if_igc.c revision 1.3.2.7 1 1.3.2.7 martin /* $NetBSD: if_igc.c,v 1.3.2.7 2025/06/01 12:32:06 martin Exp $ */
2 1.3.2.2 martin /* $OpenBSD: if_igc.c,v 1.13 2023/04/28 10:18:57 bluhm Exp $ */
3 1.3.2.2 martin /*-
4 1.3.2.2 martin * SPDX-License-Identifier: BSD-2-Clause
5 1.3.2.2 martin *
6 1.3.2.2 martin * Copyright (c) 2016 Nicole Graziano <nicole (at) nextbsd.org>
7 1.3.2.2 martin * All rights reserved.
8 1.3.2.2 martin * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
9 1.3.2.2 martin *
10 1.3.2.2 martin * Redistribution and use in source and binary forms, with or without
11 1.3.2.2 martin * modification, are permitted provided that the following conditions
12 1.3.2.2 martin * are met:
13 1.3.2.2 martin * 1. Redistributions of source code must retain the above copyright
14 1.3.2.2 martin * notice, this list of conditions and the following disclaimer.
15 1.3.2.2 martin * 2. Redistributions in binary form must reproduce the above copyright
16 1.3.2.2 martin * notice, this list of conditions and the following disclaimer in the
17 1.3.2.2 martin * documentation and/or other materials provided with the distribution.
18 1.3.2.2 martin *
19 1.3.2.2 martin * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 1.3.2.2 martin * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.3.2.2 martin * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.3.2.2 martin * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 1.3.2.2 martin * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.3.2.2 martin * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.3.2.2 martin * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.3.2.2 martin * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.3.2.2 martin * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.3.2.2 martin * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.3.2.2 martin * SUCH DAMAGE.
30 1.3.2.2 martin */
31 1.3.2.2 martin
32 1.3.2.2 martin #include <sys/cdefs.h>
33 1.3.2.7 martin __KERNEL_RCSID(0, "$NetBSD: if_igc.c,v 1.3.2.7 2025/06/01 12:32:06 martin Exp $");
34 1.3.2.2 martin
35 1.3.2.2 martin #ifdef _KERNEL_OPT
36 1.3.2.2 martin #include "opt_if_igc.h"
37 1.3.2.2 martin #if 0 /* notyet */
38 1.3.2.2 martin #include "vlan.h"
39 1.3.2.2 martin #endif
40 1.3.2.2 martin #endif
41 1.3.2.2 martin
42 1.3.2.2 martin #include <sys/param.h>
43 1.3.2.2 martin #include <sys/systm.h>
44 1.3.2.2 martin #include <sys/bus.h>
45 1.3.2.2 martin #include <sys/cpu.h>
46 1.3.2.2 martin #include <sys/device.h>
47 1.3.2.2 martin #include <sys/endian.h>
48 1.3.2.2 martin #include <sys/intr.h>
49 1.3.2.2 martin #include <sys/interrupt.h>
50 1.3.2.2 martin #include <sys/kernel.h>
51 1.3.2.2 martin #include <sys/kmem.h>
52 1.3.2.2 martin #include <sys/mbuf.h>
53 1.3.2.2 martin #include <sys/mutex.h>
54 1.3.2.2 martin #include <sys/socket.h>
55 1.3.2.2 martin #include <sys/workqueue.h>
56 1.3.2.2 martin #include <sys/xcall.h>
57 1.3.2.2 martin
58 1.3.2.2 martin #include <net/bpf.h>
59 1.3.2.2 martin #include <net/if.h>
60 1.3.2.2 martin #include <net/if_ether.h>
61 1.3.2.2 martin #include <net/if_media.h>
62 1.3.2.2 martin #include <net/if_vlanvar.h>
63 1.3.2.2 martin #include <net/rss_config.h>
64 1.3.2.2 martin
65 1.3.2.2 martin #include <netinet/in.h>
66 1.3.2.2 martin #include <netinet/ip.h>
67 1.3.2.2 martin #include <netinet/ip6.h>
68 1.3.2.2 martin #include <netinet/tcp.h>
69 1.3.2.2 martin
70 1.3.2.2 martin #include <dev/pci/pcivar.h>
71 1.3.2.2 martin #include <dev/pci/pcireg.h>
72 1.3.2.2 martin #include <dev/pci/pcidevs.h>
73 1.3.2.2 martin
74 1.3.2.2 martin #include <dev/pci/igc/if_igc.h>
75 1.3.2.2 martin #include <dev/pci/igc/igc_evcnt.h>
76 1.3.2.2 martin #include <dev/pci/igc/igc_hw.h>
77 1.3.2.2 martin #include <dev/mii/miivar.h>
78 1.3.2.2 martin
79 1.3.2.2 martin #define IGC_WORKQUEUE_PRI PRI_SOFTNET
80 1.3.2.2 martin
81 1.3.2.2 martin #ifndef IGC_RX_INTR_PROCESS_LIMIT_DEFAULT
82 1.3.2.2 martin #define IGC_RX_INTR_PROCESS_LIMIT_DEFAULT 0
83 1.3.2.2 martin #endif
84 1.3.2.2 martin #ifndef IGC_TX_INTR_PROCESS_LIMIT_DEFAULT
85 1.3.2.2 martin #define IGC_TX_INTR_PROCESS_LIMIT_DEFAULT 0
86 1.3.2.2 martin #endif
87 1.3.2.2 martin
88 1.3.2.2 martin #ifndef IGC_RX_PROCESS_LIMIT_DEFAULT
89 1.3.2.2 martin #define IGC_RX_PROCESS_LIMIT_DEFAULT 256
90 1.3.2.2 martin #endif
91 1.3.2.2 martin #ifndef IGC_TX_PROCESS_LIMIT_DEFAULT
92 1.3.2.2 martin #define IGC_TX_PROCESS_LIMIT_DEFAULT 256
93 1.3.2.2 martin #endif
94 1.3.2.2 martin
95 1.3.2.2 martin #define htolem32(p, x) (*((uint32_t *)(p)) = htole32(x))
96 1.3.2.2 martin #define htolem64(p, x) (*((uint64_t *)(p)) = htole64(x))
97 1.3.2.2 martin
98 1.3.2.2 martin static const struct igc_product {
99 1.3.2.2 martin pci_vendor_id_t igcp_vendor;
100 1.3.2.2 martin pci_product_id_t igcp_product;
101 1.3.2.2 martin const char *igcp_name;
102 1.3.2.2 martin } igc_products[] = {
103 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_IT,
104 1.3.2.2 martin "Intel(R) Ethernet Controller I225-IT(2)" },
105 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LM,
106 1.3.2.2 martin "Intel(R) Ethernet Controller I226-LM" },
107 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_V,
108 1.3.2.2 martin "Intel(R) Ethernet Controller I226-V" },
109 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_IT,
110 1.3.2.2 martin "Intel(R) Ethernet Controller I226-IT" },
111 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I221_V,
112 1.3.2.2 martin "Intel(R) Ethernet Controller I221-V" },
113 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_BLANK_NVM,
114 1.3.2.2 martin "Intel(R) Ethernet Controller I226(blankNVM)" },
115 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LM,
116 1.3.2.2 martin "Intel(R) Ethernet Controller I225-LM" },
117 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_V,
118 1.3.2.2 martin "Intel(R) Ethernet Controller I225-V" },
119 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I220_V,
120 1.3.2.2 martin "Intel(R) Ethernet Controller I220-V" },
121 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_I,
122 1.3.2.2 martin "Intel(R) Ethernet Controller I225-I" },
123 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_BLANK_NVM,
124 1.3.2.2 martin "Intel(R) Ethernet Controller I225(blankNVM)" },
125 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K,
126 1.3.2.2 martin "Intel(R) Ethernet Controller I225-K" },
127 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K2,
128 1.3.2.2 martin "Intel(R) Ethernet Controller I225-K(2)" },
129 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_K,
130 1.3.2.2 martin "Intel(R) Ethernet Controller I226-K" },
131 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LMVP,
132 1.3.2.2 martin "Intel(R) Ethernet Controller I225-LMvP(2)" },
133 1.3.2.2 martin { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LMVP,
134 1.3.2.2 martin "Intel(R) Ethernet Controller I226-LMvP" },
135 1.3.2.2 martin { 0, 0, NULL },
136 1.3.2.2 martin };
137 1.3.2.2 martin
138 1.3.2.2 martin #define IGC_DF_CFG 0x1
139 1.3.2.2 martin #define IGC_DF_TX 0x2
140 1.3.2.2 martin #define IGC_DF_RX 0x4
141 1.3.2.2 martin #define IGC_DF_MISC 0x8
142 1.3.2.2 martin
143 1.3.2.2 martin #ifdef IGC_DEBUG_FLAGS
144 1.3.2.2 martin int igc_debug_flags = IGC_DEBUG_FLAGS;
145 1.3.2.2 martin #else
146 1.3.2.2 martin int igc_debug_flags = 0;
147 1.3.2.2 martin #endif
148 1.3.2.2 martin
149 1.3.2.2 martin #define DPRINTF(flag, fmt, args...) do { \
150 1.3.2.2 martin if (igc_debug_flags & (IGC_DF_ ## flag)) \
151 1.3.2.2 martin printf("%s: %d: " fmt, __func__, __LINE__, ##args); \
152 1.3.2.2 martin } while (0)
153 1.3.2.2 martin
154 1.3.2.2 martin /*********************************************************************
155 1.3.2.2 martin * Function Prototypes
156 1.3.2.2 martin *********************************************************************/
157 1.3.2.2 martin static int igc_match(device_t, cfdata_t, void *);
158 1.3.2.2 martin static void igc_attach(device_t, device_t, void *);
159 1.3.2.2 martin static int igc_detach(device_t, int);
160 1.3.2.2 martin
161 1.3.2.2 martin static void igc_identify_hardware(struct igc_softc *);
162 1.3.2.2 martin static int igc_adjust_nqueues(struct igc_softc *);
163 1.3.2.2 martin static int igc_allocate_pci_resources(struct igc_softc *);
164 1.3.2.2 martin static int igc_allocate_interrupts(struct igc_softc *);
165 1.3.2.2 martin static int igc_allocate_queues(struct igc_softc *);
166 1.3.2.2 martin static void igc_free_pci_resources(struct igc_softc *);
167 1.3.2.2 martin static void igc_free_interrupts(struct igc_softc *);
168 1.3.2.2 martin static void igc_free_queues(struct igc_softc *);
169 1.3.2.2 martin static void igc_reset(struct igc_softc *);
170 1.3.2.2 martin static void igc_init_dmac(struct igc_softc *, uint32_t);
171 1.3.2.2 martin static int igc_setup_interrupts(struct igc_softc *);
172 1.3.2.2 martin static void igc_attach_counters(struct igc_softc *sc);
173 1.3.2.2 martin static void igc_detach_counters(struct igc_softc *sc);
174 1.3.2.2 martin static void igc_update_counters(struct igc_softc *sc);
175 1.3.2.2 martin static void igc_clear_counters(struct igc_softc *sc);
176 1.3.2.2 martin static int igc_setup_msix(struct igc_softc *);
177 1.3.2.2 martin static int igc_setup_msi(struct igc_softc *);
178 1.3.2.2 martin static int igc_setup_intx(struct igc_softc *);
179 1.3.2.2 martin static int igc_dma_malloc(struct igc_softc *, bus_size_t,
180 1.3.2.2 martin struct igc_dma_alloc *);
181 1.3.2.2 martin static void igc_dma_free(struct igc_softc *, struct igc_dma_alloc *);
182 1.3.2.2 martin static void igc_setup_interface(struct igc_softc *);
183 1.3.2.2 martin
184 1.3.2.2 martin static int igc_init(struct ifnet *);
185 1.3.2.2 martin static int igc_init_locked(struct igc_softc *);
186 1.3.2.2 martin static void igc_start(struct ifnet *);
187 1.3.2.2 martin static int igc_transmit(struct ifnet *, struct mbuf *);
188 1.3.2.2 martin static void igc_tx_common_locked(struct ifnet *, struct tx_ring *, int);
189 1.3.2.2 martin static bool igc_txeof(struct tx_ring *, u_int);
190 1.3.2.2 martin static void igc_intr_barrier(struct igc_softc *);
191 1.3.2.2 martin static void igc_stop(struct ifnet *, int);
192 1.3.2.2 martin static void igc_stop_locked(struct igc_softc *);
193 1.3.2.2 martin static int igc_ioctl(struct ifnet *, u_long, void *);
194 1.3.2.2 martin #ifdef IF_RXR
195 1.3.2.2 martin static int igc_rxrinfo(struct igc_softc *, struct if_rxrinfo *);
196 1.3.2.2 martin #endif
197 1.3.2.2 martin static void igc_rxfill(struct rx_ring *);
198 1.3.2.2 martin static void igc_rxrefill(struct rx_ring *, int);
199 1.3.2.2 martin static bool igc_rxeof(struct rx_ring *, u_int);
200 1.3.2.2 martin static int igc_rx_checksum(struct igc_queue *, uint64_t, uint32_t,
201 1.3.2.2 martin uint32_t);
202 1.3.2.2 martin static void igc_watchdog(struct ifnet *);
203 1.3.2.2 martin static void igc_tick(void *);
204 1.3.2.2 martin static void igc_media_status(struct ifnet *, struct ifmediareq *);
205 1.3.2.2 martin static int igc_media_change(struct ifnet *);
206 1.3.2.2 martin static int igc_ifflags_cb(struct ethercom *);
207 1.3.2.2 martin static void igc_set_filter(struct igc_softc *);
208 1.3.2.2 martin static void igc_update_link_status(struct igc_softc *);
209 1.3.2.2 martin static int igc_get_buf(struct rx_ring *, int, bool);
210 1.3.2.7 martin static bool igc_tx_ctx_setup(struct tx_ring *, struct mbuf *, int,
211 1.3.2.2 martin uint32_t *, uint32_t *);
212 1.3.2.2 martin
213 1.3.2.2 martin static void igc_configure_queues(struct igc_softc *);
214 1.3.2.2 martin static void igc_set_queues(struct igc_softc *, uint32_t, uint32_t, int);
215 1.3.2.2 martin static void igc_enable_queue(struct igc_softc *, uint32_t);
216 1.3.2.2 martin static void igc_enable_intr(struct igc_softc *);
217 1.3.2.2 martin static void igc_disable_intr(struct igc_softc *);
218 1.3.2.2 martin static int igc_intr_link(void *);
219 1.3.2.2 martin static int igc_intr_queue(void *);
220 1.3.2.2 martin static int igc_intr(void *);
221 1.3.2.2 martin static void igc_handle_queue(void *);
222 1.3.2.2 martin static void igc_handle_queue_work(struct work *, void *);
223 1.3.2.2 martin static void igc_sched_handle_queue(struct igc_softc *, struct igc_queue *);
224 1.3.2.2 martin static void igc_barrier_handle_queue(struct igc_softc *);
225 1.3.2.2 martin
226 1.3.2.2 martin static int igc_allocate_transmit_buffers(struct tx_ring *);
227 1.3.2.2 martin static int igc_setup_transmit_structures(struct igc_softc *);
228 1.3.2.2 martin static int igc_setup_transmit_ring(struct tx_ring *);
229 1.3.2.2 martin static void igc_initialize_transmit_unit(struct igc_softc *);
230 1.3.2.2 martin static void igc_free_transmit_structures(struct igc_softc *);
231 1.3.2.2 martin static void igc_free_transmit_buffers(struct tx_ring *);
232 1.3.2.2 martin static void igc_withdraw_transmit_packets(struct tx_ring *, bool);
233 1.3.2.2 martin static int igc_allocate_receive_buffers(struct rx_ring *);
234 1.3.2.2 martin static int igc_setup_receive_structures(struct igc_softc *);
235 1.3.2.2 martin static int igc_setup_receive_ring(struct rx_ring *);
236 1.3.2.2 martin static void igc_initialize_receive_unit(struct igc_softc *);
237 1.3.2.2 martin static void igc_free_receive_structures(struct igc_softc *);
238 1.3.2.2 martin static void igc_free_receive_buffers(struct rx_ring *);
239 1.3.2.2 martin static void igc_clear_receive_status(struct rx_ring *);
240 1.3.2.2 martin static void igc_initialize_rss_mapping(struct igc_softc *);
241 1.3.2.2 martin
242 1.3.2.2 martin static void igc_get_hw_control(struct igc_softc *);
243 1.3.2.2 martin static void igc_release_hw_control(struct igc_softc *);
244 1.3.2.2 martin static int igc_is_valid_ether_addr(uint8_t *);
245 1.3.2.2 martin static void igc_print_devinfo(struct igc_softc *);
246 1.3.2.2 martin
247 1.3.2.2 martin CFATTACH_DECL3_NEW(igc, sizeof(struct igc_softc),
248 1.3.2.2 martin igc_match, igc_attach, igc_detach, NULL, NULL, NULL, 0);
249 1.3.2.2 martin
250 1.3.2.2 martin static inline int
251 1.3.2.2 martin igc_txdesc_incr(struct igc_softc *sc, int id)
252 1.3.2.2 martin {
253 1.3.2.2 martin
254 1.3.2.2 martin if (++id == sc->num_tx_desc)
255 1.3.2.2 martin id = 0;
256 1.3.2.2 martin return id;
257 1.3.2.2 martin }
258 1.3.2.2 martin
259 1.3.2.2 martin static inline int __unused
260 1.3.2.2 martin igc_txdesc_decr(struct igc_softc *sc, int id)
261 1.3.2.2 martin {
262 1.3.2.2 martin
263 1.3.2.2 martin if (--id < 0)
264 1.3.2.2 martin id = sc->num_tx_desc - 1;
265 1.3.2.2 martin return id;
266 1.3.2.2 martin }
267 1.3.2.2 martin
268 1.3.2.2 martin static inline void
269 1.3.2.2 martin igc_txdesc_sync(struct tx_ring *txr, int id, int ops)
270 1.3.2.2 martin {
271 1.3.2.2 martin
272 1.3.2.2 martin bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
273 1.3.2.2 martin id * sizeof(union igc_adv_tx_desc), sizeof(union igc_adv_tx_desc),
274 1.3.2.2 martin ops);
275 1.3.2.2 martin }
276 1.3.2.2 martin
277 1.3.2.2 martin static inline int
278 1.3.2.2 martin igc_rxdesc_incr(struct igc_softc *sc, int id)
279 1.3.2.2 martin {
280 1.3.2.2 martin
281 1.3.2.2 martin if (++id == sc->num_rx_desc)
282 1.3.2.2 martin id = 0;
283 1.3.2.2 martin return id;
284 1.3.2.2 martin }
285 1.3.2.2 martin
286 1.3.2.2 martin static inline int
287 1.3.2.2 martin igc_rxdesc_decr(struct igc_softc *sc, int id)
288 1.3.2.2 martin {
289 1.3.2.2 martin
290 1.3.2.2 martin if (--id < 0)
291 1.3.2.2 martin id = sc->num_rx_desc - 1;
292 1.3.2.2 martin return id;
293 1.3.2.2 martin }
294 1.3.2.2 martin
295 1.3.2.2 martin static inline void
296 1.3.2.2 martin igc_rxdesc_sync(struct rx_ring *rxr, int id, int ops)
297 1.3.2.2 martin {
298 1.3.2.2 martin
299 1.3.2.2 martin bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
300 1.3.2.2 martin id * sizeof(union igc_adv_rx_desc), sizeof(union igc_adv_rx_desc),
301 1.3.2.2 martin ops);
302 1.3.2.2 martin }
303 1.3.2.2 martin
304 1.3.2.2 martin static const struct igc_product *
305 1.3.2.2 martin igc_lookup(const struct pci_attach_args *pa)
306 1.3.2.2 martin {
307 1.3.2.2 martin const struct igc_product *igcp;
308 1.3.2.2 martin
309 1.3.2.2 martin for (igcp = igc_products; igcp->igcp_name != NULL; igcp++) {
310 1.3.2.2 martin if (PCI_VENDOR(pa->pa_id) == igcp->igcp_vendor &&
311 1.3.2.2 martin PCI_PRODUCT(pa->pa_id) == igcp->igcp_product)
312 1.3.2.2 martin return igcp;
313 1.3.2.2 martin }
314 1.3.2.2 martin return NULL;
315 1.3.2.2 martin }
316 1.3.2.2 martin
317 1.3.2.2 martin /*********************************************************************
318 1.3.2.2 martin * Device identification routine
319 1.3.2.2 martin *
320 1.3.2.2 martin * igc_match determines if the driver should be loaded on
321 1.3.2.2 martin * adapter based on PCI vendor/device id of the adapter.
