if_igc.c revision 1.1 1 1.1 rin /* $OpenBSD: if_igc.c,v 1.13 2023/04/28 10:18:57 bluhm Exp $ */
2 1.1 rin /*-
3 1.1 rin * SPDX-License-Identifier: BSD-2-Clause
4 1.1 rin *
5 1.1 rin * Copyright (c) 2016 Nicole Graziano <nicole (at) nextbsd.org>
6 1.1 rin * All rights reserved.
7 1.1 rin * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
8 1.1 rin *
9 1.1 rin * Redistribution and use in source and binary forms, with or without
10 1.1 rin * modification, are permitted provided that the following conditions
11 1.1 rin * are met:
12 1.1 rin * 1. Redistributions of source code must retain the above copyright
13 1.1 rin * notice, this list of conditions and the following disclaimer.
14 1.1 rin * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 rin * notice, this list of conditions and the following disclaimer in the
16 1.1 rin * documentation and/or other materials provided with the distribution.
17 1.1 rin *
18 1.1 rin * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 1.1 rin * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 1.1 rin * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 1.1 rin * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 1.1 rin * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 1.1 rin * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 1.1 rin * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 1.1 rin * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 1.1 rin * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.1 rin * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.1 rin * SUCH DAMAGE.
29 1.1 rin */
30 1.1 rin
31 1.1 rin #include "bpfilter.h"
32 1.1 rin #include "vlan.h"
33 1.1 rin
34 1.1 rin #include <sys/param.h>
35 1.1 rin #include <sys/systm.h>
36 1.1 rin #include <sys/sockio.h>
37 1.1 rin #include <sys/mbuf.h>
38 1.1 rin #include <sys/malloc.h>
39 1.1 rin #include <sys/kernel.h>
40 1.1 rin #include <sys/socket.h>
41 1.1 rin #include <sys/device.h>
42 1.1 rin #include <sys/endian.h>
43 1.1 rin #include <sys/intrmap.h>
44 1.1 rin
45 1.1 rin #include <net/if.h>
46 1.1 rin #include <net/if_media.h>
47 1.1 rin #include <net/toeplitz.h>
48 1.1 rin
49 1.1 rin #include <netinet/in.h>
50 1.1 rin #include <netinet/if_ether.h>
51 1.1 rin #include <netinet/ip.h>
52 1.1 rin #include <netinet/ip6.h>
53 1.1 rin
54 1.1 rin #if NBPFILTER > 0
55 1.1 rin #include <net/bpf.h>
56 1.1 rin #endif
57 1.1 rin
58 1.1 rin #include <machine/bus.h>
59 1.1 rin #include <machine/intr.h>
60 1.1 rin
61 1.1 rin #include <dev/pci/pcivar.h>
62 1.1 rin #include <dev/pci/pcireg.h>
63 1.1 rin #include <dev/pci/pcidevs.h>
64 1.1 rin #include <dev/pci/if_igc.h>
65 1.1 rin #include <dev/pci/igc_hw.h>
66 1.1 rin
67 1.1 rin const struct pci_matchid igc_devices[] = {
68 1.1 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I220_V },
69 1.1 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I221_V },
70 1.1 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_BLANK_NVM },
71 1.1 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_I },
72 1.1 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_IT },
73 1.1 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K },
74 1.1 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K2 },
75 1.1 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LM },
76 1.1 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LMVP },
77 1.1 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_V },
78 1.1 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_BLANK_NVM },
79 1.1 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_IT },
80 1.1 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LM },
81 1.1 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_K },
82 1.1 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_V }
83 1.1 rin };
84 1.1 rin
85 1.1 rin /*********************************************************************
86 1.1 rin * Function Prototypes
87 1.1 rin *********************************************************************/
88 1.1 rin int igc_match(struct device *, void *, void *);
89 1.1 rin void igc_attach(struct device *, struct device *, void *);
90 1.1 rin int igc_detach(struct device *, int);
91 1.1 rin
92 1.1 rin void igc_identify_hardware(struct igc_softc *);
93 1.1 rin int igc_allocate_pci_resources(struct igc_softc *);
94 1.1 rin int igc_allocate_queues(struct igc_softc *);
95 1.1 rin void igc_free_pci_resources(struct igc_softc *);
96 1.1 rin void igc_reset(struct igc_softc *);
97 1.1 rin void igc_init_dmac(struct igc_softc *, uint32_t);
98 1.1 rin int igc_allocate_msix(struct igc_softc *);
99 1.1 rin void igc_setup_msix(struct igc_softc *);
100 1.1 rin int igc_dma_malloc(struct igc_softc *, bus_size_t, struct igc_dma_alloc *);
101 1.1 rin void igc_dma_free(struct igc_softc *, struct igc_dma_alloc *);
102 1.1 rin void igc_setup_interface(struct igc_softc *);
103 1.1 rin
104 1.1 rin void igc_init(void *);
105 1.1 rin void igc_start(struct ifqueue *);
106 1.1 rin int igc_txeof(struct tx_ring *);
107 1.1 rin void igc_stop(struct igc_softc *);
108 1.1 rin int igc_ioctl(struct ifnet *, u_long, caddr_t);
109 1.1 rin int igc_rxrinfo(struct igc_softc *, struct if_rxrinfo *);
110 1.1 rin int igc_rxfill(struct rx_ring *);
111 1.1 rin void igc_rxrefill(void *);
112 1.1 rin int igc_rxeof(struct rx_ring *);
113 1.1 rin void igc_rx_checksum(uint32_t, struct mbuf *, uint32_t);
114 1.1 rin void igc_watchdog(struct ifnet *);
115 1.1 rin void igc_media_status(struct ifnet *, struct ifmediareq *);
116 1.1 rin int igc_media_change(struct ifnet *);
117 1.1 rin void igc_iff(struct igc_softc *);
118 1.1 rin void igc_update_link_status(struct igc_softc *);
119 1.1 rin int igc_get_buf(struct rx_ring *, int);
120 1.1 rin int igc_tx_ctx_setup(struct tx_ring *, struct mbuf *, int, uint32_t *);
121 1.1 rin
122 1.1 rin void igc_configure_queues(struct igc_softc *);
123 1.1 rin void igc_set_queues(struct igc_softc *, uint32_t, uint32_t, int);
124 1.1 rin void igc_enable_queue(struct igc_softc *, uint32_t);
125 1.1 rin void igc_enable_intr(struct igc_softc *);
126 1.1 rin void igc_disable_intr(struct igc_softc *);
127 1.1 rin int igc_intr_link(void *);
128 1.1 rin int igc_intr_queue(void *);
129 1.1 rin
130 1.1 rin int igc_allocate_transmit_buffers(struct tx_ring *);
131 1.1 rin int igc_setup_transmit_structures(struct igc_softc *);
132 1.1 rin int igc_setup_transmit_ring(struct tx_ring *);
133 1.1 rin void igc_initialize_transmit_unit(struct igc_softc *);
134 1.1 rin void igc_free_transmit_structures(struct igc_softc *);
135 1.1 rin void igc_free_transmit_buffers(struct tx_ring *);
136 1.1 rin int igc_allocate_receive_buffers(struct rx_ring *);
137 1.1 rin int igc_setup_receive_structures(struct igc_softc *);
138 1.1 rin int igc_setup_receive_ring(struct rx_ring *);
139 1.1 rin void igc_initialize_receive_unit(struct igc_softc *);
140 1.1 rin void igc_free_receive_structures(struct igc_softc *);
141 1.1 rin void igc_free_receive_buffers(struct rx_ring *);
142 1.1 rin void igc_initialize_rss_mapping(struct igc_softc *);
143 1.1 rin
144 1.1 rin void igc_get_hw_control(struct igc_softc *);
145 1.1 rin void igc_release_hw_control(struct igc_softc *);
146 1.1 rin int igc_is_valid_ether_addr(uint8_t *);
147 1.1 rin
148 1.1 rin /*********************************************************************
149 1.1 rin * OpenBSD Device Interface Entry Points
150 1.1 rin *********************************************************************/
151 1.1 rin
152 1.1 rin struct cfdriver igc_cd = {
153 1.1 rin NULL, "igc", DV_IFNET
154 1.1 rin };
155 1.1 rin
156 1.1 rin const struct cfattach igc_ca = {
157 1.1 rin sizeof(struct igc_softc), igc_match, igc_attach, igc_detach
158 1.1 rin };
159 1.1 rin
160 1.1 rin /*********************************************************************
161 1.1 rin * Device identification routine
162 1.1 rin *
163 1.1 rin * igc_match determines if the driver should be loaded on
164 1.1 rin * adapter based on PCI vendor/device id of the adapter.
165 1.1 rin *
166 1.1 rin * return 0 on success, positive on failure
167 1.1 rin *********************************************************************/
168 1.1 rin int
169 1.1 rin igc_match(struct device *parent, void *match, void *aux)
170 1.1 rin {
171 1.1 rin return pci_matchbyid((struct pci_attach_args *)aux, igc_devices,
172 1.1 rin nitems(igc_devices));
173 1.1 rin }
174 1.1 rin
175 1.1 rin /*********************************************************************
176 1.1 rin * Device initialization routine
177 1.1 rin *
178 1.1 rin * The attach entry point is called when the driver is being loaded.
179 1.1 rin * This routine identifies the type of hardware, allocates all resources
180 1.1 rin * and initializes the hardware.
181 1.1 rin *
182 1.1 rin * return 0 on success, positive on failure
183 1.1 rin *********************************************************************/
184 1.1 rin void
185 1.1 rin igc_attach(struct device *parent, struct device *self, void *aux)
186 1.1 rin {
187 1.1 rin struct pci_attach_args *pa = (struct pci_attach_args *)aux;
188 1.1 rin struct igc_softc *sc = (struct igc_softc *)self;
189 1.1 rin struct igc_hw *hw = &sc->hw;
190 1.1 rin
191 1.1 rin sc->osdep.os_sc = sc;
192 1.1 rin sc->osdep.os_pa = *pa;
193 1.1 rin
194 1.1 rin /* Determine hardware and mac info */
195 1.1 rin igc_identify_hardware(sc);
196 1.1 rin
197 1.1 rin sc->num_tx_desc = IGC_DEFAULT_TXD;
198 1.1 rin sc->num_rx_desc = IGC_DEFAULT_RXD;
199 1.1 rin
200 1.1 rin /* Setup PCI resources */
201 1.1 rin if (igc_allocate_pci_resources(sc))
202 1.1 rin goto err_pci;
203 1.1 rin
204 1.1 rin /* Allocate TX/RX queues */
205 1.1 rin if (igc_allocate_queues(sc))
206 1.1 rin goto err_pci;
207 1.1 rin
208 1.1 rin /* Do shared code initialization */
209 1.1 rin if (igc_setup_init_funcs(hw, true)) {
210 1.1 rin printf(": Setup of shared code failed\n");
211 1.1 rin goto err_pci;
212 1.1 rin }
213 1.1 rin
214 1.1 rin hw->mac.autoneg = DO_AUTO_NEG;
215 1.1 rin hw->phy.autoneg_wait_to_complete = false;
216 1.1 rin hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
217 1.1 rin
218 1.1 rin /* Copper options. */
219 1.1 rin if (hw->phy.media_type == igc_media_type_copper)
220 1.1 rin hw->phy.mdix = AUTO_ALL_MODES;
221 1.1 rin
222 1.1 rin /* Set the max frame size. */
223 1.1 rin sc->hw.mac.max_frame_size = 9234;
224 1.1 rin
225 1.1 rin /* Allocate multicast array memory. */
226 1.1 rin sc->mta = mallocarray(ETHER_ADDR_LEN, MAX_NUM_MULTICAST_ADDRESSES,
227 1.1 rin M_DEVBUF, M_NOWAIT);
228 1.1 rin if (sc->mta == NULL) {
229 1.1 rin printf(": Can not allocate multicast setup array\n");
230 1.1 rin goto err_late;
231 1.1 rin }
232 1.1 rin
233 1.1 rin /* Check SOL/IDER usage. */
234 1.1 rin if (igc_check_reset_block(hw))
235 1.1 rin printf(": PHY reset is blocked due to SOL/IDER session\n");
236 1.1 rin
237 1.1 rin /* Disable Energy Efficient Ethernet. */
238 1.1 rin sc->hw.dev_spec._i225.eee_disable = true;
239 1.1 rin
240 1.1 rin igc_reset_hw(hw);
241 1.1 rin
242 1.1 rin /* Make sure we have a good EEPROM before we read from it. */
243 1.1 rin if (igc_validate_nvm_checksum(hw) < 0) {
244 1.1 rin /*
245 1.1 rin * Some PCI-E parts fail the first check due to
246 1.1 rin * the link being in sleep state, call it again,
247 1.1 rin * if it fails a second time its a real issue.
248 1.1 rin */
249 1.1 rin if (igc_validate_nvm_checksum(hw) < 0) {
250 1.1 rin printf(": The EEPROM checksum is not valid\n");
251 1.1 rin goto err_late;
252 1.1 rin }
253 1.1 rin }
254 1.1 rin
255 1.1 rin /* Copy the permanent MAC address out of the EEPROM. */
256 1.1 rin if (igc_read_mac_addr(hw) < 0) {
257 1.1 rin printf(": EEPROM read error while reading MAC address\n");
258 1.1 rin goto err_late;
259 1.1 rin }
260 1.1 rin
261 1.1 rin if (!igc_is_valid_ether_addr(hw->mac.addr)) {
262 1.1 rin printf(": Invalid MAC address\n");
263 1.1 rin goto err_late;
264 1.1 rin }
265 1.1 rin
266 1.1 rin memcpy(sc->sc_ac.ac_enaddr, sc->hw.mac.addr, ETHER_ADDR_LEN);
267 1.1 rin
268 1.1 rin if (igc_allocate_msix(sc))
269 1.1 rin goto err_late;
270 1.1 rin
271 1.1 rin /* Setup OS specific network interface. */
272 1.1 rin igc_setup_interface(sc);
273 1.1 rin
274 1.1 rin igc_reset(sc);
275 1.1 rin hw->mac.get_link_status = true;
276 1.1 rin igc_update_link_status(sc);
277 1.1 rin
278 1.1 rin /* The driver can now take control from firmware. */
279 1.1 rin igc_get_hw_control(sc);
280 1.1 rin
281 1.1 rin printf(", address %s\n", ether_sprintf(sc->hw.mac.addr));
282 1.1 rin return;
283 1.1 rin
284 1.1 rin err_late:
285 1.1 rin igc_release_hw_control(sc);
286 1.1 rin err_pci:
287 1.1 rin igc_free_pci_resources(sc);
288 1.1 rin free(sc->mta, M_DEVBUF, ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
289 1.1 rin }
290 1.1 rin
291 1.1 rin /*********************************************************************
292 1.1 rin * Device removal routine
293 1.1 rin *
294 1.1 rin * The detach entry point is called when the driver is being removed.
295 1.1 rin * This routine stops the adapter and deallocates all the resources
296 1.1 rin * that were allocated for driver operation.
