if_igc.c revision 1.3.2.4 1 1.3.2.4 martin /* $NetBSD: if_igc.c,v 1.3.2.4 2024/02/23 18:41:02 martin Exp $ */
2 1.3.2.2 martin /* $OpenBSD: if_igc.c,v 1.13 2023/04/28 10:18:57 bluhm Exp $ */
3 1.3.2.2 martin /*-
4 1.3.2.2 martin * SPDX-License-Identifier: BSD-2-Clause
5 1.3.2.2 martin *
6 1.3.2.2 martin * Copyright (c) 2016 Nicole Graziano <nicole (at) nextbsd.org>
7 1.3.2.2 martin * All rights reserved.
8 1.3.2.2 martin * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
9 1.3.2.2 martin *
10 1.3.2.2 martin * Redistribution and use in source and binary forms, with or without
11 1.3.2.2 martin * modification, are permitted provided that the following conditions
12 1.3.2.2 martin * are met:
13 1.3.2.2 martin * 1. Redistributions of source code must retain the above copyright
14 1.3.2.2 martin * notice, this list of conditions and the following disclaimer.
15 1.3.2.2 martin * 2. Redistributions in binary form must reproduce the above copyright
16 1.3.2.2 martin * notice, this list of conditions and the following disclaimer in the
17 1.3.2.2 martin * documentation and/or other materials provided with the distribution.
18 1.3.2.2 martin *
19 1.3.2.2 martin * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 1.3.2.2 martin * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.3.2.2 martin * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.3.2.2 martin * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.3.2.2 martin * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.3.2.2 martin * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.3.2.2 martin * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.3.2.2 martin * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.3.2.2 martin * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.3.2.2 martin * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.3.2.2 martin * SUCH DAMAGE.
30 1.3.2.2 martin */
31 1.3.2.2 martin
32 1.3.2.2 martin #include <sys/cdefs.h>
33 1.3.2.4 martin __KERNEL_RCSID(0, "$NetBSD: if_igc.c,v 1.3.2.4 2024/02/23 18:41:02 martin Exp $");
34 1.3.2.2 martin
35 1.3.2.2 martin #ifdef _KERNEL_OPT
36 1.3.2.2 martin #include "opt_net_mpsafe.h"
37 1.3.2.2 martin #include "opt_if_igc.h"
38 1.3.2.2 martin #if 0 /* notyet */
39 1.3.2.2 martin #include "vlan.h"
40 1.3.2.2 martin #endif
41 1.3.2.2 martin #endif
42 1.3.2.2 martin
43 1.3.2.2 martin #include <sys/param.h>
44 1.3.2.2 martin #include <sys/systm.h>
45 1.3.2.2 martin #include <sys/bus.h>
46 1.3.2.2 martin #include <sys/cpu.h>
47 1.3.2.2 martin #include <sys/device.h>
48 1.3.2.2 martin #include <sys/endian.h>
49 1.3.2.2 martin #include <sys/intr.h>
50 1.3.2.2 martin #include <sys/interrupt.h>
51 1.3.2.2 martin #include <sys/kernel.h>
52 1.3.2.2 martin #include <sys/kmem.h>
53 1.3.2.2 martin #include <sys/mbuf.h>
54 1.3.2.2 martin #include <sys/mutex.h>
55 1.3.2.2 martin #include <sys/socket.h>
56 1.3.2.2 martin #include <sys/workqueue.h>
57 1.3.2.2 martin #include <sys/xcall.h>
58 1.3.2.2 martin
59 1.3.2.2 martin #include <net/bpf.h>
60 1.3.2.2 martin #include <net/if.h>
61 1.3.2.2 martin #include <net/if_ether.h>
62 1.3.2.2 martin #include <net/if_media.h>
63 1.3.2.2 martin #include <net/if_vlanvar.h>
64 1.3.2.2 martin #include <net/rss_config.h>
65 1.3.2.2 martin
66 1.3.2.2 martin #include <netinet/in.h>
67 1.3.2.2 martin #include <netinet/ip.h>
68 1.3.2.2 martin #include <netinet/ip6.h>
69 1.3.2.2 martin #include <netinet/tcp.h>
70 1.3.2.2 martin
71 1.3.2.2 martin #include <dev/pci/pcivar.h>
72 1.3.2.2 martin #include <dev/pci/pcireg.h>
73 1.3.2.2 martin #include <dev/pci/pcidevs.h>
74 1.3.2.2 martin
75 1.3.2.2 martin #include <dev/pci/igc/if_igc.h>
76 1.3.2.2 martin #include <dev/pci/igc/igc_evcnt.h>
77 1.3.2.2 martin #include <dev/pci/igc/igc_hw.h>
78 1.3.2.2 martin #include <dev/mii/miivar.h>
79 1.3.2.2 martin
80 1.3.2.2 martin #define IGC_WORKQUEUE_PRI PRI_SOFTNET
81 1.3.2.2 martin
82 1.3.2.2 martin #ifndef IGC_RX_INTR_PROCESS_LIMIT_DEFAULT
83 1.3.2.2 martin #define IGC_RX_INTR_PROCESS_LIMIT_DEFAULT 0
84 1.3.2.2 martin #endif
85 1.3.2.2 martin #ifndef IGC_TX_INTR_PROCESS_LIMIT_DEFAULT
86 1.3.2.2 martin #define IGC_TX_INTR_PROCESS_LIMIT_DEFAULT 0
87 1.3.2.2 martin #endif
88 1.3.2.2 martin
89 1.3.2.2 martin #ifndef IGC_RX_PROCESS_LIMIT_DEFAULT
90 1.3.2.2 martin #define IGC_RX_PROCESS_LIMIT_DEFAULT 256
91 1.3.2.2 martin #endif
92 1.3.2.2 martin #ifndef IGC_TX_PROCESS_LIMIT_DEFAULT
93 1.3.2.2 martin #define IGC_TX_PROCESS_LIMIT_DEFAULT 256
94 1.3.2.2 martin #endif
95 1.3.2.2 martin
96 1.3.2.2 martin #define htolem32(p, x) (*((uint32_t *)(p)) = htole32(x))
97 1.3.2.2 martin #define htolem64(p, x) (*((uint64_t *)(p)) = htole64(x))
98 1.3.2.2 martin
99 1.3.2.2 martin static const struct igc_product {
100 1.3.2.2 martin pci_vendor_id_t igcp_vendor;
101 1.3.2.2 martin pci_product_id_t igcp_product;
102 1.3.2.2 martin const char *igcp_name;
103 1.3.2.2 martin } igc_products[] = {
104 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_IT,
105 1.3.2.2 martin "Intel(R) Ethernet Controller I225-IT(2)" },
106 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LM,
107 1.3.2.2 martin "Intel(R) Ethernet Controller I226-LM" },
108 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_V,
109 1.3.2.2 martin "Intel(R) Ethernet Controller I226-V" },
110 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_IT,
111 1.3.2.2 martin "Intel(R) Ethernet Controller I226-IT" },
112 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I221_V,
113 1.3.2.2 martin "Intel(R) Ethernet Controller I221-V" },
114 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_BLANK_NVM,
115 1.3.2.2 martin "Intel(R) Ethernet Controller I226(blankNVM)" },
116 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LM,
117 1.3.2.2 martin "Intel(R) Ethernet Controller I225-LM" },
118 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_V,
119 1.3.2.2 martin "Intel(R) Ethernet Controller I225-V" },
120 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I220_V,
121 1.3.2.2 martin "Intel(R) Ethernet Controller I220-V" },
122 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_I,
123 1.3.2.2 martin "Intel(R) Ethernet Controller I225-I" },
124 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_BLANK_NVM,
125 1.3.2.2 martin "Intel(R) Ethernet Controller I225(blankNVM)" },
126 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K,
127 1.3.2.2 martin "Intel(R) Ethernet Controller I225-K" },
128 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K2,
129 1.3.2.2 martin "Intel(R) Ethernet Controller I225-K(2)" },
130 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_K,
131 1.3.2.2 martin "Intel(R) Ethernet Controller I226-K" },
132 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LMVP,
133 1.3.2.2 martin "Intel(R) Ethernet Controller I225-LMvP(2)" },
134 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LMVP,
135 1.3.2.2 martin "Intel(R) Ethernet Controller I226-LMvP" },
136 1.3.2.2 martin { 0, 0, NULL },
137 1.3.2.2 martin };
138 1.3.2.2 martin
139 1.3.2.2 martin #define IGC_DF_CFG 0x1
140 1.3.2.2 martin #define IGC_DF_TX 0x2
141 1.3.2.2 martin #define IGC_DF_RX 0x4
142 1.3.2.2 martin #define IGC_DF_MISC 0x8
143 1.3.2.2 martin
144 1.3.2.2 martin #ifdef IGC_DEBUG_FLAGS
145 1.3.2.2 martin int igc_debug_flags = IGC_DEBUG_FLAGS;
146 1.3.2.2 martin #else
147 1.3.2.2 martin int igc_debug_flags = 0;
148 1.3.2.2 martin #endif
149 1.3.2.2 martin
150 1.3.2.2 martin #define DPRINTF(flag, fmt, args...) do { \
151 1.3.2.2 martin if (igc_debug_flags & (IGC_DF_ ## flag)) \
152 1.3.2.2 martin printf("%s: %d: " fmt, __func__, __LINE__, ##args); \
153 1.3.2.2 martin } while (0)
154 1.3.2.2 martin
155 1.3.2.2 martin /*********************************************************************
156 1.3.2.2 martin * Function Prototypes
157 1.3.2.2 martin *********************************************************************/
158 1.3.2.2 martin static int igc_match(device_t, cfdata_t, void *);
159 1.3.2.2 martin static void igc_attach(device_t, device_t, void *);
160 1.3.2.2 martin static int igc_detach(device_t, int);
161 1.3.2.2 martin
162 1.3.2.2 martin static void igc_identify_hardware(struct igc_softc *);
163 1.3.2.2 martin static int igc_adjust_nqueues(struct igc_softc *);
164 1.3.2.2 martin static int igc_allocate_pci_resources(struct igc_softc *);
165 1.3.2.2 martin static int igc_allocate_interrupts(struct igc_softc *);
166 1.3.2.2 martin static int igc_allocate_queues(struct igc_softc *);
167 1.3.2.2 martin static void igc_free_pci_resources(struct igc_softc *);
168 1.3.2.2 martin static void igc_free_interrupts(struct igc_softc *);
169 1.3.2.2 martin static void igc_free_queues(struct igc_softc *);
170 1.3.2.2 martin static void igc_reset(struct igc_softc *);
171 1.3.2.2 martin static void igc_init_dmac(struct igc_softc *, uint32_t);
172 1.3.2.2 martin static int igc_setup_interrupts(struct igc_softc *);
173 1.3.2.2 martin static void igc_attach_counters(struct igc_softc *sc);
174 1.3.2.2 martin static void igc_detach_counters(struct igc_softc *sc);
175 1.3.2.2 martin static void igc_update_counters(struct igc_softc *sc);
176 1.3.2.2 martin static void igc_clear_counters(struct igc_softc *sc);
177 1.3.2.2 martin static int igc_setup_msix(struct igc_softc *);
178 1.3.2.2 martin static int igc_setup_msi(struct igc_softc *);
179 1.3.2.2 martin static int igc_setup_intx(struct igc_softc *);
180 1.3.2.2 martin static int igc_dma_malloc(struct igc_softc *, bus_size_t,
181 1.3.2.2 martin struct igc_dma_alloc *);
182 1.3.2.2 martin static void igc_dma_free(struct igc_softc *, struct igc_dma_alloc *);
183 1.3.2.2 martin static void igc_setup_interface(struct igc_softc *);
184 1.3.2.2 martin
185 1.3.2.2 martin static int igc_init(struct ifnet *);
186 1.3.2.2 martin static int igc_init_locked(struct igc_softc *);
187 1.3.2.2 martin static void igc_start(struct ifnet *);
188 1.3.2.2 martin static int igc_transmit(struct ifnet *, struct mbuf *);
189 1.3.2.2 martin static void igc_tx_common_locked(struct ifnet *, struct tx_ring *, int);
190 1.3.2.2 martin static bool igc_txeof(struct tx_ring *, u_int);
191 1.3.2.2 martin static void igc_intr_barrier(struct igc_softc *);
192 1.3.2.2 martin static void igc_stop(struct ifnet *, int);
193 1.3.2.2 martin static void igc_stop_locked(struct igc_softc *);
194 1.3.2.2 martin static int igc_ioctl(struct ifnet *, u_long, void *);
195 1.3.2.2 martin #ifdef IF_RXR
196 1.3.2.2 martin static int igc_rxrinfo(struct igc_softc *, struct if_rxrinfo *);
197 1.3.2.2 martin #endif
198 1.3.2.2 martin static void igc_rxfill(struct rx_ring *);
199 1.3.2.2 martin static void igc_rxrefill(struct rx_ring *, int);
200 1.3.2.2 martin static bool igc_rxeof(struct rx_ring *, u_int);
201 1.3.2.2 martin static int igc_rx_checksum(struct igc_queue *, uint64_t, uint32_t,
202 1.3.2.2 martin uint32_t);
203 1.3.2.2 martin static void igc_watchdog(struct ifnet *);
204 1.3.2.2 martin static void igc_tick(void *);
205 1.3.2.2 martin static void igc_media_status(struct ifnet *, struct ifmediareq *);
206 1.3.2.2 martin static int igc_media_change(struct ifnet *);
207 1.3.2.2 martin static int igc_ifflags_cb(struct ethercom *);
208 1.3.2.2 martin static void igc_set_filter(struct igc_softc *);
209 1.3.2.2 martin static void igc_update_link_status(struct igc_softc *);
210 1.3.2.2 martin static int igc_get_buf(struct rx_ring *, int, bool);
211 1.3.2.2 martin static int igc_tx_ctx_setup(struct tx_ring *, struct mbuf *, int,
212 1.3.2.2 martin uint32_t *, uint32_t *);
213 1.3.2.2 martin static int igc_tso_setup(struct tx_ring *, struct mbuf *, int,
214 1.3.2.2 martin uint32_t *, uint32_t *);
215 1.3.2.2 martin
216 1.3.2.2 martin static void igc_configure_queues(struct igc_softc *);
217 1.3.2.2 martin static void igc_set_queues(struct igc_softc *, uint32_t, uint32_t, int);
218 1.3.2.2 martin static void igc_enable_queue(struct igc_softc *, uint32_t);
219 1.3.2.2 martin static void igc_enable_intr(struct igc_softc *);
220 1.3.2.2 martin static void igc_disable_intr(struct igc_softc *);
221 1.3.2.2 martin static int igc_intr_link(void *);
222 1.3.2.2 martin static int igc_intr_queue(void *);
223 1.3.2.2 martin static int igc_intr(void *);
224 1.3.2.2 martin static void igc_handle_queue(void *);
225 1.3.2.2 martin static void igc_handle_queue_work(struct work *, void *);
226 1.3.2.2 martin static void igc_sched_handle_queue(struct igc_softc *, struct igc_queue *);
227 1.3.2.2 martin static void igc_barrier_handle_queue(struct igc_softc *);
228 1.3.2.2 martin
229 1.3.2.2 martin static int igc_allocate_transmit_buffers(struct tx_ring *);
230 1.3.2.2 martin static int igc_setup_transmit_structures(struct igc_softc *);
231 1.3.2.2 martin static int igc_setup_transmit_ring(struct tx_ring *);
232 1.3.2.2 martin static void igc_initialize_transmit_unit(struct igc_softc *);
233 1.3.2.2 martin static void igc_free_transmit_structures(struct igc_softc *);
234 1.3.2.2 martin static void igc_free_transmit_buffers(struct tx_ring *);
235 1.3.2.2 martin static void igc_withdraw_transmit_packets(struct tx_ring *, bool);
236 1.3.2.2 martin static int igc_allocate_receive_buffers(struct rx_ring *);
237 1.3.2.2 martin static int igc_setup_receive_structures(struct igc_softc *);
238 1.3.2.2 martin static int igc_setup_receive_ring(struct rx_ring *);
239 1.3.2.2 martin static void igc_initialize_receive_unit(struct igc_softc *);
240 1.3.2.2 martin static void igc_free_receive_structures(struct igc_softc *);
241 1.3.2.2 martin static void igc_free_receive_buffers(struct rx_ring *);
242 1.3.2.2 martin static void igc_clear_receive_status(struct rx_ring *);
243 1.3.2.2 martin static void igc_initialize_rss_mapping(struct igc_softc *);
244 1.3.2.2 martin
245 1.3.2.2 martin static void igc_get_hw_control(struct igc_softc *);
246 1.3.2.2 martin static void igc_release_hw_control(struct igc_softc *);
247 1.3.2.2 martin static int igc_is_valid_ether_addr(uint8_t *);
248 1.3.2.2 martin static void igc_print_devinfo(struct igc_softc *);
249 1.3.2.2 martin
250 1.3.2.2 martin CFATTACH_DECL3_NEW(igc, sizeof(struct igc_softc),
251 1.3.2.2 martin igc_match, igc_attach, igc_detach, NULL, NULL, NULL, 0);
252 1.3.2.2 martin
253 1.3.2.2 martin static inline int
254 1.3.2.2 martin igc_txdesc_incr(struct igc_softc *sc, int id)
255 1.3.2.2 martin {
256 1.3.2.2 martin
257 1.3.2.2 martin if (++id == sc->num_tx_desc)
258 1.3.2.2 martin id = 0;
259 1.3.2.2 martin return id;
260 1.3.2.2 martin }
261 1.3.2.2 martin
262 1.3.2.2 martin static inline int __unused
263 1.3.2.2 martin igc_txdesc_decr(struct igc_softc *sc, int id)
264 1.3.2.2 martin {
265 1.3.2.2 martin
266 1.3.2.2 martin if (--id < 0)
267 1.3.2.2 martin id = sc->num_tx_desc - 1;
268 1.3.2.2 martin return id;
269 1.3.2.2 martin }
270 1.3.2.2 martin
271 1.3.2.2 martin static inline void
272 1.3.2.2 martin igc_txdesc_sync(struct tx_ring *txr, int id, int ops)
273 1.3.2.2 martin {
274 1.3.2.2 martin
275 1.3.2.2 martin bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
276 1.3.2.2 martin id * sizeof(union igc_adv_tx_desc), sizeof(union igc_adv_tx_desc),
277 1.3.2.2 martin ops);
278 1.3.2.2 martin }
279 1.3.2.2 martin
280 1.3.2.2 martin static inline int
281 1.3.2.2 martin igc_rxdesc_incr(struct igc_softc *sc, int id)
282 1.3.2.2 martin {
283 1.3.2.2 martin
284 1.3.2.2 martin if (++id == sc->num_rx_desc)
285 1.3.2.2 martin id = 0;
286 1.3.2.2 martin return id;
287 1.3.2.2 martin }
288 1.3.2.2 martin
289 1.3.2.2 martin static inline int
290 1.3.2.2 martin igc_rxdesc_decr(struct igc_softc *sc, int id)
291 1.3.2.2 martin {
292 1.3.2.2 martin
293 1.3.2.2 martin if (--id < 0)
294 1.3.2.2 martin id = sc->num_rx_desc - 1;
295 1.3.2.2 martin return id;
296 1.3.2.2 martin }
297 1.3.2.2 martin
298 1.3.2.2 martin static inline void
299 1.3.2.2 martin igc_rxdesc_sync(struct rx_ring *rxr, int id, int ops)
300 1.3.2.2 martin {
301 1.3.2.2 martin
302 1.3.2.2 martin bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
303 1.3.2.2 martin id * sizeof(union igc_adv_rx_desc), sizeof(union igc_adv_rx_desc),
304 1.3.2.2 martin ops);
305 1.3.2.2 martin }
306 1.3.2.2 martin
307 1.3.2.2 martin static const struct igc_product *
308 1.3.2.2 martin igc_lookup(const struct pci_attach_args *pa)
309 1.3.2.2 martin {
310 1.3.2.2 martin const struct igc_product *igcp;
311 1.3.2.2 martin
312 1.3.2.2 martin for (igcp = igc_products; igcp->igcp_name != NULL; igcp++) {
313 1.3.2.2 martin if (PCI_VENDOR(pa->pa_id) == igcp->igcp_vendor &&
314 1.3.2.2 martin PCI_PRODUCT(pa->pa_id) == igcp->igcp_product)
315 1.3.2.2 martin return igcp;
316 1.3.2.2 martin }
317 1.3.2.2 martin return NULL;
318 1.3.2.2 martin }
319 1.3.2.2 martin
320 1.3.2.2 martin /*********************************************************************
321 1.3.2.2 martin * Device identification routine
322 1.3.2.2 martin *
323 1.3.2.2 martin * igc_match determines if the driver should be loaded on
324 1.3.2.2 martin * adapter based on PCI vendor/device id of the adapter.
325 1.3.2.2 martin *
326 1.3.2.2 martin * return 0 on success, positive on failure
327 1.3.2.2 martin *********************************************************************/
328 1.3.2.2 martin static int
329 1.3.2.2 martin igc_match(device_t parent, cfdata_t match, void *aux)
330 1.3.2.2 martin {
331 1.3.2.2 martin struct pci_attach_args *pa = aux;
332 1.3.2.2 martin
333 1.3.2.2 martin if (igc_lookup(pa) != NULL)
334 1.3.2.2 martin return 1;
335 1.3.2.2 martin
336 1.3.2.2 martin return 0;
337 1.3.2.2 martin }
338 1.3.2.2 martin
339 1.3.2.2 martin /*********************************************************************
340 1.3.2.2 martin * Device initialization routine
341 1.3.2.2 martin *
342 1.3.2.2 martin * The attach entry point is called when the driver is being loaded.
343 1.3.2.2 martin * This routine identifies the type of hardware, allocates all resources
344 1.3.2.2 martin * and initializes the hardware.
345 1.3.2.2 martin *
346 1.3.2.2 martin * return 0 on success, positive on failure
347 1.3.2.2 martin *********************************************************************/
348 1.3.2.2 martin static void
349 1.3.2.2 martin igc_attach(device_t parent, device_t self, void *aux)
350 1.3.2.2 martin {
351 1.3.2.2 martin struct pci_attach_args *pa = aux;
352 1.3.2.2 martin struct igc_softc *sc = device_private(self);
353 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
354 1.3.2.2 martin
355 1.3.2.2 martin const struct igc_product *igcp = igc_lookup(pa);
356 1.3.2.2 martin KASSERT(igcp != NULL);
357 1.3.2.2 martin pci_aprint_devinfo_fancy(pa, "Ethernet controller", igcp->igcp_name, 1);
358 1.3.2.2 martin
359 1.3.2.2 martin sc->sc_dev = self;
360 1.3.2.2 martin callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE);
361 1.3.2.2 martin callout_setfunc(&sc->sc_tick_ch, igc_tick, sc);
362 1.3.2.2 martin sc->sc_core_stopping = false;
363 1.3.2.2 martin
364 1.3.2.2 martin sc->osdep.os_sc = sc;
365 1.3.2.2 martin sc->osdep.os_pa = *pa;
366 1.3.2.2 martin #ifdef __aarch64__
367 1.3.2.2 martin /*
368 1.3.2.2 martin * XXX PR port-arm/57643
369 1.3.2.2 martin * 64-bit DMA does not work at least for LX2K with 32/64GB memory.
370 1.3.2.2 martin * smmu(4) support may be required.
371 1.3.2.2 martin */
372 1.3.2.2 martin sc->osdep.os_dmat = pa->pa_dmat;
373 1.3.2.2 martin #else
374 1.3.2.2 martin sc->osdep.os_dmat = pci_dma64_available(pa) ?
375 1.3.2.2 martin pa->pa_dmat64 : pa->pa_dmat;
376 1.3.2.2 martin #endif
377 1.3.2.2 martin
378 1.3.2.2 martin /* Determine hardware and mac info */
379 1.3.2.2 martin igc_identify_hardware(sc);
380 1.3.2.2 martin
381 1.3.2.2 martin sc->num_tx_desc = IGC_DEFAULT_TXD;
382 1.3.2.2 martin sc->num_rx_desc = IGC_DEFAULT_RXD;
383 1.3.2.2 martin
384 1.3.2.2 martin /* Setup PCI resources */
385 1.3.2.2 martin if (igc_allocate_pci_resources(sc)) {
386 1.3.2.2 martin aprint_error_dev(sc->sc_dev,
387 1.3.2.2 martin "unable to allocate PCI resources\n");
388 1.3.2.2 martin goto err_pci;
389 1.3.2.2 martin }
390 1.3.2.2 martin
391 1.3.2.2 martin if (igc_allocate_interrupts(sc)) {
392 1.3.2.2 martin aprint_error_dev(sc->sc_dev, "unable to allocate interrupts\n");
393 1.3.2.2 martin goto err_pci;
394 1.3.2.2 martin }
395 1.3.2.2 martin
396 1.3.2.2 martin /* Allocate TX/RX queues */
397 1.3.2.2 martin if (igc_allocate_queues(sc)) {
398 1.3.2.2 martin aprint_error_dev(sc->sc_dev, "unable to allocate queues\n");
399 1.3.2.2 martin goto err_alloc_intr;
400 1.3.2.2 martin }
401 1.3.2.2 martin
402 1.3.2.2 martin /* Do shared code initialization */
403 1.3.2.2 martin if (igc_setup_init_funcs(hw, true)) {
404 1.3.2.2 martin aprint_error_dev(sc->sc_dev, "unable to initialize\n");
405 1.3.2.2 martin goto err_alloc_intr;
406 1.3.2.2 martin }
407 1.3.2.2 martin
408 1.3.2.2 martin hw->mac.autoneg = DO_AUTO_NEG;
409 1.3.2.2 martin hw->phy.autoneg_wait_to_complete = false;
410 1.3.2.2 martin hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
411 1.3.2.2 martin
412 1.3.2.2 martin /* Copper options. */
413 1.3.2.2 martin if (hw->phy.media_type == igc_media_type_copper)
414 1.3.2.2 martin hw->phy.mdix = AUTO_ALL_MODES;
415 1.3.2.2 martin
416 1.3.2.2 martin /* Set the max frame size. */
417 1.3.2.2 martin sc->hw.mac.max_frame_size = 9234;
418 1.3.2.2 martin
419 1.3.2.2 martin /* Allocate multicast array memory. */
420 1.3.2.2 martin sc->mta = kmem_alloc(IGC_MTA_LEN, KM_SLEEP);
421 1.3.2.2 martin
422 1.3.2.2 martin /* Check SOL/IDER usage. */
423 1.3.2.2 martin if (igc_check_reset_block(hw)) {
424 1.3.2.2 martin aprint_error_dev(sc->sc_dev,
425 1.3.2.2 martin "PHY reset is blocked due to SOL/IDER session\n");
426 1.3.2.2 martin }
427 1.3.2.2 martin
428 1.3.2.2 martin /* Disable Energy Efficient Ethernet. */
429 1.3.2.2 martin sc->hw.dev_spec._i225.eee_disable = true;
430 1.3.2.2 martin
431 1.3.2.2 martin igc_reset_hw(hw);
432 1.3.2.2 martin
433 1.3.2.2 martin /* Make sure we have a good EEPROM before we read from it. */
434 1.3.2.2 martin if (igc_validate_nvm_checksum(hw) < 0) {
435 1.3.2.2 martin /*
436 1.3.2.2 martin * Some PCI-E parts fail the first check due to
437 1.3.2.2 martin * the link being in sleep state, call it again,
438 1.3.2.2 martin * if it fails a second time its a real issue.
