1  rin 	igc_get_hw_control(sc);
    280  1.1  rin 
    281  1.1  rin 	printf(", address %s\n", ether_sprintf(sc->hw.mac.addr));
    282  1.1  rin 	return;
    283  1.1  rin 
    284  1.1  rin err_late:
    285  1.1  rin 	igc_release_hw_control(sc);
    286  1.1  rin err_pci:
    287  1.1  rin 	igc_free_pci_resources(sc);
    288  1.1  rin 	free(sc->mta, M_DEVBUF, ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
    289  1.1  rin }
    290  1.1  rin 
    291  1.1  rin /*********************************************************************
    292  1.1  rin  *  Device removal routine
    293  1.1  rin  *
    294  1.1  rin  *  The detach entry point is called when the driver is being removed.
    295  1.1  rin  *  This routine stops the adapter and deallocates all the resources
    296  1.1  rin  *  that were allocated for driver operation.
    297  1.1  rin  *
    298  1.1  rin  *  return 0 on success, positive on failure
    299  1.1  rin  *********************************************************************/
    300  1.1  rin int
    301  1.1  rin igc_detach(struct device *self, int flags)
    302  1.1  rin {
    303  1.1  rin 	struct igc_softc *sc = (struct igc_softc *)self;
    304  1.1  rin 	struct ifnet *ifp = &sc->sc_ac.ac_if;
    305  1.1  rin 
    306  1.1  rin 	igc_stop(sc);
    307  1.1  rin 
    308  1.1  rin 	igc_phy_hw_reset(&sc->hw);
    309  1.1  rin 	igc_release_hw_control(sc);
    310  1.1  rin 
    311  1.1  rin 	ether_ifdetach(ifp);
    312  1.1  rin 	if_detach(ifp);
    313  1.1  rin 
    314  1.1  rin 	igc_free_pci_resources(sc);
    315  1.1  rin 
    316  1.1  rin 	igc_free_transmit_structures(sc);
    317  1.1  rin 	igc_free_receive_structures(sc);
    318  1.1  rin 	free(sc->mta, M_DEVBUF, ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
    319  1.1  rin 
    320  1.1  rin 	return 0;
    321  1.1  rin }
    322  1.1  rin 
    323  1.1  rin void
    324  1.1  rin igc_identify_hardware(struct igc_softc *sc)
    325  1.1  rin {
    326  1.1  rin 	struct igc_osdep *os = &sc->osdep;
    327  1.1  rin 	struct pci_attach_args *pa = &os->os_pa;
    328  1.1  rin 
    329  1.1  rin 	/* Save off the information about this board. */
    330  1.1  rin 	sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
    331  1.1  rin 
    332  1.1  rin 	/* Do shared code init and setup. */
    333  1.1  rin 	if (igc_set_mac_type(&sc->hw)) {
    334  1.1  rin 		printf(": Setup init failure\n");
    335  1.1  rin 		return;
    336  1.1  rin         }
    337  1.1  rin }
    338  1.1  rin 
    339  1.1  rin int
    340  1.1  rin igc_allocate_pci_resources(struct igc_softc *sc)
    341  1.1  rin {
    342  1.1  rin 	struct igc_osdep *os = &sc->osdep;
    343  1.1  rin 	struct pci_attach_args *pa = &os->os_pa;
    344  1.1  rin 	pcireg_t memtype;
    345  1.1  rin 
    346  1.1  rin 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IGC_PCIREG);
    347  1.1  rin 	if (pci_mapreg_map(pa, IGC_PCIREG, memtype, 0, &os->os_memt,
    348  1.1  rin 	    &os->os_memh, &os->os_membase, &os->os_memsize, 0)) {
    349  1.1  rin 		printf(": unable to map registers\n");
    350  1.1  rin 		return ENXIO;
    351  1.1  rin 	}
    352  1.1  rin 	sc->hw.hw_addr = (uint8_t *)os->os_membase;
    353  1.1  rin 	sc->hw.back = os;
    354  1.1  rin 
    355  1.1  rin 	igc_setup_msix(sc);
    356  1.1  rin 
    357  1.1  rin 	return 0;
    358  1.1  rin }
    359  1.1  rin 
    360  1.1  rin int
    361  1.1  rin igc_allocate_queues(struct igc_softc *sc)
    362  1.1  rin {
    363  1.1  rin 	struct igc_queue *iq;
    364  1.1  rin 	struct tx_ring *txr;
    365  1.1  rin 	struct rx_ring *rxr;
    366  1.1  rin 	int i, rsize, rxconf, tsize, txconf;
    367  1.1  rin 
    368  1.1  rin 	/* Allocate the top level queue structs. */
    369  1.1  rin 	sc->queues = mallocarray(sc->sc_nqueues, sizeof(struct igc_queue),
    370  1.1  rin 	    M_DEVBUF, M_NOWAIT | M_ZERO);
    371  1.1  rin 	if (sc->queues == NULL) {
    372  1.1  rin 		printf("%s: unable to allocate queue\n", DEVNAME(sc));
    373  1.1  rin 		goto fail;
    374  1.1  rin 	}
    375  1.1  rin 
    376  1.1  rin 	/* Allocate the TX ring. */
    377  1.1  rin 	sc->tx_rings = mallocarray(sc->sc_nqueues, sizeof(struct tx_ring),
    378  1.1  rin 	    M_DEVBUF, M_NOWAIT | M_ZERO);
    379  1.1  rin 	if (sc->tx_rings == NULL) {
    380  1.1  rin 		printf("%s: unable to allocate TX ring\n", DEVNAME(sc));
    381  1.1  rin 		goto fail;
    382  1.1  rin 	}
    383  1.1  rin 
    384  1.1  rin 	/* Allocate the RX ring. */
    385  1.1  rin 	sc->rx_rings = mallocarray(sc->sc_nqueues, sizeof(struct rx_ring),
    386  1.1  rin 	    M_DEVBUF, M_NOWAIT | M_ZERO);
    387  1.1  rin 	if (sc->rx_rings == NULL) {
    388  1.1  rin 		printf("%s: unable to allocate RX ring\n", DEVNAME(sc));
    389  1.1  rin 		goto rx_fail;
    390  1.1  rin 	}
    391  1.1  rin 
    392  1.1  rin 	txconf = rxconf = 0;
    393  1.1  rin 
    394  1.1  rin 	/* Set up the TX queues. */
    395  1.1  rin 	tsize = roundup2(sc->num_tx_desc * sizeof(union igc_adv_tx_desc),
    396  1.1  rin 	    IGC_DBA_ALIGN);
    397  1.1  rin 	for (i = 0; i < sc->sc_nqueues; i++, txconf++) {
    398  1.1  rin 		txr = &sc->tx_rings[i];
    399  1.1  rin 		txr->sc = sc;
    400  1.1  rin 		txr->me = i;
    401  1.1  rin 
    402  1.1  rin 		if (igc_dma_malloc(sc, tsize, &txr->txdma)) {
    403  1.1  rin 			printf("%s: unable to allocate TX descriptor\n",
    404  1.1  rin 			    DEVNAME(sc));
    405  1.1  rin 			goto err_tx_desc;
    406  1.1  rin 		}
    407  1.1  rin 		txr->tx_base = (union igc_adv_tx_desc *)txr->txdma.dma_vaddr;
    408  1.1  rin 		bzero((void *)txr->tx_base, tsize);
    409  1.1  rin 	}
    410  1.1  rin 
    411  1.1  rin 	/* Set up the RX queues. */
    412  1.1  rin 	rsize = roundup2(sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
    413  1.1  rin 	    IGC_DBA_ALIGN);
    414  1.1  rin 	for (i = 0; i < sc->sc_nqueues; i++, rxconf++) {
    415  1.1  rin 		rxr = &sc->rx_rings[i];
    416  1.1  rin 		rxr->sc = sc;
    417  1.1  rin 		rxr->me = i;
    418  1.1  rin 		timeout_set(&rxr->rx_refill, igc_rxrefill, rxr);
    419  1.1  rin 
    420  1.1  rin 		if (igc_dma_malloc(sc, rsize, &rxr->rxdma)) {
    421  1.1  rin 			printf("%s: unable to allocate RX descriptor\n",
    422  1.1  rin 			    DEVNAME(sc));
    423  1.1  rin 			goto err_rx_desc;
    424  1.1  rin 		}
    425  1.1  rin 		rxr->rx_base = (union igc_adv_rx_desc *)rxr->rxdma.dma_vaddr;
    426  1.1  rin 		bzero((void *)rxr->rx_base, rsize);
    427  1.1  rin 	}
    428  1.1  rin 
    429  1.1  rin 	/* Set up the queue holding structs. */
    430  1.1  rin 	for (i = 0; i < sc->sc_nqueues; i++) {
    431  1.1  rin 		iq = &sc->queues[i];
    432  1.1  rin 		iq->sc = sc;
    433  1.1  rin 		iq->txr = &sc->tx_rings[i];
    434  1.1  rin 		iq->rxr = &sc->rx_rings[i];
    435  1.1  rin 		snprintf(iq->name, sizeof(iq->name), "%s:%d", DEVNAME(sc), i);
    436  1.1  rin 	}
    437  1.1  rin 
    438  1.1  rin 	return 0;
    439  1.1  rin 
    440  1.1  rin err_rx_desc:
    441  1.1  rin 	for (rxr = sc->rx_rings; rxconf > 0; rxr++, rxconf--)
    442  1.1  rin 		igc_dma_free(sc, &rxr->rxdma);
    443  1.1  rin err_tx_desc:
    444  1.1  rin 	for (txr = sc->tx_rings; txconf > 0; txr++, txconf--)
    445  1.1  rin 		igc_dma_free(sc, &txr->txdma);
    446  1.1  rin 	free(sc->rx_rings, M_DEVBUF, sc->sc_nqueues * sizeof(struct rx_ring));
    447  1.1  rin 	sc->rx_rings = NULL;
    448  1.1  rin rx_fail:
    449  1.1  rin 	free(sc->tx_rings, M_DEVBUF, sc->sc_nqueues * sizeof(struct tx_ring));
    450  1.1  rin 	sc->tx_rings = NULL;
    451  1.1  rin fail:
    452  1.1  rin 	return ENOMEM;
    453  1.1  rin }
    454  1.1  rin 
    455  1.1  rin void
    456  1.1  rin igc_free_pci_resources(struct igc_softc *sc)
    457  1.1  rin {
    458  1.1  rin 	struct igc_osdep *os = &sc->osdep;
    459  1.1  rin 	struct pci_attach_args *pa = &os->os_pa;
    460  1.1  rin 	struct igc_queue *iq = sc->queues;
    461  1.1  rin 	int i;
    462  1.1  rin 
    463  1.1  rin 	/* Release all msix queue resources. */
    464  1.1  rin 	for (i = 0; i < sc->sc_nqueues; i++, iq++) {
    465  1.1  rin 		if (iq->tag)
    466  1.1  rin 			pci_intr_disestablish(pa->pa_pc, iq->tag);
    467  1.1  rin 		iq->tag = NULL;
    468  1.1  rin 	}
    469  1.1  rin 
    470  1.1  rin 	if (sc->tag)
    471  1.1  rin 		pci_intr_disestablish(pa->pa_pc, sc->tag);
    472  1.1  rin 	sc->tag = NULL;
    473  1.1  rin 	if (os->os_membase != 0)
    474  1.1  rin 		bus_space_unmap(os->os_memt, os->os_memh, os->os_memsize);
    475  1.1  rin 	os->os_membase = 0;
    476  1.1  rin }
    477  1.1  rin 
    478  1.1  rin /*********************************************************************
    479  1.1  rin  *
    480  1.1  rin  *  Initialize the hardware to a configuration as specified by the
    481  1.1  rin  *  adapter structure.
    482  1.1  rin  *
    483  1.1  rin  **********************************************************************/
    484  1.1  rin void
    485  1.1  rin igc_reset(struct igc_softc *sc)
    486  1.1  rin {
    487  1.1  rin 	struct igc_hw *hw = &sc->hw;
    488  1.1  rin 	uint32_t pba;
    489  1.1  rin 	uint16_t rx_buffer_size;
    490  1.1  rin 
    491  1.1  rin 	/* Let the firmware know the OS is in control */
    492  1.1  rin 	igc_get_hw_control(sc);
    493  1.1  rin 
    494  1.1  rin 	/*
    495  1.1  rin 	 * Packet Buffer Allocation (PBA)
    496  1.1  rin 	 * Writing PBA sets the receive portion of the buffer
    497  1.1  rin 	 * the remainder is used for the transmit buffer.
    498  1.1  rin 	 */
    499  1.1  rin 	pba = IGC_PBA_34K;
    500  1.1  rin 
    501  1.1  rin 	/*
    502  1.1  rin 	 * These parameters control the automatic generation (Tx) and
    503  1.1  rin 	 * response (Rx) to Ethernet PAUSE frames.
    504  1.1  rin 	 * - High water mark should allow for at least two frames to be
    505  1.1  rin 	 *   received after sending an XOFF.
    506  1.1  rin 	 * - Low water mark works best when it is very near the high water mark.
    507  1.1  rin 	 *   This allows the receiver to restart by sending XON when it has
    508  1.1  rin 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
    509  1.1  rin 	 *   restart after one full frame is pulled from the buffer. There
    510  1.1  rin 	 *   could be several smaller frames in the buffer and if so they will
    511  1.1  rin 	 *   not trigger the XON until their total number reduces the buffer
    512  1.1  rin 	 *   by 1500.
