if_igc.c revision 1.14 1 1.14 rin /* $NetBSD: if_igc.c,v 1.14 2024/06/12 06:21:37 rin Exp $ */
2 1.1 rin /* $OpenBSD: if_igc.c,v 1.13 2023/04/28 10:18:57 bluhm Exp $ */
3 1.1 rin /*-
4 1.1 rin * SPDX-License-Identifier: BSD-2-Clause
5 1.1 rin *
6 1.1 rin * Copyright (c) 2016 Nicole Graziano <nicole (at) nextbsd.org>
7 1.1 rin * All rights reserved.
8 1.1 rin * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
9 1.1 rin *
10 1.1 rin * Redistribution and use in source and binary forms, with or without
11 1.1 rin * modification, are permitted provided that the following conditions
12 1.1 rin * are met:
13 1.1 rin * 1. Redistributions of source code must retain the above copyright
14 1.1 rin * notice, this list of conditions and the following disclaimer.
15 1.1 rin * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rin * notice, this list of conditions and the following disclaimer in the
17 1.1 rin * documentation and/or other materials provided with the distribution.
18 1.1 rin *
19 1.1 rin * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 1.1 rin * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.1 rin * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 rin * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.1 rin * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 rin * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.1 rin * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 rin * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 rin * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 rin * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 rin * SUCH DAMAGE.
30 1.1 rin */
31 1.1 rin
32 1.2 rin #include <sys/cdefs.h>
33 1.14 rin __KERNEL_RCSID(0, "$NetBSD: if_igc.c,v 1.14 2024/06/12 06:21:37 rin Exp $");
34 1.2 rin
35 1.2 rin #ifdef _KERNEL_OPT
36 1.2 rin #include "opt_if_igc.h"
37 1.2 rin #if 0 /* notyet */
38 1.1 rin #include "vlan.h"
39 1.2 rin #endif
40 1.2 rin #endif
41 1.1 rin
42 1.1 rin #include <sys/param.h>
43 1.1 rin #include <sys/systm.h>
44 1.2 rin #include <sys/bus.h>
45 1.2 rin #include <sys/cpu.h>
46 1.2 rin #include <sys/device.h>
47 1.2 rin #include <sys/endian.h>
48 1.2 rin #include <sys/intr.h>
49 1.2 rin #include <sys/interrupt.h>
50 1.2 rin #include <sys/kernel.h>
51 1.2 rin #include <sys/kmem.h>
52 1.1 rin #include <sys/mbuf.h>
53 1.2 rin #include <sys/mutex.h>
54 1.1 rin #include <sys/socket.h>
55 1.2 rin #include <sys/workqueue.h>
56 1.2 rin #include <sys/xcall.h>
57 1.1 rin
58 1.2 rin #include <net/bpf.h>
59 1.1 rin #include <net/if.h>
60 1.2 rin #include <net/if_ether.h>
61 1.1 rin #include <net/if_media.h>
62 1.2 rin #include <net/if_vlanvar.h>
63 1.2 rin #include <net/rss_config.h>
64 1.1 rin
65 1.1 rin #include <netinet/in.h>
66 1.1 rin #include <netinet/ip.h>
67 1.1 rin #include <netinet/ip6.h>
68 1.2 rin #include <netinet/tcp.h>
69 1.1 rin
70 1.2 rin #include <dev/pci/pcivar.h>
71 1.2 rin #include <dev/pci/pcireg.h>
72 1.2 rin #include <dev/pci/pcidevs.h>
73 1.2 rin
74 1.2 rin #include <dev/pci/igc/if_igc.h>
75 1.2 rin #include <dev/pci/igc/igc_evcnt.h>
76 1.2 rin #include <dev/pci/igc/igc_hw.h>
77 1.2 rin #include <dev/mii/miivar.h>
78 1.2 rin
79 1.2 rin #define IGC_WORKQUEUE_PRI PRI_SOFTNET
80 1.2 rin
81 1.2 rin #ifndef IGC_RX_INTR_PROCESS_LIMIT_DEFAULT
82 1.2 rin #define IGC_RX_INTR_PROCESS_LIMIT_DEFAULT 0
83 1.2 rin #endif
84 1.2 rin #ifndef IGC_TX_INTR_PROCESS_LIMIT_DEFAULT
85 1.2 rin #define IGC_TX_INTR_PROCESS_LIMIT_DEFAULT 0
86 1.1 rin #endif
87 1.1 rin
88 1.2 rin #ifndef IGC_RX_PROCESS_LIMIT_DEFAULT
89 1.2 rin #define IGC_RX_PROCESS_LIMIT_DEFAULT 256
90 1.2 rin #endif
91 1.2 rin #ifndef IGC_TX_PROCESS_LIMIT_DEFAULT
92 1.2 rin #define IGC_TX_PROCESS_LIMIT_DEFAULT 256
93 1.2 rin #endif
94 1.1 rin
95 1.2 rin #define htolem32(p, x) (*((uint32_t *)(p)) = htole32(x))
96 1.2 rin #define htolem64(p, x) (*((uint64_t *)(p)) = htole64(x))
97 1.1 rin
98 1.2 rin static const struct igc_product {
99 1.2 rin pci_vendor_id_t igcp_vendor;
100 1.2 rin pci_product_id_t igcp_product;
101 1.2 rin const char *igcp_name;
102 1.2 rin } igc_products[] = {
103 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_IT,
104 1.2 rin "Intel(R) Ethernet Controller I225-IT(2)" },
105 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LM,
106 1.2 rin "Intel(R) Ethernet Controller I226-LM" },
107 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_V,
108 1.2 rin "Intel(R) Ethernet Controller I226-V" },
109 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_IT,
110 1.2 rin "Intel(R) Ethernet Controller I226-IT" },
111 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I221_V,
112 1.2 rin "Intel(R) Ethernet Controller I221-V" },
113 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_BLANK_NVM,
114 1.2 rin "Intel(R) Ethernet Controller I226(blankNVM)" },
115 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LM,
116 1.2 rin "Intel(R) Ethernet Controller I225-LM" },
117 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_V,
118 1.2 rin "Intel(R) Ethernet Controller I225-V" },
119 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I220_V,
120 1.2 rin "Intel(R) Ethernet Controller I220-V" },
121 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_I,
122 1.2 rin "Intel(R) Ethernet Controller I225-I" },
123 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_BLANK_NVM,
124 1.2 rin "Intel(R) Ethernet Controller I225(blankNVM)" },
125 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K,
126 1.2 rin "Intel(R) Ethernet Controller I225-K" },
127 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K2,
128 1.2 rin "Intel(R) Ethernet Controller I225-K(2)" },
129 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_K,
130 1.2 rin "Intel(R) Ethernet Controller I226-K" },
131 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LMVP,
132 1.2 rin "Intel(R) Ethernet Controller I225-LMvP(2)" },
133 1.2 rin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LMVP,
134 1.2 rin "Intel(R) Ethernet Controller I226-LMvP" },
135 1.2 rin { 0, 0, NULL },
136 1.1 rin };
137 1.1 rin
138 1.2 rin #define IGC_DF_CFG 0x1
139 1.2 rin #define IGC_DF_TX 0x2
140 1.2 rin #define IGC_DF_RX 0x4
141 1.2 rin #define IGC_DF_MISC 0x8
142 1.2 rin
143 1.2 rin #ifdef IGC_DEBUG_FLAGS
144 1.2 rin int igc_debug_flags = IGC_DEBUG_FLAGS;
145 1.2 rin #else
146 1.2 rin int igc_debug_flags = 0;
147 1.2 rin #endif
148 1.2 rin
149 1.2 rin #define DPRINTF(flag, fmt, args...) do { \
150 1.2 rin if (igc_debug_flags & (IGC_DF_ ## flag)) \
151 1.2 rin printf("%s: %d: " fmt, __func__, __LINE__, ##args); \
152 1.2 rin } while (0)
153 1.2 rin
154 1.1 rin /*********************************************************************
155 1.1 rin * Function Prototypes
156 1.1 rin *********************************************************************/
157 1.2 rin static int igc_match(device_t, cfdata_t, void *);
158 1.2 rin static void igc_attach(device_t, device_t, void *);
159 1.2 rin static int igc_detach(device_t, int);
160 1.2 rin
161 1.2 rin static void igc_identify_hardware(struct igc_softc *);
162 1.2 rin static int igc_adjust_nqueues(struct igc_softc *);
163 1.2 rin static int igc_allocate_pci_resources(struct igc_softc *);
164 1.2 rin static int igc_allocate_interrupts(struct igc_softc *);
165 1.2 rin static int igc_allocate_queues(struct igc_softc *);
166 1.2 rin static void igc_free_pci_resources(struct igc_softc *);
167 1.2 rin static void igc_free_interrupts(struct igc_softc *);
168 1.2 rin static void igc_free_queues(struct igc_softc *);
169 1.2 rin static void igc_reset(struct igc_softc *);
170 1.2 rin static void igc_init_dmac(struct igc_softc *, uint32_t);
171 1.2 rin static int igc_setup_interrupts(struct igc_softc *);
172 1.2 rin static void igc_attach_counters(struct igc_softc *sc);
173 1.2 rin static void igc_detach_counters(struct igc_softc *sc);
174 1.2 rin static void igc_update_counters(struct igc_softc *sc);
175 1.2 rin static void igc_clear_counters(struct igc_softc *sc);
176 1.2 rin static int igc_setup_msix(struct igc_softc *);
177 1.2 rin static int igc_setup_msi(struct igc_softc *);
178 1.2 rin static int igc_setup_intx(struct igc_softc *);
179 1.2 rin static int igc_dma_malloc(struct igc_softc *, bus_size_t,
180 1.2 rin struct igc_dma_alloc *);
181 1.2 rin static void igc_dma_free(struct igc_softc *, struct igc_dma_alloc *);
182 1.2 rin static void igc_setup_interface(struct igc_softc *);
183 1.2 rin
184 1.2 rin static int igc_init(struct ifnet *);
185 1.2 rin static int igc_init_locked(struct igc_softc *);
186 1.2 rin static void igc_start(struct ifnet *);
187 1.2 rin static int igc_transmit(struct ifnet *, struct mbuf *);
188 1.2 rin static void igc_tx_common_locked(struct ifnet *, struct tx_ring *, int);
189 1.2 rin static bool igc_txeof(struct tx_ring *, u_int);
190 1.2 rin static void igc_intr_barrier(struct igc_softc *);
191 1.2 rin static void igc_stop(struct ifnet *, int);
192 1.2 rin static void igc_stop_locked(struct igc_softc *);
193 1.2 rin static int igc_ioctl(struct ifnet *, u_long, void *);
194 1.2 rin #ifdef IF_RXR
195 1.2 rin static int igc_rxrinfo(struct igc_softc *, struct if_rxrinfo *);
196 1.2 rin #endif
197 1.2 rin static void igc_rxfill(struct rx_ring *);
198 1.2 rin static void igc_rxrefill(struct rx_ring *, int);
199 1.2 rin static bool igc_rxeof(struct rx_ring *, u_int);
200 1.2 rin static int igc_rx_checksum(struct igc_queue *, uint64_t, uint32_t,
201 1.2 rin uint32_t);
202 1.2 rin static void igc_watchdog(struct ifnet *);
203 1.2 rin static void igc_tick(void *);
204 1.2 rin static void igc_media_status(struct ifnet *, struct ifmediareq *);
205 1.2 rin static int igc_media_change(struct ifnet *);
206 1.2 rin static int igc_ifflags_cb(struct ethercom *);
207 1.2 rin static void igc_set_filter(struct igc_softc *);
208 1.2 rin static void igc_update_link_status(struct igc_softc *);
209 1.2 rin static int igc_get_buf(struct rx_ring *, int, bool);
210 1.2 rin static int igc_tx_ctx_setup(struct tx_ring *, struct mbuf *, int,
211 1.2 rin uint32_t *, uint32_t *);
212 1.2 rin static int igc_tso_setup(struct tx_ring *, struct mbuf *, int,
213 1.2 rin uint32_t *, uint32_t *);
214 1.2 rin
215 1.2 rin static void igc_configure_queues(struct igc_softc *);
216 1.2 rin static void igc_set_queues(struct igc_softc *, uint32_t, uint32_t, int);
217 1.2 rin static void igc_enable_queue(struct igc_softc *, uint32_t);
218 1.2 rin static void igc_enable_intr(struct igc_softc *);
219 1.2 rin static void igc_disable_intr(struct igc_softc *);
220 1.2 rin static int igc_intr_link(void *);
221 1.2 rin static int igc_intr_queue(void *);
222 1.2 rin static int igc_intr(void *);
223 1.2 rin static void igc_handle_queue(void *);
224 1.2 rin static void igc_handle_queue_work(struct work *, void *);
225 1.2 rin static void igc_sched_handle_queue(struct igc_softc *, struct igc_queue *);
226 1.2 rin static void igc_barrier_handle_queue(struct igc_softc *);
227 1.2 rin
228 1.2 rin static int igc_allocate_transmit_buffers(struct tx_ring *);
229 1.2 rin static int igc_setup_transmit_structures(struct igc_softc *);
230 1.2 rin static int igc_setup_transmit_ring(struct tx_ring *);
231 1.2 rin static void igc_initialize_transmit_unit(struct igc_softc *);
232 1.2 rin static void igc_free_transmit_structures(struct igc_softc *);
233 1.2 rin static void igc_free_transmit_buffers(struct tx_ring *);
234 1.2 rin static void igc_withdraw_transmit_packets(struct tx_ring *, bool);
235 1.2 rin static int igc_allocate_receive_buffers(struct rx_ring *);
236 1.2 rin static int igc_setup_receive_structures(struct igc_softc *);
237 1.2 rin static int igc_setup_receive_ring(struct rx_ring *);
238 1.2 rin static void igc_initialize_receive_unit(struct igc_softc *);
239 1.2 rin static void igc_free_receive_structures(struct igc_softc *);
240 1.2 rin static void igc_free_receive_buffers(struct rx_ring *);
241 1.2 rin static void igc_clear_receive_status(struct rx_ring *);
242 1.2 rin static void igc_initialize_rss_mapping(struct igc_softc *);
243 1.2 rin
244 1.2 rin static void igc_get_hw_control(struct igc_softc *);
245 1.2 rin static void igc_release_hw_control(struct igc_softc *);
246 1.2 rin static int igc_is_valid_ether_addr(uint8_t *);
247 1.2 rin static void igc_print_devinfo(struct igc_softc *);
248 1.2 rin
249 1.2 rin CFATTACH_DECL3_NEW(igc, sizeof(struct igc_softc),
250 1.2 rin igc_match, igc_attach, igc_detach, NULL, NULL, NULL, 0);
251 1.2 rin
252 1.2 rin static inline int
253 1.2 rin igc_txdesc_incr(struct igc_softc *sc, int id)
254 1.2 rin {
255 1.2 rin
256 1.2 rin if (++id == sc->num_tx_desc)
257 1.2 rin id = 0;
258 1.2 rin return id;
259 1.2 rin }
260 1.2 rin
261 1.2 rin static inline int __unused
262 1.2 rin igc_txdesc_decr(struct igc_softc *sc, int id)
263 1.2 rin {
264 1.2 rin
265 1.2 rin if (--id < 0)
266 1.2 rin id = sc->num_tx_desc - 1;
267 1.2 rin return id;
268 1.2 rin }
269 1.2 rin
270 1.2 rin static inline void
271 1.2 rin igc_txdesc_sync(struct tx_ring *txr, int id, int ops)
272 1.2 rin {
273 1.2 rin
274 1.2 rin bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
275 1.2 rin id * sizeof(union igc_adv_tx_desc), sizeof(union igc_adv_tx_desc),
276 1.2 rin ops);
277 1.2 rin }
278 1.1 rin
279 1.2 rin static inline int
280 1.2 rin igc_rxdesc_incr(struct igc_softc *sc, int id)
281 1.2 rin {
282 1.2 rin
283 1.2 rin if (++id == sc->num_rx_desc)
284 1.2 rin id = 0;
285 1.2 rin return id;
286 1.2 rin }
287 1.2 rin
288 1.2 rin static inline int
289 1.2 rin igc_rxdesc_decr(struct igc_softc *sc, int id)
290 1.2 rin {
291 1.2 rin
292 1.2 rin if (--id < 0)
293 1.2 rin id = sc->num_rx_desc - 1;
294 1.2 rin return id;
295 1.2 rin }
296 1.2 rin
297 1.2 rin static inline void
298 1.2 rin igc_rxdesc_sync(struct rx_ring *rxr, int id, int ops)
299 1.2 rin {
300 1.2 rin
301 1.2 rin bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
302 1.2 rin id * sizeof(union igc_adv_rx_desc), sizeof(union igc_adv_rx_desc),
303 1.2 rin ops);
304 1.2 rin }
305 1.1 rin
306 1.2 rin static const struct igc_product *
307 1.2 rin igc_lookup(const struct pci_attach_args *pa)
308 1.2 rin {
309 1.2 rin const struct igc_product *igcp;
310 1.1 rin
311 1.2 rin for (igcp = igc_products; igcp->igcp_name != NULL; igcp++) {
312 1.2 rin if (PCI_VENDOR(pa->pa_id) == igcp->igcp_vendor &&
313 1.2 rin PCI_PRODUCT(pa->pa_id) == igcp->igcp_product)
314 1.2 rin return igcp;
315 1.2 rin }
316 1.2 rin return NULL;
317 1.2 rin }
318 1.1 rin
319 1.1 rin /*********************************************************************
320 1.1 rin * Device identification routine
321 1.1 rin *
322 1.1 rin * igc_match determines if the driver should be loaded on
323 1.1 rin * adapter based on PCI vendor/device id of the adapter.
324 1.1 rin *
325 1.1 rin * return 0 on success, positive on failure
326 1.1 rin *********************************************************************/
327 1.2 rin static int
328 1.2 rin igc_match(device_t parent, cfdata_t match, void *aux)
329 1.1 rin {
330 1.2 rin struct pci_attach_args *pa = aux;
331 1.2 rin
332 1.2 rin if (igc_lookup(pa) != NULL)
333 1.2 rin return 1;
334 1.2 rin
335 1.2 rin return 0;
336 1.1 rin }
337 1.1 rin
338 1.1 rin /*********************************************************************
339 1.1 rin * Device initialization routine
340 1.1 rin *
341 1.1 rin * The attach entry point is called when the driver is being loaded.
342 1.1 rin * This routine identifies the type of hardware, allocates all resources
343 1.1 rin * and initializes the hardware.
344 1.1 rin *
345 1.1 rin * return 0 on success, positive on failure
346 1.1 rin *********************************************************************/
347 1.2 rin static void
348 1.2 rin igc_attach(device_t parent, device_t self, void *aux)
349 1.1 rin {
350 1.2 rin struct pci_attach_args *pa = aux;
351 1.2 rin struct igc_softc *sc = device_private(self);
352 1.1 rin struct igc_hw *hw = &sc->hw;
353 1.1 rin
354 1.2 rin const struct igc_product *igcp = igc_lookup(pa);
355 1.2 rin KASSERT(igcp != NULL);
356 1.2 rin
357 1.2 rin sc->sc_dev = self;
358 1.2 rin callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE);
359 1.2 rin callout_setfunc(&sc->sc_tick_ch, igc_tick, sc);
360 1.2 rin sc->sc_core_stopping = false;
361 1.2 rin
362 1.1 rin sc->osdep.os_sc = sc;
363 1.1 rin sc->osdep.os_pa = *pa;
364 1.8 rin #ifndef __aarch64__
365 1.3 rin /*
366 1.3 rin * XXX PR port-arm/57643
367 1.3 rin * 64-bit DMA does not work at least for LX2K with 32/64GB memory.
368 1.3 rin * smmu(4) support may be required.
369 1.3 rin */
370 1.8 rin if (pci_dma64_available(pa)) {
371 1.8 rin aprint_verbose(", 64-bit DMA");
372 1.8 rin sc->osdep.os_dmat = pa->pa_dmat64;
373 1.8 rin } else
374 1.3 rin #endif
375 1.8 rin {
376 1.8 rin aprint_verbose(", 32-bit DMA");
377 1.8 rin sc->osdep.os_dmat = pa->pa_dmat;
378 1.8 rin }
379 1.8 rin
380 1.8 rin pci_aprint_devinfo_fancy(pa, "Ethernet controller", igcp->igcp_name, 1);
381 1.1 rin
382 1.1 rin /* Determine hardware and mac info */
383 1.1 rin igc_identify_hardware(sc);
384 1.1 rin
385 1.1 rin sc->num_tx_desc = IGC_DEFAULT_TXD;
386 1.1 rin sc->num_rx_desc = IGC_DEFAULT_RXD;
387 1.1 rin
388 1.1 rin /* Setup PCI resources */
389 1.2 rin if (igc_allocate_pci_resources(sc)) {
390 1.2 rin aprint_error_dev(sc->sc_dev,
391 1.2 rin "unable to allocate PCI resources\n");
392 1.2 rin goto err_pci;
393 1.2 rin }
394 1.2 rin
395 1.2 rin if (igc_allocate_interrupts(sc)) {
396 1.2 rin aprint_error_dev(sc->sc_dev, "unable to allocate interrupts\n");
397 1.2 rin goto err_pci;
398 1.2 rin }
399 1.1 rin
400 1.1 rin /* Allocate TX/RX queues */
401 1.2 rin if (igc_allocate_queues(sc)) {
402 1.2 rin aprint_error_dev(sc->sc_dev, "unable to allocate queues\n");
403 1.2 rin goto err_alloc_intr;
404 1.2 rin }
405 1.1 rin
406 1.1 rin /* Do shared code initialization */
407 1.1 rin if (igc_setup_init_funcs(hw, true)) {
408 1.2 rin aprint_error_dev(sc->sc_dev, "unable to initialize\n");
409 1.2 rin goto err_alloc_intr;
410 1.1 rin }
411 1.1 rin
412 1.1 rin hw->mac.autoneg = DO_AUTO_NEG;
413 1.1 rin hw->phy.autoneg_wait_to_complete = false;
414 1.1 rin hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
415 1.1 rin
416 1.1 rin /* Copper options. */
417 1.1 rin if (hw->phy.media_type == igc_media_type_copper)
418 1.1 rin hw->phy.mdix = AUTO_ALL_MODES;
419 1.1 rin
420 1.1 rin /* Set the max frame size. */
421 1.1 rin sc->hw.mac.max_frame_size = 9234;
422 1.1 rin
423 1.1 rin /* Allocate multicast array memory. */
424 1.2 rin sc->mta = kmem_alloc(IGC_MTA_LEN, KM_SLEEP);
425 1.1 rin
426 1.1 rin /* Check SOL/IDER usage. */
427 1.2 rin if (igc_check_reset_block(hw)) {
428 1.2 rin aprint_error_dev(sc->sc_dev,
429 1.2 rin "PHY reset is blocked due to SOL/IDER session\n");
430 1.2 rin }
431 1.1 rin
432 1.1 rin /* Disable Energy Efficient Ethernet. */
433 1.1 rin sc->hw.dev_spec._i225.eee_disable = true;
434 1.1 rin
435 1.1 rin igc_reset_hw(hw);
436 1.1 rin
437 1.1 rin /* Make sure we have a good EEPROM before we read from it. */
438 1.1 rin if (igc_validate_nvm_checksum(hw) < 0) {
439 1.1 rin /*
440 1.1 rin * Some PCI-E parts fail the first check due to
441 1.1 rin * the link being in sleep state, call it again,
442 1.1 rin * if it fails a second time its a real issue.