439 1.3.2.2 martin */
440 1.3.2.2 martin if (igc_validate_nvm_checksum(hw) < 0) {
441 1.3.2.2 martin aprint_error_dev(sc->sc_dev,
442 1.3.2.2 martin "EEPROM checksum invalid\n");
443 1.3.2.2 martin goto err_late;
444 1.3.2.2 martin }
445 1.3.2.2 martin }
446 1.3.2.2 martin
447 1.3.2.2 martin /* Copy the permanent MAC address out of the EEPROM. */
448 1.3.2.2 martin if (igc_read_mac_addr(hw) < 0) {
449 1.3.2.2 martin aprint_error_dev(sc->sc_dev,
450 1.3.2.2 martin "unable to read MAC address from EEPROM\n");
451 1.3.2.2 martin goto err_late;
452 1.3.2.2 martin }
453 1.3.2.2 martin
454 1.3.2.2 martin if (!igc_is_valid_ether_addr(hw->mac.addr)) {
455 1.3.2.2 martin aprint_error_dev(sc->sc_dev, "invalid MAC address\n");
456 1.3.2.2 martin goto err_late;
457 1.3.2.2 martin }
458 1.3.2.2 martin
459 1.3.2.2 martin if (igc_setup_interrupts(sc))
460 1.3.2.2 martin goto err_late;
461 1.3.2.2 martin
462 1.3.2.2 martin /* Attach counters. */
463 1.3.2.2 martin igc_attach_counters(sc);
464 1.3.2.2 martin
465 1.3.2.2 martin /* Setup OS specific network interface. */
466 1.3.2.2 martin igc_setup_interface(sc);
467 1.3.2.2 martin
468 1.3.2.2 martin igc_print_devinfo(sc);
469 1.3.2.2 martin
470 1.3.2.2 martin igc_reset(sc);
471 1.3.2.2 martin hw->mac.get_link_status = true;
472 1.3.2.2 martin igc_update_link_status(sc);
473 1.3.2.2 martin
474 1.3.2.2 martin /* The driver can now take control from firmware. */
475 1.3.2.2 martin igc_get_hw_control(sc);
476 1.3.2.2 martin
477 1.3.2.2 martin aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
478 1.3.2.2 martin ether_sprintf(sc->hw.mac.addr));
479 1.3.2.2 martin
480 1.3.2.2 martin if (pmf_device_register(self, NULL, NULL))
481 1.3.2.2 martin pmf_class_network_register(self, &sc->sc_ec.ec_if);
482 1.3.2.2 martin else
483 1.3.2.2 martin aprint_error_dev(self, "couldn't establish power handler\n");
484 1.3.2.2 martin
485 1.3.2.2 martin return;
486 1.3.2.2 martin
487 1.3.2.2 martin err_late:
488 1.3.2.2 martin igc_release_hw_control(sc);
489 1.3.2.2 martin err_alloc_intr:
490 1.3.2.2 martin igc_free_interrupts(sc);
491 1.3.2.2 martin err_pci:
492 1.3.2.2 martin igc_free_pci_resources(sc);
493 1.3.2.2 martin kmem_free(sc->mta, IGC_MTA_LEN);
494 1.3.2.2 martin }
495 1.3.2.2 martin
496 1.3.2.2 martin /*********************************************************************
497 1.3.2.2 martin * Device removal routine
498 1.3.2.2 martin *
499 1.3.2.2 martin * The detach entry point is called when the driver is being removed.
500 1.3.2.2 martin * This routine stops the adapter and deallocates all the resources
501 1.3.2.2 martin * that were allocated for driver operation.
502 1.3.2.2 martin *
503 1.3.2.2 martin * return 0 on success, positive on failure
504 1.3.2.2 martin *********************************************************************/
505 1.3.2.2 martin static int
506 1.3.2.2 martin igc_detach(device_t self, int flags)
507 1.3.2.2 martin {
508 1.3.2.2 martin struct igc_softc *sc = device_private(self);
509 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
510 1.3.2.2 martin
511 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
512 1.3.2.2 martin igc_stop_locked(sc);
513 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
514 1.3.2.2 martin
515 1.3.2.2 martin igc_detach_counters(sc);
516 1.3.2.2 martin
517 1.3.2.2 martin igc_free_queues(sc);
518 1.3.2.2 martin
519 1.3.2.2 martin igc_phy_hw_reset(&sc->hw);
520 1.3.2.2 martin igc_release_hw_control(sc);
521 1.3.2.2 martin
522 1.3.2.2 martin ether_ifdetach(ifp);
523 1.3.2.2 martin if_detach(ifp);
524 1.3.2.2 martin ifmedia_fini(&sc->media);
525 1.3.2.2 martin
526 1.3.2.2 martin igc_free_interrupts(sc);
527 1.3.2.2 martin igc_free_pci_resources(sc);
528 1.3.2.2 martin kmem_free(sc->mta, IGC_MTA_LEN);
529 1.3.2.2 martin
530 1.3.2.2 martin mutex_destroy(&sc->sc_core_lock);
531 1.3.2.2 martin
532 1.3.2.2 martin return 0;
533 1.3.2.2 martin }
534 1.3.2.2 martin
535 1.3.2.2 martin static void
536 1.3.2.2 martin igc_identify_hardware(struct igc_softc *sc)
537 1.3.2.2 martin {
538 1.3.2.2 martin struct igc_osdep *os = &sc->osdep;
539 1.3.2.2 martin struct pci_attach_args *pa = &os->os_pa;
540 1.3.2.2 martin
541 1.3.2.2 martin /* Save off the information about this board. */
542 1.3.2.2 martin sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
543 1.3.2.2 martin
544 1.3.2.2 martin /* Do shared code init and setup. */
545 1.3.2.2 martin if (igc_set_mac_type(&sc->hw)) {
546 1.3.2.2 martin aprint_error_dev(sc->sc_dev, "unable to identify hardware\n");
547 1.3.2.2 martin return;
548 1.3.2.2 martin }
549 1.3.2.2 martin }
550 1.3.2.2 martin
551 1.3.2.2 martin static int
552 1.3.2.2 martin igc_allocate_pci_resources(struct igc_softc *sc)
553 1.3.2.2 martin {
554 1.3.2.2 martin struct igc_osdep *os = &sc->osdep;
555 1.3.2.2 martin struct pci_attach_args *pa = &os->os_pa;
556 1.3.2.2 martin
557 1.3.2.2 martin /*
558 1.3.2.2 martin * Enable bus mastering and memory-mapped I/O for sure.
559 1.3.2.2 martin */
560 1.3.2.2 martin pcireg_t csr =
561 1.3.2.2 martin pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
562 1.3.2.2 martin csr |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
563 1.3.2.2 martin pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
564 1.3.2.2 martin
565 1.3.2.2 martin const pcireg_t memtype =
566 1.3.2.2 martin pci_mapreg_type(pa->pa_pc, pa->pa_tag, IGC_PCIREG);
567 1.3.2.2 martin if (pci_mapreg_map(pa, IGC_PCIREG, memtype, 0, &os->os_memt,
568 1.3.2.2 martin &os->os_memh, &os->os_membase, &os->os_memsize)) {
569 1.3.2.2 martin aprint_error_dev(sc->sc_dev, "unable to map registers\n");
570 1.3.2.2 martin return ENXIO;
571 1.3.2.2 martin }
572 1.3.2.2 martin
573 1.3.2.2 martin sc->hw.hw_addr = os->os_membase;
574 1.3.2.2 martin sc->hw.back = os;
575 1.3.2.2 martin
576 1.3.2.2 martin return 0;
577 1.3.2.2 martin }
578 1.3.2.2 martin
579 1.3.2.2 martin static int __unused
580 1.3.2.2 martin igc_adjust_nqueues(struct igc_softc *sc)
581 1.3.2.2 martin {
582 1.3.2.2 martin struct pci_attach_args *pa = &sc->osdep.os_pa;
583 1.3.2.2 martin int nqueues = MIN(IGC_MAX_NQUEUES, ncpu);
584 1.3.2.2 martin
585 1.3.2.2 martin const int nmsix = pci_msix_count(pa->pa_pc, pa->pa_tag);
586 1.3.2.2 martin if (nmsix <= 1)
587 1.3.2.2 martin nqueues = 1;
588 1.3.2.2 martin else if (nmsix < nqueues + 1)
589 1.3.2.2 martin nqueues = nmsix - 1;
590 1.3.2.2 martin
591 1.3.2.2 martin return nqueues;
592 1.3.2.2 martin }
593 1.3.2.2 martin
594 1.3.2.2 martin static int
595 1.3.2.2 martin igc_allocate_interrupts(struct igc_softc *sc)
596 1.3.2.2 martin {
597 1.3.2.2 martin struct pci_attach_args *pa = &sc->osdep.os_pa;
598 1.3.2.2 martin int error;
599 1.3.2.2 martin
600 1.3.2.2 martin #ifndef IGC_DISABLE_MSIX
601 1.3.2.2 martin const int nqueues = igc_adjust_nqueues(sc);
602 1.3.2.2 martin if (nqueues > 1) {
603 1.3.2.2 martin sc->sc_nintrs = nqueues + 1;
604 1.3.2.2 martin error = pci_msix_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
605 1.3.2.2 martin if (!error) {
606 1.3.2.2 martin sc->sc_nqueues = nqueues;
607 1.3.2.2 martin sc->sc_intr_type = PCI_INTR_TYPE_MSIX;
608 1.3.2.2 martin return 0;
609 1.3.2.2 martin }
610 1.3.2.2 martin }
611 1.3.2.2 martin #endif
612 1.3.2.2 martin
613 1.3.2.2 martin /* fallback to MSI */
614 1.3.2.2 martin sc->sc_nintrs = sc->sc_nqueues = 1;
615 1.3.2.2 martin
616 1.3.2.2 martin #ifndef IGC_DISABLE_MSI
617 1.3.2.2 martin error = pci_msi_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
618 1.3.2.2 martin if (!error) {
619 1.3.2.2 martin sc->sc_intr_type = PCI_INTR_TYPE_MSI;
620 1.3.2.2 martin return 0;
621 1.3.2.2 martin }
622 1.3.2.2 martin #endif
623 1.3.2.2 martin
624 1.3.2.2 martin /* fallback to INTx */
625 1.3.2.2 martin
626 1.3.2.2 martin error = pci_intx_alloc(pa, &sc->sc_intrs);
627 1.3.2.2 martin if (!error) {
628 1.3.2.2 martin sc->sc_intr_type = PCI_INTR_TYPE_INTX;
629 1.3.2.2 martin return 0;
630 1.3.2.2 martin }
631 1.3.2.2 martin
632 1.3.2.2 martin return error;
633 1.3.2.2 martin }
634 1.3.2.2 martin
635 1.3.2.2 martin static int
636 1.3.2.2 martin igc_allocate_queues(struct igc_softc *sc)
637 1.3.2.2 martin {
638 1.3.2.2 martin device_t dev = sc->sc_dev;
639 1.3.2.2 martin int rxconf = 0, txconf = 0;
640 1.3.2.2 martin
641 1.3.2.2 martin /* Allocate the top level queue structs. */
642 1.3.2.2 martin sc->queues =
643 1.3.2.2 martin kmem_zalloc(sc->sc_nqueues * sizeof(struct igc_queue), KM_SLEEP);
644 1.3.2.2 martin
645 1.3.2.2 martin /* Allocate the TX ring. */
646 1.3.2.2 martin sc->tx_rings =
647 1.3.2.2 martin kmem_zalloc(sc->sc_nqueues * sizeof(struct tx_ring), KM_SLEEP);
648 1.3.2.2 martin
649 1.3.2.2 martin /* Allocate the RX ring. */
650 1.3.2.2 martin sc->rx_rings =
651 1.3.2.2 martin kmem_zalloc(sc->sc_nqueues * sizeof(struct rx_ring), KM_SLEEP);
652 1.3.2.2 martin
653 1.3.2.2 martin /* Set up the TX queues. */
654 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++, txconf++) {
655 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[iq];
656 1.3.2.2 martin const int tsize = roundup2(
657 1.3.2.2 martin sc->num_tx_desc * sizeof(union igc_adv_tx_desc),
658 1.3.2.2 martin IGC_DBA_ALIGN);
659 1.3.2.2 martin
660 1.3.2.2 martin txr->sc = sc;
661 1.3.2.2 martin txr->txr_igcq = &sc->queues[iq];
662 1.3.2.2 martin txr->me = iq;
663 1.3.2.2 martin if (igc_dma_malloc(sc, tsize, &txr->txdma)) {
664 1.3.2.2 martin aprint_error_dev(dev,
665 1.3.2.2 martin "unable to allocate TX descriptor\n");
666 1.3.2.2 martin goto fail;
667 1.3.2.2 martin }
668 1.3.2.2 martin txr->tx_base = (union igc_adv_tx_desc *)txr->txdma.dma_vaddr;
669 1.3.2.2 martin memset(txr->tx_base, 0, tsize);
670 1.3.2.2 martin }
671 1.3.2.2 martin
672 1.3.2.2 martin /* Prepare transmit descriptors and buffers. */
673 1.3.2.2 martin if (igc_setup_transmit_structures(sc)) {
674 1.3.2.2 martin aprint_error_dev(dev, "unable to setup transmit structures\n");
675 1.3.2.2 martin goto fail;
676 1.3.2.2 martin }
677 1.3.2.2 martin
678 1.3.2.2 martin /* Set up the RX queues. */
679 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++, rxconf++) {
680 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
681 1.3.2.2 martin const int rsize = roundup2(
682 1.3.2.2 martin sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
683 1.3.2.2 martin IGC_DBA_ALIGN);
684 1.3.2.2 martin
685 1.3.2.2 martin rxr->sc = sc;
686 1.3.2.2 martin rxr->rxr_igcq = &sc->queues[iq];
687 1.3.2.2 martin rxr->me = iq;
688 1.3.2.2 martin #ifdef OPENBSD
689 1.3.2.2 martin timeout_set(&rxr->rx_refill, igc_rxrefill, rxr);
690 1.3.2.2 martin #endif
691 1.3.2.2 martin if (igc_dma_malloc(sc, rsize, &rxr->rxdma)) {
692 1.3.2.2 martin aprint_error_dev(dev,
693 1.3.2.2 martin "unable to allocate RX descriptor\n");
694 1.3.2.2 martin goto fail;
695 1.3.2.2 martin }
696 1.3.2.2 martin rxr->rx_base = (union igc_adv_rx_desc *)rxr->rxdma.dma_vaddr;
697 1.3.2.2 martin memset(rxr->rx_base, 0, rsize);
698 1.3.2.2 martin }
699 1.3.2.2 martin
700 1.3.2.2 martin sc->rx_mbuf_sz = MCLBYTES;
701 1.3.2.2 martin /* Prepare receive descriptors and buffers. */
702 1.3.2.2 martin if (igc_setup_receive_structures(sc)) {
703 1.3.2.2 martin aprint_error_dev(sc->sc_dev,
704 1.3.2.2 martin "unable to setup receive structures\n");
705 1.3.2.2 martin goto fail;
706 1.3.2.2 martin }
707 1.3.2.2 martin
708 1.3.2.2 martin /* Set up the queue holding structs. */
709 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
710 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
711 1.3.2.2 martin
712 1.3.2.2 martin q->sc = sc;
713 1.3.2.2 martin q->txr = &sc->tx_rings[iq];
714 1.3.2.2 martin q->rxr = &sc->rx_rings[iq];
715 1.3.2.2 martin }
716 1.3.2.2 martin
717 1.3.2.2 martin return 0;
718 1.3.2.2 martin
719 1.3.2.2 martin fail:
720 1.3.2.2 martin for (struct rx_ring *rxr = sc->rx_rings; rxconf > 0; rxr++, rxconf--)
721 1.3.2.2 martin igc_dma_free(sc, &rxr->rxdma);
722 1.3.2.2 martin for (struct tx_ring *txr = sc->tx_rings; txconf > 0; txr++, txconf--)
723 1.3.2.2 martin igc_dma_free(sc, &txr->txdma);
724 1.3.2.2 martin
725 1.3.2.2 martin kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
726 1.3.2.2 martin sc->rx_rings = NULL;
727 1.3.2.2 martin kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
728 1.3.2.2 martin sc->tx_rings = NULL;
729 1.3.2.2 martin kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
730 1.3.2.2 martin sc->queues = NULL;
731 1.3.2.2 martin
732 1.3.2.2 martin return ENOMEM;
733 1.3.2.2 martin }
734 1.3.2.2 martin
735 1.3.2.2 martin static void
736 1.3.2.2 martin igc_free_pci_resources(struct igc_softc *sc)
737 1.3.2.2 martin {
738 1.3.2.2 martin struct igc_osdep *os = &sc->osdep;
739 1.3.2.2 martin
740 1.3.2.2 martin if (os->os_membase != 0)
741 1.3.2.2 martin bus_space_unmap(os->os_memt, os->os_memh, os->os_memsize);
742 1.3.2.2 martin os->os_membase = 0;
743 1.3.2.2 martin }
744 1.3.2.2 martin
745 1.3.2.2 martin static void
746 1.3.2.2 martin igc_free_interrupts(struct igc_softc *sc)
747 1.3.2.2 martin {
748 1.3.2.2 martin struct pci_attach_args *pa = &sc->osdep.os_pa;
749 1.3.2.2 martin pci_chipset_tag_t pc = pa->pa_pc;
750 1.3.2.2 martin
751 1.3.2.2 martin for (int i = 0; i < sc->sc_nintrs; i++) {
752 1.3.2.2 martin if (sc->sc_ihs[i] != NULL) {
753 1.3.2.2 martin pci_intr_disestablish(pc, sc->sc_ihs[i]);
754 1.3.2.2 martin sc->sc_ihs[i] = NULL;
755 1.3.2.2 martin }
756 1.3.2.2 martin }
757 1.3.2.2 martin pci_intr_release(pc, sc->sc_intrs, sc->sc_nintrs);
758 1.3.2.2 martin }
759 1.3.2.2 martin
760 1.3.2.2 martin static void
761 1.3.2.2 martin igc_free_queues(struct igc_softc *sc)
762 1.3.2.2 martin {
763 1.3.2.2 martin
764 1.3.2.2 martin igc_free_receive_structures(sc);
765 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
766 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
767 1.3.2.2 martin
768 1.3.2.2 martin igc_dma_free(sc, &rxr->rxdma);
769 1.3.2.2 martin }
770 1.3.2.2 martin
771 1.3.2.2 martin igc_free_transmit_structures(sc);
772 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
773 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[iq];
774 1.3.2.2 martin
775 1.3.2.2 martin igc_dma_free(sc, &txr->txdma);
776 1.3.2.2 martin }
777 1.3.2.2 martin
778 1.3.2.2 martin kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
779 1.3.2.2 martin kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
780 1.3.2.2 martin kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
781 1.3.2.2 martin }
782 1.3.2.2 martin
783 1.3.2.2 martin /*********************************************************************
784 1.3.2.2 martin *
785 1.3.2.2 martin * Initialize the hardware to a configuration as specified by the
786 1.3.2.2 martin * adapter structure.
787 1.3.2.2 martin *
788 1.3.2.2 martin **********************************************************************/
789 1.3.2.2 martin static void
790 1.3.2.2 martin igc_reset(struct igc_softc *sc)
791 1.3.2.2 martin {
792 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
793 1.3.2.2 martin
794 1.3.2.2 martin /* Let the firmware know the OS is in control */
795 1.3.2.2 martin igc_get_hw_control(sc);
796 1.3.2.2 martin
797 1.3.2.2 martin /*
798 1.3.2.2 martin * Packet Buffer Allocation (PBA)
799 1.3.2.2 martin * Writing PBA sets the receive portion of the buffer
800 1.3.2.2 martin * the remainder is used for the transmit buffer.
801 1.3.2.2 martin */
802 1.3.2.2 martin const uint32_t pba = IGC_PBA_34K;
803 1.3.2.2 martin
804 1.3.2.2 martin /*
805 1.3.2.2 martin * These parameters control the automatic generation (Tx) and
806 1.3.2.2 martin * response (Rx) to Ethernet PAUSE frames.
807 1.3.2.2 martin * - High water mark should allow for at least two frames to be
808 1.3.2.2 martin * received after sending an XOFF.
809 1.3.2.2 martin * - Low water mark works best when it is very near the high water mark.
810 1.3.2.2 martin * This allows the receiver to restart by sending XON when it has
811 1.3.2.2 martin * drained a bit. Here we use an arbitrary value of 1500 which will
812 1.3.2.2 martin * restart after one full frame is pulled from the buffer. There
813 1.3.2.2 martin * could be several smaller frames in the buffer and if so they will
814 1.3.2.2 martin * not trigger the XON until their total number reduces the buffer
815 1.3.2.2 martin * by 1500.
816 1.3.2.2 martin * - The pause time is fairly large at 1000 x 512ns = 512 usec.