322 1.3.2.2 martin *
323 1.3.2.2 martin * return 0 on success, positive on failure
324 1.3.2.2 martin *********************************************************************/
325 1.3.2.2 martin static int
326 1.3.2.2 martin igc_match(device_t parent, cfdata_t match, void *aux)
327 1.3.2.2 martin {
328 1.3.2.2 martin struct pci_attach_args *pa = aux;
329 1.3.2.2 martin
330 1.3.2.2 martin if (igc_lookup(pa) != NULL)
331 1.3.2.2 martin return 1;
332 1.3.2.2 martin
333 1.3.2.2 martin return 0;
334 1.3.2.2 martin }
335 1.3.2.2 martin
336 1.3.2.2 martin /*********************************************************************
337 1.3.2.2 martin * Device initialization routine
338 1.3.2.2 martin *
339 1.3.2.2 martin * The attach entry point is called when the driver is being loaded.
340 1.3.2.2 martin * This routine identifies the type of hardware, allocates all resources
341 1.3.2.2 martin * and initializes the hardware.
342 1.3.2.2 martin *
343 1.3.2.2 martin * return 0 on success, positive on failure
344 1.3.2.2 martin *********************************************************************/
345 1.3.2.2 martin static void
346 1.3.2.2 martin igc_attach(device_t parent, device_t self, void *aux)
347 1.3.2.2 martin {
348 1.3.2.2 martin struct pci_attach_args *pa = aux;
349 1.3.2.2 martin struct igc_softc *sc = device_private(self);
350 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
351 1.3.2.2 martin
352 1.3.2.2 martin const struct igc_product *igcp = igc_lookup(pa);
353 1.3.2.2 martin KASSERT(igcp != NULL);
354 1.3.2.2 martin
355 1.3.2.2 martin sc->sc_dev = self;
356 1.3.2.2 martin callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE);
357 1.3.2.2 martin callout_setfunc(&sc->sc_tick_ch, igc_tick, sc);
358 1.3.2.2 martin sc->sc_core_stopping = false;
359 1.3.2.2 martin
360 1.3.2.2 martin sc->osdep.os_sc = sc;
361 1.3.2.2 martin sc->osdep.os_pa = *pa;
362 1.3.2.5 martin #ifndef __aarch64__
363 1.3.2.2 martin /*
364 1.3.2.2 martin * XXX PR port-arm/57643
365 1.3.2.2 martin * 64-bit DMA does not work at least for LX2K with 32/64GB memory.
366 1.3.2.2 martin * smmu(4) support may be required.
367 1.3.2.2 martin */
368 1.3.2.5 martin if (pci_dma64_available(pa)) {
369 1.3.2.5 martin aprint_verbose(", 64-bit DMA");
370 1.3.2.5 martin sc->osdep.os_dmat = pa->pa_dmat64;
371 1.3.2.5 martin } else
372 1.3.2.2 martin #endif
373 1.3.2.5 martin {
374 1.3.2.5 martin aprint_verbose(", 32-bit DMA");
375 1.3.2.5 martin sc->osdep.os_dmat = pa->pa_dmat;
376 1.3.2.5 martin }
377 1.3.2.5 martin
378 1.3.2.5 martin pci_aprint_devinfo_fancy(pa, "Ethernet controller", igcp->igcp_name, 1);
379 1.3.2.2 martin
380 1.3.2.2 martin /* Determine hardware and mac info */
381 1.3.2.2 martin igc_identify_hardware(sc);
382 1.3.2.2 martin
383 1.3.2.2 martin sc->num_tx_desc = IGC_DEFAULT_TXD;
384 1.3.2.2 martin sc->num_rx_desc = IGC_DEFAULT_RXD;
385 1.3.2.2 martin
386 1.3.2.2 martin /* Setup PCI resources */
387 1.3.2.2 martin if (igc_allocate_pci_resources(sc)) {
388 1.3.2.2 martin aprint_error_dev(sc->sc_dev,
389 1.3.2.2 martin "unable to allocate PCI resources\n");
390 1.3.2.2 martin goto err_pci;
391 1.3.2.2 martin }
392 1.3.2.2 martin
393 1.3.2.2 martin if (igc_allocate_interrupts(sc)) {
394 1.3.2.2 martin aprint_error_dev(sc->sc_dev, "unable to allocate interrupts\n");
395 1.3.2.2 martin goto err_pci;
396 1.3.2.2 martin }
397 1.3.2.2 martin
398 1.3.2.2 martin /* Allocate TX/RX queues */
399 1.3.2.2 martin if (igc_allocate_queues(sc)) {
400 1.3.2.2 martin aprint_error_dev(sc->sc_dev, "unable to allocate queues\n");
401 1.3.2.2 martin goto err_alloc_intr;
402 1.3.2.2 martin }
403 1.3.2.2 martin
404 1.3.2.2 martin /* Do shared code initialization */
405 1.3.2.2 martin if (igc_setup_init_funcs(hw, true)) {
406 1.3.2.2 martin aprint_error_dev(sc->sc_dev, "unable to initialize\n");
407 1.3.2.2 martin goto err_alloc_intr;
408 1.3.2.2 martin }
409 1.3.2.2 martin
410 1.3.2.2 martin hw->mac.autoneg = DO_AUTO_NEG;
411 1.3.2.2 martin hw->phy.autoneg_wait_to_complete = false;
412 1.3.2.2 martin hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
413 1.3.2.2 martin
414 1.3.2.2 martin /* Copper options. */
415 1.3.2.2 martin if (hw->phy.media_type == igc_media_type_copper)
416 1.3.2.2 martin hw->phy.mdix = AUTO_ALL_MODES;
417 1.3.2.2 martin
418 1.3.2.2 martin /* Set the max frame size. */
419 1.3.2.2 martin sc->hw.mac.max_frame_size = 9234;
420 1.3.2.2 martin
421 1.3.2.2 martin /* Allocate multicast array memory. */
422 1.3.2.2 martin sc->mta = kmem_alloc(IGC_MTA_LEN, KM_SLEEP);
423 1.3.2.2 martin
424 1.3.2.2 martin /* Check SOL/IDER usage. */
425 1.3.2.2 martin if (igc_check_reset_block(hw)) {
426 1.3.2.2 martin aprint_error_dev(sc->sc_dev,
427 1.3.2.2 martin "PHY reset is blocked due to SOL/IDER session\n");
428 1.3.2.2 martin }
429 1.3.2.2 martin
430 1.3.2.2 martin /* Disable Energy Efficient Ethernet. */
431 1.3.2.2 martin sc->hw.dev_spec._i225.eee_disable = true;
432 1.3.2.2 martin
433 1.3.2.2 martin igc_reset_hw(hw);
434 1.3.2.2 martin
435 1.3.2.2 martin /* Make sure we have a good EEPROM before we read from it. */
436 1.3.2.2 martin if (igc_validate_nvm_checksum(hw) < 0) {
437 1.3.2.2 martin /*
438 1.3.2.2 martin * Some PCI-E parts fail the first check due to
439 1.3.2.2 martin * the link being in sleep state, call it again,
440 1.3.2.2 martin * if it fails a second time its a real issue.
441 1.3.2.2 martin */
442 1.3.2.2 martin if (igc_validate_nvm_checksum(hw) < 0) {
443 1.3.2.2 martin aprint_error_dev(sc->sc_dev,
444 1.3.2.2 martin "EEPROM checksum invalid\n");
445 1.3.2.2 martin goto err_late;
446 1.3.2.2 martin }
447 1.3.2.2 martin }
448 1.3.2.2 martin
449 1.3.2.2 martin /* Copy the permanent MAC address out of the EEPROM. */
450 1.3.2.2 martin if (igc_read_mac_addr(hw) < 0) {
451 1.3.2.2 martin aprint_error_dev(sc->sc_dev,
452 1.3.2.2 martin "unable to read MAC address from EEPROM\n");
453 1.3.2.2 martin goto err_late;
454 1.3.2.2 martin }
455 1.3.2.2 martin
456 1.3.2.2 martin if (!igc_is_valid_ether_addr(hw->mac.addr)) {
457 1.3.2.2 martin aprint_error_dev(sc->sc_dev, "invalid MAC address\n");
458 1.3.2.2 martin goto err_late;
459 1.3.2.2 martin }
460 1.3.2.2 martin
461 1.3.2.2 martin if (igc_setup_interrupts(sc))
462 1.3.2.2 martin goto err_late;
463 1.3.2.2 martin
464 1.3.2.2 martin /* Attach counters. */
465 1.3.2.2 martin igc_attach_counters(sc);
466 1.3.2.2 martin
467 1.3.2.2 martin /* Setup OS specific network interface. */
468 1.3.2.2 martin igc_setup_interface(sc);
469 1.3.2.2 martin
470 1.3.2.2 martin igc_print_devinfo(sc);
471 1.3.2.2 martin
472 1.3.2.2 martin igc_reset(sc);
473 1.3.2.2 martin hw->mac.get_link_status = true;
474 1.3.2.2 martin igc_update_link_status(sc);
475 1.3.2.2 martin
476 1.3.2.2 martin /* The driver can now take control from firmware. */
477 1.3.2.2 martin igc_get_hw_control(sc);
478 1.3.2.2 martin
479 1.3.2.2 martin aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
480 1.3.2.2 martin ether_sprintf(sc->hw.mac.addr));
481 1.3.2.2 martin
482 1.3.2.2 martin if (pmf_device_register(self, NULL, NULL))
483 1.3.2.2 martin pmf_class_network_register(self, &sc->sc_ec.ec_if);
484 1.3.2.2 martin else
485 1.3.2.2 martin aprint_error_dev(self, "couldn't establish power handler\n");
486 1.3.2.2 martin
487 1.3.2.2 martin return;
488 1.3.2.2 martin
489 1.3.2.2 martin err_late:
490 1.3.2.2 martin igc_release_hw_control(sc);
491 1.3.2.2 martin err_alloc_intr:
492 1.3.2.2 martin igc_free_interrupts(sc);
493 1.3.2.2 martin err_pci:
494 1.3.2.2 martin igc_free_pci_resources(sc);
495 1.3.2.2 martin kmem_free(sc->mta, IGC_MTA_LEN);
496 1.3.2.2 martin }
497 1.3.2.2 martin
498 1.3.2.2 martin /*********************************************************************
499 1.3.2.2 martin * Device removal routine
500 1.3.2.2 martin *
501 1.3.2.2 martin * The detach entry point is called when the driver is being removed.
502 1.3.2.2 martin * This routine stops the adapter and deallocates all the resources
503 1.3.2.2 martin * that were allocated for driver operation.
504 1.3.2.2 martin *
505 1.3.2.2 martin * return 0 on success, positive on failure
506 1.3.2.2 martin *********************************************************************/
507 1.3.2.2 martin static int
508 1.3.2.2 martin igc_detach(device_t self, int flags)
509 1.3.2.2 martin {
510 1.3.2.2 martin struct igc_softc *sc = device_private(self);
511 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
512 1.3.2.2 martin
513 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
514 1.3.2.2 martin igc_stop_locked(sc);
515 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
516 1.3.2.2 martin
517 1.3.2.2 martin igc_detach_counters(sc);
518 1.3.2.2 martin
519 1.3.2.2 martin igc_free_queues(sc);
520 1.3.2.2 martin
521 1.3.2.2 martin igc_phy_hw_reset(&sc->hw);
522 1.3.2.2 martin igc_release_hw_control(sc);
523 1.3.2.2 martin
524 1.3.2.2 martin ether_ifdetach(ifp);
525 1.3.2.2 martin if_detach(ifp);
526 1.3.2.2 martin ifmedia_fini(&sc->media);
527 1.3.2.2 martin
528 1.3.2.2 martin igc_free_interrupts(sc);
529 1.3.2.2 martin igc_free_pci_resources(sc);
530 1.3.2.2 martin kmem_free(sc->mta, IGC_MTA_LEN);
531 1.3.2.2 martin
532 1.3.2.2 martin mutex_destroy(&sc->sc_core_lock);
533 1.3.2.2 martin
534 1.3.2.2 martin return 0;
535 1.3.2.2 martin }
536 1.3.2.2 martin
537 1.3.2.2 martin static void
538 1.3.2.2 martin igc_identify_hardware(struct igc_softc *sc)
539 1.3.2.2 martin {
540 1.3.2.2 martin struct igc_osdep *os = &sc->osdep;
541 1.3.2.2 martin struct pci_attach_args *pa = &os->os_pa;
542 1.3.2.2 martin
543 1.3.2.2 martin /* Save off the information about this board. */
544 1.3.2.2 martin sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
545 1.3.2.2 martin
546 1.3.2.2 martin /* Do shared code init and setup. */
547 1.3.2.2 martin if (igc_set_mac_type(&sc->hw)) {
548 1.3.2.2 martin aprint_error_dev(sc->sc_dev, "unable to identify hardware\n");
549 1.3.2.2 martin return;
550 1.3.2.2 martin }
551 1.3.2.2 martin }
552 1.3.2.2 martin
553 1.3.2.2 martin static int
554 1.3.2.2 martin igc_allocate_pci_resources(struct igc_softc *sc)
555 1.3.2.2 martin {
556 1.3.2.2 martin struct igc_osdep *os = &sc->osdep;
557 1.3.2.2 martin struct pci_attach_args *pa = &os->os_pa;
558 1.3.2.2 martin
559 1.3.2.2 martin /*
560 1.3.2.2 martin * Enable bus mastering and memory-mapped I/O for sure.