297 1.1 rin *
298 1.1 rin * return 0 on success, positive on failure
299 1.1 rin *********************************************************************/
300 1.1 rin int
301 1.1 rin igc_detach(struct device *self, int flags)
302 1.1 rin {
303 1.1 rin struct igc_softc *sc = (struct igc_softc *)self;
304 1.1 rin struct ifnet *ifp = &sc->sc_ac.ac_if;
305 1.1 rin
306 1.1 rin igc_stop(sc);
307 1.1 rin
308 1.1 rin igc_phy_hw_reset(&sc->hw);
309 1.1 rin igc_release_hw_control(sc);
310 1.1 rin
311 1.1 rin ether_ifdetach(ifp);
312 1.1 rin if_detach(ifp);
313 1.1 rin
314 1.1 rin igc_free_pci_resources(sc);
315 1.1 rin
316 1.1 rin igc_free_transmit_structures(sc);
317 1.1 rin igc_free_receive_structures(sc);
318 1.1 rin free(sc->mta, M_DEVBUF, ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
319 1.1 rin
320 1.1 rin return 0;
321 1.1 rin }
322 1.1 rin
323 1.1 rin void
324 1.1 rin igc_identify_hardware(struct igc_softc *sc)
325 1.1 rin {
326 1.1 rin struct igc_osdep *os = &sc->osdep;
327 1.1 rin struct pci_attach_args *pa = &os->os_pa;
328 1.1 rin
329 1.1 rin /* Save off the information about this board. */
330 1.1 rin sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
331 1.1 rin
332 1.1 rin /* Do shared code init and setup. */
333 1.1 rin if (igc_set_mac_type(&sc->hw)) {
334 1.1 rin printf(": Setup init failure\n");
335 1.1 rin return;
336 1.1 rin }
337 1.1 rin }
338 1.1 rin
339 1.1 rin int
340 1.1 rin igc_allocate_pci_resources(struct igc_softc *sc)
341 1.1 rin {
342 1.1 rin struct igc_osdep *os = &sc->osdep;
343 1.1 rin struct pci_attach_args *pa = &os->os_pa;
344 1.1 rin pcireg_t memtype;
345 1.1 rin
346 1.1 rin memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IGC_PCIREG);
347 1.1 rin if (pci_mapreg_map(pa, IGC_PCIREG, memtype, 0, &os->os_memt,
348 1.1 rin &os->os_memh, &os->os_membase, &os->os_memsize, 0)) {
349 1.1 rin printf(": unable to map registers\n");
350 1.1 rin return ENXIO;
351 1.1 rin }
352 1.1 rin sc->hw.hw_addr = (uint8_t *)os->os_membase;
353 1.1 rin sc->hw.back = os;
354 1.1 rin
355 1.1 rin igc_setup_msix(sc);
356 1.1 rin
357 1.1 rin return 0;
358 1.1 rin }
359 1.1 rin
360 1.1 rin int
361 1.1 rin igc_allocate_queues(struct igc_softc *sc)
362 1.1 rin {
363 1.1 rin struct igc_queue *iq;
364 1.1 rin struct tx_ring *txr;
365 1.1 rin struct rx_ring *rxr;
366 1.1 rin int i, rsize, rxconf, tsize, txconf;
367 1.1 rin
368 1.1 rin /* Allocate the top level queue structs. */
369 1.1 rin sc->queues = mallocarray(sc->sc_nqueues, sizeof(struct igc_queue),
370 1.1 rin M_DEVBUF, M_NOWAIT | M_ZERO);
371 1.1 rin if (sc->queues == NULL) {
372 1.1 rin printf("%s: unable to allocate queue\n", DEVNAME(sc));
373 1.1 rin goto fail;
374 1.1 rin }
375 1.1 rin
376 1.1 rin /* Allocate the TX ring. */
377 1.1 rin sc->tx_rings = mallocarray(sc->sc_nqueues, sizeof(struct tx_ring),
378 1.1 rin M_DEVBUF, M_NOWAIT | M_ZERO);
379 1.1 rin if (sc->tx_rings == NULL) {
380 1.1 rin printf("%s: unable to allocate TX ring\n", DEVNAME(sc));
381 1.1 rin goto fail;
382 1.1 rin }
383 1.1 rin
384 1.1 rin /* Allocate the RX ring. */
385 1.1 rin sc->rx_rings = mallocarray(sc->sc_nqueues, sizeof(struct rx_ring),
386 1.1 rin M_DEVBUF, M_NOWAIT | M_ZERO);
387 1.1 rin if (sc->rx_rings == NULL) {
388 1.1 rin printf("%s: unable to allocate RX ring\n", DEVNAME(sc));
389 1.1 rin goto rx_fail;
390 1.1 rin }
391 1.1 rin
392 1.1 rin txconf = rxconf = 0;
393 1.1 rin
394 1.1 rin /* Set up the TX queues. */
395 1.1 rin tsize = roundup2(sc->num_tx_desc * sizeof(union igc_adv_tx_desc),
396 1.1 rin IGC_DBA_ALIGN);
397 1.1 rin for (i = 0; i < sc->sc_nqueues; i++, txconf++) {
398 1.1 rin txr = &sc->tx_rings[i];
399 1.1 rin txr->sc = sc;
400 1.1 rin txr->me = i;
401 1.1 rin
402 1.1 rin if (igc_dma_malloc(sc, tsize, &txr->txdma)) {
403 1.1 rin printf("%s: unable to allocate TX descriptor\n",
404 1.1 rin DEVNAME(sc));
405 1.1 rin goto err_tx_desc;
406 1.1 rin }
407 1.1 rin txr->tx_base = (union igc_adv_tx_desc *)txr->txdma.dma_vaddr;
408 1.1 rin bzero((void *)txr->tx_base, tsize);
409 1.1 rin }
410 1.1 rin
411 1.1 rin /* Set up the RX queues. */
412 1.1 rin rsize = roundup2(sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
413 1.1 rin IGC_DBA_ALIGN);
414 1.1 rin for (i = 0; i < sc->sc_nqueues; i++, rxconf++) {
415 1.1 rin rxr = &sc->rx_rings[i];
416 1.1 rin rxr->sc = sc;
417 1.1 rin rxr->me = i;
418 1.1 rin timeout_set(&rxr->rx_refill, igc_rxrefill, rxr);
419 1.1 rin
420 1.1 rin if (igc_dma_malloc(sc, rsize, &rxr->rxdma)) {
421 1.1 rin printf("%s: unable to allocate RX descriptor\n",
422 1.1 rin DEVNAME(sc));
423 1.1 rin goto err_rx_desc;
424 1.1 rin }
425 1.1 rin rxr->rx_base = (union igc_adv_rx_desc *)rxr->rxdma.dma_vaddr;
426 1.1 rin bzero((void *)rxr->rx_base, rsize);
427 1.1 rin }
428 1.1 rin
429 1.1 rin /* Set up the queue holding structs. */
430 1.1 rin for (i = 0; i < sc->sc_nqueues; i++) {
431 1.1 rin iq = &sc->queues[i];
432 1.1 rin iq->sc = sc;
433 1.1 rin iq->txr = &sc->tx_rings[i];
434 1.1 rin iq->rxr = &sc->rx_rings[i];
435 1.1 rin snprintf(iq->name, sizeof(iq->name), "%s:%d", DEVNAME(sc), i);
436 1.1 rin }
437 1.1 rin
438 1.1 rin return 0;
439 1.1 rin
440 1.1 rin err_rx_desc:
441 1.1 rin for (rxr = sc->rx_rings; rxconf > 0; rxr++, rxconf--)
442 1.1 rin igc_dma_free(sc, &rxr->rxdma);
443 1.1 rin err_tx_desc:
444 1.1 rin for (txr = sc->tx_rings; txconf > 0; txr++, txconf--)
445 1.1 rin igc_dma_free(sc, &txr->txdma);
446 1.1 rin free(sc->rx_rings, M_DEVBUF, sc->sc_nqueues * sizeof(struct rx_ring));
447 1.1 rin sc->rx_rings = NULL;
448 1.1 rin rx_fail:
449 1.1 rin free(sc->tx_rings, M_DEVBUF, sc->sc_nqueues * sizeof(struct tx_ring));
450 1.1 rin sc->tx_rings = NULL;
451 1.1 rin fail:
452 1.1 rin return ENOMEM;
453 1.1 rin }
454 1.1 rin
455 1.1 rin void
456 1.1 rin igc_free_pci_resources(struct igc_softc *sc)
457 1.1 rin {
458 1.1 rin struct igc_osdep *os = &sc->osdep;
459 1.1 rin struct pci_attach_args *pa = &os->os_pa;
460 1.1 rin struct igc_queue *iq = sc->queues;
461 1.1 rin int i;
462 1.1 rin
463 1.1 rin /* Release all msix queue resources. */
464 1.1 rin for (i = 0; i < sc->sc_nqueues; i++, iq++) {
465 1.1 rin if (iq->tag)
466 1.1 rin pci_intr_disestablish(pa->pa_pc, iq->tag);
467 1.1 rin iq->tag = NULL;
468 1.1 rin }
469 1.1 rin
470 1.1 rin if (sc->tag)
471 1.1 rin pci_intr_disestablish(pa->pa_pc, sc->tag);
472 1.1 rin sc->tag = NULL;
473 1.1 rin if (os->os_membase != 0)
474 1.1 rin bus_space_unmap(os->os_memt, os->os_memh, os->os_memsize);
475 1.1 rin os->os_membase = 0;
476 1.1 rin }
477 1.1 rin
478 1.1 rin /*********************************************************************
479 1.1 rin *
480 1.1 rin * Initialize the hardware to a configuration as specified by the
481 1.1 rin * adapter structure.
482 1.1 rin *
483 1.1 rin **********************************************************************/
484 1.1 rin void
485 1.1 rin igc_reset(struct igc_softc *sc)
486 1.1 rin {
487 1.1 rin struct igc_hw *hw = &sc->hw;
488 1.1 rin uint32_t pba;
489 1.1 rin uint16_t rx_buffer_size;
490 1.1 rin
491 1.1 rin /* Let the firmware know the OS is in control */
492 1.1 rin igc_get_hw_control(sc);
493 1.1 rin
494 1.1 rin /*
495 1.1 rin * Packet Buffer Allocation (PBA)
496 1.1 rin * Writing PBA sets the receive portion of the buffer
497 1.1 rin * the remainder is used for the transmit buffer.
498 1.1 rin */
499 1.1 rin pba = IGC_PBA_34K;
500 1.1 rin
501 1.1 rin /*
502 1.1 rin * These parameters control the automatic generation (Tx) and
503 1.1 rin * response (Rx) to Ethernet PAUSE frames.
504 1.1 rin * - High water mark should allow for at least two frames to be
505 1.1 rin * received after sending an XOFF.
506 1.1 rin * - Low water mark works best when it is very near the high water mark.
507 1.1 rin * This allows the receiver to restart by sending XON when it has
508 1.1 rin * drained a bit. Here we use an arbitrary value of 1500 which will
509 1.1 rin * restart after one full frame is pulled from the buffer. There
510 1.1 rin * could be several smaller frames in the buffer and if so they will
511 1.1 rin * not trigger the XON until their total number reduces the buffer
512 1.1 rin * by 1500.
513 1.1 rin * - The pause time is fairly large at 1000 x 512ns = 512 usec.