817 1.3.2.2 martin */
818 1.3.2.2 martin const uint16_t rx_buffer_size = (pba & 0xffff) << 10;
819 1.3.2.2 martin
820 1.3.2.2 martin hw->fc.high_water = rx_buffer_size -
821 1.3.2.2 martin roundup2(sc->hw.mac.max_frame_size, 1024);
822 1.3.2.2 martin /* 16-byte granularity */
823 1.3.2.2 martin hw->fc.low_water = hw->fc.high_water - 16;
824 1.3.2.2 martin
825 1.3.2.2 martin if (sc->fc) /* locally set flow control value? */
826 1.3.2.2 martin hw->fc.requested_mode = sc->fc;
827 1.3.2.2 martin else
828 1.3.2.2 martin hw->fc.requested_mode = igc_fc_full;
829 1.3.2.2 martin
830 1.3.2.2 martin hw->fc.pause_time = IGC_FC_PAUSE_TIME;
831 1.3.2.2 martin
832 1.3.2.2 martin hw->fc.send_xon = true;
833 1.3.2.2 martin
834 1.3.2.2 martin /* Issue a global reset */
835 1.3.2.2 martin igc_reset_hw(hw);
836 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_WUC, 0);
837 1.3.2.2 martin
838 1.3.2.2 martin /* and a re-init */
839 1.3.2.2 martin if (igc_init_hw(hw) < 0) {
840 1.3.2.2 martin aprint_error_dev(sc->sc_dev, "unable to reset hardware\n");
841 1.3.2.2 martin return;
842 1.3.2.2 martin }
843 1.3.2.2 martin
844 1.3.2.2 martin /* Setup DMA Coalescing */
845 1.3.2.2 martin igc_init_dmac(sc, pba);
846 1.3.2.2 martin
847 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
848 1.3.2.2 martin igc_get_phy_info(hw);
849 1.3.2.2 martin igc_check_for_link(hw);
850 1.3.2.2 martin }
851 1.3.2.2 martin
852 1.3.2.2 martin /*********************************************************************
853 1.3.2.2 martin *
854 1.3.2.2 martin * Initialize the DMA Coalescing feature
855 1.3.2.2 martin *
856 1.3.2.2 martin **********************************************************************/
857 1.3.2.2 martin static void
858 1.3.2.2 martin igc_init_dmac(struct igc_softc *sc, uint32_t pba)
859 1.3.2.2 martin {
860 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
861 1.3.2.2 martin const uint16_t max_frame_size = sc->hw.mac.max_frame_size;
862 1.3.2.2 martin uint32_t reg, status;
863 1.3.2.2 martin
864 1.3.2.2 martin if (sc->dmac == 0) { /* Disabling it */
865 1.3.2.2 martin reg = ~IGC_DMACR_DMAC_EN; /* XXXRO */
866 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_DMACR, reg);
867 1.3.2.2 martin DPRINTF(MISC, "DMA coalescing disabled\n");
868 1.3.2.2 martin return;
869 1.3.2.2 martin } else {
870 1.3.2.2 martin device_printf(sc->sc_dev, "DMA coalescing enabled\n");
871 1.3.2.2 martin }
872 1.3.2.2 martin
873 1.3.2.2 martin /* Set starting threshold */
874 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
875 1.3.2.2 martin
876 1.3.2.2 martin uint16_t hwm = 64 * pba - max_frame_size / 16;
877 1.3.2.2 martin if (hwm < 64 * (pba - 6))
878 1.3.2.2 martin hwm = 64 * (pba - 6);
879 1.3.2.2 martin reg = IGC_READ_REG(hw, IGC_FCRTC);
880 1.3.2.2 martin reg &= ~IGC_FCRTC_RTH_COAL_MASK;
881 1.3.2.2 martin reg |= (hwm << IGC_FCRTC_RTH_COAL_SHIFT) & IGC_FCRTC_RTH_COAL_MASK;
882 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_FCRTC, reg);
883 1.3.2.2 martin
884 1.3.2.2 martin uint32_t dmac = pba - max_frame_size / 512;
885 1.3.2.2 martin if (dmac < pba - 10)
886 1.3.2.2 martin dmac = pba - 10;
887 1.3.2.2 martin reg = IGC_READ_REG(hw, IGC_DMACR);
888 1.3.2.2 martin reg &= ~IGC_DMACR_DMACTHR_MASK;
889 1.3.2.2 martin reg |= (dmac << IGC_DMACR_DMACTHR_SHIFT) & IGC_DMACR_DMACTHR_MASK;
890 1.3.2.2 martin
891 1.3.2.2 martin /* transition to L0x or L1 if available..*/
892 1.3.2.2 martin reg |= IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK;
893 1.3.2.2 martin
894 1.3.2.2 martin /* Check if status is 2.5Gb backplane connection
895 1.3.2.2 martin * before configuration of watchdog timer, which is
896 1.3.2.2 martin * in msec values in 12.8usec intervals
897 1.3.2.2 martin * watchdog timer= msec values in 32usec intervals
898 1.3.2.2 martin * for non 2.5Gb connection
899 1.3.2.2 martin */
900 1.3.2.2 martin status = IGC_READ_REG(hw, IGC_STATUS);
901 1.3.2.2 martin if ((status & IGC_STATUS_2P5_SKU) &&
902 1.3.2.2 martin !(status & IGC_STATUS_2P5_SKU_OVER))
903 1.3.2.2 martin reg |= (sc->dmac * 5) >> 6;
904 1.3.2.2 martin else
905 1.3.2.2 martin reg |= sc->dmac >> 5;
906 1.3.2.2 martin
907 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_DMACR, reg);
908 1.3.2.2 martin
909 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
910 1.3.2.2 martin
911 1.3.2.2 martin /* Set the interval before transition */
912 1.3.2.2 martin reg = IGC_READ_REG(hw, IGC_DMCTLX);
913 1.3.2.2 martin reg |= IGC_DMCTLX_DCFLUSH_DIS;
914 1.3.2.2 martin
915 1.3.2.2 martin /*
916 1.3.2.2 martin * in 2.5Gb connection, TTLX unit is 0.4 usec
917 1.3.2.2 martin * which is 0x4*2 = 0xA. But delay is still 4 usec
918 1.3.2.2 martin */
919 1.3.2.2 martin status = IGC_READ_REG(hw, IGC_STATUS);
920 1.3.2.2 martin if ((status & IGC_STATUS_2P5_SKU) &&
921 1.3.2.2 martin !(status & IGC_STATUS_2P5_SKU_OVER))
922 1.3.2.2 martin reg |= 0xA;
923 1.3.2.2 martin else
924 1.3.2.2 martin reg |= 0x4;
925 1.3.2.2 martin
926 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
927 1.3.2.2 martin
928 1.3.2.2 martin /* free space in tx packet buffer to wake from DMA coal */
929 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_DMCTXTH,
930 1.3.2.2 martin (IGC_TXPBSIZE - (2 * max_frame_size)) >> 6);
931 1.3.2.2 martin
932 1.3.2.2 martin /* make low power state decision controlled by DMA coal */
933 1.3.2.2 martin reg = IGC_READ_REG(hw, IGC_PCIEMISC);
934 1.3.2.2 martin reg &= ~IGC_PCIEMISC_LX_DECISION;
935 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
936 1.3.2.2 martin }
937 1.3.2.2 martin
938 1.3.2.2 martin static int
939 1.3.2.2 martin igc_setup_interrupts(struct igc_softc *sc)
940 1.3.2.2 martin {
941 1.3.2.2 martin int error;
942 1.3.2.2 martin
943 1.3.2.2 martin switch (sc->sc_intr_type) {
944 1.3.2.2 martin case PCI_INTR_TYPE_MSIX:
945 1.3.2.2 martin error = igc_setup_msix(sc);
946 1.3.2.2 martin break;
947 1.3.2.2 martin case PCI_INTR_TYPE_MSI:
948 1.3.2.2 martin error = igc_setup_msi(sc);
949 1.3.2.2 martin break;
950 1.3.2.2 martin case PCI_INTR_TYPE_INTX:
951 1.3.2.2 martin error = igc_setup_intx(sc);
952 1.3.2.2 martin break;
953 1.3.2.2 martin default:
954 1.3.2.2 martin panic("%s: invalid interrupt type: %d",
955 1.3.2.2 martin device_xname(sc->sc_dev), sc->sc_intr_type);
956 1.3.2.2 martin }
957 1.3.2.2 martin
958 1.3.2.2 martin return error;
959 1.3.2.2 martin }
960 1.3.2.2 martin
961 1.3.2.2 martin static void
962 1.3.2.2 martin igc_attach_counters(struct igc_softc *sc)
963 1.3.2.2 martin {
964 1.3.2.2 martin #ifdef IGC_EVENT_COUNTERS
965 1.3.2.2 martin
966 1.3.2.2 martin /* Global counters */
967 1.3.2.2 martin sc->sc_global_evcnts = kmem_zalloc(
968 1.3.2.2 martin IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts[0]), KM_SLEEP);
969 1.3.2.2 martin
970 1.3.2.2 martin for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++) {
971 1.3.2.2 martin evcnt_attach_dynamic(&sc->sc_global_evcnts[cnt],
972 1.3.2.2 martin igc_global_counters[cnt].type, NULL,
973 1.3.2.2 martin device_xname(sc->sc_dev), igc_global_counters[cnt].name);
974 1.3.2.2 martin }
975 1.3.2.2 martin
976 1.3.2.2 martin /* Driver counters */
977 1.3.2.2 martin sc->sc_driver_evcnts = kmem_zalloc(
978 1.3.2.2 martin IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts[0]), KM_SLEEP);
979 1.3.2.2 martin
980 1.3.2.2 martin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
981 1.3.2.2 martin evcnt_attach_dynamic(&sc->sc_driver_evcnts[cnt],
982 1.3.2.2 martin igc_driver_counters[cnt].type, NULL,
983 1.3.2.2 martin device_xname(sc->sc_dev), igc_driver_counters[cnt].name);
984 1.3.2.2 martin }
985 1.3.2.2 martin
986 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
987 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
988 1.3.2.2 martin
989 1.3.2.2 martin q->igcq_driver_counters = kmem_zalloc(
990 1.3.2.2 martin IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]),
991 1.3.2.2 martin KM_SLEEP);
992 1.3.2.2 martin }
993 1.3.2.2 martin
994 1.3.2.2 martin /* Queue counters */
995 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
996 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
997 1.3.2.2 martin
998 1.3.2.2 martin snprintf(q->igcq_queue_evname, sizeof(q->igcq_queue_evname),
999 1.3.2.2 martin "%s q%d", device_xname(sc->sc_dev), iq);
1000 1.3.2.2 martin
1001 1.3.2.2 martin q->igcq_queue_evcnts = kmem_zalloc(
1002 1.3.2.2 martin IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]),
1003 1.3.2.2 martin KM_SLEEP);
1004 1.3.2.2 martin
1005 1.3.2.2 martin for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++) {
1006 1.3.2.2 martin evcnt_attach_dynamic(&q->igcq_queue_evcnts[cnt],
1007 1.3.2.2 martin igc_queue_counters[cnt].type, NULL,
1008 1.3.2.2 martin q->igcq_queue_evname, igc_queue_counters[cnt].name);
1009 1.3.2.2 martin }
1010 1.3.2.2 martin }
1011 1.3.2.2 martin
1012 1.3.2.2 martin /* MAC counters */
1013 1.3.2.2 martin snprintf(sc->sc_mac_evname, sizeof(sc->sc_mac_evname),
1014 1.3.2.2 martin "%s Mac Statistics", device_xname(sc->sc_dev));
1015 1.3.2.2 martin
1016 1.3.2.2 martin sc->sc_mac_evcnts = kmem_zalloc(
1017 1.3.2.2 martin IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]), KM_SLEEP);
1018 1.3.2.2 martin
1019 1.3.2.2 martin for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1020 1.3.2.2 martin evcnt_attach_dynamic(&sc->sc_mac_evcnts[cnt], EVCNT_TYPE_MISC,
1021 1.3.2.2 martin NULL, sc->sc_mac_evname, igc_mac_counters[cnt].name);
1022 1.3.2.2 martin }
1023 1.3.2.2 martin #endif
1024 1.3.2.2 martin }
1025 1.3.2.2 martin
1026 1.3.2.2 martin static void
1027 1.3.2.2 martin igc_detach_counters(struct igc_softc *sc)
1028 1.3.2.2 martin {
1029 1.3.2.2 martin #ifdef IGC_EVENT_COUNTERS
1030 1.3.2.2 martin
1031 1.3.2.2 martin /* Global counters */
1032 1.3.2.2 martin for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
1033 1.3.2.2 martin evcnt_detach(&sc->sc_global_evcnts[cnt]);
1034 1.3.2.2 martin
1035 1.3.2.2 martin kmem_free(sc->sc_global_evcnts,
1036 1.3.2.2 martin IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts));
1037 1.3.2.2 martin
1038 1.3.2.2 martin /* Driver counters */
1039 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1040 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
1041 1.3.2.2 martin
1042 1.3.2.2 martin kmem_free(q->igcq_driver_counters,
1043 1.3.2.2 martin IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]));
1044 1.3.2.2 martin }
1045 1.3.2.2 martin
1046 1.3.2.2 martin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1047 1.3.2.2 martin evcnt_detach(&sc->sc_driver_evcnts[cnt]);
1048 1.3.2.2 martin
1049 1.3.2.2 martin kmem_free(sc->sc_driver_evcnts,
1050 1.3.2.2 martin IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts));
1051 1.3.2.2 martin
1052 1.3.2.2 martin /* Queue counters */
1053 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1054 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
1055 1.3.2.2 martin
1056 1.3.2.2 martin for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
1057 1.3.2.2 martin evcnt_detach(&q->igcq_queue_evcnts[cnt]);
1058 1.3.2.2 martin
1059 1.3.2.2 martin kmem_free(q->igcq_queue_evcnts,
1060 1.3.2.2 martin IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]));
1061 1.3.2.2 martin }
1062 1.3.2.2 martin
1063 1.3.2.2 martin /* MAC statistics */
1064 1.3.2.2 martin for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++)
1065 1.3.2.2 martin evcnt_detach(&sc->sc_mac_evcnts[cnt]);
1066 1.3.2.2 martin
1067 1.3.2.2 martin kmem_free(sc->sc_mac_evcnts,
1068 1.3.2.2 martin IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]));
1069 1.3.2.2 martin #endif
1070 1.3.2.2 martin }
1071 1.3.2.2 martin
1072 1.3.2.2 martin /*
1073 1.3.2.2 martin * XXX
1074 1.3.2.2 martin * FreeBSD uses 4-byte-wise read for 64-bit counters, while Linux just
1075 1.3.2.2 martin * drops hi words.
1076 1.3.2.2 martin */
1077 1.3.2.2 martin static inline uint64_t __unused
1078 1.3.2.2 martin igc_read_mac_counter(struct igc_hw *hw, bus_size_t reg, bool is64)
1079 1.3.2.2 martin {
1080 1.3.2.2 martin uint64_t val;
1081 1.3.2.2 martin
1082 1.3.2.2 martin val = IGC_READ_REG(hw, reg);
1083 1.3.2.2 martin if (is64)
1084 1.3.2.2 martin val += ((uint64_t)IGC_READ_REG(hw, reg + 4)) << 32;
1085 1.3.2.2 martin return val;
1086 1.3.2.2 martin }
1087 1.3.2.2 martin
1088 1.3.2.2 martin static void
1089 1.3.2.2 martin igc_update_counters(struct igc_softc *sc)
1090 1.3.2.2 martin {
1091 1.3.2.2 martin #ifdef IGC_EVENT_COUNTERS
1092 1.3.2.2 martin
1093 1.3.2.2 martin /* Global counters: nop */
1094 1.3.2.2 martin
1095 1.3.2.2 martin /* Driver counters */
1096 1.3.2.2 martin uint64_t sum[IGC_DRIVER_COUNTERS];
1097 1.3.2.2 martin
1098 1.3.2.2 martin memset(sum, 0, sizeof(sum));
1099 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1100 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
1101 1.3.2.2 martin
1102 1.3.2.2 martin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
1103 1.3.2.2 martin sum[cnt] += IGC_QUEUE_DRIVER_COUNTER_VAL(q, cnt);
1104 1.3.2.2 martin IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
1105 1.3.2.2 martin }
1106 1.3.2.2 martin }
1107 1.3.2.2 martin
1108 1.3.2.2 martin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1109 1.3.2.2 martin IGC_DRIVER_COUNTER_ADD(sc, cnt, sum[cnt]);
1110 1.3.2.2 martin
1111 1.3.2.2 martin /* Queue counters: nop */
1112 1.3.2.2 martin
1113 1.3.2.2 martin /* Mac statistics */
1114 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
1115 1.3.2.4 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
1116 1.3.2.4 martin uint64_t iqdrops = 0;
1117 1.3.2.2 martin
1118 1.3.2.2 martin for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1119 1.3.2.4 martin uint64_t val;
1120 1.3.2.4 martin bus_size_t regaddr = igc_mac_counters[cnt].reg;
1121 1.3.2.4 martin
1122 1.3.2.4 martin val = igc_read_mac_counter(hw, regaddr,
1123 1.3.2.4 martin igc_mac_counters[cnt].is64);
1124 1.3.2.4 martin IGC_MAC_COUNTER_ADD(sc, cnt, val);
1125 1.3.2.4 martin /* XXX Count MPC to iqdrops. */
1126 1.3.2.4 martin if (regaddr == IGC_MPC)
1127 1.3.2.4 martin iqdrops += val;
1128 1.3.2.4 martin }
1129 1.3.2.4 martin
1130 1.3.2.4 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1131 1.3.2.4 martin uint32_t val;
1132 1.3.2.4 martin
1133 1.3.2.4 martin /* XXX RQDPC should be visible via evcnt(9). */
1134 1.3.2.4 martin val = IGC_READ_REG(hw, IGC_RQDPC(iq));
1135 1.3.2.4 martin
1136 1.3.2.4 martin /* RQDPC is not cleard on read. */
1137 1.3.2.4 martin if (val != 0)
1138 1.3.2.4 martin IGC_WRITE_REG(hw, IGC_RQDPC(iq), 0);
1139 1.3.2.4 martin iqdrops += val;
1140 1.3.2.2 martin }
1141 1.3.2.4 martin
1142 1.3.2.4 martin if (iqdrops != 0)
1143 1.3.2.4 martin if_statadd(ifp, if_iqdrops, iqdrops);
1144 1.3.2.2 martin #endif
1145 1.3.2.2 martin }
1146 1.3.2.2 martin
1147 1.3.2.2 martin static void
1148 1.3.2.2 martin igc_clear_counters(struct igc_softc *sc)
1149 1.3.2.2 martin {
1150 1.3.2.2 martin #ifdef IGC_EVENT_COUNTERS
1151 1.3.2.2 martin
1152 1.3.2.2 martin /* Global counters */
1153 1.3.2.2 martin for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
1154 1.3.2.2 martin IGC_GLOBAL_COUNTER_STORE(sc, cnt, 0);
1155 1.3.2.2 martin
1156 1.3.2.2 martin /* Driver counters */
1157 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1158 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
1159 1.3.2.2 martin
1160 1.3.2.2 martin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1161 1.3.2.2 martin IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
1162 1.3.2.2 martin }
1163 1.3.2.2 martin
1164 1.3.2.2 martin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1165 1.3.2.2 martin IGC_DRIVER_COUNTER_STORE(sc, cnt, 0);
1166 1.3.2.2 martin
1167 1.3.2.2 martin /* Queue counters */
1168 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1169 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
1170 1.3.2.2 martin
1171 1.3.2.2 martin for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
1172 1.3.2.2 martin IGC_QUEUE_COUNTER_STORE(q, cnt, 0);
1173 1.3.2.2 martin }
1174 1.3.2.2 martin
1175 1.3.2.2 martin /* Mac statistics */
1176 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
1177 1.3.2.2 martin
1178 1.3.2.2 martin for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1179 1.3.2.2 martin (void)igc_read_mac_counter(hw, igc_mac_counters[cnt].reg,
1180 1.3.2.2 martin igc_mac_counters[cnt].is64);
1181 1.3.2.2 martin IGC_MAC_COUNTER_STORE(sc, cnt, 0);
1182 1.3.2.2 martin }
1183 1.3.2.2 martin #endif
1184 1.3.2.2 martin }
1185 1.3.2.2 martin
1186 1.3.2.2 martin static int
1187 1.3.2.2 martin igc_setup_msix(struct igc_softc *sc)
1188 1.3.2.2 martin {
1189 1.3.2.2 martin pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1190 1.3.2.2 martin device_t dev = sc->sc_dev;
1191 1.3.2.2 martin pci_intr_handle_t *intrs;
1192 1.3.2.2 martin void **ihs;
1193 1.3.2.2 martin const char *intrstr;
1194 1.3.2.2 martin char intrbuf[PCI_INTRSTR_LEN];
1195 1.3.2.2 martin char xnamebuf[MAX(32, MAXCOMLEN)];
1196 1.3.2.2 martin int iq, error;
1197 1.3.2.2 martin
1198 1.3.2.2 martin for (iq = 0, intrs = sc->sc_intrs, ihs = sc->sc_ihs;
1199 1.3.2.2 martin iq < sc->sc_nqueues; iq++, intrs++, ihs++) {
1200 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
1201 1.3.2.2 martin
1202 1.3.2.2 martin snprintf(xnamebuf, sizeof(xnamebuf), "%s: txrx %d",
1203 1.3.2.2 martin device_xname(dev), iq);
1204 1.3.2.2 martin
1205 1.3.2.2 martin intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
1206 1.3.2.2 martin
1207 1.3.2.2 martin pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
1208 1.3.2.2 martin *ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
1209 1.3.2.2 martin igc_intr_queue, q, xnamebuf);
1210 1.3.2.2 martin if (*ihs == NULL) {
1211 1.3.2.2 martin aprint_error_dev(dev,
1212 1.3.2.2 martin "unable to establish txrx interrupt at %s\n",
1213 1.3.2.2 martin intrstr);
1214 1.3.2.2 martin return ENOBUFS;
1215 1.3.2.2 martin }
1216 1.3.2.2 martin aprint_normal_dev(dev, "txrx interrupting at %s\n", intrstr);
1217 1.3.2.2 martin
1218 1.3.2.2 martin kcpuset_t *affinity;
1219 1.3.2.2 martin kcpuset_create(&affinity, true);
1220 1.3.2.2 martin kcpuset_set(affinity, iq % ncpu);
1221 1.3.2.2 martin error = interrupt_distribute(*ihs, affinity, NULL);
1222 1.3.2.2 martin if (error) {
1223 1.3.2.2 martin aprint_normal_dev(dev,
1224 1.3.2.2 martin "%s: unable to change affinity, use default CPU\n",
1225 1.3.2.2 martin intrstr);
1226 1.3.2.2 martin }
1227 1.3.2.2 martin kcpuset_destroy(affinity);
1228 1.3.2.2 martin
1229 1.3.2.2 martin q->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1230 1.3.2.2 martin igc_handle_queue, q);
1231 1.3.2.2 martin if (q->igcq_si == NULL) {
1232 1.3.2.2 martin aprint_error_dev(dev,
1233 1.3.2.2 martin "%s: unable to establish softint\n", intrstr);
1234 1.3.2.2 martin return ENOBUFS;
1235 1.3.2.2 martin }
1236 1.3.2.2 martin
1237 1.3.2.2 martin q->msix = iq;
1238 1.3.2.2 martin q->eims = 1 << iq;
1239 1.3.2.2 martin }
1240 1.3.2.2 martin
1241 1.3.2.2 martin snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
1242 1.3.2.2 martin error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
1243 1.3.2.2 martin igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
1244 1.3.2.2 martin WQ_PERCPU | WQ_MPSAFE);
1245 1.3.2.2 martin if (error) {
1246 1.3.2.2 martin aprint_error_dev(dev, "workqueue_create failed\n");
1247 1.3.2.2 martin return ENOBUFS;
1248 1.3.2.2 martin }
1249 1.3.2.2 martin sc->sc_txrx_workqueue = false;
1250 1.3.2.2 martin
1251 1.3.2.2 martin intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
1252 1.3.2.2 martin snprintf(xnamebuf, sizeof(xnamebuf), "%s: link", device_xname(dev));
1253 1.3.2.2 martin pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
1254 1.3.2.2 martin *ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
1255 1.3.2.2 martin igc_intr_link, sc, xnamebuf);
1256 1.3.2.2 martin if (*ihs == NULL) {
1257 1.3.2.2 martin aprint_error_dev(dev,
1258 1.3.2.2 martin "unable to establish link interrupt at %s\n", intrstr);
1259 1.3.2.2 martin return ENOBUFS;
1260 1.3.2.2 martin }
1261 1.3.2.2 martin aprint_normal_dev(dev, "link interrupting at %s\n", intrstr);
1262 1.3.2.2 martin /* use later in igc_configure_queues() */
1263 1.3.2.2 martin sc->linkvec = iq;
1264 1.3.2.2 martin
1265 1.3.2.2 martin return 0;
1266 1.3.2.2 martin }
1267 1.3.2.2 martin
1268 1.3.2.2 martin static int
1269 1.3.2.2 martin igc_setup_msi(struct igc_softc *sc)
1270 1.3.2.2 martin {
1271 1.3.2.2 martin pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1272 1.3.2.2 martin device_t dev = sc->sc_dev;
1273 1.3.2.2 martin pci_intr_handle_t *intr = sc->sc_intrs;
1274 1.3.2.2 martin void **ihs = sc->sc_ihs;
1275 1.3.2.2 martin const char *intrstr;
1276 1.3.2.2 martin char intrbuf[PCI_INTRSTR_LEN];
1277 1.3.2.2 martin char xnamebuf[MAX(32, MAXCOMLEN)];
1278 1.3.2.2 martin int error;
1279 1.3.2.2 martin
1280 1.3.2.2 martin intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
1281 1.3.2.2 martin
1282 1.3.2.2 martin snprintf(xnamebuf, sizeof(xnamebuf), "%s: msi", device_xname(dev));
1283 1.3.2.2 martin pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
1284 1.3.2.2 martin *ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
1285 1.3.2.2 martin igc_intr, sc, xnamebuf);
1286 1.3.2.2 martin if (*ihs == NULL) {
1287 1.3.2.2 martin aprint_error_dev(dev,
1288 1.3.2.2 martin "unable to establish interrupt at %s\n", intrstr);
1289 1.3.2.2 martin return ENOBUFS;
1290 1.3.2.2 martin }
1291 1.3.2.2 martin aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
1292 1.3.2.2 martin
1293 1.3.2.2 martin struct igc_queue *iq = sc->queues;
1294 1.3.2.2 martin iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1295 1.3.2.2 martin igc_handle_queue, iq);
1296 1.3.2.2 martin if (iq->igcq_si == NULL) {
1297 1.3.2.2 martin aprint_error_dev(dev,
1298 1.3.2.2 martin "%s: unable to establish softint\n", intrstr);
1299 1.3.2.2 martin return ENOBUFS;
1300 1.3.2.2 martin }
1301 1.3.2.2 martin
1302 1.3.2.2 martin snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
1303 1.3.2.2 martin error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
1304 1.3.2.2 martin igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
1305 1.3.2.2 martin WQ_PERCPU | WQ_MPSAFE);
1306 1.3.2.2 martin if (error) {
1307 1.3.2.2 martin aprint_error_dev(dev, "workqueue_create failed\n");
1308 1.3.2.2 martin return ENOBUFS;
1309 1.3.2.2 martin }
1310 1.3.2.2 martin sc->sc_txrx_workqueue = false;
1311 1.3.2.2 martin
1312 1.3.2.2 martin sc->queues[0].msix = 0;
1313 1.3.2.2 martin sc->linkvec = 0;
1314 1.3.2.2 martin
1315 1.3.2.2 martin return 0;
1316 1.3.2.2 martin }
1317 1.3.2.2 martin
1318 1.3.2.2 martin static int
1319 1.3.2.2 martin igc_setup_intx(struct igc_softc *sc)
1320 1.3.2.2 martin {
1321 1.3.2.2 martin pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1322 1.3.2.2 martin device_t dev = sc->sc_dev;
1323 1.3.2.2 martin pci_intr_handle_t *intr = sc->sc_intrs;
1324 1.3.2.2 martin void **ihs = sc->sc_ihs;
1325 1.3.2.2 martin const char *intrstr;
1326 1.3.2.2 martin char intrbuf[PCI_INTRSTR_LEN];
1327 1.3.2.2 martin char xnamebuf[32];
1328 1.3.2.2 martin
1329 1.3.2.2 martin intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
1330 1.3.2.2 martin
1331 1.3.2.2 martin snprintf(xnamebuf, sizeof(xnamebuf), "%s:intx", device_xname(dev));
1332 1.3.2.2 martin pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
1333 1.3.2.2 martin *ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
1334 1.3.2.2 martin igc_intr, sc, xnamebuf);
1335 1.3.2.2 martin if (*ihs == NULL) {
1336 1.3.2.2 martin aprint_error_dev(dev,
1337 1.3.2.2 martin "unable to establish interrupt at %s\n", intrstr);
1338 1.3.2.2 martin return ENOBUFS;
1339 1.3.2.2 martin }
1340 1.3.2.2 martin aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
1341 1.3.2.2 martin
1342 1.3.2.2 martin struct igc_queue *iq = sc->queues;
1343 1.3.2.2 martin iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1344 1.3.2.2 martin igc_handle_queue, iq);
1345 1.3.2.2 martin if (iq->igcq_si == NULL) {
1346 1.3.2.2 martin aprint_error_dev(dev,
1347 1.3.2.2 martin "%s: unable to establish softint\n", intrstr);
1348 1.3.2.2 martin return ENOBUFS;
1349 1.3.2.2 martin }
1350 1.3.2.2 martin
1351 1.3.2.2 martin /* create workqueue? */
1352 1.3.2.2 martin sc->sc_txrx_workqueue = false;
1353 1.3.2.2 martin
1354 1.3.2.2 martin sc->queues[0].msix = 0;
1355 1.3.2.2 martin sc->linkvec = 0;
1356 1.3.2.2 martin
1357 1.3.2.2 martin return 0;
1358 1.3.2.2 martin }
1359 1.3.2.2 martin
1360 1.3.2.2 martin static int
1361 1.3.2.2 martin igc_dma_malloc(struct igc_softc *sc, bus_size_t size, struct igc_dma_alloc *dma)
1362 1.3.2.2 martin {
1363 1.3.2.2 martin struct igc_osdep *os = &sc->osdep;
1364 1.3.2.2 martin
1365 1.3.2.2 martin dma->dma_tag = os->os_dmat;
1366 1.3.2.2 martin
1367 1.3.2.2 martin if (bus_dmamap_create(dma->dma_tag, size, 1, size, 0,
1368 1.3.2.2 martin BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->dma_map))
1369 1.3.2.2 martin return 1;
1370 1.3.2.2 martin if (bus_dmamem_alloc(dma->dma_tag, size, PAGE_SIZE, 0, &dma->dma_seg,
1371 1.3.2.2 martin 1, &dma->dma_nseg, BUS_DMA_WAITOK))
1372 1.3.2.2 martin goto destroy;
1373 1.3.2.2 martin /*
1374 1.3.2.2 martin * XXXRO
1375 1.3.2.2 martin *
1376 1.3.2.2 martin * Coherent mapping for descriptors is required for now.
1377 1.3.2.2 martin *
1378 1.3.2.2 martin * Both TX and RX descriptors are 16-byte length, which is shorter
1379 1.3.2.2 martin * than dcache lines on modern CPUs. Therefore, sync for a descriptor
1380 1.3.2.2 martin * may overwrite DMA read for descriptors in the same cache line.
1381 1.3.2.2 martin *
1382 1.3.2.2 martin * Can't we avoid this by use cache-line-aligned descriptors at once?
1383 1.3.2.2 martin */
1384 1.3.2.2 martin if (bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
1385 1.3.2.2 martin &dma->dma_vaddr, BUS_DMA_WAITOK | BUS_DMA_COHERENT /* XXXRO */))
1386 1.3.2.2 martin goto free;
1387 1.3.2.2 martin if (bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
1388 1.3.2.2 martin NULL, BUS_DMA_WAITOK))
1389 1.3.2.2 martin goto unmap;
1390 1.3.2.2 martin
1391 1.3.2.2 martin dma->dma_size = size;
1392 1.3.2.2 martin
1393 1.3.2.2 martin return 0;
1394 1.3.2.2 martin unmap:
1395 1.3.2.2 martin bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
1396 1.3.2.2 martin free:
1397 1.3.2.2 martin bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
1398 1.3.2.2 martin destroy:
1399 1.3.2.2 martin bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1400 1.3.2.2 martin dma->dma_map = NULL;
1401 1.3.2.2 martin dma->dma_tag = NULL;
1402 1.3.2.2 martin return 1;
1403 1.3.2.2 martin }
1404 1.3.2.2 martin
1405 1.3.2.2 martin static void
1406 1.3.2.2 martin igc_dma_free(struct igc_softc *sc, struct igc_dma_alloc *dma)
1407 1.3.2.2 martin {
1408 1.3.2.2 martin
1409 1.3.2.2 martin if (dma->dma_tag == NULL)
1410 1.3.2.2 martin return;
1411 1.3.2.2 martin
1412 1.3.2.2 martin if (dma->dma_map != NULL) {
1413 1.3.2.2 martin bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
1414 1.3.2.2 martin dma->dma_map->dm_mapsize,
1415 1.3.2.2 martin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1416 1.3.2.2 martin bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1417 1.3.2.2 martin bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
1418 1.3.2.2 martin bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
1419 1.3.2.2 martin bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1420 1.3.2.2 martin dma->dma_map = NULL;
1421 1.3.2.2 martin }
1422 1.3.2.2 martin }
1423 1.3.2.2 martin
1424 1.3.2.2 martin /*********************************************************************
1425 1.3.2.2 martin *
1426 1.3.2.2 martin * Setup networking device structure and register an interface.