443 1.1 rin */
444 1.1 rin if (igc_validate_nvm_checksum(hw) < 0) {
445 1.2 rin aprint_error_dev(sc->sc_dev,
446 1.2 rin "EEPROM checksum invalid\n");
447 1.1 rin goto err_late;
448 1.1 rin }
449 1.1 rin }
450 1.1 rin
451 1.1 rin /* Copy the permanent MAC address out of the EEPROM. */
452 1.1 rin if (igc_read_mac_addr(hw) < 0) {
453 1.2 rin aprint_error_dev(sc->sc_dev,
454 1.2 rin "unable to read MAC address from EEPROM\n");
455 1.1 rin goto err_late;
456 1.1 rin }
457 1.1 rin
458 1.1 rin if (!igc_is_valid_ether_addr(hw->mac.addr)) {
459 1.2 rin aprint_error_dev(sc->sc_dev, "invalid MAC address\n");
460 1.1 rin goto err_late;
461 1.1 rin }
462 1.1 rin
463 1.2 rin if (igc_setup_interrupts(sc))
464 1.2 rin goto err_late;
465 1.1 rin
466 1.2 rin /* Attach counters. */
467 1.2 rin igc_attach_counters(sc);
468 1.1 rin
469 1.1 rin /* Setup OS specific network interface. */
470 1.1 rin igc_setup_interface(sc);
471 1.1 rin
472 1.2 rin igc_print_devinfo(sc);
473 1.2 rin
474 1.1 rin igc_reset(sc);
475 1.1 rin hw->mac.get_link_status = true;
476 1.1 rin igc_update_link_status(sc);
477 1.1 rin
478 1.1 rin /* The driver can now take control from firmware. */
479 1.1 rin igc_get_hw_control(sc);
480 1.1 rin
481 1.2 rin aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
482 1.2 rin ether_sprintf(sc->hw.mac.addr));
483 1.2 rin
484 1.2 rin if (pmf_device_register(self, NULL, NULL))
485 1.2 rin pmf_class_network_register(self, &sc->sc_ec.ec_if);
486 1.2 rin else
487 1.2 rin aprint_error_dev(self, "couldn't establish power handler\n");
488 1.2 rin
489 1.1 rin return;
490 1.1 rin
491 1.2 rin err_late:
492 1.1 rin igc_release_hw_control(sc);
493 1.2 rin err_alloc_intr:
494 1.2 rin igc_free_interrupts(sc);
495 1.2 rin err_pci:
496 1.1 rin igc_free_pci_resources(sc);
497 1.2 rin kmem_free(sc->mta, IGC_MTA_LEN);
498 1.1 rin }
499 1.1 rin
500 1.1 rin /*********************************************************************
501 1.1 rin * Device removal routine
502 1.1 rin *
503 1.1 rin * The detach entry point is called when the driver is being removed.
504 1.1 rin * This routine stops the adapter and deallocates all the resources
505 1.1 rin * that were allocated for driver operation.
506 1.1 rin *
507 1.1 rin * return 0 on success, positive on failure
508 1.1 rin *********************************************************************/
509 1.2 rin static int
510 1.2 rin igc_detach(device_t self, int flags)
511 1.1 rin {
512 1.2 rin struct igc_softc *sc = device_private(self);
513 1.2 rin struct ifnet *ifp = &sc->sc_ec.ec_if;
514 1.2 rin
515 1.2 rin mutex_enter(&sc->sc_core_lock);
516 1.2 rin igc_stop_locked(sc);
517 1.2 rin mutex_exit(&sc->sc_core_lock);
518 1.2 rin
519 1.2 rin igc_detach_counters(sc);
520 1.1 rin
521 1.2 rin igc_free_queues(sc);
522 1.1 rin
523 1.1 rin igc_phy_hw_reset(&sc->hw);
524 1.1 rin igc_release_hw_control(sc);
525 1.1 rin
526 1.1 rin ether_ifdetach(ifp);
527 1.1 rin if_detach(ifp);
528 1.2 rin ifmedia_fini(&sc->media);
529 1.1 rin
530 1.2 rin igc_free_interrupts(sc);
531 1.1 rin igc_free_pci_resources(sc);
532 1.2 rin kmem_free(sc->mta, IGC_MTA_LEN);
533 1.1 rin
534 1.2 rin mutex_destroy(&sc->sc_core_lock);
535 1.1 rin
536 1.1 rin return 0;
537 1.1 rin }
538 1.1 rin
539 1.2 rin static void
540 1.1 rin igc_identify_hardware(struct igc_softc *sc)
541 1.1 rin {
542 1.1 rin struct igc_osdep *os = &sc->osdep;
543 1.1 rin struct pci_attach_args *pa = &os->os_pa;
544 1.1 rin
545 1.1 rin /* Save off the information about this board. */
546 1.1 rin sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
547 1.1 rin
548 1.1 rin /* Do shared code init and setup. */
549 1.1 rin if (igc_set_mac_type(&sc->hw)) {
550 1.2 rin aprint_error_dev(sc->sc_dev, "unable to identify hardware\n");
551 1.1 rin return;
552 1.2 rin }
553 1.1 rin }
554 1.1 rin
555 1.2 rin static int
556 1.1 rin igc_allocate_pci_resources(struct igc_softc *sc)
557 1.1 rin {
558 1.1 rin struct igc_osdep *os = &sc->osdep;
559 1.1 rin struct pci_attach_args *pa = &os->os_pa;
560 1.1 rin
561 1.2 rin /*
562 1.2 rin * Enable bus mastering and memory-mapped I/O for sure.
563 1.2 rin */
564 1.2 rin pcireg_t csr =
565 1.2 rin pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
566 1.2 rin csr |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
567 1.2 rin pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
568 1.2 rin
569 1.2 rin const pcireg_t memtype =
570 1.2 rin pci_mapreg_type(pa->pa_pc, pa->pa_tag, IGC_PCIREG);
571 1.1 rin if (pci_mapreg_map(pa, IGC_PCIREG, memtype, 0, &os->os_memt,
572 1.2 rin &os->os_memh, &os->os_membase, &os->os_memsize)) {
573 1.2 rin aprint_error_dev(sc->sc_dev, "unable to map registers\n");
574 1.1 rin return ENXIO;
575 1.1 rin }
576 1.2 rin
577 1.2 rin sc->hw.hw_addr = os->os_membase;
578 1.1 rin sc->hw.back = os;
579 1.1 rin
580 1.2 rin return 0;
581 1.2 rin }
582 1.2 rin
583 1.2 rin static int __unused
584 1.2 rin igc_adjust_nqueues(struct igc_softc *sc)
585 1.2 rin {
586 1.2 rin struct pci_attach_args *pa = &sc->osdep.os_pa;
587 1.2 rin int nqueues = MIN(IGC_MAX_NQUEUES, ncpu);
588 1.2 rin
589 1.2 rin const int nmsix = pci_msix_count(pa->pa_pc, pa->pa_tag);
590 1.2 rin if (nmsix <= 1)
591 1.2 rin nqueues = 1;
592 1.2 rin else if (nmsix < nqueues + 1)
593 1.2 rin nqueues = nmsix - 1;
594 1.2 rin
595 1.2 rin return nqueues;
596 1.2 rin }
597 1.2 rin
598 1.2 rin static int
599 1.2 rin igc_allocate_interrupts(struct igc_softc *sc)
600 1.2 rin {
601 1.2 rin struct pci_attach_args *pa = &sc->osdep.os_pa;
602 1.2 rin int error;
603 1.2 rin
604 1.2 rin #ifndef IGC_DISABLE_MSIX
605 1.2 rin const int nqueues = igc_adjust_nqueues(sc);
606 1.2 rin if (nqueues > 1) {
607 1.2 rin sc->sc_nintrs = nqueues + 1;
608 1.2 rin error = pci_msix_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
609 1.2 rin if (!error) {
610 1.2 rin sc->sc_nqueues = nqueues;
611 1.2 rin sc->sc_intr_type = PCI_INTR_TYPE_MSIX;
612 1.2 rin return 0;
613 1.2 rin }
614 1.2 rin }
615 1.2 rin #endif
616 1.2 rin
617 1.2 rin /* fallback to MSI */
618 1.2 rin sc->sc_nintrs = sc->sc_nqueues = 1;
619 1.2 rin
620 1.2 rin #ifndef IGC_DISABLE_MSI
621 1.2 rin error = pci_msi_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
622 1.2 rin if (!error) {
623 1.2 rin sc->sc_intr_type = PCI_INTR_TYPE_MSI;
624 1.2 rin return 0;
625 1.2 rin }
626 1.2 rin #endif
627 1.2 rin
628 1.2 rin /* fallback to INTx */
629 1.1 rin
630 1.2 rin error = pci_intx_alloc(pa, &sc->sc_intrs);
631 1.2 rin if (!error) {
632 1.2 rin sc->sc_intr_type = PCI_INTR_TYPE_INTX;
633 1.2 rin return 0;
634 1.2 rin }
635 1.2 rin
636 1.2 rin return error;
637 1.1 rin }
638 1.1 rin
639 1.2 rin static int
640 1.1 rin igc_allocate_queues(struct igc_softc *sc)
641 1.1 rin {
642 1.2 rin device_t dev = sc->sc_dev;
643 1.2 rin int rxconf = 0, txconf = 0;
644 1.1 rin
645 1.1 rin /* Allocate the top level queue structs. */
646 1.2 rin sc->queues =
647 1.2 rin kmem_zalloc(sc->sc_nqueues * sizeof(struct igc_queue), KM_SLEEP);
648 1.1 rin
649 1.1 rin /* Allocate the TX ring. */
650 1.2 rin sc->tx_rings =
651 1.2 rin kmem_zalloc(sc->sc_nqueues * sizeof(struct tx_ring), KM_SLEEP);
652 1.2 rin
653 1.1 rin /* Allocate the RX ring. */
654 1.2 rin sc->rx_rings =
655 1.2 rin kmem_zalloc(sc->sc_nqueues * sizeof(struct rx_ring), KM_SLEEP);
656 1.1 rin
657 1.2 rin /* Set up the TX queues. */
658 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++, txconf++) {
659 1.2 rin struct tx_ring *txr = &sc->tx_rings[iq];
660 1.2 rin const int tsize = roundup2(
661 1.2 rin sc->num_tx_desc * sizeof(union igc_adv_tx_desc),
662 1.2 rin IGC_DBA_ALIGN);
663 1.1 rin
664 1.1 rin txr->sc = sc;
665 1.2 rin txr->txr_igcq = &sc->queues[iq];
666 1.2 rin txr->me = iq;
667 1.1 rin if (igc_dma_malloc(sc, tsize, &txr->txdma)) {
668 1.2 rin aprint_error_dev(dev,
669 1.2 rin "unable to allocate TX descriptor\n");
670 1.2 rin goto fail;
671 1.1 rin }
672 1.1 rin txr->tx_base = (union igc_adv_tx_desc *)txr->txdma.dma_vaddr;
673 1.2 rin memset(txr->tx_base, 0, tsize);
674 1.2 rin }
675 1.2 rin
676 1.2 rin /* Prepare transmit descriptors and buffers. */
677 1.2 rin if (igc_setup_transmit_structures(sc)) {
678 1.2 rin aprint_error_dev(dev, "unable to setup transmit structures\n");
679 1.2 rin goto fail;
680 1.1 rin }
681 1.1 rin
682 1.1 rin /* Set up the RX queues. */
683 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++, rxconf++) {
684 1.2 rin struct rx_ring *rxr = &sc->rx_rings[iq];
685 1.2 rin const int rsize = roundup2(
686 1.2 rin sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
687 1.2 rin IGC_DBA_ALIGN);
688 1.2 rin
689 1.1 rin rxr->sc = sc;
690 1.2 rin rxr->rxr_igcq = &sc->queues[iq];
691 1.2 rin rxr->me = iq;
692 1.2 rin #ifdef OPENBSD
693 1.1 rin timeout_set(&rxr->rx_refill, igc_rxrefill, rxr);
694 1.2 rin #endif
695 1.1 rin if (igc_dma_malloc(sc, rsize, &rxr->rxdma)) {
696 1.2 rin aprint_error_dev(dev,
697 1.2 rin "unable to allocate RX descriptor\n");
698 1.2 rin goto fail;
699 1.1 rin }
700 1.1 rin rxr->rx_base = (union igc_adv_rx_desc *)rxr->rxdma.dma_vaddr;
701 1.2 rin memset(rxr->rx_base, 0, rsize);
702 1.2 rin }
703 1.2 rin
704 1.2 rin sc->rx_mbuf_sz = MCLBYTES;
705 1.2 rin /* Prepare receive descriptors and buffers. */
706 1.2 rin if (igc_setup_receive_structures(sc)) {
707 1.2 rin aprint_error_dev(sc->sc_dev,
708 1.2 rin "unable to setup receive structures\n");
709 1.2 rin goto fail;
710 1.1 rin }
711 1.1 rin
712 1.1 rin /* Set up the queue holding structs. */
713 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
714 1.2 rin struct igc_queue *q = &sc->queues[iq];
715 1.2 rin
716 1.2 rin q->sc = sc;
717 1.2 rin q->txr = &sc->tx_rings[iq];
718 1.2 rin q->rxr = &sc->rx_rings[iq];
719 1.1 rin }
720 1.1 rin
721 1.1 rin return 0;
722 1.1 rin
723 1.2 rin fail:
724 1.2 rin for (struct rx_ring *rxr = sc->rx_rings; rxconf > 0; rxr++, rxconf--)
725 1.1 rin igc_dma_free(sc, &rxr->rxdma);
726 1.2 rin for (struct tx_ring *txr = sc->tx_rings; txconf > 0; txr++, txconf--)
727 1.1 rin igc_dma_free(sc, &txr->txdma);
728 1.2 rin
729 1.2 rin kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
730 1.1 rin sc->rx_rings = NULL;
731 1.2 rin kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
732 1.1 rin sc->tx_rings = NULL;
733 1.2 rin kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
734 1.2 rin sc->queues = NULL;
735 1.2 rin
736 1.1 rin return ENOMEM;
737 1.1 rin }
738 1.1 rin
739 1.2 rin static void
740 1.1 rin igc_free_pci_resources(struct igc_softc *sc)
741 1.1 rin {
742 1.1 rin struct igc_osdep *os = &sc->osdep;
743 1.1 rin
744 1.1 rin if (os->os_membase != 0)
745 1.1 rin bus_space_unmap(os->os_memt, os->os_memh, os->os_memsize);
746 1.1 rin os->os_membase = 0;
747 1.1 rin }
748 1.1 rin
749 1.2 rin static void
750 1.2 rin igc_free_interrupts(struct igc_softc *sc)
751 1.2 rin {
752 1.2 rin struct pci_attach_args *pa = &sc->osdep.os_pa;
753 1.2 rin pci_chipset_tag_t pc = pa->pa_pc;
754 1.2 rin
755 1.2 rin for (int i = 0; i < sc->sc_nintrs; i++) {
756 1.2 rin if (sc->sc_ihs[i] != NULL) {
757 1.2 rin pci_intr_disestablish(pc, sc->sc_ihs[i]);
758 1.2 rin sc->sc_ihs[i] = NULL;
759 1.2 rin }
760 1.2 rin }
761 1.2 rin pci_intr_release(pc, sc->sc_intrs, sc->sc_nintrs);
762 1.2 rin }
763 1.2 rin
764 1.2 rin static void
765 1.2 rin igc_free_queues(struct igc_softc *sc)
766 1.2 rin {
767 1.2 rin
768 1.2 rin igc_free_receive_structures(sc);
769 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
770 1.2 rin struct rx_ring *rxr = &sc->rx_rings[iq];
771 1.2 rin
772 1.2 rin igc_dma_free(sc, &rxr->rxdma);
773 1.2 rin }
774 1.2 rin
775 1.2 rin igc_free_transmit_structures(sc);
776 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
777 1.2 rin struct tx_ring *txr = &sc->tx_rings[iq];
778 1.2 rin
779 1.2 rin igc_dma_free(sc, &txr->txdma);
780 1.2 rin }
781 1.2 rin
782 1.2 rin kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
783 1.2 rin kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
784 1.2 rin kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
785 1.2 rin }
786 1.2 rin
787 1.1 rin /*********************************************************************
788 1.1 rin *
789 1.1 rin * Initialize the hardware to a configuration as specified by the
790 1.1 rin * adapter structure.
791 1.1 rin *
792 1.1 rin **********************************************************************/
793 1.2 rin static void
794 1.1 rin igc_reset(struct igc_softc *sc)
795 1.1 rin {
796 1.1 rin struct igc_hw *hw = &sc->hw;
797 1.1 rin
798 1.1 rin /* Let the firmware know the OS is in control */
799 1.1 rin igc_get_hw_control(sc);
800 1.1 rin
801 1.1 rin /*
802 1.1 rin * Packet Buffer Allocation (PBA)
803 1.1 rin * Writing PBA sets the receive portion of the buffer
804 1.1 rin * the remainder is used for the transmit buffer.
805 1.1 rin */
806 1.2 rin const uint32_t pba = IGC_PBA_34K;
807 1.1 rin
808 1.1 rin /*
809 1.1 rin * These parameters control the automatic generation (Tx) and
810 1.1 rin * response (Rx) to Ethernet PAUSE frames.
811 1.1 rin * - High water mark should allow for at least two frames to be
812 1.1 rin * received after sending an XOFF.
813 1.1 rin * - Low water mark works best when it is very near the high water mark.
814 1.1 rin * This allows the receiver to restart by sending XON when it has
815 1.1 rin * drained a bit. Here we use an arbitrary value of 1500 which will
816 1.1 rin * restart after one full frame is pulled from the buffer. There
817 1.1 rin * could be several smaller frames in the buffer and if so they will
818 1.1 rin * not trigger the XON until their total number reduces the buffer
819 1.1 rin * by 1500.
820 1.1 rin * - The pause time is fairly large at 1000 x 512ns = 512 usec.
821 1.1 rin */
822 1.2 rin const uint16_t rx_buffer_size = (pba & 0xffff) << 10;
823 1.2 rin
824 1.1 rin hw->fc.high_water = rx_buffer_size -
825 1.1 rin roundup2(sc->hw.mac.max_frame_size, 1024);
826 1.1 rin /* 16-byte granularity */
827 1.1 rin hw->fc.low_water = hw->fc.high_water - 16;
828 1.1 rin
829 1.1 rin if (sc->fc) /* locally set flow control value? */
830 1.1 rin hw->fc.requested_mode = sc->fc;
831 1.1 rin else
832 1.1 rin hw->fc.requested_mode = igc_fc_full;
833 1.1 rin
834 1.1 rin hw->fc.pause_time = IGC_FC_PAUSE_TIME;
835 1.1 rin
836 1.1 rin hw->fc.send_xon = true;
837 1.1 rin
838 1.1 rin /* Issue a global reset */
839 1.1 rin igc_reset_hw(hw);
840 1.1 rin IGC_WRITE_REG(hw, IGC_WUC, 0);
841 1.1 rin
842 1.1 rin /* and a re-init */
843 1.1 rin if (igc_init_hw(hw) < 0) {
844 1.2 rin aprint_error_dev(sc->sc_dev, "unable to reset hardware\n");
845 1.1 rin return;
846 1.1 rin }
847 1.1 rin
848 1.1 rin /* Setup DMA Coalescing */
849 1.1 rin igc_init_dmac(sc, pba);
850 1.1 rin
851 1.1 rin IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
852 1.1 rin igc_get_phy_info(hw);
853 1.1 rin igc_check_for_link(hw);
854 1.1 rin }
855 1.1 rin
856 1.1 rin /*********************************************************************
857 1.1 rin *
858 1.1 rin * Initialize the DMA Coalescing feature
859 1.1 rin *
860 1.1 rin **********************************************************************/
861 1.2 rin static void
862 1.1 rin igc_init_dmac(struct igc_softc *sc, uint32_t pba)
863 1.1 rin {
864 1.1 rin struct igc_hw *hw = &sc->hw;
865 1.2 rin const uint16_t max_frame_size = sc->hw.mac.max_frame_size;
866 1.2 rin uint32_t reg, status;
867 1.1 rin
868 1.1 rin if (sc->dmac == 0) { /* Disabling it */
869 1.2 rin reg = ~IGC_DMACR_DMAC_EN; /* XXXRO */
870 1.1 rin IGC_WRITE_REG(hw, IGC_DMACR, reg);
871 1.2 rin DPRINTF(MISC, "DMA coalescing disabled\n");
872 1.1 rin return;
873 1.2 rin } else {
874 1.2 rin device_printf(sc->sc_dev, "DMA coalescing enabled\n");
875 1.2 rin }
876 1.1 rin
877 1.1 rin /* Set starting threshold */
878 1.1 rin IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
879 1.1 rin
880 1.2 rin uint16_t hwm = 64 * pba - max_frame_size / 16;
881 1.1 rin if (hwm < 64 * (pba - 6))
882 1.1 rin hwm = 64 * (pba - 6);
883 1.1 rin reg = IGC_READ_REG(hw, IGC_FCRTC);
884 1.1 rin reg &= ~IGC_FCRTC_RTH_COAL_MASK;
885 1.2 rin reg |= (hwm << IGC_FCRTC_RTH_COAL_SHIFT) & IGC_FCRTC_RTH_COAL_MASK;
886 1.1 rin IGC_WRITE_REG(hw, IGC_FCRTC, reg);
887 1.1 rin
888 1.2 rin uint32_t dmac = pba - max_frame_size / 512;
889 1.1 rin if (dmac < pba - 10)
890 1.1 rin dmac = pba - 10;
891 1.1 rin reg = IGC_READ_REG(hw, IGC_DMACR);
892 1.1 rin reg &= ~IGC_DMACR_DMACTHR_MASK;
893 1.2 rin reg |= (dmac << IGC_DMACR_DMACTHR_SHIFT) & IGC_DMACR_DMACTHR_MASK;
894 1.1 rin
895 1.1 rin /* transition to L0x or L1 if available..*/
896 1.2 rin reg |= IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK;
897 1.1 rin
898 1.1 rin /* Check if status is 2.5Gb backplane connection
899 1.1 rin * before configuration of watchdog timer, which is
900 1.1 rin * in msec values in 12.8usec intervals
901 1.1 rin * watchdog timer= msec values in 32usec intervals
902 1.1 rin * for non 2.5Gb connection
903 1.1 rin */
904 1.1 rin status = IGC_READ_REG(hw, IGC_STATUS);
905 1.1 rin if ((status & IGC_STATUS_2P5_SKU) &&
906 1.2 rin !(status & IGC_STATUS_2P5_SKU_OVER))
907 1.2 rin reg |= (sc->dmac * 5) >> 6;
908 1.1 rin else
909 1.2 rin reg |= sc->dmac >> 5;
910 1.1 rin
911 1.1 rin IGC_WRITE_REG(hw, IGC_DMACR, reg);
912 1.1 rin
913 1.1 rin IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
914 1.1 rin
915 1.1 rin /* Set the interval before transition */
916 1.1 rin reg = IGC_READ_REG(hw, IGC_DMCTLX);
917 1.1 rin reg |= IGC_DMCTLX_DCFLUSH_DIS;
918 1.1 rin
919 1.1 rin /*
920 1.2 rin * in 2.5Gb connection, TTLX unit is 0.4 usec
921 1.2 rin * which is 0x4*2 = 0xA. But delay is still 4 usec
922 1.2 rin */
923 1.1 rin status = IGC_READ_REG(hw, IGC_STATUS);
924 1.1 rin if ((status & IGC_STATUS_2P5_SKU) &&
925 1.2 rin !(status & IGC_STATUS_2P5_SKU_OVER))
926 1.1 rin reg |= 0xA;
927 1.1 rin else
928 1.1 rin reg |= 0x4;
929 1.1 rin
930 1.1 rin IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
931 1.1 rin
932 1.1 rin /* free space in tx packet buffer to wake from DMA coal */
933 1.2 rin IGC_WRITE_REG(hw, IGC_DMCTXTH,
934 1.2 rin (IGC_TXPBSIZE - (2 * max_frame_size)) >> 6);
935 1.1 rin
936 1.1 rin /* make low power state decision controlled by DMA coal */
937 1.1 rin reg = IGC_READ_REG(hw, IGC_PCIEMISC);
938 1.1 rin reg &= ~IGC_PCIEMISC_LX_DECISION;
939 1.1 rin IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
940 1.1 rin }
941 1.1 rin
942 1.2 rin static int
943 1.2 rin igc_setup_interrupts(struct igc_softc *sc)
944 1.2 rin {
945 1.2 rin int error;
946 1.2 rin
947 1.2 rin switch (sc->sc_intr_type) {
948 1.2 rin case PCI_INTR_TYPE_MSIX:
949 1.2 rin error = igc_setup_msix(sc);
950 1.2 rin break;
951 1.2 rin case PCI_INTR_TYPE_MSI:
952 1.2 rin error = igc_setup_msi(sc);
953 1.2 rin break;
954 1.2 rin case PCI_INTR_TYPE_INTX:
955 1.2 rin error = igc_setup_intx(sc);
956 1.2 rin break;
957 1.2 rin default:
958 1.2 rin panic("%s: invalid interrupt type: %d",
959 1.2 rin device_xname(sc->sc_dev), sc->sc_intr_type);
960 1.2 rin }
961 1.2 rin
962 1.2 rin return error;
963 1.2 rin }
964 1.2 rin
965 1.2 rin static void
966 1.2 rin igc_attach_counters(struct igc_softc *sc)
967 1.1 rin {
968 1.2 rin #ifdef IGC_EVENT_COUNTERS
969 1.2 rin
970 1.2 rin /* Global counters */
971 1.2 rin sc->sc_global_evcnts = kmem_zalloc(
972 1.2 rin IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts[0]), KM_SLEEP);
973 1.2 rin
974 1.2 rin for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++) {
975 1.2 rin evcnt_attach_dynamic(&sc->sc_global_evcnts[cnt],
976 1.2 rin igc_global_counters[cnt].type, NULL,
977 1.2 rin device_xname(sc->sc_dev), igc_global_counters[cnt].name);
978 1.2 rin }
979 1.2 rin
980 1.2 rin /* Driver counters */
981 1.2 rin sc->sc_driver_evcnts = kmem_zalloc(
982 1.2 rin IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts[0]), KM_SLEEP);
983 1.2 rin
984 1.2 rin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
985 1.2 rin evcnt_attach_dynamic(&sc->sc_driver_evcnts[cnt],
986 1.2 rin igc_driver_counters[cnt].type, NULL,
987 1.2 rin device_xname(sc->sc_dev), igc_driver_counters[cnt].name);
988 1.2 rin }
989 1.2 rin
990 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
991 1.2 rin struct igc_queue *q = &sc->queues[iq];
992 1.2 rin
993 1.2 rin q->igcq_driver_counters = kmem_zalloc(
994 1.2 rin IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]),
995 1.2 rin KM_SLEEP);
996 1.2 rin }
997 1.2 rin
998 1.2 rin /* Queue counters */
999 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1000 1.2 rin struct igc_queue *q = &sc->queues[iq];
1001 1.2 rin
1002 1.2 rin snprintf(q->igcq_queue_evname, sizeof(q->igcq_queue_evname),
1003 1.2 rin "%s q%d", device_xname(sc->sc_dev), iq);
1004 1.2 rin
1005 1.2 rin q->igcq_queue_evcnts = kmem_zalloc(
1006 1.2 rin IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]),
1007 1.2 rin KM_SLEEP);
1008 1.2 rin
1009 1.2 rin for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++) {
1010 1.2 rin evcnt_attach_dynamic(&q->igcq_queue_evcnts[cnt],
1011 1.2 rin igc_queue_counters[cnt].type, NULL,
1012 1.2 rin q->igcq_queue_evname, igc_queue_counters[cnt].name);
1013 1.1 rin }
1014 1.2 rin }
1015 1.2 rin
1016 1.2 rin /* MAC counters */
1017 1.2 rin snprintf(sc->sc_mac_evname, sizeof(sc->sc_mac_evname),
1018 1.2 rin "%s Mac Statistics", device_xname(sc->sc_dev));
1019 1.2 rin
1020 1.2 rin sc->sc_mac_evcnts = kmem_zalloc(
1021 1.2 rin IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]), KM_SLEEP);
1022 1.2 rin
1023 1.2 rin for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1024 1.2 rin evcnt_attach_dynamic(&sc->sc_mac_evcnts[cnt], EVCNT_TYPE_MISC,
1025 1.2 rin NULL, sc->sc_mac_evname, igc_mac_counters[cnt].name);
1026 1.2 rin }
1027 1.2 rin #endif
1028 1.2 rin }
1029 1.2 rin
1030 1.2 rin static void
1031 1.2 rin igc_detach_counters(struct igc_softc *sc)
1032 1.2 rin {
1033 1.2 rin #ifdef IGC_EVENT_COUNTERS
1034 1.2 rin
1035 1.2 rin /* Global counters */
1036 1.2 rin for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
1037 1.2 rin evcnt_detach(&sc->sc_global_evcnts[cnt]);
1038 1.2 rin
1039 1.2 rin kmem_free(sc->sc_global_evcnts,
1040 1.2 rin IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts));
1041 1.2 rin
1042 1.2 rin /* Driver counters */
1043 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1044 1.2 rin struct igc_queue *q = &sc->queues[iq];
1045 1.2 rin
1046 1.2 rin kmem_free(q->igcq_driver_counters,
1047 1.2 rin IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]));
1048 1.2 rin }
1049 1.2 rin
1050 1.2 rin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1051 1.2 rin evcnt_detach(&sc->sc_driver_evcnts[cnt]);
1052 1.2 rin
1053 1.2 rin kmem_free(sc->sc_driver_evcnts,
1054 1.2 rin IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts));
1055 1.2 rin
1056 1.2 rin /* Queue counters */
1057 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1058 1.2 rin struct igc_queue *q = &sc->queues[iq];
1059 1.2 rin
1060 1.2 rin for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
1061 1.2 rin evcnt_detach(&q->igcq_queue_evcnts[cnt]);
1062 1.2 rin
1063 1.2 rin kmem_free(q->igcq_queue_evcnts,
1064 1.2 rin IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]));
1065 1.2 rin }
1066 1.2 rin
1067 1.2 rin /* MAC statistics */
1068 1.2 rin for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++)
1069 1.2 rin evcnt_detach(&sc->sc_mac_evcnts[cnt]);
1070 1.2 rin
1071 1.2 rin kmem_free(sc->sc_mac_evcnts,
1072 1.2 rin IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]));
1073 1.2 rin #endif
1074 1.2 rin }
1075 1.2 rin
1076 1.2 rin /*
1077 1.2 rin * XXX
1078 1.2 rin * FreeBSD uses 4-byte-wise read for 64-bit counters, while Linux just
1079 1.2 rin * drops hi words.