    513  1.1  rin 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
    514  1.1  rin 	 */
    515  1.1  rin 	rx_buffer_size = (pba & 0xffff) << 10;
    516  1.1  rin 	hw->fc.high_water = rx_buffer_size -
    517  1.1  rin 	    roundup2(sc->hw.mac.max_frame_size, 1024);
    518  1.1  rin 	/* 16-byte granularity */
    519  1.1  rin 	hw->fc.low_water = hw->fc.high_water - 16;
    520  1.1  rin 
    521  1.1  rin 	if (sc->fc) /* locally set flow control value? */
    522  1.1  rin 		hw->fc.requested_mode = sc->fc;
    523  1.1  rin 	else
    524  1.1  rin 		hw->fc.requested_mode = igc_fc_full;
    525  1.1  rin 
    526  1.1  rin 	hw->fc.pause_time = IGC_FC_PAUSE_TIME;
    527  1.1  rin 
    528  1.1  rin 	hw->fc.send_xon = true;
    529  1.1  rin 
    530  1.1  rin 	/* Issue a global reset */
    531  1.1  rin 	igc_reset_hw(hw);
    532  1.1  rin 	IGC_WRITE_REG(hw, IGC_WUC, 0);
    533  1.1  rin 
    534  1.1  rin 	/* and a re-init */
    535  1.1  rin 	if (igc_init_hw(hw) < 0) {
    536  1.1  rin 		printf(": Hardware Initialization Failed\n");
    537  1.1  rin 		return;
    538  1.1  rin 	}
    539  1.1  rin 
    540  1.1  rin 	/* Setup DMA Coalescing */
    541  1.1  rin 	igc_init_dmac(sc, pba);
    542  1.1  rin 
    543  1.1  rin 	IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
    544  1.1  rin 	igc_get_phy_info(hw);
    545  1.1  rin 	igc_check_for_link(hw);
    546  1.1  rin }
    547  1.1  rin 
    548  1.1  rin /*********************************************************************
    549  1.1  rin  *
    550  1.1  rin  *  Initialize the DMA Coalescing feature
    551  1.1  rin  *
    552  1.1  rin  **********************************************************************/
    553  1.1  rin void
    554  1.1  rin igc_init_dmac(struct igc_softc *sc, uint32_t pba)
    555  1.1  rin {
    556  1.1  rin 	struct igc_hw *hw = &sc->hw;
    557  1.1  rin 	uint32_t dmac, reg = ~IGC_DMACR_DMAC_EN;
    558  1.1  rin 	uint16_t hwm, max_frame_size;
    559  1.1  rin 	int status;
    560  1.1  rin 
    561  1.1  rin 	max_frame_size = sc->hw.mac.max_frame_size;
    562  1.1  rin 
    563  1.1  rin 	if (sc->dmac == 0) { /* Disabling it */
    564  1.1  rin 		IGC_WRITE_REG(hw, IGC_DMACR, reg);
    565  1.1  rin 		return;
    566  1.1  rin 	} else
    567  1.1  rin 		printf(": DMA Coalescing enabled\n");
    568  1.1  rin 
    569  1.1  rin 	/* Set starting threshold */
    570  1.1  rin 	IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
    571  1.1  rin 
    572  1.1  rin 	hwm = 64 * pba - max_frame_size / 16;
    573  1.1  rin 	if (hwm < 64 * (pba - 6))
    574  1.1  rin 		hwm = 64 * (pba - 6);
    575  1.1  rin 	reg = IGC_READ_REG(hw, IGC_FCRTC);
    576  1.1  rin 	reg &= ~IGC_FCRTC_RTH_COAL_MASK;
    577  1.1  rin 	reg |= ((hwm << IGC_FCRTC_RTH_COAL_SHIFT)
    578  1.1  rin 		& IGC_FCRTC_RTH_COAL_MASK);
    579  1.1  rin 	IGC_WRITE_REG(hw, IGC_FCRTC, reg);
    580  1.1  rin 
    581  1.1  rin 	dmac = pba - max_frame_size / 512;
    582  1.1  rin 	if (dmac < pba - 10)
    583  1.1  rin 		dmac = pba - 10;
    584  1.1  rin 	reg = IGC_READ_REG(hw, IGC_DMACR);
    585  1.1  rin 	reg &= ~IGC_DMACR_DMACTHR_MASK;
    586  1.1  rin 	reg |= ((dmac << IGC_DMACR_DMACTHR_SHIFT)
    587  1.1  rin 		& IGC_DMACR_DMACTHR_MASK);
    588  1.1  rin 
    589  1.1  rin 	/* transition to L0x or L1 if available..*/
    590  1.1  rin 	reg |= (IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK);
    591  1.1  rin 
    592  1.1  rin 	/* Check if status is 2.5Gb backplane connection
    593  1.1  rin 	 * before configuration of watchdog timer, which is
    594  1.1  rin 	 * in msec values in 12.8usec intervals
    595  1.1  rin 	 * watchdog timer= msec values in 32usec intervals
    596  1.1  rin 	 * for non 2.5Gb connection
    597  1.1  rin 	 */
    598  1.1  rin 	status = IGC_READ_REG(hw, IGC_STATUS);
    599  1.1  rin 	if ((status & IGC_STATUS_2P5_SKU) &&
    600  1.1  rin 	    (!(status & IGC_STATUS_2P5_SKU_OVER)))
    601  1.1  rin 		reg |= ((sc->dmac * 5) >> 6);
    602  1.1  rin 	else
    603  1.1  rin 		reg |= (sc->dmac >> 5);
    604  1.1  rin 
    605  1.1  rin 	IGC_WRITE_REG(hw, IGC_DMACR, reg);
    606  1.1  rin 
    607  1.1  rin 	IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
    608  1.1  rin 
    609  1.1  rin 	/* Set the interval before transition */
    610  1.1  rin 	reg = IGC_READ_REG(hw, IGC_DMCTLX);
    611  1.1  rin 	reg |= IGC_DMCTLX_DCFLUSH_DIS;
    612  1.1  rin 
    613  1.1  rin 	/*
    614  1.1  rin 	** in 2.5Gb connection, TTLX unit is 0.4 usec
    615  1.1  rin 	** which is 0x4*2 = 0xA. But delay is still 4 usec
    616  1.1  rin 	*/
    617  1.1  rin 	status = IGC_READ_REG(hw, IGC_STATUS);
    618  1.1  rin 	if ((status & IGC_STATUS_2P5_SKU) &&
    619  1.1  rin 	    (!(status & IGC_STATUS_2P5_SKU_OVER)))
    620  1.1  rin 		reg |= 0xA;
    621  1.1  rin 	else
    622  1.1  rin 		reg |= 0x4;
    623  1.1  rin 
    624  1.1  rin 	IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
    625  1.1  rin 
    626  1.1  rin 	/* free space in tx packet buffer to wake from DMA coal */
    627  1.1  rin 	IGC_WRITE_REG(hw, IGC_DMCTXTH, (IGC_TXPBSIZE -
    628  1.1  rin 	    (2 * max_frame_size)) >> 6);
    629  1.1  rin 
    630  1.1  rin 	/* make low power state decision controlled by DMA coal */
    631  1.1  rin 	reg = IGC_READ_REG(hw, IGC_PCIEMISC);
    632  1.1  rin 	reg &= ~IGC_PCIEMISC_LX_DECISION;
    633  1.1  rin 	IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
    634  1.1  rin }
    635  1.1  rin 
    636  1.1  rin int
    637  1.1  rin igc_allocate_msix(struct igc_softc *sc)
    638  1.1  rin {
    639  1.1  rin 	struct igc_osdep *os = &sc->osdep;
    640  1.1  rin 	struct pci_attach_args *pa = &os->os_pa;
    641  1.1  rin 	struct igc_queue *iq;
    642  1.1  rin 	pci_intr_handle_t ih;
    643  1.1  rin 	int i, error = 0;
    644  1.1  rin 
    645  1.1  rin 	for (i = 0, iq = sc->queues; i < sc->sc_nqueues; i++, iq++) {
    646  1.1  rin 		if (pci_intr_map_msix(pa, i, &ih)) {
    647  1.1  rin 			printf("%s: unable to map msi-x vector %d\n",
    648  1.1  rin 			    DEVNAME(sc), i);
    649  1.1  rin 			error = ENOMEM;
    650  1.1  rin 			goto fail;
    651  1.1  rin 		}
    652  1.1  rin 
    653  1.1  rin 		iq->tag = pci_intr_establish_cpu(pa->pa_pc, ih,
    654  1.1  rin 		    IPL_NET | IPL_MPSAFE, intrmap_cpu(sc->sc_intrmap, i),
    655  1.1  rin 		    igc_intr_queue, iq, iq->name);
    656  1.1  rin 		if (iq->tag == NULL) {
    657  1.1  rin 			printf("%s: unable to establish interrupt %d\n",
    658  1.1  rin 			    DEVNAME(sc), i);
    659  1.1  rin 			error = ENOMEM;
    660  1.1  rin 			goto fail;
    661  1.1  rin 		}
    662  1.1  rin 
    663  1.1  rin 		iq->msix = i;
    664  1.1  rin 		iq->eims = 1 << i;
    665  1.1  rin 	}
    666  1.1  rin 
    667  1.1  rin 	/* Now the link status/control last MSI-X vector. */
    668  1.1  rin 	if (pci_intr_map_msix(pa, i, &ih)) {
    669  1.1  rin 		printf("%s: unable to map link vector\n", DEVNAME(sc));
    670  1.1  rin 		error = ENOMEM;
    671  1.1  rin 		goto fail;
    672  1.1  rin 	}
    673  1.1  rin 
    674  1.1  rin 	sc->tag = pci_intr_establish(pa->pa_pc, ih, IPL_NET | IPL_MPSAFE,
    675  1.1  rin 	    igc_intr_link, sc, sc->sc_dev.dv_xname);
    676  1.1  rin 	if (sc->tag == NULL) {
    677  1.1  rin 		printf("%s: unable to establish link interrupt\n", DEVNAME(sc));
    678  1.1  rin 		error = ENOMEM;
    679  1.1  rin 		goto fail;
    680  1.1  rin 	}
    681  1.1  rin 
    682  1.1  rin 	sc->linkvec = i;
    683  1.1  rin 	printf(", %s, %d queue%s", pci_intr_string(pa->pa_pc, ih),
    684  1.1  rin 	    i, (i > 1) ? "s" : "");
    685  1.1  rin 
    686  1.1  rin 	return 0;
    687  1.1  rin fail:
    688  1.1  rin 	for (iq = sc->queues; i > 0; i--, iq++) {
    689  1.1  rin 		if (iq->tag == NULL)
    690  1.1  rin 			continue;
    691  1.1  rin 		pci_intr_disestablish(pa->pa_pc, iq->tag);
    692  1.1  rin 		iq->tag = NULL;
    693  1.1  rin 	}
    694  1.1  rin 
    695  1.1  rin 	return error;
    696  1.1  rin }
    697  1.1  rin 
    698  1.1  rin void
    699  1.1  rin igc_setup_msix(struct igc_softc *sc)
    700  1.1  rin {
    701  1.1  rin 	struct igc_osdep *os = &sc->osdep;
    702  1.1  rin 	struct pci_attach_args *pa = &os->os_pa;
    703  1.1  rin 	int nmsix;
    704  1.1  rin 
    705  1.1  rin 	nmsix = pci_intr_msix_count(pa);
    706  1.1  rin 	if (nmsix <= 1)
    707  1.1  rin 		printf(": not enough msi-x vectors\n");
    708  1.1  rin 
    709  1.1  rin 	/* Give one vector to events. */
    710  1.1  rin 	nmsix--;
    711  1.1  rin 
    712  1.1  rin 	sc->sc_intrmap = intrmap_create(&sc->sc_dev, nmsix, IGC_MAX_VECTORS,
    713  1.1  rin 	    INTRMAP_POWEROF2);
    714  1.1  rin 	sc->sc_nqueues = intrmap_count(sc->sc_intrmap);
    715  1.1  rin }
    716  1.1  rin 
    717  1.1  rin int
    718  1.1  rin igc_dma_malloc(struct igc_softc *sc, bus_size_t size, struct igc_dma_alloc *dma)
    719  1.1  rin {
    720  1.1  rin 	struct igc_osdep *os = &sc->osdep;
    721  1.1  rin 
    722  1.1  rin 	dma->dma_tag = os->os_pa.pa_dmat;
    723  1.1  rin 
    724  1.1  rin 	if (bus_dmamap_create(dma->dma_tag, size, 1, size, 0, BUS_DMA_NOWAIT,
    725  1.1  rin 	    &dma->dma_map))
    726  1.1  rin 		return 1;
    727  1.1  rin 	if (bus_dmamem_alloc(dma->dma_tag, size, PAGE_SIZE, 0, &dma->dma_seg,
    728  1.1  rin 	    1, &dma->dma_nseg, BUS_DMA_NOWAIT))
    729  1.1  rin 		goto destroy;
    730  1.1  rin 	if (bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
    731  1.1  rin 	    &dma->dma_vaddr, BUS_DMA_NOWAIT | BUS_DMA_COHERENT))
    732  1.1  rin 		goto free;
    733  1.1  rin 	if (bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
    734  1.1  rin 	    NULL, BUS_DMA_NOWAIT))
    735  1.1  rin 		goto unmap;
    736  1.1  rin 
    737  1.1  rin 	dma->dma_size = size;
    738  1.1  rin 
    739  1.1  rin 	return 0;
    740  1.1  rin unmap:
    741  1.1  rin 	bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
    742  1.1  rin free:
    743  1.1  rin 	bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
    744  1.1  rin destroy:
    745  1.1  rin 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
    746  1.1  rin 	dma->dma_map = NULL;
    747  1.1  rin 	dma->dma_tag = NULL;
    748  1.1  rin 	return 1;
    749  1.1  rin }
    750  1.1  rin 
    751  1.1  rin void
    752  1.1  rin igc_dma_free(struct igc_softc *sc, struct igc_dma_alloc *dma)
    753  1.1  rin {
    754  1.1  rin 	if (dma->dma_tag == NULL)
    755  1.1  rin 		return;
    756  1.1  rin 
    757  1.1  rin 	if (dma->dma_map != NULL) {
    758  1.1  rin 		bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
    759  1.1  rin 		    dma->dma_map->dm_mapsize,
    760  1.1  rin 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    761  1.1  rin 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
    762  1.1  rin 		bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
    763  1.1  rin 		bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
    764  1.1  rin 		bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
    765  1.1  rin 		dma->dma_map = NULL;
    766  1.1  rin 	}
    767  1.1  rin }
    768  1.1  rin 
    769  1.1  rin /*********************************************************************
    770  1.1  rin  *
    771  1.1  rin  *  Setup networking device structure and register an interface.