1427 1.3.2.2 martin *
1428 1.3.2.2 martin **********************************************************************/
1429 1.3.2.2 martin static void
1430 1.3.2.2 martin igc_setup_interface(struct igc_softc *sc)
1431 1.3.2.2 martin {
1432 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
1433 1.3.2.2 martin
1434 1.3.2.2 martin strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
1435 1.3.2.2 martin ifp->if_softc = sc;
1436 1.3.2.2 martin ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1437 1.3.2.2 martin ifp->if_extflags = IFEF_MPSAFE;
1438 1.3.2.2 martin ifp->if_ioctl = igc_ioctl;
1439 1.3.2.2 martin ifp->if_start = igc_start;
1440 1.3.2.2 martin if (sc->sc_nqueues > 1)
1441 1.3.2.2 martin ifp->if_transmit = igc_transmit;
1442 1.3.2.2 martin ifp->if_watchdog = igc_watchdog;
1443 1.3.2.2 martin ifp->if_init = igc_init;
1444 1.3.2.2 martin ifp->if_stop = igc_stop;
1445 1.3.2.2 martin
1446 1.3.2.2 martin #if 0 /* notyet */
1447 1.3.2.2 martin ifp->if_capabilities = IFCAP_TSOv4 | IFCAP_TSOv6;
1448 1.3.2.2 martin #endif
1449 1.3.2.2 martin
1450 1.3.2.2 martin ifp->if_capabilities |=
1451 1.3.2.2 martin IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1452 1.3.2.2 martin IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1453 1.3.2.2 martin IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1454 1.3.2.2 martin IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
1455 1.3.2.2 martin IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
1456 1.3.2.2 martin
1457 1.3.2.2 martin ifp->if_capenable = 0;
1458 1.3.2.2 martin
1459 1.3.2.2 martin sc->sc_ec.ec_capabilities |=
1460 1.3.2.2 martin ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
1461 1.3.2.2 martin
1462 1.3.2.2 martin IFQ_SET_MAXLEN(&ifp->if_snd, sc->num_tx_desc - 1);
1463 1.3.2.2 martin IFQ_SET_READY(&ifp->if_snd);
1464 1.3.2.2 martin
1465 1.3.2.2 martin #if NVLAN > 0
1466 1.3.2.2 martin sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
1467 1.3.2.2 martin #endif
1468 1.3.2.2 martin
1469 1.3.2.2 martin mutex_init(&sc->sc_core_lock, MUTEX_DEFAULT, IPL_NET);
1470 1.3.2.2 martin
1471 1.3.2.2 martin /* Initialize ifmedia structures. */
1472 1.3.2.2 martin sc->sc_ec.ec_ifmedia = &sc->media;
1473 1.3.2.2 martin ifmedia_init_with_lock(&sc->media, IFM_IMASK, igc_media_change,
1474 1.3.2.2 martin igc_media_status, &sc->sc_core_lock);
1475 1.3.2.2 martin ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1476 1.3.2.2 martin ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1477 1.3.2.2 martin ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1478 1.3.2.2 martin ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1479 1.3.2.2 martin ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1480 1.3.2.2 martin ifmedia_add(&sc->media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
1481 1.3.2.2 martin ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1482 1.3.2.2 martin ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1483 1.3.2.2 martin
1484 1.3.2.2 martin sc->sc_rx_intr_process_limit = IGC_RX_INTR_PROCESS_LIMIT_DEFAULT;
1485 1.3.2.2 martin sc->sc_tx_intr_process_limit = IGC_TX_INTR_PROCESS_LIMIT_DEFAULT;
1486 1.3.2.2 martin sc->sc_rx_process_limit = IGC_RX_PROCESS_LIMIT_DEFAULT;
1487 1.3.2.2 martin sc->sc_tx_process_limit = IGC_TX_PROCESS_LIMIT_DEFAULT;
1488 1.3.2.2 martin
1489 1.3.2.2 martin if_initialize(ifp);
1490 1.3.2.2 martin sc->sc_ipq = if_percpuq_create(ifp);
1491 1.3.2.2 martin if_deferred_start_init(ifp, NULL);
1492 1.3.2.2 martin ether_ifattach(ifp, sc->hw.mac.addr);
1493 1.3.2.2 martin ether_set_ifflags_cb(&sc->sc_ec, igc_ifflags_cb);
1494 1.3.2.2 martin if_register(ifp);
1495 1.3.2.2 martin }
1496 1.3.2.2 martin
1497 1.3.2.2 martin static int
1498 1.3.2.2 martin igc_init(struct ifnet *ifp)
1499 1.3.2.2 martin {
1500 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
1501 1.3.2.2 martin int error;
1502 1.3.2.2 martin
1503 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
1504 1.3.2.2 martin error = igc_init_locked(sc);
1505 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
1506 1.3.2.2 martin
1507 1.3.2.2 martin return error;
1508 1.3.2.2 martin }
1509 1.3.2.2 martin
1510 1.3.2.2 martin static int
1511 1.3.2.2 martin igc_init_locked(struct igc_softc *sc)
1512 1.3.2.2 martin {
1513 1.3.2.2 martin struct ethercom *ec = &sc->sc_ec;
1514 1.3.2.2 martin struct ifnet *ifp = &ec->ec_if;
1515 1.3.2.2 martin
1516 1.3.2.2 martin DPRINTF(CFG, "called\n");
1517 1.3.2.2 martin
1518 1.3.2.2 martin KASSERT(mutex_owned(&sc->sc_core_lock));
1519 1.3.2.2 martin
1520 1.3.2.2 martin if (ISSET(ifp->if_flags, IFF_RUNNING))
1521 1.3.2.2 martin igc_stop_locked(sc);
1522 1.3.2.2 martin
1523 1.3.2.2 martin /* Put the address into the receive address array. */
1524 1.3.2.2 martin igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1525 1.3.2.2 martin
1526 1.3.2.2 martin /* Initialize the hardware. */
1527 1.3.2.2 martin igc_reset(sc);
1528 1.3.2.2 martin igc_update_link_status(sc);
1529 1.3.2.2 martin
1530 1.3.2.2 martin /* Setup VLAN support, basic and offload if available. */
1531 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
1532 1.3.2.2 martin
1533 1.3.2.2 martin igc_initialize_transmit_unit(sc);
1534 1.3.2.2 martin igc_initialize_receive_unit(sc);
1535 1.3.2.2 martin
1536 1.3.2.2 martin if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1537 1.3.2.2 martin uint32_t ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
1538 1.3.2.2 martin ctrl |= IGC_CTRL_VME;
1539 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
1540 1.3.2.2 martin }
1541 1.3.2.2 martin
1542 1.3.2.2 martin /* Setup multicast table. */
1543 1.3.2.2 martin igc_set_filter(sc);
1544 1.3.2.2 martin
1545 1.3.2.2 martin igc_clear_hw_cntrs_base_generic(&sc->hw);
1546 1.3.2.2 martin
1547 1.3.2.2 martin if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
1548 1.3.2.2 martin igc_configure_queues(sc);
1549 1.3.2.2 martin
1550 1.3.2.2 martin /* This clears any pending interrupts */
1551 1.3.2.2 martin IGC_READ_REG(&sc->hw, IGC_ICR);
1552 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
1553 1.3.2.2 martin
1554 1.3.2.2 martin /* The driver can now take control from firmware. */
1555 1.3.2.2 martin igc_get_hw_control(sc);
1556 1.3.2.2 martin
1557 1.3.2.2 martin /* Set Energy Efficient Ethernet. */
1558 1.3.2.2 martin igc_set_eee_i225(&sc->hw, true, true, true);
1559 1.3.2.2 martin
1560 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1561 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
1562 1.3.2.2 martin
1563 1.3.2.2 martin mutex_enter(&rxr->rxr_lock);
1564 1.3.2.2 martin igc_rxfill(rxr);
1565 1.3.2.2 martin mutex_exit(&rxr->rxr_lock);
1566 1.3.2.2 martin }
1567 1.3.2.2 martin
1568 1.3.2.2 martin sc->sc_core_stopping = false;
1569 1.3.2.2 martin
1570 1.3.2.2 martin ifp->if_flags |= IFF_RUNNING;
1571 1.3.2.2 martin
1572 1.3.2.2 martin /* Save last flags for the callback */
1573 1.3.2.2 martin sc->sc_if_flags = ifp->if_flags;
1574 1.3.2.2 martin
1575 1.3.2.3 martin callout_schedule(&sc->sc_tick_ch, hz);
1576 1.3.2.3 martin
1577 1.3.2.3 martin igc_enable_intr(sc);
1578 1.3.2.3 martin
1579 1.3.2.2 martin return 0;
1580 1.3.2.2 martin }
1581 1.3.2.2 martin
1582 1.3.2.2 martin static inline int
1583 1.3.2.2 martin igc_load_mbuf(struct igc_queue *q, bus_dma_tag_t dmat, bus_dmamap_t map,
1584 1.3.2.2 martin struct mbuf *m)
1585 1.3.2.2 martin {
1586 1.3.2.2 martin int error;
1587 1.3.2.2 martin
1588 1.3.2.2 martin error = bus_dmamap_load_mbuf(dmat, map, m,
1589 1.3.2.2 martin BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1590 1.3.2.2 martin
1591 1.3.2.2 martin if (__predict_false(error == EFBIG)) {
1592 1.3.2.2 martin IGC_DRIVER_EVENT(q, txdma_efbig, 1);
1593 1.3.2.2 martin m = m_defrag(m, M_NOWAIT);
1594 1.3.2.2 martin if (__predict_false(m == NULL)) {
1595 1.3.2.2 martin IGC_DRIVER_EVENT(q, txdma_defrag, 1);
1596 1.3.2.2 martin return ENOBUFS;
1597 1.3.2.2 martin }
1598 1.3.2.2 martin error = bus_dmamap_load_mbuf(dmat, map, m,
1599 1.3.2.2 martin BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1600 1.3.2.2 martin }
1601 1.3.2.2 martin
1602 1.3.2.2 martin switch (error) {
1603 1.3.2.2 martin case 0:
1604 1.3.2.2 martin break;
1605 1.3.2.2 martin case ENOMEM:
1606 1.3.2.2 martin IGC_DRIVER_EVENT(q, txdma_enomem, 1);
1607 1.3.2.2 martin break;
1608 1.3.2.2 martin case EINVAL:
1609 1.3.2.2 martin IGC_DRIVER_EVENT(q, txdma_einval, 1);
1610 1.3.2.2 martin break;
1611 1.3.2.2 martin case EAGAIN:
1612 1.3.2.2 martin IGC_DRIVER_EVENT(q, txdma_eagain, 1);
1613 1.3.2.2 martin break;
1614 1.3.2.2 martin default:
1615 1.3.2.2 martin IGC_DRIVER_EVENT(q, txdma_other, 1);
1616 1.3.2.2 martin break;
1617 1.3.2.2 martin }
1618 1.3.2.2 martin
1619 1.3.2.2 martin return error;
1620 1.3.2.2 martin }
1621 1.3.2.2 martin
1622 1.3.2.2 martin #define IGC_TX_START 1
1623 1.3.2.2 martin #define IGC_TX_TRANSMIT 2
1624 1.3.2.2 martin
1625 1.3.2.2 martin static void
1626 1.3.2.2 martin igc_start(struct ifnet *ifp)
1627 1.3.2.2 martin {
1628 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
1629 1.3.2.2 martin
1630 1.3.2.2 martin if (__predict_false(!sc->link_active)) {
1631 1.3.2.2 martin IFQ_PURGE(&ifp->if_snd);
1632 1.3.2.2 martin return;
1633 1.3.2.2 martin }
1634 1.3.2.2 martin
1635 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[0]; /* queue 0 */
1636 1.3.2.2 martin mutex_enter(&txr->txr_lock);
1637 1.3.2.2 martin igc_tx_common_locked(ifp, txr, IGC_TX_START);
1638 1.3.2.2 martin mutex_exit(&txr->txr_lock);
1639 1.3.2.2 martin }
1640 1.3.2.2 martin
1641 1.3.2.2 martin static inline u_int
1642 1.3.2.2 martin igc_select_txqueue(struct igc_softc *sc, struct mbuf *m __unused)
1643 1.3.2.2 martin {
1644 1.3.2.2 martin const u_int cpuid = cpu_index(curcpu());
1645 1.3.2.2 martin
1646 1.3.2.2 martin return cpuid % sc->sc_nqueues;
1647 1.3.2.2 martin }
1648 1.3.2.2 martin
1649 1.3.2.2 martin static int
1650 1.3.2.2 martin igc_transmit(struct ifnet *ifp, struct mbuf *m)
1651 1.3.2.2 martin {
1652 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
1653 1.3.2.2 martin const u_int qid = igc_select_txqueue(sc, m);
1654 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[qid];
1655 1.3.2.2 martin struct igc_queue *q = txr->txr_igcq;
1656 1.3.2.2 martin
1657 1.3.2.2 martin if (__predict_false(!pcq_put(txr->txr_interq, m))) {
1658 1.3.2.2 martin IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
1659 1.3.2.2 martin m_freem(m);
1660 1.3.2.2 martin return ENOBUFS;
1661 1.3.2.2 martin }
1662 1.3.2.2 martin
1663 1.3.2.2 martin mutex_enter(&txr->txr_lock);
1664 1.3.2.2 martin igc_tx_common_locked(ifp, txr, IGC_TX_TRANSMIT);
1665 1.3.2.2 martin mutex_exit(&txr->txr_lock);
1666 1.3.2.2 martin
1667 1.3.2.2 martin return 0;
1668 1.3.2.2 martin }
1669 1.3.2.2 martin
1670 1.3.2.2 martin static void
1671 1.3.2.2 martin igc_tx_common_locked(struct ifnet *ifp, struct tx_ring *txr, int caller)
1672 1.3.2.2 martin {
1673 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
1674 1.3.2.2 martin struct igc_queue *q = txr->txr_igcq;
1675 1.3.2.2 martin net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1676 1.3.2.2 martin int prod, free, last = -1;
1677 1.3.2.2 martin bool post = false;
1678 1.3.2.2 martin
1679 1.3.2.2 martin prod = txr->next_avail_desc;
1680 1.3.2.2 martin free = txr->next_to_clean;
1681 1.3.2.2 martin if (free <= prod)
1682 1.3.2.2 martin free += sc->num_tx_desc;
1683 1.3.2.2 martin free -= prod;
1684 1.3.2.2 martin
1685 1.3.2.2 martin DPRINTF(TX, "%s: begin: msix %d prod %d n2c %d free %d\n",
1686 1.3.2.2 martin caller == IGC_TX_TRANSMIT ? "transmit" : "start",
1687 1.3.2.2 martin txr->me, prod, txr->next_to_clean, free);
1688 1.3.2.2 martin
1689 1.3.2.2 martin for (;;) {
1690 1.3.2.2 martin struct mbuf *m;
1691 1.3.2.2 martin
1692 1.3.2.2 martin if (__predict_false(free <= IGC_MAX_SCATTER)) {
1693 1.3.2.2 martin IGC_QUEUE_EVENT(q, tx_no_desc, 1);
1694 1.3.2.2 martin break;
1695 1.3.2.2 martin }
1696 1.3.2.2 martin
1697 1.3.2.2 martin if (caller == IGC_TX_TRANSMIT)
1698 1.3.2.2 martin m = pcq_get(txr->txr_interq);
1699 1.3.2.2 martin else
1700 1.3.2.2 martin IFQ_DEQUEUE(&ifp->if_snd, m);
1701 1.3.2.2 martin if (__predict_false(m == NULL))
1702 1.3.2.2 martin break;
1703 1.3.2.2 martin
1704 1.3.2.2 martin struct igc_tx_buf *txbuf = &txr->tx_buffers[prod];
1705 1.3.2.2 martin bus_dmamap_t map = txbuf->map;
1706 1.3.2.2 martin
1707 1.3.2.2 martin if (__predict_false(
1708 1.3.2.2 martin igc_load_mbuf(q, txr->txdma.dma_tag, map, m))) {
1709 1.3.2.2 martin if (caller == IGC_TX_TRANSMIT)
1710 1.3.2.2 martin IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
1711 1.3.2.2 martin m_freem(m);
1712 1.3.2.2 martin if_statinc_ref(nsr, if_oerrors);
1713 1.3.2.2 martin continue;
1714 1.3.2.2 martin }
1715 1.3.2.2 martin
1716 1.3.2.2 martin bus_dmamap_sync(txr->txdma.dma_tag, map, 0,
1717 1.3.2.2 martin map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1718 1.3.2.2 martin
1719 1.3.2.2 martin uint32_t ctx_cmd_type_len = 0, olinfo_status = 0;
1720 1.3.2.2 martin if (igc_tx_ctx_setup(txr, m, prod, &ctx_cmd_type_len,
1721 1.3.2.2 martin &olinfo_status)) {
1722 1.3.2.2 martin IGC_QUEUE_EVENT(q, tx_ctx, 1);
1723 1.3.2.2 martin /* Consume the first descriptor */
1724 1.3.2.2 martin prod = igc_txdesc_incr(sc, prod);
1725 1.3.2.2 martin free--;
1726 1.3.2.2 martin }
1727 1.3.2.2 martin for (int i = 0; i < map->dm_nsegs; i++) {
1728 1.3.2.2 martin union igc_adv_tx_desc *txdesc = &txr->tx_base[prod];
1729 1.3.2.2 martin
1730 1.3.2.2 martin uint32_t cmd_type_len = ctx_cmd_type_len |
1731 1.3.2.2 martin IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DTYP_DATA |
1732 1.3.2.2 martin IGC_ADVTXD_DCMD_DEXT | map->dm_segs[i].ds_len;
1733 1.3.2.2 martin if (i == map->dm_nsegs - 1) {
1734 1.3.2.2 martin cmd_type_len |=
1735 1.3.2.2 martin IGC_ADVTXD_DCMD_EOP | IGC_ADVTXD_DCMD_RS;
1736 1.3.2.2 martin }
1737 1.3.2.2 martin
1738 1.3.2.2 martin igc_txdesc_sync(txr, prod,
1739 1.3.2.2 martin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1740 1.3.2.2 martin htolem64(&txdesc->read.buffer_addr,
1741 1.3.2.2 martin map->dm_segs[i].ds_addr);
1742 1.3.2.2 martin htolem32(&txdesc->read.cmd_type_len, cmd_type_len);
1743 1.3.2.2 martin htolem32(&txdesc->read.olinfo_status, olinfo_status);
1744 1.3.2.2 martin igc_txdesc_sync(txr, prod,
1745 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1746 1.3.2.2 martin
1747 1.3.2.2 martin last = prod;
1748 1.3.2.2 martin prod = igc_txdesc_incr(sc, prod);
1749 1.3.2.2 martin }
1750 1.3.2.2 martin
1751 1.3.2.2 martin txbuf->m_head = m;
1752 1.3.2.2 martin txbuf->eop_index = last;
1753 1.3.2.2 martin
1754 1.3.2.2 martin bpf_mtap(ifp, m, BPF_D_OUT);
1755 1.3.2.2 martin
1756 1.3.2.2 martin if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
1757 1.3.2.2 martin if (m->m_flags & M_MCAST)
1758 1.3.2.2 martin if_statinc_ref(nsr, if_omcasts);
1759 1.3.2.2 martin IGC_QUEUE_EVENT(q, tx_packets, 1);
1760 1.3.2.2 martin IGC_QUEUE_EVENT(q, tx_bytes, m->m_pkthdr.len);
1761 1.3.2.2 martin
1762 1.3.2.2 martin free -= map->dm_nsegs;
1763 1.3.2.2 martin post = true;
1764 1.3.2.2 martin }
1765 1.3.2.2 martin
1766 1.3.2.2 martin if (post) {
1767 1.3.2.2 martin txr->next_avail_desc = prod;
1768 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), prod);
1769 1.3.2.2 martin }
1770 1.3.2.2 martin
1771 1.3.2.2 martin DPRINTF(TX, "%s: done : msix %d prod %d n2c %d free %d\n",
1772 1.3.2.2 martin caller == IGC_TX_TRANSMIT ? "transmit" : "start",
1773 1.3.2.2 martin txr->me, prod, txr->next_to_clean, free);
1774 1.3.2.2 martin
1775 1.3.2.2 martin IF_STAT_PUTREF(ifp);
1776 1.3.2.2 martin }
1777 1.3.2.2 martin
1778 1.3.2.2 martin static bool
1779 1.3.2.2 martin igc_txeof(struct tx_ring *txr, u_int limit)
1780 1.3.2.2 martin {
1781 1.3.2.2 martin struct igc_softc *sc = txr->sc;
1782 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
1783 1.3.2.2 martin int cons, prod;
1784 1.3.2.2 martin bool more = false;
1785 1.3.2.2 martin
1786 1.3.2.2 martin prod = txr->next_avail_desc;
1787 1.3.2.2 martin cons = txr->next_to_clean;
1788 1.3.2.2 martin
1789 1.3.2.2 martin if (cons == prod) {
1790 1.3.2.2 martin DPRINTF(TX, "false: msix %d cons %d prod %d\n",
1791 1.3.2.2 martin txr->me, cons, prod);
1792 1.3.2.2 martin return false;
1793 1.3.2.2 martin }
1794 1.3.2.2 martin
1795 1.3.2.2 martin do {
1796 1.3.2.2 martin struct igc_tx_buf *txbuf = &txr->tx_buffers[cons];
1797 1.3.2.2 martin const int last = txbuf->eop_index;
1798 1.3.2.2 martin
1799 1.3.2.2 martin membar_consumer(); /* XXXRO necessary? */
1800 1.3.2.2 martin
1801 1.3.2.2 martin KASSERT(last != -1);
1802 1.3.2.2 martin union igc_adv_tx_desc *txdesc = &txr->tx_base[last];
1803 1.3.2.2 martin igc_txdesc_sync(txr, last, BUS_DMASYNC_POSTREAD);
1804 1.3.2.2 martin const uint32_t status = le32toh(txdesc->wb.status);
1805 1.3.2.2 martin igc_txdesc_sync(txr, last, BUS_DMASYNC_PREREAD);
1806 1.3.2.2 martin
1807 1.3.2.2 martin if (!(status & IGC_TXD_STAT_DD))
1808 1.3.2.2 martin break;
1809 1.3.2.2 martin
1810 1.3.2.2 martin if (limit-- == 0) {
1811 1.3.2.2 martin more = true;
1812 1.3.2.2 martin DPRINTF(TX, "pending TX "
1813 1.3.2.2 martin "msix %d cons %d last %d prod %d "
1814 1.3.2.2 martin "status 0x%08x\n",
1815 1.3.2.2 martin txr->me, cons, last, prod, status);
1816 1.3.2.2 martin break;
1817 1.3.2.2 martin }
1818 1.3.2.2 martin
1819 1.3.2.2 martin DPRINTF(TX, "handled TX "
1820 1.3.2.2 martin "msix %d cons %d last %d prod %d "
1821 1.3.2.2 martin "status 0x%08x\n",
1822 1.3.2.2 martin txr->me, cons, last, prod, status);
1823 1.3.2.2 martin
1824 1.3.2.2 martin if_statinc(ifp, if_opackets);
1825 1.3.2.2 martin
1826 1.3.2.2 martin bus_dmamap_t map = txbuf->map;
1827 1.3.2.2 martin bus_dmamap_sync(txr->txdma.dma_tag, map, 0, map->dm_mapsize,
1828 1.3.2.2 martin BUS_DMASYNC_POSTWRITE);
1829 1.3.2.2 martin bus_dmamap_unload(txr->txdma.dma_tag, map);
1830 1.3.2.2 martin m_freem(txbuf->m_head);
1831 1.3.2.2 martin
1832 1.3.2.2 martin txbuf->m_head = NULL;
1833 1.3.2.2 martin txbuf->eop_index = -1;
1834 1.3.2.2 martin
1835 1.3.2.2 martin cons = igc_txdesc_incr(sc, last);
1836 1.3.2.2 martin } while (cons != prod);
1837 1.3.2.2 martin
1838 1.3.2.2 martin txr->next_to_clean = cons;
1839 1.3.2.2 martin
1840 1.3.2.2 martin return more;
1841 1.3.2.2 martin }
1842 1.3.2.2 martin
1843 1.3.2.2 martin static void
1844 1.3.2.2 martin igc_intr_barrier(struct igc_softc *sc __unused)
1845 1.3.2.2 martin {
1846 1.3.2.2 martin
1847 1.3.2.2 martin xc_barrier(0);
1848 1.3.2.2 martin }
1849 1.3.2.2 martin
1850 1.3.2.2 martin static void
1851 1.3.2.2 martin igc_stop(struct ifnet *ifp, int disable)
1852 1.3.2.2 martin {
1853 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
1854 1.3.2.2 martin
1855 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
1856 1.3.2.2 martin igc_stop_locked(sc);
1857 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
1858 1.3.2.2 martin }
1859 1.3.2.2 martin
1860 1.3.2.2 martin /*********************************************************************
1861 1.3.2.2 martin *
1862 1.3.2.2 martin * This routine disables all traffic on the adapter by issuing a
1863 1.3.2.2 martin * global reset on the MAC.
1864 1.3.2.2 martin *
1865 1.3.2.2 martin **********************************************************************/
1866 1.3.2.2 martin static void
1867 1.3.2.2 martin igc_stop_locked(struct igc_softc *sc)
1868 1.3.2.2 martin {
1869 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
1870 1.3.2.2 martin
1871 1.3.2.2 martin DPRINTF(CFG, "called\n");
1872 1.3.2.2 martin
1873 1.3.2.2 martin KASSERT(mutex_owned(&sc->sc_core_lock));
1874 1.3.2.2 martin
1875 1.3.2.2 martin /*
1876 1.3.2.2 martin * If stopping processing has already started, do nothing.
1877 1.3.2.2 martin */
1878 1.3.2.2 martin if ((ifp->if_flags & IFF_RUNNING) == 0)
1879 1.3.2.2 martin return;
1880 1.3.2.2 martin
1881 1.3.2.2 martin /* Tell the stack that the interface is no longer active. */
1882 1.3.2.2 martin ifp->if_flags &= ~IFF_RUNNING;
1883 1.3.2.2 martin
1884 1.3.2.2 martin /*
1885 1.3.2.2 martin * igc_handle_queue() can enable interrupts, so wait for completion of
1886 1.3.2.2 martin * last igc_handle_queue() after unset IFF_RUNNING.
1887 1.3.2.2 martin */
1888 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
1889 1.3.2.2 martin igc_barrier_handle_queue(sc);
1890 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
1891 1.3.2.2 martin
1892 1.3.2.2 martin sc->sc_core_stopping = true;
1893 1.3.2.2 martin
1894 1.3.2.2 martin igc_disable_intr(sc);
1895 1.3.2.2 martin
1896 1.3.2.2 martin callout_halt(&sc->sc_tick_ch, &sc->sc_core_lock);
1897 1.3.2.2 martin
1898 1.3.2.2 martin igc_reset_hw(&sc->hw);
1899 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
1900 1.3.2.2 martin
1901 1.3.2.2 martin /*
1902 1.3.2.2 martin * Wait for completion of interrupt handlers.