561 1.3.2.2 martin */
562 1.3.2.2 martin pcireg_t csr =
563 1.3.2.2 martin pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
564 1.3.2.2 martin csr |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
565 1.3.2.2 martin pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
566 1.3.2.2 martin
567 1.3.2.2 martin const pcireg_t memtype =
568 1.3.2.2 martin pci_mapreg_type(pa->pa_pc, pa->pa_tag, IGC_PCIREG);
569 1.3.2.2 martin if (pci_mapreg_map(pa, IGC_PCIREG, memtype, 0, &os->os_memt,
570 1.3.2.2 martin &os->os_memh, &os->os_membase, &os->os_memsize)) {
571 1.3.2.2 martin aprint_error_dev(sc->sc_dev, "unable to map registers\n");
572 1.3.2.2 martin return ENXIO;
573 1.3.2.2 martin }
574 1.3.2.2 martin
575 1.3.2.2 martin sc->hw.hw_addr = os->os_membase;
576 1.3.2.2 martin sc->hw.back = os;
577 1.3.2.2 martin
578 1.3.2.2 martin return 0;
579 1.3.2.2 martin }
580 1.3.2.2 martin
581 1.3.2.2 martin static int __unused
582 1.3.2.2 martin igc_adjust_nqueues(struct igc_softc *sc)
583 1.3.2.2 martin {
584 1.3.2.2 martin struct pci_attach_args *pa = &sc->osdep.os_pa;
585 1.3.2.2 martin int nqueues = MIN(IGC_MAX_NQUEUES, ncpu);
586 1.3.2.2 martin
587 1.3.2.2 martin const int nmsix = pci_msix_count(pa->pa_pc, pa->pa_tag);
588 1.3.2.2 martin if (nmsix <= 1)
589 1.3.2.2 martin nqueues = 1;
590 1.3.2.2 martin else if (nmsix < nqueues + 1)
591 1.3.2.2 martin nqueues = nmsix - 1;
592 1.3.2.2 martin
593 1.3.2.2 martin return nqueues;
594 1.3.2.2 martin }
595 1.3.2.2 martin
596 1.3.2.2 martin static int
597 1.3.2.2 martin igc_allocate_interrupts(struct igc_softc *sc)
598 1.3.2.2 martin {
599 1.3.2.2 martin struct pci_attach_args *pa = &sc->osdep.os_pa;
600 1.3.2.2 martin int error;
601 1.3.2.2 martin
602 1.3.2.2 martin #ifndef IGC_DISABLE_MSIX
603 1.3.2.2 martin const int nqueues = igc_adjust_nqueues(sc);
604 1.3.2.2 martin if (nqueues > 1) {
605 1.3.2.2 martin sc->sc_nintrs = nqueues + 1;
606 1.3.2.2 martin error = pci_msix_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
607 1.3.2.2 martin if (!error) {
608 1.3.2.2 martin sc->sc_nqueues = nqueues;
609 1.3.2.2 martin sc->sc_intr_type = PCI_INTR_TYPE_MSIX;
610 1.3.2.2 martin return 0;
611 1.3.2.2 martin }
612 1.3.2.2 martin }
613 1.3.2.2 martin #endif
614 1.3.2.2 martin
615 1.3.2.2 martin /* fallback to MSI */
616 1.3.2.2 martin sc->sc_nintrs = sc->sc_nqueues = 1;
617 1.3.2.2 martin
618 1.3.2.2 martin #ifndef IGC_DISABLE_MSI
619 1.3.2.2 martin error = pci_msi_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
620 1.3.2.2 martin if (!error) {
621 1.3.2.2 martin sc->sc_intr_type = PCI_INTR_TYPE_MSI;
622 1.3.2.2 martin return 0;
623 1.3.2.2 martin }
624 1.3.2.2 martin #endif
625 1.3.2.2 martin
626 1.3.2.2 martin /* fallback to INTx */
627 1.3.2.2 martin
628 1.3.2.2 martin error = pci_intx_alloc(pa, &sc->sc_intrs);
629 1.3.2.2 martin if (!error) {
630 1.3.2.2 martin sc->sc_intr_type = PCI_INTR_TYPE_INTX;
631 1.3.2.2 martin return 0;
632 1.3.2.2 martin }
633 1.3.2.2 martin
634 1.3.2.2 martin return error;
635 1.3.2.2 martin }
636 1.3.2.2 martin
637 1.3.2.2 martin static int
638 1.3.2.2 martin igc_allocate_queues(struct igc_softc *sc)
639 1.3.2.2 martin {
640 1.3.2.2 martin device_t dev = sc->sc_dev;
641 1.3.2.2 martin int rxconf = 0, txconf = 0;
642 1.3.2.2 martin
643 1.3.2.2 martin /* Allocate the top level queue structs. */
644 1.3.2.2 martin sc->queues =
645 1.3.2.2 martin kmem_zalloc(sc->sc_nqueues * sizeof(struct igc_queue), KM_SLEEP);
646 1.3.2.2 martin
647 1.3.2.2 martin /* Allocate the TX ring. */
648 1.3.2.2 martin sc->tx_rings =
649 1.3.2.2 martin kmem_zalloc(sc->sc_nqueues * sizeof(struct tx_ring), KM_SLEEP);
650 1.3.2.2 martin
651 1.3.2.2 martin /* Allocate the RX ring. */
652 1.3.2.2 martin sc->rx_rings =
653 1.3.2.2 martin kmem_zalloc(sc->sc_nqueues * sizeof(struct rx_ring), KM_SLEEP);
654 1.3.2.2 martin
655 1.3.2.2 martin /* Set up the TX queues. */
656 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++, txconf++) {
657 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[iq];
658 1.3.2.2 martin const int tsize = roundup2(
659 1.3.2.2 martin sc->num_tx_desc * sizeof(union igc_adv_tx_desc),
660 1.3.2.2 martin IGC_DBA_ALIGN);
661 1.3.2.2 martin
662 1.3.2.2 martin txr->sc = sc;
663 1.3.2.2 martin txr->txr_igcq = &sc->queues[iq];
664 1.3.2.2 martin txr->me = iq;
665 1.3.2.2 martin if (igc_dma_malloc(sc, tsize, &txr->txdma)) {
666 1.3.2.2 martin aprint_error_dev(dev,
667 1.3.2.2 martin "unable to allocate TX descriptor\n");
668 1.3.2.2 martin goto fail;
669 1.3.2.2 martin }
670 1.3.2.2 martin txr->tx_base = (union igc_adv_tx_desc *)txr->txdma.dma_vaddr;
671 1.3.2.2 martin memset(txr->tx_base, 0, tsize);
672 1.3.2.2 martin }
673 1.3.2.2 martin
674 1.3.2.2 martin /* Prepare transmit descriptors and buffers. */
675 1.3.2.2 martin if (igc_setup_transmit_structures(sc)) {
676 1.3.2.2 martin aprint_error_dev(dev, "unable to setup transmit structures\n");
677 1.3.2.2 martin goto fail;
678 1.3.2.2 martin }
679 1.3.2.2 martin
680 1.3.2.2 martin /* Set up the RX queues. */
681 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++, rxconf++) {
682 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
683 1.3.2.2 martin const int rsize = roundup2(
684 1.3.2.2 martin sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
685 1.3.2.2 martin IGC_DBA_ALIGN);
686 1.3.2.2 martin
687 1.3.2.2 martin rxr->sc = sc;
688 1.3.2.2 martin rxr->rxr_igcq = &sc->queues[iq];
689 1.3.2.2 martin rxr->me = iq;
690 1.3.2.2 martin #ifdef OPENBSD
691 1.3.2.2 martin timeout_set(&rxr->rx_refill, igc_rxrefill, rxr);
692 1.3.2.2 martin #endif
693 1.3.2.2 martin if (igc_dma_malloc(sc, rsize, &rxr->rxdma)) {
694 1.3.2.2 martin aprint_error_dev(dev,
695 1.3.2.2 martin "unable to allocate RX descriptor\n");
696 1.3.2.2 martin goto fail;
697 1.3.2.2 martin }
698 1.3.2.2 martin rxr->rx_base = (union igc_adv_rx_desc *)rxr->rxdma.dma_vaddr;
699 1.3.2.2 martin memset(rxr->rx_base, 0, rsize);
700 1.3.2.2 martin }
701 1.3.2.2 martin
702 1.3.2.2 martin sc->rx_mbuf_sz = MCLBYTES;
703 1.3.2.2 martin /* Prepare receive descriptors and buffers. */
704 1.3.2.2 martin if (igc_setup_receive_structures(sc)) {
705 1.3.2.2 martin aprint_error_dev(sc->sc_dev,
706 1.3.2.2 martin "unable to setup receive structures\n");
707 1.3.2.2 martin goto fail;
708 1.3.2.2 martin }
709 1.3.2.2 martin
710 1.3.2.2 martin /* Set up the queue holding structs. */
711 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
712 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
713 1.3.2.2 martin
714 1.3.2.2 martin q->sc = sc;
715 1.3.2.2 martin q->txr = &sc->tx_rings[iq];
716 1.3.2.2 martin q->rxr = &sc->rx_rings[iq];
717 1.3.2.2 martin }
718 1.3.2.2 martin
719 1.3.2.2 martin return 0;
720 1.3.2.2 martin
721 1.3.2.2 martin fail:
722 1.3.2.2 martin for (struct rx_ring *rxr = sc->rx_rings; rxconf > 0; rxr++, rxconf--)
723 1.3.2.2 martin igc_dma_free(sc, &rxr->rxdma);
724 1.3.2.2 martin for (struct tx_ring *txr = sc->tx_rings; txconf > 0; txr++, txconf--)
725 1.3.2.2 martin igc_dma_free(sc, &txr->txdma);
726 1.3.2.2 martin
727 1.3.2.2 martin kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
728 1.3.2.2 martin sc->rx_rings = NULL;
729 1.3.2.2 martin kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
730 1.3.2.2 martin sc->tx_rings = NULL;
731 1.3.2.2 martin kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
732 1.3.2.2 martin sc->queues = NULL;
733 1.3.2.2 martin
734 1.3.2.2 martin return ENOMEM;
735 1.3.2.2 martin }
736 1.3.2.2 martin
737 1.3.2.2 martin static void
738 1.3.2.2 martin igc_free_pci_resources(struct igc_softc *sc)
739 1.3.2.2 martin {
740 1.3.2.2 martin struct igc_osdep *os = &sc->osdep;
741 1.3.2.2 martin
742 1.3.2.2 martin if (os->os_membase != 0)
743 1.3.2.2 martin bus_space_unmap(os->os_memt, os->os_memh, os->os_memsize);
744 1.3.2.2 martin os->os_membase = 0;
745 1.3.2.2 martin }
746 1.3.2.2 martin
747 1.3.2.2 martin static void
748 1.3.2.2 martin igc_free_interrupts(struct igc_softc *sc)
749 1.3.2.2 martin {
750 1.3.2.2 martin struct pci_attach_args *pa = &sc->osdep.os_pa;
751 1.3.2.2 martin pci_chipset_tag_t pc = pa->pa_pc;
752 1.3.2.2 martin
753 1.3.2.2 martin for (int i = 0; i < sc->sc_nintrs; i++) {
754 1.3.2.2 martin if (sc->sc_ihs[i] != NULL) {
755 1.3.2.2 martin pci_intr_disestablish(pc, sc->sc_ihs[i]);
756 1.3.2.2 martin sc->sc_ihs[i] = NULL;
757 1.3.2.2 martin }
758 1.3.2.2 martin }
759 1.3.2.2 martin pci_intr_release(pc, sc->sc_intrs, sc->sc_nintrs);
760 1.3.2.2 martin }
761 1.3.2.2 martin
762 1.3.2.2 martin static void
763 1.3.2.2 martin igc_free_queues(struct igc_softc *sc)
764 1.3.2.2 martin {
765 1.3.2.2 martin
766 1.3.2.2 martin igc_free_receive_structures(sc);
767 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
768 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
769 1.3.2.2 martin
770 1.3.2.2 martin igc_dma_free(sc, &rxr->rxdma);
771 1.3.2.2 martin }
772 1.3.2.2 martin
773 1.3.2.2 martin igc_free_transmit_structures(sc);
774 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
775 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[iq];
776 1.3.2.2 martin
777 1.3.2.2 martin igc_dma_free(sc, &txr->txdma);
778 1.3.2.2 martin }
779 1.3.2.2 martin
780 1.3.2.2 martin kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
781 1.3.2.2 martin kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
782 1.3.2.2 martin kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
783 1.3.2.2 martin }
784 1.3.2.2 martin
785 1.3.2.2 martin /*********************************************************************
786 1.3.2.2 martin *
787 1.3.2.2 martin * Initialize the hardware to a configuration as specified by the
788 1.3.2.2 martin * adapter structure.
789 1.3.2.2 martin *
790 1.3.2.2 martin **********************************************************************/
791 1.3.2.2 martin static void
792 1.3.2.2 martin igc_reset(struct igc_softc *sc)
793 1.3.2.2 martin {
794 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
795 1.3.2.2 martin
796 1.3.2.2 martin /* Let the firmware know the OS is in control */
797 1.3.2.2 martin igc_get_hw_control(sc);
798 1.3.2.2 martin
799 1.3.2.2 martin /*
800 1.3.2.2 martin * Packet Buffer Allocation (PBA)
801 1.3.2.2 martin * Writing PBA sets the receive portion of the buffer
802 1.3.2.2 martin * the remainder is used for the transmit buffer.
803 1.3.2.2 martin */
804 1.3.2.2 martin const uint32_t pba = IGC_PBA_34K;
805 1.3.2.2 martin
806 1.3.2.2 martin /*
807 1.3.2.2 martin * These parameters control the automatic generation (Tx) and
808 1.3.2.2 martin * response (Rx) to Ethernet PAUSE frames.
809 1.3.2.2 martin * - High water mark should allow for at least two frames to be
810 1.3.2.2 martin * received after sending an XOFF.
811 1.3.2.2 martin * - Low water mark works best when it is very near the high water mark.
812 1.3.2.2 martin * This allows the receiver to restart by sending XON when it has
813 1.3.2.2 martin * drained a bit. Here we use an arbitrary value of 1500 which will
814 1.3.2.2 martin * restart after one full frame is pulled from the buffer. There
815 1.3.2.2 martin * could be several smaller frames in the buffer and if so they will
816 1.3.2.2 martin * not trigger the XON until their total number reduces the buffer
817 1.3.2.2 martin * by 1500.
818 1.3.2.2 martin * - The pause time is fairly large at 1000 x 512ns = 512 usec.
819 1.3.2.2 martin */
820 1.3.2.2 martin const uint16_t rx_buffer_size = (pba & 0xffff) << 10;
821 1.3.2.2 martin
822 1.3.2.2 martin hw->fc.high_water = rx_buffer_size -
823 1.3.2.2 martin roundup2(sc->hw.mac.max_frame_size, 1024);
824 1.3.2.2 martin /* 16-byte granularity */
825 1.3.2.2 martin hw->fc.low_water = hw->fc.high_water - 16;
826 1.3.2.2 martin
827 1.3.2.2 martin if (sc->fc) /* locally set flow control value? */
828 1.3.2.2 martin hw->fc.requested_mode = sc->fc;
829 1.3.2.2 martin else
830 1.3.2.2 martin hw->fc.requested_mode = igc_fc_full;
831 1.3.2.2 martin
832 1.3.2.2 martin hw->fc.pause_time = IGC_FC_PAUSE_TIME;
833 1.3.2.2 martin
834 1.3.2.2 martin hw->fc.send_xon = true;
835 1.3.2.2 martin
836 1.3.2.2 martin /* Issue a global reset */
837 1.3.2.2 martin igc_reset_hw(hw);
838 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_WUC, 0);
839 1.3.2.2 martin
840 1.3.2.2 martin /* and a re-init */
841 1.3.2.2 martin if (igc_init_hw(hw) < 0) {
842 1.3.2.2 martin aprint_error_dev(sc->sc_dev, "unable to reset hardware\n");
843 1.3.2.2 martin return;
844 1.3.2.2 martin }
845 1.3.2.2 martin
846 1.3.2.2 martin /* Setup DMA Coalescing */
847 1.3.2.2 martin igc_init_dmac(sc, pba);
848 1.3.2.2 martin
849 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
850 1.3.2.2 martin igc_get_phy_info(hw);
851 1.3.2.2 martin igc_check_for_link(hw);
852 1.3.2.2 martin }
853 1.3.2.2 martin
854 1.3.2.2 martin /*********************************************************************
855 1.3.2.2 martin *
856 1.3.2.2 martin * Initialize the DMA Coalescing feature
857 1.3.2.2 martin *
858 1.3.2.2 martin **********************************************************************/
859 1.3.2.2 martin static void
860 1.3.2.2 martin igc_init_dmac(struct igc_softc *sc, uint32_t pba)
861 1.3.2.2 martin {
862 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
863 1.3.2.2 martin const uint16_t max_frame_size = sc->hw.mac.max_frame_size;
864 1.3.2.2 martin uint32_t reg, status;
865 1.3.2.2 martin
866 1.3.2.2 martin if (sc->dmac == 0) { /* Disabling it */
867 1.3.2.2 martin reg = ~IGC_DMACR_DMAC_EN; /* XXXRO */
868 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_DMACR, reg);
869 1.3.2.2 martin DPRINTF(MISC, "DMA coalescing disabled\n");
870 1.3.2.2 martin return;
871 1.3.2.2 martin } else {
872 1.3.2.2 martin device_printf(sc->sc_dev, "DMA coalescing enabled\n");
873 1.3.2.2 martin }
874 1.3.2.2 martin
875 1.3.2.2 martin /* Set starting threshold */
876 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
877 1.3.2.2 martin
878 1.3.2.2 martin uint16_t hwm = 64 * pba - max_frame_size / 16;
879 1.3.2.2 martin if (hwm < 64 * (pba - 6))
880 1.3.2.2 martin hwm = 64 * (pba - 6);
881 1.3.2.2 martin reg = IGC_READ_REG(hw, IGC_FCRTC);
882 1.3.2.2 martin reg &= ~IGC_FCRTC_RTH_COAL_MASK;
883 1.3.2.2 martin reg |= (hwm << IGC_FCRTC_RTH_COAL_SHIFT) & IGC_FCRTC_RTH_COAL_MASK;
884 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_FCRTC, reg);
885 1.3.2.2 martin
886 1.3.2.2 martin uint32_t dmac = pba - max_frame_size / 512;
887 1.3.2.2 martin if (dmac < pba - 10)
888 1.3.2.2 martin dmac = pba - 10;
889 1.3.2.2 martin reg = IGC_READ_REG(hw, IGC_DMACR);
890 1.3.2.2 martin reg &= ~IGC_DMACR_DMACTHR_MASK;
891 1.3.2.2 martin reg |= (dmac << IGC_DMACR_DMACTHR_SHIFT) & IGC_DMACR_DMACTHR_MASK;
892 1.3.2.2 martin
893 1.3.2.2 martin /* transition to L0x or L1 if available..*/
894 1.3.2.2 martin reg |= IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK;
895 1.3.2.2 martin
896 1.3.2.2 martin /* Check if status is 2.5Gb backplane connection
897 1.3.2.2 martin * before configuration of watchdog timer, which is
898 1.3.2.2 martin * in msec values in 12.8usec intervals
899 1.3.2.2 martin * watchdog timer= msec values in 32usec intervals
900 1.3.2.2 martin * for non 2.5Gb connection
901 1.3.2.2 martin */
902 1.3.2.2 martin status = IGC_READ_REG(hw, IGC_STATUS);
903 1.3.2.2 martin if ((status & IGC_STATUS_2P5_SKU) &&
904 1.3.2.2 martin !(status & IGC_STATUS_2P5_SKU_OVER))
905 1.3.2.2 martin reg |= (sc->dmac * 5) >> 6;
906 1.3.2.2 martin else
907 1.3.2.2 martin reg |= sc->dmac >> 5;
908 1.3.2.2 martin
909 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_DMACR, reg);
910 1.3.2.2 martin
911 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
912 1.3.2.2 martin
913 1.3.2.2 martin /* Set the interval before transition */
914 1.3.2.2 martin reg = IGC_READ_REG(hw, IGC_DMCTLX);
915 1.3.2.2 martin reg |= IGC_DMCTLX_DCFLUSH_DIS;
916 1.3.2.2 martin
917 1.3.2.2 martin /*
918 1.3.2.2 martin * in 2.5Gb connection, TTLX unit is 0.4 usec
919 1.3.2.2 martin * which is 0x4*2 = 0xA. But delay is still 4 usec
920 1.3.2.2 martin */
921 1.3.2.2 martin status = IGC_READ_REG(hw, IGC_STATUS);
922 1.3.2.2 martin if ((status & IGC_STATUS_2P5_SKU) &&
923 1.3.2.2 martin !(status & IGC_STATUS_2P5_SKU_OVER))
924 1.3.2.2 martin reg |= 0xA;
925 1.3.2.2 martin else
926 1.3.2.2 martin reg |= 0x4;
927 1.3.2.2 martin
928 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
929 1.3.2.2 martin
930 1.3.2.2 martin /* free space in tx packet buffer to wake from DMA coal */
931 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_DMCTXTH,
932 1.3.2.2 martin (IGC_TXPBSIZE - (2 * max_frame_size)) >> 6);
933 1.3.2.2 martin
934 1.3.2.2 martin /* make low power state decision controlled by DMA coal */
935 1.3.2.2 martin reg = IGC_READ_REG(hw, IGC_PCIEMISC);
936 1.3.2.2 martin reg &= ~IGC_PCIEMISC_LX_DECISION;
937 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
938 1.3.2.2 martin }
939 1.3.2.2 martin
940 1.3.2.2 martin static int
941 1.3.2.2 martin igc_setup_interrupts(struct igc_softc *sc)
942 1.3.2.2 martin {
943 1.3.2.2 martin int error;
944 1.3.2.2 martin
945 1.3.2.2 martin switch (sc->sc_intr_type) {
946 1.3.2.2 martin case PCI_INTR_TYPE_MSIX:
947 1.3.2.2 martin error = igc_setup_msix(sc);
948 1.3.2.2 martin break;
949 1.3.2.2 martin case PCI_INTR_TYPE_MSI:
950 1.3.2.2 martin error = igc_setup_msi(sc);
951 1.3.2.2 martin break;
952 1.3.2.2 martin case PCI_INTR_TYPE_INTX:
953 1.3.2.2 martin error = igc_setup_intx(sc);
954 1.3.2.2 martin break;
955 1.3.2.2 martin default:
956 1.3.2.2 martin panic("%s: invalid interrupt type: %d",
957 1.3.2.2 martin device_xname(sc->sc_dev), sc->sc_intr_type);
958 1.3.2.2 martin }
959 1.3.2.2 martin
960 1.3.2.2 martin return error;
961 1.3.2.2 martin }
962 1.3.2.2 martin
963 1.3.2.2 martin static void
964 1.3.2.2 martin igc_attach_counters(struct igc_softc *sc)
965 1.3.2.2 martin {
966 1.3.2.2 martin #ifdef IGC_EVENT_COUNTERS
967 1.3.2.2 martin
968 1.3.2.2 martin /* Global counters */
969 1.3.2.2 martin sc->sc_global_evcnts = kmem_zalloc(
970 1.3.2.2 martin IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts[0]), KM_SLEEP);
971 1.3.2.2 martin
972 1.3.2.2 martin for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++) {
973 1.3.2.2 martin evcnt_attach_dynamic(&sc->sc_global_evcnts[cnt],
974 1.3.2.2 martin igc_global_counters[cnt].type, NULL,