514 1.1 rin */
515 1.1 rin rx_buffer_size = (pba & 0xffff) << 10;
516 1.1 rin hw->fc.high_water = rx_buffer_size -
517 1.1 rin roundup2(sc->hw.mac.max_frame_size, 1024);
518 1.1 rin /* 16-byte granularity */
519 1.1 rin hw->fc.low_water = hw->fc.high_water - 16;
520 1.1 rin
521 1.1 rin if (sc->fc) /* locally set flow control value? */
522 1.1 rin hw->fc.requested_mode = sc->fc;
523 1.1 rin else
524 1.1 rin hw->fc.requested_mode = igc_fc_full;
525 1.1 rin
526 1.1 rin hw->fc.pause_time = IGC_FC_PAUSE_TIME;
527 1.1 rin
528 1.1 rin hw->fc.send_xon = true;
529 1.1 rin
530 1.1 rin /* Issue a global reset */
531 1.1 rin igc_reset_hw(hw);
532 1.1 rin IGC_WRITE_REG(hw, IGC_WUC, 0);
533 1.1 rin
534 1.1 rin /* and a re-init */
535 1.1 rin if (igc_init_hw(hw) < 0) {
536 1.1 rin printf(": Hardware Initialization Failed\n");
537 1.1 rin return;
538 1.1 rin }
539 1.1 rin
540 1.1 rin /* Setup DMA Coalescing */
541 1.1 rin igc_init_dmac(sc, pba);
542 1.1 rin
543 1.1 rin IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
544 1.1 rin igc_get_phy_info(hw);
545 1.1 rin igc_check_for_link(hw);
546 1.1 rin }
547 1.1 rin
548 1.1 rin /*********************************************************************
549 1.1 rin *
550 1.1 rin * Initialize the DMA Coalescing feature
551 1.1 rin *
552 1.1 rin **********************************************************************/
553 1.1 rin void
554 1.1 rin igc_init_dmac(struct igc_softc *sc, uint32_t pba)
555 1.1 rin {
556 1.1 rin struct igc_hw *hw = &sc->hw;
557 1.1 rin uint32_t dmac, reg = ~IGC_DMACR_DMAC_EN;
558 1.1 rin uint16_t hwm, max_frame_size;
559 1.1 rin int status;
560 1.1 rin
561 1.1 rin max_frame_size = sc->hw.mac.max_frame_size;
562 1.1 rin
563 1.1 rin if (sc->dmac == 0) { /* Disabling it */
564 1.1 rin IGC_WRITE_REG(hw, IGC_DMACR, reg);
565 1.1 rin return;
566 1.1 rin } else
567 1.1 rin printf(": DMA Coalescing enabled\n");
568 1.1 rin
569 1.1 rin /* Set starting threshold */
570 1.1 rin IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
571 1.1 rin
572 1.1 rin hwm = 64 * pba - max_frame_size / 16;
573 1.1 rin if (hwm < 64 * (pba - 6))
574 1.1 rin hwm = 64 * (pba - 6);
575 1.1 rin reg = IGC_READ_REG(hw, IGC_FCRTC);
576 1.1 rin reg &= ~IGC_FCRTC_RTH_COAL_MASK;
577 1.1 rin reg |= ((hwm << IGC_FCRTC_RTH_COAL_SHIFT)
578 1.1 rin & IGC_FCRTC_RTH_COAL_MASK);
579 1.1 rin IGC_WRITE_REG(hw, IGC_FCRTC, reg);
580 1.1 rin
581 1.1 rin dmac = pba - max_frame_size / 512;
582 1.1 rin if (dmac < pba - 10)
583 1.1 rin dmac = pba - 10;
584 1.1 rin reg = IGC_READ_REG(hw, IGC_DMACR);
585 1.1 rin reg &= ~IGC_DMACR_DMACTHR_MASK;
586 1.1 rin reg |= ((dmac << IGC_DMACR_DMACTHR_SHIFT)
587 1.1 rin & IGC_DMACR_DMACTHR_MASK);
588 1.1 rin
589 1.1 rin /* transition to L0x or L1 if available..*/
590 1.1 rin reg |= (IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK);
591 1.1 rin
592 1.1 rin /* Check if status is 2.5Gb backplane connection
593 1.1 rin * before configuration of watchdog timer, which is
594 1.1 rin * in msec values in 12.8usec intervals
595 1.1 rin * watchdog timer= msec values in 32usec intervals
596 1.1 rin * for non 2.5Gb connection
597 1.1 rin */
598 1.1 rin status = IGC_READ_REG(hw, IGC_STATUS);
599 1.1 rin if ((status & IGC_STATUS_2P5_SKU) &&
600 1.1 rin (!(status & IGC_STATUS_2P5_SKU_OVER)))
601 1.1 rin reg |= ((sc->dmac * 5) >> 6);
602 1.1 rin else
603 1.1 rin reg |= (sc->dmac >> 5);
604 1.1 rin
605 1.1 rin IGC_WRITE_REG(hw, IGC_DMACR, reg);
606 1.1 rin
607 1.1 rin IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
608 1.1 rin
609 1.1 rin /* Set the interval before transition */
610 1.1 rin reg = IGC_READ_REG(hw, IGC_DMCTLX);
611 1.1 rin reg |= IGC_DMCTLX_DCFLUSH_DIS;
612 1.1 rin
613 1.1 rin /*
614 1.1 rin ** in 2.5Gb connection, TTLX unit is 0.4 usec
615 1.1 rin ** which is 0x4*2 = 0xA. But delay is still 4 usec
616 1.1 rin */
617 1.1 rin status = IGC_READ_REG(hw, IGC_STATUS);
618 1.1 rin if ((status & IGC_STATUS_2P5_SKU) &&
619 1.1 rin (!(status & IGC_STATUS_2P5_SKU_OVER)))
620 1.1 rin reg |= 0xA;
621 1.1 rin else
622 1.1 rin reg |= 0x4;
623 1.1 rin
624 1.1 rin IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
625 1.1 rin
626 1.1 rin /* free space in tx packet buffer to wake from DMA coal */
627 1.1 rin IGC_WRITE_REG(hw, IGC_DMCTXTH, (IGC_TXPBSIZE -
628 1.1 rin (2 * max_frame_size)) >> 6);
629 1.1 rin
630 1.1 rin /* make low power state decision controlled by DMA coal */
631 1.1 rin reg = IGC_READ_REG(hw, IGC_PCIEMISC);
632 1.1 rin reg &= ~IGC_PCIEMISC_LX_DECISION;
633 1.1 rin IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
634 1.1 rin }
635 1.1 rin
636 1.1 rin int
637 1.1 rin igc_allocate_msix(struct igc_softc *sc)
638 1.1 rin {
639 1.1 rin struct igc_osdep *os = &sc->osdep;
640 1.1 rin struct pci_attach_args *pa = &os->os_pa;
641 1.1 rin struct igc_queue *iq;
642 1.1 rin pci_intr_handle_t ih;
643 1.1 rin int i, error = 0;
644 1.1 rin
645 1.1 rin for (i = 0, iq = sc->queues; i < sc->sc_nqueues; i++, iq++) {
646 1.1 rin if (pci_intr_map_msix(pa, i, &ih)) {
647 1.1 rin printf("%s: unable to map msi-x vector %d\n",
648 1.1 rin DEVNAME(sc), i);
649 1.1 rin error = ENOMEM;
650 1.1 rin goto fail;
651 1.1 rin }
652 1.1 rin
653 1.1 rin iq->tag = pci_intr_establish_cpu(pa->pa_pc, ih,
654 1.1 rin IPL_NET | IPL_MPSAFE, intrmap_cpu(sc->sc_intrmap, i),
655 1.1 rin igc_intr_queue, iq, iq->name);
656 1.1 rin if (iq->tag == NULL) {
657 1.1 rin printf("%s: unable to establish interrupt %d\n",
658 1.1 rin DEVNAME(sc), i);
659 1.1 rin error = ENOMEM;
660 1.1 rin goto fail;
661 1.1 rin }
662 1.1 rin
663 1.1 rin iq->msix = i;
664 1.1 rin iq->eims = 1 << i;
665 1.1 rin }
666 1.1 rin
667 1.1 rin /* Now the link status/control last MSI-X vector. */
668 1.1 rin if (pci_intr_map_msix(pa, i, &ih)) {
669 1.1 rin printf("%s: unable to map link vector\n", DEVNAME(sc));
670 1.1 rin error = ENOMEM;
671 1.1 rin goto fail;
672 1.1 rin }
673 1.1 rin
674 1.1 rin sc->tag = pci_intr_establish(pa->pa_pc, ih, IPL_NET | IPL_MPSAFE,
675 1.1 rin igc_intr_link, sc, sc->sc_dev.dv_xname);
676 1.1 rin if (sc->tag == NULL) {
677 1.1 rin printf("%s: unable to establish link interrupt\n", DEVNAME(sc));
678 1.1 rin error = ENOMEM;
679 1.1 rin goto fail;
680 1.1 rin }
681 1.1 rin
682 1.1 rin sc->linkvec = i;
683 1.1 rin printf(", %s, %d queue%s", pci_intr_string(pa->pa_pc, ih),
684 1.1 rin i, (i > 1) ? "s" : "");
685 1.1 rin
686 1.1 rin return 0;
687 1.1 rin fail:
688 1.1 rin for (iq = sc->queues; i > 0; i--, iq++) {
689 1.1 rin if (iq->tag == NULL)
690 1.1 rin continue;
691 1.1 rin pci_intr_disestablish(pa->pa_pc, iq->tag);
692 1.1 rin iq->tag = NULL;
693 1.1 rin }
694 1.1 rin
695 1.1 rin return error;
696 1.1 rin }
697 1.1 rin
698 1.1 rin void
699 1.1 rin igc_setup_msix(struct igc_softc *sc)
700 1.1 rin {
701 1.1 rin struct igc_osdep *os = &sc->osdep;
702 1.1 rin struct pci_attach_args *pa = &os->os_pa;
703 1.1 rin int nmsix;
704 1.1 rin
705 1.1 rin nmsix = pci_intr_msix_count(pa);
706 1.1 rin if (nmsix <= 1)
707 1.1 rin printf(": not enough msi-x vectors\n");
708 1.1 rin
709 1.1 rin /* Give one vector to events. */
710 1.1 rin nmsix--;
711 1.1 rin
712 1.1 rin sc->sc_intrmap = intrmap_create(&sc->sc_dev, nmsix, IGC_MAX_VECTORS,
713 1.1 rin INTRMAP_POWEROF2);
714 1.1 rin sc->sc_nqueues = intrmap_count(sc->sc_intrmap);
715 1.1 rin }
716 1.1 rin
717 1.1 rin int
718 1.1 rin igc_dma_malloc(struct igc_softc *sc, bus_size_t size, struct igc_dma_alloc *dma)
719 1.1 rin {
720 1.1 rin struct igc_osdep *os = &sc->osdep;
721 1.1 rin
722 1.1 rin dma->dma_tag = os->os_pa.pa_dmat;
723 1.1 rin
724 1.1 rin if (bus_dmamap_create(dma->dma_tag, size, 1, size, 0, BUS_DMA_NOWAIT,
725 1.1 rin &dma->dma_map))
726 1.1 rin return 1;
727 1.1 rin if (bus_dmamem_alloc(dma->dma_tag, size, PAGE_SIZE, 0, &dma->dma_seg,
728 1.1 rin 1, &dma->dma_nseg, BUS_DMA_NOWAIT))
729 1.1 rin goto destroy;
730 1.1 rin if (bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
731 1.1 rin &dma->dma_vaddr, BUS_DMA_NOWAIT | BUS_DMA_COHERENT))
732 1.1 rin goto free;
733 1.1 rin if (bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
734 1.1 rin NULL, BUS_DMA_NOWAIT))
735 1.1 rin goto unmap;
736 1.1 rin
737 1.1 rin dma->dma_size = size;
738 1.1 rin
739 1.1 rin return 0;
740 1.1 rin unmap:
741 1.1 rin bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
742 1.1 rin free:
743 1.1 rin bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
744 1.1 rin destroy:
745 1.1 rin bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
746 1.1 rin dma->dma_map = NULL;
747 1.1 rin dma->dma_tag = NULL;
748 1.1 rin return 1;
749 1.1 rin }
750 1.1 rin
751 1.1 rin void
752 1.1 rin igc_dma_free(struct igc_softc *sc, struct igc_dma_alloc *dma)
753 1.1 rin {
754 1.1 rin if (dma->dma_tag == NULL)
755 1.1 rin return;
756 1.1 rin
757 1.1 rin if (dma->dma_map != NULL) {
758 1.1 rin bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
759 1.1 rin dma->dma_map->dm_mapsize,
760 1.1 rin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
761 1.1 rin bus_dmamap_unload(dma->dma_tag, dma->dma_map);
762 1.1 rin bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
763 1.1 rin bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
764 1.1 rin bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
765 1.1 rin dma->dma_map = NULL;
766 1.1 rin }
767 1.1 rin }
768 1.1 rin
769 1.1 rin /*********************************************************************
770 1.1 rin *
771 1.1 rin * Setup networking device structure and register an interface.
772 1.1 rin *
773 1.1 rin **********************************************************************/
774 1.1 rin void
775 1.1 rin igc_setup_interface(struct igc_softc *sc)
776 1.1 rin {
777 1.1 rin struct ifnet *ifp = &sc->sc_ac.ac_if;
778 1.1 rin int i;
779 1.1 rin
780 1.1 rin ifp->if_softc = sc;
781 1.1 rin strlcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ);
782 1.1 rin ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
783 1.1 rin ifp->if_xflags = IFXF_MPSAFE;
784 1.1 rin ifp->if_ioctl = igc_ioctl;
785 1.1 rin ifp->if_qstart = igc_start;
786 1.1 rin ifp->if_watchdog = igc_watchdog;
787 1.1 rin ifp->if_hardmtu = sc->hw.mac.max_frame_size - ETHER_HDR_LEN -
788 1.1 rin ETHER_CRC_LEN;
789 1.1 rin ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
790 1.1 rin
791 1.1 rin ifp->if_capabilities = IFCAP_VLAN_MTU;
792 1.1 rin
793 1.1 rin #ifdef notyet
794 1.1 rin #if NVLAN > 0
795 1.1 rin ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
796 1.1 rin #endif
797 1.1 rin #endif
798 1.1 rin
799 1.1 rin ifp->if_capabilities |= IFCAP_CSUM_IPv4;
800 1.1 rin ifp->if_capabilities |= IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
801 1.1 rin ifp->if_capabilities |= IFCAP_CSUM_TCPv6 | IFCAP_CSUM_UDPv6;
802 1.1 rin
803 1.1 rin /* Initialize ifmedia structures. */
804 1.1 rin ifmedia_init(&sc->media, IFM_IMASK, igc_media_change, igc_media_status);
805 1.1 rin ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
806 1.1 rin ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
807 1.1 rin ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
808 1.1 rin ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
809 1.1 rin ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
810 1.1 rin ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
811 1.1 rin ifmedia_add(&sc->media, IFM_ETHER | IFM_2500_T, 0, NULL);
812 1.1 rin
813 1.1 rin ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
814 1.1 rin ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
815 1.1 rin
816 1.1 rin if_attach(ifp);
817 1.1 rin ether_ifattach(ifp);
818 1.1 rin
819 1.1 rin if_attach_queues(ifp, sc->sc_nqueues);
820 1.1 rin if_attach_iqueues(ifp, sc->sc_nqueues);
821 1.1 rin for (i = 0; i < sc->sc_nqueues; i++) {
822 1.1 rin struct ifqueue *ifq = ifp->if_ifqs[i];
823 1.1 rin struct ifiqueue *ifiq = ifp->if_iqs[i];
824 1.1 rin struct tx_ring *txr = &sc->tx_rings[i];
825 1.1 rin struct rx_ring *rxr = &sc->rx_rings[i];
826 1.1 rin
827 1.1 rin ifq->ifq_softc = txr;
828 1.1 rin txr->ifq = ifq;
829 1.1 rin
830 1.1 rin ifiq->ifiq_softc = rxr;
831 1.1 rin rxr->ifiq = ifiq;
832 1.1 rin }
833 1.1 rin }
834 1.1 rin
835 1.1 rin void
836 1.1 rin igc_init(void *arg)
837 1.1 rin {
838 1.1 rin struct igc_softc *sc = (struct igc_softc *)arg;
839 1.1 rin struct ifnet *ifp = &sc->sc_ac.ac_if;
840 1.1 rin struct rx_ring *rxr;
841 1.1 rin uint32_t ctrl = 0;
842 1.1 rin int i, s;
843 1.1 rin
844 1.1 rin s = splnet();
845 1.1 rin
846 1.1 rin igc_stop(sc);
847 1.1 rin
848 1.1 rin /* Get the latest mac address, user can use a LAA. */
849 1.1 rin bcopy(sc->sc_ac.ac_enaddr, sc->hw.mac.addr, ETHER_ADDR_LEN);
850 1.1 rin
851 1.1 rin /* Put the address into the receive address array. */
852 1.1 rin igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
853 1.1 rin
854 1.1 rin /* Initialize the hardware. */
855 1.1 rin igc_reset(sc);
856 1.1 rin igc_update_link_status(sc);
857 1.1 rin
858 1.1 rin /* Setup VLAN support, basic and offload if available. */
859 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
860 1.1 rin
861 1.1 rin /* Prepare transmit descriptors and buffers. */
862 1.1 rin if (igc_setup_transmit_structures(sc)) {
863 1.1 rin printf("%s: Could not setup transmit structures\n",
864 1.1 rin DEVNAME(sc));
865 1.1 rin igc_stop(sc);
866 1.1 rin splx(s);
867 1.1 rin return;
868 1.1 rin }
869 1.1 rin igc_initialize_transmit_unit(sc);
870 1.1 rin
871 1.1 rin sc->rx_mbuf_sz = MCLBYTES + ETHER_ALIGN;
872 1.1 rin /* Prepare receive descriptors and buffers. */
873 1.1 rin if (igc_setup_receive_structures(sc)) {