1080 1.2 rin */
1081 1.2 rin static inline uint64_t __unused
1082 1.2 rin igc_read_mac_counter(struct igc_hw *hw, bus_size_t reg, bool is64)
1083 1.2 rin {
1084 1.2 rin uint64_t val;
1085 1.2 rin
1086 1.2 rin val = IGC_READ_REG(hw, reg);
1087 1.2 rin if (is64)
1088 1.2 rin val += ((uint64_t)IGC_READ_REG(hw, reg + 4)) << 32;
1089 1.2 rin return val;
1090 1.2 rin }
1091 1.2 rin
1092 1.2 rin static void
1093 1.2 rin igc_update_counters(struct igc_softc *sc)
1094 1.2 rin {
1095 1.2 rin #ifdef IGC_EVENT_COUNTERS
1096 1.2 rin
1097 1.2 rin /* Global counters: nop */
1098 1.2 rin
1099 1.2 rin /* Driver counters */
1100 1.2 rin uint64_t sum[IGC_DRIVER_COUNTERS];
1101 1.1 rin
1102 1.2 rin memset(sum, 0, sizeof(sum));
1103 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1104 1.2 rin struct igc_queue *q = &sc->queues[iq];
1105 1.2 rin
1106 1.2 rin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
1107 1.2 rin sum[cnt] += IGC_QUEUE_DRIVER_COUNTER_VAL(q, cnt);
1108 1.2 rin IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
1109 1.1 rin }
1110 1.2 rin }
1111 1.2 rin
1112 1.2 rin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1113 1.2 rin IGC_DRIVER_COUNTER_ADD(sc, cnt, sum[cnt]);
1114 1.2 rin
1115 1.2 rin /* Queue counters: nop */
1116 1.1 rin
1117 1.2 rin /* Mac statistics */
1118 1.2 rin struct igc_hw *hw = &sc->hw;
1119 1.10 msaitoh struct ifnet *ifp = &sc->sc_ec.ec_if;
1120 1.10 msaitoh uint64_t iqdrops = 0;
1121 1.2 rin
1122 1.2 rin for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1123 1.10 msaitoh uint64_t val;
1124 1.10 msaitoh bus_size_t regaddr = igc_mac_counters[cnt].reg;
1125 1.10 msaitoh
1126 1.10 msaitoh val = igc_read_mac_counter(hw, regaddr,
1127 1.10 msaitoh igc_mac_counters[cnt].is64);
1128 1.10 msaitoh IGC_MAC_COUNTER_ADD(sc, cnt, val);
1129 1.10 msaitoh /* XXX Count MPC to iqdrops. */
1130 1.10 msaitoh if (regaddr == IGC_MPC)
1131 1.10 msaitoh iqdrops += val;
1132 1.2 rin }
1133 1.10 msaitoh
1134 1.10 msaitoh for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1135 1.10 msaitoh uint32_t val;
1136 1.10 msaitoh
1137 1.10 msaitoh /* XXX RQDPC should be visible via evcnt(9). */
1138 1.10 msaitoh val = IGC_READ_REG(hw, IGC_RQDPC(iq));
1139 1.10 msaitoh
1140 1.10 msaitoh /* RQDPC is not cleard on read. */
1141 1.10 msaitoh if (val != 0)
1142 1.10 msaitoh IGC_WRITE_REG(hw, IGC_RQDPC(iq), 0);
1143 1.10 msaitoh iqdrops += val;
1144 1.10 msaitoh }
1145 1.10 msaitoh
1146 1.10 msaitoh if (iqdrops != 0)
1147 1.10 msaitoh if_statadd(ifp, if_iqdrops, iqdrops);
1148 1.2 rin #endif
1149 1.2 rin }
1150 1.2 rin
1151 1.2 rin static void
1152 1.2 rin igc_clear_counters(struct igc_softc *sc)
1153 1.2 rin {
1154 1.2 rin #ifdef IGC_EVENT_COUNTERS
1155 1.2 rin
1156 1.2 rin /* Global counters */
1157 1.2 rin for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
1158 1.2 rin IGC_GLOBAL_COUNTER_STORE(sc, cnt, 0);
1159 1.2 rin
1160 1.2 rin /* Driver counters */
1161 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1162 1.2 rin struct igc_queue *q = &sc->queues[iq];
1163 1.2 rin
1164 1.2 rin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1165 1.2 rin IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
1166 1.1 rin }
1167 1.1 rin
1168 1.2 rin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1169 1.2 rin IGC_DRIVER_COUNTER_STORE(sc, cnt, 0);
1170 1.2 rin
1171 1.2 rin /* Queue counters */
1172 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1173 1.2 rin struct igc_queue *q = &sc->queues[iq];
1174 1.2 rin
1175 1.2 rin for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
1176 1.2 rin IGC_QUEUE_COUNTER_STORE(q, cnt, 0);
1177 1.2 rin }
1178 1.2 rin
1179 1.2 rin /* Mac statistics */
1180 1.2 rin struct igc_hw *hw = &sc->hw;
1181 1.2 rin
1182 1.2 rin for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1183 1.2 rin (void)igc_read_mac_counter(hw, igc_mac_counters[cnt].reg,
1184 1.2 rin igc_mac_counters[cnt].is64);
1185 1.2 rin IGC_MAC_COUNTER_STORE(sc, cnt, 0);
1186 1.2 rin }
1187 1.2 rin #endif
1188 1.2 rin }
1189 1.2 rin
1190 1.2 rin static int
1191 1.2 rin igc_setup_msix(struct igc_softc *sc)
1192 1.2 rin {
1193 1.2 rin pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1194 1.2 rin device_t dev = sc->sc_dev;
1195 1.2 rin pci_intr_handle_t *intrs;
1196 1.2 rin void **ihs;
1197 1.2 rin const char *intrstr;
1198 1.2 rin char intrbuf[PCI_INTRSTR_LEN];
1199 1.2 rin char xnamebuf[MAX(32, MAXCOMLEN)];
1200 1.2 rin int iq, error;
1201 1.2 rin
1202 1.2 rin for (iq = 0, intrs = sc->sc_intrs, ihs = sc->sc_ihs;
1203 1.2 rin iq < sc->sc_nqueues; iq++, intrs++, ihs++) {
1204 1.2 rin struct igc_queue *q = &sc->queues[iq];
1205 1.2 rin
1206 1.2 rin snprintf(xnamebuf, sizeof(xnamebuf), "%s: txrx %d",
1207 1.2 rin device_xname(dev), iq);
1208 1.2 rin
1209 1.2 rin intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
1210 1.2 rin
1211 1.2 rin pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
1212 1.2 rin *ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
1213 1.2 rin igc_intr_queue, q, xnamebuf);
1214 1.2 rin if (*ihs == NULL) {
1215 1.2 rin aprint_error_dev(dev,
1216 1.2 rin "unable to establish txrx interrupt at %s\n",
1217 1.2 rin intrstr);
1218 1.2 rin return ENOBUFS;
1219 1.2 rin }
1220 1.2 rin aprint_normal_dev(dev, "txrx interrupting at %s\n", intrstr);
1221 1.2 rin
1222 1.2 rin kcpuset_t *affinity;
1223 1.2 rin kcpuset_create(&affinity, true);
1224 1.2 rin kcpuset_set(affinity, iq % ncpu);
1225 1.2 rin error = interrupt_distribute(*ihs, affinity, NULL);
1226 1.2 rin if (error) {
1227 1.2 rin aprint_normal_dev(dev,
1228 1.2 rin "%s: unable to change affinity, use default CPU\n",
1229 1.2 rin intrstr);
1230 1.2 rin }
1231 1.2 rin kcpuset_destroy(affinity);
1232 1.2 rin
1233 1.2 rin q->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1234 1.2 rin igc_handle_queue, q);
1235 1.2 rin if (q->igcq_si == NULL) {
1236 1.2 rin aprint_error_dev(dev,
1237 1.2 rin "%s: unable to establish softint\n", intrstr);
1238 1.2 rin return ENOBUFS;
1239 1.2 rin }
1240 1.2 rin
1241 1.2 rin q->msix = iq;
1242 1.2 rin q->eims = 1 << iq;
1243 1.1 rin }
1244 1.1 rin
1245 1.2 rin snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
1246 1.2 rin error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
1247 1.2 rin igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
1248 1.2 rin WQ_PERCPU | WQ_MPSAFE);
1249 1.2 rin if (error) {
1250 1.2 rin aprint_error_dev(dev, "workqueue_create failed\n");
1251 1.2 rin return ENOBUFS;
1252 1.1 rin }
1253 1.2 rin sc->sc_txrx_workqueue = false;
1254 1.1 rin
1255 1.2 rin intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
1256 1.2 rin snprintf(xnamebuf, sizeof(xnamebuf), "%s: link", device_xname(dev));
1257 1.2 rin pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
1258 1.2 rin *ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
1259 1.2 rin igc_intr_link, sc, xnamebuf);
1260 1.2 rin if (*ihs == NULL) {
1261 1.2 rin aprint_error_dev(dev,
1262 1.2 rin "unable to establish link interrupt at %s\n", intrstr);
1263 1.2 rin return ENOBUFS;
1264 1.2 rin }
1265 1.2 rin aprint_normal_dev(dev, "link interrupting at %s\n", intrstr);
1266 1.2 rin /* use later in igc_configure_queues() */
1267 1.2 rin sc->linkvec = iq;
1268 1.1 rin
1269 1.1 rin return 0;
1270 1.2 rin }
1271 1.2 rin
1272 1.2 rin static int
1273 1.2 rin igc_setup_msi(struct igc_softc *sc)
1274 1.2 rin {
1275 1.2 rin pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1276 1.2 rin device_t dev = sc->sc_dev;
1277 1.2 rin pci_intr_handle_t *intr = sc->sc_intrs;
1278 1.2 rin void **ihs = sc->sc_ihs;
1279 1.2 rin const char *intrstr;
1280 1.2 rin char intrbuf[PCI_INTRSTR_LEN];
1281 1.2 rin char xnamebuf[MAX(32, MAXCOMLEN)];
1282 1.2 rin int error;
1283 1.2 rin
1284 1.2 rin intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
1285 1.2 rin
1286 1.2 rin snprintf(xnamebuf, sizeof(xnamebuf), "%s: msi", device_xname(dev));
1287 1.2 rin pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
1288 1.2 rin *ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
1289 1.2 rin igc_intr, sc, xnamebuf);
1290 1.2 rin if (*ihs == NULL) {
1291 1.2 rin aprint_error_dev(dev,
1292 1.2 rin "unable to establish interrupt at %s\n", intrstr);
1293 1.2 rin return ENOBUFS;
1294 1.2 rin }
1295 1.2 rin aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
1296 1.2 rin
1297 1.2 rin struct igc_queue *iq = sc->queues;
1298 1.2 rin iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1299 1.2 rin igc_handle_queue, iq);
1300 1.2 rin if (iq->igcq_si == NULL) {
1301 1.2 rin aprint_error_dev(dev,
1302 1.2 rin "%s: unable to establish softint\n", intrstr);
1303 1.2 rin return ENOBUFS;
1304 1.2 rin }
1305 1.2 rin
1306 1.2 rin snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
1307 1.2 rin error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
1308 1.2 rin igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
1309 1.2 rin WQ_PERCPU | WQ_MPSAFE);
1310 1.2 rin if (error) {
1311 1.2 rin aprint_error_dev(dev, "workqueue_create failed\n");
1312 1.2 rin return ENOBUFS;
1313 1.1 rin }
1314 1.2 rin sc->sc_txrx_workqueue = false;
1315 1.2 rin
1316 1.2 rin sc->queues[0].msix = 0;
1317 1.2 rin sc->linkvec = 0;
1318 1.1 rin
1319 1.2 rin return 0;
1320 1.1 rin }
1321 1.1 rin
1322 1.2 rin static int
1323 1.2 rin igc_setup_intx(struct igc_softc *sc)
1324 1.1 rin {
1325 1.2 rin pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1326 1.2 rin device_t dev = sc->sc_dev;
1327 1.2 rin pci_intr_handle_t *intr = sc->sc_intrs;
1328 1.2 rin void **ihs = sc->sc_ihs;
1329 1.2 rin const char *intrstr;
1330 1.2 rin char intrbuf[PCI_INTRSTR_LEN];
1331 1.2 rin char xnamebuf[32];
1332 1.2 rin
1333 1.2 rin intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
1334 1.2 rin
1335 1.2 rin snprintf(xnamebuf, sizeof(xnamebuf), "%s:intx", device_xname(dev));
1336 1.2 rin pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
1337 1.2 rin *ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
1338 1.2 rin igc_intr, sc, xnamebuf);
1339 1.2 rin if (*ihs == NULL) {
1340 1.2 rin aprint_error_dev(dev,
1341 1.2 rin "unable to establish interrupt at %s\n", intrstr);
1342 1.2 rin return ENOBUFS;
1343 1.2 rin }
1344 1.2 rin aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
1345 1.2 rin
1346 1.2 rin struct igc_queue *iq = sc->queues;
1347 1.2 rin iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1348 1.2 rin igc_handle_queue, iq);
1349 1.2 rin if (iq->igcq_si == NULL) {
1350 1.2 rin aprint_error_dev(dev,
1351 1.2 rin "%s: unable to establish softint\n", intrstr);
1352 1.2 rin return ENOBUFS;
1353 1.2 rin }
1354 1.1 rin
1355 1.2 rin /* create workqueue? */
1356 1.2 rin sc->sc_txrx_workqueue = false;
1357 1.1 rin
1358 1.2 rin sc->queues[0].msix = 0;
1359 1.2 rin sc->linkvec = 0;
1360 1.1 rin
1361 1.2 rin return 0;
1362 1.1 rin }
1363 1.1 rin
1364 1.2 rin static int
1365 1.1 rin igc_dma_malloc(struct igc_softc *sc, bus_size_t size, struct igc_dma_alloc *dma)
1366 1.1 rin {
1367 1.1 rin struct igc_osdep *os = &sc->osdep;
1368 1.1 rin
1369 1.2 rin dma->dma_tag = os->os_dmat;
1370 1.1 rin
1371 1.2 rin if (bus_dmamap_create(dma->dma_tag, size, 1, size, 0,
1372 1.2 rin BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->dma_map))
1373 1.1 rin return 1;
1374 1.1 rin if (bus_dmamem_alloc(dma->dma_tag, size, PAGE_SIZE, 0, &dma->dma_seg,
1375 1.2 rin 1, &dma->dma_nseg, BUS_DMA_WAITOK))
1376 1.1 rin goto destroy;
1377 1.2 rin /*
1378 1.2 rin * XXXRO
1379 1.2 rin *
1380 1.2 rin * Coherent mapping for descriptors is required for now.
1381 1.2 rin *
1382 1.2 rin * Both TX and RX descriptors are 16-byte length, which is shorter
1383 1.2 rin * than dcache lines on modern CPUs. Therefore, sync for a descriptor
1384 1.2 rin * may overwrite DMA read for descriptors in the same cache line.
1385 1.2 rin *
1386 1.2 rin * Can't we avoid this by use cache-line-aligned descriptors at once?
1387 1.2 rin */
1388 1.1 rin if (bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
1389 1.2 rin &dma->dma_vaddr, BUS_DMA_WAITOK | BUS_DMA_COHERENT /* XXXRO */))
1390 1.1 rin goto free;
1391 1.1 rin if (bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
1392 1.2 rin NULL, BUS_DMA_WAITOK))
1393 1.1 rin goto unmap;
1394 1.1 rin
1395 1.1 rin dma->dma_size = size;
1396 1.1 rin
1397 1.1 rin return 0;
1398 1.2 rin unmap:
1399 1.1 rin bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
1400 1.2 rin free:
1401 1.1 rin bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
1402 1.2 rin destroy:
1403 1.1 rin bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1404 1.1 rin dma->dma_map = NULL;
1405 1.1 rin dma->dma_tag = NULL;
1406 1.1 rin return 1;
1407 1.1 rin }
1408 1.1 rin
1409 1.2 rin static void
1410 1.1 rin igc_dma_free(struct igc_softc *sc, struct igc_dma_alloc *dma)
1411 1.1 rin {
1412 1.2 rin
1413 1.1 rin if (dma->dma_tag == NULL)
1414 1.1 rin return;
1415 1.1 rin
1416 1.1 rin if (dma->dma_map != NULL) {
1417 1.1 rin bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
1418 1.1 rin dma->dma_map->dm_mapsize,
1419 1.1 rin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1420 1.1 rin bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1421 1.1 rin bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
1422 1.1 rin bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
1423 1.1 rin bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1424 1.1 rin dma->dma_map = NULL;
1425 1.1 rin }
1426 1.1 rin }
1427 1.1 rin
1428 1.1 rin /*********************************************************************
1429 1.1 rin *
1430 1.1 rin * Setup networking device structure and register an interface.