975 1.3.2.2 martin device_xname(sc->sc_dev), igc_global_counters[cnt].name);
976 1.3.2.2 martin }
977 1.3.2.2 martin
978 1.3.2.2 martin /* Driver counters */
979 1.3.2.2 martin sc->sc_driver_evcnts = kmem_zalloc(
980 1.3.2.2 martin IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts[0]), KM_SLEEP);
981 1.3.2.2 martin
982 1.3.2.2 martin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
983 1.3.2.2 martin evcnt_attach_dynamic(&sc->sc_driver_evcnts[cnt],
984 1.3.2.2 martin igc_driver_counters[cnt].type, NULL,
985 1.3.2.2 martin device_xname(sc->sc_dev), igc_driver_counters[cnt].name);
986 1.3.2.2 martin }
987 1.3.2.2 martin
988 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
989 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
990 1.3.2.2 martin
991 1.3.2.2 martin q->igcq_driver_counters = kmem_zalloc(
992 1.3.2.2 martin IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]),
993 1.3.2.2 martin KM_SLEEP);
994 1.3.2.2 martin }
995 1.3.2.2 martin
996 1.3.2.2 martin /* Queue counters */
997 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
998 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
999 1.3.2.2 martin
1000 1.3.2.2 martin snprintf(q->igcq_queue_evname, sizeof(q->igcq_queue_evname),
1001 1.3.2.2 martin "%s q%d", device_xname(sc->sc_dev), iq);
1002 1.3.2.2 martin
1003 1.3.2.2 martin q->igcq_queue_evcnts = kmem_zalloc(
1004 1.3.2.2 martin IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]),
1005 1.3.2.2 martin KM_SLEEP);
1006 1.3.2.2 martin
1007 1.3.2.2 martin for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++) {
1008 1.3.2.2 martin evcnt_attach_dynamic(&q->igcq_queue_evcnts[cnt],
1009 1.3.2.2 martin igc_queue_counters[cnt].type, NULL,
1010 1.3.2.2 martin q->igcq_queue_evname, igc_queue_counters[cnt].name);
1011 1.3.2.2 martin }
1012 1.3.2.2 martin }
1013 1.3.2.2 martin
1014 1.3.2.2 martin /* MAC counters */
1015 1.3.2.2 martin snprintf(sc->sc_mac_evname, sizeof(sc->sc_mac_evname),
1016 1.3.2.2 martin "%s Mac Statistics", device_xname(sc->sc_dev));
1017 1.3.2.2 martin
1018 1.3.2.2 martin sc->sc_mac_evcnts = kmem_zalloc(
1019 1.3.2.2 martin IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]), KM_SLEEP);
1020 1.3.2.2 martin
1021 1.3.2.2 martin for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1022 1.3.2.2 martin evcnt_attach_dynamic(&sc->sc_mac_evcnts[cnt], EVCNT_TYPE_MISC,
1023 1.3.2.2 martin NULL, sc->sc_mac_evname, igc_mac_counters[cnt].name);
1024 1.3.2.2 martin }
1025 1.3.2.2 martin #endif
1026 1.3.2.2 martin }
1027 1.3.2.2 martin
1028 1.3.2.2 martin static void
1029 1.3.2.2 martin igc_detach_counters(struct igc_softc *sc)
1030 1.3.2.2 martin {
1031 1.3.2.2 martin #ifdef IGC_EVENT_COUNTERS
1032 1.3.2.2 martin
1033 1.3.2.2 martin /* Global counters */
1034 1.3.2.2 martin for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
1035 1.3.2.2 martin evcnt_detach(&sc->sc_global_evcnts[cnt]);
1036 1.3.2.2 martin
1037 1.3.2.2 martin kmem_free(sc->sc_global_evcnts,
1038 1.3.2.6 martin IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts[0]));
1039 1.3.2.2 martin
1040 1.3.2.2 martin /* Driver counters */
1041 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1042 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
1043 1.3.2.2 martin
1044 1.3.2.2 martin kmem_free(q->igcq_driver_counters,
1045 1.3.2.2 martin IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]));
1046 1.3.2.2 martin }
1047 1.3.2.2 martin
1048 1.3.2.2 martin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1049 1.3.2.2 martin evcnt_detach(&sc->sc_driver_evcnts[cnt]);
1050 1.3.2.2 martin
1051 1.3.2.2 martin kmem_free(sc->sc_driver_evcnts,
1052 1.3.2.6 martin IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts[0]));
1053 1.3.2.2 martin
1054 1.3.2.2 martin /* Queue counters */
1055 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1056 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
1057 1.3.2.2 martin
1058 1.3.2.2 martin for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
1059 1.3.2.2 martin evcnt_detach(&q->igcq_queue_evcnts[cnt]);
1060 1.3.2.2 martin
1061 1.3.2.2 martin kmem_free(q->igcq_queue_evcnts,
1062 1.3.2.2 martin IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]));
1063 1.3.2.2 martin }
1064 1.3.2.2 martin
1065 1.3.2.2 martin /* MAC statistics */
1066 1.3.2.2 martin for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++)
1067 1.3.2.2 martin evcnt_detach(&sc->sc_mac_evcnts[cnt]);
1068 1.3.2.2 martin
1069 1.3.2.2 martin kmem_free(sc->sc_mac_evcnts,
1070 1.3.2.2 martin IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]));
1071 1.3.2.2 martin #endif
1072 1.3.2.2 martin }
1073 1.3.2.2 martin
1074 1.3.2.2 martin /*
1075 1.3.2.2 martin * XXX
1076 1.3.2.2 martin * FreeBSD uses 4-byte-wise read for 64-bit counters, while Linux just
1077 1.3.2.2 martin * drops hi words.
1078 1.3.2.2 martin */
1079 1.3.2.2 martin static inline uint64_t __unused
1080 1.3.2.2 martin igc_read_mac_counter(struct igc_hw *hw, bus_size_t reg, bool is64)
1081 1.3.2.2 martin {
1082 1.3.2.2 martin uint64_t val;
1083 1.3.2.2 martin
1084 1.3.2.2 martin val = IGC_READ_REG(hw, reg);
1085 1.3.2.2 martin if (is64)
1086 1.3.2.2 martin val += ((uint64_t)IGC_READ_REG(hw, reg + 4)) << 32;
1087 1.3.2.2 martin return val;
1088 1.3.2.2 martin }
1089 1.3.2.2 martin
1090 1.3.2.2 martin static void
1091 1.3.2.2 martin igc_update_counters(struct igc_softc *sc)
1092 1.3.2.2 martin {
1093 1.3.2.2 martin #ifdef IGC_EVENT_COUNTERS
1094 1.3.2.2 martin
1095 1.3.2.2 martin /* Global counters: nop */
1096 1.3.2.2 martin
1097 1.3.2.2 martin /* Driver counters */
1098 1.3.2.2 martin uint64_t sum[IGC_DRIVER_COUNTERS];
1099 1.3.2.2 martin
1100 1.3.2.2 martin memset(sum, 0, sizeof(sum));
1101 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1102 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
1103 1.3.2.2 martin
1104 1.3.2.2 martin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
1105 1.3.2.2 martin sum[cnt] += IGC_QUEUE_DRIVER_COUNTER_VAL(q, cnt);
1106 1.3.2.2 martin IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
1107 1.3.2.2 martin }
1108 1.3.2.2 martin }
1109 1.3.2.2 martin
1110 1.3.2.2 martin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1111 1.3.2.2 martin IGC_DRIVER_COUNTER_ADD(sc, cnt, sum[cnt]);
1112 1.3.2.2 martin
1113 1.3.2.2 martin /* Queue counters: nop */
1114 1.3.2.2 martin
1115 1.3.2.2 martin /* Mac statistics */
1116 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
1117 1.3.2.4 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
1118 1.3.2.4 martin uint64_t iqdrops = 0;
1119 1.3.2.2 martin
1120 1.3.2.2 martin for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1121 1.3.2.4 martin uint64_t val;
1122 1.3.2.4 martin bus_size_t regaddr = igc_mac_counters[cnt].reg;
1123 1.3.2.4 martin
1124 1.3.2.4 martin val = igc_read_mac_counter(hw, regaddr,
1125 1.3.2.4 martin igc_mac_counters[cnt].is64);
1126 1.3.2.4 martin IGC_MAC_COUNTER_ADD(sc, cnt, val);
1127 1.3.2.4 martin /* XXX Count MPC to iqdrops. */
1128 1.3.2.4 martin if (regaddr == IGC_MPC)
1129 1.3.2.4 martin iqdrops += val;
1130 1.3.2.4 martin }
1131 1.3.2.4 martin
1132 1.3.2.4 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1133 1.3.2.4 martin uint32_t val;
1134 1.3.2.4 martin
1135 1.3.2.4 martin /* XXX RQDPC should be visible via evcnt(9). */
1136 1.3.2.4 martin val = IGC_READ_REG(hw, IGC_RQDPC(iq));
1137 1.3.2.4 martin
1138 1.3.2.4 martin /* RQDPC is not cleard on read. */
1139 1.3.2.4 martin if (val != 0)
1140 1.3.2.4 martin IGC_WRITE_REG(hw, IGC_RQDPC(iq), 0);
1141 1.3.2.4 martin iqdrops += val;
1142 1.3.2.2 martin }
1143 1.3.2.4 martin
1144 1.3.2.4 martin if (iqdrops != 0)
1145 1.3.2.4 martin if_statadd(ifp, if_iqdrops, iqdrops);
1146 1.3.2.2 martin #endif
1147 1.3.2.2 martin }
1148 1.3.2.2 martin
1149 1.3.2.2 martin static void
1150 1.3.2.2 martin igc_clear_counters(struct igc_softc *sc)
1151 1.3.2.2 martin {
1152 1.3.2.2 martin #ifdef IGC_EVENT_COUNTERS
1153 1.3.2.2 martin
1154 1.3.2.2 martin /* Global counters */
1155 1.3.2.2 martin for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
1156 1.3.2.2 martin IGC_GLOBAL_COUNTER_STORE(sc, cnt, 0);
1157 1.3.2.2 martin
1158 1.3.2.2 martin /* Driver counters */
1159 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1160 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
1161 1.3.2.2 martin
1162 1.3.2.2 martin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1163 1.3.2.2 martin IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
1164 1.3.2.2 martin }
1165 1.3.2.2 martin
1166 1.3.2.2 martin for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1167 1.3.2.2 martin IGC_DRIVER_COUNTER_STORE(sc, cnt, 0);
1168 1.3.2.2 martin
1169 1.3.2.2 martin /* Queue counters */
1170 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1171 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
1172 1.3.2.2 martin
1173 1.3.2.2 martin for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
1174 1.3.2.2 martin IGC_QUEUE_COUNTER_STORE(q, cnt, 0);
1175 1.3.2.2 martin }
1176 1.3.2.2 martin
1177 1.3.2.2 martin /* Mac statistics */
1178 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
1179 1.3.2.2 martin
1180 1.3.2.2 martin for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1181 1.3.2.2 martin (void)igc_read_mac_counter(hw, igc_mac_counters[cnt].reg,
1182 1.3.2.2 martin igc_mac_counters[cnt].is64);
1183 1.3.2.2 martin IGC_MAC_COUNTER_STORE(sc, cnt, 0);
1184 1.3.2.2 martin }
1185 1.3.2.2 martin #endif
1186 1.3.2.2 martin }
1187 1.3.2.2 martin
1188 1.3.2.2 martin static int
1189 1.3.2.2 martin igc_setup_msix(struct igc_softc *sc)
1190 1.3.2.2 martin {
1191 1.3.2.2 martin pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1192 1.3.2.2 martin device_t dev = sc->sc_dev;
1193 1.3.2.2 martin pci_intr_handle_t *intrs;
1194 1.3.2.2 martin void **ihs;
1195 1.3.2.2 martin const char *intrstr;
1196 1.3.2.2 martin char intrbuf[PCI_INTRSTR_LEN];
1197 1.3.2.2 martin char xnamebuf[MAX(32, MAXCOMLEN)];
1198 1.3.2.2 martin int iq, error;
1199 1.3.2.2 martin
1200 1.3.2.2 martin for (iq = 0, intrs = sc->sc_intrs, ihs = sc->sc_ihs;
1201 1.3.2.2 martin iq < sc->sc_nqueues; iq++, intrs++, ihs++) {
1202 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
1203 1.3.2.2 martin
1204 1.3.2.2 martin snprintf(xnamebuf, sizeof(xnamebuf), "%s: txrx %d",
1205 1.3.2.2 martin device_xname(dev), iq);
1206 1.3.2.2 martin
1207 1.3.2.2 martin intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
1208 1.3.2.2 martin
1209 1.3.2.2 martin pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
1210 1.3.2.2 martin *ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
1211 1.3.2.2 martin igc_intr_queue, q, xnamebuf);
1212 1.3.2.2 martin if (*ihs == NULL) {
1213 1.3.2.2 martin aprint_error_dev(dev,
1214 1.3.2.2 martin "unable to establish txrx interrupt at %s\n",
1215 1.3.2.2 martin intrstr);
1216 1.3.2.2 martin return ENOBUFS;
1217 1.3.2.2 martin }
1218 1.3.2.2 martin aprint_normal_dev(dev, "txrx interrupting at %s\n", intrstr);
1219 1.3.2.2 martin
1220 1.3.2.2 martin kcpuset_t *affinity;
1221 1.3.2.2 martin kcpuset_create(&affinity, true);
1222 1.3.2.2 martin kcpuset_set(affinity, iq % ncpu);
1223 1.3.2.2 martin error = interrupt_distribute(*ihs, affinity, NULL);
1224 1.3.2.2 martin if (error) {
1225 1.3.2.2 martin aprint_normal_dev(dev,
1226 1.3.2.2 martin "%s: unable to change affinity, use default CPU\n",
1227 1.3.2.2 martin intrstr);
1228 1.3.2.2 martin }
1229 1.3.2.2 martin kcpuset_destroy(affinity);
1230 1.3.2.2 martin
1231 1.3.2.2 martin q->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1232 1.3.2.2 martin igc_handle_queue, q);
1233 1.3.2.2 martin if (q->igcq_si == NULL) {
1234 1.3.2.2 martin aprint_error_dev(dev,
1235 1.3.2.2 martin "%s: unable to establish softint\n", intrstr);
1236 1.3.2.2 martin return ENOBUFS;
1237 1.3.2.2 martin }
1238 1.3.2.2 martin
1239 1.3.2.2 martin q->msix = iq;
1240 1.3.2.2 martin q->eims = 1 << iq;
1241 1.3.2.2 martin }
1242 1.3.2.2 martin
1243 1.3.2.2 martin snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
1244 1.3.2.2 martin error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
1245 1.3.2.2 martin igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
1246 1.3.2.2 martin WQ_PERCPU | WQ_MPSAFE);
1247 1.3.2.2 martin if (error) {
1248 1.3.2.2 martin aprint_error_dev(dev, "workqueue_create failed\n");
1249 1.3.2.2 martin return ENOBUFS;
1250 1.3.2.2 martin }
1251 1.3.2.2 martin sc->sc_txrx_workqueue = false;
1252 1.3.2.2 martin
1253 1.3.2.2 martin intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
1254 1.3.2.2 martin snprintf(xnamebuf, sizeof(xnamebuf), "%s: link", device_xname(dev));
1255 1.3.2.2 martin pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
1256 1.3.2.2 martin *ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
1257 1.3.2.2 martin igc_intr_link, sc, xnamebuf);
1258 1.3.2.2 martin if (*ihs == NULL) {
1259 1.3.2.2 martin aprint_error_dev(dev,
1260 1.3.2.2 martin "unable to establish link interrupt at %s\n", intrstr);
1261 1.3.2.2 martin return ENOBUFS;
1262 1.3.2.2 martin }
1263 1.3.2.2 martin aprint_normal_dev(dev, "link interrupting at %s\n", intrstr);
1264 1.3.2.2 martin /* use later in igc_configure_queues() */
1265 1.3.2.2 martin sc->linkvec = iq;
1266 1.3.2.2 martin
1267 1.3.2.2 martin return 0;
1268 1.3.2.2 martin }
1269 1.3.2.2 martin
1270 1.3.2.2 martin static int
1271 1.3.2.2 martin igc_setup_msi(struct igc_softc *sc)
1272 1.3.2.2 martin {
1273 1.3.2.2 martin pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1274 1.3.2.2 martin device_t dev = sc->sc_dev;
1275 1.3.2.2 martin pci_intr_handle_t *intr = sc->sc_intrs;
1276 1.3.2.2 martin void **ihs = sc->sc_ihs;
1277 1.3.2.2 martin const char *intrstr;
1278 1.3.2.2 martin char intrbuf[PCI_INTRSTR_LEN];
1279 1.3.2.2 martin char xnamebuf[MAX(32, MAXCOMLEN)];
1280 1.3.2.2 martin int error;
1281 1.3.2.2 martin
1282 1.3.2.2 martin intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
1283 1.3.2.2 martin
1284 1.3.2.2 martin snprintf(xnamebuf, sizeof(xnamebuf), "%s: msi", device_xname(dev));
1285 1.3.2.2 martin pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
1286 1.3.2.2 martin *ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
1287 1.3.2.2 martin igc_intr, sc, xnamebuf);
1288 1.3.2.2 martin if (*ihs == NULL) {
1289 1.3.2.2 martin aprint_error_dev(dev,
1290 1.3.2.2 martin "unable to establish interrupt at %s\n", intrstr);
1291 1.3.2.2 martin return ENOBUFS;
1292 1.3.2.2 martin }
1293 1.3.2.2 martin aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
1294 1.3.2.2 martin
1295 1.3.2.2 martin struct igc_queue *iq = sc->queues;
1296 1.3.2.2 martin iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1297 1.3.2.2 martin igc_handle_queue, iq);
1298 1.3.2.2 martin if (iq->igcq_si == NULL) {
1299 1.3.2.2 martin aprint_error_dev(dev,
1300 1.3.2.2 martin "%s: unable to establish softint\n", intrstr);
1301 1.3.2.2 martin return ENOBUFS;
1302 1.3.2.2 martin }
1303 1.3.2.2 martin
1304 1.3.2.2 martin snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
1305 1.3.2.2 martin error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
1306 1.3.2.2 martin igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
1307 1.3.2.2 martin WQ_PERCPU | WQ_MPSAFE);
1308 1.3.2.2 martin if (error) {
1309 1.3.2.2 martin aprint_error_dev(dev, "workqueue_create failed\n");
1310 1.3.2.2 martin return ENOBUFS;
1311 1.3.2.2 martin }
1312 1.3.2.2 martin sc->sc_txrx_workqueue = false;
1313 1.3.2.2 martin
1314 1.3.2.2 martin sc->queues[0].msix = 0;
1315 1.3.2.2 martin sc->linkvec = 0;
1316 1.3.2.2 martin
1317 1.3.2.2 martin return 0;
1318 1.3.2.2 martin }
1319 1.3.2.2 martin
1320 1.3.2.2 martin static int
1321 1.3.2.2 martin igc_setup_intx(struct igc_softc *sc)
1322 1.3.2.2 martin {
1323 1.3.2.2 martin pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1324 1.3.2.2 martin device_t dev = sc->sc_dev;
1325 1.3.2.2 martin pci_intr_handle_t *intr = sc->sc_intrs;
1326 1.3.2.2 martin void **ihs = sc->sc_ihs;
1327 1.3.2.2 martin const char *intrstr;
1328 1.3.2.2 martin char intrbuf[PCI_INTRSTR_LEN];
1329 1.3.2.2 martin char xnamebuf[32];
1330 1.3.2.2 martin
1331 1.3.2.2 martin intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
1332 1.3.2.2 martin
1333 1.3.2.2 martin snprintf(xnamebuf, sizeof(xnamebuf), "%s:intx", device_xname(dev));
1334 1.3.2.2 martin pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
1335 1.3.2.2 martin *ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
1336 1.3.2.2 martin igc_intr, sc, xnamebuf);
1337 1.3.2.2 martin if (*ihs == NULL) {
1338 1.3.2.2 martin aprint_error_dev(dev,
1339 1.3.2.2 martin "unable to establish interrupt at %s\n", intrstr);
1340 1.3.2.2 martin return ENOBUFS;
1341 1.3.2.2 martin }
1342 1.3.2.2 martin aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
1343 1.3.2.2 martin
1344 1.3.2.2 martin struct igc_queue *iq = sc->queues;
1345 1.3.2.2 martin iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1346 1.3.2.2 martin igc_handle_queue, iq);
1347 1.3.2.2 martin if (iq->igcq_si == NULL) {
1348 1.3.2.2 martin aprint_error_dev(dev,
1349 1.3.2.2 martin "%s: unable to establish softint\n", intrstr);
1350 1.3.2.2 martin return ENOBUFS;
1351 1.3.2.2 martin }
1352 1.3.2.2 martin
1353 1.3.2.2 martin /* create workqueue? */
1354 1.3.2.2 martin sc->sc_txrx_workqueue = false;
1355 1.3.2.2 martin
1356 1.3.2.2 martin sc->queues[0].msix = 0;
1357 1.3.2.2 martin sc->linkvec = 0;
1358 1.3.2.2 martin
1359 1.3.2.2 martin return 0;
1360 1.3.2.2 martin }
1361 1.3.2.2 martin
1362 1.3.2.2 martin static int
1363 1.3.2.2 martin igc_dma_malloc(struct igc_softc *sc, bus_size_t size, struct igc_dma_alloc *dma)
1364 1.3.2.2 martin {
1365 1.3.2.2 martin struct igc_osdep *os = &sc->osdep;
1366 1.3.2.2 martin
1367 1.3.2.2 martin dma->dma_tag = os->os_dmat;
1368 1.3.2.2 martin
1369 1.3.2.2 martin if (bus_dmamap_create(dma->dma_tag, size, 1, size, 0,
1370 1.3.2.2 martin BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->dma_map))
1371 1.3.2.2 martin return 1;
1372 1.3.2.2 martin if (bus_dmamem_alloc(dma->dma_tag, size, PAGE_SIZE, 0, &dma->dma_seg,
1373 1.3.2.2 martin 1, &dma->dma_nseg, BUS_DMA_WAITOK))
1374 1.3.2.2 martin goto destroy;
1375 1.3.2.2 martin /*
1376 1.3.2.2 martin * XXXRO
1377 1.3.2.2 martin *
1378 1.3.2.2 martin * Coherent mapping for descriptors is required for now.