874 1.1 rin printf("%s: Could not setup receive structures\n",
875 1.1 rin DEVNAME(sc));
876 1.1 rin igc_stop(sc);
877 1.1 rin splx(s);
878 1.1 rin return;
879 1.1 rin }
880 1.1 rin igc_initialize_receive_unit(sc);
881 1.1 rin
882 1.1 rin if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) {
883 1.1 rin ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
884 1.1 rin ctrl |= IGC_CTRL_VME;
885 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
886 1.1 rin }
887 1.1 rin
888 1.1 rin /* Setup multicast table. */
889 1.1 rin igc_iff(sc);
890 1.1 rin
891 1.1 rin igc_clear_hw_cntrs_base_generic(&sc->hw);
892 1.1 rin
893 1.1 rin igc_configure_queues(sc);
894 1.1 rin
895 1.1 rin /* This clears any pending interrupts */
896 1.1 rin IGC_READ_REG(&sc->hw, IGC_ICR);
897 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
898 1.1 rin
899 1.1 rin /* The driver can now take control from firmware. */
900 1.1 rin igc_get_hw_control(sc);
901 1.1 rin
902 1.1 rin /* Set Energy Efficient Ethernet. */
903 1.1 rin igc_set_eee_i225(&sc->hw, true, true, true);
904 1.1 rin
905 1.1 rin for (i = 0; i < sc->sc_nqueues; i++) {
906 1.1 rin rxr = &sc->rx_rings[i];
907 1.1 rin igc_rxfill(rxr);
908 1.1 rin if (if_rxr_inuse(&rxr->rx_ring) == 0) {
909 1.1 rin printf("%s: Unable to fill any rx descriptors\n",
910 1.1 rin DEVNAME(sc));
911 1.1 rin igc_stop(sc);
912 1.1 rin splx(s);
913 1.1 rin }
914 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_RDT(i),
915 1.1 rin (rxr->last_desc_filled + 1) % sc->num_rx_desc);
916 1.1 rin }
917 1.1 rin
918 1.1 rin igc_enable_intr(sc);
919 1.1 rin
920 1.1 rin ifp->if_flags |= IFF_RUNNING;
921 1.1 rin for (i = 0; i < sc->sc_nqueues; i++)
922 1.1 rin ifq_clr_oactive(ifp->if_ifqs[i]);
923 1.1 rin
924 1.1 rin splx(s);
925 1.1 rin }
926 1.1 rin
927 1.1 rin static inline int
928 1.1 rin igc_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m)
929 1.1 rin {
930 1.1 rin int error;
931 1.1 rin
932 1.1 rin error = bus_dmamap_load_mbuf(dmat, map, m,
933 1.1 rin BUS_DMA_STREAMING | BUS_DMA_NOWAIT);
934 1.1 rin if (error != EFBIG)
935 1.1 rin return (error);
936 1.1 rin
937 1.1 rin error = m_defrag(m, M_DONTWAIT);
938 1.1 rin if (error != 0)
939 1.1 rin return (error);
940 1.1 rin
941 1.1 rin return (bus_dmamap_load_mbuf(dmat, map, m,
942 1.1 rin BUS_DMA_STREAMING | BUS_DMA_NOWAIT));
943 1.1 rin }
944 1.1 rin
945 1.1 rin void
946 1.1 rin igc_start(struct ifqueue *ifq)
947 1.1 rin {
948 1.1 rin struct ifnet *ifp = ifq->ifq_if;
949 1.1 rin struct igc_softc *sc = ifp->if_softc;
950 1.1 rin struct tx_ring *txr = ifq->ifq_softc;
951 1.1 rin union igc_adv_tx_desc *txdesc;
952 1.1 rin struct igc_tx_buf *txbuf;
953 1.1 rin bus_dmamap_t map;
954 1.1 rin struct mbuf *m;
955 1.1 rin unsigned int prod, free, last, i;
956 1.1 rin unsigned int mask;
957 1.1 rin uint32_t cmd_type_len;
958 1.1 rin uint32_t olinfo_status;
959 1.1 rin int post = 0;
960 1.1 rin #if NBPFILTER > 0
961 1.1 rin caddr_t if_bpf;
962 1.1 rin #endif
963 1.1 rin
964 1.1 rin if (!sc->link_active) {
965 1.1 rin ifq_purge(ifq);
966 1.1 rin return;
967 1.1 rin }
968 1.1 rin
969 1.1 rin prod = txr->next_avail_desc;
970 1.1 rin free = txr->next_to_clean;
971 1.1 rin if (free <= prod)
972 1.1 rin free += sc->num_tx_desc;
973 1.1 rin free -= prod;
974 1.1 rin
975 1.1 rin bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
976 1.1 rin txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
977 1.1 rin
978 1.1 rin mask = sc->num_tx_desc - 1;
979 1.1 rin
980 1.1 rin for (;;) {
981 1.1 rin if (free <= IGC_MAX_SCATTER + 1) {
982 1.1 rin ifq_set_oactive(ifq);
983 1.1 rin break;
984 1.1 rin }
985 1.1 rin
986 1.1 rin m = ifq_dequeue(ifq);
987 1.1 rin if (m == NULL)
988 1.1 rin break;
989 1.1 rin
990 1.1 rin txbuf = &txr->tx_buffers[prod];
991 1.1 rin map = txbuf->map;
992 1.1 rin
993 1.1 rin if (igc_load_mbuf(txr->txdma.dma_tag, map, m) != 0) {
994 1.1 rin ifq->ifq_errors++;
995 1.1 rin m_freem(m);
996 1.1 rin continue;
997 1.1 rin }
998 1.1 rin
999 1.1 rin olinfo_status = m->m_pkthdr.len << IGC_ADVTXD_PAYLEN_SHIFT;
1000 1.1 rin
1001 1.1 rin bus_dmamap_sync(txr->txdma.dma_tag, map, 0,
1002 1.1 rin map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1003 1.1 rin
1004 1.1 rin if (igc_tx_ctx_setup(txr, m, prod, &olinfo_status)) {
1005 1.1 rin /* Consume the first descriptor */
1006 1.1 rin prod++;
1007 1.1 rin prod &= mask;
1008 1.1 rin free--;
1009 1.1 rin }
1010 1.1 rin
1011 1.1 rin for (i = 0; i < map->dm_nsegs; i++) {
1012 1.1 rin txdesc = &txr->tx_base[prod];
1013 1.1 rin
1014 1.1 rin cmd_type_len = IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DTYP_DATA |
1015 1.1 rin IGC_ADVTXD_DCMD_DEXT | map->dm_segs[i].ds_len;
1016 1.1 rin if (i == map->dm_nsegs - 1)
1017 1.1 rin cmd_type_len |= IGC_ADVTXD_DCMD_EOP |
1018 1.1 rin IGC_ADVTXD_DCMD_RS;
1019 1.1 rin
1020 1.1 rin htolem64(&txdesc->read.buffer_addr, map->dm_segs[i].ds_addr);
1021 1.1 rin htolem32(&txdesc->read.cmd_type_len, cmd_type_len);
1022 1.1 rin htolem32(&txdesc->read.olinfo_status, olinfo_status);
1023 1.1 rin
1024 1.1 rin last = prod;
1025 1.1 rin
1026 1.1 rin prod++;
1027 1.1 rin prod &= mask;
1028 1.1 rin }
1029 1.1 rin
1030 1.1 rin txbuf->m_head = m;
1031 1.1 rin txbuf->eop_index = last;
1032 1.1 rin
1033 1.1 rin #if NBPFILTER > 0
1034 1.1 rin if_bpf = ifp->if_bpf;
1035 1.1 rin if (if_bpf)
1036 1.1 rin bpf_mtap_ether(if_bpf, m, BPF_DIRECTION_OUT);
1037 1.1 rin #endif
1038 1.1 rin
1039 1.1 rin free -= i;
1040 1.1 rin post = 1;
1041 1.1 rin }
1042 1.1 rin
1043 1.1 rin bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
1044 1.1 rin txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1045 1.1 rin
1046 1.1 rin if (post) {
1047 1.1 rin txr->next_avail_desc = prod;
1048 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), prod);
1049 1.1 rin }
1050 1.1 rin }
1051 1.1 rin
1052 1.1 rin int
1053 1.1 rin igc_txeof(struct tx_ring *txr)
1054 1.1 rin {
1055 1.1 rin struct igc_softc *sc = txr->sc;
1056 1.1 rin struct ifqueue *ifq = txr->ifq;
1057 1.1 rin union igc_adv_tx_desc *txdesc;
1058 1.1 rin struct igc_tx_buf *txbuf;
1059 1.1 rin bus_dmamap_t map;
1060 1.1 rin unsigned int cons, prod, last;
1061 1.1 rin unsigned int mask;
1062 1.1 rin int done = 0;
1063 1.1 rin
1064 1.1 rin prod = txr->next_avail_desc;
1065 1.1 rin cons = txr->next_to_clean;
1066 1.1 rin
1067 1.1 rin if (cons == prod)
1068 1.1 rin return (0);
1069 1.1 rin
1070 1.1 rin bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
1071 1.1 rin txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1072 1.1 rin
1073 1.1 rin mask = sc->num_tx_desc - 1;
1074 1.1 rin
1075 1.1 rin do {
1076 1.1 rin txbuf = &txr->tx_buffers[cons];
1077 1.1 rin last = txbuf->eop_index;
1078 1.1 rin txdesc = &txr->tx_base[last];
1079 1.1 rin
1080 1.1 rin if (!(txdesc->wb.status & htole32(IGC_TXD_STAT_DD)))
1081 1.1 rin break;
1082 1.1 rin
1083 1.1 rin map = txbuf->map;
1084 1.1 rin
1085 1.1 rin bus_dmamap_sync(txr->txdma.dma_tag, map, 0, map->dm_mapsize,
1086 1.1 rin BUS_DMASYNC_POSTWRITE);
1087 1.1 rin bus_dmamap_unload(txr->txdma.dma_tag, map);
1088 1.1 rin m_freem(txbuf->m_head);
1089 1.1 rin
1090 1.1 rin txbuf->m_head = NULL;
1091 1.1 rin txbuf->eop_index = -1;
1092 1.1 rin
1093 1.1 rin cons = last + 1;
1094 1.1 rin cons &= mask;
1095 1.1 rin
1096 1.1 rin done = 1;
1097 1.1 rin } while (cons != prod);
1098 1.1 rin
1099 1.1 rin bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
1100 1.1 rin txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1101 1.1 rin
1102 1.1 rin txr->next_to_clean = cons;
1103 1.1 rin
1104 1.1 rin if (ifq_is_oactive(ifq))
1105 1.1 rin ifq_restart(ifq);
1106 1.1 rin
1107 1.1 rin return (done);
1108 1.1 rin }
1109 1.1 rin
1110 1.1 rin /*********************************************************************
1111 1.1 rin *
1112 1.1 rin * This routine disables all traffic on the adapter by issuing a
1113 1.1 rin * global reset on the MAC.
1114 1.1 rin *
1115 1.1 rin **********************************************************************/
1116 1.1 rin void
1117 1.1 rin igc_stop(struct igc_softc *sc)
1118 1.1 rin {
1119 1.1 rin struct ifnet *ifp = &sc->sc_ac.ac_if;
1120 1.1 rin int i;
1121 1.1 rin
1122 1.1 rin /* Tell the stack that the interface is no longer active. */
1123 1.1 rin ifp->if_flags &= ~IFF_RUNNING;
1124 1.1 rin
1125 1.1 rin igc_disable_intr(sc);
1126 1.1 rin
1127 1.1 rin igc_reset_hw(&sc->hw);
1128 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
1129 1.1 rin
1130 1.1 rin intr_barrier(sc->tag);
1131 1.1 rin for (i = 0; i < sc->sc_nqueues; i++) {
1132 1.1 rin struct ifqueue *ifq = ifp->if_ifqs[i];
1133 1.1 rin ifq_barrier(ifq);
1134 1.1 rin ifq_clr_oactive(ifq);
1135 1.1 rin
1136 1.1 rin if (sc->queues[i].tag != NULL)
1137 1.1 rin intr_barrier(sc->queues[i].tag);
1138 1.1 rin timeout_del(&sc->rx_rings[i].rx_refill);
1139 1.1 rin }
1140 1.1 rin
1141 1.1 rin igc_free_transmit_structures(sc);
1142 1.1 rin igc_free_receive_structures(sc);
1143 1.1 rin
1144 1.1 rin igc_update_link_status(sc);
1145 1.1 rin }
1146 1.1 rin
1147 1.1 rin /*********************************************************************
1148 1.1 rin * Ioctl entry point
1149 1.1 rin *
1150 1.1 rin * igc_ioctl is called when the user wants to configure the
1151 1.1 rin * interface.
1152 1.1 rin *
1153 1.1 rin * return 0 on success, positive on failure
1154 1.1 rin **********************************************************************/
1155 1.1 rin int
1156 1.1 rin igc_ioctl(struct ifnet * ifp, u_long cmd, caddr_t data)
1157 1.1 rin {
1158 1.1 rin struct igc_softc *sc = ifp->if_softc;
1159 1.1 rin struct ifreq *ifr = (struct ifreq *)data;
1160 1.1 rin int s, error = 0;
1161 1.1 rin
1162 1.1 rin s = splnet();
1163 1.1 rin
1164 1.1 rin switch (cmd) {
1165 1.1 rin case SIOCSIFADDR:
1166 1.1 rin ifp->if_flags |= IFF_UP;
1167 1.1 rin if (!(ifp->if_flags & IFF_RUNNING))
1168 1.1 rin igc_init(sc);
1169 1.1 rin break;
1170 1.1 rin case SIOCSIFFLAGS:
1171 1.1 rin if (ifp->if_flags & IFF_UP) {
1172 1.1 rin if (ifp->if_flags & IFF_RUNNING)
1173 1.1 rin error = ENETRESET;
1174 1.1 rin else
1175 1.1 rin igc_init(sc);
1176 1.1 rin } else {
1177 1.1 rin if (ifp->if_flags & IFF_RUNNING)
1178 1.1 rin igc_stop(sc);
1179 1.1 rin }
1180 1.1 rin break;
1181 1.1 rin case SIOCSIFMEDIA:
1182 1.1 rin case SIOCGIFMEDIA:
1183 1.1 rin error = ifmedia_ioctl(ifp, ifr, &sc->media, cmd);
1184 1.1 rin break;
1185 1.1 rin case SIOCGIFRXR:
1186 1.1 rin error = igc_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
1187 1.1 rin break;
1188 1.1 rin default:
1189 1.1 rin error = ether_ioctl(ifp, &sc->sc_ac, cmd, data);
1190 1.1 rin }
1191 1.1 rin
1192 1.1 rin if (error == ENETRESET) {
1193 1.1 rin if (ifp->if_flags & IFF_RUNNING) {
1194 1.1 rin igc_disable_intr(sc);
1195 1.1 rin igc_iff(sc);
1196 1.1 rin igc_enable_intr(sc);
1197 1.1 rin }
1198 1.1 rin error = 0;
1199 1.1 rin }
1200 1.1 rin
1201 1.1 rin splx(s);
1202 1.1 rin return error;
1203 1.1 rin }
1204 1.1 rin
1205 1.1 rin int
1206 1.1 rin igc_rxrinfo(struct igc_softc *sc, struct if_rxrinfo *ifri)
1207 1.1 rin {
1208 1.1 rin struct if_rxring_info *ifr;
1209 1.1 rin struct rx_ring *rxr;
1210 1.1 rin int error, i, n = 0;
1211 1.1 rin
1212 1.1 rin ifr = mallocarray(sc->sc_nqueues, sizeof(*ifr), M_DEVBUF,
1213 1.1 rin M_WAITOK | M_ZERO);
1214 1.1 rin
1215 1.1 rin for (i = 0; i < sc->sc_nqueues; i++) {
1216 1.1 rin rxr = &sc->rx_rings[i];
1217 1.1 rin ifr[n].ifr_size = MCLBYTES;
1218 1.1 rin snprintf(ifr[n].ifr_name, sizeof(ifr[n].ifr_name), "%d", i);
1219 1.1 rin ifr[n].ifr_info = rxr->rx_ring;
1220 1.1 rin n++;
1221 1.1 rin }
1222 1.1 rin
1223 1.1 rin error = if_rxr_info_ioctl(ifri, sc->sc_nqueues, ifr);
1224 1.1 rin free(ifr, M_DEVBUF, sc->sc_nqueues * sizeof(*ifr));
1225 1.1 rin
1226 1.1 rin return error;
1227 1.1 rin }
1228 1.1 rin
1229 1.1 rin int
1230 1.1 rin igc_rxfill(struct rx_ring *rxr)
1231 1.1 rin {
1232 1.1 rin struct igc_softc *sc = rxr->sc;
1233 1.1 rin int i, post = 0;
1234 1.1 rin u_int slots;
1235 1.1 rin
1236 1.1 rin bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
1237 1.1 rin rxr->rxdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1238 1.1 rin
1239 1.1 rin i = rxr->last_desc_filled;
1240 1.1 rin for (slots = if_rxr_get(&rxr->rx_ring, sc->num_rx_desc); slots > 0;
1241 1.1 rin slots--) {
1242 1.1 rin if (++i == sc->num_rx_desc)
1243 1.1 rin i = 0;
1244 1.1 rin
1245 1.1 rin if (igc_get_buf(rxr, i) != 0)
1246 1.1 rin break;
1247 1.1 rin
1248 1.1 rin rxr->last_desc_filled = i;
1249 1.1 rin post = 1;
1250 1.1 rin }
1251 1.1 rin
1252 1.1 rin bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
1253 1.1 rin rxr->rxdma.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1254 1.1 rin
1255 1.1 rin if_rxr_put(&rxr->rx_ring, slots);
1256 1.1 rin
1257 1.1 rin return post;
1258 1.1 rin }
1259 1.1 rin
1260 1.1 rin void
1261 1.1 rin igc_rxrefill(void *xrxr)
1262 1.1 rin {
1263 1.1 rin struct rx_ring *rxr = xrxr;
1264 1.1 rin struct igc_softc *sc = rxr->sc;
1265 1.1 rin
1266 1.1 rin if (igc_rxfill(rxr)) {
1267 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me),
1268 1.1 rin (rxr->last_desc_filled + 1) % sc->num_rx_desc);
1269 1.1 rin }
1270 1.1 rin else if (if_rxr_inuse(&rxr->rx_ring) == 0)
1271 1.1 rin timeout_add(&rxr->rx_refill, 1);
1272 1.1 rin }
1273 1.1 rin
1274 1.1 rin /*********************************************************************
1275 1.1 rin *
1276 1.1 rin * This routine executes in interrupt context. It replenishes
1277 1.1 rin * the mbufs in the descriptor and sends data which has been
1278 1.1 rin * dma'ed into host memory to upper layer.