1431 1.1 rin *
1432 1.1 rin **********************************************************************/
1433 1.2 rin static void
1434 1.1 rin igc_setup_interface(struct igc_softc *sc)
1435 1.2 rin {
1436 1.2 rin struct ifnet *ifp = &sc->sc_ec.ec_if;
1437 1.2 rin
1438 1.2 rin strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
1439 1.2 rin ifp->if_softc = sc;
1440 1.2 rin ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1441 1.2 rin ifp->if_extflags = IFEF_MPSAFE;
1442 1.2 rin ifp->if_ioctl = igc_ioctl;
1443 1.2 rin ifp->if_start = igc_start;
1444 1.2 rin if (sc->sc_nqueues > 1)
1445 1.2 rin ifp->if_transmit = igc_transmit;
1446 1.2 rin ifp->if_watchdog = igc_watchdog;
1447 1.2 rin ifp->if_init = igc_init;
1448 1.2 rin ifp->if_stop = igc_stop;
1449 1.2 rin
1450 1.2 rin #if 0 /* notyet */
1451 1.2 rin ifp->if_capabilities = IFCAP_TSOv4 | IFCAP_TSOv6;
1452 1.2 rin #endif
1453 1.2 rin
1454 1.2 rin ifp->if_capabilities |=
1455 1.2 rin IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1456 1.2 rin IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1457 1.2 rin IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1458 1.2 rin IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
1459 1.2 rin IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
1460 1.2 rin
1461 1.2 rin ifp->if_capenable = 0;
1462 1.1 rin
1463 1.2 rin sc->sc_ec.ec_capabilities |=
1464 1.2 rin ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
1465 1.1 rin
1466 1.2 rin IFQ_SET_MAXLEN(&ifp->if_snd, sc->num_tx_desc - 1);
1467 1.2 rin IFQ_SET_READY(&ifp->if_snd);
1468 1.1 rin
1469 1.1 rin #if NVLAN > 0
1470 1.2 rin sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
1471 1.1 rin #endif
1472 1.1 rin
1473 1.2 rin mutex_init(&sc->sc_core_lock, MUTEX_DEFAULT, IPL_NET);
1474 1.1 rin
1475 1.1 rin /* Initialize ifmedia structures. */
1476 1.2 rin sc->sc_ec.ec_ifmedia = &sc->media;
1477 1.2 rin ifmedia_init_with_lock(&sc->media, IFM_IMASK, igc_media_change,
1478 1.2 rin igc_media_status, &sc->sc_core_lock);
1479 1.1 rin ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1480 1.1 rin ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1481 1.1 rin ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1482 1.1 rin ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1483 1.1 rin ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1484 1.2 rin ifmedia_add(&sc->media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
1485 1.1 rin ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1486 1.1 rin ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1487 1.1 rin
1488 1.2 rin sc->sc_rx_intr_process_limit = IGC_RX_INTR_PROCESS_LIMIT_DEFAULT;
1489 1.2 rin sc->sc_tx_intr_process_limit = IGC_TX_INTR_PROCESS_LIMIT_DEFAULT;
1490 1.2 rin sc->sc_rx_process_limit = IGC_RX_PROCESS_LIMIT_DEFAULT;
1491 1.2 rin sc->sc_tx_process_limit = IGC_TX_PROCESS_LIMIT_DEFAULT;
1492 1.2 rin
1493 1.2 rin if_initialize(ifp);
1494 1.2 rin sc->sc_ipq = if_percpuq_create(ifp);
1495 1.2 rin if_deferred_start_init(ifp, NULL);
1496 1.2 rin ether_ifattach(ifp, sc->hw.mac.addr);
1497 1.2 rin ether_set_ifflags_cb(&sc->sc_ec, igc_ifflags_cb);
1498 1.2 rin if_register(ifp);
1499 1.2 rin }
1500 1.1 rin
1501 1.2 rin static int
1502 1.2 rin igc_init(struct ifnet *ifp)
1503 1.2 rin {
1504 1.2 rin struct igc_softc *sc = ifp->if_softc;
1505 1.2 rin int error;
1506 1.1 rin
1507 1.2 rin mutex_enter(&sc->sc_core_lock);
1508 1.2 rin error = igc_init_locked(sc);
1509 1.2 rin mutex_exit(&sc->sc_core_lock);
1510 1.1 rin
1511 1.2 rin return error;
1512 1.1 rin }
1513 1.1 rin
1514 1.2 rin static int
1515 1.2 rin igc_init_locked(struct igc_softc *sc)
1516 1.1 rin {
1517 1.2 rin struct ethercom *ec = &sc->sc_ec;
1518 1.2 rin struct ifnet *ifp = &ec->ec_if;
1519 1.1 rin
1520 1.2 rin DPRINTF(CFG, "called\n");
1521 1.1 rin
1522 1.2 rin KASSERT(mutex_owned(&sc->sc_core_lock));
1523 1.1 rin
1524 1.2 rin if (ISSET(ifp->if_flags, IFF_RUNNING))
1525 1.2 rin igc_stop_locked(sc);
1526 1.1 rin
1527 1.1 rin /* Put the address into the receive address array. */
1528 1.1 rin igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1529 1.1 rin
1530 1.1 rin /* Initialize the hardware. */
1531 1.1 rin igc_reset(sc);
1532 1.1 rin igc_update_link_status(sc);
1533 1.1 rin
1534 1.1 rin /* Setup VLAN support, basic and offload if available. */
1535 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
1536 1.1 rin
1537 1.1 rin igc_initialize_transmit_unit(sc);
1538 1.1 rin igc_initialize_receive_unit(sc);
1539 1.1 rin
1540 1.2 rin if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1541 1.2 rin uint32_t ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
1542 1.1 rin ctrl |= IGC_CTRL_VME;
1543 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
1544 1.1 rin }
1545 1.1 rin
1546 1.1 rin /* Setup multicast table. */
1547 1.2 rin igc_set_filter(sc);
1548 1.1 rin
1549 1.1 rin igc_clear_hw_cntrs_base_generic(&sc->hw);
1550 1.1 rin
1551 1.2 rin if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
1552 1.2 rin igc_configure_queues(sc);
1553 1.1 rin
1554 1.1 rin /* This clears any pending interrupts */
1555 1.1 rin IGC_READ_REG(&sc->hw, IGC_ICR);
1556 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
1557 1.1 rin
1558 1.1 rin /* The driver can now take control from firmware. */
1559 1.1 rin igc_get_hw_control(sc);
1560 1.1 rin
1561 1.1 rin /* Set Energy Efficient Ethernet. */
1562 1.1 rin igc_set_eee_i225(&sc->hw, true, true, true);
1563 1.1 rin
1564 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1565 1.2 rin struct rx_ring *rxr = &sc->rx_rings[iq];
1566 1.2 rin
1567 1.2 rin mutex_enter(&rxr->rxr_lock);
1568 1.1 rin igc_rxfill(rxr);
1569 1.2 rin mutex_exit(&rxr->rxr_lock);
1570 1.1 rin }
1571 1.1 rin
1572 1.2 rin sc->sc_core_stopping = false;
1573 1.2 rin
1574 1.1 rin ifp->if_flags |= IFF_RUNNING;
1575 1.1 rin
1576 1.2 rin /* Save last flags for the callback */
1577 1.2 rin sc->sc_if_flags = ifp->if_flags;
1578 1.2 rin
1579 1.6 rin callout_schedule(&sc->sc_tick_ch, hz);
1580 1.6 rin
1581 1.6 rin igc_enable_intr(sc);
1582 1.6 rin
1583 1.2 rin return 0;
1584 1.1 rin }
1585 1.1 rin
1586 1.1 rin static inline int
1587 1.2 rin igc_load_mbuf(struct igc_queue *q, bus_dma_tag_t dmat, bus_dmamap_t map,
1588 1.2 rin struct mbuf *m)
1589 1.1 rin {
1590 1.1 rin int error;
1591 1.1 rin
1592 1.1 rin error = bus_dmamap_load_mbuf(dmat, map, m,
1593 1.2 rin BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1594 1.2 rin
1595 1.2 rin if (__predict_false(error == EFBIG)) {
1596 1.2 rin IGC_DRIVER_EVENT(q, txdma_efbig, 1);
1597 1.2 rin m = m_defrag(m, M_NOWAIT);
1598 1.2 rin if (__predict_false(m == NULL)) {
1599 1.2 rin IGC_DRIVER_EVENT(q, txdma_defrag, 1);
1600 1.2 rin return ENOBUFS;
1601 1.2 rin }
1602 1.2 rin error = bus_dmamap_load_mbuf(dmat, map, m,
1603 1.2 rin BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1604 1.2 rin }
1605 1.1 rin
1606 1.2 rin switch (error) {
1607 1.2 rin case 0:
1608 1.2 rin break;
1609 1.2 rin case ENOMEM:
1610 1.2 rin IGC_DRIVER_EVENT(q, txdma_enomem, 1);
1611 1.2 rin break;
1612 1.2 rin case EINVAL:
1613 1.2 rin IGC_DRIVER_EVENT(q, txdma_einval, 1);
1614 1.2 rin break;
1615 1.2 rin case EAGAIN:
1616 1.2 rin IGC_DRIVER_EVENT(q, txdma_eagain, 1);
1617 1.2 rin break;
1618 1.2 rin default:
1619 1.2 rin IGC_DRIVER_EVENT(q, txdma_other, 1);
1620 1.2 rin break;
1621 1.2 rin }
1622 1.1 rin
1623 1.2 rin return error;
1624 1.1 rin }
1625 1.1 rin
1626 1.2 rin #define IGC_TX_START 1
1627 1.2 rin #define IGC_TX_TRANSMIT 2
1628 1.2 rin
1629 1.2 rin static void
1630 1.2 rin igc_start(struct ifnet *ifp)
1631 1.1 rin {
1632 1.1 rin struct igc_softc *sc = ifp->if_softc;
1633 1.1 rin
1634 1.2 rin if (__predict_false(!sc->link_active)) {
1635 1.2 rin IFQ_PURGE(&ifp->if_snd);
1636 1.1 rin return;
1637 1.1 rin }
1638 1.1 rin
1639 1.2 rin struct tx_ring *txr = &sc->tx_rings[0]; /* queue 0 */
1640 1.2 rin mutex_enter(&txr->txr_lock);
1641 1.2 rin igc_tx_common_locked(ifp, txr, IGC_TX_START);
1642 1.2 rin mutex_exit(&txr->txr_lock);
1643 1.2 rin }
1644 1.2 rin
1645 1.2 rin static inline u_int
1646 1.2 rin igc_select_txqueue(struct igc_softc *sc, struct mbuf *m __unused)
1647 1.2 rin {
1648 1.2 rin const u_int cpuid = cpu_index(curcpu());
1649 1.2 rin
1650 1.2 rin return cpuid % sc->sc_nqueues;
1651 1.2 rin }
1652 1.2 rin
1653 1.2 rin static int
1654 1.2 rin igc_transmit(struct ifnet *ifp, struct mbuf *m)
1655 1.2 rin {
1656 1.2 rin struct igc_softc *sc = ifp->if_softc;
1657 1.2 rin const u_int qid = igc_select_txqueue(sc, m);
1658 1.2 rin struct tx_ring *txr = &sc->tx_rings[qid];
1659 1.2 rin struct igc_queue *q = txr->txr_igcq;
1660 1.2 rin
1661 1.2 rin if (__predict_false(!pcq_put(txr->txr_interq, m))) {
1662 1.2 rin IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
1663 1.2 rin m_freem(m);
1664 1.2 rin return ENOBUFS;
1665 1.2 rin }
1666 1.2 rin
1667 1.2 rin mutex_enter(&txr->txr_lock);
1668 1.2 rin igc_tx_common_locked(ifp, txr, IGC_TX_TRANSMIT);
1669 1.2 rin mutex_exit(&txr->txr_lock);
1670 1.2 rin
1671 1.2 rin return 0;
1672 1.2 rin }
1673 1.2 rin
1674 1.2 rin static void
1675 1.2 rin igc_tx_common_locked(struct ifnet *ifp, struct tx_ring *txr, int caller)
1676 1.2 rin {
1677 1.2 rin struct igc_softc *sc = ifp->if_softc;
1678 1.2 rin struct igc_queue *q = txr->txr_igcq;
1679 1.2 rin net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1680 1.2 rin int prod, free, last = -1;
1681 1.2 rin bool post = false;
1682 1.2 rin
1683 1.1 rin prod = txr->next_avail_desc;
1684 1.1 rin free = txr->next_to_clean;
1685 1.1 rin if (free <= prod)
1686 1.1 rin free += sc->num_tx_desc;
1687 1.1 rin free -= prod;
1688 1.1 rin
1689 1.2 rin DPRINTF(TX, "%s: begin: msix %d prod %d n2c %d free %d\n",
1690 1.2 rin caller == IGC_TX_TRANSMIT ? "transmit" : "start",
1691 1.2 rin txr->me, prod, txr->next_to_clean, free);
1692 1.1 rin
1693 1.2 rin for (;;) {
1694 1.2 rin struct mbuf *m;
1695 1.1 rin
1696 1.2 rin if (__predict_false(free <= IGC_MAX_SCATTER)) {
1697 1.2 rin IGC_QUEUE_EVENT(q, tx_no_desc, 1);
1698 1.1 rin break;
1699 1.1 rin }
1700 1.1 rin
1701 1.2 rin if (caller == IGC_TX_TRANSMIT)
1702 1.2 rin m = pcq_get(txr->txr_interq);
1703 1.2 rin else
1704 1.2 rin IFQ_DEQUEUE(&ifp->if_snd, m);
1705 1.2 rin if (__predict_false(m == NULL))
1706 1.1 rin break;
1707 1.1 rin
1708 1.2 rin struct igc_tx_buf *txbuf = &txr->tx_buffers[prod];
1709 1.2 rin bus_dmamap_t map = txbuf->map;
1710 1.1 rin
1711 1.2 rin if (__predict_false(
1712 1.2 rin igc_load_mbuf(q, txr->txdma.dma_tag, map, m))) {
1713 1.2 rin if (caller == IGC_TX_TRANSMIT)
1714 1.2 rin IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
1715 1.1 rin m_freem(m);
1716 1.2 rin if_statinc_ref(nsr, if_oerrors);
1717 1.1 rin continue;
1718 1.1 rin }
1719 1.1 rin
1720 1.1 rin bus_dmamap_sync(txr->txdma.dma_tag, map, 0,
1721 1.1 rin map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1722 1.1 rin
1723 1.2 rin uint32_t ctx_cmd_type_len = 0, olinfo_status = 0;
1724 1.2 rin if (igc_tx_ctx_setup(txr, m, prod, &ctx_cmd_type_len,
1725 1.2 rin &olinfo_status)) {
1726 1.2 rin IGC_QUEUE_EVENT(q, tx_ctx, 1);
1727 1.1 rin /* Consume the first descriptor */
1728 1.2 rin prod = igc_txdesc_incr(sc, prod);
1729 1.1 rin free--;
1730 1.1 rin }
1731 1.2 rin for (int i = 0; i < map->dm_nsegs; i++) {
1732 1.2 rin union igc_adv_tx_desc *txdesc = &txr->tx_base[prod];
1733 1.1 rin
1734 1.2 rin uint32_t cmd_type_len = ctx_cmd_type_len |
1735 1.2 rin IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DTYP_DATA |
1736 1.1 rin IGC_ADVTXD_DCMD_DEXT | map->dm_segs[i].ds_len;
1737 1.2 rin if (i == map->dm_nsegs - 1) {
1738 1.2 rin cmd_type_len |=
1739 1.2 rin IGC_ADVTXD_DCMD_EOP | IGC_ADVTXD_DCMD_RS;
1740 1.2 rin }
1741 1.1 rin
1742 1.2 rin igc_txdesc_sync(txr, prod,
1743 1.2 rin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1744 1.2 rin htolem64(&txdesc->read.buffer_addr,
1745 1.2 rin map->dm_segs[i].ds_addr);
1746 1.1 rin htolem32(&txdesc->read.cmd_type_len, cmd_type_len);
1747 1.1 rin htolem32(&txdesc->read.olinfo_status, olinfo_status);
1748 1.2 rin igc_txdesc_sync(txr, prod,
1749 1.2 rin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1750 1.1 rin
1751 1.1 rin last = prod;
1752 1.2 rin prod = igc_txdesc_incr(sc, prod);
1753 1.1 rin }
1754 1.1 rin
1755 1.1 rin txbuf->m_head = m;
1756 1.1 rin txbuf->eop_index = last;
1757 1.1 rin
1758 1.2 rin bpf_mtap(ifp, m, BPF_D_OUT);
1759 1.2 rin
1760 1.2 rin if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
1761 1.2 rin if (m->m_flags & M_MCAST)
1762 1.2 rin if_statinc_ref(nsr, if_omcasts);
1763 1.2 rin IGC_QUEUE_EVENT(q, tx_packets, 1);
1764 1.2 rin IGC_QUEUE_EVENT(q, tx_bytes, m->m_pkthdr.len);
1765 1.1 rin
1766 1.2 rin free -= map->dm_nsegs;
1767 1.2 rin post = true;
1768 1.1 rin }
1769 1.1 rin
1770 1.1 rin if (post) {
1771 1.1 rin txr->next_avail_desc = prod;
1772 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), prod);
1773 1.1 rin }
1774 1.2 rin
1775 1.2 rin DPRINTF(TX, "%s: done : msix %d prod %d n2c %d free %d\n",
1776 1.2 rin caller == IGC_TX_TRANSMIT ? "transmit" : "start",
1777 1.2 rin txr->me, prod, txr->next_to_clean, free);
1778 1.2 rin
1779 1.2 rin IF_STAT_PUTREF(ifp);
1780 1.1 rin }
1781 1.1 rin
1782 1.2 rin static bool
1783 1.2 rin igc_txeof(struct tx_ring *txr, u_int limit)
1784 1.1 rin {
1785 1.1 rin struct igc_softc *sc = txr->sc;
1786 1.2 rin struct ifnet *ifp = &sc->sc_ec.ec_if;
1787 1.2 rin int cons, prod;
1788 1.2 rin bool more = false;
1789 1.1 rin
1790 1.1 rin prod = txr->next_avail_desc;
1791 1.1 rin cons = txr->next_to_clean;
1792 1.1 rin
1793 1.2 rin if (cons == prod) {
1794 1.2 rin DPRINTF(TX, "false: msix %d cons %d prod %d\n",
1795 1.2 rin txr->me, cons, prod);
1796 1.2 rin return false;
1797 1.2 rin }
1798 1.2 rin
1799 1.2 rin do {
1800 1.2 rin struct igc_tx_buf *txbuf = &txr->tx_buffers[cons];
1801 1.2 rin const int last = txbuf->eop_index;
1802 1.1 rin
1803 1.2 rin membar_consumer(); /* XXXRO necessary? */
1804 1.1 rin
1805 1.2 rin KASSERT(last != -1);
1806 1.2 rin union igc_adv_tx_desc *txdesc = &txr->tx_base[last];
1807 1.2 rin igc_txdesc_sync(txr, last, BUS_DMASYNC_POSTREAD);
1808 1.2 rin const uint32_t status = le32toh(txdesc->wb.status);
1809 1.2 rin igc_txdesc_sync(txr, last, BUS_DMASYNC_PREREAD);
1810 1.1 rin
1811 1.2 rin if (!(status & IGC_TXD_STAT_DD))
1812 1.2 rin break;
1813 1.1 rin
1814 1.2 rin if (limit-- == 0) {
1815 1.2 rin more = true;
1816 1.2 rin DPRINTF(TX, "pending TX "
1817 1.2 rin "msix %d cons %d last %d prod %d "
1818 1.2 rin "status 0x%08x\n",
1819 1.2 rin txr->me, cons, last, prod, status);
1820 1.1 rin break;
1821 1.2 rin }
1822 1.2 rin
1823 1.2 rin DPRINTF(TX, "handled TX "
1824 1.2 rin "msix %d cons %d last %d prod %d "
1825 1.2 rin "status 0x%08x\n",
1826 1.2 rin txr->me, cons, last, prod, status);
1827 1.1 rin
1828 1.2 rin if_statinc(ifp, if_opackets);
1829 1.1 rin
1830 1.2 rin bus_dmamap_t map = txbuf->map;
1831 1.1 rin bus_dmamap_sync(txr->txdma.dma_tag, map, 0, map->dm_mapsize,
1832 1.1 rin BUS_DMASYNC_POSTWRITE);
1833 1.1 rin bus_dmamap_unload(txr->txdma.dma_tag, map);
1834 1.1 rin m_freem(txbuf->m_head);
1835 1.1 rin
1836 1.1 rin txbuf->m_head = NULL;
1837 1.1 rin txbuf->eop_index = -1;
1838 1.1 rin
1839 1.2 rin cons = igc_txdesc_incr(sc, last);
1840 1.2 rin } while (cons != prod);
1841 1.2 rin
1842 1.2 rin txr->next_to_clean = cons;
1843 1.1 rin
1844 1.2 rin return more;
1845 1.2 rin }
1846 1.1 rin
1847 1.2 rin static void
1848 1.2 rin igc_intr_barrier(struct igc_softc *sc __unused)
1849 1.2 rin {
1850 1.1 rin
1851 1.2 rin xc_barrier(0);
1852 1.2 rin }
1853 1.1 rin
1854 1.2 rin static void
1855 1.2 rin igc_stop(struct ifnet *ifp, int disable)
1856 1.2 rin {
1857 1.2 rin struct igc_softc *sc = ifp->if_softc;
1858 1.1 rin
1859 1.2 rin mutex_enter(&sc->sc_core_lock);
1860 1.2 rin igc_stop_locked(sc);
1861 1.2 rin mutex_exit(&sc->sc_core_lock);
1862 1.1 rin }
1863 1.1 rin
1864 1.1 rin /*********************************************************************
1865 1.1 rin *
1866 1.1 rin * This routine disables all traffic on the adapter by issuing a
1867 1.1 rin * global reset on the MAC.
1868 1.1 rin *
1869 1.1 rin **********************************************************************/
1870 1.2 rin static void
1871 1.2 rin igc_stop_locked(struct igc_softc *sc)
1872 1.1 rin {
1873 1.2 rin struct ifnet *ifp = &sc->sc_ec.ec_if;
1874 1.2 rin
1875 1.2 rin DPRINTF(CFG, "called\n");
1876 1.2 rin
1877 1.2 rin KASSERT(mutex_owned(&sc->sc_core_lock));
1878 1.2 rin
1879 1.2 rin /*
1880 1.2 rin * If stopping processing has already started, do nothing.
1881 1.2 rin */
1882 1.2 rin if ((ifp->if_flags & IFF_RUNNING) == 0)
1883 1.2 rin return;
1884 1.1 rin
1885 1.1 rin /* Tell the stack that the interface is no longer active. */
1886 1.2 rin ifp->if_flags &= ~IFF_RUNNING;
1887 1.2 rin
1888 1.2 rin /*
1889 1.2 rin * igc_handle_queue() can enable interrupts, so wait for completion of
1890 1.2 rin * last igc_handle_queue() after unset IFF_RUNNING.
1891 1.2 rin */
1892 1.2 rin mutex_exit(&sc->sc_core_lock);
1893 1.2 rin igc_barrier_handle_queue(sc);
1894 1.2 rin mutex_enter(&sc->sc_core_lock);
1895 1.2 rin
1896 1.2 rin sc->sc_core_stopping = true;
1897 1.1 rin
1898 1.1 rin igc_disable_intr(sc);
1899 1.1 rin
1900 1.2 rin callout_halt(&sc->sc_tick_ch, &sc->sc_core_lock);
1901 1.2 rin
1902 1.1 rin igc_reset_hw(&sc->hw);
1903 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
1904 1.1 rin
1905 1.2 rin /*
1906 1.2 rin * Wait for completion of interrupt handlers.
1907 1.2 rin */
1908 1.2 rin mutex_exit(&sc->sc_core_lock);
1909 1.2 rin igc_intr_barrier(sc);
1910 1.2 rin mutex_enter(&sc->sc_core_lock);
1911 1.2 rin
1912 1.2 rin igc_update_link_status(sc);
1913 1.2 rin
1914 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1915 1.2 rin struct tx_ring *txr = &sc->tx_rings[iq];
1916 1.2 rin
1917 1.2 rin igc_withdraw_transmit_packets(txr, false);
1918 1.2 rin }
1919 1.2 rin
1920 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1921 1.2 rin struct rx_ring *rxr = &sc->rx_rings[iq];
1922 1.1 rin
1923 1.2 rin igc_clear_receive_status(rxr);
1924 1.2 rin }
1925 1.1 rin
1926 1.2 rin /* Save last flags for the callback */
1927 1.2 rin sc->sc_if_flags = ifp->if_flags;
1928 1.1 rin }
1929 1.1 rin
1930 1.1 rin /*********************************************************************
1931 1.1 rin * Ioctl entry point
1932 1.1 rin *
1933 1.1 rin * igc_ioctl is called when the user wants to configure the
1934 1.1 rin * interface.