1379 1.3.2.2 martin *
1380 1.3.2.2 martin * Both TX and RX descriptors are 16-byte length, which is shorter
1381 1.3.2.2 martin * than dcache lines on modern CPUs. Therefore, sync for a descriptor
1382 1.3.2.2 martin * may overwrite DMA read for descriptors in the same cache line.
1383 1.3.2.2 martin *
1384 1.3.2.2 martin * Can't we avoid this by use cache-line-aligned descriptors at once?
1385 1.3.2.2 martin */
1386 1.3.2.2 martin if (bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
1387 1.3.2.2 martin &dma->dma_vaddr, BUS_DMA_WAITOK | BUS_DMA_COHERENT /* XXXRO */))
1388 1.3.2.2 martin goto free;
1389 1.3.2.2 martin if (bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
1390 1.3.2.2 martin NULL, BUS_DMA_WAITOK))
1391 1.3.2.2 martin goto unmap;
1392 1.3.2.2 martin
1393 1.3.2.2 martin dma->dma_size = size;
1394 1.3.2.2 martin
1395 1.3.2.2 martin return 0;
1396 1.3.2.2 martin unmap:
1397 1.3.2.2 martin bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
1398 1.3.2.2 martin free:
1399 1.3.2.2 martin bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
1400 1.3.2.2 martin destroy:
1401 1.3.2.2 martin bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1402 1.3.2.2 martin dma->dma_map = NULL;
1403 1.3.2.2 martin dma->dma_tag = NULL;
1404 1.3.2.2 martin return 1;
1405 1.3.2.2 martin }
1406 1.3.2.2 martin
1407 1.3.2.2 martin static void
1408 1.3.2.2 martin igc_dma_free(struct igc_softc *sc, struct igc_dma_alloc *dma)
1409 1.3.2.2 martin {
1410 1.3.2.2 martin
1411 1.3.2.2 martin if (dma->dma_tag == NULL)
1412 1.3.2.2 martin return;
1413 1.3.2.2 martin
1414 1.3.2.2 martin if (dma->dma_map != NULL) {
1415 1.3.2.2 martin bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
1416 1.3.2.2 martin dma->dma_map->dm_mapsize,
1417 1.3.2.2 martin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1418 1.3.2.2 martin bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1419 1.3.2.2 martin bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
1420 1.3.2.2 martin bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
1421 1.3.2.2 martin bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1422 1.3.2.2 martin dma->dma_map = NULL;
1423 1.3.2.2 martin }
1424 1.3.2.2 martin }
1425 1.3.2.2 martin
1426 1.3.2.2 martin /*********************************************************************
1427 1.3.2.2 martin *
1428 1.3.2.2 martin * Setup networking device structure and register an interface.
1429 1.3.2.2 martin *
1430 1.3.2.2 martin **********************************************************************/
1431 1.3.2.2 martin static void
1432 1.3.2.2 martin igc_setup_interface(struct igc_softc *sc)
1433 1.3.2.2 martin {
1434 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
1435 1.3.2.2 martin
1436 1.3.2.2 martin strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
1437 1.3.2.2 martin ifp->if_softc = sc;
1438 1.3.2.2 martin ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1439 1.3.2.2 martin ifp->if_extflags = IFEF_MPSAFE;
1440 1.3.2.2 martin ifp->if_ioctl = igc_ioctl;
1441 1.3.2.2 martin ifp->if_start = igc_start;
1442 1.3.2.2 martin if (sc->sc_nqueues > 1)
1443 1.3.2.2 martin ifp->if_transmit = igc_transmit;
1444 1.3.2.2 martin ifp->if_watchdog = igc_watchdog;
1445 1.3.2.2 martin ifp->if_init = igc_init;
1446 1.3.2.2 martin ifp->if_stop = igc_stop;
1447 1.3.2.2 martin
1448 1.3.2.2 martin ifp->if_capabilities = IFCAP_TSOv4 | IFCAP_TSOv6;
1449 1.3.2.2 martin
1450 1.3.2.2 martin ifp->if_capabilities |=
1451 1.3.2.2 martin IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1452 1.3.2.2 martin IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1453 1.3.2.2 martin IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1454 1.3.2.2 martin IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
1455 1.3.2.2 martin IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
1456 1.3.2.2 martin
1457 1.3.2.2 martin ifp->if_capenable = 0;
1458 1.3.2.2 martin
1459 1.3.2.2 martin sc->sc_ec.ec_capabilities |=
1460 1.3.2.2 martin ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
1461 1.3.2.2 martin
1462 1.3.2.2 martin IFQ_SET_MAXLEN(&ifp->if_snd, sc->num_tx_desc - 1);
1463 1.3.2.2 martin IFQ_SET_READY(&ifp->if_snd);
1464 1.3.2.2 martin
1465 1.3.2.2 martin #if NVLAN > 0
1466 1.3.2.2 martin sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
1467 1.3.2.2 martin #endif
1468 1.3.2.2 martin
1469 1.3.2.2 martin mutex_init(&sc->sc_core_lock, MUTEX_DEFAULT, IPL_NET);
1470 1.3.2.2 martin
1471 1.3.2.2 martin /* Initialize ifmedia structures. */
1472 1.3.2.2 martin sc->sc_ec.ec_ifmedia = &sc->media;
1473 1.3.2.2 martin ifmedia_init_with_lock(&sc->media, IFM_IMASK, igc_media_change,
1474 1.3.2.2 martin igc_media_status, &sc->sc_core_lock);
1475 1.3.2.2 martin ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1476 1.3.2.2 martin ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1477 1.3.2.2 martin ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1478 1.3.2.2 martin ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1479 1.3.2.2 martin ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1480 1.3.2.2 martin ifmedia_add(&sc->media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
1481 1.3.2.2 martin ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1482 1.3.2.2 martin ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1483 1.3.2.2 martin
1484 1.3.2.2 martin sc->sc_rx_intr_process_limit = IGC_RX_INTR_PROCESS_LIMIT_DEFAULT;
1485 1.3.2.2 martin sc->sc_tx_intr_process_limit = IGC_TX_INTR_PROCESS_LIMIT_DEFAULT;
1486 1.3.2.2 martin sc->sc_rx_process_limit = IGC_RX_PROCESS_LIMIT_DEFAULT;
1487 1.3.2.2 martin sc->sc_tx_process_limit = IGC_TX_PROCESS_LIMIT_DEFAULT;
1488 1.3.2.2 martin
1489 1.3.2.2 martin if_initialize(ifp);
1490 1.3.2.2 martin sc->sc_ipq = if_percpuq_create(ifp);
1491 1.3.2.2 martin if_deferred_start_init(ifp, NULL);
1492 1.3.2.2 martin ether_ifattach(ifp, sc->hw.mac.addr);
1493 1.3.2.2 martin ether_set_ifflags_cb(&sc->sc_ec, igc_ifflags_cb);
1494 1.3.2.2 martin if_register(ifp);
1495 1.3.2.2 martin }
1496 1.3.2.2 martin
1497 1.3.2.2 martin static int
1498 1.3.2.2 martin igc_init(struct ifnet *ifp)
1499 1.3.2.2 martin {
1500 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
1501 1.3.2.2 martin int error;
1502 1.3.2.2 martin
1503 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
1504 1.3.2.2 martin error = igc_init_locked(sc);
1505 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
1506 1.3.2.2 martin
1507 1.3.2.2 martin return error;
1508 1.3.2.2 martin }
1509 1.3.2.2 martin
1510 1.3.2.2 martin static int
1511 1.3.2.2 martin igc_init_locked(struct igc_softc *sc)
1512 1.3.2.2 martin {
1513 1.3.2.2 martin struct ethercom *ec = &sc->sc_ec;
1514 1.3.2.2 martin struct ifnet *ifp = &ec->ec_if;
1515 1.3.2.2 martin
1516 1.3.2.2 martin DPRINTF(CFG, "called\n");
1517 1.3.2.2 martin
1518 1.3.2.2 martin KASSERT(mutex_owned(&sc->sc_core_lock));
1519 1.3.2.2 martin
1520 1.3.2.2 martin if (ISSET(ifp->if_flags, IFF_RUNNING))
1521 1.3.2.2 martin igc_stop_locked(sc);
1522 1.3.2.2 martin
1523 1.3.2.2 martin /* Put the address into the receive address array. */
1524 1.3.2.2 martin igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1525 1.3.2.2 martin
1526 1.3.2.2 martin /* Initialize the hardware. */
1527 1.3.2.2 martin igc_reset(sc);
1528 1.3.2.2 martin igc_update_link_status(sc);
1529 1.3.2.2 martin
1530 1.3.2.2 martin /* Setup VLAN support, basic and offload if available. */
1531 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
1532 1.3.2.2 martin
1533 1.3.2.2 martin igc_initialize_transmit_unit(sc);
1534 1.3.2.2 martin igc_initialize_receive_unit(sc);
1535 1.3.2.2 martin
1536 1.3.2.2 martin if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1537 1.3.2.2 martin uint32_t ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
1538 1.3.2.2 martin ctrl |= IGC_CTRL_VME;
1539 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
1540 1.3.2.2 martin }
1541 1.3.2.2 martin
1542 1.3.2.2 martin /* Setup multicast table. */
1543 1.3.2.2 martin igc_set_filter(sc);
1544 1.3.2.2 martin
1545 1.3.2.2 martin igc_clear_hw_cntrs_base_generic(&sc->hw);
1546 1.3.2.2 martin
1547 1.3.2.2 martin if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
1548 1.3.2.2 martin igc_configure_queues(sc);
1549 1.3.2.2 martin
1550 1.3.2.2 martin /* This clears any pending interrupts */
1551 1.3.2.2 martin IGC_READ_REG(&sc->hw, IGC_ICR);
1552 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
1553 1.3.2.2 martin
1554 1.3.2.2 martin /* The driver can now take control from firmware. */
1555 1.3.2.2 martin igc_get_hw_control(sc);
1556 1.3.2.2 martin
1557 1.3.2.2 martin /* Set Energy Efficient Ethernet. */
1558 1.3.2.2 martin igc_set_eee_i225(&sc->hw, true, true, true);
1559 1.3.2.2 martin
1560 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1561 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
1562 1.3.2.2 martin
1563 1.3.2.2 martin mutex_enter(&rxr->rxr_lock);
1564 1.3.2.2 martin igc_rxfill(rxr);
1565 1.3.2.2 martin mutex_exit(&rxr->rxr_lock);
1566 1.3.2.2 martin }
1567 1.3.2.2 martin
1568 1.3.2.2 martin sc->sc_core_stopping = false;
1569 1.3.2.2 martin
1570 1.3.2.2 martin ifp->if_flags |= IFF_RUNNING;
1571 1.3.2.2 martin
1572 1.3.2.2 martin /* Save last flags for the callback */
1573 1.3.2.2 martin sc->sc_if_flags = ifp->if_flags;
1574 1.3.2.2 martin
1575 1.3.2.3 martin callout_schedule(&sc->sc_tick_ch, hz);
1576 1.3.2.3 martin
1577 1.3.2.3 martin igc_enable_intr(sc);
1578 1.3.2.3 martin
1579 1.3.2.2 martin return 0;
1580 1.3.2.2 martin }
1581 1.3.2.2 martin
1582 1.3.2.2 martin static inline int
1583 1.3.2.2 martin igc_load_mbuf(struct igc_queue *q, bus_dma_tag_t dmat, bus_dmamap_t map,
1584 1.3.2.2 martin struct mbuf *m)
1585 1.3.2.2 martin {
1586 1.3.2.2 martin int error;
1587 1.3.2.2 martin
1588 1.3.2.2 martin error = bus_dmamap_load_mbuf(dmat, map, m,
1589 1.3.2.2 martin BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1590 1.3.2.2 martin
1591 1.3.2.2 martin if (__predict_false(error == EFBIG)) {
1592 1.3.2.2 martin IGC_DRIVER_EVENT(q, txdma_efbig, 1);
1593 1.3.2.2 martin m = m_defrag(m, M_NOWAIT);
1594 1.3.2.2 martin if (__predict_false(m == NULL)) {
1595 1.3.2.2 martin IGC_DRIVER_EVENT(q, txdma_defrag, 1);
1596 1.3.2.2 martin return ENOBUFS;
1597 1.3.2.2 martin }
1598 1.3.2.2 martin error = bus_dmamap_load_mbuf(dmat, map, m,
1599 1.3.2.2 martin BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1600 1.3.2.2 martin }
1601 1.3.2.2 martin
1602 1.3.2.2 martin switch (error) {
1603 1.3.2.2 martin case 0:
1604 1.3.2.2 martin break;
1605 1.3.2.2 martin case ENOMEM:
1606 1.3.2.2 martin IGC_DRIVER_EVENT(q, txdma_enomem, 1);
1607 1.3.2.2 martin break;
1608 1.3.2.2 martin case EINVAL:
1609 1.3.2.2 martin IGC_DRIVER_EVENT(q, txdma_einval, 1);
1610 1.3.2.2 martin break;
1611 1.3.2.2 martin case EAGAIN:
1612 1.3.2.2 martin IGC_DRIVER_EVENT(q, txdma_eagain, 1);
1613 1.3.2.2 martin break;
1614 1.3.2.2 martin default:
1615 1.3.2.2 martin IGC_DRIVER_EVENT(q, txdma_other, 1);
1616 1.3.2.2 martin break;
1617 1.3.2.2 martin }
1618 1.3.2.2 martin
1619 1.3.2.2 martin return error;
1620 1.3.2.2 martin }
1621 1.3.2.2 martin
1622 1.3.2.2 martin #define IGC_TX_START 1
1623 1.3.2.2 martin #define IGC_TX_TRANSMIT 2
1624 1.3.2.2 martin
1625 1.3.2.2 martin static void
1626 1.3.2.2 martin igc_start(struct ifnet *ifp)
1627 1.3.2.2 martin {
1628 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
1629 1.3.2.2 martin
1630 1.3.2.2 martin if (__predict_false(!sc->link_active)) {
1631 1.3.2.2 martin IFQ_PURGE(&ifp->if_snd);
1632 1.3.2.2 martin return;
1633 1.3.2.2 martin }
1634 1.3.2.2 martin
1635 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[0]; /* queue 0 */
1636 1.3.2.2 martin mutex_enter(&txr->txr_lock);
1637 1.3.2.2 martin igc_tx_common_locked(ifp, txr, IGC_TX_START);
1638 1.3.2.2 martin mutex_exit(&txr->txr_lock);
1639 1.3.2.2 martin }
1640 1.3.2.2 martin
1641 1.3.2.2 martin static inline u_int
1642 1.3.2.2 martin igc_select_txqueue(struct igc_softc *sc, struct mbuf *m __unused)
1643 1.3.2.2 martin {
1644 1.3.2.2 martin const u_int cpuid = cpu_index(curcpu());
1645 1.3.2.2 martin
1646 1.3.2.2 martin return cpuid % sc->sc_nqueues;
1647 1.3.2.2 martin }
1648 1.3.2.2 martin
1649 1.3.2.2 martin static int
1650 1.3.2.2 martin igc_transmit(struct ifnet *ifp, struct mbuf *m)
1651 1.3.2.2 martin {
1652 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
1653 1.3.2.2 martin const u_int qid = igc_select_txqueue(sc, m);
1654 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[qid];
1655 1.3.2.2 martin struct igc_queue *q = txr->txr_igcq;
1656 1.3.2.2 martin
1657 1.3.2.2 martin if (__predict_false(!pcq_put(txr->txr_interq, m))) {
1658 1.3.2.2 martin IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
1659 1.3.2.2 martin m_freem(m);
1660 1.3.2.2 martin return ENOBUFS;
1661 1.3.2.2 martin }
1662 1.3.2.2 martin
1663 1.3.2.2 martin mutex_enter(&txr->txr_lock);
1664 1.3.2.2 martin igc_tx_common_locked(ifp, txr, IGC_TX_TRANSMIT);
1665 1.3.2.2 martin mutex_exit(&txr->txr_lock);
1666 1.3.2.2 martin
1667 1.3.2.2 martin return 0;
1668 1.3.2.2 martin }
1669 1.3.2.2 martin
1670 1.3.2.2 martin static void
1671 1.3.2.2 martin igc_tx_common_locked(struct ifnet *ifp, struct tx_ring *txr, int caller)