1903 1.3.2.2 martin */
1904 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
1905 1.3.2.2 martin igc_intr_barrier(sc);
1906 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
1907 1.3.2.2 martin
1908 1.3.2.2 martin igc_update_link_status(sc);
1909 1.3.2.2 martin
1910 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1911 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[iq];
1912 1.3.2.2 martin
1913 1.3.2.2 martin igc_withdraw_transmit_packets(txr, false);
1914 1.3.2.2 martin }
1915 1.3.2.2 martin
1916 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1917 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
1918 1.3.2.2 martin
1919 1.3.2.2 martin igc_clear_receive_status(rxr);
1920 1.3.2.2 martin }
1921 1.3.2.2 martin
1922 1.3.2.2 martin /* Save last flags for the callback */
1923 1.3.2.2 martin sc->sc_if_flags = ifp->if_flags;
1924 1.3.2.2 martin }
1925 1.3.2.2 martin
1926 1.3.2.2 martin /*********************************************************************
1927 1.3.2.2 martin * Ioctl entry point
1928 1.3.2.2 martin *
1929 1.3.2.2 martin * igc_ioctl is called when the user wants to configure the
1930 1.3.2.2 martin * interface.
1931 1.3.2.2 martin *
1932 1.3.2.2 martin * return 0 on success, positive on failure
1933 1.3.2.2 martin **********************************************************************/
1934 1.3.2.2 martin static int
1935 1.3.2.2 martin igc_ioctl(struct ifnet * ifp, u_long cmd, void *data)
1936 1.3.2.2 martin {
1937 1.3.2.2 martin struct igc_softc *sc __unused = ifp->if_softc;
1938 1.3.2.2 martin int s;
1939 1.3.2.2 martin int error;
1940 1.3.2.2 martin
1941 1.3.2.2 martin DPRINTF(CFG, "cmd 0x%016lx\n", cmd);
1942 1.3.2.2 martin
1943 1.3.2.2 martin switch (cmd) {
1944 1.3.2.2 martin case SIOCADDMULTI:
1945 1.3.2.2 martin case SIOCDELMULTI:
1946 1.3.2.2 martin break;
1947 1.3.2.2 martin default:
1948 1.3.2.2 martin KASSERT(IFNET_LOCKED(ifp));
1949 1.3.2.2 martin }
1950 1.3.2.2 martin
1951 1.3.2.2 martin if (cmd == SIOCZIFDATA) {
1952 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
1953 1.3.2.2 martin igc_clear_counters(sc);
1954 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
1955 1.3.2.2 martin }
1956 1.3.2.2 martin
1957 1.3.2.2 martin switch (cmd) {
1958 1.3.2.2 martin #ifdef IF_RXR
1959 1.3.2.2 martin case SIOCGIFRXR:
1960 1.3.2.2 martin s = splnet();
1961 1.3.2.2 martin error = igc_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
1962 1.3.2.2 martin splx(s);
1963 1.3.2.2 martin break;
1964 1.3.2.2 martin #endif
1965 1.3.2.2 martin default:
1966 1.3.2.2 martin s = splnet();
1967 1.3.2.2 martin error = ether_ioctl(ifp, cmd, data);
1968 1.3.2.2 martin splx(s);
1969 1.3.2.2 martin break;
1970 1.3.2.2 martin }
1971 1.3.2.2 martin
1972 1.3.2.2 martin if (error != ENETRESET)
1973 1.3.2.2 martin return error;
1974 1.3.2.2 martin
1975 1.3.2.2 martin error = 0;
1976 1.3.2.2 martin
1977 1.3.2.2 martin if (cmd == SIOCSIFCAP)
1978 1.3.2.2 martin error = if_init(ifp);
1979 1.3.2.2 martin else if ((cmd == SIOCADDMULTI) || (cmd == SIOCDELMULTI)) {
1980 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
1981 1.3.2.2 martin if (sc->sc_if_flags & IFF_RUNNING) {
1982 1.3.2.2 martin /*
1983 1.3.2.2 martin * Multicast list has changed; set the hardware filter
1984 1.3.2.2 martin * accordingly.
1985 1.3.2.2 martin */
1986 1.3.2.2 martin igc_disable_intr(sc);
1987 1.3.2.2 martin igc_set_filter(sc);
1988 1.3.2.2 martin igc_enable_intr(sc);
1989 1.3.2.2 martin }
1990 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
1991 1.3.2.2 martin }
1992 1.3.2.2 martin
1993 1.3.2.2 martin return error;
1994 1.3.2.2 martin }
1995 1.3.2.2 martin
1996 1.3.2.2 martin #ifdef IF_RXR
1997 1.3.2.2 martin static int
1998 1.3.2.2 martin igc_rxrinfo(struct igc_softc *sc, struct if_rxrinfo *ifri)
1999 1.3.2.2 martin {
2000 1.3.2.2 martin struct if_rxring_info *ifr, ifr1;
2001 1.3.2.2 martin int error;
2002 1.3.2.2 martin
2003 1.3.2.2 martin if (sc->sc_nqueues > 1) {
2004 1.3.2.2 martin ifr = kmem_zalloc(sc->sc_nqueues * sizeof(*ifr), KM_SLEEP);
2005 1.3.2.2 martin } else {
2006 1.3.2.2 martin ifr = &ifr1;
2007 1.3.2.2 martin memset(ifr, 0, sizeof(*ifr));
2008 1.3.2.2 martin }
2009 1.3.2.2 martin
2010 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2011 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
2012 1.3.2.2 martin
2013 1.3.2.2 martin ifr[iq].ifr_size = MCLBYTES;
2014 1.3.2.2 martin snprintf(ifr[iq].ifr_name, sizeof(ifr[iq].ifr_name), "%d", iq);
2015 1.3.2.2 martin ifr[iq].ifr_info = rxr->rx_ring;
2016 1.3.2.2 martin }
2017 1.3.2.2 martin
2018 1.3.2.2 martin error = if_rxr_info_ioctl(ifri, sc->sc_nqueues, ifr);
2019 1.3.2.2 martin if (sc->sc_nqueues > 1)
2020 1.3.2.2 martin kmem_free(ifr, sc->sc_nqueues * sizeof(*ifr));
2021 1.3.2.2 martin
2022 1.3.2.2 martin return error;
2023 1.3.2.2 martin }
2024 1.3.2.2 martin #endif
2025 1.3.2.2 martin
2026 1.3.2.2 martin static void
2027 1.3.2.2 martin igc_rxfill(struct rx_ring *rxr)
2028 1.3.2.2 martin {
2029 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
2030 1.3.2.2 martin int id;
2031 1.3.2.2 martin
2032 1.3.2.2 martin for (id = 0; id < sc->num_rx_desc; id++) {
2033 1.3.2.2 martin if (igc_get_buf(rxr, id, false)) {
2034 1.3.2.2 martin panic("%s: msix=%d i=%d\n", __func__, rxr->me, id);
2035 1.3.2.2 martin }
2036 1.3.2.2 martin }
2037 1.3.2.2 martin
2038 1.3.2.2 martin id = sc->num_rx_desc - 1;
2039 1.3.2.2 martin rxr->last_desc_filled = id;
2040 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
2041 1.3.2.2 martin rxr->next_to_check = 0;
2042 1.3.2.2 martin }
2043 1.3.2.2 martin
2044 1.3.2.2 martin static void
2045 1.3.2.2 martin igc_rxrefill(struct rx_ring *rxr, int end)
2046 1.3.2.2 martin {
2047 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
2048 1.3.2.2 martin int id;
2049 1.3.2.2 martin
2050 1.3.2.2 martin for (id = rxr->next_to_check; id != end; id = igc_rxdesc_incr(sc, id)) {
2051 1.3.2.2 martin if (igc_get_buf(rxr, id, true)) {
2052 1.3.2.2 martin /* XXXRO */
2053 1.3.2.2 martin panic("%s: msix=%d id=%d\n", __func__, rxr->me, id);
2054 1.3.2.2 martin }
2055 1.3.2.2 martin }
2056 1.3.2.2 martin
2057 1.3.2.2 martin id = igc_rxdesc_decr(sc, id);
2058 1.3.2.2 martin DPRINTF(RX, "%s RDT %d id %d\n",
2059 1.3.2.2 martin rxr->last_desc_filled == id ? "same" : "diff",
2060 1.3.2.2 martin rxr->last_desc_filled, id);
2061 1.3.2.2 martin rxr->last_desc_filled = id;
2062 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
2063 1.3.2.2 martin }
2064 1.3.2.2 martin
2065 1.3.2.2 martin /*********************************************************************
2066 1.3.2.2 martin *
2067 1.3.2.2 martin * This routine executes in interrupt context. It replenishes
2068 1.3.2.2 martin * the mbufs in the descriptor and sends data which has been
2069 1.3.2.2 martin * dma'ed into host memory to upper layer.
2070 1.3.2.2 martin *
2071 1.3.2.2 martin *********************************************************************/
2072 1.3.2.2 martin static bool
2073 1.3.2.2 martin igc_rxeof(struct rx_ring *rxr, u_int limit)
2074 1.3.2.2 martin {
2075 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
2076 1.3.2.2 martin struct igc_queue *q = rxr->rxr_igcq;
2077 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
2078 1.3.2.2 martin int id;
2079 1.3.2.2 martin bool more = false;
2080 1.3.2.2 martin
2081 1.3.2.2 martin id = rxr->next_to_check;
2082 1.3.2.2 martin for (;;) {
2083 1.3.2.2 martin union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
2084 1.3.2.2 martin struct igc_rx_buf *rxbuf, *nxbuf;
2085 1.3.2.2 martin struct mbuf *mp, *m;
2086 1.3.2.2 martin
2087 1.3.2.2 martin igc_rxdesc_sync(rxr, id,
2088 1.3.2.2 martin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2089 1.3.2.2 martin
2090 1.3.2.2 martin const uint32_t staterr = le32toh(rxdesc->wb.upper.status_error);
2091 1.3.2.2 martin
2092 1.3.2.2 martin if (!ISSET(staterr, IGC_RXD_STAT_DD)) {
2093 1.3.2.2 martin igc_rxdesc_sync(rxr, id,
2094 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2095 1.3.2.2 martin break;
2096 1.3.2.2 martin }
2097 1.3.2.2 martin
2098 1.3.2.2 martin if (limit-- == 0) {
2099 1.3.2.2 martin igc_rxdesc_sync(rxr, id,
2100 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2101 1.3.2.2 martin DPRINTF(RX, "more=true\n");
2102 1.3.2.2 martin more = true;
2103 1.3.2.2 martin break;
2104 1.3.2.2 martin }
2105 1.3.2.2 martin
2106 1.3.2.2 martin /* Zero out the receive descriptors status. */
2107 1.3.2.2 martin rxdesc->wb.upper.status_error = 0;
2108 1.3.2.2 martin
2109 1.3.2.2 martin /* Pull the mbuf off the ring. */
2110 1.3.2.2 martin rxbuf = &rxr->rx_buffers[id];
2111 1.3.2.2 martin bus_dmamap_t map = rxbuf->map;
2112 1.3.2.2 martin bus_dmamap_sync(rxr->rxdma.dma_tag, map,
2113 1.3.2.2 martin 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2114 1.3.2.2 martin bus_dmamap_unload(rxr->rxdma.dma_tag, map);
2115 1.3.2.2 martin
2116 1.3.2.2 martin mp = rxbuf->buf;
2117 1.3.2.2 martin rxbuf->buf = NULL;
2118 1.3.2.2 martin
2119 1.3.2.2 martin const bool eop = staterr & IGC_RXD_STAT_EOP;
2120 1.3.2.2 martin const uint16_t len = le16toh(rxdesc->wb.upper.length);
2121 1.3.2.2 martin
2122 1.3.2.2 martin const uint16_t vtag = le16toh(rxdesc->wb.upper.vlan);
2123 1.3.2.2 martin
2124 1.3.2.2 martin const uint32_t ptype = le32toh(rxdesc->wb.lower.lo_dword.data) &
2125 1.3.2.2 martin IGC_PKTTYPE_MASK;
2126 1.3.2.2 martin
2127 1.3.2.2 martin const uint32_t hash __unused =
2128 1.3.2.2 martin le32toh(rxdesc->wb.lower.hi_dword.rss);
2129 1.3.2.2 martin const uint16_t hashtype __unused =
2130 1.3.2.2 martin le16toh(rxdesc->wb.lower.lo_dword.hs_rss.pkt_info) &
2131 1.3.2.2 martin IGC_RXDADV_RSSTYPE_MASK;
2132 1.3.2.2 martin
2133 1.3.2.2 martin igc_rxdesc_sync(rxr, id,
2134 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2135 1.3.2.2 martin
2136 1.3.2.2 martin if (__predict_false(staterr & IGC_RXDEXT_STATERR_RXE)) {
2137 1.3.2.2 martin if (rxbuf->fmp) {
2138 1.3.2.2 martin m_freem(rxbuf->fmp);
2139 1.3.2.2 martin rxbuf->fmp = NULL;
2140 1.3.2.2 martin }
2141 1.3.2.2 martin
2142 1.3.2.2 martin m_freem(mp);
2143 1.3.2.2 martin m = NULL;
2144 1.3.2.2 martin
2145 1.3.2.2 martin if_statinc(ifp, if_ierrors);
2146 1.3.2.2 martin IGC_QUEUE_EVENT(q, rx_discard, 1);
2147 1.3.2.2 martin
2148 1.3.2.2 martin DPRINTF(RX, "ierrors++\n");
2149 1.3.2.2 martin
2150 1.3.2.2 martin goto next_desc;
2151 1.3.2.2 martin }
2152 1.3.2.2 martin
2153 1.3.2.2 martin if (__predict_false(mp == NULL)) {
2154 1.3.2.2 martin panic("%s: igc_rxeof: NULL mbuf in slot %d "
2155 1.3.2.2 martin "(filled %d)", device_xname(sc->sc_dev),
2156 1.3.2.2 martin id, rxr->last_desc_filled);
2157 1.3.2.2 martin }
2158 1.3.2.2 martin
2159 1.3.2.2 martin if (!eop) {
2160 1.3.2.2 martin /*
2161 1.3.2.2 martin * Figure out the next descriptor of this frame.
2162 1.3.2.2 martin */
2163 1.3.2.2 martin int nextp = igc_rxdesc_incr(sc, id);
2164 1.3.2.2 martin
2165 1.3.2.2 martin nxbuf = &rxr->rx_buffers[nextp];
2166 1.3.2.2 martin /*
2167 1.3.2.2 martin * TODO prefetch(nxbuf);
2168 1.3.2.2 martin */
2169 1.3.2.2 martin }
2170 1.3.2.2 martin
2171 1.3.2.2 martin mp->m_len = len;
2172 1.3.2.2 martin
2173 1.3.2.2 martin m = rxbuf->fmp;
2174 1.3.2.2 martin rxbuf->fmp = NULL;
2175 1.3.2.2 martin
2176 1.3.2.2 martin if (m != NULL) {
2177 1.3.2.2 martin m->m_pkthdr.len += mp->m_len;
2178 1.3.2.2 martin } else {
2179 1.3.2.2 martin m = mp;
2180 1.3.2.2 martin m->m_pkthdr.len = mp->m_len;
2181 1.3.2.2 martin #if NVLAN > 0
2182 1.3.2.2 martin if (staterr & IGC_RXD_STAT_VP)
2183 1.3.2.2 martin vlan_set_tag(m, vtag);
2184 1.3.2.2 martin #endif
2185 1.3.2.2 martin }
2186 1.3.2.2 martin
2187 1.3.2.2 martin /* Pass the head pointer on */
2188 1.3.2.2 martin if (!eop) {
2189 1.3.2.2 martin nxbuf->fmp = m;
2190 1.3.2.2 martin m = NULL;
2191 1.3.2.2 martin mp->m_next = nxbuf->buf;
2192 1.3.2.2 martin } else {
2193 1.3.2.2 martin m_set_rcvif(m, ifp);
2194 1.3.2.2 martin
2195 1.3.2.2 martin m->m_pkthdr.csum_flags = igc_rx_checksum(q,
2196 1.3.2.2 martin ifp->if_capenable, staterr, ptype);
2197 1.3.2.2 martin
2198 1.3.2.2 martin #ifdef notyet
2199 1.3.2.2 martin if (hashtype != IGC_RXDADV_RSSTYPE_NONE) {
2200 1.3.2.2 martin m->m_pkthdr.ph_flowid = hash;
2201 1.3.2.2 martin SET(m->m_pkthdr.csum_flags, M_FLOWID);
2202 1.3.2.2 martin }
2203 1.3.2.2 martin ml_enqueue(&ml, m);
2204 1.3.2.2 martin #endif
2205 1.3.2.2 martin
2206 1.3.2.2 martin if_percpuq_enqueue(sc->sc_ipq, m);
2207 1.3.2.2 martin
2208 1.3.2.2 martin if_statinc(ifp, if_ipackets);
2209 1.3.2.2 martin IGC_QUEUE_EVENT(q, rx_packets, 1);
2210 1.3.2.2 martin IGC_QUEUE_EVENT(q, rx_bytes, m->m_pkthdr.len);
2211 1.3.2.2 martin }
2212 1.3.2.2 martin next_desc:
2213 1.3.2.2 martin /* Advance our pointers to the next descriptor. */
2214 1.3.2.2 martin id = igc_rxdesc_incr(sc, id);
2215 1.3.2.2 martin }
2216 1.3.2.2 martin
2217 1.3.2.2 martin DPRINTF(RX, "fill queue[%d]\n", rxr->me);
2218 1.3.2.2 martin igc_rxrefill(rxr, id);
2219 1.3.2.2 martin
2220 1.3.2.2 martin DPRINTF(RX, "%s n2c %d id %d\n",
2221 1.3.2.2 martin rxr->next_to_check == id ? "same" : "diff",
2222 1.3.2.2 martin rxr->next_to_check, id);
2223 1.3.2.2 martin rxr->next_to_check = id;
2224 1.3.2.2 martin
2225 1.3.2.2 martin #ifdef OPENBSD
2226 1.3.2.2 martin if (!(staterr & IGC_RXD_STAT_DD))
2227 1.3.2.2 martin return 0;
2228 1.3.2.2 martin #endif
2229 1.3.2.2 martin
2230 1.3.2.2 martin return more;
2231 1.3.2.2 martin }
2232 1.3.2.2 martin
2233 1.3.2.2 martin /*********************************************************************
2234 1.3.2.2 martin *
2235 1.3.2.2 martin * Verify that the hardware indicated that the checksum is valid.
2236 1.3.2.2 martin * Inform the stack about the status of checksum so that stack
2237 1.3.2.2 martin * doesn't spend time verifying the checksum.
2238 1.3.2.2 martin *
2239 1.3.2.2 martin *********************************************************************/
2240 1.3.2.2 martin static int
2241 1.3.2.2 martin igc_rx_checksum(struct igc_queue *q, uint64_t capenable, uint32_t staterr,
2242 1.3.2.2 martin uint32_t ptype)
2243 1.3.2.2 martin {
2244 1.3.2.2 martin const uint16_t status = (uint16_t)staterr;
2245 1.3.2.2 martin const uint8_t errors = (uint8_t)(staterr >> 24);
2246 1.3.2.2 martin int flags = 0;
2247 1.3.2.2 martin
2248 1.3.2.2 martin if ((status & IGC_RXD_STAT_IPCS) != 0 &&
2249 1.3.2.2 martin (capenable & IFCAP_CSUM_IPv4_Rx) != 0) {
2250 1.3.2.2 martin IGC_DRIVER_EVENT(q, rx_ipcs, 1);
2251 1.3.2.2 martin flags |= M_CSUM_IPv4;
2252 1.3.2.2 martin if (__predict_false((errors & IGC_RXD_ERR_IPE) != 0)) {
2253 1.3.2.2 martin IGC_DRIVER_EVENT(q, rx_ipcs_bad, 1);
2254 1.3.2.2 martin flags |= M_CSUM_IPv4_BAD;
2255 1.3.2.2 martin }
2256 1.3.2.2 martin }
2257 1.3.2.2 martin
2258 1.3.2.2 martin if ((status & IGC_RXD_STAT_TCPCS) != 0) {
2259 1.3.2.2 martin IGC_DRIVER_EVENT(q, rx_tcpcs, 1);
2260 1.3.2.2 martin if ((capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
2261 1.3.2.2 martin flags |= M_CSUM_TCPv4;
2262 1.3.2.2 martin if ((capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
2263 1.3.2.2 martin flags |= M_CSUM_TCPv6;
2264 1.3.2.2 martin }
2265 1.3.2.2 martin
2266 1.3.2.2 martin if ((status & IGC_RXD_STAT_UDPCS) != 0) {
2267 1.3.2.2 martin IGC_DRIVER_EVENT(q, rx_udpcs, 1);
2268 1.3.2.2 martin if ((capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
2269 1.3.2.2 martin flags |= M_CSUM_UDPv4;
2270 1.3.2.2 martin if ((capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
2271 1.3.2.2 martin flags |= M_CSUM_UDPv6;
2272 1.3.2.2 martin }
2273 1.3.2.2 martin
2274 1.3.2.2 martin if (__predict_false((errors & IGC_RXD_ERR_TCPE) != 0)) {
2275 1.3.2.2 martin IGC_DRIVER_EVENT(q, rx_l4cs_bad, 1);
2276 1.3.2.2 martin if ((flags & ~M_CSUM_IPv4) != 0)
2277 1.3.2.2 martin flags |= M_CSUM_TCP_UDP_BAD;
2278 1.3.2.2 martin }
2279 1.3.2.2 martin
2280 1.3.2.2 martin return flags;
2281 1.3.2.2 martin }
2282 1.3.2.2 martin
2283 1.3.2.2 martin static void
2284 1.3.2.2 martin igc_watchdog(struct ifnet * ifp)
2285 1.3.2.2 martin {
2286 1.3.2.2 martin }
2287 1.3.2.2 martin
2288 1.3.2.2 martin static void
2289 1.3.2.2 martin igc_tick(void *arg)
2290 1.3.2.2 martin {
2291 1.3.2.2 martin struct igc_softc *sc = arg;
2292 1.3.2.2 martin
2293 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
2294 1.3.2.2 martin
2295 1.3.2.2 martin if (__predict_false(sc->sc_core_stopping)) {
2296 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
2297 1.3.2.2 martin return;
2298 1.3.2.2 martin }
2299 1.3.2.2 martin
2300 1.3.2.2 martin /* XXX watchdog */
2301 1.3.2.2 martin if (0) {
2302 1.3.2.2 martin IGC_GLOBAL_EVENT(sc, watchdog, 1);
2303 1.3.2.2 martin }
2304 1.3.2.2 martin
2305 1.3.2.2 martin igc_update_counters(sc);
2306 1.3.2.2 martin
2307 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
2308 1.3.2.2 martin
2309 1.3.2.2 martin callout_schedule(&sc->sc_tick_ch, hz);
2310 1.3.2.2 martin }
2311 1.3.2.2 martin
2312 1.3.2.2 martin /*********************************************************************
2313 1.3.2.2 martin *
2314 1.3.2.2 martin * Media Ioctl callback
2315 1.3.2.2 martin *
2316 1.3.2.2 martin * This routine is called whenever the user queries the status of
2317 1.3.2.2 martin * the interface using ifconfig.
2318 1.3.2.2 martin *
2319 1.3.2.2 martin **********************************************************************/
2320 1.3.2.2 martin static void
2321 1.3.2.2 martin igc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2322 1.3.2.2 martin {
2323 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
2324 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
2325 1.3.2.2 martin
2326 1.3.2.2 martin igc_update_link_status(sc);
2327 1.3.2.2 martin
2328 1.3.2.2 martin ifmr->ifm_status = IFM_AVALID;
2329 1.3.2.2 martin ifmr->ifm_active = IFM_ETHER;
2330 1.3.2.2 martin
2331 1.3.2.2 martin if (!sc->link_active) {
2332 1.3.2.2 martin ifmr->ifm_active |= IFM_NONE;
2333 1.3.2.2 martin return;
2334 1.3.2.2 martin }
2335 1.3.2.2 martin
2336 1.3.2.2 martin ifmr->ifm_status |= IFM_ACTIVE;
2337 1.3.2.2 martin
2338 1.3.2.2 martin switch (sc->link_speed) {
2339 1.3.2.2 martin case 10:
2340 1.3.2.2 martin ifmr->ifm_active |= IFM_10_T;
2341 1.3.2.2 martin break;
2342 1.3.2.2 martin case 100:
2343 1.3.2.2 martin ifmr->ifm_active |= IFM_100_TX;
2344 1.3.2.2 martin break;
2345 1.3.2.2 martin case 1000:
2346 1.3.2.2 martin ifmr->ifm_active |= IFM_1000_T;
2347 1.3.2.2 martin break;
2348 1.3.2.2 martin case 2500:
2349 1.3.2.2 martin ifmr->ifm_active |= IFM_2500_T;
2350 1.3.2.2 martin break;
2351 1.3.2.2 martin }
2352 1.3.2.2 martin
2353 1.3.2.2 martin if (sc->link_duplex == FULL_DUPLEX)
2354 1.3.2.2 martin ifmr->ifm_active |= IFM_FDX;
2355 1.3.2.2 martin else
2356 1.3.2.2 martin ifmr->ifm_active |= IFM_HDX;
2357 1.3.2.2 martin
2358 1.3.2.2 martin switch (hw->fc.current_mode) {
2359 1.3.2.2 martin case igc_fc_tx_pause:
2360 1.3.2.2 martin ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
2361 1.3.2.2 martin break;
2362 1.3.2.2 martin case igc_fc_rx_pause:
2363 1.3.2.2 martin ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
2364 1.3.2.2 martin break;
2365 1.3.2.2 martin case igc_fc_full:
2366 1.3.2.2 martin ifmr->ifm_active |= IFM_FLOW |
2367 1.3.2.2 martin IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2368 1.3.2.2 martin break;
2369 1.3.2.2 martin case igc_fc_none:
2370 1.3.2.2 martin default:
2371 1.3.2.2 martin break;
2372 1.3.2.2 martin }
2373 1.3.2.2 martin }
2374 1.3.2.2 martin
2375 1.3.2.2 martin /*********************************************************************
2376 1.3.2.2 martin *
2377 1.3.2.2 martin * Media Ioctl callback
2378 1.3.2.2 martin *
2379 1.3.2.2 martin * This routine is called when the user changes speed/duplex using
2380 1.3.2.2 martin * media/mediopt option with ifconfig.