1279 1.1 rin *
1280 1.1 rin *********************************************************************/
1281 1.1 rin int
1282 1.1 rin igc_rxeof(struct rx_ring *rxr)
1283 1.1 rin {
1284 1.1 rin struct igc_softc *sc = rxr->sc;
1285 1.1 rin struct ifnet *ifp = &sc->sc_ac.ac_if;
1286 1.1 rin struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1287 1.1 rin struct mbuf *mp, *m;
1288 1.1 rin struct igc_rx_buf *rxbuf, *nxbuf;
1289 1.1 rin union igc_adv_rx_desc *rxdesc;
1290 1.1 rin uint32_t ptype, staterr = 0;
1291 1.1 rin uint16_t len, vtag;
1292 1.1 rin uint8_t eop = 0;
1293 1.1 rin int i, nextp;
1294 1.1 rin
1295 1.1 rin if (!ISSET(ifp->if_flags, IFF_RUNNING))
1296 1.1 rin return 0;
1297 1.1 rin
1298 1.1 rin i = rxr->next_to_check;
1299 1.1 rin while (if_rxr_inuse(&rxr->rx_ring) > 0) {
1300 1.1 rin uint32_t hash;
1301 1.1 rin uint16_t hashtype;
1302 1.1 rin
1303 1.1 rin bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
1304 1.1 rin i * sizeof(union igc_adv_rx_desc),
1305 1.1 rin sizeof(union igc_adv_rx_desc), BUS_DMASYNC_POSTREAD);
1306 1.1 rin
1307 1.1 rin rxdesc = &rxr->rx_base[i];
1308 1.1 rin staterr = letoh32(rxdesc->wb.upper.status_error);
1309 1.1 rin if (!ISSET(staterr, IGC_RXD_STAT_DD)) {
1310 1.1 rin bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
1311 1.1 rin i * sizeof(union igc_adv_rx_desc),
1312 1.1 rin sizeof(union igc_adv_rx_desc), BUS_DMASYNC_PREREAD);
1313 1.1 rin break;
1314 1.1 rin }
1315 1.1 rin
1316 1.1 rin /* Zero out the receive descriptors status. */
1317 1.1 rin rxdesc->wb.upper.status_error = 0;
1318 1.1 rin rxbuf = &rxr->rx_buffers[i];
1319 1.1 rin
1320 1.1 rin /* Pull the mbuf off the ring. */
1321 1.1 rin bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map, 0,
1322 1.1 rin rxbuf->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1323 1.1 rin bus_dmamap_unload(rxr->rxdma.dma_tag, rxbuf->map);
1324 1.1 rin
1325 1.1 rin mp = rxbuf->buf;
1326 1.1 rin len = letoh16(rxdesc->wb.upper.length);
1327 1.1 rin vtag = letoh16(rxdesc->wb.upper.vlan);
1328 1.1 rin eop = ((staterr & IGC_RXD_STAT_EOP) == IGC_RXD_STAT_EOP);
1329 1.1 rin ptype = letoh32(rxdesc->wb.lower.lo_dword.data) &
1330 1.1 rin IGC_PKTTYPE_MASK;
1331 1.1 rin hash = letoh32(rxdesc->wb.lower.hi_dword.rss);
1332 1.1 rin hashtype = le16toh(rxdesc->wb.lower.lo_dword.hs_rss.pkt_info) &
1333 1.1 rin IGC_RXDADV_RSSTYPE_MASK;
1334 1.1 rin
1335 1.1 rin if (staterr & IGC_RXDEXT_STATERR_RXE) {
1336 1.1 rin if (rxbuf->fmp) {
1337 1.1 rin m_freem(rxbuf->fmp);
1338 1.1 rin rxbuf->fmp = NULL;
1339 1.1 rin }
1340 1.1 rin
1341 1.1 rin m_freem(mp);
1342 1.1 rin rxbuf->buf = NULL;
1343 1.1 rin goto next_desc;
1344 1.1 rin }
1345 1.1 rin
1346 1.1 rin if (mp == NULL) {
1347 1.1 rin panic("%s: igc_rxeof: NULL mbuf in slot %d "
1348 1.1 rin "(nrx %d, filled %d)", DEVNAME(sc), i,
1349 1.1 rin if_rxr_inuse(&rxr->rx_ring), rxr->last_desc_filled);
1350 1.1 rin }
1351 1.1 rin
1352 1.1 rin if (!eop) {
1353 1.1 rin /*
1354 1.1 rin * Figure out the next descriptor of this frame.
1355 1.1 rin */
1356 1.1 rin nextp = i + 1;
1357 1.1 rin if (nextp == sc->num_rx_desc)
1358 1.1 rin nextp = 0;
1359 1.1 rin nxbuf = &rxr->rx_buffers[nextp];
1360 1.1 rin /* prefetch(nxbuf); */
1361 1.1 rin }
1362 1.1 rin
1363 1.1 rin mp->m_len = len;
1364 1.1 rin
1365 1.1 rin m = rxbuf->fmp;
1366 1.1 rin rxbuf->buf = rxbuf->fmp = NULL;
1367 1.1 rin
1368 1.1 rin if (m != NULL)
1369 1.1 rin m->m_pkthdr.len += mp->m_len;
1370 1.1 rin else {
1371 1.1 rin m = mp;
1372 1.1 rin m->m_pkthdr.len = mp->m_len;
1373 1.1 rin #if NVLAN > 0
1374 1.1 rin if (staterr & IGC_RXD_STAT_VP) {
1375 1.1 rin m->m_pkthdr.ether_vtag = vtag;
1376 1.1 rin m->m_flags |= M_VLANTAG;
1377 1.1 rin }
1378 1.1 rin #endif
1379 1.1 rin }
1380 1.1 rin
1381 1.1 rin /* Pass the head pointer on */
1382 1.1 rin if (eop == 0) {
1383 1.1 rin nxbuf->fmp = m;
1384 1.1 rin m = NULL;
1385 1.1 rin mp->m_next = nxbuf->buf;
1386 1.1 rin } else {
1387 1.1 rin igc_rx_checksum(staterr, m, ptype);
1388 1.1 rin
1389 1.1 rin if (hashtype != IGC_RXDADV_RSSTYPE_NONE) {
1390 1.1 rin m->m_pkthdr.ph_flowid = hash;
1391 1.1 rin SET(m->m_pkthdr.csum_flags, M_FLOWID);
1392 1.1 rin }
1393 1.1 rin
1394 1.1 rin ml_enqueue(&ml, m);
1395 1.1 rin }
1396 1.1 rin next_desc:
1397 1.1 rin if_rxr_put(&rxr->rx_ring, 1);
1398 1.1 rin bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
1399 1.1 rin i * sizeof(union igc_adv_rx_desc),
1400 1.1 rin sizeof(union igc_adv_rx_desc), BUS_DMASYNC_PREREAD);
1401 1.1 rin
1402 1.1 rin /* Advance our pointers to the next descriptor. */
1403 1.1 rin if (++i == sc->num_rx_desc)
1404 1.1 rin i = 0;
1405 1.1 rin }
1406 1.1 rin rxr->next_to_check = i;
1407 1.1 rin
1408 1.1 rin if (ifiq_input(rxr->ifiq, &ml))
1409 1.1 rin if_rxr_livelocked(&rxr->rx_ring);
1410 1.1 rin
1411 1.1 rin if (!(staterr & IGC_RXD_STAT_DD))
1412 1.1 rin return 0;
1413 1.1 rin
1414 1.1 rin return 1;
1415 1.1 rin }
1416 1.1 rin
1417 1.1 rin /*********************************************************************
1418 1.1 rin *
1419 1.1 rin * Verify that the hardware indicated that the checksum is valid.
1420 1.1 rin * Inform the stack about the status of checksum so that stack
1421 1.1 rin * doesn't spend time verifying the checksum.
1422 1.1 rin *
1423 1.1 rin *********************************************************************/
1424 1.1 rin void
1425 1.1 rin igc_rx_checksum(uint32_t staterr, struct mbuf *m, uint32_t ptype)
1426 1.1 rin {
1427 1.1 rin uint16_t status = (uint16_t)staterr;
1428 1.1 rin uint8_t errors = (uint8_t)(staterr >> 24);
1429 1.1 rin
1430 1.1 rin if (status & IGC_RXD_STAT_IPCS) {
1431 1.1 rin if (!(errors & IGC_RXD_ERR_IPE)) {
1432 1.1 rin /* IP Checksum Good */
1433 1.1 rin m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;
1434 1.1 rin } else
1435 1.1 rin m->m_pkthdr.csum_flags = 0;
1436 1.1 rin }
1437 1.1 rin
1438 1.1 rin if (status & (IGC_RXD_STAT_TCPCS | IGC_RXD_STAT_UDPCS)) {
1439 1.1 rin if (!(errors & IGC_RXD_ERR_TCPE))
1440 1.1 rin m->m_pkthdr.csum_flags |=
1441 1.1 rin M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1442 1.1 rin }
1443 1.1 rin }
1444 1.1 rin
1445 1.1 rin void
1446 1.1 rin igc_watchdog(struct ifnet * ifp)
1447 1.1 rin {
1448 1.1 rin }
1449 1.1 rin
1450 1.1 rin /*********************************************************************
1451 1.1 rin *
1452 1.1 rin * Media Ioctl callback
1453 1.1 rin *
1454 1.1 rin * This routine is called whenever the user queries the status of
1455 1.1 rin * the interface using ifconfig.
1456 1.1 rin *
1457 1.1 rin **********************************************************************/
1458 1.1 rin void
1459 1.1 rin igc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1460 1.1 rin {
1461 1.1 rin struct igc_softc *sc = ifp->if_softc;
1462 1.1 rin
1463 1.1 rin igc_update_link_status(sc);
1464 1.1 rin
1465 1.1 rin ifmr->ifm_status = IFM_AVALID;
1466 1.1 rin ifmr->ifm_active = IFM_ETHER;
1467 1.1 rin
1468 1.1 rin if (!sc->link_active) {
1469 1.1 rin ifmr->ifm_active |= IFM_NONE;
1470 1.1 rin return;
1471 1.1 rin }
1472 1.1 rin
1473 1.1 rin ifmr->ifm_status |= IFM_ACTIVE;
1474 1.1 rin
1475 1.1 rin switch (sc->link_speed) {
1476 1.1 rin case 10:
1477 1.1 rin ifmr->ifm_active |= IFM_10_T;
1478 1.1 rin break;
1479 1.1 rin case 100:
1480 1.1 rin ifmr->ifm_active |= IFM_100_TX;
1481 1.1 rin break;
1482 1.1 rin case 1000:
1483 1.1 rin ifmr->ifm_active |= IFM_1000_T;
1484 1.1 rin break;
1485 1.1 rin case 2500:
1486 1.1 rin ifmr->ifm_active |= IFM_2500_T;
1487 1.1 rin break;
1488 1.1 rin }
1489 1.1 rin
1490 1.1 rin if (sc->link_duplex == FULL_DUPLEX)
1491 1.1 rin ifmr->ifm_active |= IFM_FDX;
1492 1.1 rin else
1493 1.1 rin ifmr->ifm_active |= IFM_HDX;
1494 1.1 rin }
1495 1.1 rin
1496 1.1 rin /*********************************************************************
1497 1.1 rin *
1498 1.1 rin * Media Ioctl callback
1499 1.1 rin *
1500 1.1 rin * This routine is called when the user changes speed/duplex using
1501 1.1 rin * media/mediopt option with ifconfig.