    772  1.1  rin  *
    773  1.1  rin  **********************************************************************/
    774  1.1  rin void
    775  1.1  rin igc_setup_interface(struct igc_softc *sc)
    776  1.1  rin {
    777  1.1  rin 	struct ifnet *ifp = &sc->sc_ac.ac_if;
    778  1.1  rin 	int i;
    779  1.1  rin 
    780  1.1  rin 	ifp->if_softc = sc;
    781  1.1  rin 	strlcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ);
    782  1.1  rin 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    783  1.1  rin 	ifp->if_xflags = IFXF_MPSAFE;
    784  1.1  rin 	ifp->if_ioctl = igc_ioctl;
    785  1.1  rin 	ifp->if_qstart = igc_start;
    786  1.1  rin 	ifp->if_watchdog = igc_watchdog;
    787  1.1  rin 	ifp->if_hardmtu = sc->hw.mac.max_frame_size - ETHER_HDR_LEN -
    788  1.1  rin 	    ETHER_CRC_LEN;
    789  1.1  rin 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
    790  1.1  rin 
    791  1.1  rin 	ifp->if_capabilities = IFCAP_VLAN_MTU;
    792  1.1  rin 
    793  1.1  rin #ifdef notyet
    794  1.1  rin #if NVLAN > 0
    795  1.1  rin 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
    796  1.1  rin #endif
    797  1.1  rin #endif
    798  1.1  rin 
    799  1.1  rin 	ifp->if_capabilities |= IFCAP_CSUM_IPv4;
    800  1.1  rin 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    801  1.1  rin 	ifp->if_capabilities |= IFCAP_CSUM_TCPv6 | IFCAP_CSUM_UDPv6;
    802  1.1  rin 
    803  1.1  rin 	/* Initialize ifmedia structures. */
    804  1.1  rin 	ifmedia_init(&sc->media, IFM_IMASK, igc_media_change, igc_media_status);
    805  1.1  rin 	ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
    806  1.1  rin 	ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
    807  1.1  rin 	ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
    808  1.1  rin 	ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
    809  1.1  rin 	ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
    810  1.1  rin 	ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
    811  1.1  rin 	ifmedia_add(&sc->media, IFM_ETHER | IFM_2500_T, 0, NULL);
    812  1.1  rin 
    813  1.1  rin 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
    814  1.1  rin 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
    815  1.1  rin 
    816  1.1  rin 	if_attach(ifp);
    817  1.1  rin 	ether_ifattach(ifp);
    818  1.1  rin 
    819  1.1  rin 	if_attach_queues(ifp, sc->sc_nqueues);
    820  1.1  rin 	if_attach_iqueues(ifp, sc->sc_nqueues);
    821  1.1  rin 	for (i = 0; i < sc->sc_nqueues; i++) {
    822  1.1  rin 		struct ifqueue *ifq = ifp->if_ifqs[i];
    823  1.1  rin 		struct ifiqueue *ifiq = ifp->if_iqs[i];
    824  1.1  rin 		struct tx_ring *txr = &sc->tx_rings[i];
    825  1.1  rin 		struct rx_ring *rxr = &sc->rx_rings[i];
    826  1.1  rin 
    827  1.1  rin 		ifq->ifq_softc = txr;
    828  1.1  rin 		txr->ifq = ifq;
    829  1.1  rin 
    830  1.1  rin 		ifiq->ifiq_softc = rxr;
    831  1.1  rin 		rxr->ifiq = ifiq;
    832  1.1  rin 	}
    833  1.1  rin }
    834  1.1  rin 
    835  1.1  rin void
    836  1.1  rin igc_init(void *arg)
    837  1.1  rin {
    838  1.1  rin 	struct igc_softc *sc = (struct igc_softc *)arg;
    839  1.1  rin 	struct ifnet *ifp = &sc->sc_ac.ac_if;
    840  1.1  rin 	struct rx_ring *rxr;
    841  1.1  rin 	uint32_t ctrl = 0;
    842  1.1  rin 	int i, s;
    843  1.1  rin 
    844  1.1  rin 	s = splnet();
    845  1.1  rin 
    846  1.1  rin 	igc_stop(sc);
    847  1.1  rin 
    848  1.1  rin 	/* Get the latest mac address, user can use a LAA. */
    849  1.1  rin 	bcopy(sc->sc_ac.ac_enaddr, sc->hw.mac.addr, ETHER_ADDR_LEN);
    850  1.1  rin 
    851  1.1  rin 	/* Put the address into the receive address array. */
    852  1.1  rin 	igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
    853  1.1  rin 
    854  1.1  rin 	/* Initialize the hardware. */
    855  1.1  rin 	igc_reset(sc);
    856  1.1  rin 	igc_update_link_status(sc);
    857  1.1  rin 
    858  1.1  rin 	/* Setup VLAN support, basic and offload if available. */
    859  1.1  rin 	IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
    860  1.1  rin 
    861  1.1  rin 	/* Prepare transmit descriptors and buffers. */
    862  1.1  rin 	if (igc_setup_transmit_structures(sc)) {
    863  1.1  rin 		printf("%s: Could not setup transmit structures\n",
    864  1.1  rin 		    DEVNAME(sc));
    865  1.1  rin 		igc_stop(sc);
    866  1.1  rin 		splx(s);
    867  1.1  rin 		return;
    868  1.1  rin 	}
    869  1.1  rin 	igc_initialize_transmit_unit(sc);
    870  1.1  rin 
    871  1.1  rin 	sc->rx_mbuf_sz = MCLBYTES + ETHER_ALIGN;
    872  1.1  rin 	/* Prepare receive descriptors and buffers. */
    873  1.1  rin 	if (igc_setup_receive_structures(sc)) {
    874  1.1  rin 		printf("%s: Could not setup receive structures\n",
    875  1.1  rin 		    DEVNAME(sc));
    876  1.1  rin 		igc_stop(sc);
    877  1.1  rin 		splx(s);
    878  1.1  rin 		return;
    879  1.1  rin         }
    880  1.1  rin 	igc_initialize_receive_unit(sc);
    881  1.1  rin 
    882  1.1  rin 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) {
    883  1.1  rin 		ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
    884  1.1  rin 		ctrl |= IGC_CTRL_VME;
    885  1.1  rin 		IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
    886  1.1  rin 	}
    887  1.1  rin 
    888  1.1  rin 	/* Setup multicast table. */
    889  1.1  rin 	igc_iff(sc);
    890  1.1  rin 
    891  1.1  rin 	igc_clear_hw_cntrs_base_generic(&sc->hw);
    892  1.1  rin 
    893  1.1  rin 	igc_configure_queues(sc);
    894  1.1  rin 
    895  1.1  rin 	/* This clears any pending interrupts */
    896  1.1  rin 	IGC_READ_REG(&sc->hw, IGC_ICR);
    897  1.1  rin 	IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
    898  1.1  rin 
    899  1.1  rin 	/* The driver can now take control from firmware. */
    900  1.1  rin 	igc_get_hw_control(sc);
    901  1.1  rin 
    902  1.1  rin 	/* Set Energy Efficient Ethernet. */
    903  1.1  rin 	igc_set_eee_i225(&sc->hw, true, true, true);
    904  1.1  rin 
    905  1.1  rin 	for (i = 0; i < sc->sc_nqueues; i++) {
    906  1.1  rin 		rxr = &sc->rx_rings[i];
    907  1.1  rin 		igc_rxfill(rxr);
    908  1.1  rin 		if (if_rxr_inuse(&rxr->rx_ring) == 0) {
    909  1.1  rin 			printf("%s: Unable to fill any rx descriptors\n",
    910  1.1  rin 			    DEVNAME(sc));
    911  1.1  rin 			igc_stop(sc);
    912  1.1  rin 			splx(s);
    913  1.1  rin 		}
    914  1.1  rin 		IGC_WRITE_REG(&sc->hw, IGC_RDT(i),
    915  1.1  rin 		    (rxr->last_desc_filled + 1) % sc->num_rx_desc);
    916  1.1  rin 	}
    917  1.1  rin 
    918  1.1  rin 	igc_enable_intr(sc);
    919  1.1  rin 
    920  1.1  rin 	ifp->if_flags |= IFF_RUNNING;
    921  1.1  rin 	for (i = 0; i < sc->sc_nqueues; i++)
    922  1.1  rin 		ifq_clr_oactive(ifp->if_ifqs[i]);
    923  1.1  rin 
    924  1.1  rin 	splx(s);
    925  1.1  rin }
    926  1.1  rin 
    927  1.1  rin static inline int
    928  1.1  rin igc_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m)
    929  1.1  rin {
    930  1.1  rin 	int error;
    931  1.1  rin 
    932  1.1  rin 	error = bus_dmamap_load_mbuf(dmat, map, m,
    933  1.1  rin 	    BUS_DMA_STREAMING | BUS_DMA_NOWAIT);
    934  1.1  rin 	if (error != EFBIG)
    935  1.1  rin 		return (error);
    936  1.1  rin 
    937  1.1  rin 	error = m_defrag(m, M_DONTWAIT);
    938  1.1  rin 	if (error != 0)
    939  1.1  rin 		return (error);
    940  1.1  rin 
    941  1.1  rin 	return (bus_dmamap_load_mbuf(dmat, map, m,
    942  1.1  rin 	    BUS_DMA_STREAMING | BUS_DMA_NOWAIT));
    943  1.1  rin }
    944  1.1  rin 
    945  1.1  rin void
    946  1.1  rin igc_start(struct ifqueue *ifq)
    947  1.1  rin {
    948  1.1  rin 	struct ifnet *ifp = ifq->ifq_if;
    949  1.1  rin 	struct igc_softc *sc = ifp->if_softc;
    950  1.1  rin 	struct tx_ring *txr = ifq->ifq_softc;
    951  1.1  rin 	union igc_adv_tx_desc *txdesc;
    952  1.1  rin 	struct igc_tx_buf *txbuf;
    953  1.1  rin 	bus_dmamap_t map;
    954  1.1  rin 	struct mbuf *m;
    955  1.1  rin 	unsigned int prod, free, last, i;
    956  1.1  rin 	unsigned int mask;
    957  1.1  rin 	uint32_t cmd_type_len;
    958  1.1  rin 	uint32_t olinfo_status;
    959  1.1  rin 	int post = 0;
    960  1.1  rin #if NBPFILTER > 0
    961  1.1  rin 	caddr_t if_bpf;
    962  1.1  rin #endif
    963  1.1  rin 
    964  1.1  rin 	if (!sc->link_active) {
    965  1.1  rin 		ifq_purge(ifq);
    966  1.1  rin 		return;
    967  1.1  rin 	}
    968  1.1  rin 
    969  1.1  rin 	prod = txr->next_avail_desc;
    970  1.1  rin 	free = txr->next_to_clean;
    971  1.1  rin 	if (free <= prod)
    972  1.1  rin 		free += sc->num_tx_desc;
    973  1.1  rin 	free -= prod;
    974  1.1  rin 
    975  1.1  rin 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
    976  1.1  rin 	    txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    977  1.1  rin 
    978  1.1  rin 	mask = sc->num_tx_desc - 1;
    979  1.1  rin 
    980  1.1  rin 	for (;;) {
    981  1.1  rin 		if (free <= IGC_MAX_SCATTER + 1) {
    982  1.1  rin 			ifq_set_oactive(ifq);
    983  1.1  rin 			break;
    984  1.1  rin 		}
    985  1.1  rin 
    986  1.1  rin 		m = ifq_dequeue(ifq);
    987  1.1  rin 		if (m == NULL)
    988  1.1  rin 			break;
    989  1.1  rin 
    990  1.1  rin 		txbuf = &txr->tx_buffers[prod];
    991  1.1  rin 		map = txbuf->map;
    992  1.1  rin 
    993  1.1  rin 		if (igc_load_mbuf(txr->txdma.dma_tag, map, m) != 0) {
    994  1.1  rin 			ifq->ifq_errors++;
    995  1.1  rin 			m_freem(m);
    996  1.1  rin 			continue;
    997  1.1  rin 		}
    998  1.1  rin 
    999  1.1  rin 		olinfo_status = m->m_pkthdr.len << IGC_ADVTXD_PAYLEN_SHIFT;
   1000  1.1  rin 
   1001  1.1  rin 		bus_dmamap_sync(txr->txdma.dma_tag, map, 0,
   1002  1.1  rin 		    map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1003  1.1  rin 
   1004  1.1  rin 		if (igc_tx_ctx_setup(txr, m, prod, &olinfo_status)) {
   1005  1.1  rin 			/* Consume the first descriptor */
   1006  1.1  rin 			prod++;
   1007  1.1  rin 			prod &= mask;
   1008  1.1  rin 			free--;
   1009  1.1  rin 		}
   1010  1.1  rin 
   1011  1.1  rin 		for (i = 0; i < map->dm_nsegs; i++) {
   1012  1.1  rin 			txdesc = &txr->tx_base[prod];
   1013  1.1  rin 
   1014  1.1  rin 			cmd_type_len = IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DTYP_DATA |
   1015  1.1  rin 			    IGC_ADVTXD_DCMD_DEXT | map->dm_segs[i].ds_len;
   1016  1.1  rin 			if (i == map->dm_nsegs - 1)
   1017  1.1  rin 				cmd_type_len |= IGC_ADVTXD_DCMD_EOP |
   1018  1.1  rin 				    IGC_ADVTXD_DCMD_RS;
   1019  1.1  rin 
   1020  1.1  rin 			htolem64(&txdesc->read.buffer_addr, map->dm_segs[i].ds_addr);
   1021  1.1  rin 			htolem32(&txdesc->read.cmd_type_len, cmd_type_len);
   1022  1.1  rin 			htolem32(&txdesc->read.olinfo_status, olinfo_status);
   1023  1.1  rin 
   1024  1.1  rin 			last = prod;
   1025  1.1  rin 
   1026  1.1  rin 			prod++;
   1027  1.1  rin 			prod &= mask;
   1028  1.1  rin 		}
   1029  1.1  rin 
   1030  1.1  rin 		txbuf->m_head = m;
   1031  1.1  rin 		txbuf->eop_index = last;
   1032  1.1  rin 
   1033  1.1  rin #if NBPFILTER > 0
   1034  1.1  rin 		if_bpf = ifp->if_bpf;
   1035  1.1  rin 		if (if_bpf)
   1036  1.1  rin 			bpf_mtap_ether(if_bpf, m, BPF_DIRECTION_OUT);
   1037  1.1  rin #endif
   1038  1.1  rin 
   1039  1.1  rin 		free -= i;
   1040  1.1  rin 		post = 1;
   1041  1.1  rin 	}
   1042  1.1  rin 
   1043  1.1  rin 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
   1044  1.1  rin 	    txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1045  1.1  rin 
   1046  1.1  rin 	if (post) {
   1047  1.1  rin 		txr->next_avail_desc = prod;
   1048  1.1  rin 		IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), prod);
   1049  1.1  rin 	}
   1050  1.1  rin }
   1051  1.1  rin 
   1052  1.1  rin int
   1053  1.1  rin igc_txeof(struct tx_ring *txr)
   1054  1.1  rin {
   1055  1.1  rin 	struct igc_softc *sc = txr->sc;
   1056  1.1  rin 	struct ifqueue *ifq = txr->ifq;
   1057  1.1  rin 	union igc_adv_tx_desc *txdesc;
   1058  1.1  rin 	struct igc_tx_buf *txbuf;
   1059  1.1  rin 	bus_dmamap_t map;
   1060  1.1  rin 	unsigned int cons, prod, last;
   1061  1.1  rin 	unsigned int mask;
   1062  1.1  rin 	int done = 0;
   1063  1.1  rin 
   1064  1.1  rin 	prod = txr->next_avail_desc;
   1065  1.1  rin 	cons = txr->next_to_clean;
   1066  1.1  rin 
   1067  1.1  rin 	if (cons == prod)
   1068  1.1  rin 		return (0);
   1069  1.1  rin 
   1070  1.1  rin 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
   1071  1.1  rin 	    txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1072  1.1  rin 
   1073  1.1  rin 	mask = sc->num_tx_desc - 1;
   1074  1.1  rin 
   1075  1.1  rin 	do {
   1076  1.1  rin 		txbuf = &txr->tx_buffers[cons];
   1077  1.1  rin 		last = txbuf->eop_index;
   1078  1.1  rin 		txdesc = &txr->tx_base[last];
   1079  1.1  rin 
   1080  1.1  rin 		if (!(txdesc->wb.status & htole32(IGC_TXD_STAT_DD)))
   1081  1.1  rin 			break;
   1082  1.1  rin 
   1083  1.1  rin 		map = txbuf->map;
   1084  1.1  rin 
   1085  1.1  rin 		bus_dmamap_sync(txr->txdma.dma_tag, map, 0, map->dm_mapsize,
   1086  1.1  rin 		    BUS_DMASYNC_POSTWRITE);
   1087  1.1  rin 		bus_dmamap_unload(txr->txdma.dma_tag, map);
   1088  1.1  rin 		m_freem(txbuf->m_head);
   1089  1.1  rin 
   1090  1.1  rin 		txbuf->m_head = NULL;
   1091  1.1  rin 		txbuf->eop_index = -1;
   1092  1.1  rin 
   1093  1.1  rin 		cons = last + 1;
   1094  1.1  rin 		cons &= mask;
   1095  1.1  rin 
   1096  1.1  rin 		done = 1;
   1097  1.1  rin 	} while (cons != prod);
   1098  1.1  rin 
   1099  1.1  rin 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
   1100  1.1  rin 	    txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   1101  1.1  rin 
   1102  1.1  rin 	txr->next_to_clean = cons;
   1103  1.1  rin 
   1104  1.1  rin 	if (ifq_is_oactive(ifq))
   1105  1.1  rin 		ifq_restart(ifq);
   1106  1.1  rin 
   1107  1.1  rin 	return (done);
   1108  1.1  rin }
   1109  1.1  rin 
   1110  1.1  rin /*********************************************************************
   1111  1.1  rin  *
   1112  1.1  rin  *  This routine disables all traffic on the adapter by issuing a
   1113  1.1  rin  *  global reset on the MAC.