2381 1.3.2.2 martin *
2382 1.3.2.2 martin **********************************************************************/
2383 1.3.2.2 martin static int
2384 1.3.2.2 martin igc_media_change(struct ifnet *ifp)
2385 1.3.2.2 martin {
2386 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
2387 1.3.2.2 martin struct ifmedia *ifm = &sc->media;
2388 1.3.2.2 martin
2389 1.3.2.2 martin if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2390 1.3.2.2 martin return EINVAL;
2391 1.3.2.2 martin
2392 1.3.2.2 martin sc->hw.mac.autoneg = DO_AUTO_NEG;
2393 1.3.2.2 martin
2394 1.3.2.2 martin switch (IFM_SUBTYPE(ifm->ifm_media)) {
2395 1.3.2.2 martin case IFM_AUTO:
2396 1.3.2.2 martin sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
2397 1.3.2.2 martin break;
2398 1.3.2.2 martin case IFM_2500_T:
2399 1.3.2.2 martin sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
2400 1.3.2.2 martin break;
2401 1.3.2.2 martin case IFM_1000_T:
2402 1.3.2.2 martin sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
2403 1.3.2.2 martin break;
2404 1.3.2.2 martin case IFM_100_TX:
2405 1.3.2.3 martin if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2406 1.3.2.2 martin sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
2407 1.3.2.3 martin else
2408 1.3.2.3 martin sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
2409 1.3.2.2 martin break;
2410 1.3.2.2 martin case IFM_10_T:
2411 1.3.2.3 martin if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2412 1.3.2.2 martin sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
2413 1.3.2.3 martin else
2414 1.3.2.3 martin sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
2415 1.3.2.2 martin break;
2416 1.3.2.2 martin default:
2417 1.3.2.2 martin return EINVAL;
2418 1.3.2.2 martin }
2419 1.3.2.2 martin
2420 1.3.2.2 martin igc_init_locked(sc);
2421 1.3.2.2 martin
2422 1.3.2.2 martin return 0;
2423 1.3.2.2 martin }
2424 1.3.2.2 martin
2425 1.3.2.2 martin static int
2426 1.3.2.2 martin igc_ifflags_cb(struct ethercom *ec)
2427 1.3.2.2 martin {
2428 1.3.2.2 martin struct ifnet *ifp = &ec->ec_if;
2429 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
2430 1.3.2.2 martin int rc = 0;
2431 1.3.2.2 martin u_short iffchange;
2432 1.3.2.2 martin bool needreset = false;
2433 1.3.2.2 martin
2434 1.3.2.2 martin DPRINTF(CFG, "called\n");
2435 1.3.2.2 martin
2436 1.3.2.2 martin KASSERT(IFNET_LOCKED(ifp));
2437 1.3.2.2 martin
2438 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
2439 1.3.2.2 martin
2440 1.3.2.2 martin /*
2441 1.3.2.2 martin * Check for if_flags.
2442 1.3.2.2 martin * Main usage is to prevent linkdown when opening bpf.
2443 1.3.2.2 martin */
2444 1.3.2.2 martin iffchange = ifp->if_flags ^ sc->sc_if_flags;
2445 1.3.2.2 martin sc->sc_if_flags = ifp->if_flags;
2446 1.3.2.2 martin if ((iffchange & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
2447 1.3.2.2 martin needreset = true;
2448 1.3.2.2 martin goto ec;
2449 1.3.2.2 martin }
2450 1.3.2.2 martin
2451 1.3.2.2 martin /* iff related updates */
2452 1.3.2.2 martin if ((iffchange & IFF_PROMISC) != 0)
2453 1.3.2.2 martin igc_set_filter(sc);
2454 1.3.2.2 martin
2455 1.3.2.2 martin #ifdef notyet
2456 1.3.2.2 martin igc_set_vlan(sc);
2457 1.3.2.2 martin #endif
2458 1.3.2.2 martin
2459 1.3.2.2 martin ec:
2460 1.3.2.2 martin #ifdef notyet
2461 1.3.2.2 martin /* Check for ec_capenable. */
2462 1.3.2.2 martin ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
2463 1.3.2.2 martin sc->sc_ec_capenable = ec->ec_capenable;
2464 1.3.2.2 martin if ((ecchange & ~ETHERCAP_SOMETHING) != 0) {
2465 1.3.2.2 martin needreset = true;
2466 1.3.2.2 martin goto out;
2467 1.3.2.2 martin }
2468 1.3.2.2 martin #endif
2469 1.3.2.2 martin if (needreset)
2470 1.3.2.2 martin rc = ENETRESET;
2471 1.3.2.2 martin
2472 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
2473 1.3.2.2 martin
2474 1.3.2.2 martin return rc;
2475 1.3.2.2 martin }
2476 1.3.2.2 martin
2477 1.3.2.2 martin static void
2478 1.3.2.2 martin igc_set_filter(struct igc_softc *sc)
2479 1.3.2.2 martin {
2480 1.3.2.2 martin struct ethercom *ec = &sc->sc_ec;
2481 1.3.2.2 martin uint32_t rctl;
2482 1.3.2.2 martin
2483 1.3.2.2 martin rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
2484 1.3.2.2 martin rctl &= ~(IGC_RCTL_BAM |IGC_RCTL_UPE | IGC_RCTL_MPE);
2485 1.3.2.2 martin
2486 1.3.2.2 martin if ((sc->sc_if_flags & IFF_BROADCAST) != 0)
2487 1.3.2.2 martin rctl |= IGC_RCTL_BAM;
2488 1.3.2.2 martin if ((sc->sc_if_flags & IFF_PROMISC) != 0) {
2489 1.3.2.2 martin DPRINTF(CFG, "promisc\n");
2490 1.3.2.2 martin rctl |= IGC_RCTL_UPE;
2491 1.3.2.2 martin ETHER_LOCK(ec);
2492 1.3.2.2 martin allmulti:
2493 1.3.2.2 martin ec->ec_flags |= ETHER_F_ALLMULTI;
2494 1.3.2.2 martin ETHER_UNLOCK(ec);
2495 1.3.2.2 martin rctl |= IGC_RCTL_MPE;
2496 1.3.2.2 martin } else {
2497 1.3.2.2 martin struct ether_multistep step;
2498 1.3.2.2 martin struct ether_multi *enm;
2499 1.3.2.2 martin int mcnt = 0;
2500 1.3.2.2 martin
2501 1.3.2.2 martin memset(sc->mta, 0, IGC_MTA_LEN);
2502 1.3.2.2 martin
2503 1.3.2.2 martin ETHER_LOCK(ec);
2504 1.3.2.2 martin ETHER_FIRST_MULTI(step, ec, enm);
2505 1.3.2.2 martin while (enm != NULL) {
2506 1.3.2.2 martin if (((memcmp(enm->enm_addrlo, enm->enm_addrhi,
2507 1.3.2.2 martin ETHER_ADDR_LEN)) != 0) ||
2508 1.3.2.2 martin (mcnt >= MAX_NUM_MULTICAST_ADDRESSES)) {
2509 1.3.2.2 martin /*
2510 1.3.2.2 martin * We must listen to a range of multicast
2511 1.3.2.2 martin * addresses. For now, just accept all
2512 1.3.2.2 martin * multicasts, rather than trying to set only
2513 1.3.2.2 martin * those filter bits needed to match the range.
2514 1.3.2.2 martin * (At this time, the only use of address
2515 1.3.2.2 martin * ranges is for IP multicast routing, for
2516 1.3.2.2 martin * which the range is big enough to require all
2517 1.3.2.2 martin * bits set.)
2518 1.3.2.2 martin */
2519 1.3.2.2 martin goto allmulti;
2520 1.3.2.2 martin }
2521 1.3.2.2 martin DPRINTF(CFG, "%d: %s\n", mcnt,
2522 1.3.2.2 martin ether_sprintf(enm->enm_addrlo));
2523 1.3.2.2 martin memcpy(&sc->mta[mcnt * ETHER_ADDR_LEN],
2524 1.3.2.2 martin enm->enm_addrlo, ETHER_ADDR_LEN);
2525 1.3.2.2 martin
2526 1.3.2.2 martin mcnt++;
2527 1.3.2.2 martin ETHER_NEXT_MULTI(step, enm);
2528 1.3.2.2 martin }
2529 1.3.2.2 martin ec->ec_flags &= ~ETHER_F_ALLMULTI;
2530 1.3.2.2 martin ETHER_UNLOCK(ec);
2531 1.3.2.2 martin
2532 1.3.2.2 martin DPRINTF(CFG, "hw filter\n");
2533 1.3.2.2 martin igc_update_mc_addr_list(&sc->hw, sc->mta, mcnt);
2534 1.3.2.2 martin }
2535 1.3.2.2 martin
2536 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_RCTL, rctl);
2537 1.3.2.2 martin }
2538 1.3.2.2 martin
2539 1.3.2.2 martin static void
2540 1.3.2.2 martin igc_update_link_status(struct igc_softc *sc)
2541 1.3.2.2 martin {
2542 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
2543 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
2544 1.3.2.2 martin
2545 1.3.2.4 martin if (hw->mac.get_link_status == true)
2546 1.3.2.4 martin igc_check_for_link(hw);
2547 1.3.2.4 martin
2548 1.3.2.2 martin if (IGC_READ_REG(&sc->hw, IGC_STATUS) & IGC_STATUS_LU) {
2549 1.3.2.2 martin if (sc->link_active == 0) {
2550 1.3.2.2 martin igc_get_speed_and_duplex(hw, &sc->link_speed,
2551 1.3.2.2 martin &sc->link_duplex);
2552 1.3.2.2 martin sc->link_active = 1;
2553 1.3.2.2 martin ifp->if_baudrate = IF_Mbps(sc->link_speed);
2554 1.3.2.2 martin if_link_state_change(ifp, LINK_STATE_UP);
2555 1.3.2.2 martin }
2556 1.3.2.2 martin } else {
2557 1.3.2.2 martin if (sc->link_active == 1) {
2558 1.3.2.2 martin ifp->if_baudrate = sc->link_speed = 0;
2559 1.3.2.2 martin sc->link_duplex = 0;
2560 1.3.2.2 martin sc->link_active = 0;
2561 1.3.2.2 martin if_link_state_change(ifp, LINK_STATE_DOWN);
2562 1.3.2.2 martin }
2563 1.3.2.2 martin }
2564 1.3.2.2 martin }
2565 1.3.2.2 martin
2566 1.3.2.2 martin /*********************************************************************
2567 1.3.2.2 martin *
2568 1.3.2.2 martin * Get a buffer from system mbuf buffer pool.
2569 1.3.2.2 martin *
2570 1.3.2.2 martin **********************************************************************/
2571 1.3.2.2 martin static int
2572 1.3.2.2 martin igc_get_buf(struct rx_ring *rxr, int id, bool strict)
2573 1.3.2.2 martin {
2574 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
2575 1.3.2.2 martin struct igc_queue *q = rxr->rxr_igcq;
2576 1.3.2.2 martin struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
2577 1.3.2.2 martin bus_dmamap_t map = rxbuf->map;
2578 1.3.2.2 martin struct mbuf *m;
2579 1.3.2.2 martin int error;
2580 1.3.2.2 martin
2581 1.3.2.2 martin if (__predict_false(rxbuf->buf)) {
2582 1.3.2.2 martin if (strict) {
2583 1.3.2.2 martin DPRINTF(RX, "slot %d already has an mbuf\n", id);
2584 1.3.2.2 martin return EINVAL;
2585 1.3.2.2 martin }
2586 1.3.2.2 martin return 0;
2587 1.3.2.2 martin }
2588 1.3.2.2 martin
2589 1.3.2.2 martin MGETHDR(m, M_DONTWAIT, MT_DATA);
2590 1.3.2.2 martin if (__predict_false(m == NULL)) {
2591 1.3.2.2 martin enobuf:
2592 1.3.2.2 martin IGC_QUEUE_EVENT(q, rx_no_mbuf, 1);
2593 1.3.2.2 martin return ENOBUFS;
2594 1.3.2.2 martin }
2595 1.3.2.2 martin
2596 1.3.2.2 martin MCLGET(m, M_DONTWAIT);
2597 1.3.2.2 martin if (__predict_false(!(m->m_flags & M_EXT))) {
2598 1.3.2.2 martin m_freem(m);
2599 1.3.2.2 martin goto enobuf;
2600 1.3.2.2 martin }
2601 1.3.2.2 martin
2602 1.3.2.2 martin m->m_len = m->m_pkthdr.len = sc->rx_mbuf_sz;
2603 1.3.2.2 martin
2604 1.3.2.2 martin error = bus_dmamap_load_mbuf(rxr->rxdma.dma_tag, map, m,
2605 1.3.2.2 martin BUS_DMA_READ | BUS_DMA_NOWAIT);
2606 1.3.2.2 martin if (error) {
2607 1.3.2.2 martin m_freem(m);
2608 1.3.2.2 martin return error;
2609 1.3.2.2 martin }
2610 1.3.2.2 martin
2611 1.3.2.2 martin bus_dmamap_sync(rxr->rxdma.dma_tag, map, 0,
2612 1.3.2.2 martin map->dm_mapsize, BUS_DMASYNC_PREREAD);
2613 1.3.2.2 martin rxbuf->buf = m;
2614 1.3.2.2 martin
2615 1.3.2.2 martin union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
2616 1.3.2.2 martin igc_rxdesc_sync(rxr, id, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
2617 1.3.2.2 martin rxdesc->read.pkt_addr = htole64(map->dm_segs[0].ds_addr);
2618 1.3.2.2 martin igc_rxdesc_sync(rxr, id, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2619 1.3.2.2 martin
2620 1.3.2.2 martin return 0;
2621 1.3.2.2 martin }
2622 1.3.2.2 martin
2623 1.3.2.2 martin static void
2624 1.3.2.2 martin igc_configure_queues(struct igc_softc *sc)
2625 1.3.2.2 martin {
2626 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
2627 1.3.2.2 martin uint32_t ivar;
2628 1.3.2.2 martin
2629 1.3.2.2 martin /* First turn on RSS capability */
2630 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME |
2631 1.3.2.2 martin IGC_GPIE_PBA | IGC_GPIE_NSICR);
2632 1.3.2.2 martin
2633 1.3.2.2 martin /* Set the starting interrupt rate */
2634 1.3.2.2 martin uint32_t newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;
2635 1.3.2.2 martin newitr |= IGC_EITR_CNT_IGNR;
2636 1.3.2.2 martin
2637 1.3.2.2 martin /* Turn on MSI-X */
2638 1.3.2.2 martin uint32_t newmask = 0;
2639 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2640 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
2641 1.3.2.2 martin
2642 1.3.2.2 martin /* RX entries */
2643 1.3.2.2 martin igc_set_queues(sc, iq, q->msix, 0);
2644 1.3.2.2 martin /* TX entries */
2645 1.3.2.2 martin igc_set_queues(sc, iq, q->msix, 1);
2646 1.3.2.2 martin newmask |= q->eims;
2647 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_EITR(q->msix), newitr);
2648 1.3.2.2 martin }
2649 1.3.2.2 martin sc->msix_queuesmask = newmask;
2650 1.3.2.2 martin
2651 1.3.2.2 martin #if 1
2652 1.3.2.2 martin ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 0);
2653 1.3.2.2 martin DPRINTF(CFG, "ivar(0)=0x%x\n", ivar);
2654 1.3.2.2 martin ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 1);
2655 1.3.2.2 martin DPRINTF(CFG, "ivar(1)=0x%x\n", ivar);
2656 1.3.2.2 martin #endif
2657 1.3.2.2 martin
2658 1.3.2.2 martin /* And for the link interrupt */
2659 1.3.2.2 martin ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
2660 1.3.2.2 martin sc->msix_linkmask = 1 << sc->linkvec;
2661 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
2662 1.3.2.2 martin }
2663 1.3.2.2 martin
2664 1.3.2.2 martin static void
2665 1.3.2.2 martin igc_set_queues(struct igc_softc *sc, uint32_t entry, uint32_t vector, int type)
2666 1.3.2.2 martin {
2667 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
2668 1.3.2.2 martin const uint32_t index = entry >> 1;
2669 1.3.2.2 martin uint32_t ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
2670 1.3.2.2 martin
2671 1.3.2.2 martin if (type) {
2672 1.3.2.2 martin if (entry & 1) {
2673 1.3.2.2 martin ivar &= 0x00FFFFFF;
2674 1.3.2.2 martin ivar |= (vector | IGC_IVAR_VALID) << 24;
2675 1.3.2.2 martin } else {
2676 1.3.2.2 martin ivar &= 0xFFFF00FF;
2677 1.3.2.2 martin ivar |= (vector | IGC_IVAR_VALID) << 8;
2678 1.3.2.2 martin }
2679 1.3.2.2 martin } else {
2680 1.3.2.2 martin if (entry & 1) {
2681 1.3.2.2 martin ivar &= 0xFF00FFFF;
2682 1.3.2.2 martin ivar |= (vector | IGC_IVAR_VALID) << 16;
2683 1.3.2.2 martin } else {
2684 1.3.2.2 martin ivar &= 0xFFFFFF00;
2685 1.3.2.2 martin ivar |= vector | IGC_IVAR_VALID;
2686 1.3.2.2 martin }
2687 1.3.2.2 martin }
2688 1.3.2.2 martin IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
2689 1.3.2.2 martin }
2690 1.3.2.2 martin
2691 1.3.2.2 martin static void
2692 1.3.2.2 martin igc_enable_queue(struct igc_softc *sc, uint32_t eims)
2693 1.3.2.2 martin {
2694 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_EIMS, eims);
2695 1.3.2.2 martin }
2696 1.3.2.2 martin
2697 1.3.2.2 martin static void
2698 1.3.2.2 martin igc_enable_intr(struct igc_softc *sc)
2699 1.3.2.2 martin {
2700 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
2701 1.3.2.2 martin
2702 1.3.2.2 martin if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
2703 1.3.2.2 martin const uint32_t mask = sc->msix_queuesmask | sc->msix_linkmask;
2704 1.3.2.2 martin
2705 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_EIAC, mask);
2706 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_EIAM, mask);
2707 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_EIMS, mask);
2708 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
2709 1.3.2.2 martin } else {
2710 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_IMS, IMS_ENABLE_MASK);
2711 1.3.2.2 martin }
2712 1.3.2.2 martin IGC_WRITE_FLUSH(hw);
2713 1.3.2.2 martin }
2714 1.3.2.2 martin
2715 1.3.2.2 martin static void
2716 1.3.2.2 martin igc_disable_intr(struct igc_softc *sc)
2717 1.3.2.2 martin {
2718 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
2719 1.3.2.2 martin
2720 1.3.2.2 martin if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
2721 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
2722 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_EIAC, 0);
2723 1.3.2.2 martin }
2724 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
2725 1.3.2.2 martin IGC_WRITE_FLUSH(hw);
2726 1.3.2.2 martin }
2727 1.3.2.2 martin
2728 1.3.2.2 martin static int
2729 1.3.2.2 martin igc_intr_link(void *arg)
2730 1.3.2.2 martin {
2731 1.3.2.2 martin struct igc_softc *sc = (struct igc_softc *)arg;
2732 1.3.2.2 martin const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
2733 1.3.2.2 martin
2734 1.3.2.2 martin IGC_GLOBAL_EVENT(sc, link, 1);
2735 1.3.2.2 martin
2736 1.3.2.2 martin if (reg_icr & IGC_ICR_LSC) {
2737 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
2738 1.3.2.2 martin sc->hw.mac.get_link_status = true;
2739 1.3.2.2 martin igc_update_link_status(sc);
2740 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
2741 1.3.2.2 martin }
2742 1.3.2.2 martin
2743 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
2744 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->msix_linkmask);
2745 1.3.2.2 martin
2746 1.3.2.2 martin return 1;
2747 1.3.2.2 martin }
2748 1.3.2.2 martin
2749 1.3.2.2 martin static int
2750 1.3.2.2 martin igc_intr_queue(void *arg)
2751 1.3.2.2 martin {
2752 1.3.2.2 martin struct igc_queue *iq = arg;
2753 1.3.2.2 martin struct igc_softc *sc = iq->sc;
2754 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
2755 1.3.2.2 martin struct rx_ring *rxr = iq->rxr;
2756 1.3.2.2 martin struct tx_ring *txr = iq->txr;
2757 1.3.2.2 martin const u_int txlimit = sc->sc_tx_intr_process_limit,
2758 1.3.2.2 martin rxlimit = sc->sc_rx_intr_process_limit;
2759 1.3.2.2 martin bool txmore, rxmore;
2760 1.3.2.2 martin
2761 1.3.2.2 martin IGC_QUEUE_EVENT(iq, irqs, 1);
2762 1.3.2.2 martin
2763 1.3.2.2 martin if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
2764 1.3.2.2 martin return 0;
2765 1.3.2.2 martin
2766 1.3.2.2 martin mutex_enter(&txr->txr_lock);
2767 1.3.2.2 martin txmore = igc_txeof(txr, txlimit);
2768 1.3.2.2 martin mutex_exit(&txr->txr_lock);
2769 1.3.2.2 martin mutex_enter(&rxr->rxr_lock);
2770 1.3.2.2 martin rxmore = igc_rxeof(rxr, rxlimit);
2771 1.3.2.2 martin mutex_exit(&rxr->rxr_lock);
2772 1.3.2.2 martin
2773 1.3.2.2 martin if (txmore || rxmore) {
2774 1.3.2.2 martin IGC_QUEUE_EVENT(iq, req, 1);
2775 1.3.2.2 martin igc_sched_handle_queue(sc, iq);
2776 1.3.2.2 martin } else {
2777 1.3.2.2 martin igc_enable_queue(sc, iq->eims);
2778 1.3.2.2 martin }
2779 1.3.2.2 martin
2780 1.3.2.2 martin return 1;
2781 1.3.2.2 martin }
2782 1.3.2.2 martin
2783 1.3.2.2 martin static int
2784 1.3.2.2 martin igc_intr(void *arg)
2785 1.3.2.2 martin {
2786 1.3.2.2 martin struct igc_softc *sc = arg;
2787 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
2788 1.3.2.2 martin struct igc_queue *iq = &sc->queues[0];
2789 1.3.2.2 martin struct rx_ring *rxr = iq->rxr;
2790 1.3.2.2 martin struct tx_ring *txr = iq->txr;
2791 1.3.2.2 martin const u_int txlimit = sc->sc_tx_intr_process_limit,
2792 1.3.2.2 martin rxlimit = sc->sc_rx_intr_process_limit;
2793 1.3.2.2 martin bool txmore, rxmore;
2794 1.3.2.2 martin
2795 1.3.2.2 martin if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
2796 1.3.2.2 martin return 0;
2797 1.3.2.2 martin
2798 1.3.2.2 martin const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
2799 1.3.2.2 martin DPRINTF(MISC, "reg_icr=0x%x\n", reg_icr);
2800 1.3.2.2 martin
2801 1.3.2.2 martin /* Definitely not our interrupt. */
2802 1.3.2.2 martin if (reg_icr == 0x0) {
2803 1.3.2.2 martin DPRINTF(MISC, "not for me");
2804 1.3.2.2 martin return 0;
2805 1.3.2.2 martin }
2806 1.3.2.2 martin
2807 1.3.2.2 martin IGC_QUEUE_EVENT(iq, irqs, 1);
2808 1.3.2.2 martin
2809 1.3.2.2 martin /* Hot eject? */
2810 1.3.2.2 martin if (__predict_false(reg_icr == 0xffffffff)) {
2811 1.3.2.2 martin DPRINTF(MISC, "hot eject\n");
2812 1.3.2.2 martin return 0;
2813 1.3.2.2 martin }
2814 1.3.2.2 martin
2815 1.3.2.2 martin if (__predict_false(!(reg_icr & IGC_ICR_INT_ASSERTED))) {
2816 1.3.2.2 martin DPRINTF(MISC, "not set IGC_ICR_INT_ASSERTED");
2817 1.3.2.2 martin return 0;
2818 1.3.2.2 martin }
2819 1.3.2.2 martin
2820 1.3.2.2 martin /*
2821 1.3.2.2 martin * Only MSI-X interrupts have one-shot behavior by taking advantage
2822 1.3.2.2 martin * of the EIAC register. Thus, explicitly disable interrupts. This
2823 1.3.2.2 martin * also works around the MSI message reordering errata on certain
2824 1.3.2.2 martin * systems.
2825 1.3.2.2 martin */
2826 1.3.2.2 martin igc_disable_intr(sc);
2827 1.3.2.2 martin
2828 1.3.2.2 martin mutex_enter(&txr->txr_lock);
2829 1.3.2.2 martin txmore = igc_txeof(txr, txlimit);
2830 1.3.2.2 martin mutex_exit(&txr->txr_lock);
2831 1.3.2.2 martin mutex_enter(&rxr->rxr_lock);
2832 1.3.2.2 martin rxmore = igc_rxeof(rxr, rxlimit);
2833 1.3.2.2 martin mutex_exit(&rxr->rxr_lock);
2834 1.3.2.2 martin
2835 1.3.2.2 martin /* Link status change */
2836 1.3.2.2 martin // XXXX FreeBSD checks IGC_ICR_RXSEQ
2837 1.3.2.2 martin if (__predict_false(reg_icr & IGC_ICR_LSC)) {
2838 1.3.2.2 martin IGC_GLOBAL_EVENT(sc, link, 1);
2839 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
2840 1.3.2.2 martin sc->hw.mac.get_link_status = true;
2841 1.3.2.2 martin igc_update_link_status(sc);
2842 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
2843 1.3.2.2 martin }
2844 1.3.2.2 martin
2845 1.3.2.2 martin if (txmore || rxmore) {
2846 1.3.2.2 martin IGC_QUEUE_EVENT(iq, req, 1);
2847 1.3.2.2 martin igc_sched_handle_queue(sc, iq);
2848 1.3.2.2 martin } else {
2849 1.3.2.2 martin igc_enable_intr(sc);
2850 1.3.2.2 martin }
2851 1.3.2.2 martin
2852 1.3.2.2 martin return 1;
2853 1.3.2.2 martin }
2854 1.3.2.2 martin
2855 1.3.2.2 martin static void
2856 1.3.2.2 martin igc_handle_queue(void *arg)
2857 1.3.2.2 martin {
2858 1.3.2.2 martin struct igc_queue *iq = arg;
2859 1.3.2.2 martin struct igc_softc *sc = iq->sc;
2860 1.3.2.2 martin struct tx_ring *txr = iq->txr;
2861 1.3.2.2 martin struct rx_ring *rxr = iq->rxr;
2862 1.3.2.2 martin const u_int txlimit = sc->sc_tx_process_limit,
2863 1.3.2.2 martin rxlimit = sc->sc_rx_process_limit;
2864 1.3.2.2 martin bool txmore, rxmore;
2865 1.3.2.2 martin
2866 1.3.2.2 martin IGC_QUEUE_EVENT(iq, handleq, 1);
2867 1.3.2.2 martin
2868 1.3.2.2 martin mutex_enter(&txr->txr_lock);
2869 1.3.2.2 martin txmore = igc_txeof(txr, txlimit);
2870 1.3.2.2 martin /* for ALTQ, dequeue from if_snd */
2871 1.3.2.2 martin if (txr->me == 0) {
2872 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
2873 1.3.2.2 martin
2874 1.3.2.2 martin igc_tx_common_locked(ifp, txr, IGC_TX_START);
2875 1.3.2.2 martin }
2876 1.3.2.2 martin mutex_exit(&txr->txr_lock);
2877 1.3.2.2 martin
2878 1.3.2.2 martin mutex_enter(&rxr->rxr_lock);
2879 1.3.2.2 martin rxmore = igc_rxeof(rxr, rxlimit);
2880 1.3.2.2 martin mutex_exit(&rxr->rxr_lock);
2881 1.3.2.2 martin
2882 1.3.2.2 martin if (txmore || rxmore) {
2883 1.3.2.2 martin igc_sched_handle_queue(sc, iq);
2884 1.3.2.2 martin } else {
2885 1.3.2.2 martin if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
2886 1.3.2.2 martin igc_enable_queue(sc, iq->eims);
2887 1.3.2.2 martin else
2888 1.3.2.2 martin igc_enable_intr(sc);
2889 1.3.2.2 martin }
2890 1.3.2.2 martin }
2891 1.3.2.2 martin
2892 1.3.2.2 martin static void
2893 1.3.2.2 martin igc_handle_queue_work(struct work *wk, void *context)
2894 1.3.2.2 martin {
2895 1.3.2.2 martin struct igc_queue *iq =
2896 1.3.2.2 martin container_of(wk, struct igc_queue, igcq_wq_cookie);
2897 1.3.2.2 martin
2898 1.3.2.2 martin igc_handle_queue(iq);
2899 1.3.2.2 martin }
2900 1.3.2.2 martin
2901 1.3.2.2 martin static void
2902 1.3.2.2 martin igc_sched_handle_queue(struct igc_softc *sc, struct igc_queue *iq)
2903 1.3.2.2 martin {
2904 1.3.2.2 martin
2905 1.3.2.2 martin if (iq->igcq_workqueue) {
2906 1.3.2.2 martin /* XXXRO notyet */
2907 1.3.2.2 martin workqueue_enqueue(sc->sc_queue_wq, &iq->igcq_wq_cookie,
2908 1.3.2.2 martin curcpu());
2909 1.3.2.2 martin } else {
2910 1.3.2.2 martin softint_schedule(iq->igcq_si);
2911 1.3.2.2 martin }
2912 1.3.2.2 martin }
2913 1.3.2.2 martin
2914 1.3.2.2 martin static void
2915 1.3.2.2 martin igc_barrier_handle_queue(struct igc_softc *sc)
2916 1.3.2.2 martin {
2917 1.3.2.2 martin
2918 1.3.2.2 martin if (sc->sc_txrx_workqueue) {
2919 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2920 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
2921 1.3.2.2 martin
2922 1.3.2.2 martin workqueue_wait(sc->sc_queue_wq, &q->igcq_wq_cookie);
2923 1.3.2.2 martin }
2924 1.3.2.2 martin } else {
2925 1.3.2.2 martin xc_barrier(0);
2926 1.3.2.2 martin }
2927 1.3.2.2 martin }
2928 1.3.2.2 martin
2929 1.3.2.2 martin /*********************************************************************
2930 1.3.2.2 martin *
2931 1.3.2.2 martin * Allocate memory for tx_buffer structures. The tx_buffer stores all
2932 1.3.2.2 martin * the information needed to transmit a packet on the wire.