1502 1.1 rin *
1503 1.1 rin **********************************************************************/
1504 1.1 rin int
1505 1.1 rin igc_media_change(struct ifnet *ifp)
1506 1.1 rin {
1507 1.1 rin struct igc_softc *sc = ifp->if_softc;
1508 1.1 rin struct ifmedia *ifm = &sc->media;
1509 1.1 rin
1510 1.1 rin if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1511 1.1 rin return (EINVAL);
1512 1.1 rin
1513 1.1 rin sc->hw.mac.autoneg = DO_AUTO_NEG;
1514 1.1 rin
1515 1.1 rin switch (IFM_SUBTYPE(ifm->ifm_media)) {
1516 1.1 rin case IFM_AUTO:
1517 1.1 rin sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1518 1.1 rin break;
1519 1.1 rin case IFM_2500_T:
1520 1.1 rin sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
1521 1.1 rin break;
1522 1.1 rin case IFM_1000_T:
1523 1.1 rin sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1524 1.1 rin break;
1525 1.1 rin case IFM_100_TX:
1526 1.1 rin if ((ifm->ifm_media & IFM_GMASK) == IFM_HDX)
1527 1.1 rin sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
1528 1.1 rin else
1529 1.1 rin sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
1530 1.1 rin break;
1531 1.1 rin case IFM_10_T:
1532 1.1 rin if ((ifm->ifm_media & IFM_GMASK) == IFM_HDX)
1533 1.1 rin sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
1534 1.1 rin else
1535 1.1 rin sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
1536 1.1 rin break;
1537 1.1 rin default:
1538 1.1 rin return EINVAL;
1539 1.1 rin }
1540 1.1 rin
1541 1.1 rin igc_init(sc);
1542 1.1 rin
1543 1.1 rin return 0;
1544 1.1 rin }
1545 1.1 rin
1546 1.1 rin void
1547 1.1 rin igc_iff(struct igc_softc *sc)
1548 1.1 rin {
1549 1.1 rin struct ifnet *ifp = &sc->sc_ac.ac_if;
1550 1.1 rin struct arpcom *ac = &sc->sc_ac;
1551 1.1 rin struct ether_multi *enm;
1552 1.1 rin struct ether_multistep step;
1553 1.1 rin uint32_t reg_rctl = 0;
1554 1.1 rin uint8_t *mta;
1555 1.1 rin int mcnt = 0;
1556 1.1 rin
1557 1.1 rin mta = sc->mta;
1558 1.1 rin bzero(mta, sizeof(uint8_t) * ETHER_ADDR_LEN *
1559 1.1 rin MAX_NUM_MULTICAST_ADDRESSES);
1560 1.1 rin
1561 1.1 rin reg_rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
1562 1.1 rin reg_rctl &= ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
1563 1.1 rin ifp->if_flags &= ~IFF_ALLMULTI;
1564 1.1 rin
1565 1.1 rin if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0 ||
1566 1.1 rin ac->ac_multicnt > MAX_NUM_MULTICAST_ADDRESSES) {
1567 1.1 rin ifp->if_flags |= IFF_ALLMULTI;
1568 1.1 rin reg_rctl |= IGC_RCTL_MPE;
1569 1.1 rin if (ifp->if_flags & IFF_PROMISC)
1570 1.1 rin reg_rctl |= IGC_RCTL_UPE;
1571 1.1 rin } else {
1572 1.1 rin ETHER_FIRST_MULTI(step, ac, enm);
1573 1.1 rin while (enm != NULL) {
1574 1.1 rin bcopy(enm->enm_addrlo,
1575 1.1 rin &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1576 1.1 rin mcnt++;
1577 1.1 rin
1578 1.1 rin ETHER_NEXT_MULTI(step, enm);
1579 1.1 rin }
1580 1.1 rin
1581 1.1 rin igc_update_mc_addr_list(&sc->hw, mta, mcnt);
1582 1.1 rin }
1583 1.1 rin
1584 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_RCTL, reg_rctl);
1585 1.1 rin }
1586 1.1 rin
1587 1.1 rin void
1588 1.1 rin igc_update_link_status(struct igc_softc *sc)
1589 1.1 rin {
1590 1.1 rin struct ifnet *ifp = &sc->sc_ac.ac_if;
1591 1.1 rin struct igc_hw *hw = &sc->hw;
1592 1.1 rin int link_state;
1593 1.1 rin
1594 1.1 rin if (IGC_READ_REG(&sc->hw, IGC_STATUS) & IGC_STATUS_LU) {
1595 1.1 rin if (sc->link_active == 0) {
1596 1.1 rin igc_get_speed_and_duplex(hw, &sc->link_speed,
1597 1.1 rin &sc->link_duplex);
1598 1.1 rin sc->link_active = 1;
1599 1.1 rin ifp->if_baudrate = IF_Mbps(sc->link_speed);
1600 1.1 rin }
1601 1.1 rin link_state = (sc->link_duplex == FULL_DUPLEX) ?
1602 1.1 rin LINK_STATE_FULL_DUPLEX : LINK_STATE_HALF_DUPLEX;
1603 1.1 rin } else {
1604 1.1 rin if (sc->link_active == 1) {
1605 1.1 rin ifp->if_baudrate = sc->link_speed = 0;
1606 1.1 rin sc->link_duplex = 0;
1607 1.1 rin sc->link_active = 0;
1608 1.1 rin }
1609 1.1 rin link_state = LINK_STATE_DOWN;
1610 1.1 rin }
1611 1.1 rin if (ifp->if_link_state != link_state) {
1612 1.1 rin ifp->if_link_state = link_state;
1613 1.1 rin if_link_state_change(ifp);
1614 1.1 rin }
1615 1.1 rin }
1616 1.1 rin
1617 1.1 rin /*********************************************************************
1618 1.1 rin *
1619 1.1 rin * Get a buffer from system mbuf buffer pool.
1620 1.1 rin *
1621 1.1 rin **********************************************************************/
1622 1.1 rin int
1623 1.1 rin igc_get_buf(struct rx_ring *rxr, int i)
1624 1.1 rin {
1625 1.1 rin struct igc_softc *sc = rxr->sc;
1626 1.1 rin struct igc_rx_buf *rxbuf;
1627 1.1 rin struct mbuf *m;
1628 1.1 rin union igc_adv_rx_desc *rxdesc;
1629 1.1 rin int error;
1630 1.1 rin
1631 1.1 rin rxbuf = &rxr->rx_buffers[i];
1632 1.1 rin rxdesc = &rxr->rx_base[i];
1633 1.1 rin if (rxbuf->buf) {
1634 1.1 rin printf("%s: slot %d already has an mbuf\n", DEVNAME(sc), i);
1635 1.1 rin return ENOBUFS;
1636 1.1 rin }
1637 1.1 rin
1638 1.1 rin m = MCLGETL(NULL, M_DONTWAIT, sc->rx_mbuf_sz);
1639 1.1 rin if (!m)
1640 1.1 rin return ENOBUFS;
1641 1.1 rin
1642 1.1 rin m->m_data += (m->m_ext.ext_size - sc->rx_mbuf_sz);
1643 1.1 rin m->m_len = m->m_pkthdr.len = sc->rx_mbuf_sz;
1644 1.1 rin
1645 1.1 rin error = bus_dmamap_load_mbuf(rxr->rxdma.dma_tag, rxbuf->map, m,
1646 1.1 rin BUS_DMA_NOWAIT);
1647 1.1 rin if (error) {
1648 1.1 rin m_freem(m);
1649 1.1 rin return error;
1650 1.1 rin }
1651 1.1 rin
1652 1.1 rin bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map, 0,
1653 1.1 rin rxbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1654 1.1 rin rxbuf->buf = m;
1655 1.1 rin
1656 1.1 rin rxdesc->read.pkt_addr = htole64(rxbuf->map->dm_segs[0].ds_addr);
1657 1.1 rin
1658 1.1 rin return 0;
1659 1.1 rin }
1660 1.1 rin
1661 1.1 rin void
1662 1.1 rin igc_configure_queues(struct igc_softc *sc)
1663 1.1 rin {
1664 1.1 rin struct igc_hw *hw = &sc->hw;
1665 1.1 rin struct igc_queue *iq = sc->queues;
1666 1.1 rin uint32_t ivar, newitr = 0;
1667 1.1 rin int i;
1668 1.1 rin
1669 1.1 rin /* First turn on RSS capability */
1670 1.1 rin IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME |
1671 1.1 rin IGC_GPIE_PBA | IGC_GPIE_NSICR);
1672 1.1 rin
1673 1.1 rin /* Set the starting interrupt rate */
1674 1.1 rin newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;
1675 1.1 rin
1676 1.1 rin newitr |= IGC_EITR_CNT_IGNR;
1677 1.1 rin
1678 1.1 rin /* Turn on MSI-X */
1679 1.1 rin for (i = 0; i < sc->sc_nqueues; i++, iq++) {
1680 1.1 rin /* RX entries */
1681 1.1 rin igc_set_queues(sc, i, iq->msix, 0);
1682 1.1 rin /* TX entries */
1683 1.1 rin igc_set_queues(sc, i, iq->msix, 1);
1684 1.1 rin sc->msix_queuesmask |= iq->eims;
1685 1.1 rin IGC_WRITE_REG(hw, IGC_EITR(iq->msix), newitr);
1686 1.1 rin }
1687 1.1 rin
1688 1.1 rin /* And for the link interrupt */
1689 1.1 rin ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
1690 1.1 rin sc->msix_linkmask = 1 << sc->linkvec;
1691 1.1 rin IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
1692 1.1 rin }
1693 1.1 rin
1694 1.1 rin void
1695 1.1 rin igc_set_queues(struct igc_softc *sc, uint32_t entry, uint32_t vector, int type)
1696 1.1 rin {
1697 1.1 rin struct igc_hw *hw = &sc->hw;
1698 1.1 rin uint32_t ivar, index;
1699 1.1 rin
1700 1.1 rin index = entry >> 1;
1701 1.1 rin ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
1702 1.1 rin if (type) {
1703 1.1 rin if (entry & 1) {
1704 1.1 rin ivar &= 0x00FFFFFF;
1705 1.1 rin ivar |= (vector | IGC_IVAR_VALID) << 24;
1706 1.1 rin } else {
1707 1.1 rin ivar &= 0xFFFF00FF;
1708 1.1 rin ivar |= (vector | IGC_IVAR_VALID) << 8;
1709 1.1 rin }
1710 1.1 rin } else {
1711 1.1 rin if (entry & 1) {
1712 1.1 rin ivar &= 0xFF00FFFF;
1713 1.1 rin ivar |= (vector | IGC_IVAR_VALID) << 16;
1714 1.1 rin } else {
1715 1.1 rin ivar &= 0xFFFFFF00;
1716 1.1 rin ivar |= vector | IGC_IVAR_VALID;
1717 1.1 rin }
1718 1.1 rin }
1719 1.1 rin IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
1720 1.1 rin }
1721 1.1 rin
1722 1.1 rin void
1723 1.1 rin igc_enable_queue(struct igc_softc *sc, uint32_t eims)
1724 1.1 rin {
1725 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_EIMS, eims);
1726 1.1 rin }
1727 1.1 rin
1728 1.1 rin void
1729 1.1 rin igc_enable_intr(struct igc_softc *sc)
1730 1.1 rin {
1731 1.1 rin struct igc_hw *hw = &sc->hw;
1732 1.1 rin uint32_t mask;
1733 1.1 rin
1734 1.1 rin mask = (sc->msix_queuesmask | sc->msix_linkmask);
1735 1.1 rin IGC_WRITE_REG(hw, IGC_EIAC, mask);
1736 1.1 rin IGC_WRITE_REG(hw, IGC_EIAM, mask);
1737 1.1 rin IGC_WRITE_REG(hw, IGC_EIMS, mask);
1738 1.1 rin IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
1739 1.1 rin IGC_WRITE_FLUSH(hw);
1740 1.1 rin }
1741 1.1 rin
1742 1.1 rin void
1743 1.1 rin igc_disable_intr(struct igc_softc *sc)
1744 1.1 rin {
1745 1.1 rin struct igc_hw *hw = &sc->hw;
1746 1.1 rin
1747 1.1 rin IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
1748 1.1 rin IGC_WRITE_REG(hw, IGC_EIAC, 0);
1749 1.1 rin IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
1750 1.1 rin IGC_WRITE_FLUSH(hw);
1751 1.1 rin }
1752 1.1 rin
1753 1.1 rin int
1754 1.1 rin igc_intr_link(void *arg)
1755 1.1 rin {
1756 1.1 rin struct igc_softc *sc = (struct igc_softc *)arg;
1757 1.1 rin uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
1758 1.1 rin
1759 1.1 rin if (reg_icr & IGC_ICR_LSC) {
1760 1.1 rin KERNEL_LOCK();
1761 1.1 rin sc->hw.mac.get_link_status = true;
1762 1.1 rin igc_update_link_status(sc);
1763 1.1 rin KERNEL_UNLOCK();
1764 1.1 rin }
1765 1.1 rin
1766 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
1767 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->msix_linkmask);
1768 1.1 rin
1769 1.1 rin return 1;
1770 1.1 rin }
1771 1.1 rin
1772 1.1 rin int
1773 1.1 rin igc_intr_queue(void *arg)
1774 1.1 rin {
1775 1.1 rin struct igc_queue *iq = arg;
1776 1.1 rin struct igc_softc *sc = iq->sc;
1777 1.1 rin struct ifnet *ifp = &sc->sc_ac.ac_if;
1778 1.1 rin struct rx_ring *rxr = iq->rxr;
1779 1.1 rin struct tx_ring *txr = iq->txr;
1780 1.1 rin
1781 1.1 rin if (ifp->if_flags & IFF_RUNNING) {
1782 1.1 rin igc_txeof(txr);
1783 1.1 rin igc_rxeof(rxr);
1784 1.1 rin igc_rxrefill(rxr);
1785 1.1 rin }
1786 1.1 rin
1787 1.1 rin igc_enable_queue(sc, iq->eims);
1788 1.1 rin
1789 1.1 rin return 1;
1790 1.1 rin }
1791 1.1 rin
1792 1.1 rin /*********************************************************************
1793 1.1 rin *
1794 1.1 rin * Allocate memory for tx_buffer structures. The tx_buffer stores all
1795 1.1 rin * the information needed to transmit a packet on the wire.
1796 1.1 rin *
1797 1.1 rin **********************************************************************/
1798 1.1 rin int
1799 1.1 rin igc_allocate_transmit_buffers(struct tx_ring *txr)
1800 1.1 rin {
1801 1.1 rin struct igc_softc *sc = txr->sc;
1802 1.1 rin struct igc_tx_buf *txbuf;
1803 1.1 rin int error, i;
1804 1.1 rin
1805 1.1 rin txr->tx_buffers = mallocarray(sc->num_tx_desc,
1806 1.1 rin sizeof(struct igc_tx_buf), M_DEVBUF, M_NOWAIT | M_ZERO);
1807 1.1 rin if (txr->tx_buffers == NULL) {
1808 1.1 rin printf("%s: Unable to allocate tx_buffer memory\n",
1809 1.1 rin DEVNAME(sc));
1810 1.1 rin error = ENOMEM;
1811 1.1 rin goto fail;
1812 1.1 rin }
1813 1.1 rin txr->txtag = txr->txdma.dma_tag;
1814 1.1 rin
1815 1.1 rin /* Create the descriptor buffer dma maps. */
1816 1.1 rin for (i = 0; i < sc->num_tx_desc; i++) {
1817 1.1 rin txbuf = &txr->tx_buffers[i];
1818 1.1 rin error = bus_dmamap_create(txr->txdma.dma_tag, IGC_TSO_SIZE,
1819 1.1 rin IGC_MAX_SCATTER, PAGE_SIZE, 0, BUS_DMA_NOWAIT, &txbuf->map);
1820 1.1 rin if (error != 0) {
1821 1.1 rin printf("%s: Unable to create TX DMA map\n",
1822 1.1 rin DEVNAME(sc));
1823 1.1 rin goto fail;
1824 1.1 rin }
1825 1.1 rin }
1826 1.1 rin
1827 1.1 rin return 0;
1828 1.1 rin fail:
1829 1.1 rin return error;
1830 1.1 rin }
1831 1.1 rin
1832 1.1 rin
1833 1.1 rin /*********************************************************************
1834 1.1 rin *
1835 1.1 rin * Allocate and initialize transmit structures.