1935 1.1 rin *
1936 1.1 rin * return 0 on success, positive on failure
1937 1.1 rin **********************************************************************/
1938 1.2 rin static int
1939 1.2 rin igc_ioctl(struct ifnet * ifp, u_long cmd, void *data)
1940 1.1 rin {
1941 1.2 rin struct igc_softc *sc __unused = ifp->if_softc;
1942 1.2 rin int s;
1943 1.2 rin int error;
1944 1.1 rin
1945 1.2 rin DPRINTF(CFG, "cmd 0x%016lx\n", cmd);
1946 1.1 rin
1947 1.1 rin switch (cmd) {
1948 1.2 rin case SIOCADDMULTI:
1949 1.2 rin case SIOCDELMULTI:
1950 1.1 rin break;
1951 1.2 rin default:
1952 1.2 rin KASSERT(IFNET_LOCKED(ifp));
1953 1.2 rin }
1954 1.2 rin
1955 1.2 rin if (cmd == SIOCZIFDATA) {
1956 1.2 rin mutex_enter(&sc->sc_core_lock);
1957 1.2 rin igc_clear_counters(sc);
1958 1.2 rin mutex_exit(&sc->sc_core_lock);
1959 1.2 rin }
1960 1.2 rin
1961 1.2 rin switch (cmd) {
1962 1.2 rin #ifdef IF_RXR
1963 1.1 rin case SIOCGIFRXR:
1964 1.2 rin s = splnet();
1965 1.1 rin error = igc_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
1966 1.2 rin splx(s);
1967 1.1 rin break;
1968 1.2 rin #endif
1969 1.1 rin default:
1970 1.2 rin s = splnet();
1971 1.2 rin error = ether_ioctl(ifp, cmd, data);
1972 1.2 rin splx(s);
1973 1.2 rin break;
1974 1.1 rin }
1975 1.1 rin
1976 1.2 rin if (error != ENETRESET)
1977 1.2 rin return error;
1978 1.2 rin
1979 1.2 rin error = 0;
1980 1.2 rin
1981 1.2 rin if (cmd == SIOCSIFCAP)
1982 1.2 rin error = if_init(ifp);
1983 1.2 rin else if ((cmd == SIOCADDMULTI) || (cmd == SIOCDELMULTI)) {
1984 1.2 rin mutex_enter(&sc->sc_core_lock);
1985 1.2 rin if (sc->sc_if_flags & IFF_RUNNING) {
1986 1.2 rin /*
1987 1.2 rin * Multicast list has changed; set the hardware filter
1988 1.2 rin * accordingly.
1989 1.2 rin */
1990 1.1 rin igc_disable_intr(sc);
1991 1.2 rin igc_set_filter(sc);
1992 1.1 rin igc_enable_intr(sc);
1993 1.1 rin }
1994 1.2 rin mutex_exit(&sc->sc_core_lock);
1995 1.1 rin }
1996 1.1 rin
1997 1.1 rin return error;
1998 1.1 rin }
1999 1.1 rin
2000 1.2 rin #ifdef IF_RXR
2001 1.2 rin static int
2002 1.1 rin igc_rxrinfo(struct igc_softc *sc, struct if_rxrinfo *ifri)
2003 1.1 rin {
2004 1.2 rin struct if_rxring_info *ifr, ifr1;
2005 1.2 rin int error;
2006 1.2 rin
2007 1.2 rin if (sc->sc_nqueues > 1) {
2008 1.2 rin ifr = kmem_zalloc(sc->sc_nqueues * sizeof(*ifr), KM_SLEEP);
2009 1.2 rin } else {
2010 1.2 rin ifr = &ifr1;
2011 1.2 rin memset(ifr, 0, sizeof(*ifr));
2012 1.2 rin }
2013 1.2 rin
2014 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2015 1.2 rin struct rx_ring *rxr = &sc->rx_rings[iq];
2016 1.2 rin
2017 1.2 rin ifr[iq].ifr_size = MCLBYTES;
2018 1.2 rin snprintf(ifr[iq].ifr_name, sizeof(ifr[iq].ifr_name), "%d", iq);
2019 1.2 rin ifr[iq].ifr_info = rxr->rx_ring;
2020 1.1 rin }
2021 1.1 rin
2022 1.1 rin error = if_rxr_info_ioctl(ifri, sc->sc_nqueues, ifr);
2023 1.2 rin if (sc->sc_nqueues > 1)
2024 1.2 rin kmem_free(ifr, sc->sc_nqueues * sizeof(*ifr));
2025 1.1 rin
2026 1.1 rin return error;
2027 1.1 rin }
2028 1.2 rin #endif
2029 1.1 rin
2030 1.2 rin static void
2031 1.1 rin igc_rxfill(struct rx_ring *rxr)
2032 1.1 rin {
2033 1.1 rin struct igc_softc *sc = rxr->sc;
2034 1.2 rin int id;
2035 1.1 rin
2036 1.2 rin for (id = 0; id < sc->num_rx_desc; id++) {
2037 1.2 rin if (igc_get_buf(rxr, id, false)) {
2038 1.2 rin panic("%s: msix=%d i=%d\n", __func__, rxr->me, id);
2039 1.2 rin }
2040 1.1 rin }
2041 1.1 rin
2042 1.2 rin id = sc->num_rx_desc - 1;
2043 1.2 rin rxr->last_desc_filled = id;
2044 1.2 rin IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
2045 1.2 rin rxr->next_to_check = 0;
2046 1.1 rin }
2047 1.1 rin
2048 1.2 rin static void
2049 1.2 rin igc_rxrefill(struct rx_ring *rxr, int end)
2050 1.1 rin {
2051 1.1 rin struct igc_softc *sc = rxr->sc;
2052 1.2 rin int id;
2053 1.1 rin
2054 1.2 rin for (id = rxr->next_to_check; id != end; id = igc_rxdesc_incr(sc, id)) {
2055 1.2 rin if (igc_get_buf(rxr, id, true)) {
2056 1.2 rin /* XXXRO */
2057 1.2 rin panic("%s: msix=%d id=%d\n", __func__, rxr->me, id);
2058 1.2 rin }
2059 1.1 rin }
2060 1.2 rin
2061 1.2 rin id = igc_rxdesc_decr(sc, id);
2062 1.2 rin DPRINTF(RX, "%s RDT %d id %d\n",
2063 1.2 rin rxr->last_desc_filled == id ? "same" : "diff",
2064 1.2 rin rxr->last_desc_filled, id);
2065 1.2 rin rxr->last_desc_filled = id;
2066 1.2 rin IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
2067 1.1 rin }
2068 1.1 rin
2069 1.1 rin /*********************************************************************
2070 1.1 rin *
2071 1.1 rin * This routine executes in interrupt context. It replenishes
2072 1.1 rin * the mbufs in the descriptor and sends data which has been
2073 1.1 rin * dma'ed into host memory to upper layer.
2074 1.1 rin *
2075 1.1 rin *********************************************************************/
2076 1.2 rin static bool
2077 1.2 rin igc_rxeof(struct rx_ring *rxr, u_int limit)
2078 1.1 rin {
2079 1.1 rin struct igc_softc *sc = rxr->sc;
2080 1.2 rin struct igc_queue *q = rxr->rxr_igcq;
2081 1.2 rin struct ifnet *ifp = &sc->sc_ec.ec_if;
2082 1.2 rin int id;
2083 1.2 rin bool more = false;
2084 1.2 rin
2085 1.2 rin id = rxr->next_to_check;
2086 1.2 rin for (;;) {
2087 1.2 rin union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
2088 1.2 rin struct igc_rx_buf *rxbuf, *nxbuf;
2089 1.2 rin struct mbuf *mp, *m;
2090 1.1 rin
2091 1.2 rin igc_rxdesc_sync(rxr, id,
2092 1.2 rin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2093 1.1 rin
2094 1.2 rin const uint32_t staterr = le32toh(rxdesc->wb.upper.status_error);
2095 1.1 rin
2096 1.1 rin if (!ISSET(staterr, IGC_RXD_STAT_DD)) {
2097 1.2 rin igc_rxdesc_sync(rxr, id,
2098 1.2 rin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2099 1.2 rin break;
2100 1.2 rin }
2101 1.2 rin
2102 1.2 rin if (limit-- == 0) {
2103 1.2 rin igc_rxdesc_sync(rxr, id,
2104 1.2 rin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2105 1.2 rin DPRINTF(RX, "more=true\n");
2106 1.2 rin more = true;
2107 1.1 rin break;
2108 1.1 rin }
2109 1.1 rin
2110 1.1 rin /* Zero out the receive descriptors status. */
2111 1.1 rin rxdesc->wb.upper.status_error = 0;
2112 1.1 rin
2113 1.1 rin /* Pull the mbuf off the ring. */
2114 1.2 rin rxbuf = &rxr->rx_buffers[id];
2115 1.2 rin bus_dmamap_t map = rxbuf->map;
2116 1.2 rin bus_dmamap_sync(rxr->rxdma.dma_tag, map,
2117 1.2 rin 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2118 1.2 rin bus_dmamap_unload(rxr->rxdma.dma_tag, map);
2119 1.1 rin
2120 1.1 rin mp = rxbuf->buf;
2121 1.2 rin rxbuf->buf = NULL;
2122 1.2 rin
2123 1.2 rin const bool eop = staterr & IGC_RXD_STAT_EOP;
2124 1.2 rin const uint16_t len = le16toh(rxdesc->wb.upper.length);
2125 1.2 rin
2126 1.7 oster #if NVLAN > 0
2127 1.2 rin const uint16_t vtag = le16toh(rxdesc->wb.upper.vlan);
2128 1.7 oster #endif
2129 1.2 rin
2130 1.2 rin const uint32_t ptype = le32toh(rxdesc->wb.lower.lo_dword.data) &
2131 1.1 rin IGC_PKTTYPE_MASK;
2132 1.1 rin
2133 1.2 rin const uint32_t hash __unused =
2134 1.2 rin le32toh(rxdesc->wb.lower.hi_dword.rss);
2135 1.2 rin const uint16_t hashtype __unused =
2136 1.2 rin le16toh(rxdesc->wb.lower.lo_dword.hs_rss.pkt_info) &
2137 1.2 rin IGC_RXDADV_RSSTYPE_MASK;
2138 1.2 rin
2139 1.2 rin igc_rxdesc_sync(rxr, id,
2140 1.2 rin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2141 1.2 rin
2142 1.2 rin if (__predict_false(staterr & IGC_RXDEXT_STATERR_RXE)) {
2143 1.1 rin if (rxbuf->fmp) {
2144 1.1 rin m_freem(rxbuf->fmp);
2145 1.1 rin rxbuf->fmp = NULL;
2146 1.1 rin }
2147 1.1 rin
2148 1.1 rin m_freem(mp);
2149 1.2 rin m = NULL;
2150 1.2 rin
2151 1.2 rin if_statinc(ifp, if_ierrors);
2152 1.2 rin IGC_QUEUE_EVENT(q, rx_discard, 1);
2153 1.2 rin
2154 1.2 rin DPRINTF(RX, "ierrors++\n");
2155 1.2 rin
2156 1.1 rin goto next_desc;
2157 1.1 rin }
2158 1.1 rin
2159 1.2 rin if (__predict_false(mp == NULL)) {
2160 1.1 rin panic("%s: igc_rxeof: NULL mbuf in slot %d "
2161 1.2 rin "(filled %d)", device_xname(sc->sc_dev),
2162 1.2 rin id, rxr->last_desc_filled);
2163 1.1 rin }
2164 1.1 rin
2165 1.1 rin if (!eop) {
2166 1.1 rin /*
2167 1.1 rin * Figure out the next descriptor of this frame.
2168 1.1 rin */
2169 1.2 rin int nextp = igc_rxdesc_incr(sc, id);
2170 1.2 rin
2171 1.1 rin nxbuf = &rxr->rx_buffers[nextp];
2172 1.2 rin /*
2173 1.2 rin * TODO prefetch(nxbuf);
2174 1.2 rin */
2175 1.1 rin }
2176 1.1 rin
2177 1.1 rin mp->m_len = len;
2178 1.1 rin
2179 1.1 rin m = rxbuf->fmp;
2180 1.2 rin rxbuf->fmp = NULL;
2181 1.1 rin
2182 1.2 rin if (m != NULL) {
2183 1.1 rin m->m_pkthdr.len += mp->m_len;
2184 1.2 rin } else {
2185 1.1 rin m = mp;
2186 1.1 rin m->m_pkthdr.len = mp->m_len;
2187 1.1 rin #if NVLAN > 0
2188 1.2 rin if (staterr & IGC_RXD_STAT_VP)
2189 1.2 rin vlan_set_tag(m, vtag);
2190 1.1 rin #endif
2191 1.1 rin }
2192 1.1 rin
2193 1.1 rin /* Pass the head pointer on */
2194 1.2 rin if (!eop) {
2195 1.1 rin nxbuf->fmp = m;
2196 1.1 rin m = NULL;
2197 1.1 rin mp->m_next = nxbuf->buf;
2198 1.1 rin } else {
2199 1.2 rin m_set_rcvif(m, ifp);
2200 1.2 rin
2201 1.2 rin m->m_pkthdr.csum_flags = igc_rx_checksum(q,
2202 1.2 rin ifp->if_capenable, staterr, ptype);
2203 1.1 rin
2204 1.2 rin #ifdef notyet
2205 1.1 rin if (hashtype != IGC_RXDADV_RSSTYPE_NONE) {
2206 1.1 rin m->m_pkthdr.ph_flowid = hash;
2207 1.1 rin SET(m->m_pkthdr.csum_flags, M_FLOWID);
2208 1.1 rin }
2209 1.2 rin ml_enqueue(&ml, m);
2210 1.2 rin #endif
2211 1.2 rin
2212 1.2 rin if_percpuq_enqueue(sc->sc_ipq, m);
2213 1.1 rin
2214 1.2 rin if_statinc(ifp, if_ipackets);
2215 1.2 rin IGC_QUEUE_EVENT(q, rx_packets, 1);
2216 1.2 rin IGC_QUEUE_EVENT(q, rx_bytes, m->m_pkthdr.len);
2217 1.1 rin }
2218 1.2 rin next_desc:
2219 1.1 rin /* Advance our pointers to the next descriptor. */
2220 1.2 rin id = igc_rxdesc_incr(sc, id);
2221 1.1 rin }
2222 1.1 rin
2223 1.2 rin DPRINTF(RX, "fill queue[%d]\n", rxr->me);
2224 1.2 rin igc_rxrefill(rxr, id);
2225 1.1 rin
2226 1.2 rin DPRINTF(RX, "%s n2c %d id %d\n",
2227 1.2 rin rxr->next_to_check == id ? "same" : "diff",
2228 1.2 rin rxr->next_to_check, id);
2229 1.2 rin rxr->next_to_check = id;
2230 1.2 rin
2231 1.2 rin #ifdef OPENBSD
2232 1.1 rin if (!(staterr & IGC_RXD_STAT_DD))
2233 1.1 rin return 0;
2234 1.2 rin #endif
2235 1.1 rin
2236 1.2 rin return more;
2237 1.1 rin }
2238 1.1 rin
2239 1.1 rin /*********************************************************************
2240 1.1 rin *
2241 1.1 rin * Verify that the hardware indicated that the checksum is valid.
2242 1.1 rin * Inform the stack about the status of checksum so that stack
2243 1.1 rin * doesn't spend time verifying the checksum.
2244 1.1 rin *
2245 1.1 rin *********************************************************************/
2246 1.2 rin static int
2247 1.2 rin igc_rx_checksum(struct igc_queue *q, uint64_t capenable, uint32_t staterr,
2248 1.2 rin uint32_t ptype)
2249 1.1 rin {
2250 1.2 rin const uint16_t status = (uint16_t)staterr;
2251 1.2 rin const uint8_t errors = (uint8_t)(staterr >> 24);
2252 1.2 rin int flags = 0;
2253 1.2 rin
2254 1.2 rin if ((status & IGC_RXD_STAT_IPCS) != 0 &&
2255 1.2 rin (capenable & IFCAP_CSUM_IPv4_Rx) != 0) {
2256 1.2 rin IGC_DRIVER_EVENT(q, rx_ipcs, 1);
2257 1.2 rin flags |= M_CSUM_IPv4;
2258 1.2 rin if (__predict_false((errors & IGC_RXD_ERR_IPE) != 0)) {
2259 1.2 rin IGC_DRIVER_EVENT(q, rx_ipcs_bad, 1);
2260 1.2 rin flags |= M_CSUM_IPv4_BAD;
2261 1.2 rin }
2262 1.2 rin }
2263 1.2 rin
2264 1.2 rin if ((status & IGC_RXD_STAT_TCPCS) != 0) {
2265 1.2 rin IGC_DRIVER_EVENT(q, rx_tcpcs, 1);
2266 1.2 rin if ((capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
2267 1.2 rin flags |= M_CSUM_TCPv4;
2268 1.2 rin if ((capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
2269 1.2 rin flags |= M_CSUM_TCPv6;
2270 1.2 rin }
2271 1.1 rin
2272 1.2 rin if ((status & IGC_RXD_STAT_UDPCS) != 0) {
2273 1.2 rin IGC_DRIVER_EVENT(q, rx_udpcs, 1);
2274 1.2 rin if ((capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
2275 1.2 rin flags |= M_CSUM_UDPv4;
2276 1.2 rin if ((capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
2277 1.2 rin flags |= M_CSUM_UDPv6;
2278 1.1 rin }
2279 1.1 rin
2280 1.2 rin if (__predict_false((errors & IGC_RXD_ERR_TCPE) != 0)) {
2281 1.2 rin IGC_DRIVER_EVENT(q, rx_l4cs_bad, 1);
2282 1.2 rin if ((flags & ~M_CSUM_IPv4) != 0)
2283 1.2 rin flags |= M_CSUM_TCP_UDP_BAD;
2284 1.1 rin }
2285 1.2 rin
2286 1.2 rin return flags;
2287 1.1 rin }
2288 1.1 rin
2289 1.2 rin static void
2290 1.1 rin igc_watchdog(struct ifnet * ifp)
2291 1.1 rin {
2292 1.1 rin }
2293 1.1 rin
2294 1.2 rin static void
2295 1.2 rin igc_tick(void *arg)
2296 1.2 rin {
2297 1.2 rin struct igc_softc *sc = arg;
2298 1.2 rin
2299 1.2 rin mutex_enter(&sc->sc_core_lock);
2300 1.2 rin
2301 1.2 rin if (__predict_false(sc->sc_core_stopping)) {
2302 1.2 rin mutex_exit(&sc->sc_core_lock);
2303 1.2 rin return;
2304 1.2 rin }
2305 1.2 rin
2306 1.2 rin /* XXX watchdog */
2307 1.2 rin if (0) {
2308 1.2 rin IGC_GLOBAL_EVENT(sc, watchdog, 1);
2309 1.2 rin }
2310 1.2 rin
2311 1.2 rin igc_update_counters(sc);
2312 1.2 rin
2313 1.2 rin mutex_exit(&sc->sc_core_lock);
2314 1.2 rin
2315 1.2 rin callout_schedule(&sc->sc_tick_ch, hz);
2316 1.2 rin }
2317 1.2 rin
2318 1.1 rin /*********************************************************************
2319 1.1 rin *
2320 1.1 rin * Media Ioctl callback
2321 1.1 rin *
2322 1.1 rin * This routine is called whenever the user queries the status of
2323 1.1 rin * the interface using ifconfig.
2324 1.1 rin *
2325 1.1 rin **********************************************************************/
2326 1.2 rin static void
2327 1.1 rin igc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2328 1.1 rin {
2329 1.1 rin struct igc_softc *sc = ifp->if_softc;
2330 1.2 rin struct igc_hw *hw = &sc->hw;
2331 1.1 rin
2332 1.1 rin igc_update_link_status(sc);
2333 1.1 rin
2334 1.1 rin ifmr->ifm_status = IFM_AVALID;
2335 1.1 rin ifmr->ifm_active = IFM_ETHER;
2336 1.1 rin
2337 1.1 rin if (!sc->link_active) {
2338 1.1 rin ifmr->ifm_active |= IFM_NONE;
2339 1.1 rin return;
2340 1.1 rin }
2341 1.1 rin
2342 1.1 rin ifmr->ifm_status |= IFM_ACTIVE;
2343 1.1 rin
2344 1.1 rin switch (sc->link_speed) {
2345 1.1 rin case 10:
2346 1.1 rin ifmr->ifm_active |= IFM_10_T;
2347 1.1 rin break;
2348 1.1 rin case 100:
2349 1.1 rin ifmr->ifm_active |= IFM_100_TX;
2350 1.2 rin break;
2351 1.1 rin case 1000:
2352 1.1 rin ifmr->ifm_active |= IFM_1000_T;
2353 1.1 rin break;
2354 1.1 rin case 2500:
2355 1.2 rin ifmr->ifm_active |= IFM_2500_T;
2356 1.2 rin break;
2357 1.1 rin }
2358 1.1 rin
2359 1.1 rin if (sc->link_duplex == FULL_DUPLEX)
2360 1.1 rin ifmr->ifm_active |= IFM_FDX;
2361 1.1 rin else
2362 1.1 rin ifmr->ifm_active |= IFM_HDX;
2363 1.2 rin
2364 1.2 rin switch (hw->fc.current_mode) {
2365 1.2 rin case igc_fc_tx_pause:
2366 1.2 rin ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
2367 1.2 rin break;
2368 1.2 rin case igc_fc_rx_pause:
2369 1.2 rin ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
2370 1.2 rin break;
2371 1.2 rin case igc_fc_full:
2372 1.2 rin ifmr->ifm_active |= IFM_FLOW |
2373 1.2 rin IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2374 1.2 rin break;
2375 1.2 rin case igc_fc_none:
2376 1.2 rin default:
2377 1.2 rin break;
2378 1.2 rin }
2379 1.1 rin }
2380 1.1 rin
2381 1.1 rin /*********************************************************************
2382 1.1 rin *
2383 1.1 rin * Media Ioctl callback
2384 1.1 rin *
2385 1.1 rin * This routine is called when the user changes speed/duplex using
2386 1.1 rin * media/mediopt option with ifconfig.
2387 1.1 rin *
2388 1.1 rin **********************************************************************/
2389 1.2 rin static int
2390 1.1 rin igc_media_change(struct ifnet *ifp)
2391 1.1 rin {
2392 1.1 rin struct igc_softc *sc = ifp->if_softc;
2393 1.1 rin struct ifmedia *ifm = &sc->media;
2394 1.1 rin
2395 1.1 rin if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2396 1.2 rin return EINVAL;
2397 1.1 rin
2398 1.1 rin sc->hw.mac.autoneg = DO_AUTO_NEG;
2399 1.1 rin
2400 1.1 rin switch (IFM_SUBTYPE(ifm->ifm_media)) {
2401 1.1 rin case IFM_AUTO:
2402 1.1 rin sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
2403 1.1 rin break;
2404 1.2 rin case IFM_2500_T:
2405 1.2 rin sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
2406 1.2 rin break;
2407 1.1 rin case IFM_1000_T:
2408 1.1 rin sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
2409 1.1 rin break;
2410 1.1 rin case IFM_100_TX:
2411 1.4 msaitoh if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2412 1.4 msaitoh sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
2413 1.4 msaitoh else
2414 1.1 rin sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
2415 1.1 rin break;
2416 1.1 rin case IFM_10_T:
2417 1.4 msaitoh if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2418 1.4 msaitoh sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
2419 1.4 msaitoh else
2420 1.1 rin sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
2421 1.1 rin break;
2422 1.1 rin default:
2423 1.1 rin return EINVAL;
2424 1.1 rin }
2425 1.1 rin
2426 1.2 rin igc_init_locked(sc);
2427 1.1 rin
2428 1.1 rin return 0;
2429 1.1 rin }
2430 1.1 rin
2431 1.2 rin static int
2432 1.2 rin igc_ifflags_cb(struct ethercom *ec)
2433 1.2 rin {
2434 1.2 rin struct ifnet *ifp = &ec->ec_if;
2435 1.2 rin struct igc_softc *sc = ifp->if_softc;
2436 1.2 rin int rc = 0;
2437 1.2 rin u_short iffchange;
2438 1.2 rin bool needreset = false;
2439 1.2 rin
2440 1.2 rin DPRINTF(CFG, "called\n");
2441 1.2 rin
2442 1.2 rin KASSERT(IFNET_LOCKED(ifp));
2443 1.2 rin
2444 1.2 rin mutex_enter(&sc->sc_core_lock);
2445 1.2 rin
2446 1.2 rin /*
2447 1.2 rin * Check for if_flags.