1672 1.3.2.2 martin {
1673 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
1674 1.3.2.2 martin struct igc_queue *q = txr->txr_igcq;
1675 1.3.2.2 martin net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1676 1.3.2.2 martin int prod, free, last = -1;
1677 1.3.2.2 martin bool post = false;
1678 1.3.2.2 martin
1679 1.3.2.2 martin prod = txr->next_avail_desc;
1680 1.3.2.2 martin free = txr->next_to_clean;
1681 1.3.2.2 martin if (free <= prod)
1682 1.3.2.2 martin free += sc->num_tx_desc;
1683 1.3.2.2 martin free -= prod;
1684 1.3.2.2 martin
1685 1.3.2.2 martin DPRINTF(TX, "%s: begin: msix %d prod %d n2c %d free %d\n",
1686 1.3.2.2 martin caller == IGC_TX_TRANSMIT ? "transmit" : "start",
1687 1.3.2.2 martin txr->me, prod, txr->next_to_clean, free);
1688 1.3.2.2 martin
1689 1.3.2.2 martin for (;;) {
1690 1.3.2.2 martin struct mbuf *m;
1691 1.3.2.2 martin
1692 1.3.2.2 martin if (__predict_false(free <= IGC_MAX_SCATTER)) {
1693 1.3.2.2 martin IGC_QUEUE_EVENT(q, tx_no_desc, 1);
1694 1.3.2.2 martin break;
1695 1.3.2.2 martin }
1696 1.3.2.2 martin
1697 1.3.2.2 martin if (caller == IGC_TX_TRANSMIT)
1698 1.3.2.2 martin m = pcq_get(txr->txr_interq);
1699 1.3.2.2 martin else
1700 1.3.2.2 martin IFQ_DEQUEUE(&ifp->if_snd, m);
1701 1.3.2.2 martin if (__predict_false(m == NULL))
1702 1.3.2.2 martin break;
1703 1.3.2.2 martin
1704 1.3.2.2 martin struct igc_tx_buf *txbuf = &txr->tx_buffers[prod];
1705 1.3.2.2 martin bus_dmamap_t map = txbuf->map;
1706 1.3.2.2 martin
1707 1.3.2.2 martin if (__predict_false(
1708 1.3.2.2 martin igc_load_mbuf(q, txr->txdma.dma_tag, map, m))) {
1709 1.3.2.2 martin if (caller == IGC_TX_TRANSMIT)
1710 1.3.2.2 martin IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
1711 1.3.2.2 martin m_freem(m);
1712 1.3.2.2 martin if_statinc_ref(nsr, if_oerrors);
1713 1.3.2.2 martin continue;
1714 1.3.2.2 martin }
1715 1.3.2.2 martin
1716 1.3.2.2 martin uint32_t ctx_cmd_type_len = 0, olinfo_status = 0;
1717 1.3.2.2 martin if (igc_tx_ctx_setup(txr, m, prod, &ctx_cmd_type_len,
1718 1.3.2.2 martin &olinfo_status)) {
1719 1.3.2.2 martin IGC_QUEUE_EVENT(q, tx_ctx, 1);
1720 1.3.2.2 martin /* Consume the first descriptor */
1721 1.3.2.2 martin prod = igc_txdesc_incr(sc, prod);
1722 1.3.2.2 martin free--;
1723 1.3.2.2 martin }
1724 1.3.2.7 martin
1725 1.3.2.7 martin bus_dmamap_sync(txr->txdma.dma_tag, map, 0,
1726 1.3.2.7 martin map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1727 1.3.2.7 martin
1728 1.3.2.2 martin for (int i = 0; i < map->dm_nsegs; i++) {
1729 1.3.2.2 martin union igc_adv_tx_desc *txdesc = &txr->tx_base[prod];
1730 1.3.2.2 martin
1731 1.3.2.2 martin uint32_t cmd_type_len = ctx_cmd_type_len |
1732 1.3.2.2 martin IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DTYP_DATA |
1733 1.3.2.2 martin IGC_ADVTXD_DCMD_DEXT | map->dm_segs[i].ds_len;
1734 1.3.2.2 martin if (i == map->dm_nsegs - 1) {
1735 1.3.2.2 martin cmd_type_len |=
1736 1.3.2.2 martin IGC_ADVTXD_DCMD_EOP | IGC_ADVTXD_DCMD_RS;
1737 1.3.2.2 martin }
1738 1.3.2.2 martin
1739 1.3.2.2 martin igc_txdesc_sync(txr, prod,
1740 1.3.2.2 martin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1741 1.3.2.2 martin htolem64(&txdesc->read.buffer_addr,
1742 1.3.2.2 martin map->dm_segs[i].ds_addr);
1743 1.3.2.2 martin htolem32(&txdesc->read.cmd_type_len, cmd_type_len);
1744 1.3.2.2 martin htolem32(&txdesc->read.olinfo_status, olinfo_status);
1745 1.3.2.2 martin igc_txdesc_sync(txr, prod,
1746 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1747 1.3.2.2 martin
1748 1.3.2.2 martin last = prod;
1749 1.3.2.2 martin prod = igc_txdesc_incr(sc, prod);
1750 1.3.2.2 martin }
1751 1.3.2.2 martin
1752 1.3.2.2 martin txbuf->m_head = m;
1753 1.3.2.2 martin txbuf->eop_index = last;
1754 1.3.2.2 martin
1755 1.3.2.2 martin bpf_mtap(ifp, m, BPF_D_OUT);
1756 1.3.2.2 martin
1757 1.3.2.2 martin if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
1758 1.3.2.2 martin if (m->m_flags & M_MCAST)
1759 1.3.2.2 martin if_statinc_ref(nsr, if_omcasts);
1760 1.3.2.2 martin IGC_QUEUE_EVENT(q, tx_packets, 1);
1761 1.3.2.2 martin IGC_QUEUE_EVENT(q, tx_bytes, m->m_pkthdr.len);
1762 1.3.2.2 martin
1763 1.3.2.2 martin free -= map->dm_nsegs;
1764 1.3.2.2 martin post = true;
1765 1.3.2.2 martin }
1766 1.3.2.2 martin
1767 1.3.2.2 martin if (post) {
1768 1.3.2.2 martin txr->next_avail_desc = prod;
1769 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), prod);
1770 1.3.2.2 martin }
1771 1.3.2.2 martin
1772 1.3.2.2 martin DPRINTF(TX, "%s: done : msix %d prod %d n2c %d free %d\n",
1773 1.3.2.2 martin caller == IGC_TX_TRANSMIT ? "transmit" : "start",
1774 1.3.2.2 martin txr->me, prod, txr->next_to_clean, free);
1775 1.3.2.2 martin
1776 1.3.2.2 martin IF_STAT_PUTREF(ifp);
1777 1.3.2.2 martin }
1778 1.3.2.2 martin
1779 1.3.2.2 martin static bool
1780 1.3.2.2 martin igc_txeof(struct tx_ring *txr, u_int limit)
1781 1.3.2.2 martin {
1782 1.3.2.2 martin struct igc_softc *sc = txr->sc;
1783 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
1784 1.3.2.2 martin int cons, prod;
1785 1.3.2.2 martin bool more = false;
1786 1.3.2.2 martin
1787 1.3.2.2 martin prod = txr->next_avail_desc;
1788 1.3.2.2 martin cons = txr->next_to_clean;
1789 1.3.2.2 martin
1790 1.3.2.2 martin if (cons == prod) {
1791 1.3.2.2 martin DPRINTF(TX, "false: msix %d cons %d prod %d\n",
1792 1.3.2.2 martin txr->me, cons, prod);
1793 1.3.2.2 martin return false;
1794 1.3.2.2 martin }
1795 1.3.2.2 martin
1796 1.3.2.2 martin do {
1797 1.3.2.2 martin struct igc_tx_buf *txbuf = &txr->tx_buffers[cons];
1798 1.3.2.2 martin const int last = txbuf->eop_index;
1799 1.3.2.2 martin
1800 1.3.2.2 martin membar_consumer(); /* XXXRO necessary? */
1801 1.3.2.2 martin
1802 1.3.2.2 martin KASSERT(last != -1);
1803 1.3.2.2 martin union igc_adv_tx_desc *txdesc = &txr->tx_base[last];
1804 1.3.2.2 martin igc_txdesc_sync(txr, last, BUS_DMASYNC_POSTREAD);
1805 1.3.2.2 martin const uint32_t status = le32toh(txdesc->wb.status);
1806 1.3.2.2 martin igc_txdesc_sync(txr, last, BUS_DMASYNC_PREREAD);
1807 1.3.2.2 martin
1808 1.3.2.2 martin if (!(status & IGC_TXD_STAT_DD))
1809 1.3.2.2 martin break;
1810 1.3.2.2 martin
1811 1.3.2.2 martin if (limit-- == 0) {
1812 1.3.2.2 martin more = true;
1813 1.3.2.2 martin DPRINTF(TX, "pending TX "
1814 1.3.2.2 martin "msix %d cons %d last %d prod %d "
1815 1.3.2.2 martin "status 0x%08x\n",
1816 1.3.2.2 martin txr->me, cons, last, prod, status);
1817 1.3.2.2 martin break;
1818 1.3.2.2 martin }
1819 1.3.2.2 martin
1820 1.3.2.2 martin DPRINTF(TX, "handled TX "
1821 1.3.2.2 martin "msix %d cons %d last %d prod %d "
1822 1.3.2.2 martin "status 0x%08x\n",
1823 1.3.2.2 martin txr->me, cons, last, prod, status);
1824 1.3.2.2 martin
1825 1.3.2.2 martin if_statinc(ifp, if_opackets);
1826 1.3.2.2 martin
1827 1.3.2.2 martin bus_dmamap_t map = txbuf->map;
1828 1.3.2.2 martin bus_dmamap_sync(txr->txdma.dma_tag, map, 0, map->dm_mapsize,
1829 1.3.2.2 martin BUS_DMASYNC_POSTWRITE);
1830 1.3.2.2 martin bus_dmamap_unload(txr->txdma.dma_tag, map);
1831 1.3.2.2 martin m_freem(txbuf->m_head);
1832 1.3.2.2 martin
1833 1.3.2.2 martin txbuf->m_head = NULL;
1834 1.3.2.2 martin txbuf->eop_index = -1;
1835 1.3.2.2 martin
1836 1.3.2.2 martin cons = igc_txdesc_incr(sc, last);
1837 1.3.2.2 martin } while (cons != prod);
1838 1.3.2.2 martin
1839 1.3.2.2 martin txr->next_to_clean = cons;
1840 1.3.2.2 martin
1841 1.3.2.2 martin return more;
1842 1.3.2.2 martin }
1843 1.3.2.2 martin
1844 1.3.2.2 martin static void
1845 1.3.2.2 martin igc_intr_barrier(struct igc_softc *sc __unused)
1846 1.3.2.2 martin {
1847 1.3.2.2 martin
1848 1.3.2.2 martin xc_barrier(0);
1849 1.3.2.2 martin }
1850 1.3.2.2 martin
1851 1.3.2.2 martin static void
1852 1.3.2.2 martin igc_stop(struct ifnet *ifp, int disable)
1853 1.3.2.2 martin {
1854 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
1855 1.3.2.2 martin
1856 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
1857 1.3.2.2 martin igc_stop_locked(sc);
1858 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
1859 1.3.2.2 martin }
1860 1.3.2.2 martin
1861 1.3.2.2 martin /*********************************************************************
1862 1.3.2.2 martin *
1863 1.3.2.2 martin * This routine disables all traffic on the adapter by issuing a
1864 1.3.2.2 martin * global reset on the MAC.
1865 1.3.2.2 martin *
1866 1.3.2.2 martin **********************************************************************/
1867 1.3.2.2 martin static void
1868 1.3.2.2 martin igc_stop_locked(struct igc_softc *sc)
1869 1.3.2.2 martin {
1870 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
1871 1.3.2.2 martin
1872 1.3.2.2 martin DPRINTF(CFG, "called\n");
1873 1.3.2.2 martin
1874 1.3.2.2 martin KASSERT(mutex_owned(&sc->sc_core_lock));
1875 1.3.2.2 martin
1876 1.3.2.2 martin /*
1877 1.3.2.2 martin * If stopping processing has already started, do nothing.
1878 1.3.2.2 martin */
1879 1.3.2.2 martin if ((ifp->if_flags & IFF_RUNNING) == 0)
1880 1.3.2.2 martin return;
1881 1.3.2.2 martin
1882 1.3.2.2 martin /* Tell the stack that the interface is no longer active. */
1883 1.3.2.2 martin ifp->if_flags &= ~IFF_RUNNING;
1884 1.3.2.2 martin
1885 1.3.2.2 martin /*
1886 1.3.2.2 martin * igc_handle_queue() can enable interrupts, so wait for completion of
1887 1.3.2.2 martin * last igc_handle_queue() after unset IFF_RUNNING.
1888 1.3.2.2 martin */
1889 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
1890 1.3.2.2 martin igc_barrier_handle_queue(sc);
1891 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
1892 1.3.2.2 martin
1893 1.3.2.2 martin sc->sc_core_stopping = true;
1894 1.3.2.2 martin
1895 1.3.2.2 martin igc_disable_intr(sc);
1896 1.3.2.2 martin
1897 1.3.2.2 martin callout_halt(&sc->sc_tick_ch, &sc->sc_core_lock);
1898 1.3.2.2 martin
1899 1.3.2.2 martin igc_reset_hw(&sc->hw);
1900 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
1901 1.3.2.2 martin
1902 1.3.2.2 martin /*
1903 1.3.2.2 martin * Wait for completion of interrupt handlers.
1904 1.3.2.2 martin */
1905 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
1906 1.3.2.2 martin igc_intr_barrier(sc);
1907 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
1908 1.3.2.2 martin
1909 1.3.2.2 martin igc_update_link_status(sc);
1910 1.3.2.2 martin
1911 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1912 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[iq];
1913 1.3.2.2 martin
1914 1.3.2.2 martin igc_withdraw_transmit_packets(txr, false);
1915 1.3.2.2 martin }
1916 1.3.2.2 martin
1917 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1918 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
1919 1.3.2.2 martin
1920 1.3.2.2 martin igc_clear_receive_status(rxr);
1921 1.3.2.2 martin }
1922 1.3.2.2 martin
1923 1.3.2.2 martin /* Save last flags for the callback */
1924 1.3.2.2 martin sc->sc_if_flags = ifp->if_flags;
1925 1.3.2.2 martin }
1926 1.3.2.2 martin
1927 1.3.2.2 martin /*********************************************************************
1928 1.3.2.2 martin * Ioctl entry point
1929 1.3.2.2 martin *
1930 1.3.2.2 martin * igc_ioctl is called when the user wants to configure the
1931 1.3.2.2 martin * interface.
1932 1.3.2.2 martin *
1933 1.3.2.2 martin * return 0 on success, positive on failure
1934 1.3.2.2 martin **********************************************************************/
1935 1.3.2.2 martin static int
1936 1.3.2.2 martin igc_ioctl(struct ifnet * ifp, u_long cmd, void *data)
1937 1.3.2.2 martin {
1938 1.3.2.2 martin struct igc_softc *sc __unused = ifp->if_softc;
1939 1.3.2.2 martin int s;
1940 1.3.2.2 martin int error;
1941 1.3.2.2 martin
1942 1.3.2.2 martin DPRINTF(CFG, "cmd 0x%016lx\n", cmd);
1943 1.3.2.2 martin
1944 1.3.2.2 martin switch (cmd) {
1945 1.3.2.2 martin case SIOCADDMULTI:
1946 1.3.2.2 martin case SIOCDELMULTI:
1947 1.3.2.2 martin break;
1948 1.3.2.2 martin default:
1949 1.3.2.2 martin KASSERT(IFNET_LOCKED(ifp));
1950 1.3.2.2 martin }
1951 1.3.2.2 martin
1952 1.3.2.2 martin if (cmd == SIOCZIFDATA) {
1953 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
1954 1.3.2.2 martin igc_clear_counters(sc);
1955 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
1956 1.3.2.2 martin }
1957 1.3.2.2 martin
1958 1.3.2.2 martin switch (cmd) {
1959 1.3.2.2 martin #ifdef IF_RXR
1960 1.3.2.2 martin case SIOCGIFRXR:
1961 1.3.2.2 martin s = splnet();
1962 1.3.2.2 martin error = igc_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
1963 1.3.2.2 martin splx(s);
1964 1.3.2.2 martin break;
1965 1.3.2.2 martin #endif
1966 1.3.2.2 martin default:
1967 1.3.2.2 martin s = splnet();
1968 1.3.2.2 martin error = ether_ioctl(ifp, cmd, data);
1969 1.3.2.2 martin splx(s);
1970 1.3.2.2 martin break;
1971 1.3.2.2 martin }
1972 1.3.2.2 martin
1973 1.3.2.2 martin if (error != ENETRESET)
1974 1.3.2.2 martin return error;
1975 1.3.2.2 martin
1976 1.3.2.2 martin error = 0;
1977 1.3.2.2 martin
1978 1.3.2.2 martin if (cmd == SIOCSIFCAP)
1979 1.3.2.2 martin error = if_init(ifp);
1980 1.3.2.2 martin else if ((cmd == SIOCADDMULTI) || (cmd == SIOCDELMULTI)) {
1981 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
1982 1.3.2.2 martin if (sc->sc_if_flags & IFF_RUNNING) {
1983 1.3.2.2 martin /*
1984 1.3.2.2 martin * Multicast list has changed; set the hardware filter
1985 1.3.2.2 martin * accordingly.