1836 1.1 rin *
1837 1.1 rin **********************************************************************/
1838 1.1 rin int
1839 1.1 rin igc_setup_transmit_structures(struct igc_softc *sc)
1840 1.1 rin {
1841 1.1 rin struct tx_ring *txr = sc->tx_rings;
1842 1.1 rin int i;
1843 1.1 rin
1844 1.1 rin for (i = 0; i < sc->sc_nqueues; i++, txr++) {
1845 1.1 rin if (igc_setup_transmit_ring(txr))
1846 1.1 rin goto fail;
1847 1.1 rin }
1848 1.1 rin
1849 1.1 rin return 0;
1850 1.1 rin fail:
1851 1.1 rin igc_free_transmit_structures(sc);
1852 1.1 rin return ENOBUFS;
1853 1.1 rin }
1854 1.1 rin
1855 1.1 rin /*********************************************************************
1856 1.1 rin *
1857 1.1 rin * Initialize a transmit ring.
1858 1.1 rin *
1859 1.1 rin **********************************************************************/
1860 1.1 rin int
1861 1.1 rin igc_setup_transmit_ring(struct tx_ring *txr)
1862 1.1 rin {
1863 1.1 rin struct igc_softc *sc = txr->sc;
1864 1.1 rin
1865 1.1 rin /* Now allocate transmit buffers for the ring. */
1866 1.1 rin if (igc_allocate_transmit_buffers(txr))
1867 1.1 rin return ENOMEM;
1868 1.1 rin
1869 1.1 rin /* Clear the old ring contents */
1870 1.1 rin bzero((void *)txr->tx_base,
1871 1.1 rin (sizeof(union igc_adv_tx_desc)) * sc->num_tx_desc);
1872 1.1 rin
1873 1.1 rin /* Reset indices. */
1874 1.1 rin txr->next_avail_desc = 0;
1875 1.1 rin txr->next_to_clean = 0;
1876 1.1 rin
1877 1.1 rin bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
1878 1.1 rin txr->txdma.dma_map->dm_mapsize,
1879 1.1 rin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1880 1.1 rin
1881 1.1 rin return 0;
1882 1.1 rin }
1883 1.1 rin
1884 1.1 rin /*********************************************************************
1885 1.1 rin *
1886 1.1 rin * Enable transmit unit.
1887 1.1 rin *
1888 1.1 rin **********************************************************************/
1889 1.1 rin void
1890 1.1 rin igc_initialize_transmit_unit(struct igc_softc *sc)
1891 1.1 rin {
1892 1.1 rin struct ifnet *ifp = &sc->sc_ac.ac_if;
1893 1.1 rin struct tx_ring *txr;
1894 1.1 rin struct igc_hw *hw = &sc->hw;
1895 1.1 rin uint64_t bus_addr;
1896 1.1 rin uint32_t tctl, txdctl = 0;
1897 1.1 rin int i;
1898 1.1 rin
1899 1.1 rin /* Setup the Base and Length of the TX descriptor ring. */
1900 1.1 rin for (i = 0; i < sc->sc_nqueues; i++) {
1901 1.1 rin txr = &sc->tx_rings[i];
1902 1.1 rin
1903 1.1 rin bus_addr = txr->txdma.dma_map->dm_segs[0].ds_addr;
1904 1.1 rin
1905 1.1 rin /* Base and len of TX ring */
1906 1.1 rin IGC_WRITE_REG(hw, IGC_TDLEN(i),
1907 1.1 rin sc->num_tx_desc * sizeof(union igc_adv_tx_desc));
1908 1.1 rin IGC_WRITE_REG(hw, IGC_TDBAH(i), (uint32_t)(bus_addr >> 32));
1909 1.1 rin IGC_WRITE_REG(hw, IGC_TDBAL(i), (uint32_t)bus_addr);
1910 1.1 rin
1911 1.1 rin /* Init the HEAD/TAIL indices */
1912 1.1 rin IGC_WRITE_REG(hw, IGC_TDT(i), 0);
1913 1.1 rin IGC_WRITE_REG(hw, IGC_TDH(i), 0);
1914 1.1 rin
1915 1.1 rin txr->watchdog_timer = 0;
1916 1.1 rin
1917 1.1 rin txdctl = 0; /* Clear txdctl */
1918 1.1 rin txdctl |= 0x1f; /* PTHRESH */
1919 1.1 rin txdctl |= 1 << 8; /* HTHRESH */
1920 1.1 rin txdctl |= 1 << 16; /* WTHRESH */
1921 1.1 rin txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
1922 1.1 rin txdctl |= IGC_TXDCTL_GRAN;
1923 1.1 rin txdctl |= 1 << 25; /* LWTHRESH */
1924 1.1 rin
1925 1.1 rin IGC_WRITE_REG(hw, IGC_TXDCTL(i), txdctl);
1926 1.1 rin }
1927 1.1 rin ifp->if_timer = 0;
1928 1.1 rin
1929 1.1 rin /* Program the Transmit Control Register */
1930 1.1 rin tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
1931 1.1 rin tctl &= ~IGC_TCTL_CT;
1932 1.1 rin tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
1933 1.1 rin (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
1934 1.1 rin
1935 1.1 rin /* This write will effectively turn on the transmit unit. */
1936 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
1937 1.1 rin }
1938 1.1 rin
1939 1.1 rin /*********************************************************************
1940 1.1 rin *
1941 1.1 rin * Free all transmit rings.
1942 1.1 rin *
1943 1.1 rin **********************************************************************/
1944 1.1 rin void
1945 1.1 rin igc_free_transmit_structures(struct igc_softc *sc)
1946 1.1 rin {
1947 1.1 rin struct tx_ring *txr = sc->tx_rings;
1948 1.1 rin int i;
1949 1.1 rin
1950 1.1 rin for (i = 0; i < sc->sc_nqueues; i++, txr++)
1951 1.1 rin igc_free_transmit_buffers(txr);
1952 1.1 rin }
1953 1.1 rin
1954 1.1 rin /*********************************************************************
1955 1.1 rin *
1956 1.1 rin * Free transmit ring related data structures.
1957 1.1 rin *
1958 1.1 rin **********************************************************************/
1959 1.1 rin void
1960 1.1 rin igc_free_transmit_buffers(struct tx_ring *txr)
1961 1.1 rin {
1962 1.1 rin struct igc_softc *sc = txr->sc;
1963 1.1 rin struct igc_tx_buf *txbuf;
1964 1.1 rin int i;
1965 1.1 rin
1966 1.1 rin if (txr->tx_buffers == NULL)
1967 1.1 rin return;
1968 1.1 rin
1969 1.1 rin txbuf = txr->tx_buffers;
1970 1.1 rin for (i = 0; i < sc->num_tx_desc; i++, txbuf++) {
1971 1.1 rin if (txbuf->map != NULL && txbuf->map->dm_nsegs > 0) {
1972 1.1 rin bus_dmamap_sync(txr->txdma.dma_tag, txbuf->map,
1973 1.1 rin 0, txbuf->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1974 1.1 rin bus_dmamap_unload(txr->txdma.dma_tag, txbuf->map);
1975 1.1 rin }
1976 1.1 rin if (txbuf->m_head != NULL) {
1977 1.1 rin m_freem(txbuf->m_head);
1978 1.1 rin txbuf->m_head = NULL;
1979 1.1 rin }
1980 1.1 rin if (txbuf->map != NULL) {
1981 1.1 rin bus_dmamap_destroy(txr->txdma.dma_tag, txbuf->map);
1982 1.1 rin txbuf->map = NULL;
1983 1.1 rin }
1984 1.1 rin }
1985 1.1 rin
1986 1.1 rin if (txr->tx_buffers != NULL)
1987 1.1 rin free(txr->tx_buffers, M_DEVBUF,
1988 1.1 rin sc->num_tx_desc * sizeof(struct igc_tx_buf));
1989 1.1 rin txr->tx_buffers = NULL;
1990 1.1 rin txr->txtag = NULL;
1991 1.1 rin }
1992 1.1 rin
1993 1.1 rin
1994 1.1 rin /*********************************************************************
1995 1.1 rin *
1996 1.1 rin * Advanced Context Descriptor setup for VLAN, CSUM or TSO
1997 1.1 rin *
1998 1.1 rin **********************************************************************/
1999 1.1 rin
2000 1.1 rin int
2001 1.1 rin igc_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
2002 1.1 rin uint32_t *olinfo_status)
2003 1.1 rin {
2004 1.1 rin struct ether_extracted ext;
2005 1.1 rin struct igc_adv_tx_context_desc *txdesc;
2006 1.1 rin uint32_t type_tucmd_mlhl = 0;
2007 1.1 rin uint32_t vlan_macip_lens = 0;
2008 1.1 rin uint32_t iphlen;
2009 1.1 rin int off = 0;
2010 1.1 rin
2011 1.1 rin vlan_macip_lens |= (sizeof(*ext.eh) << IGC_ADVTXD_MACLEN_SHIFT);
2012 1.1 rin
2013 1.1 rin /*
2014 1.1 rin * In advanced descriptors the vlan tag must
2015 1.1 rin * be placed into the context descriptor. Hence
2016 1.1 rin * we need to make one even if not doing offloads.
2017 1.1 rin */
2018 1.1 rin #ifdef notyet
2019 1.1 rin #if NVLAN > 0
2020 1.1 rin if (ISSET(mp->m_flags, M_VLANTAG)) {
2021 1.1 rin uint32_t vtag = mp->m_pkthdr.ether_vtag;
2022 1.1 rin vlan_macip_lens |= (vtag << IGC_ADVTXD_VLAN_SHIFT);
2023 1.1 rin off = 1;
2024 1.1 rin }
2025 1.1 rin #endif
2026 1.1 rin #endif
2027 1.1 rin
2028 1.1 rin ether_extract_headers(mp, &ext);
2029 1.1 rin
2030 1.1 rin if (ext.ip4) {
2031 1.1 rin iphlen = ext.ip4->ip_hl << 2;
2032 1.1 rin
2033 1.1 rin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
2034 1.1 rin if (ISSET(mp->m_pkthdr.csum_flags, M_IPV4_CSUM_OUT)) {
2035 1.1 rin *olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
2036 1.1 rin off = 1;
2037 1.1 rin }
2038 1.1 rin #ifdef INET6
2039 1.1 rin } else if (ext.ip6) {
2040 1.1 rin iphlen = sizeof(*ext.ip6);
2041 1.1 rin
2042 1.1 rin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
2043 1.1 rin #endif
2044 1.1 rin } else {
2045 1.1 rin return 0;
2046 1.1 rin }
2047 1.1 rin
2048 1.1 rin vlan_macip_lens |= iphlen;
2049 1.1 rin type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
2050 1.1 rin
2051 1.1 rin if (ext.tcp) {
2052 1.1 rin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
2053 1.1 rin if (ISSET(mp->m_pkthdr.csum_flags, M_TCP_CSUM_OUT)) {
2054 1.1 rin *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
2055 1.1 rin off = 1;
2056 1.1 rin }
2057 1.1 rin } else if (ext.udp) {
2058 1.1 rin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
2059 1.1 rin if (ISSET(mp->m_pkthdr.csum_flags, M_UDP_CSUM_OUT)) {
2060 1.1 rin *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
2061 1.1 rin off = 1;
2062 1.1 rin }
2063 1.1 rin }
2064 1.1 rin
2065 1.1 rin if (off == 0)
2066 1.1 rin return 0;
2067 1.1 rin
2068 1.1 rin /* Now ready a context descriptor */
2069 1.1 rin txdesc = (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
2070 1.1 rin
2071 1.1 rin /* Now copy bits into descriptor */
2072 1.1 rin htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
2073 1.1 rin htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
2074 1.1 rin htolem32(&txdesc->seqnum_seed, 0);
2075 1.1 rin htolem32(&txdesc->mss_l4len_idx, 0);
2076 1.1 rin
2077 1.1 rin return 1;
2078 1.1 rin }
2079 1.1 rin
2080 1.1 rin /*********************************************************************
2081 1.1 rin *
2082 1.1 rin * Allocate memory for rx_buffer structures. Since we use one
2083 1.1 rin * rx_buffer per received packet, the maximum number of rx_buffer's
2084 1.1 rin * that we'll need is equal to the number of receive descriptors
2085 1.1 rin * that we've allocated.
2086 1.1 rin *
2087 1.1 rin **********************************************************************/
2088 1.1 rin int
2089 1.1 rin igc_allocate_receive_buffers(struct rx_ring *rxr)
2090 1.1 rin {
2091 1.1 rin struct igc_softc *sc = rxr->sc;
2092 1.1 rin struct igc_rx_buf *rxbuf;
2093 1.1 rin int i, error;
2094 1.1 rin
2095 1.1 rin rxr->rx_buffers = mallocarray(sc->num_rx_desc,
2096 1.1 rin sizeof(struct igc_rx_buf), M_DEVBUF, M_NOWAIT | M_ZERO);
2097 1.1 rin if (rxr->rx_buffers == NULL) {
2098 1.1 rin printf("%s: Unable to allocate rx_buffer memory\n",
2099 1.1 rin DEVNAME(sc));
2100 1.1 rin error = ENOMEM;
2101 1.1 rin goto fail;
2102 1.1 rin }
2103 1.1 rin
2104 1.1 rin rxbuf = rxr->rx_buffers;
2105 1.1 rin for (i = 0; i < sc->num_rx_desc; i++, rxbuf++) {
2106 1.1 rin error = bus_dmamap_create(rxr->rxdma.dma_tag,
2107 1.1 rin MAX_JUMBO_FRAME_SIZE, 1, MAX_JUMBO_FRAME_SIZE, 0,
2108 1.1 rin BUS_DMA_NOWAIT, &rxbuf->map);
2109 1.1 rin if (error) {
2110 1.1 rin printf("%s: Unable to create RX DMA map\n",
2111 1.1 rin DEVNAME(sc));
2112 1.1 rin goto fail;
2113 1.1 rin }
2114 1.1 rin }
2115 1.1 rin bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
2116 1.1 rin rxr->rxdma.dma_map->dm_mapsize,
2117 1.1 rin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2118 1.1 rin
2119 1.1 rin return 0;
2120 1.1 rin fail:
2121 1.1 rin return error;
2122 1.1 rin }
2123 1.1 rin
2124 1.1 rin /*********************************************************************
2125 1.1 rin *
2126 1.1 rin * Allocate and initialize receive structures.