2448 1.2 rin * Main usage is to prevent linkdown when opening bpf.
2449 1.2 rin */
2450 1.2 rin iffchange = ifp->if_flags ^ sc->sc_if_flags;
2451 1.2 rin sc->sc_if_flags = ifp->if_flags;
2452 1.2 rin if ((iffchange & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
2453 1.2 rin needreset = true;
2454 1.2 rin goto ec;
2455 1.2 rin }
2456 1.2 rin
2457 1.2 rin /* iff related updates */
2458 1.2 rin if ((iffchange & IFF_PROMISC) != 0)
2459 1.2 rin igc_set_filter(sc);
2460 1.2 rin
2461 1.2 rin #ifdef notyet
2462 1.2 rin igc_set_vlan(sc);
2463 1.2 rin #endif
2464 1.2 rin
2465 1.2 rin ec:
2466 1.2 rin #ifdef notyet
2467 1.2 rin /* Check for ec_capenable. */
2468 1.2 rin ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
2469 1.2 rin sc->sc_ec_capenable = ec->ec_capenable;
2470 1.2 rin if ((ecchange & ~ETHERCAP_SOMETHING) != 0) {
2471 1.2 rin needreset = true;
2472 1.2 rin goto out;
2473 1.2 rin }
2474 1.2 rin #endif
2475 1.2 rin if (needreset)
2476 1.2 rin rc = ENETRESET;
2477 1.2 rin
2478 1.2 rin mutex_exit(&sc->sc_core_lock);
2479 1.2 rin
2480 1.2 rin return rc;
2481 1.2 rin }
2482 1.2 rin
2483 1.2 rin static void
2484 1.2 rin igc_set_filter(struct igc_softc *sc)
2485 1.1 rin {
2486 1.2 rin struct ethercom *ec = &sc->sc_ec;
2487 1.2 rin uint32_t rctl;
2488 1.2 rin
2489 1.2 rin rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
2490 1.2 rin rctl &= ~(IGC_RCTL_BAM |IGC_RCTL_UPE | IGC_RCTL_MPE);
2491 1.2 rin
2492 1.2 rin if ((sc->sc_if_flags & IFF_BROADCAST) != 0)
2493 1.2 rin rctl |= IGC_RCTL_BAM;
2494 1.2 rin if ((sc->sc_if_flags & IFF_PROMISC) != 0) {
2495 1.2 rin DPRINTF(CFG, "promisc\n");
2496 1.2 rin rctl |= IGC_RCTL_UPE;
2497 1.2 rin ETHER_LOCK(ec);
2498 1.2 rin allmulti:
2499 1.2 rin ec->ec_flags |= ETHER_F_ALLMULTI;
2500 1.2 rin ETHER_UNLOCK(ec);
2501 1.2 rin rctl |= IGC_RCTL_MPE;
2502 1.1 rin } else {
2503 1.2 rin struct ether_multistep step;
2504 1.2 rin struct ether_multi *enm;
2505 1.2 rin int mcnt = 0;
2506 1.2 rin
2507 1.2 rin memset(sc->mta, 0, IGC_MTA_LEN);
2508 1.2 rin
2509 1.2 rin ETHER_LOCK(ec);
2510 1.2 rin ETHER_FIRST_MULTI(step, ec, enm);
2511 1.1 rin while (enm != NULL) {
2512 1.2 rin if (((memcmp(enm->enm_addrlo, enm->enm_addrhi,
2513 1.2 rin ETHER_ADDR_LEN)) != 0) ||
2514 1.2 rin (mcnt >= MAX_NUM_MULTICAST_ADDRESSES)) {
2515 1.2 rin /*
2516 1.2 rin * We must listen to a range of multicast
2517 1.2 rin * addresses. For now, just accept all
2518 1.2 rin * multicasts, rather than trying to set only
2519 1.2 rin * those filter bits needed to match the range.
2520 1.2 rin * (At this time, the only use of address
2521 1.2 rin * ranges is for IP multicast routing, for
2522 1.2 rin * which the range is big enough to require all
2523 1.2 rin * bits set.)
2524 1.2 rin */
2525 1.2 rin goto allmulti;
2526 1.2 rin }
2527 1.2 rin DPRINTF(CFG, "%d: %s\n", mcnt,
2528 1.2 rin ether_sprintf(enm->enm_addrlo));
2529 1.2 rin memcpy(&sc->mta[mcnt * ETHER_ADDR_LEN],
2530 1.2 rin enm->enm_addrlo, ETHER_ADDR_LEN);
2531 1.2 rin
2532 1.1 rin mcnt++;
2533 1.1 rin ETHER_NEXT_MULTI(step, enm);
2534 1.1 rin }
2535 1.2 rin ec->ec_flags &= ~ETHER_F_ALLMULTI;
2536 1.2 rin ETHER_UNLOCK(ec);
2537 1.1 rin
2538 1.2 rin DPRINTF(CFG, "hw filter\n");
2539 1.2 rin igc_update_mc_addr_list(&sc->hw, sc->mta, mcnt);
2540 1.1 rin }
2541 1.1 rin
2542 1.2 rin IGC_WRITE_REG(&sc->hw, IGC_RCTL, rctl);
2543 1.1 rin }
2544 1.1 rin
2545 1.2 rin static void
2546 1.1 rin igc_update_link_status(struct igc_softc *sc)
2547 1.1 rin {
2548 1.2 rin struct ifnet *ifp = &sc->sc_ec.ec_if;
2549 1.1 rin struct igc_hw *hw = &sc->hw;
2550 1.1 rin
2551 1.11 msaitoh if (hw->mac.get_link_status == true)
2552 1.11 msaitoh igc_check_for_link(hw);
2553 1.11 msaitoh
2554 1.1 rin if (IGC_READ_REG(&sc->hw, IGC_STATUS) & IGC_STATUS_LU) {
2555 1.1 rin if (sc->link_active == 0) {
2556 1.1 rin igc_get_speed_and_duplex(hw, &sc->link_speed,
2557 1.1 rin &sc->link_duplex);
2558 1.1 rin sc->link_active = 1;
2559 1.1 rin ifp->if_baudrate = IF_Mbps(sc->link_speed);
2560 1.2 rin if_link_state_change(ifp, LINK_STATE_UP);
2561 1.1 rin }
2562 1.1 rin } else {
2563 1.1 rin if (sc->link_active == 1) {
2564 1.1 rin ifp->if_baudrate = sc->link_speed = 0;
2565 1.1 rin sc->link_duplex = 0;
2566 1.1 rin sc->link_active = 0;
2567 1.2 rin if_link_state_change(ifp, LINK_STATE_DOWN);
2568 1.1 rin }
2569 1.1 rin }
2570 1.1 rin }
2571 1.1 rin
2572 1.1 rin /*********************************************************************
2573 1.1 rin *
2574 1.1 rin * Get a buffer from system mbuf buffer pool.
2575 1.1 rin *
2576 1.1 rin **********************************************************************/
2577 1.2 rin static int
2578 1.2 rin igc_get_buf(struct rx_ring *rxr, int id, bool strict)
2579 1.1 rin {
2580 1.1 rin struct igc_softc *sc = rxr->sc;
2581 1.2 rin struct igc_queue *q = rxr->rxr_igcq;
2582 1.2 rin struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
2583 1.2 rin bus_dmamap_t map = rxbuf->map;
2584 1.2 rin struct mbuf *m;
2585 1.2 rin int error;
2586 1.2 rin
2587 1.2 rin if (__predict_false(rxbuf->buf)) {
2588 1.2 rin if (strict) {
2589 1.2 rin DPRINTF(RX, "slot %d already has an mbuf\n", id);
2590 1.2 rin return EINVAL;
2591 1.2 rin }
2592 1.2 rin return 0;
2593 1.2 rin }
2594 1.1 rin
2595 1.2 rin MGETHDR(m, M_DONTWAIT, MT_DATA);
2596 1.2 rin if (__predict_false(m == NULL)) {
2597 1.2 rin enobuf:
2598 1.2 rin IGC_QUEUE_EVENT(q, rx_no_mbuf, 1);
2599 1.1 rin return ENOBUFS;
2600 1.1 rin }
2601 1.1 rin
2602 1.2 rin MCLGET(m, M_DONTWAIT);
2603 1.2 rin if (__predict_false(!(m->m_flags & M_EXT))) {
2604 1.2 rin m_freem(m);
2605 1.2 rin goto enobuf;
2606 1.2 rin }
2607 1.1 rin
2608 1.1 rin m->m_len = m->m_pkthdr.len = sc->rx_mbuf_sz;
2609 1.1 rin
2610 1.2 rin error = bus_dmamap_load_mbuf(rxr->rxdma.dma_tag, map, m,
2611 1.2 rin BUS_DMA_READ | BUS_DMA_NOWAIT);
2612 1.1 rin if (error) {
2613 1.1 rin m_freem(m);
2614 1.1 rin return error;
2615 1.1 rin }
2616 1.1 rin
2617 1.2 rin bus_dmamap_sync(rxr->rxdma.dma_tag, map, 0,
2618 1.2 rin map->dm_mapsize, BUS_DMASYNC_PREREAD);
2619 1.1 rin rxbuf->buf = m;
2620 1.1 rin
2621 1.2 rin union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
2622 1.2 rin igc_rxdesc_sync(rxr, id, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
2623 1.2 rin rxdesc->read.pkt_addr = htole64(map->dm_segs[0].ds_addr);
2624 1.2 rin igc_rxdesc_sync(rxr, id, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2625 1.1 rin
2626 1.1 rin return 0;
2627 1.1 rin }
2628 1.1 rin
2629 1.2 rin static void
2630 1.1 rin igc_configure_queues(struct igc_softc *sc)
2631 1.1 rin {
2632 1.1 rin struct igc_hw *hw = &sc->hw;
2633 1.2 rin uint32_t ivar;
2634 1.1 rin
2635 1.1 rin /* First turn on RSS capability */
2636 1.1 rin IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME |
2637 1.1 rin IGC_GPIE_PBA | IGC_GPIE_NSICR);
2638 1.1 rin
2639 1.1 rin /* Set the starting interrupt rate */
2640 1.2 rin uint32_t newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;
2641 1.1 rin newitr |= IGC_EITR_CNT_IGNR;
2642 1.1 rin
2643 1.1 rin /* Turn on MSI-X */
2644 1.2 rin uint32_t newmask = 0;
2645 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2646 1.2 rin struct igc_queue *q = &sc->queues[iq];
2647 1.2 rin
2648 1.1 rin /* RX entries */
2649 1.2 rin igc_set_queues(sc, iq, q->msix, 0);
2650 1.1 rin /* TX entries */
2651 1.2 rin igc_set_queues(sc, iq, q->msix, 1);
2652 1.2 rin newmask |= q->eims;
2653 1.2 rin IGC_WRITE_REG(hw, IGC_EITR(q->msix), newitr);
2654 1.2 rin }
2655 1.2 rin sc->msix_queuesmask = newmask;
2656 1.2 rin
2657 1.2 rin #if 1
2658 1.2 rin ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 0);
2659 1.2 rin DPRINTF(CFG, "ivar(0)=0x%x\n", ivar);
2660 1.2 rin ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 1);
2661 1.2 rin DPRINTF(CFG, "ivar(1)=0x%x\n", ivar);
2662 1.2 rin #endif
2663 1.1 rin
2664 1.1 rin /* And for the link interrupt */
2665 1.1 rin ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
2666 1.1 rin sc->msix_linkmask = 1 << sc->linkvec;
2667 1.1 rin IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
2668 1.1 rin }
2669 1.1 rin
2670 1.2 rin static void
2671 1.1 rin igc_set_queues(struct igc_softc *sc, uint32_t entry, uint32_t vector, int type)
2672 1.1 rin {
2673 1.1 rin struct igc_hw *hw = &sc->hw;
2674 1.2 rin const uint32_t index = entry >> 1;
2675 1.2 rin uint32_t ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
2676 1.1 rin
2677 1.1 rin if (type) {
2678 1.1 rin if (entry & 1) {
2679 1.1 rin ivar &= 0x00FFFFFF;
2680 1.1 rin ivar |= (vector | IGC_IVAR_VALID) << 24;
2681 1.1 rin } else {
2682 1.1 rin ivar &= 0xFFFF00FF;
2683 1.1 rin ivar |= (vector | IGC_IVAR_VALID) << 8;
2684 1.1 rin }
2685 1.1 rin } else {
2686 1.1 rin if (entry & 1) {
2687 1.1 rin ivar &= 0xFF00FFFF;
2688 1.1 rin ivar |= (vector | IGC_IVAR_VALID) << 16;
2689 1.1 rin } else {
2690 1.1 rin ivar &= 0xFFFFFF00;
2691 1.1 rin ivar |= vector | IGC_IVAR_VALID;
2692 1.1 rin }
2693 1.1 rin }
2694 1.1 rin IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
2695 1.1 rin }
2696 1.1 rin
2697 1.2 rin static void
2698 1.1 rin igc_enable_queue(struct igc_softc *sc, uint32_t eims)
2699 1.1 rin {
2700 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_EIMS, eims);
2701 1.1 rin }
2702 1.1 rin
2703 1.2 rin static void
2704 1.1 rin igc_enable_intr(struct igc_softc *sc)
2705 1.1 rin {
2706 1.1 rin struct igc_hw *hw = &sc->hw;
2707 1.1 rin
2708 1.2 rin if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
2709 1.2 rin const uint32_t mask = sc->msix_queuesmask | sc->msix_linkmask;
2710 1.2 rin
2711 1.2 rin IGC_WRITE_REG(hw, IGC_EIAC, mask);
2712 1.2 rin IGC_WRITE_REG(hw, IGC_EIAM, mask);
2713 1.2 rin IGC_WRITE_REG(hw, IGC_EIMS, mask);
2714 1.2 rin IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
2715 1.2 rin } else {
2716 1.2 rin IGC_WRITE_REG(hw, IGC_IMS, IMS_ENABLE_MASK);
2717 1.2 rin }
2718 1.1 rin IGC_WRITE_FLUSH(hw);
2719 1.1 rin }
2720 1.1 rin
2721 1.2 rin static void
2722 1.1 rin igc_disable_intr(struct igc_softc *sc)
2723 1.1 rin {
2724 1.1 rin struct igc_hw *hw = &sc->hw;
2725 1.1 rin
2726 1.2 rin if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
2727 1.2 rin IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
2728 1.2 rin IGC_WRITE_REG(hw, IGC_EIAC, 0);
2729 1.2 rin }
2730 1.1 rin IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
2731 1.1 rin IGC_WRITE_FLUSH(hw);
2732 1.1 rin }
2733 1.1 rin
2734 1.2 rin static int
2735 1.1 rin igc_intr_link(void *arg)
2736 1.1 rin {
2737 1.1 rin struct igc_softc *sc = (struct igc_softc *)arg;
2738 1.2 rin const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
2739 1.2 rin
2740 1.2 rin IGC_GLOBAL_EVENT(sc, link, 1);
2741 1.1 rin
2742 1.1 rin if (reg_icr & IGC_ICR_LSC) {
2743 1.2 rin mutex_enter(&sc->sc_core_lock);
2744 1.1 rin sc->hw.mac.get_link_status = true;
2745 1.1 rin igc_update_link_status(sc);
2746 1.2 rin mutex_exit(&sc->sc_core_lock);
2747 1.1 rin }
2748 1.1 rin
2749 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
2750 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->msix_linkmask);
2751 1.1 rin
2752 1.1 rin return 1;
2753 1.1 rin }
2754 1.1 rin
2755 1.2 rin static int
2756 1.1 rin igc_intr_queue(void *arg)
2757 1.1 rin {
2758 1.1 rin struct igc_queue *iq = arg;
2759 1.1 rin struct igc_softc *sc = iq->sc;
2760 1.2 rin struct ifnet *ifp = &sc->sc_ec.ec_if;
2761 1.2 rin struct rx_ring *rxr = iq->rxr;
2762 1.2 rin struct tx_ring *txr = iq->txr;
2763 1.2 rin const u_int txlimit = sc->sc_tx_intr_process_limit,
2764 1.2 rin rxlimit = sc->sc_rx_intr_process_limit;
2765 1.2 rin bool txmore, rxmore;
2766 1.2 rin
2767 1.2 rin IGC_QUEUE_EVENT(iq, irqs, 1);
2768 1.2 rin
2769 1.2 rin if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
2770 1.2 rin return 0;
2771 1.2 rin
2772 1.2 rin mutex_enter(&txr->txr_lock);
2773 1.2 rin txmore = igc_txeof(txr, txlimit);
2774 1.2 rin mutex_exit(&txr->txr_lock);
2775 1.2 rin mutex_enter(&rxr->rxr_lock);
2776 1.2 rin rxmore = igc_rxeof(rxr, rxlimit);
2777 1.2 rin mutex_exit(&rxr->rxr_lock);
2778 1.2 rin
2779 1.2 rin if (txmore || rxmore) {
2780 1.2 rin IGC_QUEUE_EVENT(iq, req, 1);
2781 1.2 rin igc_sched_handle_queue(sc, iq);
2782 1.2 rin } else {
2783 1.2 rin igc_enable_queue(sc, iq->eims);
2784 1.2 rin }
2785 1.2 rin
2786 1.2 rin return 1;
2787 1.2 rin }
2788 1.2 rin
2789 1.2 rin static int
2790 1.2 rin igc_intr(void *arg)
2791 1.2 rin {
2792 1.2 rin struct igc_softc *sc = arg;
2793 1.2 rin struct ifnet *ifp = &sc->sc_ec.ec_if;
2794 1.2 rin struct igc_queue *iq = &sc->queues[0];
2795 1.1 rin struct rx_ring *rxr = iq->rxr;
2796 1.1 rin struct tx_ring *txr = iq->txr;
2797 1.2 rin const u_int txlimit = sc->sc_tx_intr_process_limit,
2798 1.2 rin rxlimit = sc->sc_rx_intr_process_limit;
2799 1.2 rin bool txmore, rxmore;
2800 1.2 rin
2801 1.2 rin if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
2802 1.2 rin return 0;
2803 1.2 rin
2804 1.2 rin const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
2805 1.2 rin DPRINTF(MISC, "reg_icr=0x%x\n", reg_icr);
2806 1.2 rin
2807 1.2 rin /* Definitely not our interrupt. */
2808 1.2 rin if (reg_icr == 0x0) {
2809 1.14 rin DPRINTF(MISC, "not for me\n");
2810 1.2 rin return 0;
2811 1.2 rin }
2812 1.2 rin
2813 1.2 rin IGC_QUEUE_EVENT(iq, irqs, 1);
2814 1.2 rin
2815 1.2 rin /* Hot eject? */
2816 1.2 rin if (__predict_false(reg_icr == 0xffffffff)) {
2817 1.2 rin DPRINTF(MISC, "hot eject\n");
2818 1.2 rin return 0;
2819 1.2 rin }
2820 1.2 rin
2821 1.2 rin if (__predict_false(!(reg_icr & IGC_ICR_INT_ASSERTED))) {
2822 1.2 rin DPRINTF(MISC, "not set IGC_ICR_INT_ASSERTED");
2823 1.2 rin return 0;
2824 1.2 rin }
2825 1.2 rin
2826 1.2 rin /*
2827 1.2 rin * Only MSI-X interrupts have one-shot behavior by taking advantage
2828 1.2 rin * of the EIAC register. Thus, explicitly disable interrupts. This
2829 1.2 rin * also works around the MSI message reordering errata on certain
2830 1.2 rin * systems.
2831 1.2 rin */
2832 1.2 rin igc_disable_intr(sc);
2833 1.1 rin
2834 1.2 rin mutex_enter(&txr->txr_lock);
2835 1.2 rin txmore = igc_txeof(txr, txlimit);
2836 1.2 rin mutex_exit(&txr->txr_lock);
2837 1.2 rin mutex_enter(&rxr->rxr_lock);
2838 1.2 rin rxmore = igc_rxeof(rxr, rxlimit);
2839 1.2 rin mutex_exit(&rxr->rxr_lock);
2840 1.2 rin
2841 1.2 rin /* Link status change */
2842 1.2 rin // XXXX FreeBSD checks IGC_ICR_RXSEQ
2843 1.2 rin if (__predict_false(reg_icr & IGC_ICR_LSC)) {
2844 1.2 rin IGC_GLOBAL_EVENT(sc, link, 1);
2845 1.2 rin mutex_enter(&sc->sc_core_lock);
2846 1.2 rin sc->hw.mac.get_link_status = true;
2847 1.2 rin igc_update_link_status(sc);
2848 1.2 rin mutex_exit(&sc->sc_core_lock);
2849 1.1 rin }
2850 1.1 rin
2851 1.2 rin if (txmore || rxmore) {
2852 1.2 rin IGC_QUEUE_EVENT(iq, req, 1);
2853 1.2 rin igc_sched_handle_queue(sc, iq);
2854 1.2 rin } else {
2855 1.2 rin igc_enable_intr(sc);
2856 1.2 rin }
2857 1.1 rin
2858 1.1 rin return 1;
2859 1.1 rin }
2860 1.1 rin
2861 1.2 rin static void
2862 1.2 rin igc_handle_queue(void *arg)
2863 1.2 rin {
2864 1.2 rin struct igc_queue *iq = arg;
2865 1.2 rin struct igc_softc *sc = iq->sc;
2866 1.2 rin struct tx_ring *txr = iq->txr;
2867 1.2 rin struct rx_ring *rxr = iq->rxr;
2868 1.2 rin const u_int txlimit = sc->sc_tx_process_limit,
2869 1.2 rin rxlimit = sc->sc_rx_process_limit;
2870 1.2 rin bool txmore, rxmore;
2871 1.2 rin
2872 1.2 rin IGC_QUEUE_EVENT(iq, handleq, 1);
2873 1.2 rin
2874 1.2 rin mutex_enter(&txr->txr_lock);
2875 1.2 rin txmore = igc_txeof(txr, txlimit);
2876 1.2 rin /* for ALTQ, dequeue from if_snd */
2877 1.2 rin if (txr->me == 0) {
2878 1.2 rin struct ifnet *ifp = &sc->sc_ec.ec_if;
2879 1.2 rin
2880 1.2 rin igc_tx_common_locked(ifp, txr, IGC_TX_START);
2881 1.2 rin }
2882 1.2 rin mutex_exit(&txr->txr_lock);
2883 1.2 rin
2884 1.2 rin mutex_enter(&rxr->rxr_lock);
2885 1.2 rin rxmore = igc_rxeof(rxr, rxlimit);
2886 1.2 rin mutex_exit(&rxr->rxr_lock);
2887 1.2 rin
2888 1.2 rin if (txmore || rxmore) {
2889 1.2 rin igc_sched_handle_queue(sc, iq);
2890 1.2 rin } else {
2891 1.2 rin if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
2892 1.2 rin igc_enable_queue(sc, iq->eims);
2893 1.2 rin else
2894 1.2 rin igc_enable_intr(sc);
2895 1.2 rin }
2896 1.2 rin }
2897 1.2 rin
2898 1.2 rin static void
2899 1.2 rin igc_handle_queue_work(struct work *wk, void *context)
2900 1.2 rin {
2901 1.2 rin struct igc_queue *iq =
2902 1.2 rin container_of(wk, struct igc_queue, igcq_wq_cookie);
2903 1.2 rin
2904 1.2 rin igc_handle_queue(iq);
2905 1.2 rin }
2906 1.2 rin
2907 1.2 rin static void
2908 1.2 rin igc_sched_handle_queue(struct igc_softc *sc, struct igc_queue *iq)
2909 1.2 rin {
2910 1.2 rin
2911 1.2 rin if (iq->igcq_workqueue) {
2912 1.2 rin /* XXXRO notyet */
2913 1.2 rin workqueue_enqueue(sc->sc_queue_wq, &iq->igcq_wq_cookie,
2914 1.2 rin curcpu());
2915 1.2 rin } else {
2916 1.2 rin softint_schedule(iq->igcq_si);
2917 1.2 rin }
2918 1.2 rin }
2919 1.2 rin
2920 1.2 rin static void
2921 1.2 rin igc_barrier_handle_queue(struct igc_softc *sc)
2922 1.2 rin {
2923 1.2 rin
2924 1.2 rin if (sc->sc_txrx_workqueue) {
2925 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2926 1.2 rin struct igc_queue *q = &sc->queues[iq];
2927 1.2 rin
2928 1.2 rin workqueue_wait(sc->sc_queue_wq, &q->igcq_wq_cookie);
2929 1.2 rin }
2930 1.2 rin } else {
2931 1.2 rin xc_barrier(0);
2932 1.2 rin }
2933 1.2 rin }
2934 1.2 rin
2935 1.1 rin /*********************************************************************
2936 1.1 rin *
2937 1.1 rin * Allocate memory for tx_buffer structures. The tx_buffer stores all
2938 1.1 rin * the information needed to transmit a packet on the wire.