1986 1.3.2.2 martin */
1987 1.3.2.2 martin igc_disable_intr(sc);
1988 1.3.2.2 martin igc_set_filter(sc);
1989 1.3.2.2 martin igc_enable_intr(sc);
1990 1.3.2.2 martin }
1991 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
1992 1.3.2.2 martin }
1993 1.3.2.2 martin
1994 1.3.2.2 martin return error;
1995 1.3.2.2 martin }
1996 1.3.2.2 martin
1997 1.3.2.2 martin #ifdef IF_RXR
1998 1.3.2.2 martin static int
1999 1.3.2.2 martin igc_rxrinfo(struct igc_softc *sc, struct if_rxrinfo *ifri)
2000 1.3.2.2 martin {
2001 1.3.2.2 martin struct if_rxring_info *ifr, ifr1;
2002 1.3.2.2 martin int error;
2003 1.3.2.2 martin
2004 1.3.2.2 martin if (sc->sc_nqueues > 1) {
2005 1.3.2.2 martin ifr = kmem_zalloc(sc->sc_nqueues * sizeof(*ifr), KM_SLEEP);
2006 1.3.2.2 martin } else {
2007 1.3.2.2 martin ifr = &ifr1;
2008 1.3.2.2 martin memset(ifr, 0, sizeof(*ifr));
2009 1.3.2.2 martin }
2010 1.3.2.2 martin
2011 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2012 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
2013 1.3.2.2 martin
2014 1.3.2.2 martin ifr[iq].ifr_size = MCLBYTES;
2015 1.3.2.2 martin snprintf(ifr[iq].ifr_name, sizeof(ifr[iq].ifr_name), "%d", iq);
2016 1.3.2.2 martin ifr[iq].ifr_info = rxr->rx_ring;
2017 1.3.2.2 martin }
2018 1.3.2.2 martin
2019 1.3.2.2 martin error = if_rxr_info_ioctl(ifri, sc->sc_nqueues, ifr);
2020 1.3.2.2 martin if (sc->sc_nqueues > 1)
2021 1.3.2.2 martin kmem_free(ifr, sc->sc_nqueues * sizeof(*ifr));
2022 1.3.2.2 martin
2023 1.3.2.2 martin return error;
2024 1.3.2.2 martin }
2025 1.3.2.2 martin #endif
2026 1.3.2.2 martin
2027 1.3.2.2 martin static void
2028 1.3.2.2 martin igc_rxfill(struct rx_ring *rxr)
2029 1.3.2.2 martin {
2030 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
2031 1.3.2.2 martin int id;
2032 1.3.2.2 martin
2033 1.3.2.2 martin for (id = 0; id < sc->num_rx_desc; id++) {
2034 1.3.2.2 martin if (igc_get_buf(rxr, id, false)) {
2035 1.3.2.2 martin panic("%s: msix=%d i=%d\n", __func__, rxr->me, id);
2036 1.3.2.2 martin }
2037 1.3.2.2 martin }
2038 1.3.2.2 martin
2039 1.3.2.2 martin id = sc->num_rx_desc - 1;
2040 1.3.2.2 martin rxr->last_desc_filled = id;
2041 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
2042 1.3.2.2 martin rxr->next_to_check = 0;
2043 1.3.2.2 martin }
2044 1.3.2.2 martin
2045 1.3.2.2 martin static void
2046 1.3.2.2 martin igc_rxrefill(struct rx_ring *rxr, int end)
2047 1.3.2.2 martin {
2048 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
2049 1.3.2.2 martin int id;
2050 1.3.2.2 martin
2051 1.3.2.2 martin for (id = rxr->next_to_check; id != end; id = igc_rxdesc_incr(sc, id)) {
2052 1.3.2.2 martin if (igc_get_buf(rxr, id, true)) {
2053 1.3.2.2 martin /* XXXRO */
2054 1.3.2.2 martin panic("%s: msix=%d id=%d\n", __func__, rxr->me, id);
2055 1.3.2.2 martin }
2056 1.3.2.2 martin }
2057 1.3.2.2 martin
2058 1.3.2.2 martin id = igc_rxdesc_decr(sc, id);
2059 1.3.2.2 martin DPRINTF(RX, "%s RDT %d id %d\n",
2060 1.3.2.2 martin rxr->last_desc_filled == id ? "same" : "diff",
2061 1.3.2.2 martin rxr->last_desc_filled, id);
2062 1.3.2.2 martin rxr->last_desc_filled = id;
2063 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
2064 1.3.2.2 martin }
2065 1.3.2.2 martin
2066 1.3.2.2 martin /*********************************************************************
2067 1.3.2.2 martin *
2068 1.3.2.2 martin * This routine executes in interrupt context. It replenishes
2069 1.3.2.2 martin * the mbufs in the descriptor and sends data which has been
2070 1.3.2.2 martin * dma'ed into host memory to upper layer.
2071 1.3.2.2 martin *
2072 1.3.2.2 martin *********************************************************************/
2073 1.3.2.2 martin static bool
2074 1.3.2.2 martin igc_rxeof(struct rx_ring *rxr, u_int limit)
2075 1.3.2.2 martin {
2076 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
2077 1.3.2.2 martin struct igc_queue *q = rxr->rxr_igcq;
2078 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
2079 1.3.2.2 martin int id;
2080 1.3.2.2 martin bool more = false;
2081 1.3.2.2 martin
2082 1.3.2.2 martin id = rxr->next_to_check;
2083 1.3.2.2 martin for (;;) {
2084 1.3.2.2 martin union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
2085 1.3.2.2 martin struct igc_rx_buf *rxbuf, *nxbuf;
2086 1.3.2.2 martin struct mbuf *mp, *m;
2087 1.3.2.2 martin
2088 1.3.2.2 martin igc_rxdesc_sync(rxr, id,
2089 1.3.2.2 martin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2090 1.3.2.2 martin
2091 1.3.2.2 martin const uint32_t staterr = le32toh(rxdesc->wb.upper.status_error);
2092 1.3.2.2 martin
2093 1.3.2.2 martin if (!ISSET(staterr, IGC_RXD_STAT_DD)) {
2094 1.3.2.2 martin igc_rxdesc_sync(rxr, id,
2095 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2096 1.3.2.2 martin break;
2097 1.3.2.2 martin }
2098 1.3.2.2 martin
2099 1.3.2.2 martin if (limit-- == 0) {
2100 1.3.2.2 martin igc_rxdesc_sync(rxr, id,
2101 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2102 1.3.2.2 martin DPRINTF(RX, "more=true\n");
2103 1.3.2.2 martin more = true;
2104 1.3.2.2 martin break;
2105 1.3.2.2 martin }
2106 1.3.2.2 martin
2107 1.3.2.2 martin /* Zero out the receive descriptors status. */
2108 1.3.2.2 martin rxdesc->wb.upper.status_error = 0;
2109 1.3.2.2 martin
2110 1.3.2.2 martin /* Pull the mbuf off the ring. */
2111 1.3.2.2 martin rxbuf = &rxr->rx_buffers[id];
2112 1.3.2.2 martin bus_dmamap_t map = rxbuf->map;
2113 1.3.2.2 martin bus_dmamap_sync(rxr->rxdma.dma_tag, map,
2114 1.3.2.2 martin 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2115 1.3.2.2 martin bus_dmamap_unload(rxr->rxdma.dma_tag, map);
2116 1.3.2.2 martin
2117 1.3.2.2 martin mp = rxbuf->buf;
2118 1.3.2.2 martin rxbuf->buf = NULL;
2119 1.3.2.2 martin
2120 1.3.2.2 martin const bool eop = staterr & IGC_RXD_STAT_EOP;
2121 1.3.2.2 martin const uint16_t len = le16toh(rxdesc->wb.upper.length);
2122 1.3.2.2 martin
2123 1.3.2.5 martin #if NVLAN > 0
2124 1.3.2.2 martin const uint16_t vtag = le16toh(rxdesc->wb.upper.vlan);
2125 1.3.2.5 martin #endif
2126 1.3.2.2 martin
2127 1.3.2.2 martin const uint32_t ptype = le32toh(rxdesc->wb.lower.lo_dword.data) &
2128 1.3.2.2 martin IGC_PKTTYPE_MASK;
2129 1.3.2.2 martin
2130 1.3.2.2 martin const uint32_t hash __unused =
2131 1.3.2.2 martin le32toh(rxdesc->wb.lower.hi_dword.rss);
2132 1.3.2.2 martin const uint16_t hashtype __unused =
2133 1.3.2.2 martin le16toh(rxdesc->wb.lower.lo_dword.hs_rss.pkt_info) &
2134 1.3.2.2 martin IGC_RXDADV_RSSTYPE_MASK;
2135 1.3.2.2 martin
2136 1.3.2.2 martin igc_rxdesc_sync(rxr, id,
2137 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2138 1.3.2.2 martin
2139 1.3.2.2 martin if (__predict_false(staterr & IGC_RXDEXT_STATERR_RXE)) {
2140 1.3.2.2 martin if (rxbuf->fmp) {
2141 1.3.2.2 martin m_freem(rxbuf->fmp);
2142 1.3.2.2 martin rxbuf->fmp = NULL;
2143 1.3.2.2 martin }
2144 1.3.2.2 martin
2145 1.3.2.2 martin m_freem(mp);
2146 1.3.2.2 martin m = NULL;
2147 1.3.2.2 martin
2148 1.3.2.2 martin if_statinc(ifp, if_ierrors);
2149 1.3.2.2 martin IGC_QUEUE_EVENT(q, rx_discard, 1);
2150 1.3.2.2 martin
2151 1.3.2.2 martin DPRINTF(RX, "ierrors++\n");
2152 1.3.2.2 martin
2153 1.3.2.2 martin goto next_desc;
2154 1.3.2.2 martin }
2155 1.3.2.2 martin
2156 1.3.2.2 martin if (__predict_false(mp == NULL)) {
2157 1.3.2.2 martin panic("%s: igc_rxeof: NULL mbuf in slot %d "
2158 1.3.2.2 martin "(filled %d)", device_xname(sc->sc_dev),
2159 1.3.2.2 martin id, rxr->last_desc_filled);
2160 1.3.2.2 martin }
2161 1.3.2.2 martin
2162 1.3.2.2 martin if (!eop) {
2163 1.3.2.2 martin /*
2164 1.3.2.2 martin * Figure out the next descriptor of this frame.
2165 1.3.2.2 martin */
2166 1.3.2.2 martin int nextp = igc_rxdesc_incr(sc, id);
2167 1.3.2.2 martin
2168 1.3.2.2 martin nxbuf = &rxr->rx_buffers[nextp];
2169 1.3.2.2 martin /*
2170 1.3.2.2 martin * TODO prefetch(nxbuf);
2171 1.3.2.2 martin */
2172 1.3.2.2 martin }
2173 1.3.2.2 martin
2174 1.3.2.2 martin mp->m_len = len;
2175 1.3.2.2 martin
2176 1.3.2.2 martin m = rxbuf->fmp;
2177 1.3.2.2 martin rxbuf->fmp = NULL;
2178 1.3.2.2 martin
2179 1.3.2.2 martin if (m != NULL) {
2180 1.3.2.2 martin m->m_pkthdr.len += mp->m_len;
2181 1.3.2.2 martin } else {
2182 1.3.2.2 martin m = mp;
2183 1.3.2.2 martin m->m_pkthdr.len = mp->m_len;
2184 1.3.2.2 martin #if NVLAN > 0
2185 1.3.2.2 martin if (staterr & IGC_RXD_STAT_VP)
2186 1.3.2.2 martin vlan_set_tag(m, vtag);
2187 1.3.2.2 martin #endif
2188 1.3.2.2 martin }
2189 1.3.2.2 martin
2190 1.3.2.2 martin /* Pass the head pointer on */
2191 1.3.2.2 martin if (!eop) {
2192 1.3.2.2 martin nxbuf->fmp = m;
2193 1.3.2.2 martin m = NULL;
2194 1.3.2.2 martin mp->m_next = nxbuf->buf;
2195 1.3.2.2 martin } else {
2196 1.3.2.2 martin m_set_rcvif(m, ifp);
2197 1.3.2.2 martin
2198 1.3.2.2 martin m->m_pkthdr.csum_flags = igc_rx_checksum(q,
2199 1.3.2.2 martin ifp->if_capenable, staterr, ptype);
2200 1.3.2.2 martin
2201 1.3.2.2 martin #ifdef notyet
2202 1.3.2.2 martin if (hashtype != IGC_RXDADV_RSSTYPE_NONE) {
2203 1.3.2.2 martin m->m_pkthdr.ph_flowid = hash;
2204 1.3.2.2 martin SET(m->m_pkthdr.csum_flags, M_FLOWID);
2205 1.3.2.2 martin }
2206 1.3.2.2 martin ml_enqueue(&ml, m);
2207 1.3.2.2 martin #endif
2208 1.3.2.2 martin
2209 1.3.2.2 martin if_percpuq_enqueue(sc->sc_ipq, m);
2210 1.3.2.2 martin
2211 1.3.2.2 martin if_statinc(ifp, if_ipackets);
2212 1.3.2.2 martin IGC_QUEUE_EVENT(q, rx_packets, 1);
2213 1.3.2.2 martin IGC_QUEUE_EVENT(q, rx_bytes, m->m_pkthdr.len);
2214 1.3.2.2 martin }
2215 1.3.2.2 martin next_desc:
2216 1.3.2.2 martin /* Advance our pointers to the next descriptor. */
2217 1.3.2.2 martin id = igc_rxdesc_incr(sc, id);
2218 1.3.2.2 martin }
2219 1.3.2.2 martin
2220 1.3.2.2 martin DPRINTF(RX, "fill queue[%d]\n", rxr->me);
2221 1.3.2.2 martin igc_rxrefill(rxr, id);
2222 1.3.2.2 martin
2223 1.3.2.2 martin DPRINTF(RX, "%s n2c %d id %d\n",
2224 1.3.2.2 martin rxr->next_to_check == id ? "same" : "diff",
2225 1.3.2.2 martin rxr->next_to_check, id);
2226 1.3.2.2 martin rxr->next_to_check = id;
2227 1.3.2.2 martin
2228 1.3.2.2 martin #ifdef OPENBSD
2229 1.3.2.2 martin if (!(staterr & IGC_RXD_STAT_DD))
2230 1.3.2.2 martin return 0;
2231 1.3.2.2 martin #endif
2232 1.3.2.2 martin
2233 1.3.2.2 martin return more;
2234 1.3.2.2 martin }
2235 1.3.2.2 martin
2236 1.3.2.2 martin /*********************************************************************
2237 1.3.2.2 martin *
2238 1.3.2.2 martin * Verify that the hardware indicated that the checksum is valid.
2239 1.3.2.2 martin * Inform the stack about the status of checksum so that stack
2240 1.3.2.2 martin * doesn't spend time verifying the checksum.
2241 1.3.2.2 martin *
2242 1.3.2.2 martin *********************************************************************/
2243 1.3.2.2 martin static int
2244 1.3.2.2 martin igc_rx_checksum(struct igc_queue *q, uint64_t capenable, uint32_t staterr,
2245 1.3.2.2 martin uint32_t ptype)
2246 1.3.2.2 martin {
2247 1.3.2.2 martin const uint16_t status = (uint16_t)staterr;
2248 1.3.2.2 martin const uint8_t errors = (uint8_t)(staterr >> 24);
2249 1.3.2.2 martin int flags = 0;
2250 1.3.2.2 martin
2251 1.3.2.2 martin if ((status & IGC_RXD_STAT_IPCS) != 0 &&
2252 1.3.2.2 martin (capenable & IFCAP_CSUM_IPv4_Rx) != 0) {
2253 1.3.2.2 martin IGC_DRIVER_EVENT(q, rx_ipcs, 1);
2254 1.3.2.2 martin flags |= M_CSUM_IPv4;
2255 1.3.2.2 martin if (__predict_false((errors & IGC_RXD_ERR_IPE) != 0)) {
2256 1.3.2.2 martin IGC_DRIVER_EVENT(q, rx_ipcs_bad, 1);
2257 1.3.2.2 martin flags |= M_CSUM_IPv4_BAD;
2258 1.3.2.2 martin }
2259 1.3.2.2 martin }
2260 1.3.2.2 martin
2261 1.3.2.2 martin if ((status & IGC_RXD_STAT_TCPCS) != 0) {
2262 1.3.2.2 martin IGC_DRIVER_EVENT(q, rx_tcpcs, 1);
2263 1.3.2.2 martin if ((capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
2264 1.3.2.2 martin flags |= M_CSUM_TCPv4;
2265 1.3.2.2 martin if ((capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
2266 1.3.2.2 martin flags |= M_CSUM_TCPv6;
2267 1.3.2.2 martin }
2268 1.3.2.2 martin
2269 1.3.2.2 martin if ((status & IGC_RXD_STAT_UDPCS) != 0) {
2270 1.3.2.2 martin IGC_DRIVER_EVENT(q, rx_udpcs, 1);
2271 1.3.2.2 martin if ((capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
2272 1.3.2.2 martin flags |= M_CSUM_UDPv4;
2273 1.3.2.2 martin if ((capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
2274 1.3.2.2 martin flags |= M_CSUM_UDPv6;
2275 1.3.2.2 martin }
2276 1.3.2.2 martin
2277 1.3.2.2 martin if (__predict_false((errors & IGC_RXD_ERR_TCPE) != 0)) {
2278 1.3.2.2 martin IGC_DRIVER_EVENT(q, rx_l4cs_bad, 1);
2279 1.3.2.2 martin if ((flags & ~M_CSUM_IPv4) != 0)
2280 1.3.2.2 martin flags |= M_CSUM_TCP_UDP_BAD;
2281 1.3.2.2 martin }
2282 1.3.2.2 martin
2283 1.3.2.2 martin return flags;
2284 1.3.2.2 martin }
2285 1.3.2.2 martin
2286 1.3.2.2 martin static void
2287 1.3.2.2 martin igc_watchdog(struct ifnet * ifp)
2288 1.3.2.2 martin {
2289 1.3.2.2 martin }
2290 1.3.2.2 martin
2291 1.3.2.2 martin static void
2292 1.3.2.2 martin igc_tick(void *arg)
2293 1.3.2.2 martin {
2294 1.3.2.2 martin struct igc_softc *sc = arg;
2295 1.3.2.2 martin
2296 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
2297 1.3.2.2 martin
2298 1.3.2.2 martin if (__predict_false(sc->sc_core_stopping)) {
2299 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
2300 1.3.2.2 martin return;
2301 1.3.2.2 martin }
2302 1.3.2.2 martin
2303 1.3.2.2 martin /* XXX watchdog */
2304 1.3.2.2 martin if (0) {
2305 1.3.2.2 martin IGC_GLOBAL_EVENT(sc, watchdog, 1);
2306 1.3.2.2 martin }
2307 1.3.2.2 martin
2308 1.3.2.2 martin igc_update_counters(sc);
2309 1.3.2.2 martin
2310 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
2311 1.3.2.2 martin
2312 1.3.2.2 martin callout_schedule(&sc->sc_tick_ch, hz);
2313 1.3.2.2 martin }
2314 1.3.2.2 martin
2315 1.3.2.2 martin /*********************************************************************
2316 1.3.2.2 martin *
2317 1.3.2.2 martin * Media Ioctl callback
2318 1.3.2.2 martin *
2319 1.3.2.2 martin * This routine is called whenever the user queries the status of
2320 1.3.2.2 martin * the interface using ifconfig.