   1114  1.1  rin  *
   1115  1.1  rin  **********************************************************************/
   1116  1.1  rin void
   1117  1.1  rin igc_stop(struct igc_softc *sc)
   1118  1.1  rin {
   1119  1.1  rin 	struct ifnet *ifp = &sc->sc_ac.ac_if;
   1120  1.1  rin 	int i;
   1121  1.1  rin 
   1122  1.1  rin 	/* Tell the stack that the interface is no longer active. */
   1123  1.1  rin         ifp->if_flags &= ~IFF_RUNNING;
   1124  1.1  rin 
   1125  1.1  rin 	igc_disable_intr(sc);
   1126  1.1  rin 
   1127  1.1  rin 	igc_reset_hw(&sc->hw);
   1128  1.1  rin 	IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
   1129  1.1  rin 
   1130  1.1  rin 	intr_barrier(sc->tag);
   1131  1.1  rin         for (i = 0; i < sc->sc_nqueues; i++) {
   1132  1.1  rin                 struct ifqueue *ifq = ifp->if_ifqs[i];
   1133  1.1  rin                 ifq_barrier(ifq);
   1134  1.1  rin                 ifq_clr_oactive(ifq);
   1135  1.1  rin 
   1136  1.1  rin                 if (sc->queues[i].tag != NULL)
   1137  1.1  rin                         intr_barrier(sc->queues[i].tag);
   1138  1.1  rin                 timeout_del(&sc->rx_rings[i].rx_refill);
   1139  1.1  rin         }
   1140  1.1  rin 
   1141  1.1  rin         igc_free_transmit_structures(sc);
   1142  1.1  rin         igc_free_receive_structures(sc);
   1143  1.1  rin 
   1144  1.1  rin 	igc_update_link_status(sc);
   1145  1.1  rin }
   1146  1.1  rin 
   1147  1.1  rin /*********************************************************************
   1148  1.1  rin  *  Ioctl entry point
   1149  1.1  rin  *
   1150  1.1  rin  *  igc_ioctl is called when the user wants to configure the
   1151  1.1  rin  *  interface.
   1152  1.1  rin  *
   1153  1.1  rin  *  return 0 on success, positive on failure
   1154  1.1  rin  **********************************************************************/
   1155  1.1  rin int
   1156  1.1  rin igc_ioctl(struct ifnet * ifp, u_long cmd, caddr_t data)
   1157  1.1  rin {
   1158  1.1  rin 	struct igc_softc *sc = ifp->if_softc;
   1159  1.1  rin 	struct ifreq *ifr = (struct ifreq *)data;
   1160  1.1  rin 	int s, error = 0;
   1161  1.1  rin 
   1162  1.1  rin 	s = splnet();
   1163  1.1  rin 
   1164  1.1  rin 	switch (cmd) {
   1165  1.1  rin 	case SIOCSIFADDR:
   1166  1.1  rin 		ifp->if_flags |= IFF_UP;
   1167  1.1  rin 		if (!(ifp->if_flags & IFF_RUNNING))
   1168  1.1  rin 			igc_init(sc);
   1169  1.1  rin 		break;
   1170  1.1  rin 	case SIOCSIFFLAGS:
   1171  1.1  rin 		if (ifp->if_flags & IFF_UP) {
   1172  1.1  rin 			if (ifp->if_flags & IFF_RUNNING)
   1173  1.1  rin 				error = ENETRESET;
   1174  1.1  rin 			else
   1175  1.1  rin 				igc_init(sc);
   1176  1.1  rin 		} else {
   1177  1.1  rin 			if (ifp->if_flags & IFF_RUNNING)
   1178  1.1  rin 				igc_stop(sc);
   1179  1.1  rin 		}
   1180  1.1  rin 		break;
   1181  1.1  rin 	case SIOCSIFMEDIA:
   1182  1.1  rin 	case SIOCGIFMEDIA:
   1183  1.1  rin 		error = ifmedia_ioctl(ifp, ifr, &sc->media, cmd);
   1184  1.1  rin 		break;
   1185  1.1  rin 	case SIOCGIFRXR:
   1186  1.1  rin 		error = igc_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
   1187  1.1  rin 		break;
   1188  1.1  rin 	default:
   1189  1.1  rin 		error = ether_ioctl(ifp, &sc->sc_ac, cmd, data);
   1190  1.1  rin 	}
   1191  1.1  rin 
   1192  1.1  rin 	if (error == ENETRESET) {
   1193  1.1  rin 		if (ifp->if_flags & IFF_RUNNING) {
   1194  1.1  rin 			igc_disable_intr(sc);
   1195  1.1  rin 			igc_iff(sc);
   1196  1.1  rin 			igc_enable_intr(sc);
   1197  1.1  rin 		}
   1198  1.1  rin 		error = 0;
   1199  1.1  rin 	}
   1200  1.1  rin 
   1201  1.1  rin 	splx(s);
   1202  1.1  rin 	return error;
   1203  1.1  rin }
   1204  1.1  rin 
   1205  1.1  rin int
   1206  1.1  rin igc_rxrinfo(struct igc_softc *sc, struct if_rxrinfo *ifri)
   1207  1.1  rin {
   1208  1.1  rin 	struct if_rxring_info *ifr;
   1209  1.1  rin 	struct rx_ring *rxr;
   1210  1.1  rin 	int error, i, n = 0;
   1211  1.1  rin 
   1212  1.1  rin 	ifr = mallocarray(sc->sc_nqueues, sizeof(*ifr), M_DEVBUF,
   1213  1.1  rin 	    M_WAITOK | M_ZERO);
   1214  1.1  rin 
   1215  1.1  rin 	for (i = 0; i < sc->sc_nqueues; i++) {
   1216  1.1  rin 		rxr = &sc->rx_rings[i];
   1217  1.1  rin 		ifr[n].ifr_size = MCLBYTES;
   1218  1.1  rin 		snprintf(ifr[n].ifr_name, sizeof(ifr[n].ifr_name), "%d", i);
   1219  1.1  rin 		ifr[n].ifr_info = rxr->rx_ring;
   1220  1.1  rin 		n++;
   1221  1.1  rin 	}
   1222  1.1  rin 
   1223  1.1  rin 	error = if_rxr_info_ioctl(ifri, sc->sc_nqueues, ifr);
   1224  1.1  rin 	free(ifr, M_DEVBUF, sc->sc_nqueues * sizeof(*ifr));
   1225  1.1  rin 
   1226  1.1  rin 	return error;
   1227  1.1  rin }
   1228  1.1  rin 
   1229  1.1  rin int
   1230  1.1  rin igc_rxfill(struct rx_ring *rxr)
   1231  1.1  rin {
   1232  1.1  rin 	struct igc_softc *sc = rxr->sc;
   1233  1.1  rin 	int i, post = 0;
   1234  1.1  rin 	u_int slots;
   1235  1.1  rin 
   1236  1.1  rin 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
   1237  1.1  rin 	    rxr->rxdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1238  1.1  rin 
   1239  1.1  rin 	i = rxr->last_desc_filled;
   1240  1.1  rin 	for (slots = if_rxr_get(&rxr->rx_ring, sc->num_rx_desc); slots > 0;
   1241  1.1  rin 	    slots--) {
   1242  1.1  rin 		if (++i == sc->num_rx_desc)
   1243  1.1  rin 			i = 0;
   1244  1.1  rin 
   1245  1.1  rin 		if (igc_get_buf(rxr, i) != 0)
   1246  1.1  rin 			break;
   1247  1.1  rin 
   1248  1.1  rin 		rxr->last_desc_filled = i;
   1249  1.1  rin 		post = 1;
   1250  1.1  rin 	}
   1251  1.1  rin 
   1252  1.1  rin 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
   1253  1.1  rin 	    rxr->rxdma.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1254  1.1  rin 
   1255  1.1  rin 	if_rxr_put(&rxr->rx_ring, slots);
   1256  1.1  rin 
   1257  1.1  rin 	return post;
   1258  1.1  rin }
   1259  1.1  rin 
   1260  1.1  rin void
   1261  1.1  rin igc_rxrefill(void *xrxr)
   1262  1.1  rin {
   1263  1.1  rin 	struct rx_ring *rxr = xrxr;
   1264  1.1  rin 	struct igc_softc *sc = rxr->sc;
   1265  1.1  rin 
   1266  1.1  rin 	if (igc_rxfill(rxr)) {
   1267  1.1  rin 		IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me),
   1268  1.1  rin 		    (rxr->last_desc_filled + 1) % sc->num_rx_desc);
   1269  1.1  rin 	}
   1270  1.1  rin 	else if (if_rxr_inuse(&rxr->rx_ring) == 0)
   1271  1.1  rin 		timeout_add(&rxr->rx_refill, 1);
   1272  1.1  rin }
   1273  1.1  rin 
   1274  1.1  rin /*********************************************************************
   1275  1.1  rin  *
   1276  1.1  rin  *  This routine executes in interrupt context. It replenishes
   1277  1.1  rin  *  the mbufs in the descriptor and sends data which has been
   1278  1.1  rin  *  dma'ed into host memory to upper layer.
   1279  1.1  rin  *
   1280  1.1  rin  *********************************************************************/
   1281  1.1  rin int
   1282  1.1  rin igc_rxeof(struct rx_ring *rxr)
   1283  1.1  rin {
   1284  1.1  rin 	struct igc_softc *sc = rxr->sc;
   1285  1.1  rin 	struct ifnet *ifp = &sc->sc_ac.ac_if;
   1286  1.1  rin 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
   1287  1.1  rin 	struct mbuf *mp, *m;
   1288  1.1  rin 	struct igc_rx_buf *rxbuf, *nxbuf;
   1289  1.1  rin 	union igc_adv_rx_desc *rxdesc;
   1290  1.1  rin 	uint32_t ptype, staterr = 0;
   1291  1.1  rin 	uint16_t len, vtag;
   1292  1.1  rin 	uint8_t eop = 0;
   1293  1.1  rin 	int i, nextp;
   1294  1.1  rin 
   1295  1.1  rin 	if (!ISSET(ifp->if_flags, IFF_RUNNING))
   1296  1.1  rin 		return 0;
   1297  1.1  rin 
   1298  1.1  rin 	i = rxr->next_to_check;
   1299  1.1  rin 	while (if_rxr_inuse(&rxr->rx_ring) > 0) {
   1300  1.1  rin 		uint32_t hash;
   1301  1.1  rin 		uint16_t hashtype;
   1302  1.1  rin 
   1303  1.1  rin 		bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
   1304  1.1  rin 		    i * sizeof(union igc_adv_rx_desc),
   1305  1.1  rin 		    sizeof(union igc_adv_rx_desc), BUS_DMASYNC_POSTREAD);
   1306  1.1  rin 
   1307  1.1  rin 		rxdesc = &rxr->rx_base[i];
   1308  1.1  rin 		staterr = letoh32(rxdesc->wb.upper.status_error);
   1309  1.1  rin 		if (!ISSET(staterr, IGC_RXD_STAT_DD)) {
   1310  1.1  rin 			bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
   1311  1.1  rin 			    i * sizeof(union igc_adv_rx_desc),
   1312  1.1  rin 			    sizeof(union igc_adv_rx_desc), BUS_DMASYNC_PREREAD);
   1313  1.1  rin 			break;
   1314  1.1  rin 		}
   1315  1.1  rin 
   1316  1.1  rin 		/* Zero out the receive descriptors status. */
   1317  1.1  rin 		rxdesc->wb.upper.status_error = 0;
   1318  1.1  rin 		rxbuf = &rxr->rx_buffers[i];
   1319  1.1  rin 
   1320  1.1  rin 		/* Pull the mbuf off the ring. */
   1321  1.1  rin 		bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map, 0,
   1322  1.1  rin 		    rxbuf->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1323  1.1  rin 		bus_dmamap_unload(rxr->rxdma.dma_tag, rxbuf->map);
   1324  1.1  rin 
   1325  1.1  rin 		mp = rxbuf->buf;
   1326  1.1  rin 		len = letoh16(rxdesc->wb.upper.length);
   1327  1.1  rin 		vtag = letoh16(rxdesc->wb.upper.vlan);
   1328  1.1  rin 		eop = ((staterr & IGC_RXD_STAT_EOP) == IGC_RXD_STAT_EOP);
   1329  1.1  rin 		ptype = letoh32(rxdesc->wb.lower.lo_dword.data) &
   1330  1.1  rin 		    IGC_PKTTYPE_MASK;
   1331  1.1  rin 		hash = letoh32(rxdesc->wb.lower.hi_dword.rss);
   1332  1.1  rin 		hashtype = le16toh(rxdesc->wb.lower.lo_dword.hs_rss.pkt_info) &
   1333  1.1  rin 		    IGC_RXDADV_RSSTYPE_MASK;
   1334  1.1  rin 
   1335  1.1  rin 		if (staterr & IGC_RXDEXT_STATERR_RXE) {
   1336  1.1  rin 			if (rxbuf->fmp) {
   1337  1.1  rin 				m_freem(rxbuf->fmp);
   1338  1.1  rin 				rxbuf->fmp = NULL;
   1339  1.1  rin 			}
   1340  1.1  rin 
   1341  1.1  rin 			m_freem(mp);
   1342  1.1  rin 			rxbuf->buf = NULL;
   1343  1.1  rin 			goto next_desc;
   1344  1.1  rin 		}
   1345  1.1  rin 
   1346  1.1  rin 		if (mp == NULL) {
   1347  1.1  rin 			panic("%s: igc_rxeof: NULL mbuf in slot %d "
   1348  1.1  rin 			    "(nrx %d, filled %d)", DEVNAME(sc), i,
   1349  1.1  rin 			    if_rxr_inuse(&rxr->rx_ring), rxr->last_desc_filled);
   1350  1.1  rin 		}
   1351  1.1  rin 
   1352  1.1  rin 		if (!eop) {
   1353  1.1  rin 			/*
   1354  1.1  rin 			 * Figure out the next descriptor of this frame.