2127 1.1 rin *
2128 1.1 rin **********************************************************************/
2129 1.1 rin int
2130 1.1 rin igc_setup_receive_structures(struct igc_softc *sc)
2131 1.1 rin {
2132 1.1 rin struct rx_ring *rxr = sc->rx_rings;
2133 1.1 rin int i;
2134 1.1 rin
2135 1.1 rin for (i = 0; i < sc->sc_nqueues; i++, rxr++) {
2136 1.1 rin if (igc_setup_receive_ring(rxr))
2137 1.1 rin goto fail;
2138 1.1 rin }
2139 1.1 rin
2140 1.1 rin return 0;
2141 1.1 rin fail:
2142 1.1 rin igc_free_receive_structures(sc);
2143 1.1 rin return ENOBUFS;
2144 1.1 rin }
2145 1.1 rin
2146 1.1 rin /*********************************************************************
2147 1.1 rin *
2148 1.1 rin * Initialize a receive ring and its buffers.
2149 1.1 rin *
2150 1.1 rin **********************************************************************/
2151 1.1 rin int
2152 1.1 rin igc_setup_receive_ring(struct rx_ring *rxr)
2153 1.1 rin {
2154 1.1 rin struct igc_softc *sc = rxr->sc;
2155 1.1 rin struct ifnet *ifp = &sc->sc_ac.ac_if;
2156 1.1 rin int rsize;
2157 1.1 rin
2158 1.1 rin rsize = roundup2(sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
2159 1.1 rin IGC_DBA_ALIGN);
2160 1.1 rin
2161 1.1 rin /* Clear the ring contents. */
2162 1.1 rin bzero((void *)rxr->rx_base, rsize);
2163 1.1 rin
2164 1.1 rin if (igc_allocate_receive_buffers(rxr))
2165 1.1 rin return ENOMEM;
2166 1.1 rin
2167 1.1 rin /* Setup our descriptor indices. */
2168 1.1 rin rxr->next_to_check = 0;
2169 1.1 rin rxr->last_desc_filled = sc->num_rx_desc - 1;
2170 1.1 rin
2171 1.1 rin if_rxr_init(&rxr->rx_ring, 2 * ((ifp->if_hardmtu / MCLBYTES) + 1),
2172 1.1 rin sc->num_rx_desc - 1);
2173 1.1 rin
2174 1.1 rin return 0;
2175 1.1 rin }
2176 1.1 rin
2177 1.1 rin /*********************************************************************
2178 1.1 rin *
2179 1.1 rin * Enable receive unit.
2180 1.1 rin *
2181 1.1 rin **********************************************************************/
2182 1.1 rin void
2183 1.1 rin igc_initialize_receive_unit(struct igc_softc *sc)
2184 1.1 rin {
2185 1.1 rin struct rx_ring *rxr = sc->rx_rings;
2186 1.1 rin struct igc_hw *hw = &sc->hw;
2187 1.1 rin uint32_t rctl, rxcsum, srrctl = 0;
2188 1.1 rin int i;
2189 1.1 rin
2190 1.1 rin /*
2191 1.1 rin * Make sure receives are disabled while setting
2192 1.1 rin * up the descriptor ring.
2193 1.1 rin */
2194 1.1 rin rctl = IGC_READ_REG(hw, IGC_RCTL);
2195 1.1 rin IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
2196 1.1 rin
2197 1.1 rin /* Setup the Receive Control Register */
2198 1.1 rin rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
2199 1.1 rin rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
2200 1.1 rin IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
2201 1.1 rin
2202 1.1 rin /* Do not store bad packets */
2203 1.1 rin rctl &= ~IGC_RCTL_SBP;
2204 1.1 rin
2205 1.1 rin /* Enable Long Packet receive */
2206 1.1 rin if (sc->hw.mac.max_frame_size != ETHER_MAX_LEN)
2207 1.1 rin rctl |= IGC_RCTL_LPE;
2208 1.1 rin
2209 1.1 rin /* Strip the CRC */
2210 1.1 rin rctl |= IGC_RCTL_SECRC;
2211 1.1 rin
2212 1.1 rin /*
2213 1.1 rin * Set the interrupt throttling rate. Value is calculated
2214 1.1 rin * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
2215 1.1 rin */
2216 1.1 rin IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
2217 1.1 rin
2218 1.1 rin rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
2219 1.1 rin rxcsum &= ~IGC_RXCSUM_PCSD;
2220 1.1 rin
2221 1.1 rin if (sc->sc_nqueues > 1)
2222 1.1 rin rxcsum |= IGC_RXCSUM_PCSD;
2223 1.1 rin
2224 1.1 rin IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
2225 1.1 rin
2226 1.1 rin if (sc->sc_nqueues > 1)
2227 1.1 rin igc_initialize_rss_mapping(sc);
2228 1.1 rin
2229 1.1 rin #if 0
2230 1.1 rin srrctl |= 4096 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
2231 1.1 rin rctl |= IGC_RCTL_SZ_4096 | IGC_RCTL_BSEX;
2232 1.1 rin #endif
2233 1.1 rin
2234 1.1 rin srrctl |= 2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
2235 1.1 rin rctl |= IGC_RCTL_SZ_2048;
2236 1.1 rin
2237 1.1 rin /*
2238 1.1 rin * If TX flow control is disabled and there's > 1 queue defined,
2239 1.1 rin * enable DROP.
2240 1.1 rin *
2241 1.1 rin * This drops frames rather than hanging the RX MAC for all queues.
2242 1.1 rin */
2243 1.1 rin if ((sc->sc_nqueues > 1) && (sc->fc == igc_fc_none ||
2244 1.1 rin sc->fc == igc_fc_rx_pause)) {
2245 1.1 rin srrctl |= IGC_SRRCTL_DROP_EN;
2246 1.1 rin }
2247 1.1 rin
2248 1.1 rin /* Setup the Base and Length of the RX descriptor rings. */
2249 1.1 rin for (i = 0; i < sc->sc_nqueues; i++, rxr++) {
2250 1.1 rin IGC_WRITE_REG(hw, IGC_RXDCTL(i), 0);
2251 1.1 rin uint64_t bus_addr = rxr->rxdma.dma_map->dm_segs[0].ds_addr;
2252 1.1 rin uint32_t rxdctl;
2253 1.1 rin
2254 1.1 rin srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
2255 1.1 rin
2256 1.1 rin IGC_WRITE_REG(hw, IGC_RDLEN(i),
2257 1.1 rin sc->num_rx_desc * sizeof(union igc_adv_rx_desc));
2258 1.1 rin IGC_WRITE_REG(hw, IGC_RDBAH(i), (uint32_t)(bus_addr >> 32));
2259 1.1 rin IGC_WRITE_REG(hw, IGC_RDBAL(i), (uint32_t)bus_addr);
2260 1.1 rin IGC_WRITE_REG(hw, IGC_SRRCTL(i), srrctl);
2261 1.1 rin
2262 1.1 rin /* Setup the Head and Tail Descriptor Pointers */
2263 1.1 rin IGC_WRITE_REG(hw, IGC_RDH(i), 0);
2264 1.1 rin IGC_WRITE_REG(hw, IGC_RDT(i), 0);
2265 1.1 rin
2266 1.1 rin /* Enable this Queue */
2267 1.1 rin rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(i));
2268 1.1 rin rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
2269 1.1 rin rxdctl &= 0xFFF00000;
2270 1.1 rin rxdctl |= IGC_RX_PTHRESH;
2271 1.1 rin rxdctl |= IGC_RX_HTHRESH << 8;
2272 1.1 rin rxdctl |= IGC_RX_WTHRESH << 16;
2273 1.1 rin IGC_WRITE_REG(hw, IGC_RXDCTL(i), rxdctl);
2274 1.1 rin }
2275 1.1 rin
2276 1.1 rin /* Make sure VLAN Filters are off */
2277 1.1 rin rctl &= ~IGC_RCTL_VFE;
2278 1.1 rin
2279 1.1 rin /* Write out the settings */
2280 1.1 rin IGC_WRITE_REG(hw, IGC_RCTL, rctl);
2281 1.1 rin }
2282 1.1 rin
2283 1.1 rin /*********************************************************************
2284 1.1 rin *
2285 1.1 rin * Free all receive rings.
2286 1.1 rin *
2287 1.1 rin **********************************************************************/
2288 1.1 rin void
2289 1.1 rin igc_free_receive_structures(struct igc_softc *sc)
2290 1.1 rin {
2291 1.1 rin struct rx_ring *rxr;
2292 1.1 rin int i;
2293 1.1 rin
2294 1.1 rin for (i = 0, rxr = sc->rx_rings; i < sc->sc_nqueues; i++, rxr++)
2295 1.1 rin if_rxr_init(&rxr->rx_ring, 0, 0);
2296 1.1 rin
2297 1.1 rin for (i = 0, rxr = sc->rx_rings; i < sc->sc_nqueues; i++, rxr++)
2298 1.1 rin igc_free_receive_buffers(rxr);
2299 1.1 rin }
2300 1.1 rin
2301 1.1 rin /*********************************************************************
2302 1.1 rin *
2303 1.1 rin * Free receive ring data structures
2304 1.1 rin *
2305 1.1 rin **********************************************************************/
2306 1.1 rin void
2307 1.1 rin igc_free_receive_buffers(struct rx_ring *rxr)
2308 1.1 rin {
2309 1.1 rin struct igc_softc *sc = rxr->sc;
2310 1.1 rin struct igc_rx_buf *rxbuf;
2311 1.1 rin int i;
2312 1.1 rin
2313 1.1 rin if (rxr->rx_buffers != NULL) {
2314 1.1 rin for (i = 0; i < sc->num_rx_desc; i++) {
2315 1.1 rin rxbuf = &rxr->rx_buffers[i];
2316 1.1 rin if (rxbuf->buf != NULL) {
2317 1.1 rin bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map,
2318 1.1 rin 0, rxbuf->map->dm_mapsize,
2319 1.1 rin BUS_DMASYNC_POSTREAD);
2320 1.1 rin bus_dmamap_unload(rxr->rxdma.dma_tag,
2321 1.1 rin rxbuf->map);
2322 1.1 rin m_freem(rxbuf->buf);
2323 1.1 rin rxbuf->buf = NULL;
2324 1.1 rin }
2325 1.1 rin bus_dmamap_destroy(rxr->rxdma.dma_tag, rxbuf->map);
2326 1.1 rin rxbuf->map = NULL;
2327 1.1 rin }
2328 1.1 rin free(rxr->rx_buffers, M_DEVBUF,
2329 1.1 rin sc->num_rx_desc * sizeof(struct igc_rx_buf));
2330 1.1 rin rxr->rx_buffers = NULL;
2331 1.1 rin }
2332 1.1 rin }
2333 1.1 rin
2334 1.1 rin /*
2335 1.1 rin * Initialise the RSS mapping for NICs that support multiple transmit/
2336 1.1 rin * receive rings.
2337 1.1 rin */
2338 1.1 rin void
2339 1.1 rin igc_initialize_rss_mapping(struct igc_softc *sc)
2340 1.1 rin {
2341 1.1 rin struct igc_hw *hw = &sc->hw;
2342 1.1 rin uint32_t rss_key[10], mrqc, reta, shift = 0;
2343 1.1 rin int i, queue_id;
2344 1.1 rin
2345 1.1 rin /*
2346 1.1 rin * The redirection table controls which destination
2347 1.1 rin * queue each bucket redirects traffic to.
2348 1.1 rin * Each DWORD represents four queues, with the LSB
2349 1.1 rin * being the first queue in the DWORD.
2350 1.1 rin *
2351 1.1 rin * This just allocates buckets to queues using round-robin
2352 1.1 rin * allocation.
2353 1.1 rin *
2354 1.1 rin * NOTE: It Just Happens to line up with the default
2355 1.1 rin * RSS allocation method.
2356 1.1 rin */
2357 1.1 rin
2358 1.1 rin /* Warning FM follows */
2359 1.1 rin reta = 0;
2360 1.1 rin for (i = 0; i < 128; i++) {
2361 1.1 rin queue_id = (i % sc->sc_nqueues);
2362 1.1 rin /* Adjust if required */
2363 1.1 rin queue_id = queue_id << shift;
2364 1.1 rin
2365 1.1 rin /*
2366 1.1 rin * The low 8 bits are for hash value (n+0);
2367 1.1 rin * The next 8 bits are for hash value (n+1), etc.
2368 1.1 rin */
2369 1.1 rin reta = reta >> 8;
2370 1.1 rin reta = reta | ( ((uint32_t) queue_id) << 24);
2371 1.1 rin if ((i & 3) == 3) {
2372 1.1 rin IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
2373 1.1 rin reta = 0;
2374 1.1 rin }
2375 1.1 rin }
2376 1.1 rin
2377 1.1 rin /*
2378 1.1 rin * MRQC: Multiple Receive Queues Command
2379 1.1 rin * Set queuing to RSS control, number depends on the device.
2380 1.1 rin */
2381 1.1 rin mrqc = IGC_MRQC_ENABLE_RSS_4Q;
2382 1.1 rin
2383 1.1 rin /* Set up random bits */
2384 1.1 rin stoeplitz_to_key(&rss_key, sizeof(rss_key));
2385 1.1 rin
2386 1.1 rin /* Now fill our hash function seeds */
2387 1.1 rin for (i = 0; i < 10; i++)
2388 1.1 rin IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
2389 1.1 rin
2390 1.1 rin /*
2391 1.1 rin * Configure the RSS fields to hash upon.
2392 1.1 rin */
2393 1.1 rin mrqc |= (IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP);
2394 1.1 rin mrqc |= (IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP);
2395 1.1 rin mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
2396 1.1 rin
2397 1.1 rin IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
2398 1.1 rin }
2399 1.1 rin
2400 1.1 rin /*
2401 1.1 rin * igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
2402 1.1 rin * For ASF and Pass Through versions of f/w this means
2403 1.1 rin * that the driver is loaded. For AMT version type f/w
2404 1.1 rin * this means that the network i/f is open.
2405 1.1 rin */
2406 1.1 rin void
2407 1.1 rin igc_get_hw_control(struct igc_softc *sc)
2408 1.1 rin {
2409 1.1 rin uint32_t ctrl_ext;
2410 1.1 rin
2411 1.1 rin ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
2412 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
2413 1.1 rin }
2414 1.1 rin
2415 1.1 rin /*
2416 1.1 rin * igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
2417 1.1 rin * For ASF and Pass Through versions of f/w this means that
2418 1.1 rin * the driver is no longer loaded. For AMT versions of the
2419 1.1 rin * f/w this means that the network i/f is closed.
2420 1.1 rin */
2421 1.1 rin void
2422 1.1 rin igc_release_hw_control(struct igc_softc *sc)
2423 1.1 rin {
2424 1.1 rin uint32_t ctrl_ext;
2425 1.1 rin
2426 1.1 rin ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
2427 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
2428 1.1 rin }
2429 1.1 rin
2430 1.1 rin int
2431 1.1 rin igc_is_valid_ether_addr(uint8_t *addr)
2432 1.1 rin {
2433 1.1 rin char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
2434 1.1 rin
2435 1.1 rin if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
2436 1.1 rin return 0;
2437 1.1 rin }
2438 1.1 rin
2439 1.1 rin return 1;
2440 1.1 rin }
2441