2933 1.3.2.2 martin *
2934 1.3.2.2 martin **********************************************************************/
2935 1.3.2.2 martin static int
2936 1.3.2.2 martin igc_allocate_transmit_buffers(struct tx_ring *txr)
2937 1.3.2.2 martin {
2938 1.3.2.2 martin struct igc_softc *sc = txr->sc;
2939 1.3.2.2 martin int error;
2940 1.3.2.2 martin
2941 1.3.2.2 martin txr->tx_buffers =
2942 1.3.2.2 martin kmem_zalloc(sc->num_tx_desc * sizeof(struct igc_tx_buf), KM_SLEEP);
2943 1.3.2.2 martin txr->txtag = txr->txdma.dma_tag;
2944 1.3.2.2 martin
2945 1.3.2.2 martin /* Create the descriptor buffer dma maps. */
2946 1.3.2.2 martin for (int id = 0; id < sc->num_tx_desc; id++) {
2947 1.3.2.2 martin struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
2948 1.3.2.2 martin
2949 1.3.2.2 martin error = bus_dmamap_create(txr->txdma.dma_tag,
2950 1.3.2.2 martin round_page(IGC_TSO_SIZE + sizeof(struct ether_vlan_header)),
2951 1.3.2.2 martin IGC_MAX_SCATTER, PAGE_SIZE, 0, BUS_DMA_NOWAIT, &txbuf->map);
2952 1.3.2.2 martin if (error != 0) {
2953 1.3.2.2 martin aprint_error_dev(sc->sc_dev,
2954 1.3.2.2 martin "unable to create TX DMA map\n");
2955 1.3.2.2 martin goto fail;
2956 1.3.2.2 martin }
2957 1.3.2.2 martin
2958 1.3.2.2 martin txbuf->eop_index = -1;
2959 1.3.2.2 martin }
2960 1.3.2.2 martin
2961 1.3.2.2 martin return 0;
2962 1.3.2.2 martin fail:
2963 1.3.2.2 martin return error;
2964 1.3.2.2 martin }
2965 1.3.2.2 martin
2966 1.3.2.2 martin
2967 1.3.2.2 martin /*********************************************************************
2968 1.3.2.2 martin *
2969 1.3.2.2 martin * Allocate and initialize transmit structures.
2970 1.3.2.2 martin *
2971 1.3.2.2 martin **********************************************************************/
2972 1.3.2.2 martin static int
2973 1.3.2.2 martin igc_setup_transmit_structures(struct igc_softc *sc)
2974 1.3.2.2 martin {
2975 1.3.2.2 martin
2976 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2977 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[iq];
2978 1.3.2.2 martin
2979 1.3.2.2 martin if (igc_setup_transmit_ring(txr))
2980 1.3.2.2 martin goto fail;
2981 1.3.2.2 martin }
2982 1.3.2.2 martin
2983 1.3.2.2 martin return 0;
2984 1.3.2.2 martin fail:
2985 1.3.2.2 martin igc_free_transmit_structures(sc);
2986 1.3.2.2 martin return ENOBUFS;
2987 1.3.2.2 martin }
2988 1.3.2.2 martin
2989 1.3.2.2 martin /*********************************************************************
2990 1.3.2.2 martin *
2991 1.3.2.2 martin * Initialize a transmit ring.
2992 1.3.2.2 martin *
2993 1.3.2.2 martin **********************************************************************/
2994 1.3.2.2 martin static int
2995 1.3.2.2 martin igc_setup_transmit_ring(struct tx_ring *txr)
2996 1.3.2.2 martin {
2997 1.3.2.2 martin struct igc_softc *sc = txr->sc;
2998 1.3.2.2 martin
2999 1.3.2.2 martin /* Now allocate transmit buffers for the ring. */
3000 1.3.2.2 martin if (igc_allocate_transmit_buffers(txr))
3001 1.3.2.2 martin return ENOMEM;
3002 1.3.2.2 martin
3003 1.3.2.2 martin /* Clear the old ring contents */
3004 1.3.2.2 martin memset(txr->tx_base, 0,
3005 1.3.2.2 martin sizeof(union igc_adv_tx_desc) * sc->num_tx_desc);
3006 1.3.2.2 martin
3007 1.3.2.2 martin /* Reset indices. */
3008 1.3.2.2 martin txr->next_avail_desc = 0;
3009 1.3.2.2 martin txr->next_to_clean = 0;
3010 1.3.2.2 martin
3011 1.3.2.2 martin bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
3012 1.3.2.2 martin txr->txdma.dma_map->dm_mapsize,
3013 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3014 1.3.2.2 martin
3015 1.3.2.2 martin txr->txr_interq = pcq_create(sc->num_tx_desc, KM_SLEEP);
3016 1.3.2.2 martin
3017 1.3.2.2 martin mutex_init(&txr->txr_lock, MUTEX_DEFAULT, IPL_NET);
3018 1.3.2.2 martin
3019 1.3.2.2 martin return 0;
3020 1.3.2.2 martin }
3021 1.3.2.2 martin
3022 1.3.2.2 martin /*********************************************************************
3023 1.3.2.2 martin *
3024 1.3.2.2 martin * Enable transmit unit.
3025 1.3.2.2 martin *
3026 1.3.2.2 martin **********************************************************************/
3027 1.3.2.2 martin static void
3028 1.3.2.2 martin igc_initialize_transmit_unit(struct igc_softc *sc)
3029 1.3.2.2 martin {
3030 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
3031 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
3032 1.3.2.2 martin
3033 1.3.2.2 martin /* Setup the Base and Length of the TX descriptor ring. */
3034 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3035 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[iq];
3036 1.3.2.2 martin const uint64_t bus_addr =
3037 1.3.2.2 martin txr->txdma.dma_map->dm_segs[0].ds_addr;
3038 1.3.2.2 martin
3039 1.3.2.2 martin /* Base and len of TX ring */
3040 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_TDLEN(iq),
3041 1.3.2.2 martin sc->num_tx_desc * sizeof(union igc_adv_tx_desc));
3042 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_TDBAH(iq), (uint32_t)(bus_addr >> 32));
3043 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_TDBAL(iq), (uint32_t)bus_addr);
3044 1.3.2.2 martin
3045 1.3.2.2 martin /* Init the HEAD/TAIL indices */
3046 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_TDT(iq), 0 /* XXX txr->next_avail_desc */);
3047 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_TDH(iq), 0);
3048 1.3.2.2 martin
3049 1.3.2.2 martin txr->watchdog_timer = 0;
3050 1.3.2.2 martin
3051 1.3.2.2 martin uint32_t txdctl = 0; /* Clear txdctl */
3052 1.3.2.2 martin txdctl |= 0x1f; /* PTHRESH */
3053 1.3.2.2 martin txdctl |= 1 << 8; /* HTHRESH */
3054 1.3.2.2 martin txdctl |= 1 << 16; /* WTHRESH */
3055 1.3.2.2 martin txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3056 1.3.2.2 martin txdctl |= IGC_TXDCTL_GRAN;
3057 1.3.2.2 martin txdctl |= 1 << 25; /* LWTHRESH */
3058 1.3.2.2 martin
3059 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_TXDCTL(iq), txdctl);
3060 1.3.2.2 martin }
3061 1.3.2.2 martin ifp->if_timer = 0;
3062 1.3.2.2 martin
3063 1.3.2.2 martin /* Program the Transmit Control Register */
3064 1.3.2.2 martin uint32_t tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
3065 1.3.2.2 martin tctl &= ~IGC_TCTL_CT;
3066 1.3.2.2 martin tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
3067 1.3.2.2 martin (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
3068 1.3.2.2 martin
3069 1.3.2.2 martin /* This write will effectively turn on the transmit unit. */
3070 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
3071 1.3.2.2 martin }
3072 1.3.2.2 martin
3073 1.3.2.2 martin /*********************************************************************
3074 1.3.2.2 martin *
3075 1.3.2.2 martin * Free all transmit rings.
3076 1.3.2.2 martin *
3077 1.3.2.2 martin **********************************************************************/
3078 1.3.2.2 martin static void
3079 1.3.2.2 martin igc_free_transmit_structures(struct igc_softc *sc)
3080 1.3.2.2 martin {
3081 1.3.2.2 martin
3082 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3083 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[iq];
3084 1.3.2.2 martin
3085 1.3.2.2 martin igc_free_transmit_buffers(txr);
3086 1.3.2.2 martin }
3087 1.3.2.2 martin }
3088 1.3.2.2 martin
3089 1.3.2.2 martin /*********************************************************************
3090 1.3.2.2 martin *
3091 1.3.2.2 martin * Free transmit ring related data structures.
3092 1.3.2.2 martin *
3093 1.3.2.2 martin **********************************************************************/
3094 1.3.2.2 martin static void
3095 1.3.2.2 martin igc_free_transmit_buffers(struct tx_ring *txr)
3096 1.3.2.2 martin {
3097 1.3.2.2 martin struct igc_softc *sc = txr->sc;
3098 1.3.2.2 martin
3099 1.3.2.2 martin if (txr->tx_buffers == NULL)
3100 1.3.2.2 martin return;
3101 1.3.2.2 martin
3102 1.3.2.2 martin igc_withdraw_transmit_packets(txr, true);
3103 1.3.2.2 martin
3104 1.3.2.2 martin kmem_free(txr->tx_buffers,
3105 1.3.2.2 martin sc->num_tx_desc * sizeof(struct igc_tx_buf));
3106 1.3.2.2 martin txr->tx_buffers = NULL;
3107 1.3.2.2 martin txr->txtag = NULL;
3108 1.3.2.2 martin
3109 1.3.2.2 martin pcq_destroy(txr->txr_interq);
3110 1.3.2.2 martin mutex_destroy(&txr->txr_lock);
3111 1.3.2.2 martin }
3112 1.3.2.2 martin
3113 1.3.2.2 martin /*********************************************************************
3114 1.3.2.2 martin *
3115 1.3.2.2 martin * Withdraw transmit packets.
3116 1.3.2.2 martin *
3117 1.3.2.2 martin **********************************************************************/
3118 1.3.2.2 martin static void
3119 1.3.2.2 martin igc_withdraw_transmit_packets(struct tx_ring *txr, bool destroy)
3120 1.3.2.2 martin {
3121 1.3.2.2 martin struct igc_softc *sc = txr->sc;
3122 1.3.2.2 martin struct igc_queue *q = txr->txr_igcq;
3123 1.3.2.2 martin
3124 1.3.2.2 martin mutex_enter(&txr->txr_lock);
3125 1.3.2.2 martin
3126 1.3.2.2 martin for (int id = 0; id < sc->num_tx_desc; id++) {
3127 1.3.2.2 martin union igc_adv_tx_desc *txdesc = &txr->tx_base[id];
3128 1.3.2.2 martin
3129 1.3.2.2 martin igc_txdesc_sync(txr, id,
3130 1.3.2.2 martin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3131 1.3.2.2 martin txdesc->read.buffer_addr = 0;
3132 1.3.2.2 martin txdesc->read.cmd_type_len = 0;
3133 1.3.2.2 martin txdesc->read.olinfo_status = 0;
3134 1.3.2.2 martin igc_txdesc_sync(txr, id,
3135 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3136 1.3.2.2 martin
3137 1.3.2.2 martin struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
3138 1.3.2.2 martin bus_dmamap_t map = txbuf->map;
3139 1.3.2.2 martin
3140 1.3.2.2 martin if (map != NULL && map->dm_nsegs > 0) {
3141 1.3.2.2 martin bus_dmamap_sync(txr->txdma.dma_tag, map,
3142 1.3.2.2 martin 0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3143 1.3.2.2 martin bus_dmamap_unload(txr->txdma.dma_tag, map);
3144 1.3.2.2 martin }
3145 1.3.2.2 martin if (txbuf->m_head != NULL) {
3146 1.3.2.2 martin m_freem(txbuf->m_head);
3147 1.3.2.2 martin txbuf->m_head = NULL;
3148 1.3.2.2 martin }
3149 1.3.2.2 martin if (map != NULL && destroy) {
3150 1.3.2.2 martin bus_dmamap_destroy(txr->txdma.dma_tag, map);
3151 1.3.2.2 martin txbuf->map = NULL;
3152 1.3.2.2 martin }
3153 1.3.2.2 martin txbuf->eop_index = -1;
3154 1.3.2.2 martin
3155 1.3.2.2 martin txr->next_avail_desc = 0;
3156 1.3.2.2 martin txr->next_to_clean = 0;
3157 1.3.2.2 martin }
3158 1.3.2.2 martin
3159 1.3.2.2 martin struct mbuf *m;
3160 1.3.2.2 martin while ((m = pcq_get(txr->txr_interq)) != NULL) {
3161 1.3.2.2 martin IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
3162 1.3.2.2 martin m_freem(m);
3163 1.3.2.2 martin }
3164 1.3.2.2 martin
3165 1.3.2.2 martin mutex_exit(&txr->txr_lock);
3166 1.3.2.2 martin }
3167 1.3.2.2 martin
3168 1.3.2.2 martin
3169 1.3.2.2 martin /*********************************************************************
3170 1.3.2.2 martin *
3171 1.3.2.2 martin * Advanced Context Descriptor setup for VLAN, CSUM or TSO
3172 1.3.2.2 martin *
3173 1.3.2.2 martin **********************************************************************/
3174 1.3.2.2 martin
3175 1.3.2.2 martin static int
3176 1.3.2.2 martin igc_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
3177 1.3.2.2 martin uint32_t *cmd_type_len, uint32_t *olinfo_status)
3178 1.3.2.2 martin {
3179 1.3.2.2 martin struct ether_vlan_header *evl;
3180 1.3.2.2 martin uint32_t type_tucmd_mlhl = 0;
3181 1.3.2.2 martin uint32_t vlan_macip_lens = 0;
3182 1.3.2.2 martin uint32_t ehlen, iphlen;
3183 1.3.2.2 martin uint16_t ehtype;
3184 1.3.2.2 martin int off = 0;
3185 1.3.2.2 martin
3186 1.3.2.2 martin const int csum_flags = mp->m_pkthdr.csum_flags;
3187 1.3.2.2 martin
3188 1.3.2.2 martin /* First check if TSO is to be used */
3189 1.3.2.2 martin if ((csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
3190 1.3.2.2 martin return igc_tso_setup(txr, mp, prod, cmd_type_len,
3191 1.3.2.2 martin olinfo_status);
3192 1.3.2.2 martin }
3193 1.3.2.2 martin
3194 1.3.2.2 martin const bool v4 = (csum_flags &
3195 1.3.2.2 martin (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0;
3196 1.3.2.2 martin const bool v6 = (csum_flags & (M_CSUM_UDPv6 | M_CSUM_TCPv6)) != 0;
3197 1.3.2.2 martin
3198 1.3.2.2 martin /* Indicate the whole packet as payload when not doing TSO */
3199 1.3.2.2 martin *olinfo_status |= mp->m_pkthdr.len << IGC_ADVTXD_PAYLEN_SHIFT;
3200 1.3.2.2 martin
3201 1.3.2.2 martin /*
3202 1.3.2.2 martin * In advanced descriptors the vlan tag must
3203 1.3.2.2 martin * be placed into the context descriptor. Hence
3204 1.3.2.2 martin * we need to make one even if not doing offloads.
3205 1.3.2.2 martin */
3206 1.3.2.2 martin #if NVLAN > 0
3207 1.3.2.2 martin if (vlan_has_tag(mp)) {
3208 1.3.2.2 martin vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
3209 1.3.2.2 martin << IGC_ADVTXD_VLAN_SHIFT;
3210 1.3.2.2 martin off = 1;
3211 1.3.2.2 martin } else
3212 1.3.2.2 martin #endif
3213 1.3.2.2 martin if (!v4 && !v6)
3214 1.3.2.2 martin return 0;
3215 1.3.2.2 martin
3216 1.3.2.2 martin KASSERT(mp->m_len >= sizeof(struct ether_header));
3217 1.3.2.2 martin evl = mtod(mp, struct ether_vlan_header *);
3218 1.3.2.2 martin if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3219 1.3.2.2 martin KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
3220 1.3.2.2 martin ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3221 1.3.2.2 martin ehtype = evl->evl_proto;
3222 1.3.2.2 martin } else {
3223 1.3.2.2 martin ehlen = ETHER_HDR_LEN;
3224 1.3.2.2 martin ehtype = evl->evl_encap_proto;
3225 1.3.2.2 martin }
3226 1.3.2.2 martin
3227 1.3.2.2 martin vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
3228 1.3.2.2 martin
3229 1.3.2.2 martin #ifdef IGC_DEBUG
3230 1.3.2.2 martin /*
3231 1.3.2.2 martin * For checksum offloading, L3 headers are not mandatory.
3232 1.3.2.2 martin * We use these only for consistency checks.
3233 1.3.2.2 martin */
3234 1.3.2.2 martin struct ip *ip;
3235 1.3.2.2 martin struct ip6_hdr *ip6;
3236 1.3.2.2 martin uint8_t ipproto;
3237 1.3.2.2 martin char *l3d;
3238 1.3.2.2 martin
3239 1.3.2.2 martin if (mp->m_len == ehlen && mp->m_next != NULL)
3240 1.3.2.2 martin l3d = mtod(mp->m_next, char *);
3241 1.3.2.2 martin else
3242 1.3.2.2 martin l3d = mtod(mp, char *) + ehlen;
3243 1.3.2.2 martin #endif
3244 1.3.2.2 martin
3245 1.3.2.2 martin switch (ntohs(ehtype)) {
3246 1.3.2.2 martin case ETHERTYPE_IP:
3247 1.3.2.2 martin iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
3248 1.3.2.2 martin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
3249 1.3.2.2 martin
3250 1.3.2.2 martin if ((csum_flags & M_CSUM_IPv4) != 0) {
3251 1.3.2.2 martin *olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
3252 1.3.2.2 martin off = 1;
3253 1.3.2.2 martin }
3254 1.3.2.2 martin #ifdef IGC_DEBUG
3255 1.3.2.2 martin KASSERT(!v6);
3256 1.3.2.2 martin ip = (void *)l3d;
3257 1.3.2.2 martin ipproto = ip->ip_p;
3258 1.3.2.2 martin KASSERT(iphlen == ip->ip_hl << 2);
3259 1.3.2.2 martin KASSERT((mp->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0 ||
3260 1.3.2.2 martin ip->ip_sum == 0);
3261 1.3.2.2 martin #endif
3262 1.3.2.2 martin break;
3263 1.3.2.2 martin case ETHERTYPE_IPV6:
3264 1.3.2.2 martin iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
3265 1.3.2.2 martin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
3266 1.3.2.2 martin #ifdef IGC_DEBUG
3267 1.3.2.2 martin KASSERT(!v4);
3268 1.3.2.2 martin ip6 = (void *)l3d;
3269 1.3.2.2 martin ipproto = ip6->ip6_nxt; /* XXX */
3270 1.3.2.2 martin KASSERT(iphlen == sizeof(struct ip6_hdr));
3271 1.3.2.2 martin #endif
3272 1.3.2.2 martin break;
3273 1.3.2.2 martin default:
3274 1.3.2.2 martin /*
3275 1.3.2.2 martin * Unknown L3 protocol. Clear L3 header length and proceed for
3276 1.3.2.2 martin * LAN as done by Linux driver.
3277 1.3.2.2 martin */
3278 1.3.2.2 martin iphlen = 0;
3279 1.3.2.2 martin #ifdef IGC_DEBUG
3280 1.3.2.2 martin KASSERT(!v4 && !v6);
3281 1.3.2.2 martin ipproto = 0;
3282 1.3.2.2 martin #endif
3283 1.3.2.2 martin break;
3284 1.3.2.2 martin }
3285 1.3.2.2 martin
3286 1.3.2.2 martin vlan_macip_lens |= iphlen;
3287 1.3.2.2 martin
3288 1.3.2.2 martin const bool tcp = (csum_flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0;
3289 1.3.2.2 martin const bool udp = (csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0;
3290 1.3.2.2 martin
3291 1.3.2.2 martin if (tcp) {
3292 1.3.2.2 martin #ifdef IGC_DEBUG
3293 1.3.2.2 martin KASSERTMSG(ipproto == IPPROTO_TCP, "ipproto = %d", ipproto);
3294 1.3.2.2 martin #endif
3295 1.3.2.2 martin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
3296 1.3.2.2 martin *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3297 1.3.2.2 martin off = 1;
3298 1.3.2.2 martin } else if (udp) {
3299 1.3.2.2 martin #ifdef IGC_DEBUG
3300 1.3.2.2 martin KASSERTMSG(ipproto == IPPROTO_UDP, "ipproto = %d", ipproto);
3301 1.3.2.2 martin #endif
3302 1.3.2.2 martin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
3303 1.3.2.2 martin *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3304 1.3.2.2 martin off = 1;
3305 1.3.2.2 martin }
3306 1.3.2.2 martin
3307 1.3.2.2 martin if (off == 0)
3308 1.3.2.2 martin return 0;
3309 1.3.2.2 martin
3310 1.3.2.2 martin type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
3311 1.3.2.2 martin
3312 1.3.2.2 martin /* Now ready a context descriptor */
3313 1.3.2.2 martin struct igc_adv_tx_context_desc *txdesc =
3314 1.3.2.2 martin (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
3315 1.3.2.2 martin
3316 1.3.2.2 martin /* Now copy bits into descriptor */
3317 1.3.2.2 martin igc_txdesc_sync(txr, prod,
3318 1.3.2.2 martin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3319 1.3.2.2 martin htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
3320 1.3.2.2 martin htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
3321 1.3.2.2 martin htolem32(&txdesc->seqnum_seed, 0);
3322 1.3.2.2 martin htolem32(&txdesc->mss_l4len_idx, 0);
3323 1.3.2.2 martin igc_txdesc_sync(txr, prod,
3324 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3325 1.3.2.2 martin
3326 1.3.2.2 martin return 1;
3327 1.3.2.2 martin }
3328 1.3.2.2 martin
3329 1.3.2.2 martin /*********************************************************************
3330 1.3.2.2 martin *
3331 1.3.2.2 martin * Advanced Context Descriptor setup for TSO
3332 1.3.2.2 martin *
3333 1.3.2.2 martin * XXX XXXRO
3334 1.3.2.2 martin * Not working. Some packets are sent with correct csums, but
3335 1.3.2.2 martin * others aren't. th->th_sum may be adjusted.
3336 1.3.2.2 martin *
3337 1.3.2.2 martin **********************************************************************/
3338 1.3.2.2 martin
3339 1.3.2.2 martin static int
3340 1.3.2.2 martin igc_tso_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
3341 1.3.2.2 martin uint32_t *cmd_type_len, uint32_t *olinfo_status)
3342 1.3.2.2 martin {
3343 1.3.2.2 martin #if 1 /* notyet */
3344 1.3.2.2 martin return 0;
3345 1.3.2.2 martin #else
3346 1.3.2.2 martin struct ether_vlan_header *evl;
3347 1.3.2.2 martin struct ip *ip;
3348 1.3.2.2 martin struct ip6_hdr *ip6;
3349 1.3.2.2 martin struct tcphdr *th;
3350 1.3.2.2 martin uint32_t type_tucmd_mlhl = 0;
3351 1.3.2.2 martin uint32_t vlan_macip_lens = 0;
3352 1.3.2.2 martin uint32_t mss_l4len_idx = 0;
3353 1.3.2.2 martin uint32_t ehlen, iphlen, tcphlen, paylen;
3354 1.3.2.2 martin uint16_t ehtype;
3355 1.3.2.2 martin
3356 1.3.2.2 martin /*
3357 1.3.2.2 martin * In advanced descriptors the vlan tag must
3358 1.3.2.2 martin * be placed into the context descriptor. Hence
3359 1.3.2.2 martin * we need to make one even if not doing offloads.