   1355  1.1  rin 			 */
   1356  1.1  rin 			nextp = i + 1;
   1357  1.1  rin 			if (nextp == sc->num_rx_desc)
   1358  1.1  rin 				nextp = 0;
   1359  1.1  rin 			nxbuf = &rxr->rx_buffers[nextp];
   1360  1.1  rin 			/* prefetch(nxbuf); */
   1361  1.1  rin 		}
   1362  1.1  rin 
   1363  1.1  rin 		mp->m_len = len;
   1364  1.1  rin 
   1365  1.1  rin 		m = rxbuf->fmp;
   1366  1.1  rin 		rxbuf->buf = rxbuf->fmp = NULL;
   1367  1.1  rin 
   1368  1.1  rin 		if (m != NULL)
   1369  1.1  rin 			m->m_pkthdr.len += mp->m_len;
   1370  1.1  rin 		else {
   1371  1.1  rin 			m = mp;
   1372  1.1  rin 			m->m_pkthdr.len = mp->m_len;
   1373  1.1  rin #if NVLAN > 0
   1374  1.1  rin 			if (staterr & IGC_RXD_STAT_VP) {
   1375  1.1  rin 				m->m_pkthdr.ether_vtag = vtag;
   1376  1.1  rin 				m->m_flags |= M_VLANTAG;
   1377  1.1  rin 			}
   1378  1.1  rin #endif
   1379  1.1  rin 		}
   1380  1.1  rin 
   1381  1.1  rin 		/* Pass the head pointer on */
   1382  1.1  rin 		if (eop == 0) {
   1383  1.1  rin 			nxbuf->fmp = m;
   1384  1.1  rin 			m = NULL;
   1385  1.1  rin 			mp->m_next = nxbuf->buf;
   1386  1.1  rin 		} else {
   1387  1.1  rin 			igc_rx_checksum(staterr, m, ptype);
   1388  1.1  rin 
   1389  1.1  rin 			if (hashtype != IGC_RXDADV_RSSTYPE_NONE) {
   1390  1.1  rin 				m->m_pkthdr.ph_flowid = hash;
   1391  1.1  rin 				SET(m->m_pkthdr.csum_flags, M_FLOWID);
   1392  1.1  rin 			}
   1393  1.1  rin 
   1394  1.1  rin 			ml_enqueue(&ml, m);
   1395  1.1  rin 		}
   1396  1.1  rin next_desc:
   1397  1.1  rin 		if_rxr_put(&rxr->rx_ring, 1);
   1398  1.1  rin 		bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
   1399  1.1  rin 		    i * sizeof(union igc_adv_rx_desc),
   1400  1.1  rin 		    sizeof(union igc_adv_rx_desc), BUS_DMASYNC_PREREAD);
   1401  1.1  rin 
   1402  1.1  rin 		/* Advance our pointers to the next descriptor. */
   1403  1.1  rin 		if (++i == sc->num_rx_desc)
   1404  1.1  rin 			i = 0;
   1405  1.1  rin 	}
   1406  1.1  rin 	rxr->next_to_check = i;
   1407  1.1  rin 
   1408  1.1  rin 	if (ifiq_input(rxr->ifiq, &ml))
   1409  1.1  rin 		if_rxr_livelocked(&rxr->rx_ring);
   1410  1.1  rin 
   1411  1.1  rin 	if (!(staterr & IGC_RXD_STAT_DD))
   1412  1.1  rin 		return 0;
   1413  1.1  rin 
   1414  1.1  rin 	return 1;
   1415  1.1  rin }
   1416  1.1  rin 
   1417  1.1  rin /*********************************************************************
   1418  1.1  rin  *
   1419  1.1  rin  *  Verify that the hardware indicated that the checksum is valid.
   1420  1.1  rin  *  Inform the stack about the status of checksum so that stack
   1421  1.1  rin  *  doesn't spend time verifying the checksum.
   1422  1.1  rin  *
   1423  1.1  rin  *********************************************************************/
   1424  1.1  rin void
   1425  1.1  rin igc_rx_checksum(uint32_t staterr, struct mbuf *m, uint32_t ptype)
   1426  1.1  rin {
   1427  1.1  rin 	uint16_t status = (uint16_t)staterr;
   1428  1.1  rin 	uint8_t errors = (uint8_t)(staterr >> 24);
   1429  1.1  rin 
   1430  1.1  rin 	if (status & IGC_RXD_STAT_IPCS) {
   1431  1.1  rin 		if (!(errors & IGC_RXD_ERR_IPE)) {
   1432  1.1  rin 			/* IP Checksum Good */
   1433  1.1  rin 			m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;
   1434  1.1  rin 		} else
   1435  1.1  rin 			m->m_pkthdr.csum_flags = 0;
   1436  1.1  rin 	}
   1437  1.1  rin 
   1438  1.1  rin 	if (status & (IGC_RXD_STAT_TCPCS | IGC_RXD_STAT_UDPCS)) {
   1439  1.1  rin 		if (!(errors & IGC_RXD_ERR_TCPE))
   1440  1.1  rin 			m->m_pkthdr.csum_flags |=
   1441  1.1  rin 			    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
   1442  1.1  rin 	}
   1443  1.1  rin }
   1444  1.1  rin 
   1445  1.1  rin void
   1446  1.1  rin igc_watchdog(struct ifnet * ifp)
   1447  1.1  rin {
   1448  1.1  rin }
   1449  1.1  rin 
   1450  1.1  rin /*********************************************************************
   1451  1.1  rin  *
   1452  1.1  rin  *  Media Ioctl callback
   1453  1.1  rin  *
   1454  1.1  rin  *  This routine is called whenever the user queries the status of
   1455  1.1  rin  *  the interface using ifconfig.
   1456  1.1  rin  *
   1457  1.1  rin  **********************************************************************/
   1458  1.1  rin void
   1459  1.1  rin igc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
   1460  1.1  rin {
   1461  1.1  rin 	struct igc_softc *sc = ifp->if_softc;
   1462  1.1  rin 
   1463  1.1  rin 	igc_update_link_status(sc);
   1464  1.1  rin 
   1465  1.1  rin 	ifmr->ifm_status = IFM_AVALID;
   1466  1.1  rin 	ifmr->ifm_active = IFM_ETHER;
   1467  1.1  rin 
   1468  1.1  rin 	if (!sc->link_active) {
   1469  1.1  rin 		ifmr->ifm_active |= IFM_NONE;
   1470  1.1  rin 		return;
   1471  1.1  rin 	}
   1472  1.1  rin 
   1473  1.1  rin 	ifmr->ifm_status |= IFM_ACTIVE;
   1474  1.1  rin 
   1475  1.1  rin 	switch (sc->link_speed) {
   1476  1.1  rin 	case 10:
   1477  1.1  rin 		ifmr->ifm_active |= IFM_10_T;
   1478  1.1  rin 		break;
   1479  1.1  rin 	case 100:
   1480  1.1  rin 		ifmr->ifm_active |= IFM_100_TX;
   1481  1.1  rin                 break;
   1482  1.1  rin 	case 1000:
   1483  1.1  rin 		ifmr->ifm_active |= IFM_1000_T;
   1484  1.1  rin 		break;
   1485  1.1  rin 	case 2500:
   1486  1.1  rin                 ifmr->ifm_active |= IFM_2500_T;
   1487  1.1  rin                 break;
   1488  1.1  rin 	}
   1489  1.1  rin 
   1490  1.1  rin 	if (sc->link_duplex == FULL_DUPLEX)
   1491  1.1  rin 		ifmr->ifm_active |= IFM_FDX;
   1492  1.1  rin 	else
   1493  1.1  rin 		ifmr->ifm_active |= IFM_HDX;
   1494  1.1  rin }
   1495  1.1  rin 
   1496  1.1  rin /*********************************************************************
   1497  1.1  rin  *
   1498  1.1  rin  *  Media Ioctl callback
   1499  1.1  rin  *
   1500  1.1  rin  *  This routine is called when the user changes speed/duplex using
   1501  1.1  rin  *  media/mediopt option with ifconfig.
   1502  1.1  rin  *
   1503  1.1  rin  **********************************************************************/
   1504  1.1  rin int
   1505  1.1  rin igc_media_change(struct ifnet *ifp)
   1506  1.1  rin {
   1507  1.1  rin 	struct igc_softc *sc = ifp->if_softc;
   1508  1.1  rin 	struct ifmedia *ifm = &sc->media;
   1509  1.1  rin 
   1510  1.1  rin 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   1511  1.1  rin 		return (EINVAL);
   1512  1.1  rin 
   1513  1.1  rin 	sc->hw.mac.autoneg = DO_AUTO_NEG;
   1514  1.1  rin 
   1515  1.1  rin 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
   1516  1.1  rin 	case IFM_AUTO:
   1517  1.1  rin 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
   1518  1.1  rin 		break;
   1519  1.1  rin         case IFM_2500_T:
   1520  1.1  rin                 sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
   1521  1.1  rin                 break;
   1522  1.1  rin 	case IFM_1000_T:
   1523  1.1  rin 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
   1524  1.1  rin 		break;
   1525  1.1  rin 	case IFM_100_TX:
   1526  1.1  rin 		if ((ifm->ifm_media & IFM_GMASK) == IFM_HDX)
   1527  1.1  rin 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
   1528  1.1  rin 		else
   1529  1.1  rin 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
   1530  1.1  rin 		break;
   1531  1.1  rin 	case IFM_10_T:
   1532  1.1  rin 		if ((ifm->ifm_media & IFM_GMASK) == IFM_HDX)
   1533  1.1  rin 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
   1534  1.1  rin 		else
   1535  1.1  rin 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
   1536  1.1  rin 		break;
   1537  1.1  rin 	default:
   1538  1.1  rin 		return EINVAL;
   1539  1.1  rin 	}
   1540  1.1  rin 
   1541  1.1  rin 	igc_init(sc);
   1542  1.1  rin 
   1543  1.1  rin 	return 0;
   1544  1.1  rin }
   1545  1.1  rin 
   1546  1.1  rin void
   1547  1.1  rin igc_iff(struct igc_softc *sc)
   1548  1.1  rin {
   1549  1.1  rin 	struct ifnet *ifp = &sc->sc_ac.ac_if;
   1550  1.1  rin         struct arpcom *ac = &sc->sc_ac;
   1551  1.1  rin 	struct ether_multi *enm;
   1552  1.1  rin 	struct ether_multistep step;
   1553  1.1  rin 	uint32_t reg_rctl = 0;
   1554  1.1  rin 	uint8_t *mta;
   1555  1.1  rin 	int mcnt = 0;
   1556  1.1  rin 
   1557  1.1  rin 	mta = sc->mta;
   1558  1.1  rin         bzero(mta, sizeof(uint8_t) * ETHER_ADDR_LEN *
   1559  1.1  rin 	    MAX_NUM_MULTICAST_ADDRESSES);
   1560  1.1  rin 
   1561  1.1  rin 	reg_rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
   1562  1.1  rin 	reg_rctl &= ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
   1563  1.1  rin 	ifp->if_flags &= ~IFF_ALLMULTI;
   1564  1.1  rin 
   1565  1.1  rin 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0 ||
   1566  1.1  rin 	    ac->ac_multicnt > MAX_NUM_MULTICAST_ADDRESSES) {
   1567  1.1  rin 		ifp->if_flags |= IFF_ALLMULTI;
   1568  1.1  rin 		reg_rctl |= IGC_RCTL_MPE;
   1569  1.1  rin 		if (ifp->if_flags & IFF_PROMISC)
   1570  1.1  rin 			reg_rctl |= IGC_RCTL_UPE;
   1571  1.1  rin 	} else {
   1572  1.1  rin 		ETHER_FIRST_MULTI(step, ac, enm);
   1573  1.1  rin 		while (enm != NULL) {
   1574  1.1  rin 			bcopy(enm->enm_addrlo,
   1575  1.1  rin 			    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
   1576  1.1  rin 			mcnt++;
   1577  1.1  rin 
   1578  1.1  rin 			ETHER_NEXT_MULTI(step, enm);
   1579  1.1  rin 		}
   1580  1.1  rin 
   1581  1.1  rin 		igc_update_mc_addr_list(&sc->hw, mta, mcnt);
   1582  1.1  rin 	}
   1583  1.1  rin 
   1584  1.1  rin 	IGC_WRITE_REG(&sc->hw, IGC_RCTL, reg_rctl);
   1585  1.1  rin }
   1586  1.1  rin 
   1587  1.1  rin void
   1588  1.1  rin igc_update_link_status(struct igc_softc *sc)
   1589  1.1  rin {
   1590  1.1  rin 	struct ifnet *ifp = &sc->sc_ac.ac_if;
   1591  1.1  rin 	struct igc_hw *hw = &sc->hw;
   1592  1.1  rin 	int link_state;
   1593  1.1  rin 
   1594  1.1  rin 	if (IGC_READ_REG(&sc->hw, IGC_STATUS) & IGC_STATUS_LU) {
   1595  1.1  rin 		if (sc->link_active == 0) {
   1596  1.1  rin 			igc_get_speed_and_duplex(hw, &sc->link_speed,
   1597  1.1  rin 			    &sc->link_duplex);
   1598  1.1  rin 			sc->link_active = 1;
   1599  1.1  rin 			ifp->if_baudrate = IF_Mbps(sc->link_speed);
   1600  1.1  rin 		}
   1601  1.1  rin 		link_state = (sc->link_duplex == FULL_DUPLEX) ?
   1602  1.1  rin 		    LINK_STATE_FULL_DUPLEX : LINK_STATE_HALF_DUPLEX;
   1603  1.1  rin 	} else {
   1604  1.1  rin 		if (sc->link_active == 1) {
   1605  1.1  rin 			ifp->if_baudrate = sc->link_speed = 0;
   1606  1.1  rin 			sc->link_duplex = 0;
   1607  1.1  rin 			sc->link_active = 0;
   1608  1.1  rin 		}
   1609  1.1  rin 		link_state = LINK_STATE_DOWN;
   1610  1.1  rin 	}
   1611  1.1  rin 	if (ifp->if_link_state != link_state) {
   1612  1.1  rin 		ifp->if_link_state = link_state;
   1613  1.1  rin 		if_link_state_change(ifp);
   1614  1.1  rin 	}
   1615  1.1  rin }
   1616  1.1  rin 
   1617  1.1  rin /*********************************************************************
   1618  1.1  rin  *
   1619  1.1  rin  *  Get a buffer from system mbuf buffer pool.