2939 1.1 rin *
2940 1.1 rin **********************************************************************/
2941 1.2 rin static int
2942 1.1 rin igc_allocate_transmit_buffers(struct tx_ring *txr)
2943 1.1 rin {
2944 1.1 rin struct igc_softc *sc = txr->sc;
2945 1.2 rin int error;
2946 1.1 rin
2947 1.2 rin txr->tx_buffers =
2948 1.2 rin kmem_zalloc(sc->num_tx_desc * sizeof(struct igc_tx_buf), KM_SLEEP);
2949 1.1 rin txr->txtag = txr->txdma.dma_tag;
2950 1.1 rin
2951 1.1 rin /* Create the descriptor buffer dma maps. */
2952 1.2 rin for (int id = 0; id < sc->num_tx_desc; id++) {
2953 1.2 rin struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
2954 1.2 rin
2955 1.2 rin error = bus_dmamap_create(txr->txdma.dma_tag,
2956 1.2 rin round_page(IGC_TSO_SIZE + sizeof(struct ether_vlan_header)),
2957 1.1 rin IGC_MAX_SCATTER, PAGE_SIZE, 0, BUS_DMA_NOWAIT, &txbuf->map);
2958 1.1 rin if (error != 0) {
2959 1.2 rin aprint_error_dev(sc->sc_dev,
2960 1.2 rin "unable to create TX DMA map\n");
2961 1.1 rin goto fail;
2962 1.1 rin }
2963 1.2 rin
2964 1.2 rin txbuf->eop_index = -1;
2965 1.1 rin }
2966 1.1 rin
2967 1.1 rin return 0;
2968 1.2 rin fail:
2969 1.1 rin return error;
2970 1.1 rin }
2971 1.1 rin
2972 1.1 rin
2973 1.1 rin /*********************************************************************
2974 1.1 rin *
2975 1.1 rin * Allocate and initialize transmit structures.
2976 1.1 rin *
2977 1.1 rin **********************************************************************/
2978 1.2 rin static int
2979 1.1 rin igc_setup_transmit_structures(struct igc_softc *sc)
2980 1.1 rin {
2981 1.1 rin
2982 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2983 1.2 rin struct tx_ring *txr = &sc->tx_rings[iq];
2984 1.2 rin
2985 1.1 rin if (igc_setup_transmit_ring(txr))
2986 1.1 rin goto fail;
2987 1.1 rin }
2988 1.1 rin
2989 1.1 rin return 0;
2990 1.2 rin fail:
2991 1.1 rin igc_free_transmit_structures(sc);
2992 1.1 rin return ENOBUFS;
2993 1.1 rin }
2994 1.1 rin
2995 1.1 rin /*********************************************************************
2996 1.1 rin *
2997 1.1 rin * Initialize a transmit ring.
2998 1.1 rin *
2999 1.1 rin **********************************************************************/
3000 1.2 rin static int
3001 1.1 rin igc_setup_transmit_ring(struct tx_ring *txr)
3002 1.1 rin {
3003 1.1 rin struct igc_softc *sc = txr->sc;
3004 1.1 rin
3005 1.1 rin /* Now allocate transmit buffers for the ring. */
3006 1.1 rin if (igc_allocate_transmit_buffers(txr))
3007 1.1 rin return ENOMEM;
3008 1.1 rin
3009 1.1 rin /* Clear the old ring contents */
3010 1.2 rin memset(txr->tx_base, 0,
3011 1.2 rin sizeof(union igc_adv_tx_desc) * sc->num_tx_desc);
3012 1.1 rin
3013 1.1 rin /* Reset indices. */
3014 1.1 rin txr->next_avail_desc = 0;
3015 1.1 rin txr->next_to_clean = 0;
3016 1.1 rin
3017 1.1 rin bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
3018 1.1 rin txr->txdma.dma_map->dm_mapsize,
3019 1.1 rin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3020 1.1 rin
3021 1.2 rin txr->txr_interq = pcq_create(sc->num_tx_desc, KM_SLEEP);
3022 1.2 rin
3023 1.2 rin mutex_init(&txr->txr_lock, MUTEX_DEFAULT, IPL_NET);
3024 1.2 rin
3025 1.1 rin return 0;
3026 1.1 rin }
3027 1.1 rin
3028 1.1 rin /*********************************************************************
3029 1.1 rin *
3030 1.1 rin * Enable transmit unit.
3031 1.1 rin *
3032 1.1 rin **********************************************************************/
3033 1.2 rin static void
3034 1.1 rin igc_initialize_transmit_unit(struct igc_softc *sc)
3035 1.1 rin {
3036 1.2 rin struct ifnet *ifp = &sc->sc_ec.ec_if;
3037 1.1 rin struct igc_hw *hw = &sc->hw;
3038 1.1 rin
3039 1.1 rin /* Setup the Base and Length of the TX descriptor ring. */
3040 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3041 1.2 rin struct tx_ring *txr = &sc->tx_rings[iq];
3042 1.2 rin const uint64_t bus_addr =
3043 1.2 rin txr->txdma.dma_map->dm_segs[0].ds_addr;
3044 1.1 rin
3045 1.1 rin /* Base and len of TX ring */
3046 1.2 rin IGC_WRITE_REG(hw, IGC_TDLEN(iq),
3047 1.1 rin sc->num_tx_desc * sizeof(union igc_adv_tx_desc));
3048 1.2 rin IGC_WRITE_REG(hw, IGC_TDBAH(iq), (uint32_t)(bus_addr >> 32));
3049 1.2 rin IGC_WRITE_REG(hw, IGC_TDBAL(iq), (uint32_t)bus_addr);
3050 1.1 rin
3051 1.1 rin /* Init the HEAD/TAIL indices */
3052 1.2 rin IGC_WRITE_REG(hw, IGC_TDT(iq), 0 /* XXX txr->next_avail_desc */);
3053 1.2 rin IGC_WRITE_REG(hw, IGC_TDH(iq), 0);
3054 1.1 rin
3055 1.1 rin txr->watchdog_timer = 0;
3056 1.1 rin
3057 1.2 rin uint32_t txdctl = 0; /* Clear txdctl */
3058 1.1 rin txdctl |= 0x1f; /* PTHRESH */
3059 1.1 rin txdctl |= 1 << 8; /* HTHRESH */
3060 1.1 rin txdctl |= 1 << 16; /* WTHRESH */
3061 1.1 rin txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3062 1.1 rin txdctl |= IGC_TXDCTL_GRAN;
3063 1.1 rin txdctl |= 1 << 25; /* LWTHRESH */
3064 1.1 rin
3065 1.2 rin IGC_WRITE_REG(hw, IGC_TXDCTL(iq), txdctl);
3066 1.1 rin }
3067 1.1 rin ifp->if_timer = 0;
3068 1.1 rin
3069 1.1 rin /* Program the Transmit Control Register */
3070 1.2 rin uint32_t tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
3071 1.1 rin tctl &= ~IGC_TCTL_CT;
3072 1.1 rin tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
3073 1.1 rin (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
3074 1.1 rin
3075 1.1 rin /* This write will effectively turn on the transmit unit. */
3076 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
3077 1.1 rin }
3078 1.1 rin
3079 1.1 rin /*********************************************************************
3080 1.1 rin *
3081 1.1 rin * Free all transmit rings.
3082 1.1 rin *
3083 1.1 rin **********************************************************************/
3084 1.2 rin static void
3085 1.1 rin igc_free_transmit_structures(struct igc_softc *sc)
3086 1.1 rin {
3087 1.1 rin
3088 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3089 1.2 rin struct tx_ring *txr = &sc->tx_rings[iq];
3090 1.2 rin
3091 1.1 rin igc_free_transmit_buffers(txr);
3092 1.2 rin }
3093 1.1 rin }
3094 1.1 rin
3095 1.1 rin /*********************************************************************
3096 1.1 rin *
3097 1.1 rin * Free transmit ring related data structures.
3098 1.1 rin *
3099 1.1 rin **********************************************************************/
3100 1.2 rin static void
3101 1.1 rin igc_free_transmit_buffers(struct tx_ring *txr)
3102 1.1 rin {
3103 1.1 rin struct igc_softc *sc = txr->sc;
3104 1.1 rin
3105 1.1 rin if (txr->tx_buffers == NULL)
3106 1.1 rin return;
3107 1.1 rin
3108 1.2 rin igc_withdraw_transmit_packets(txr, true);
3109 1.2 rin
3110 1.2 rin kmem_free(txr->tx_buffers,
3111 1.2 rin sc->num_tx_desc * sizeof(struct igc_tx_buf));
3112 1.2 rin txr->tx_buffers = NULL;
3113 1.2 rin txr->txtag = NULL;
3114 1.2 rin
3115 1.2 rin pcq_destroy(txr->txr_interq);
3116 1.2 rin mutex_destroy(&txr->txr_lock);
3117 1.2 rin }
3118 1.2 rin
3119 1.2 rin /*********************************************************************
3120 1.2 rin *
3121 1.2 rin * Withdraw transmit packets.
3122 1.2 rin *
3123 1.2 rin **********************************************************************/
3124 1.2 rin static void
3125 1.2 rin igc_withdraw_transmit_packets(struct tx_ring *txr, bool destroy)
3126 1.2 rin {
3127 1.2 rin struct igc_softc *sc = txr->sc;
3128 1.2 rin struct igc_queue *q = txr->txr_igcq;
3129 1.2 rin
3130 1.2 rin mutex_enter(&txr->txr_lock);
3131 1.2 rin
3132 1.2 rin for (int id = 0; id < sc->num_tx_desc; id++) {
3133 1.2 rin union igc_adv_tx_desc *txdesc = &txr->tx_base[id];
3134 1.2 rin
3135 1.2 rin igc_txdesc_sync(txr, id,
3136 1.2 rin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3137 1.2 rin txdesc->read.buffer_addr = 0;
3138 1.2 rin txdesc->read.cmd_type_len = 0;
3139 1.2 rin txdesc->read.olinfo_status = 0;
3140 1.2 rin igc_txdesc_sync(txr, id,
3141 1.2 rin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3142 1.2 rin
3143 1.2 rin struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
3144 1.2 rin bus_dmamap_t map = txbuf->map;
3145 1.2 rin
3146 1.2 rin if (map != NULL && map->dm_nsegs > 0) {
3147 1.2 rin bus_dmamap_sync(txr->txdma.dma_tag, map,
3148 1.2 rin 0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3149 1.2 rin bus_dmamap_unload(txr->txdma.dma_tag, map);
3150 1.1 rin }
3151 1.1 rin if (txbuf->m_head != NULL) {
3152 1.1 rin m_freem(txbuf->m_head);
3153 1.1 rin txbuf->m_head = NULL;
3154 1.1 rin }
3155 1.2 rin if (map != NULL && destroy) {
3156 1.2 rin bus_dmamap_destroy(txr->txdma.dma_tag, map);
3157 1.1 rin txbuf->map = NULL;
3158 1.1 rin }
3159 1.2 rin txbuf->eop_index = -1;
3160 1.2 rin
3161 1.2 rin txr->next_avail_desc = 0;
3162 1.2 rin txr->next_to_clean = 0;
3163 1.2 rin }
3164 1.2 rin
3165 1.2 rin struct mbuf *m;
3166 1.2 rin while ((m = pcq_get(txr->txr_interq)) != NULL) {
3167 1.2 rin IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
3168 1.2 rin m_freem(m);
3169 1.1 rin }
3170 1.1 rin
3171 1.2 rin mutex_exit(&txr->txr_lock);
3172 1.1 rin }
3173 1.1 rin
3174 1.1 rin
3175 1.1 rin /*********************************************************************
3176 1.1 rin *
3177 1.1 rin * Advanced Context Descriptor setup for VLAN, CSUM or TSO
3178 1.1 rin *
3179 1.1 rin **********************************************************************/
3180 1.1 rin
3181 1.2 rin static int
3182 1.1 rin igc_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
3183 1.2 rin uint32_t *cmd_type_len, uint32_t *olinfo_status)
3184 1.1 rin {
3185 1.2 rin struct ether_vlan_header *evl;
3186 1.1 rin uint32_t type_tucmd_mlhl = 0;
3187 1.1 rin uint32_t vlan_macip_lens = 0;
3188 1.2 rin uint32_t ehlen, iphlen;
3189 1.2 rin uint16_t ehtype;
3190 1.1 rin int off = 0;
3191 1.1 rin
3192 1.2 rin const int csum_flags = mp->m_pkthdr.csum_flags;
3193 1.2 rin
3194 1.2 rin /* First check if TSO is to be used */
3195 1.2 rin if ((csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
3196 1.2 rin return igc_tso_setup(txr, mp, prod, cmd_type_len,
3197 1.2 rin olinfo_status);
3198 1.2 rin }
3199 1.2 rin
3200 1.2 rin const bool v4 = (csum_flags &
3201 1.2 rin (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0;
3202 1.2 rin const bool v6 = (csum_flags & (M_CSUM_UDPv6 | M_CSUM_TCPv6)) != 0;
3203 1.2 rin
3204 1.2 rin /* Indicate the whole packet as payload when not doing TSO */
3205 1.2 rin *olinfo_status |= mp->m_pkthdr.len << IGC_ADVTXD_PAYLEN_SHIFT;
3206 1.1 rin
3207 1.1 rin /*
3208 1.1 rin * In advanced descriptors the vlan tag must
3209 1.1 rin * be placed into the context descriptor. Hence
3210 1.1 rin * we need to make one even if not doing offloads.
3211 1.1 rin */
3212 1.1 rin #if NVLAN > 0
3213 1.2 rin if (vlan_has_tag(mp)) {
3214 1.2 rin vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
3215 1.2 rin << IGC_ADVTXD_VLAN_SHIFT;
3216 1.1 rin off = 1;
3217 1.2 rin } else
3218 1.2 rin #endif
3219 1.2 rin if (!v4 && !v6)
3220 1.2 rin return 0;
3221 1.2 rin
3222 1.2 rin KASSERT(mp->m_len >= sizeof(struct ether_header));
3223 1.2 rin evl = mtod(mp, struct ether_vlan_header *);
3224 1.2 rin if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3225 1.2 rin KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
3226 1.2 rin ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3227 1.2 rin ehtype = evl->evl_proto;
3228 1.2 rin } else {
3229 1.2 rin ehlen = ETHER_HDR_LEN;
3230 1.2 rin ehtype = evl->evl_encap_proto;
3231 1.1 rin }
3232 1.1 rin
3233 1.2 rin vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
3234 1.2 rin
3235 1.2 rin #ifdef IGC_DEBUG
3236 1.2 rin /*
3237 1.2 rin * For checksum offloading, L3 headers are not mandatory.
3238 1.2 rin * We use these only for consistency checks.
3239 1.2 rin */
3240 1.2 rin struct ip *ip;
3241 1.2 rin struct ip6_hdr *ip6;
3242 1.2 rin uint8_t ipproto;
3243 1.2 rin char *l3d;
3244 1.1 rin
3245 1.2 rin if (mp->m_len == ehlen && mp->m_next != NULL)
3246 1.2 rin l3d = mtod(mp->m_next, char *);
3247 1.2 rin else
3248 1.2 rin l3d = mtod(mp, char *) + ehlen;
3249 1.2 rin #endif
3250 1.1 rin
3251 1.2 rin switch (ntohs(ehtype)) {
3252 1.2 rin case ETHERTYPE_IP:
3253 1.2 rin iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
3254 1.1 rin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
3255 1.2 rin
3256 1.2 rin if ((csum_flags & M_CSUM_IPv4) != 0) {
3257 1.1 rin *olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
3258 1.1 rin off = 1;
3259 1.1 rin }
3260 1.2 rin #ifdef IGC_DEBUG
3261 1.2 rin KASSERT(!v6);
3262 1.2 rin ip = (void *)l3d;
3263 1.2 rin ipproto = ip->ip_p;
3264 1.2 rin KASSERT(iphlen == ip->ip_hl << 2);
3265 1.2 rin KASSERT((mp->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0 ||
3266 1.2 rin ip->ip_sum == 0);
3267 1.2 rin #endif
3268 1.2 rin break;
3269 1.2 rin case ETHERTYPE_IPV6:
3270 1.2 rin iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
3271 1.1 rin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
3272 1.2 rin #ifdef IGC_DEBUG
3273 1.2 rin KASSERT(!v4);
3274 1.2 rin ip6 = (void *)l3d;
3275 1.2 rin ipproto = ip6->ip6_nxt; /* XXX */
3276 1.2 rin KASSERT(iphlen == sizeof(struct ip6_hdr));
3277 1.2 rin #endif
3278 1.2 rin break;
3279 1.2 rin default:
3280 1.2 rin /*
3281 1.2 rin * Unknown L3 protocol. Clear L3 header length and proceed for
3282 1.2 rin * LAN as done by Linux driver.
3283 1.2 rin */
3284 1.2 rin iphlen = 0;
3285 1.2 rin #ifdef IGC_DEBUG
3286 1.2 rin KASSERT(!v4 && !v6);
3287 1.2 rin ipproto = 0;
3288 1.1 rin #endif
3289 1.2 rin break;
3290 1.1 rin }
3291 1.1 rin
3292 1.1 rin vlan_macip_lens |= iphlen;
3293 1.1 rin
3294 1.2 rin const bool tcp = (csum_flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0;
3295 1.2 rin const bool udp = (csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0;
3296 1.2 rin
3297 1.2 rin if (tcp) {
3298 1.2 rin #ifdef IGC_DEBUG
3299 1.2 rin KASSERTMSG(ipproto == IPPROTO_TCP, "ipproto = %d", ipproto);
3300 1.2 rin #endif
3301 1.1 rin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
3302 1.2 rin *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3303 1.2 rin off = 1;
3304 1.2 rin } else if (udp) {
3305 1.2 rin #ifdef IGC_DEBUG
3306 1.2 rin KASSERTMSG(ipproto == IPPROTO_UDP, "ipproto = %d", ipproto);
3307 1.2 rin #endif
3308 1.1 rin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
3309 1.2 rin *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3310 1.2 rin off = 1;
3311 1.1 rin }
3312 1.1 rin
3313 1.1 rin if (off == 0)
3314 1.1 rin return 0;
3315 1.1 rin
3316 1.2 rin type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
3317 1.2 rin
3318 1.1 rin /* Now ready a context descriptor */
3319 1.2 rin struct igc_adv_tx_context_desc *txdesc =
3320 1.2 rin (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
3321 1.1 rin
3322 1.1 rin /* Now copy bits into descriptor */
3323 1.2 rin igc_txdesc_sync(txr, prod,
3324 1.2 rin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3325 1.1 rin htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
3326 1.1 rin htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
3327 1.1 rin htolem32(&txdesc->seqnum_seed, 0);
3328 1.1 rin htolem32(&txdesc->mss_l4len_idx, 0);
3329 1.2 rin igc_txdesc_sync(txr, prod,
3330 1.2 rin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3331 1.2 rin
3332 1.2 rin return 1;
3333 1.2 rin }
3334 1.2 rin
3335 1.2 rin /*********************************************************************
3336 1.2 rin *
3337 1.2 rin * Advanced Context Descriptor setup for TSO
3338 1.2 rin *
3339 1.2 rin * XXX XXXRO
3340 1.2 rin * Not working. Some packets are sent with correct csums, but
3341 1.2 rin * others aren't. th->th_sum may be adjusted.
3342 1.2 rin *
3343 1.2 rin **********************************************************************/
3344 1.2 rin
3345 1.2 rin static int
3346 1.2 rin igc_tso_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
3347 1.2 rin uint32_t *cmd_type_len, uint32_t *olinfo_status)
3348 1.2 rin {
3349 1.2 rin #if 1 /* notyet */
3350 1.2 rin return 0;
3351 1.2 rin #else
3352 1.2 rin struct ether_vlan_header *evl;
3353 1.2 rin struct ip *ip;
3354 1.2 rin struct ip6_hdr *ip6;
3355 1.2 rin struct tcphdr *th;
3356 1.2 rin uint32_t type_tucmd_mlhl = 0;
3357 1.2 rin uint32_t vlan_macip_lens = 0;
3358 1.2 rin uint32_t mss_l4len_idx = 0;
3359 1.2 rin uint32_t ehlen, iphlen, tcphlen, paylen;
3360 1.2 rin uint16_t ehtype;
3361 1.2 rin
3362 1.2 rin /*
3363 1.2 rin * In advanced descriptors the vlan tag must
3364 1.2 rin * be placed into the context descriptor. Hence
3365 1.2 rin * we need to make one even if not doing offloads.