3360 1.3.2.2 martin */
3361 1.3.2.2 martin #if NVLAN > 0
3362 1.3.2.2 martin if (vlan_has_tag(mp)) {
3363 1.3.2.2 martin vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
3364 1.3.2.2 martin << IGC_ADVTXD_VLAN_SHIFT;
3365 1.3.2.2 martin }
3366 1.3.2.2 martin #endif
3367 1.3.2.2 martin
3368 1.3.2.2 martin KASSERT(mp->m_len >= sizeof(struct ether_header));
3369 1.3.2.2 martin evl = mtod(mp, struct ether_vlan_header *);
3370 1.3.2.2 martin if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3371 1.3.2.2 martin KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
3372 1.3.2.2 martin ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3373 1.3.2.2 martin ehtype = evl->evl_proto;
3374 1.3.2.2 martin } else {
3375 1.3.2.2 martin ehlen = ETHER_HDR_LEN;
3376 1.3.2.2 martin ehtype = evl->evl_encap_proto;
3377 1.3.2.2 martin }
3378 1.3.2.2 martin
3379 1.3.2.2 martin vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
3380 1.3.2.2 martin
3381 1.3.2.2 martin switch (ntohs(ehtype)) {
3382 1.3.2.2 martin case ETHERTYPE_IP:
3383 1.3.2.2 martin iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
3384 1.3.2.2 martin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
3385 1.3.2.2 martin *olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
3386 1.3.2.2 martin
3387 1.3.2.2 martin KASSERT(mp->m_len >= ehlen + sizeof(*ip));
3388 1.3.2.2 martin ip = (void *)(mtod(mp, char *) + ehlen);
3389 1.3.2.2 martin ip->ip_len = 0;
3390 1.3.2.2 martin KASSERT(iphlen == ip->ip_hl << 2);
3391 1.3.2.2 martin KASSERT(ip->ip_sum == 0);
3392 1.3.2.2 martin KASSERT(ip->ip_p == IPPROTO_TCP);
3393 1.3.2.2 martin
3394 1.3.2.2 martin KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
3395 1.3.2.2 martin th = (void *)((char *)ip + iphlen);
3396 1.3.2.2 martin th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, ip->ip_dst.s_addr,
3397 1.3.2.2 martin htons(IPPROTO_TCP));
3398 1.3.2.2 martin break;
3399 1.3.2.2 martin case ETHERTYPE_IPV6:
3400 1.3.2.2 martin iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
3401 1.3.2.2 martin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
3402 1.3.2.2 martin
3403 1.3.2.2 martin KASSERT(mp->m_len >= ehlen + sizeof(*ip6));
3404 1.3.2.2 martin ip6 = (void *)(mtod(mp, char *) + ehlen);
3405 1.3.2.2 martin ip6->ip6_plen = 0;
3406 1.3.2.2 martin KASSERT(iphlen == sizeof(struct ip6_hdr));
3407 1.3.2.2 martin KASSERT(ip6->ip6_nxt == IPPROTO_TCP);
3408 1.3.2.2 martin
3409 1.3.2.2 martin KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
3410 1.3.2.2 martin th = (void *)((char *)ip6 + iphlen);
3411 1.3.2.2 martin tcphlen = th->th_off << 2;
3412 1.3.2.2 martin paylen = mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
3413 1.3.2.2 martin th->th_sum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 0,
3414 1.3.2.2 martin htonl(IPPROTO_TCP));
3415 1.3.2.2 martin break;
3416 1.3.2.2 martin default:
3417 1.3.2.2 martin panic("%s", __func__);
3418 1.3.2.2 martin }
3419 1.3.2.2 martin
3420 1.3.2.2 martin tcphlen = th->th_off << 2;
3421 1.3.2.2 martin paylen = mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
3422 1.3.2.2 martin
3423 1.3.2.2 martin vlan_macip_lens |= iphlen;
3424 1.3.2.2 martin
3425 1.3.2.2 martin type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
3426 1.3.2.2 martin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
3427 1.3.2.2 martin
3428 1.3.2.2 martin mss_l4len_idx |= mp->m_pkthdr.segsz << IGC_ADVTXD_MSS_SHIFT;
3429 1.3.2.2 martin mss_l4len_idx |= tcphlen << IGC_ADVTXD_L4LEN_SHIFT;
3430 1.3.2.2 martin
3431 1.3.2.2 martin /* Now ready a context descriptor */
3432 1.3.2.2 martin struct igc_adv_tx_context_desc *txdesc =
3433 1.3.2.2 martin (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
3434 1.3.2.2 martin
3435 1.3.2.2 martin /* Now copy bits into descriptor */
3436 1.3.2.2 martin igc_txdesc_sync(txr, prod,
3437 1.3.2.2 martin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3438 1.3.2.2 martin htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
3439 1.3.2.2 martin htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
3440 1.3.2.2 martin htolem32(&txdesc->seqnum_seed, 0);
3441 1.3.2.2 martin htolem32(&txdesc->mss_l4len_idx, mss_l4len_idx);
3442 1.3.2.2 martin igc_txdesc_sync(txr, prod,
3443 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3444 1.3.2.2 martin
3445 1.3.2.2 martin *cmd_type_len |= IGC_ADVTXD_DCMD_TSE;
3446 1.3.2.2 martin *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3447 1.3.2.2 martin *olinfo_status |= paylen << IGC_ADVTXD_PAYLEN_SHIFT;
3448 1.3.2.2 martin
3449 1.3.2.2 martin return 1;
3450 1.3.2.2 martin #endif /* notyet */
3451 1.3.2.2 martin }
3452 1.3.2.2 martin
3453 1.3.2.2 martin /*********************************************************************
3454 1.3.2.2 martin *
3455 1.3.2.2 martin * Allocate memory for rx_buffer structures. Since we use one
3456 1.3.2.2 martin * rx_buffer per received packet, the maximum number of rx_buffer's
3457 1.3.2.2 martin * that we'll need is equal to the number of receive descriptors
3458 1.3.2.2 martin * that we've allocated.
3459 1.3.2.2 martin *
3460 1.3.2.2 martin **********************************************************************/
3461 1.3.2.2 martin static int
3462 1.3.2.2 martin igc_allocate_receive_buffers(struct rx_ring *rxr)
3463 1.3.2.2 martin {
3464 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
3465 1.3.2.2 martin int error;
3466 1.3.2.2 martin
3467 1.3.2.2 martin rxr->rx_buffers =
3468 1.3.2.2 martin kmem_zalloc(sc->num_rx_desc * sizeof(struct igc_rx_buf), KM_SLEEP);
3469 1.3.2.2 martin
3470 1.3.2.2 martin for (int id = 0; id < sc->num_rx_desc; id++) {
3471 1.3.2.2 martin struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
3472 1.3.2.2 martin
3473 1.3.2.2 martin error = bus_dmamap_create(rxr->rxdma.dma_tag, MCLBYTES, 1,
3474 1.3.2.2 martin MCLBYTES, 0, BUS_DMA_WAITOK, &rxbuf->map);
3475 1.3.2.2 martin if (error) {
3476 1.3.2.2 martin aprint_error_dev(sc->sc_dev,
3477 1.3.2.2 martin "unable to create RX DMA map\n");
3478 1.3.2.2 martin goto fail;
3479 1.3.2.2 martin }
3480 1.3.2.2 martin }
3481 1.3.2.2 martin bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
3482 1.3.2.2 martin rxr->rxdma.dma_map->dm_mapsize,
3483 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3484 1.3.2.2 martin
3485 1.3.2.2 martin return 0;
3486 1.3.2.2 martin fail:
3487 1.3.2.2 martin return error;
3488 1.3.2.2 martin }
3489 1.3.2.2 martin
3490 1.3.2.2 martin /*********************************************************************
3491 1.3.2.2 martin *
3492 1.3.2.2 martin * Allocate and initialize receive structures.
3493 1.3.2.2 martin *
3494 1.3.2.2 martin **********************************************************************/
3495 1.3.2.2 martin static int
3496 1.3.2.2 martin igc_setup_receive_structures(struct igc_softc *sc)
3497 1.3.2.2 martin {
3498 1.3.2.2 martin
3499 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3500 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
3501 1.3.2.2 martin
3502 1.3.2.2 martin if (igc_setup_receive_ring(rxr))
3503 1.3.2.2 martin goto fail;
3504 1.3.2.2 martin }
3505 1.3.2.2 martin
3506 1.3.2.2 martin return 0;
3507 1.3.2.2 martin fail:
3508 1.3.2.2 martin igc_free_receive_structures(sc);
3509 1.3.2.2 martin return ENOBUFS;
3510 1.3.2.2 martin }
3511 1.3.2.2 martin
3512 1.3.2.2 martin /*********************************************************************
3513 1.3.2.2 martin *
3514 1.3.2.2 martin * Initialize a receive ring and its buffers.
3515 1.3.2.2 martin *
3516 1.3.2.2 martin **********************************************************************/
3517 1.3.2.2 martin static int
3518 1.3.2.2 martin igc_setup_receive_ring(struct rx_ring *rxr)
3519 1.3.2.2 martin {
3520 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
3521 1.3.2.2 martin const int rsize = roundup2(
3522 1.3.2.2 martin sc->num_rx_desc * sizeof(union igc_adv_rx_desc), IGC_DBA_ALIGN);
3523 1.3.2.2 martin
3524 1.3.2.2 martin /* Clear the ring contents. */
3525 1.3.2.2 martin memset(rxr->rx_base, 0, rsize);
3526 1.3.2.2 martin
3527 1.3.2.2 martin if (igc_allocate_receive_buffers(rxr))
3528 1.3.2.2 martin return ENOMEM;
3529 1.3.2.2 martin
3530 1.3.2.2 martin /* Setup our descriptor indices. */
3531 1.3.2.2 martin rxr->next_to_check = 0;
3532 1.3.2.2 martin rxr->last_desc_filled = 0;
3533 1.3.2.2 martin
3534 1.3.2.2 martin mutex_init(&rxr->rxr_lock, MUTEX_DEFAULT, IPL_NET);
3535 1.3.2.2 martin
3536 1.3.2.2 martin return 0;
3537 1.3.2.2 martin }
3538 1.3.2.2 martin
3539 1.3.2.2 martin /*********************************************************************
3540 1.3.2.2 martin *
3541 1.3.2.2 martin * Enable receive unit.
3542 1.3.2.2 martin *
3543 1.3.2.2 martin **********************************************************************/
3544 1.3.2.2 martin static void
3545 1.3.2.2 martin igc_initialize_receive_unit(struct igc_softc *sc)
3546 1.3.2.2 martin {
3547 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
3548 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
3549 1.3.2.2 martin uint32_t rctl, rxcsum, srrctl;
3550 1.3.2.2 martin
3551 1.3.2.2 martin DPRINTF(RX, "called\n");
3552 1.3.2.2 martin
3553 1.3.2.2 martin /*
3554 1.3.2.2 martin * Make sure receives are disabled while setting
3555 1.3.2.2 martin * up the descriptor ring.
3556 1.3.2.2 martin */
3557 1.3.2.2 martin rctl = IGC_READ_REG(hw, IGC_RCTL);
3558 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
3559 1.3.2.2 martin
3560 1.3.2.2 martin /* Setup the Receive Control Register */
3561 1.3.2.2 martin rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
3562 1.3.2.2 martin rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
3563 1.3.2.2 martin IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
3564 1.3.2.2 martin
3565 1.3.2.2 martin #if 1
3566 1.3.2.2 martin /* Do not store bad packets */
3567 1.3.2.2 martin rctl &= ~IGC_RCTL_SBP;
3568 1.3.2.2 martin #else
3569 1.3.2.2 martin /* for debug */
3570 1.3.2.2 martin rctl |= IGC_RCTL_SBP;
3571 1.3.2.2 martin #endif
3572 1.3.2.2 martin
3573 1.3.2.2 martin /* Enable Long Packet receive */
3574 1.3.2.2 martin if (sc->hw.mac.max_frame_size > ETHER_MAX_LEN)
3575 1.3.2.2 martin rctl |= IGC_RCTL_LPE;
3576 1.3.2.2 martin else
3577 1.3.2.2 martin rctl &= ~IGC_RCTL_LPE;
3578 1.3.2.2 martin
3579 1.3.2.2 martin /* Strip the CRC */
3580 1.3.2.2 martin rctl |= IGC_RCTL_SECRC;
3581 1.3.2.2 martin
3582 1.3.2.2 martin /*
3583 1.3.2.2 martin * Set the interrupt throttling rate. Value is calculated
3584 1.3.2.2 martin * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3585 1.3.2.2 martin *
3586 1.3.2.2 martin * XXX Sync with Linux, especially for jumbo MTU or TSO.
3587 1.3.2.2 martin * XXX Shouldn't be here?
3588 1.3.2.2 martin */
3589 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
3590 1.3.2.2 martin
3591 1.3.2.2 martin rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
3592 1.3.2.2 martin rxcsum &= ~(IGC_RXCSUM_IPOFL | IGC_RXCSUM_TUOFL | IGC_RXCSUM_PCSD);
3593 1.3.2.2 martin if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3594 1.3.2.2 martin rxcsum |= IGC_RXCSUM_IPOFL;
3595 1.3.2.2 martin if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
3596 1.3.2.2 martin IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
3597 1.3.2.2 martin rxcsum |= IGC_RXCSUM_TUOFL;
3598 1.3.2.2 martin if (sc->sc_nqueues > 1)
3599 1.3.2.2 martin rxcsum |= IGC_RXCSUM_PCSD;
3600 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
3601 1.3.2.2 martin
3602 1.3.2.2 martin if (sc->sc_nqueues > 1)
3603 1.3.2.2 martin igc_initialize_rss_mapping(sc);
3604 1.3.2.2 martin
3605 1.3.2.2 martin srrctl = 0;
3606 1.3.2.2 martin #if 0
3607 1.3.2.2 martin srrctl |= 4096 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
3608 1.3.2.2 martin rctl |= IGC_RCTL_SZ_4096 | IGC_RCTL_BSEX;
3609 1.3.2.2 martin #else
3610 1.3.2.2 martin srrctl |= 2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
3611 1.3.2.2 martin rctl |= IGC_RCTL_SZ_2048;
3612 1.3.2.2 martin #endif
3613 1.3.2.2 martin
3614 1.3.2.2 martin /*
3615 1.3.2.2 martin * If TX flow control is disabled and there's > 1 queue defined,
3616 1.3.2.2 martin * enable DROP.
3617 1.3.2.2 martin *
3618 1.3.2.2 martin * This drops frames rather than hanging the RX MAC for all queues.
3619 1.3.2.2 martin */
3620 1.3.2.2 martin if (sc->sc_nqueues > 1 &&
3621 1.3.2.2 martin (sc->fc == igc_fc_none || sc->fc == igc_fc_rx_pause))
3622 1.3.2.2 martin srrctl |= IGC_SRRCTL_DROP_EN;
3623 1.3.2.2 martin
3624 1.3.2.2 martin /* Setup the Base and Length of the RX descriptor rings. */
3625 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3626 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
3627 1.3.2.2 martin const uint64_t bus_addr =
3628 1.3.2.2 martin rxr->rxdma.dma_map->dm_segs[0].ds_addr;
3629 1.3.2.2 martin
3630 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RXDCTL(iq), 0);
3631 1.3.2.2 martin
3632 1.3.2.2 martin srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
3633 1.3.2.2 martin
3634 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RDLEN(iq),
3635 1.3.2.2 martin sc->num_rx_desc * sizeof(union igc_adv_rx_desc));
3636 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RDBAH(iq), (uint32_t)(bus_addr >> 32));
3637 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RDBAL(iq), (uint32_t)bus_addr);
3638 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_SRRCTL(iq), srrctl);
3639 1.3.2.2 martin
3640 1.3.2.2 martin /* Setup the Head and Tail Descriptor Pointers */
3641 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RDH(iq), 0);
3642 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RDT(iq), 0 /* XXX rxr->last_desc_filled */);
3643 1.3.2.2 martin
3644 1.3.2.2 martin /* Enable this Queue */
3645 1.3.2.2 martin uint32_t rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(iq));
3646 1.3.2.2 martin rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
3647 1.3.2.2 martin rxdctl &= 0xFFF00000;
3648 1.3.2.2 martin rxdctl |= IGC_RX_PTHRESH;
3649 1.3.2.2 martin rxdctl |= IGC_RX_HTHRESH << 8;
3650 1.3.2.2 martin rxdctl |= IGC_RX_WTHRESH << 16;
3651 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RXDCTL(iq), rxdctl);
3652 1.3.2.2 martin }
3653 1.3.2.2 martin
3654 1.3.2.2 martin /* Make sure VLAN Filters are off */
3655 1.3.2.2 martin rctl &= ~IGC_RCTL_VFE;
3656 1.3.2.2 martin
3657 1.3.2.2 martin /* Write out the settings */
3658 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RCTL, rctl);
3659 1.3.2.2 martin }
3660 1.3.2.2 martin
3661 1.3.2.2 martin /*********************************************************************
3662 1.3.2.2 martin *
3663 1.3.2.2 martin * Free all receive rings.
3664 1.3.2.2 martin *
3665 1.3.2.2 martin **********************************************************************/
3666 1.3.2.2 martin static void
3667 1.3.2.2 martin igc_free_receive_structures(struct igc_softc *sc)
3668 1.3.2.2 martin {
3669 1.3.2.2 martin
3670 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3671 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
3672 1.3.2.2 martin
3673 1.3.2.2 martin igc_free_receive_buffers(rxr);
3674 1.3.2.2 martin }
3675 1.3.2.2 martin }
3676 1.3.2.2 martin
3677 1.3.2.2 martin /*********************************************************************
3678 1.3.2.2 martin *
3679 1.3.2.2 martin * Free receive ring data structures
3680 1.3.2.2 martin *
3681 1.3.2.2 martin **********************************************************************/
3682 1.3.2.2 martin static void
3683 1.3.2.2 martin igc_free_receive_buffers(struct rx_ring *rxr)
3684 1.3.2.2 martin {
3685 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
3686 1.3.2.2 martin
3687 1.3.2.2 martin if (rxr->rx_buffers != NULL) {
3688 1.3.2.2 martin for (int id = 0; id < sc->num_rx_desc; id++) {
3689 1.3.2.2 martin struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
3690 1.3.2.2 martin bus_dmamap_t map = rxbuf->map;
3691 1.3.2.2 martin
3692 1.3.2.2 martin if (rxbuf->buf != NULL) {
3693 1.3.2.2 martin bus_dmamap_sync(rxr->rxdma.dma_tag, map,
3694 1.3.2.2 martin 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
3695 1.3.2.2 martin bus_dmamap_unload(rxr->rxdma.dma_tag, map);
3696 1.3.2.2 martin m_freem(rxbuf->buf);
3697 1.3.2.2 martin rxbuf->buf = NULL;
3698 1.3.2.2 martin }
3699 1.3.2.2 martin bus_dmamap_destroy(rxr->rxdma.dma_tag, map);
3700 1.3.2.2 martin rxbuf->map = NULL;
3701 1.3.2.2 martin }
3702 1.3.2.2 martin kmem_free(rxr->rx_buffers,
3703 1.3.2.2 martin sc->num_rx_desc * sizeof(struct igc_rx_buf));
3704 1.3.2.2 martin rxr->rx_buffers = NULL;
3705 1.3.2.2 martin }
3706 1.3.2.2 martin
3707 1.3.2.2 martin mutex_destroy(&rxr->rxr_lock);
3708 1.3.2.2 martin }
3709 1.3.2.2 martin
3710 1.3.2.2 martin /*********************************************************************
3711 1.3.2.2 martin *
3712 1.3.2.2 martin * Clear status registers in all RX descriptors.
3713 1.3.2.2 martin *
3714 1.3.2.2 martin **********************************************************************/
3715 1.3.2.2 martin static void
3716 1.3.2.2 martin igc_clear_receive_status(struct rx_ring *rxr)
3717 1.3.2.2 martin {
3718 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
3719 1.3.2.2 martin
3720 1.3.2.2 martin mutex_enter(&rxr->rxr_lock);
3721 1.3.2.2 martin
3722 1.3.2.2 martin for (int id = 0; id < sc->num_rx_desc; id++) {
3723 1.3.2.2 martin union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
3724 1.3.2.2 martin
3725 1.3.2.2 martin igc_rxdesc_sync(rxr, id,
3726 1.3.2.2 martin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3727 1.3.2.2 martin rxdesc->wb.upper.status_error = 0;
3728 1.3.2.2 martin igc_rxdesc_sync(rxr, id,
3729 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3730 1.3.2.2 martin }
3731 1.3.2.2 martin
3732 1.3.2.2 martin mutex_exit(&rxr->rxr_lock);
3733 1.3.2.2 martin }
3734 1.3.2.2 martin
3735 1.3.2.2 martin /*
3736 1.3.2.2 martin * Initialise the RSS mapping for NICs that support multiple transmit/
3737 1.3.2.2 martin * receive rings.
3738 1.3.2.2 martin */
3739 1.3.2.2 martin static void
3740 1.3.2.2 martin igc_initialize_rss_mapping(struct igc_softc *sc)
3741 1.3.2.2 martin {
3742 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
3743 1.3.2.2 martin
3744 1.3.2.2 martin /*
3745 1.3.2.2 martin * The redirection table controls which destination
3746 1.3.2.2 martin * queue each bucket redirects traffic to.
3747 1.3.2.2 martin * Each DWORD represents four queues, with the LSB
3748 1.3.2.2 martin * being the first queue in the DWORD.
3749 1.3.2.2 martin *
3750 1.3.2.2 martin * This just allocates buckets to queues using round-robin
3751 1.3.2.2 martin * allocation.
3752 1.3.2.2 martin *
3753 1.3.2.2 martin * NOTE: It Just Happens to line up with the default
3754 1.3.2.2 martin * RSS allocation method.
3755 1.3.2.2 martin */
3756 1.3.2.2 martin
3757 1.3.2.2 martin /* Warning FM follows */
3758 1.3.2.2 martin uint32_t reta = 0;
3759 1.3.2.2 martin for (int i = 0; i < 128; i++) {
3760 1.3.2.2 martin const int shift = 0; /* XXXRO */
3761 1.3.2.2 martin int queue_id = i % sc->sc_nqueues;
3762 1.3.2.2 martin /* Adjust if required */
3763 1.3.2.2 martin queue_id <<= shift;
3764 1.3.2.2 martin
3765 1.3.2.2 martin /*
3766 1.3.2.2 martin * The low 8 bits are for hash value (n+0);
3767 1.3.2.2 martin * The next 8 bits are for hash value (n+1), etc.
3768 1.3.2.2 martin */
3769 1.3.2.2 martin reta >>= 8;
3770 1.3.2.2 martin reta |= ((uint32_t)queue_id) << 24;
3771 1.3.2.2 martin if ((i & 3) == 3) {
3772 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
3773 1.3.2.2 martin reta = 0;
3774 1.3.2.2 martin }
3775 1.3.2.2 martin }
3776 1.3.2.2 martin
3777 1.3.2.2 martin /*
3778 1.3.2.2 martin * MRQC: Multiple Receive Queues Command
3779 1.3.2.2 martin * Set queuing to RSS control, number depends on the device.
3780 1.3.2.2 martin */
3781 1.3.2.2 martin
3782 1.3.2.2 martin /* Set up random bits */
3783 1.3.2.2 martin uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3784 1.3.2.2 martin rss_getkey((uint8_t *)rss_key);
3785 1.3.2.2 martin
3786 1.3.2.2 martin /* Now fill our hash function seeds */
3787 1.3.2.2 martin for (int i = 0; i < __arraycount(rss_key); i++)
3788 1.3.2.2 martin IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
3789 1.3.2.2 martin
3790 1.3.2.2 martin /*
3791 1.3.2.2 martin * Configure the RSS fields to hash upon.
3792 1.3.2.2 martin */
3793 1.3.2.2 martin uint32_t mrqc = IGC_MRQC_ENABLE_RSS_4Q;
3794 1.3.2.2 martin mrqc |= IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP;
3795 1.3.2.2 martin mrqc |= IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP;
3796 1.3.2.2 martin mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
3797 1.3.2.2 martin
3798 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
3799 1.3.2.2 martin }
3800 1.3.2.2 martin
3801 1.3.2.2 martin /*
3802 1.3.2.2 martin * igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3803 1.3.2.2 martin * For ASF and Pass Through versions of f/w this means
3804 1.3.2.2 martin * that the driver is loaded. For AMT version type f/w
3805 1.3.2.2 martin * this means that the network i/f is open.
3806 1.3.2.2 martin */
3807 1.3.2.2 martin static void
3808 1.3.2.2 martin igc_get_hw_control(struct igc_softc *sc)
3809 1.3.2.2 martin {
3810 1.3.2.2 martin const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
3811 1.3.2.2 martin
3812 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
3813 1.3.2.2 martin }
3814 1.3.2.2 martin
3815 1.3.2.2 martin /*
3816 1.3.2.2 martin * igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3817 1.3.2.2 martin * For ASF and Pass Through versions of f/w this means that
3818 1.3.2.2 martin * the driver is no longer loaded. For AMT versions of the
3819 1.3.2.2 martin * f/w this means that the network i/f is closed.
3820 1.3.2.2 martin */
3821 1.3.2.2 martin static void
3822 1.3.2.2 martin igc_release_hw_control(struct igc_softc *sc)
3823 1.3.2.2 martin {
3824 1.3.2.2 martin const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
3825 1.3.2.2 martin
3826 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
3827 1.3.2.2 martin }
3828 1.3.2.2 martin
3829 1.3.2.2 martin static int
3830 1.3.2.2 martin igc_is_valid_ether_addr(uint8_t *addr)
3831 1.3.2.2 martin {
3832 1.3.2.2 martin const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3833 1.3.2.2 martin
3834 1.3.2.2 martin if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3835 1.3.2.2 martin return 0;
3836 1.3.2.2 martin
3837 1.3.2.2 martin return 1;
3838 1.3.2.2 martin }
3839 1.3.2.2 martin
3840 1.3.2.2 martin static void
3841 1.3.2.2 martin igc_print_devinfo(struct igc_softc *sc)
3842 1.3.2.2 martin {
3843 1.3.2.2 martin device_t dev = sc->sc_dev;
3844 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
3845 1.3.2.2 martin struct igc_phy_info *phy = &hw->phy;
3846 1.3.2.2 martin u_int oui, model, rev;
3847 1.3.2.4 martin uint16_t id1, id2, nvm_ver, phy_ver, etk_lo, etk_hi;
3848 1.3.2.2 martin char descr[MII_MAX_DESCR_LEN];
3849 1.3.2.2 martin
3850 1.3.2.2 martin /* Print PHY Info */
3851 1.3.2.2 martin id1 = phy->id >> 16;
3852 1.3.2.2 martin /* The revision field in phy->id is cleard and it's in phy->revision */
3853 1.3.2.2 martin id2 = (phy->id & 0xfff0) | phy->revision;
3854 1.3.2.2 martin oui = MII_OUI(id1, id2);
3855 1.3.2.2 martin model = MII_MODEL(id2);
3856 1.3.2.2 martin rev = MII_REV(id2);
3857 1.3.2.2 martin mii_get_descr(descr, sizeof(descr), oui, model);
3858 1.3.2.2 martin if (descr[0])
3859 1.3.2.4 martin aprint_normal_dev(dev, "PHY: %s, rev. %d",
3860 1.3.2.2 martin descr, rev);
3861 1.3.2.2 martin else
3862 1.3.2.2 martin aprint_normal_dev(dev,
3863 1.3.2.4 martin "PHY OUI 0x%06x, model 0x%04x, rev. %d",
3864 1.3.2.2 martin oui, model, rev);
3865 1.3.2.2 martin
3866 1.3.2.4 martin /* PHY FW version */
3867 1.3.2.4 martin phy->ops.read_reg(hw, 0x1e, &phy_ver);
3868 1.3.2.4 martin aprint_normal(", PHY FW version 0x%04hx\n", phy_ver);
3869 1.3.2.4 martin
3870 1.3.2.4 martin /* NVM version */
3871 1.3.2.2 martin hw->nvm.ops.read(hw, NVM_VERSION, 1, &nvm_ver);
3872 1.3.2.2 martin
3873 1.3.2.4 martin /* EtrackID */
3874 1.3.2.4 martin hw->nvm.ops.read(hw, NVM_ETKID_LO, 1, &etk_lo);
3875 1.3.2.4 martin hw->nvm.ops.read(hw, NVM_ETKID_HI, 1, &etk_hi);
3876 1.3.2.2 martin
3877 1.3.2.4 martin aprint_normal_dev(dev,
3878 1.3.2.4 martin "NVM image version %x.%02x, EtrackID %04hx%04hx\n",
3879 1.3.2.2 martin (nvm_ver & NVM_VERSION_MAJOR) >> NVM_VERSION_MAJOR_SHIFT,
3880 1.3.2.4 martin nvm_ver & NVM_VERSION_MINOR, etk_hi, etk_lo);
3881 1.3.2.2 martin }
3882