   1620  1.1  rin  *
   1621  1.1  rin  **********************************************************************/
   1622  1.1  rin int
   1623  1.1  rin igc_get_buf(struct rx_ring *rxr, int i)
   1624  1.1  rin {
   1625  1.1  rin 	struct igc_softc *sc = rxr->sc;
   1626  1.1  rin 	struct igc_rx_buf *rxbuf;
   1627  1.1  rin 	struct mbuf *m;
   1628  1.1  rin 	union igc_adv_rx_desc *rxdesc;
   1629  1.1  rin 	int error;
   1630  1.1  rin 
   1631  1.1  rin 	rxbuf = &rxr->rx_buffers[i];
   1632  1.1  rin 	rxdesc = &rxr->rx_base[i];
   1633  1.1  rin 	if (rxbuf->buf) {
   1634  1.1  rin 		printf("%s: slot %d already has an mbuf\n", DEVNAME(sc), i);
   1635  1.1  rin 		return ENOBUFS;
   1636  1.1  rin 	}
   1637  1.1  rin 
   1638  1.1  rin 	m = MCLGETL(NULL, M_DONTWAIT, sc->rx_mbuf_sz);
   1639  1.1  rin 	if (!m)
   1640  1.1  rin 		return ENOBUFS;
   1641  1.1  rin 
   1642  1.1  rin 	m->m_data += (m->m_ext.ext_size - sc->rx_mbuf_sz);
   1643  1.1  rin 	m->m_len = m->m_pkthdr.len = sc->rx_mbuf_sz;
   1644  1.1  rin 
   1645  1.1  rin 	error = bus_dmamap_load_mbuf(rxr->rxdma.dma_tag, rxbuf->map, m,
   1646  1.1  rin 	    BUS_DMA_NOWAIT);
   1647  1.1  rin 	if (error) {
   1648  1.1  rin 		m_freem(m);
   1649  1.1  rin 		return error;
   1650  1.1  rin 	}
   1651  1.1  rin 
   1652  1.1  rin 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map, 0,
   1653  1.1  rin 	    rxbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
   1654  1.1  rin 	rxbuf->buf = m;
   1655  1.1  rin 
   1656  1.1  rin 	rxdesc->read.pkt_addr = htole64(rxbuf->map->dm_segs[0].ds_addr);
   1657  1.1  rin 
   1658  1.1  rin 	return 0;
   1659  1.1  rin }
   1660  1.1  rin 
   1661  1.1  rin void
   1662  1.1  rin igc_configure_queues(struct igc_softc *sc)
   1663  1.1  rin {
   1664  1.1  rin 	struct igc_hw *hw = &sc->hw;
   1665  1.1  rin 	struct igc_queue *iq = sc->queues;
   1666  1.1  rin 	uint32_t ivar, newitr = 0;
   1667  1.1  rin 	int i;
   1668  1.1  rin 
   1669  1.1  rin 	/* First turn on RSS capability */
   1670  1.1  rin 	IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME |
   1671  1.1  rin 	    IGC_GPIE_PBA | IGC_GPIE_NSICR);
   1672  1.1  rin 
   1673  1.1  rin 	/* Set the starting interrupt rate */
   1674  1.1  rin 	newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;
   1675  1.1  rin 
   1676  1.1  rin 	newitr |= IGC_EITR_CNT_IGNR;
   1677  1.1  rin 
   1678  1.1  rin 	/* Turn on MSI-X */
   1679  1.1  rin 	for (i = 0; i < sc->sc_nqueues; i++, iq++) {
   1680  1.1  rin 		/* RX entries */
   1681  1.1  rin 		igc_set_queues(sc, i, iq->msix, 0);
   1682  1.1  rin 		/* TX entries */
   1683  1.1  rin 		igc_set_queues(sc, i, iq->msix, 1);
   1684  1.1  rin 		sc->msix_queuesmask |= iq->eims;
   1685  1.1  rin 		IGC_WRITE_REG(hw, IGC_EITR(iq->msix), newitr);
   1686  1.1  rin 	}
   1687  1.1  rin 
   1688  1.1  rin 	/* And for the link interrupt */
   1689  1.1  rin 	ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
   1690  1.1  rin 	sc->msix_linkmask = 1 << sc->linkvec;
   1691  1.1  rin 	IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
   1692  1.1  rin }
   1693  1.1  rin 
   1694  1.1  rin void
   1695  1.1  rin igc_set_queues(struct igc_softc *sc, uint32_t entry, uint32_t vector, int type)
   1696  1.1  rin {
   1697  1.1  rin 	struct igc_hw *hw = &sc->hw;
   1698  1.1  rin 	uint32_t ivar, index;
   1699  1.1  rin 
   1700  1.1  rin 	index = entry >> 1;
   1701  1.1  rin 	ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
   1702  1.1  rin 	if (type) {
   1703  1.1  rin 		if (entry & 1) {
   1704  1.1  rin 			ivar &= 0x00FFFFFF;
   1705  1.1  rin 			ivar |= (vector | IGC_IVAR_VALID) << 24;
   1706  1.1  rin 		} else {
   1707  1.1  rin 			ivar &= 0xFFFF00FF;
   1708  1.1  rin 			ivar |= (vector | IGC_IVAR_VALID) << 8;
   1709  1.1  rin 		}
   1710  1.1  rin 	} else {
   1711  1.1  rin 		if (entry & 1) {
   1712  1.1  rin 			ivar &= 0xFF00FFFF;
   1713  1.1  rin 			ivar |= (vector | IGC_IVAR_VALID) << 16;
   1714  1.1  rin 		} else {
   1715  1.1  rin 			ivar &= 0xFFFFFF00;
   1716  1.1  rin 			ivar |= vector | IGC_IVAR_VALID;
   1717  1.1  rin 		}
   1718  1.1  rin 	}
   1719  1.1  rin 	IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
   1720  1.1  rin }
   1721  1.1  rin 
   1722  1.1  rin void
   1723  1.1  rin igc_enable_queue(struct igc_softc *sc, uint32_t eims)
   1724  1.1  rin {
   1725  1.1  rin 	IGC_WRITE_REG(&sc->hw, IGC_EIMS, eims);
   1726  1.1  rin }
   1727  1.1  rin 
   1728  1.1  rin void
   1729  1.1  rin igc_enable_intr(struct igc_softc *sc)
   1730  1.1  rin {
   1731  1.1  rin 	struct igc_hw *hw = &sc->hw;
   1732  1.1  rin 	uint32_t mask;
   1733  1.1  rin 
   1734  1.1  rin 	mask = (sc->msix_queuesmask | sc->msix_linkmask);
   1735  1.1  rin 	IGC_WRITE_REG(hw, IGC_EIAC, mask);
   1736  1.1  rin 	IGC_WRITE_REG(hw, IGC_EIAM, mask);
   1737  1.1  rin 	IGC_WRITE_REG(hw, IGC_EIMS, mask);
   1738  1.1  rin 	IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
   1739  1.1  rin 	IGC_WRITE_FLUSH(hw);
   1740  1.1  rin }
   1741  1.1  rin 
   1742  1.1  rin void
   1743  1.1  rin igc_disable_intr(struct igc_softc *sc)
   1744  1.1  rin {
   1745  1.1  rin 	struct igc_hw *hw = &sc->hw;
   1746  1.1  rin 
   1747  1.1  rin 	IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
   1748  1.1  rin 	IGC_WRITE_REG(hw, IGC_EIAC, 0);
   1749  1.1  rin 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
   1750  1.1  rin 	IGC_WRITE_FLUSH(hw);
   1751  1.1  rin }
   1752  1.1  rin 
   1753  1.1  rin int
   1754  1.1  rin igc_intr_link(void *arg)
   1755  1.1  rin {
   1756  1.1  rin 	struct igc_softc *sc = (struct igc_softc *)arg;
   1757  1.1  rin 	uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
   1758  1.1  rin 
   1759  1.1  rin 	if (reg_icr & IGC_ICR_LSC) {
   1760  1.1  rin 		KERNEL_LOCK();
   1761  1.1  rin 		sc->hw.mac.get_link_status = true;
   1762  1.1  rin 		igc_update_link_status(sc);
   1763  1.1  rin 		KERNEL_UNLOCK();
   1764  1.1  rin 	}
   1765  1.1  rin 
   1766  1.1  rin 	IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
   1767  1.1  rin 	IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->msix_linkmask);
   1768  1.1  rin 
   1769  1.1  rin 	return 1;
   1770  1.1  rin }
   1771  1.1  rin 
   1772  1.1  rin int
   1773  1.1  rin igc_intr_queue(void *arg)
   1774  1.1  rin {
   1775  1.1  rin 	struct igc_queue *iq = arg;
   1776  1.1  rin 	struct igc_softc *sc = iq->sc;
   1777  1.1  rin 	struct ifnet *ifp = &sc->sc_ac.ac_if;
   1778  1.1  rin 	struct rx_ring *rxr = iq->rxr;
   1779  1.1  rin 	struct tx_ring *txr = iq->txr;
   1780  1.1  rin 
   1781  1.1  rin 	if (ifp->if_flags & IFF_RUNNING) {
   1782  1.1  rin 		igc_txeof(txr);
   1783  1.1  rin 		igc_rxeof(rxr);
   1784  1.1  rin 		igc_rxrefill(rxr);
   1785  1.1  rin 	}
   1786  1.1  rin 
   1787  1.1  rin 	igc_enable_queue(sc, iq->eims);
   1788  1.1  rin 
   1789  1.1  rin 	return 1;
   1790  1.1  rin }
   1791  1.1  rin 
   1792  1.1  rin /*********************************************************************
   1793  1.1  rin  *
   1794  1.1  rin  *  Allocate memory for tx_buffer structures. The tx_buffer stores all
   1795  1.1  rin  *  the information needed to transmit a packet on the wire.
   1796  1.1  rin  *
   1797  1.1  rin  **********************************************************************/
   1798  1.1  rin int
   1799  1.1  rin igc_allocate_transmit_buffers(struct tx_ring *txr)
   1800  1.1  rin {
   1801  1.1  rin 	struct igc_softc *sc = txr->sc;
   1802  1.1  rin 	struct igc_tx_buf *txbuf;
   1803  1.1  rin 	int error, i;
   1804  1.1  rin 
   1805  1.1  rin 	txr->tx_buffers = mallocarray(sc->num_tx_desc,
   1806  1.1  rin 	    sizeof(struct igc_tx_buf), M_DEVBUF, M_NOWAIT | M_ZERO);
   1807  1.1  rin 	if (txr->tx_buffers == NULL) {
   1808  1.1  rin 		printf("%s: Unable to allocate tx_buffer memory\n",
   1809  1.1  rin 		    DEVNAME(sc));
   1810  1.1  rin 		error = ENOMEM;
   1811  1.1  rin 		goto fail;
   1812  1.1  rin 	}
   1813  1.1  rin 	txr->txtag = txr->txdma.dma_tag;
   1814  1.1  rin 
   1815  1.1  rin 	/* Create the descriptor buffer dma maps. */
   1816  1.1  rin 	for (i = 0; i < sc->num_tx_desc; i++) {
   1817  1.1  rin 		txbuf = &txr->tx_buffers[i];
   1818  1.1  rin 		error = bus_dmamap_create(txr->txdma.dma_tag, IGC_TSO_SIZE,
   1819  1.1  rin 		    IGC_MAX_SCATTER, PAGE_SIZE, 0, BUS_DMA_NOWAIT, &txbuf->map);
   1820  1.1  rin 		if (error != 0) {
   1821  1.1  rin 			printf("%s: Unable to create TX DMA map\n",
   1822  1.1  rin 			    DEVNAME(sc));
   1823  1.1  rin 			goto fail;
   1824  1.1  rin 		}
   1825  1.1  rin 	}
   1826  1.1  rin 
   1827  1.1  rin 	return 0;
   1828  1.1  rin fail:
   1829  1.1  rin 	return error;
   1830  1.1  rin }
   1831  1.1  rin 
   1832  1.1  rin 
   1833  1.1  rin /*********************************************************************
   1834  1.1  rin  *
   1835  1.1  rin  *  Allocate and initialize transmit structures.
   1836  1.1  rin  *
   1837  1.1  rin  **********************************************************************/
   1838  1.1  rin int
   1839  1.1  rin igc_setup_transmit_structures(struct igc_softc *sc)
   1840  1.1  rin {
   1841  1.1  rin 	struct tx_ring *txr = sc->tx_rings;
   1842  1.1  rin 	int i;
   1843  1.1  rin 
   1844  1.1  rin 	for (i = 0; i < sc->sc_nqueues; i++, txr++) {
   1845  1.1  rin 		if (igc_setup_transmit_ring(txr))
   1846  1.1  rin 			goto fail;
   1847  1.1  rin 	}
   1848  1.1  rin 
   1849  1.1  rin 	return 0;
   1850  1.1  rin fail:
   1851  1.1  rin 	igc_free_transmit_structures(sc);
   1852  1.1  rin 	return ENOBUFS;
   1853  1.1  rin }
   1854  1.1  rin 
   1855  1.1  rin /*********************************************************************
   1856  1.1  rin  *
   1857  1.1  rin  *  Initialize a transmit ring.
   1858  1.1  rin  *
   1859  1.1  rin  **********************************************************************/
   1860  1.1  rin int
   1861  1.1  rin igc_setup_transmit_ring(struct tx_ring *txr)
   1862  1.1  rin {
   1863  1.1  rin 	struct igc_softc *sc = txr->sc;
   1864  1.1  rin 
   1865  1.1  rin 	/* Now allocate transmit buffers for the ring. */
   1866  1.1  rin 	if (igc_allocate_transmit_buffers(txr))
   1867  1.1  rin 		return ENOMEM;
   1868  1.1  rin 
   1869  1.1  rin 	/* Clear the old ring contents */
   1870  1.1  rin 	bzero((void *)txr->tx_base,
   1871  1.1  rin 	    (sizeof(union igc_adv_tx_desc)) * sc->num_tx_desc);
   1872  1.1  rin 
   1873  1.1  rin 	/* Reset indices. */
   1874  1.1  rin 	txr->next_avail_desc = 0;
   1875  1.1  rin 	txr->next_to_clean = 0;
   1876  1.1  rin 
   1877  1.1  rin 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
   1878  1.1  rin 	    txr->txdma.dma_map->dm_mapsize,
   1879  1.1  rin 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1880  1.1  rin 
   1881  1.1  rin 	return 0;
   1882  1.1  rin }
   1883  1.1  rin 
   1884  1.1  rin /*********************************************************************
   1885  1.1  rin  *
   1886  1.1  rin  *  Enable transmit unit.