3366 1.2 rin */
3367 1.2 rin #if NVLAN > 0
3368 1.2 rin if (vlan_has_tag(mp)) {
3369 1.2 rin vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
3370 1.2 rin << IGC_ADVTXD_VLAN_SHIFT;
3371 1.2 rin }
3372 1.2 rin #endif
3373 1.2 rin
3374 1.2 rin KASSERT(mp->m_len >= sizeof(struct ether_header));
3375 1.2 rin evl = mtod(mp, struct ether_vlan_header *);
3376 1.2 rin if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3377 1.2 rin KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
3378 1.2 rin ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3379 1.2 rin ehtype = evl->evl_proto;
3380 1.2 rin } else {
3381 1.2 rin ehlen = ETHER_HDR_LEN;
3382 1.2 rin ehtype = evl->evl_encap_proto;
3383 1.2 rin }
3384 1.2 rin
3385 1.2 rin vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
3386 1.2 rin
3387 1.2 rin switch (ntohs(ehtype)) {
3388 1.2 rin case ETHERTYPE_IP:
3389 1.2 rin iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
3390 1.2 rin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
3391 1.2 rin *olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
3392 1.2 rin
3393 1.2 rin KASSERT(mp->m_len >= ehlen + sizeof(*ip));
3394 1.2 rin ip = (void *)(mtod(mp, char *) + ehlen);
3395 1.2 rin ip->ip_len = 0;
3396 1.2 rin KASSERT(iphlen == ip->ip_hl << 2);
3397 1.2 rin KASSERT(ip->ip_sum == 0);
3398 1.2 rin KASSERT(ip->ip_p == IPPROTO_TCP);
3399 1.2 rin
3400 1.2 rin KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
3401 1.2 rin th = (void *)((char *)ip + iphlen);
3402 1.2 rin th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, ip->ip_dst.s_addr,
3403 1.2 rin htons(IPPROTO_TCP));
3404 1.2 rin break;
3405 1.2 rin case ETHERTYPE_IPV6:
3406 1.2 rin iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
3407 1.2 rin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
3408 1.2 rin
3409 1.2 rin KASSERT(mp->m_len >= ehlen + sizeof(*ip6));
3410 1.2 rin ip6 = (void *)(mtod(mp, char *) + ehlen);
3411 1.2 rin ip6->ip6_plen = 0;
3412 1.2 rin KASSERT(iphlen == sizeof(struct ip6_hdr));
3413 1.2 rin KASSERT(ip6->ip6_nxt == IPPROTO_TCP);
3414 1.2 rin
3415 1.2 rin KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
3416 1.2 rin th = (void *)((char *)ip6 + iphlen);
3417 1.2 rin tcphlen = th->th_off << 2;
3418 1.2 rin paylen = mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
3419 1.2 rin th->th_sum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 0,
3420 1.2 rin htonl(IPPROTO_TCP));
3421 1.2 rin break;
3422 1.2 rin default:
3423 1.2 rin panic("%s", __func__);
3424 1.2 rin }
3425 1.2 rin
3426 1.2 rin tcphlen = th->th_off << 2;
3427 1.2 rin paylen = mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
3428 1.2 rin
3429 1.2 rin vlan_macip_lens |= iphlen;
3430 1.2 rin
3431 1.2 rin type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
3432 1.2 rin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
3433 1.2 rin
3434 1.2 rin mss_l4len_idx |= mp->m_pkthdr.segsz << IGC_ADVTXD_MSS_SHIFT;
3435 1.2 rin mss_l4len_idx |= tcphlen << IGC_ADVTXD_L4LEN_SHIFT;
3436 1.2 rin
3437 1.2 rin /* Now ready a context descriptor */
3438 1.2 rin struct igc_adv_tx_context_desc *txdesc =
3439 1.2 rin (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
3440 1.2 rin
3441 1.2 rin /* Now copy bits into descriptor */
3442 1.2 rin igc_txdesc_sync(txr, prod,
3443 1.2 rin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3444 1.2 rin htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
3445 1.2 rin htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
3446 1.2 rin htolem32(&txdesc->seqnum_seed, 0);
3447 1.2 rin htolem32(&txdesc->mss_l4len_idx, mss_l4len_idx);
3448 1.2 rin igc_txdesc_sync(txr, prod,
3449 1.2 rin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3450 1.2 rin
3451 1.2 rin *cmd_type_len |= IGC_ADVTXD_DCMD_TSE;
3452 1.2 rin *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3453 1.2 rin *olinfo_status |= paylen << IGC_ADVTXD_PAYLEN_SHIFT;
3454 1.1 rin
3455 1.1 rin return 1;
3456 1.2 rin #endif /* notyet */
3457 1.1 rin }
3458 1.1 rin
3459 1.1 rin /*********************************************************************
3460 1.1 rin *
3461 1.1 rin * Allocate memory for rx_buffer structures. Since we use one
3462 1.1 rin * rx_buffer per received packet, the maximum number of rx_buffer's
3463 1.1 rin * that we'll need is equal to the number of receive descriptors
3464 1.1 rin * that we've allocated.
3465 1.1 rin *
3466 1.1 rin **********************************************************************/
3467 1.2 rin static int
3468 1.1 rin igc_allocate_receive_buffers(struct rx_ring *rxr)
3469 1.1 rin {
3470 1.1 rin struct igc_softc *sc = rxr->sc;
3471 1.2 rin int error;
3472 1.1 rin
3473 1.2 rin rxr->rx_buffers =
3474 1.2 rin kmem_zalloc(sc->num_rx_desc * sizeof(struct igc_rx_buf), KM_SLEEP);
3475 1.2 rin
3476 1.2 rin for (int id = 0; id < sc->num_rx_desc; id++) {
3477 1.2 rin struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
3478 1.1 rin
3479 1.2 rin error = bus_dmamap_create(rxr->rxdma.dma_tag, MCLBYTES, 1,
3480 1.2 rin MCLBYTES, 0, BUS_DMA_WAITOK, &rxbuf->map);
3481 1.1 rin if (error) {
3482 1.2 rin aprint_error_dev(sc->sc_dev,
3483 1.2 rin "unable to create RX DMA map\n");
3484 1.1 rin goto fail;
3485 1.1 rin }
3486 1.1 rin }
3487 1.1 rin bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
3488 1.1 rin rxr->rxdma.dma_map->dm_mapsize,
3489 1.1 rin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3490 1.1 rin
3491 1.1 rin return 0;
3492 1.2 rin fail:
3493 1.1 rin return error;
3494 1.1 rin }
3495 1.1 rin
3496 1.1 rin /*********************************************************************
3497 1.1 rin *
3498 1.1 rin * Allocate and initialize receive structures.
3499 1.1 rin *
3500 1.1 rin **********************************************************************/
3501 1.2 rin static int
3502 1.1 rin igc_setup_receive_structures(struct igc_softc *sc)
3503 1.1 rin {
3504 1.1 rin
3505 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3506 1.2 rin struct rx_ring *rxr = &sc->rx_rings[iq];
3507 1.2 rin
3508 1.1 rin if (igc_setup_receive_ring(rxr))
3509 1.1 rin goto fail;
3510 1.1 rin }
3511 1.1 rin
3512 1.1 rin return 0;
3513 1.2 rin fail:
3514 1.1 rin igc_free_receive_structures(sc);
3515 1.1 rin return ENOBUFS;
3516 1.1 rin }
3517 1.1 rin
3518 1.1 rin /*********************************************************************
3519 1.1 rin *
3520 1.1 rin * Initialize a receive ring and its buffers.
3521 1.1 rin *
3522 1.1 rin **********************************************************************/
3523 1.2 rin static int
3524 1.1 rin igc_setup_receive_ring(struct rx_ring *rxr)
3525 1.1 rin {
3526 1.1 rin struct igc_softc *sc = rxr->sc;
3527 1.2 rin const int rsize = roundup2(
3528 1.2 rin sc->num_rx_desc * sizeof(union igc_adv_rx_desc), IGC_DBA_ALIGN);
3529 1.1 rin
3530 1.1 rin /* Clear the ring contents. */
3531 1.2 rin memset(rxr->rx_base, 0, rsize);
3532 1.1 rin
3533 1.1 rin if (igc_allocate_receive_buffers(rxr))
3534 1.1 rin return ENOMEM;
3535 1.1 rin
3536 1.1 rin /* Setup our descriptor indices. */
3537 1.1 rin rxr->next_to_check = 0;
3538 1.2 rin rxr->last_desc_filled = 0;
3539 1.1 rin
3540 1.2 rin mutex_init(&rxr->rxr_lock, MUTEX_DEFAULT, IPL_NET);
3541 1.1 rin
3542 1.1 rin return 0;
3543 1.1 rin }
3544 1.1 rin
3545 1.1 rin /*********************************************************************
3546 1.1 rin *
3547 1.1 rin * Enable receive unit.
3548 1.1 rin *
3549 1.1 rin **********************************************************************/
3550 1.2 rin static void
3551 1.1 rin igc_initialize_receive_unit(struct igc_softc *sc)
3552 1.1 rin {
3553 1.2 rin struct ifnet *ifp = &sc->sc_ec.ec_if;
3554 1.2 rin struct igc_hw *hw = &sc->hw;
3555 1.2 rin uint32_t rctl, rxcsum, srrctl;
3556 1.2 rin
3557 1.2 rin DPRINTF(RX, "called\n");
3558 1.1 rin
3559 1.1 rin /*
3560 1.1 rin * Make sure receives are disabled while setting
3561 1.1 rin * up the descriptor ring.
3562 1.1 rin */
3563 1.1 rin rctl = IGC_READ_REG(hw, IGC_RCTL);
3564 1.1 rin IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
3565 1.1 rin
3566 1.1 rin /* Setup the Receive Control Register */
3567 1.1 rin rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
3568 1.1 rin rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
3569 1.1 rin IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
3570 1.1 rin
3571 1.2 rin #if 1
3572 1.1 rin /* Do not store bad packets */
3573 1.1 rin rctl &= ~IGC_RCTL_SBP;
3574 1.2 rin #else
3575 1.2 rin /* for debug */
3576 1.2 rin rctl |= IGC_RCTL_SBP;
3577 1.2 rin #endif
3578 1.1 rin
3579 1.1 rin /* Enable Long Packet receive */
3580 1.2 rin if (sc->hw.mac.max_frame_size > ETHER_MAX_LEN)
3581 1.1 rin rctl |= IGC_RCTL_LPE;
3582 1.2 rin else
3583 1.2 rin rctl &= ~IGC_RCTL_LPE;
3584 1.1 rin
3585 1.1 rin /* Strip the CRC */
3586 1.1 rin rctl |= IGC_RCTL_SECRC;
3587 1.1 rin
3588 1.1 rin /*
3589 1.1 rin * Set the interrupt throttling rate. Value is calculated
3590 1.1 rin * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3591 1.2 rin *
3592 1.2 rin * XXX Sync with Linux, especially for jumbo MTU or TSO.
3593 1.2 rin * XXX Shouldn't be here?
3594 1.1 rin */
3595 1.1 rin IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
3596 1.1 rin
3597 1.1 rin rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
3598 1.2 rin rxcsum &= ~(IGC_RXCSUM_IPOFL | IGC_RXCSUM_TUOFL | IGC_RXCSUM_PCSD);
3599 1.2 rin if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3600 1.2 rin rxcsum |= IGC_RXCSUM_IPOFL;
3601 1.2 rin if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
3602 1.2 rin IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
3603 1.2 rin rxcsum |= IGC_RXCSUM_TUOFL;
3604 1.1 rin if (sc->sc_nqueues > 1)
3605 1.1 rin rxcsum |= IGC_RXCSUM_PCSD;
3606 1.1 rin IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
3607 1.1 rin
3608 1.1 rin if (sc->sc_nqueues > 1)
3609 1.1 rin igc_initialize_rss_mapping(sc);
3610 1.1 rin
3611 1.2 rin srrctl = 0;
3612 1.1 rin #if 0
3613 1.1 rin srrctl |= 4096 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
3614 1.1 rin rctl |= IGC_RCTL_SZ_4096 | IGC_RCTL_BSEX;
3615 1.2 rin #else
3616 1.1 rin srrctl |= 2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
3617 1.1 rin rctl |= IGC_RCTL_SZ_2048;
3618 1.2 rin #endif
3619 1.1 rin
3620 1.1 rin /*
3621 1.1 rin * If TX flow control is disabled and there's > 1 queue defined,
3622 1.1 rin * enable DROP.
3623 1.1 rin *
3624 1.1 rin * This drops frames rather than hanging the RX MAC for all queues.
3625 1.1 rin */
3626 1.2 rin if (sc->sc_nqueues > 1 &&
3627 1.2 rin (sc->fc == igc_fc_none || sc->fc == igc_fc_rx_pause))
3628 1.1 rin srrctl |= IGC_SRRCTL_DROP_EN;
3629 1.1 rin
3630 1.1 rin /* Setup the Base and Length of the RX descriptor rings. */
3631 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3632 1.2 rin struct rx_ring *rxr = &sc->rx_rings[iq];
3633 1.2 rin const uint64_t bus_addr =
3634 1.2 rin rxr->rxdma.dma_map->dm_segs[0].ds_addr;
3635 1.2 rin
3636 1.2 rin IGC_WRITE_REG(hw, IGC_RXDCTL(iq), 0);
3637 1.1 rin
3638 1.1 rin srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
3639 1.1 rin
3640 1.2 rin IGC_WRITE_REG(hw, IGC_RDLEN(iq),
3641 1.1 rin sc->num_rx_desc * sizeof(union igc_adv_rx_desc));
3642 1.2 rin IGC_WRITE_REG(hw, IGC_RDBAH(iq), (uint32_t)(bus_addr >> 32));
3643 1.2 rin IGC_WRITE_REG(hw, IGC_RDBAL(iq), (uint32_t)bus_addr);
3644 1.2 rin IGC_WRITE_REG(hw, IGC_SRRCTL(iq), srrctl);
3645 1.1 rin
3646 1.1 rin /* Setup the Head and Tail Descriptor Pointers */
3647 1.2 rin IGC_WRITE_REG(hw, IGC_RDH(iq), 0);
3648 1.2 rin IGC_WRITE_REG(hw, IGC_RDT(iq), 0 /* XXX rxr->last_desc_filled */);
3649 1.1 rin
3650 1.1 rin /* Enable this Queue */
3651 1.2 rin uint32_t rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(iq));
3652 1.1 rin rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
3653 1.1 rin rxdctl &= 0xFFF00000;
3654 1.1 rin rxdctl |= IGC_RX_PTHRESH;
3655 1.1 rin rxdctl |= IGC_RX_HTHRESH << 8;
3656 1.1 rin rxdctl |= IGC_RX_WTHRESH << 16;
3657 1.2 rin IGC_WRITE_REG(hw, IGC_RXDCTL(iq), rxdctl);
3658 1.1 rin }
3659 1.1 rin
3660 1.1 rin /* Make sure VLAN Filters are off */
3661 1.1 rin rctl &= ~IGC_RCTL_VFE;
3662 1.1 rin
3663 1.1 rin /* Write out the settings */
3664 1.1 rin IGC_WRITE_REG(hw, IGC_RCTL, rctl);
3665 1.1 rin }
3666 1.1 rin
3667 1.1 rin /*********************************************************************
3668 1.1 rin *
3669 1.1 rin * Free all receive rings.
3670 1.1 rin *
3671 1.1 rin **********************************************************************/
3672 1.2 rin static void
3673 1.1 rin igc_free_receive_structures(struct igc_softc *sc)
3674 1.1 rin {
3675 1.1 rin
3676 1.2 rin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3677 1.2 rin struct rx_ring *rxr = &sc->rx_rings[iq];
3678 1.1 rin
3679 1.1 rin igc_free_receive_buffers(rxr);
3680 1.2 rin }
3681 1.1 rin }
3682 1.1 rin
3683 1.1 rin /*********************************************************************
3684 1.1 rin *
3685 1.1 rin * Free receive ring data structures
3686 1.1 rin *
3687 1.1 rin **********************************************************************/
3688 1.2 rin static void
3689 1.1 rin igc_free_receive_buffers(struct rx_ring *rxr)
3690 1.1 rin {
3691 1.1 rin struct igc_softc *sc = rxr->sc;
3692 1.1 rin
3693 1.1 rin if (rxr->rx_buffers != NULL) {
3694 1.2 rin for (int id = 0; id < sc->num_rx_desc; id++) {
3695 1.2 rin struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
3696 1.2 rin bus_dmamap_t map = rxbuf->map;
3697 1.2 rin
3698 1.1 rin if (rxbuf->buf != NULL) {
3699 1.2 rin bus_dmamap_sync(rxr->rxdma.dma_tag, map,
3700 1.2 rin 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
3701 1.2 rin bus_dmamap_unload(rxr->rxdma.dma_tag, map);
3702 1.1 rin m_freem(rxbuf->buf);
3703 1.1 rin rxbuf->buf = NULL;
3704 1.1 rin }
3705 1.2 rin bus_dmamap_destroy(rxr->rxdma.dma_tag, map);
3706 1.1 rin rxbuf->map = NULL;
3707 1.1 rin }
3708 1.2 rin kmem_free(rxr->rx_buffers,
3709 1.1 rin sc->num_rx_desc * sizeof(struct igc_rx_buf));
3710 1.1 rin rxr->rx_buffers = NULL;
3711 1.1 rin }
3712 1.2 rin
3713 1.2 rin mutex_destroy(&rxr->rxr_lock);
3714 1.2 rin }
3715 1.2 rin
3716 1.2 rin /*********************************************************************
3717 1.2 rin *
3718 1.2 rin * Clear status registers in all RX descriptors.
3719 1.2 rin *
3720 1.2 rin **********************************************************************/
3721 1.2 rin static void
3722 1.2 rin igc_clear_receive_status(struct rx_ring *rxr)
3723 1.2 rin {
3724 1.2 rin struct igc_softc *sc = rxr->sc;
3725 1.2 rin
3726 1.2 rin mutex_enter(&rxr->rxr_lock);
3727 1.2 rin
3728 1.2 rin for (int id = 0; id < sc->num_rx_desc; id++) {
3729 1.2 rin union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
3730 1.2 rin
3731 1.2 rin igc_rxdesc_sync(rxr, id,
3732 1.2 rin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3733 1.2 rin rxdesc->wb.upper.status_error = 0;
3734 1.2 rin igc_rxdesc_sync(rxr, id,
3735 1.2 rin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3736 1.2 rin }
3737 1.2 rin
3738 1.2 rin mutex_exit(&rxr->rxr_lock);
3739 1.1 rin }
3740 1.1 rin
3741 1.1 rin /*
3742 1.1 rin * Initialise the RSS mapping for NICs that support multiple transmit/
3743 1.1 rin * receive rings.
3744 1.1 rin */
3745 1.2 rin static void
3746 1.1 rin igc_initialize_rss_mapping(struct igc_softc *sc)
3747 1.1 rin {
3748 1.1 rin struct igc_hw *hw = &sc->hw;
3749 1.1 rin
3750 1.1 rin /*
3751 1.1 rin * The redirection table controls which destination
3752 1.1 rin * queue each bucket redirects traffic to.
3753 1.1 rin * Each DWORD represents four queues, with the LSB
3754 1.1 rin * being the first queue in the DWORD.
3755 1.1 rin *
3756 1.1 rin * This just allocates buckets to queues using round-robin
3757 1.1 rin * allocation.
3758 1.1 rin *
3759 1.1 rin * NOTE: It Just Happens to line up with the default
3760 1.1 rin * RSS allocation method.
3761 1.1 rin */
3762 1.1 rin
3763 1.1 rin /* Warning FM follows */
3764 1.2 rin uint32_t reta = 0;
3765 1.2 rin for (int i = 0; i < 128; i++) {
3766 1.2 rin const int shift = 0; /* XXXRO */
3767 1.2 rin int queue_id = i % sc->sc_nqueues;
3768 1.1 rin /* Adjust if required */
3769 1.2 rin queue_id <<= shift;
3770 1.1 rin
3771 1.1 rin /*
3772 1.1 rin * The low 8 bits are for hash value (n+0);
3773 1.1 rin * The next 8 bits are for hash value (n+1), etc.
3774 1.1 rin */
3775 1.2 rin reta >>= 8;
3776 1.2 rin reta |= ((uint32_t)queue_id) << 24;
3777 1.1 rin if ((i & 3) == 3) {
3778 1.1 rin IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
3779 1.1 rin reta = 0;
3780 1.1 rin }
3781 1.1 rin }
3782 1.1 rin
3783 1.1 rin /*
3784 1.1 rin * MRQC: Multiple Receive Queues Command
3785 1.1 rin * Set queuing to RSS control, number depends on the device.
3786 1.1 rin */
3787 1.1 rin
3788 1.1 rin /* Set up random bits */
3789 1.2 rin uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3790 1.2 rin rss_getkey((uint8_t *)rss_key);
3791 1.1 rin
3792 1.1 rin /* Now fill our hash function seeds */
3793 1.2 rin for (int i = 0; i < __arraycount(rss_key); i++)
3794 1.1 rin IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
3795 1.1 rin
3796 1.1 rin /*
3797 1.1 rin * Configure the RSS fields to hash upon.
3798 1.1 rin */
3799 1.2 rin uint32_t mrqc = IGC_MRQC_ENABLE_RSS_4Q;
3800 1.2 rin mrqc |= IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP;
3801 1.2 rin mrqc |= IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP;
3802 1.1 rin mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
3803 1.1 rin
3804 1.1 rin IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
3805 1.1 rin }
3806 1.1 rin
3807 1.1 rin /*
3808 1.1 rin * igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3809 1.1 rin * For ASF and Pass Through versions of f/w this means
3810 1.1 rin * that the driver is loaded. For AMT version type f/w
3811 1.1 rin * this means that the network i/f is open.
3812 1.1 rin */
3813 1.2 rin static void
3814 1.1 rin igc_get_hw_control(struct igc_softc *sc)
3815 1.1 rin {
3816 1.2 rin const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
3817 1.1 rin
3818 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
3819 1.1 rin }
3820 1.1 rin
3821 1.1 rin /*
3822 1.1 rin * igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3823 1.1 rin * For ASF and Pass Through versions of f/w this means that
3824 1.1 rin * the driver is no longer loaded. For AMT versions of the
3825 1.1 rin * f/w this means that the network i/f is closed.
3826 1.1 rin */
3827 1.2 rin static void
3828 1.1 rin igc_release_hw_control(struct igc_softc *sc)
3829 1.1 rin {
3830 1.2 rin const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
3831 1.1 rin
3832 1.1 rin IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
3833 1.1 rin }
3834 1.1 rin
3835 1.2 rin static int
3836 1.1 rin igc_is_valid_ether_addr(uint8_t *addr)
3837 1.1 rin {
3838 1.2 rin const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3839 1.1 rin
3840 1.2 rin if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3841 1.1 rin return 0;
3842 1.1 rin
3843 1.1 rin return 1;
3844 1.1 rin }
3845 1.2 rin
3846 1.2 rin static void
3847 1.2 rin igc_print_devinfo(struct igc_softc *sc)
3848 1.2 rin {
3849 1.2 rin device_t dev = sc->sc_dev;
3850 1.2 rin struct igc_hw *hw = &sc->hw;
3851 1.2 rin struct igc_phy_info *phy = &hw->phy;
3852 1.2 rin u_int oui, model, rev;
3853 1.13 msaitoh uint16_t id1, id2, nvm_ver, phy_ver, etk_lo, etk_hi;
3854 1.2 rin char descr[MII_MAX_DESCR_LEN];
3855 1.2 rin
3856 1.2 rin /* Print PHY Info */
3857 1.2 rin id1 = phy->id >> 16;
3858 1.2 rin /* The revision field in phy->id is cleard and it's in phy->revision */
3859 1.2 rin id2 = (phy->id & 0xfff0) | phy->revision;
3860 1.2 rin oui = MII_OUI(id1, id2);
3861 1.2 rin model = MII_MODEL(id2);
3862 1.2 rin rev = MII_REV(id2);
3863 1.2 rin mii_get_descr(descr, sizeof(descr), oui, model);
3864 1.2 rin if (descr[0])
3865 1.12 msaitoh aprint_normal_dev(dev, "PHY: %s, rev. %d",
3866 1.2 rin descr, rev);
3867 1.2 rin else
3868 1.2 rin aprint_normal_dev(dev,
3869 1.12 msaitoh "PHY OUI 0x%06x, model 0x%04x, rev. %d",
3870 1.2 rin oui, model, rev);
3871 1.2 rin
3872 1.12 msaitoh /* PHY FW version */
3873 1.12 msaitoh phy->ops.read_reg(hw, 0x1e, &phy_ver);
3874 1.12 msaitoh aprint_normal(", PHY FW version 0x%04hx\n", phy_ver);
3875 1.12 msaitoh
3876 1.13 msaitoh /* NVM version */
3877 1.2 rin hw->nvm.ops.read(hw, NVM_VERSION, 1, &nvm_ver);
3878 1.2 rin
3879 1.13 msaitoh /* EtrackID */
3880 1.13 msaitoh hw->nvm.ops.read(hw, NVM_ETKID_LO, 1, &etk_lo);
3881 1.13 msaitoh hw->nvm.ops.read(hw, NVM_ETKID_HI, 1, &etk_hi);
3882 1.13 msaitoh
3883 1.13 msaitoh aprint_normal_dev(dev,
3884 1.13 msaitoh "NVM image version %x.%02x, EtrackID %04hx%04hx\n",
3885 1.2 rin (nvm_ver & NVM_VERSION_MAJOR) >> NVM_VERSION_MAJOR_SHIFT,
3886 1.13 msaitoh nvm_ver & NVM_VERSION_MINOR, etk_hi, etk_lo);
3887 1.2 rin }
3888