   1887  1.1  rin  *
   1888  1.1  rin  **********************************************************************/
   1889  1.1  rin void
   1890  1.1  rin igc_initialize_transmit_unit(struct igc_softc *sc)
   1891  1.1  rin {
   1892  1.1  rin 	struct ifnet *ifp = &sc->sc_ac.ac_if;
   1893  1.1  rin 	struct tx_ring *txr;
   1894  1.1  rin 	struct igc_hw *hw = &sc->hw;
   1895  1.1  rin 	uint64_t bus_addr;
   1896  1.1  rin 	uint32_t tctl, txdctl = 0;
   1897  1.1  rin         int i;
   1898  1.1  rin 
   1899  1.1  rin 	/* Setup the Base and Length of the TX descriptor ring. */
   1900  1.1  rin 	for (i = 0; i < sc->sc_nqueues; i++) {
   1901  1.1  rin 		txr = &sc->tx_rings[i];
   1902  1.1  rin 
   1903  1.1  rin 		bus_addr = txr->txdma.dma_map->dm_segs[0].ds_addr;
   1904  1.1  rin 
   1905  1.1  rin 		/* Base and len of TX ring */
   1906  1.1  rin 		IGC_WRITE_REG(hw, IGC_TDLEN(i),
   1907  1.1  rin 		    sc->num_tx_desc * sizeof(union igc_adv_tx_desc));
   1908  1.1  rin 		IGC_WRITE_REG(hw, IGC_TDBAH(i), (uint32_t)(bus_addr >> 32));
   1909  1.1  rin 		IGC_WRITE_REG(hw, IGC_TDBAL(i), (uint32_t)bus_addr);
   1910  1.1  rin 
   1911  1.1  rin 		/* Init the HEAD/TAIL indices */
   1912  1.1  rin 		IGC_WRITE_REG(hw, IGC_TDT(i), 0);
   1913  1.1  rin 		IGC_WRITE_REG(hw, IGC_TDH(i), 0);
   1914  1.1  rin 
   1915  1.1  rin 		txr->watchdog_timer = 0;
   1916  1.1  rin 
   1917  1.1  rin 		txdctl = 0;		/* Clear txdctl */
   1918  1.1  rin 		txdctl |= 0x1f;		/* PTHRESH */
   1919  1.1  rin 		txdctl |= 1 << 8;	/* HTHRESH */
   1920  1.1  rin 		txdctl |= 1 << 16;	/* WTHRESH */
   1921  1.1  rin 		txdctl |= 1 << 22;	/* Reserved bit 22 must always be 1 */
   1922  1.1  rin 		txdctl |= IGC_TXDCTL_GRAN;
   1923  1.1  rin 		txdctl |= 1 << 25;	/* LWTHRESH */
   1924  1.1  rin 
   1925  1.1  rin 		IGC_WRITE_REG(hw, IGC_TXDCTL(i), txdctl);
   1926  1.1  rin 	}
   1927  1.1  rin 	ifp->if_timer = 0;
   1928  1.1  rin 
   1929  1.1  rin 	/* Program the Transmit Control Register */
   1930  1.1  rin 	tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
   1931  1.1  rin 	tctl &= ~IGC_TCTL_CT;
   1932  1.1  rin 	tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
   1933  1.1  rin 	    (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
   1934  1.1  rin 
   1935  1.1  rin 	/* This write will effectively turn on the transmit unit. */
   1936  1.1  rin 	IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
   1937  1.1  rin }
   1938  1.1  rin 
   1939  1.1  rin /*********************************************************************
   1940  1.1  rin  *
   1941  1.1  rin  *  Free all transmit rings.
   1942  1.1  rin  *
   1943  1.1  rin  **********************************************************************/
   1944  1.1  rin void
   1945  1.1  rin igc_free_transmit_structures(struct igc_softc *sc)
   1946  1.1  rin {
   1947  1.1  rin 	struct tx_ring *txr = sc->tx_rings;
   1948  1.1  rin 	int i;
   1949  1.1  rin 
   1950  1.1  rin 	for (i = 0; i < sc->sc_nqueues; i++, txr++)
   1951  1.1  rin 		igc_free_transmit_buffers(txr);
   1952  1.1  rin }
   1953  1.1  rin 
   1954  1.1  rin /*********************************************************************
   1955  1.1  rin  *
   1956  1.1  rin  *  Free transmit ring related data structures.
   1957  1.1  rin  *
   1958  1.1  rin  **********************************************************************/
   1959  1.1  rin void
   1960  1.1  rin igc_free_transmit_buffers(struct tx_ring *txr)
   1961  1.1  rin {
   1962  1.1  rin 	struct igc_softc *sc = txr->sc;
   1963  1.1  rin 	struct igc_tx_buf *txbuf;
   1964  1.1  rin 	int i;
   1965  1.1  rin 
   1966  1.1  rin 	if (txr->tx_buffers == NULL)
   1967  1.1  rin 		return;
   1968  1.1  rin 
   1969  1.1  rin 	txbuf = txr->tx_buffers;
   1970  1.1  rin 	for (i = 0; i < sc->num_tx_desc; i++, txbuf++) {
   1971  1.1  rin 		if (txbuf->map != NULL && txbuf->map->dm_nsegs > 0) {
   1972  1.1  rin 			bus_dmamap_sync(txr->txdma.dma_tag, txbuf->map,
   1973  1.1  rin 			    0, txbuf->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1974  1.1  rin 			bus_dmamap_unload(txr->txdma.dma_tag, txbuf->map);
   1975  1.1  rin 		}
   1976  1.1  rin 		if (txbuf->m_head != NULL) {
   1977  1.1  rin 			m_freem(txbuf->m_head);
   1978  1.1  rin 			txbuf->m_head = NULL;
   1979  1.1  rin 		}
   1980  1.1  rin 		if (txbuf->map != NULL) {
   1981  1.1  rin 			bus_dmamap_destroy(txr->txdma.dma_tag, txbuf->map);
   1982  1.1  rin 			txbuf->map = NULL;
   1983  1.1  rin 		}
   1984  1.1  rin 	}
   1985  1.1  rin 
   1986  1.1  rin 	if (txr->tx_buffers != NULL)
   1987  1.1  rin 		free(txr->tx_buffers, M_DEVBUF,
   1988  1.1  rin 		    sc->num_tx_desc * sizeof(struct igc_tx_buf));
   1989  1.1  rin 	txr->tx_buffers = NULL;
   1990  1.1  rin 	txr->txtag = NULL;
   1991  1.1  rin }
   1992  1.1  rin 
   1993  1.1  rin 
   1994  1.1  rin /*********************************************************************
   1995  1.1  rin  *
   1996  1.1  rin  *  Advanced Context Descriptor setup for VLAN, CSUM or TSO
   1997  1.1  rin  *
   1998  1.1  rin  **********************************************************************/
   1999  1.1  rin 
   2000  1.1  rin int
   2001  1.1  rin igc_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
   2002  1.1  rin     uint32_t *olinfo_status)
   2003  1.1  rin {
   2004  1.1  rin 	struct ether_extracted ext;
   2005  1.1  rin 	struct igc_adv_tx_context_desc *txdesc;
   2006  1.1  rin 	uint32_t type_tucmd_mlhl = 0;
   2007  1.1  rin 	uint32_t vlan_macip_lens = 0;
   2008  1.1  rin 	uint32_t iphlen;
   2009  1.1  rin 	int off = 0;
   2010  1.1  rin 
   2011  1.1  rin 	vlan_macip_lens |= (sizeof(*ext.eh) << IGC_ADVTXD_MACLEN_SHIFT);
   2012  1.1  rin 
   2013  1.1  rin 	/*
   2014  1.1  rin 	 * In advanced descriptors the vlan tag must
   2015  1.1  rin 	 * be placed into the context descriptor. Hence
   2016  1.1  rin 	 * we need to make one even if not doing offloads.
   2017  1.1  rin 	 */
   2018  1.1  rin #ifdef notyet
   2019  1.1  rin #if NVLAN > 0
   2020  1.1  rin 	if (ISSET(mp->m_flags, M_VLANTAG)) {
   2021  1.1  rin 		uint32_t vtag = mp->m_pkthdr.ether_vtag;
   2022  1.1  rin 		vlan_macip_lens |= (vtag << IGC_ADVTXD_VLAN_SHIFT);
   2023  1.1  rin 		off = 1;
   2024  1.1  rin 	}
   2025  1.1  rin #endif
   2026  1.1  rin #endif
   2027  1.1  rin 
   2028  1.1  rin 	ether_extract_headers(mp, &ext);
   2029  1.1  rin 
   2030  1.1  rin 	if (ext.ip4) {
   2031  1.1  rin 		iphlen = ext.ip4->ip_hl << 2;
   2032  1.1  rin 
   2033  1.1  rin 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
   2034  1.1  rin 		if (ISSET(mp->m_pkthdr.csum_flags, M_IPV4_CSUM_OUT)) {
   2035  1.1  rin 			*olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
   2036  1.1  rin 			off = 1;
   2037  1.1  rin 		}
   2038  1.1  rin #ifdef INET6
   2039  1.1  rin 	} else if (ext.ip6) {
   2040  1.1  rin 		iphlen = sizeof(*ext.ip6);
   2041  1.1  rin 
   2042  1.1  rin 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
   2043  1.1  rin #endif
   2044  1.1  rin 	} else {
   2045  1.1  rin 		return 0;
   2046  1.1  rin 	}
   2047  1.1  rin 
   2048  1.1  rin 	vlan_macip_lens |= iphlen;
   2049  1.1  rin 	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
   2050  1.1  rin 
   2051  1.1  rin 	if (ext.tcp) {
   2052  1.1  rin 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
   2053  1.1  rin 		if (ISSET(mp->m_pkthdr.csum_flags, M_TCP_CSUM_OUT)) {
   2054  1.1  rin 			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
   2055  1.1  rin 			off = 1;
   2056  1.1  rin 		}
   2057  1.1  rin 	} else if (ext.udp) {
   2058  1.1  rin 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
   2059  1.1  rin 		if (ISSET(mp->m_pkthdr.csum_flags, M_UDP_CSUM_OUT)) {
   2060  1.1  rin 			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
   2061  1.1  rin 			off = 1;
   2062  1.1  rin 		}
   2063  1.1  rin 	}
   2064  1.1  rin 
   2065  1.1  rin 	if (off == 0)
   2066  1.1  rin 		return 0;
   2067  1.1  rin 
   2068  1.1  rin 	/* Now ready a context descriptor */
   2069  1.1  rin 	txdesc = (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
   2070  1.1  rin 
   2071  1.1  rin 	/* Now copy bits into descriptor */
   2072  1.1  rin 	htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
   2073  1.1  rin 	htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
   2074  1.1  rin 	htolem32(&txdesc->seqnum_seed, 0);
   2075  1.1  rin 	htolem32(&txdesc->mss_l4len_idx, 0);
   2076  1.1  rin 
   2077  1.1  rin 	return 1;
   2078  1.1  rin }
   2079  1.1  rin 
   2080  1.1  rin /*********************************************************************
   2081  1.1  rin  *
   2082  1.1  rin  *  Allocate memory for rx_buffer structures. Since we use one
   2083  1.1  rin  *  rx_buffer per received packet, the maximum number of rx_buffer's
   2084  1.1  rin  *  that we'll need is equal to the number of receive descriptors
   2085  1.1  rin  *  that we've allocated.
   2086  1.1  rin  *
   2087  1.1  rin  **********************************************************************/
   2088  1.1  rin int
   2089  1.1  rin igc_allocate_receive_buffers(struct rx_ring *rxr)
   2090  1.1  rin {
   2091  1.1  rin 	struct igc_softc *sc = rxr->sc;
   2092  1.1  rin 	struct igc_rx_buf *rxbuf;
   2093  1.1  rin 	int i, error;
   2094  1.1  rin 
   2095  1.1  rin 	rxr->rx_buffers = mallocarray(sc->num_rx_desc,
   2096  1.1  rin 	    sizeof(struct igc_rx_buf), M_DEVBUF, M_NOWAIT | M_ZERO);
   2097  1.1  rin 	if (rxr->rx_buffers == NULL) {
   2098  1.1  rin 		printf("%s: Unable to allocate rx_buffer memory\n",
   2099  1.1  rin 		    DEVNAME(sc));
   2100  1.1  rin 		error = ENOMEM;
   2101  1.1  rin 		goto fail;
   2102  1.1  rin 	}
   2103  1.1  rin 
   2104  1.1  rin 	rxbuf = rxr->rx_buffers;
   2105  1.1  rin 	for (i = 0; i < sc->num_rx_desc; i++, rxbuf++) {
   2106  1.1  rin 		error = bus_dmamap_create(rxr->rxdma.dma_tag,
   2107  1.1  rin 		    MAX_JUMBO_FRAME_SIZE, 1, MAX_JUMBO_FRAME_SIZE, 0,
   2108  1.1  rin 		    BUS_DMA_NOWAIT, &rxbuf->map);
   2109  1.1  rin 		if (error) {
   2110  1.1  rin 			printf("%s: Unable to create RX DMA map\n",
   2111  1.1  rin 			    DEVNAME(sc));
   2112  1.1  rin 			goto fail;
   2113  1.1  rin 		}
   2114  1.1  rin 	}
   2115  1.1  rin 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
   2116  1.1  rin 	    rxr->rxdma.dma_map->dm_mapsize,
   2117  1.1  rin 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2118  1.1  rin 
   2119  1.1  rin 	return 0;
   2120  1.1  rin fail:
   2121  1.1  rin 	return error;
   2122  1.1  rin }
   2123  1.1  rin 
   2124  1.1  rin /*********************************************************************
   2125  1.1  rin  *
   2126  1.1  rin  *  Allocate and initialize receive structures.
   2127  1.1  rin  *
   2128  1.1  rin  **********************************************************************/
   2129  1.1  rin int
   2130  1.1  rin igc_setup_receive_structures(struct igc_softc *sc)
   2131  1.1  rin {
   2132  1.1  rin 	struct rx_ring *rxr = sc->rx_rings;
   2133  1.1  rin 	int i;
   2134  1.1  rin 
   2135  1.1  rin 	for (i = 0; i < sc->sc_nqueues; i++, rxr++) {
   2136  1.1  rin 		if (igc_setup_receive_ring(rxr))
   2137  1.1  rin 			goto fail;
   2138  1.1  rin 	}
   2139  1.1  rin 
   2140  1.1  rin 	return 0;
   2141  1.1  rin fail:
   2142  1.1  rin 	igc_free_receive_structures(sc);
   2143  1.1  rin 	return ENOBUFS;
   2144  1.1  rin }
   2145  1.1  rin 
   2146  1.1  rin /*********************************************************************
   2147  1.1  rin  *
   2148  1.1  rin  *  Initialize a receive ring and its buffers.
   2149  1.1  rin  *
   2150  1.1  rin  **********************************************************************/
   2151  1.1  rin int
   2152  1.1  rin igc_setup_receive_ring(struct rx_ring *rxr)
   2153  1.1  rin {
   2154  1.1  rin 	struct igc_softc *sc = rxr->sc;
   2155  1.1  rin 	struct ifnet *ifp = &sc->sc_ac.ac_if;
   2156  1.1  rin 	int rsize;
   2157  1.1  rin 
   2158  1.1  rin 	rsize = roundup2(sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
   2159  1.1  rin 	    IGC_DBA_ALIGN);
   2160  1.1  rin 
   2161  1.1  rin 	/* Clear the ring contents. */
   2162  1.1  rin 	bzero((void *)rxr->rx_base, rsize);
   2163  1.1  rin 
   2164  1.1  rin 	if (igc_allocate_receive_buffers(rxr))
   2165  1.1  rin 		return ENOMEM;
   2166  1.1  rin 
   2167  1.1  rin 	/* Setup our descriptor indices. */
   2168  1.1  rin 	rxr->next_to_check = 0;
   2169  1.1  rin 	rxr->last_desc_filled = sc->num_rx_desc - 1;
   2170  1.1  rin 
   2171  1.1  rin 	if_rxr_init(&rxr->rx_ring, 2 * ((ifp->if_hardmtu / MCLBYTES) + 1),
   2172  1.1  rin 	    sc->num_rx_desc - 1);
   2173  1.1  rin 
   2174  1.1  rin 	return 0;
   2175  1.1  rin }
   2176  1.1  rin 
   2177  1.1  rin /*********************************************************************
   2178  1.1  rin  *
   2179  1.1  rin  *  Enable receive unit.
   2180  1.1  rin  *
   2181  1.1  rin  **********************************************************************/
   2182  1.1  rin void
   2183  1.1  rin igc_initialize_receive_unit(struct igc_softc *sc)
   2184  1.1  rin {
   2185  1.1  rin         struct rx_ring *rxr = sc->rx_rings;
   2186  1.1  rin         struct igc_hw *hw = &sc->hw;
   2187  1.1  rin 	uint32_t rctl, rxcsum, srrctl = 0;
   2188  1.1  rin 	int i;
   2189  1.1  rin 
   2190  1.1  rin 	/*
   2191  1.1  rin 	 * Make sure receives are disabled while setting
   2192  1.1  rin 	 * up the descriptor ring.
   2193  1.1  rin 	 */
   2194  1.1  rin 	rctl = IGC_READ_REG(hw, IGC_RCTL);
   2195  1.1  rin 	IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
   2196  1.1  rin 
   2197  1.1  rin 	/* Setup the Receive Control Register */
   2198  1.1  rin 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
   2199  1.1  rin 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
   2200  1.1  rin 	    IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
   2201  1.1  rin 
   2202  1.1  rin 	/* Do not store bad packets */
   2203  1.1  rin 	rctl &= ~IGC_RCTL_SBP;
   2204  1.1  rin 
   2205  1.1  rin 	/* Enable Long Packet receive */
   2206  1.1  rin 	if (sc->hw.mac.max_frame_size != ETHER_MAX_LEN)
   2207  1.1  rin 		rctl |= IGC_RCTL_LPE;
   2208  1.1  rin 
   2209  1.1  rin 	/* Strip the CRC */
   2210  1.1  rin 	rctl |= IGC_RCTL_SECRC;
   2211  1.1  rin 
   2212  1.1  rin 	/*
   2213  1.1  rin 	 * Set the interrupt throttling rate. Value is calculated
   2214  1.1  rin 	 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
   2215  1.1  rin 	 */
   2216  1.1  rin 	IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
   2217  1.1  rin 
   2218  1.1  rin 	rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
   2219  1.1  rin 	rxcsum &= ~IGC_RXCSUM_PCSD;
   2220  1.1  rin 
   2221  1.1  rin 	if (sc->sc_nqueues > 1)
   2222  1.1  rin 		rxcsum |= IGC_RXCSUM_PCSD;
   2223  1.1  rin 
   2224  1.1  rin 	IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
   2225  1.1  rin 
   2226  1.1  rin 	if (sc->sc_nqueues > 1)
   2227  1.1  rin 		igc_initialize_rss_mapping(sc);
   2228  1.1  rin 
   2229  1.1  rin #if 0
   2230  1.1  rin 	srrctl |= 4096 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
   2231  1.1  rin 	rctl |= IGC_RCTL_SZ_4096 | IGC_RCTL_BSEX;
   2232  1.1  rin #endif
   2233  1.1  rin 
   2234  1.1  rin 	srrctl |= 2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
   2235  1.1  rin 	rctl |= IGC_RCTL_SZ_2048;
   2236  1.1  rin 
   2237  1.1  rin 	/*
   2238  1.1  rin 	 * If TX flow control is disabled and there's > 1 queue defined,
   2239  1.1  rin 	 * enable DROP.
   2240  1.1  rin 	 *
   2241  1.1  rin 	 * This drops frames rather than hanging the RX MAC for all queues.
   2242  1.1  rin 	 */
   2243  1.1  rin 	if ((sc->sc_nqueues > 1) && (sc->fc == igc_fc_none ||
   2244  1.1  rin 	    sc->fc == igc_fc_rx_pause)) {
   2245  1.1  rin 		srrctl |= IGC_SRRCTL_DROP_EN;
   2246  1.1  rin 	}
   2247  1.1  rin 
   2248  1.1  rin 	/* Setup the Base and Length of the RX descriptor rings. */
   2249  1.1  rin 	for (i = 0; i < sc->sc_nqueues; i++, rxr++) {
   2250  1.1  rin 		IGC_WRITE_REG(hw, IGC_RXDCTL(i), 0);
   2251  1.1  rin 		uint64_t bus_addr = rxr->rxdma.dma_map->dm_segs[0].ds_addr;
   2252  1.1  rin 		uint32_t rxdctl;
   2253  1.1  rin 
   2254  1.1  rin 		srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
   2255  1.1  rin 
   2256  1.1  rin 		IGC_WRITE_REG(hw, IGC_RDLEN(i),
   2257  1.1  rin 		    sc->num_rx_desc * sizeof(union igc_adv_rx_desc));
   2258  1.1  rin 		IGC_WRITE_REG(hw, IGC_RDBAH(i), (uint32_t)(bus_addr >> 32));
   2259  1.1  rin 		IGC_WRITE_REG(hw, IGC_RDBAL(i), (uint32_t)bus_addr);
   2260  1.1  rin 		IGC_WRITE_REG(hw, IGC_SRRCTL(i), srrctl);
   2261  1.1  rin 
   2262  1.1  rin 		/* Setup the Head and Tail Descriptor Pointers */
   2263  1.1  rin 		IGC_WRITE_REG(hw, IGC_RDH(i), 0);
   2264  1.1  rin 		IGC_WRITE_REG(hw, IGC_RDT(i), 0);
   2265  1.1  rin 
   2266  1.1  rin 		/* Enable this Queue */
   2267  1.1  rin 		rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(i));
   2268  1.1  rin 		rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
   2269  1.1  rin 		rxdctl &= 0xFFF00000;
   2270  1.1  rin 		rxdctl |= IGC_RX_PTHRESH;
   2271  1.1  rin 		rxdctl |= IGC_RX_HTHRESH << 8;
   2272  1.1  rin 		rxdctl |= IGC_RX_WTHRESH << 16;
   2273  1.1  rin 		IGC_WRITE_REG(hw, IGC_RXDCTL(i), rxdctl);
   2274  1.1  rin 	}
   2275  1.1  rin 
   2276  1.1  rin 	/* Make sure VLAN Filters are off */
   2277  1.1  rin 	rctl &= ~IGC_RCTL_VFE;
   2278  1.1  rin 
   2279  1.1  rin 	/* Write out the settings */
   2280  1.1  rin 	IGC_WRITE_REG(hw, IGC_RCTL, rctl);
   2281  1.1  rin }
   2282  1.1  rin 
   2283  1.1  rin /*********************************************************************
   2284  1.1  rin  *
   2285  1.1  rin  *  Free all receive rings.
   2286  1.1  rin  *
   2287  1.1  rin  **********************************************************************/
   2288  1.1  rin void
   2289  1.1  rin igc_free_receive_structures(struct igc_softc *sc)
   2290  1.1  rin {
   2291  1.1  rin 	struct rx_ring *rxr;
   2292  1.1  rin 	int i;
   2293  1.1  rin 
   2294  1.1  rin 	for (i = 0, rxr = sc->rx_rings; i < sc->sc_nqueues; i++, rxr++)
   2295  1.1  rin 		if_rxr_init(&rxr->rx_ring, 0, 0);
   2296  1.1  rin 
   2297  1.1  rin 	for (i = 0, rxr = sc->rx_rings; i < sc->sc_nqueues; i++, rxr++)
   2298  1.1  rin 		igc_free_receive_buffers(rxr);
   2299  1.1  rin }
   2300  1.1  rin 
   2301  1.1  rin /*********************************************************************
   2302  1.1  rin  *
   2303  1.1  rin  *  Free receive ring data structures
   2304  1.1  rin  *
   2305  1.1  rin  **********************************************************************/
   2306  1.1  rin void
   2307  1.1  rin igc_free_receive_buffers(struct rx_ring *rxr)
   2308  1.1  rin {
   2309  1.1  rin 	struct igc_softc *sc = rxr->sc;
   2310  1.1  rin 	struct igc_rx_buf *rxbuf;
   2311  1.1  rin 	int i;
   2312  1.1  rin 
   2313  1.1  rin 	if (rxr->rx_buffers != NULL) {
   2314  1.1  rin 		for (i = 0; i < sc->num_rx_desc; i++) {
   2315  1.1  rin 			rxbuf = &rxr->rx_buffers[i];
   2316  1.1  rin 			if (rxbuf->buf != NULL) {
   2317  1.1  rin 				bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map,
   2318  1.1  rin 				    0, rxbuf->map->dm_mapsize,
   2319  1.1  rin 				    BUS_DMASYNC_POSTREAD);
   2320  1.1  rin 				bus_dmamap_unload(rxr->rxdma.dma_tag,
   2321  1.1  rin 				    rxbuf->map);
   2322  1.1  rin 				m_freem(rxbuf->buf);
   2323  1.1  rin 				rxbuf->buf = NULL;
   2324  1.1  rin 			}
   2325  1.1  rin 			bus_dmamap_destroy(rxr->rxdma.dma_tag, rxbuf->map);
   2326  1.1  rin 			rxbuf->map = NULL;
   2327  1.1  rin 		}
   2328  1.1  rin 		free(rxr->rx_buffers, M_DEVBUF,
   2329  1.1  rin 		    sc->num_rx_desc * sizeof(struct igc_rx_buf));
   2330  1.1  rin 		rxr->rx_buffers = NULL;
   2331  1.1  rin 	}
   2332  1.1  rin }
   2333  1.1  rin 
   2334  1.1  rin /*
   2335  1.1  rin  * Initialise the RSS mapping for NICs that support multiple transmit/
   2336  1.1  rin  * receive rings.
   2337  1.1  rin  */
   2338  1.1  rin void
   2339  1.1  rin igc_initialize_rss_mapping(struct igc_softc *sc)
   2340  1.1  rin {
   2341  1.1  rin 	struct igc_hw *hw = &sc->hw;
   2342  1.1  rin 	uint32_t rss_key[10], mrqc, reta, shift = 0;
   2343  1.1  rin 	int i, queue_id;
   2344  1.1  rin 
   2345  1.1  rin 	/*
   2346  1.1  rin 	 * The redirection table controls which destination
   2347  1.1  rin 	 * queue each bucket redirects traffic to.
   2348  1.1  rin 	 * Each DWORD represents four queues, with the LSB
   2349  1.1  rin 	 * being the first queue in the DWORD.
   2350  1.1  rin 	 *
   2351  1.1  rin 	 * This just allocates buckets to queues using round-robin
   2352  1.1  rin 	 * allocation.
   2353  1.1  rin 	 *
   2354  1.1  rin 	 * NOTE: It Just Happens to line up with the default
   2355  1.1  rin 	 * RSS allocation method.
   2356  1.1  rin 	 */
   2357  1.1  rin 
   2358  1.1  rin 	/* Warning FM follows */
   2359  1.1  rin 	reta = 0;
   2360  1.1  rin 	for (i = 0; i < 128; i++) {
   2361  1.1  rin 		queue_id = (i % sc->sc_nqueues);
   2362  1.1  rin 		/* Adjust if required */
   2363  1.1  rin 		queue_id = queue_id << shift;
   2364  1.1  rin 
   2365  1.1  rin 		/*
   2366  1.1  rin 		 * The low 8 bits are for hash value (n+0);
   2367  1.1  rin 		 * The next 8 bits are for hash value (n+1), etc.
   2368  1.1  rin 		 */
   2369  1.1  rin 		reta = reta >> 8;
   2370  1.1  rin 		reta = reta | ( ((uint32_t) queue_id) << 24);
   2371  1.1  rin 		if ((i & 3) == 3) {
   2372  1.1  rin 			IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
   2373  1.1  rin 			reta = 0;
   2374  1.1  rin 		}
   2375  1.1  rin 	}
   2376  1.1  rin 
   2377  1.1  rin 	/*
   2378  1.1  rin 	 * MRQC: Multiple Receive Queues Command
   2379  1.1  rin 	 * Set queuing to RSS control, number depends on the device.
   2380  1.1  rin 	 */
   2381  1.1  rin 	mrqc = IGC_MRQC_ENABLE_RSS_4Q;
   2382  1.1  rin 
   2383  1.1  rin 	/* Set up random bits */
   2384  1.1  rin         stoeplitz_to_key(&rss_key, sizeof(rss_key));
   2385  1.1  rin 
   2386  1.1  rin 	/* Now fill our hash function seeds */
   2387  1.1  rin 	for (i = 0; i < 10; i++)
   2388  1.1  rin 		IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
   2389  1.1  rin 
   2390  1.1  rin 	/*
   2391  1.1  rin 	 * Configure the RSS fields to hash upon.
   2392  1.1  rin 	 */
   2393  1.1  rin 	mrqc |= (IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP);
   2394  1.1  rin 	mrqc |= (IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP);
   2395  1.1  rin 	mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
   2396  1.1  rin 
   2397  1.1  rin 	IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
   2398  1.1  rin }
   2399  1.1  rin 
   2400  1.1  rin /*
   2401  1.1  rin  * igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
   2402  1.1  rin  * For ASF and Pass Through versions of f/w this means
   2403  1.1  rin  * that the driver is loaded. For AMT version type f/w
   2404  1.1  rin  * this means that the network i/f is open.
   2405  1.1  rin  */
   2406  1.1  rin void
   2407  1.1  rin igc_get_hw_control(struct igc_softc *sc)
   2408  1.1  rin {
   2409  1.1  rin 	uint32_t ctrl_ext;
   2410  1.1  rin 
   2411  1.1  rin 	ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
   2412  1.1  rin 	IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
   2413  1.1  rin }
   2414  1.1  rin 
   2415  1.1  rin /*
   2416  1.1  rin  * igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
   2417  1.1  rin  * For ASF and Pass Through versions of f/w this means that
   2418  1.1  rin  * the driver is no longer loaded. For AMT versions of the
   2419  1.1  rin  * f/w this means that the network i/f is closed.
   2420  1.1  rin  */
   2421  1.1  rin void
   2422  1.1  rin igc_release_hw_control(struct igc_softc *sc)
   2423  1.1  rin {
   2424  1.1  rin 	uint32_t ctrl_ext;
   2425  1.1  rin 
   2426  1.1  rin 	ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
   2427  1.1  rin 	IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
   2428  1.1  rin }
   2429  1.1  rin 
   2430  1.1  rin int
   2431  1.1  rin igc_is_valid_ether_addr(uint8_t *addr)
   2432  1.1  rin {
   2433  1.1  rin 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
   2434  1.1  rin 
   2435  1.1  rin 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
   2436  1.1  rin 		return 0;
   2437  1.1  rin 	}
   2438  1.1  rin 
   2439  1.1  rin 	return 1;
   2440  1.1  rin }
   2441