2321 1.3.2.2 martin *
2322 1.3.2.2 martin **********************************************************************/
2323 1.3.2.2 martin static void
2324 1.3.2.2 martin igc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2325 1.3.2.2 martin {
2326 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
2327 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
2328 1.3.2.2 martin
2329 1.3.2.2 martin igc_update_link_status(sc);
2330 1.3.2.2 martin
2331 1.3.2.2 martin ifmr->ifm_status = IFM_AVALID;
2332 1.3.2.2 martin ifmr->ifm_active = IFM_ETHER;
2333 1.3.2.2 martin
2334 1.3.2.2 martin if (!sc->link_active) {
2335 1.3.2.2 martin ifmr->ifm_active |= IFM_NONE;
2336 1.3.2.2 martin return;
2337 1.3.2.2 martin }
2338 1.3.2.2 martin
2339 1.3.2.2 martin ifmr->ifm_status |= IFM_ACTIVE;
2340 1.3.2.2 martin
2341 1.3.2.2 martin switch (sc->link_speed) {
2342 1.3.2.2 martin case 10:
2343 1.3.2.2 martin ifmr->ifm_active |= IFM_10_T;
2344 1.3.2.2 martin break;
2345 1.3.2.2 martin case 100:
2346 1.3.2.2 martin ifmr->ifm_active |= IFM_100_TX;
2347 1.3.2.2 martin break;
2348 1.3.2.2 martin case 1000:
2349 1.3.2.2 martin ifmr->ifm_active |= IFM_1000_T;
2350 1.3.2.2 martin break;
2351 1.3.2.2 martin case 2500:
2352 1.3.2.2 martin ifmr->ifm_active |= IFM_2500_T;
2353 1.3.2.2 martin break;
2354 1.3.2.2 martin }
2355 1.3.2.2 martin
2356 1.3.2.2 martin if (sc->link_duplex == FULL_DUPLEX)
2357 1.3.2.2 martin ifmr->ifm_active |= IFM_FDX;
2358 1.3.2.2 martin else
2359 1.3.2.2 martin ifmr->ifm_active |= IFM_HDX;
2360 1.3.2.2 martin
2361 1.3.2.2 martin switch (hw->fc.current_mode) {
2362 1.3.2.2 martin case igc_fc_tx_pause:
2363 1.3.2.2 martin ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
2364 1.3.2.2 martin break;
2365 1.3.2.2 martin case igc_fc_rx_pause:
2366 1.3.2.2 martin ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
2367 1.3.2.2 martin break;
2368 1.3.2.2 martin case igc_fc_full:
2369 1.3.2.2 martin ifmr->ifm_active |= IFM_FLOW |
2370 1.3.2.2 martin IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2371 1.3.2.2 martin break;
2372 1.3.2.2 martin case igc_fc_none:
2373 1.3.2.2 martin default:
2374 1.3.2.2 martin break;
2375 1.3.2.2 martin }
2376 1.3.2.2 martin }
2377 1.3.2.2 martin
2378 1.3.2.2 martin /*********************************************************************
2379 1.3.2.2 martin *
2380 1.3.2.2 martin * Media Ioctl callback
2381 1.3.2.2 martin *
2382 1.3.2.2 martin * This routine is called when the user changes speed/duplex using
2383 1.3.2.2 martin * media/mediopt option with ifconfig.
2384 1.3.2.2 martin *
2385 1.3.2.2 martin **********************************************************************/
2386 1.3.2.2 martin static int
2387 1.3.2.2 martin igc_media_change(struct ifnet *ifp)
2388 1.3.2.2 martin {
2389 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
2390 1.3.2.2 martin struct ifmedia *ifm = &sc->media;
2391 1.3.2.2 martin
2392 1.3.2.2 martin if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2393 1.3.2.2 martin return EINVAL;
2394 1.3.2.2 martin
2395 1.3.2.2 martin sc->hw.mac.autoneg = DO_AUTO_NEG;
2396 1.3.2.2 martin
2397 1.3.2.2 martin switch (IFM_SUBTYPE(ifm->ifm_media)) {
2398 1.3.2.2 martin case IFM_AUTO:
2399 1.3.2.2 martin sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
2400 1.3.2.2 martin break;
2401 1.3.2.2 martin case IFM_2500_T:
2402 1.3.2.2 martin sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
2403 1.3.2.2 martin break;
2404 1.3.2.2 martin case IFM_1000_T:
2405 1.3.2.2 martin sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
2406 1.3.2.2 martin break;
2407 1.3.2.2 martin case IFM_100_TX:
2408 1.3.2.3 martin if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2409 1.3.2.2 martin sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
2410 1.3.2.3 martin else
2411 1.3.2.3 martin sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
2412 1.3.2.2 martin break;
2413 1.3.2.2 martin case IFM_10_T:
2414 1.3.2.3 martin if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2415 1.3.2.2 martin sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
2416 1.3.2.3 martin else
2417 1.3.2.3 martin sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
2418 1.3.2.2 martin break;
2419 1.3.2.2 martin default:
2420 1.3.2.2 martin return EINVAL;
2421 1.3.2.2 martin }
2422 1.3.2.2 martin
2423 1.3.2.2 martin igc_init_locked(sc);
2424 1.3.2.2 martin
2425 1.3.2.2 martin return 0;
2426 1.3.2.2 martin }
2427 1.3.2.2 martin
2428 1.3.2.2 martin static int
2429 1.3.2.2 martin igc_ifflags_cb(struct ethercom *ec)
2430 1.3.2.2 martin {
2431 1.3.2.2 martin struct ifnet *ifp = &ec->ec_if;
2432 1.3.2.2 martin struct igc_softc *sc = ifp->if_softc;
2433 1.3.2.2 martin int rc = 0;
2434 1.3.2.2 martin u_short iffchange;
2435 1.3.2.2 martin bool needreset = false;
2436 1.3.2.2 martin
2437 1.3.2.2 martin DPRINTF(CFG, "called\n");
2438 1.3.2.2 martin
2439 1.3.2.2 martin KASSERT(IFNET_LOCKED(ifp));
2440 1.3.2.2 martin
2441 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
2442 1.3.2.2 martin
2443 1.3.2.2 martin /*
2444 1.3.2.2 martin * Check for if_flags.
2445 1.3.2.2 martin * Main usage is to prevent linkdown when opening bpf.
2446 1.3.2.2 martin */
2447 1.3.2.2 martin iffchange = ifp->if_flags ^ sc->sc_if_flags;
2448 1.3.2.2 martin sc->sc_if_flags = ifp->if_flags;
2449 1.3.2.2 martin if ((iffchange & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
2450 1.3.2.2 martin needreset = true;
2451 1.3.2.2 martin goto ec;
2452 1.3.2.2 martin }
2453 1.3.2.2 martin
2454 1.3.2.2 martin /* iff related updates */
2455 1.3.2.2 martin if ((iffchange & IFF_PROMISC) != 0)
2456 1.3.2.2 martin igc_set_filter(sc);
2457 1.3.2.2 martin
2458 1.3.2.2 martin #ifdef notyet
2459 1.3.2.2 martin igc_set_vlan(sc);
2460 1.3.2.2 martin #endif
2461 1.3.2.2 martin
2462 1.3.2.2 martin ec:
2463 1.3.2.2 martin #ifdef notyet
2464 1.3.2.2 martin /* Check for ec_capenable. */
2465 1.3.2.2 martin ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
2466 1.3.2.2 martin sc->sc_ec_capenable = ec->ec_capenable;
2467 1.3.2.2 martin if ((ecchange & ~ETHERCAP_SOMETHING) != 0) {
2468 1.3.2.2 martin needreset = true;
2469 1.3.2.2 martin goto out;
2470 1.3.2.2 martin }
2471 1.3.2.2 martin #endif
2472 1.3.2.2 martin if (needreset)
2473 1.3.2.2 martin rc = ENETRESET;
2474 1.3.2.2 martin
2475 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
2476 1.3.2.2 martin
2477 1.3.2.2 martin return rc;
2478 1.3.2.2 martin }
2479 1.3.2.2 martin
2480 1.3.2.2 martin static void
2481 1.3.2.2 martin igc_set_filter(struct igc_softc *sc)
2482 1.3.2.2 martin {
2483 1.3.2.2 martin struct ethercom *ec = &sc->sc_ec;
2484 1.3.2.2 martin uint32_t rctl;
2485 1.3.2.2 martin
2486 1.3.2.2 martin rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
2487 1.3.2.2 martin rctl &= ~(IGC_RCTL_BAM |IGC_RCTL_UPE | IGC_RCTL_MPE);
2488 1.3.2.2 martin
2489 1.3.2.2 martin if ((sc->sc_if_flags & IFF_BROADCAST) != 0)
2490 1.3.2.2 martin rctl |= IGC_RCTL_BAM;
2491 1.3.2.2 martin if ((sc->sc_if_flags & IFF_PROMISC) != 0) {
2492 1.3.2.2 martin DPRINTF(CFG, "promisc\n");
2493 1.3.2.2 martin rctl |= IGC_RCTL_UPE;
2494 1.3.2.2 martin ETHER_LOCK(ec);
2495 1.3.2.2 martin allmulti:
2496 1.3.2.2 martin ec->ec_flags |= ETHER_F_ALLMULTI;
2497 1.3.2.2 martin ETHER_UNLOCK(ec);
2498 1.3.2.2 martin rctl |= IGC_RCTL_MPE;
2499 1.3.2.2 martin } else {
2500 1.3.2.2 martin struct ether_multistep step;
2501 1.3.2.2 martin struct ether_multi *enm;
2502 1.3.2.2 martin int mcnt = 0;
2503 1.3.2.2 martin
2504 1.3.2.2 martin memset(sc->mta, 0, IGC_MTA_LEN);
2505 1.3.2.2 martin
2506 1.3.2.2 martin ETHER_LOCK(ec);
2507 1.3.2.2 martin ETHER_FIRST_MULTI(step, ec, enm);
2508 1.3.2.2 martin while (enm != NULL) {
2509 1.3.2.2 martin if (((memcmp(enm->enm_addrlo, enm->enm_addrhi,
2510 1.3.2.2 martin ETHER_ADDR_LEN)) != 0) ||
2511 1.3.2.2 martin (mcnt >= MAX_NUM_MULTICAST_ADDRESSES)) {
2512 1.3.2.2 martin /*
2513 1.3.2.2 martin * We must listen to a range of multicast
2514 1.3.2.2 martin * addresses. For now, just accept all
2515 1.3.2.2 martin * multicasts, rather than trying to set only
2516 1.3.2.2 martin * those filter bits needed to match the range.
2517 1.3.2.2 martin * (At this time, the only use of address
2518 1.3.2.2 martin * ranges is for IP multicast routing, for
2519 1.3.2.2 martin * which the range is big enough to require all
2520 1.3.2.2 martin * bits set.)
2521 1.3.2.2 martin */
2522 1.3.2.2 martin goto allmulti;
2523 1.3.2.2 martin }
2524 1.3.2.2 martin DPRINTF(CFG, "%d: %s\n", mcnt,
2525 1.3.2.2 martin ether_sprintf(enm->enm_addrlo));
2526 1.3.2.2 martin memcpy(&sc->mta[mcnt * ETHER_ADDR_LEN],
2527 1.3.2.2 martin enm->enm_addrlo, ETHER_ADDR_LEN);
2528 1.3.2.2 martin
2529 1.3.2.2 martin mcnt++;
2530 1.3.2.2 martin ETHER_NEXT_MULTI(step, enm);
2531 1.3.2.2 martin }
2532 1.3.2.2 martin ec->ec_flags &= ~ETHER_F_ALLMULTI;
2533 1.3.2.2 martin ETHER_UNLOCK(ec);
2534 1.3.2.2 martin
2535 1.3.2.2 martin DPRINTF(CFG, "hw filter\n");
2536 1.3.2.2 martin igc_update_mc_addr_list(&sc->hw, sc->mta, mcnt);
2537 1.3.2.2 martin }
2538 1.3.2.2 martin
2539 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_RCTL, rctl);
2540 1.3.2.2 martin }
2541 1.3.2.2 martin
2542 1.3.2.2 martin static void
2543 1.3.2.2 martin igc_update_link_status(struct igc_softc *sc)
2544 1.3.2.2 martin {
2545 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
2546 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
2547 1.3.2.2 martin
2548 1.3.2.4 martin if (hw->mac.get_link_status == true)
2549 1.3.2.4 martin igc_check_for_link(hw);
2550 1.3.2.4 martin
2551 1.3.2.2 martin if (IGC_READ_REG(&sc->hw, IGC_STATUS) & IGC_STATUS_LU) {
2552 1.3.2.2 martin if (sc->link_active == 0) {
2553 1.3.2.2 martin igc_get_speed_and_duplex(hw, &sc->link_speed,
2554 1.3.2.2 martin &sc->link_duplex);
2555 1.3.2.2 martin sc->link_active = 1;
2556 1.3.2.2 martin ifp->if_baudrate = IF_Mbps(sc->link_speed);
2557 1.3.2.2 martin if_link_state_change(ifp, LINK_STATE_UP);
2558 1.3.2.2 martin }
2559 1.3.2.2 martin } else {
2560 1.3.2.2 martin if (sc->link_active == 1) {
2561 1.3.2.2 martin ifp->if_baudrate = sc->link_speed = 0;
2562 1.3.2.2 martin sc->link_duplex = 0;
2563 1.3.2.2 martin sc->link_active = 0;
2564 1.3.2.2 martin if_link_state_change(ifp, LINK_STATE_DOWN);
2565 1.3.2.2 martin }
2566 1.3.2.2 martin }
2567 1.3.2.2 martin }
2568 1.3.2.2 martin
2569 1.3.2.2 martin /*********************************************************************
2570 1.3.2.2 martin *
2571 1.3.2.2 martin * Get a buffer from system mbuf buffer pool.
2572 1.3.2.2 martin *
2573 1.3.2.2 martin **********************************************************************/
2574 1.3.2.2 martin static int
2575 1.3.2.2 martin igc_get_buf(struct rx_ring *rxr, int id, bool strict)
2576 1.3.2.2 martin {
2577 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
2578 1.3.2.2 martin struct igc_queue *q = rxr->rxr_igcq;
2579 1.3.2.2 martin struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
2580 1.3.2.2 martin bus_dmamap_t map = rxbuf->map;
2581 1.3.2.2 martin struct mbuf *m;
2582 1.3.2.2 martin int error;
2583 1.3.2.2 martin
2584 1.3.2.2 martin if (__predict_false(rxbuf->buf)) {
2585 1.3.2.2 martin if (strict) {
2586 1.3.2.2 martin DPRINTF(RX, "slot %d already has an mbuf\n", id);
2587 1.3.2.2 martin return EINVAL;
2588 1.3.2.2 martin }
2589 1.3.2.2 martin return 0;
2590 1.3.2.2 martin }
2591 1.3.2.2 martin
2592 1.3.2.2 martin MGETHDR(m, M_DONTWAIT, MT_DATA);
2593 1.3.2.2 martin if (__predict_false(m == NULL)) {
2594 1.3.2.2 martin enobuf:
2595 1.3.2.2 martin IGC_QUEUE_EVENT(q, rx_no_mbuf, 1);
2596 1.3.2.2 martin return ENOBUFS;
2597 1.3.2.2 martin }
2598 1.3.2.2 martin
2599 1.3.2.2 martin MCLGET(m, M_DONTWAIT);
2600 1.3.2.2 martin if (__predict_false(!(m->m_flags & M_EXT))) {
2601 1.3.2.2 martin m_freem(m);
2602 1.3.2.2 martin goto enobuf;
2603 1.3.2.2 martin }
2604 1.3.2.2 martin
2605 1.3.2.2 martin m->m_len = m->m_pkthdr.len = sc->rx_mbuf_sz;
2606 1.3.2.2 martin
2607 1.3.2.2 martin error = bus_dmamap_load_mbuf(rxr->rxdma.dma_tag, map, m,
2608 1.3.2.2 martin BUS_DMA_READ | BUS_DMA_NOWAIT);
2609 1.3.2.2 martin if (error) {
2610 1.3.2.2 martin m_freem(m);
2611 1.3.2.2 martin return error;
2612 1.3.2.2 martin }
2613 1.3.2.2 martin
2614 1.3.2.2 martin bus_dmamap_sync(rxr->rxdma.dma_tag, map, 0,
2615 1.3.2.2 martin map->dm_mapsize, BUS_DMASYNC_PREREAD);
2616 1.3.2.2 martin rxbuf->buf = m;
2617 1.3.2.2 martin
2618 1.3.2.2 martin union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
2619 1.3.2.2 martin igc_rxdesc_sync(rxr, id, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
2620 1.3.2.2 martin rxdesc->read.pkt_addr = htole64(map->dm_segs[0].ds_addr);
2621 1.3.2.2 martin igc_rxdesc_sync(rxr, id, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2622 1.3.2.2 martin
2623 1.3.2.2 martin return 0;
2624 1.3.2.2 martin }
2625 1.3.2.2 martin
2626 1.3.2.2 martin static void
2627 1.3.2.2 martin igc_configure_queues(struct igc_softc *sc)
2628 1.3.2.2 martin {
2629 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
2630 1.3.2.2 martin uint32_t ivar;
2631 1.3.2.2 martin
2632 1.3.2.2 martin /* First turn on RSS capability */
2633 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME |
2634 1.3.2.2 martin IGC_GPIE_PBA | IGC_GPIE_NSICR);
2635 1.3.2.2 martin
2636 1.3.2.2 martin /* Set the starting interrupt rate */
2637 1.3.2.2 martin uint32_t newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;
2638 1.3.2.2 martin newitr |= IGC_EITR_CNT_IGNR;
2639 1.3.2.2 martin
2640 1.3.2.2 martin /* Turn on MSI-X */
2641 1.3.2.2 martin uint32_t newmask = 0;
2642 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2643 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
2644 1.3.2.2 martin
2645 1.3.2.2 martin /* RX entries */
2646 1.3.2.2 martin igc_set_queues(sc, iq, q->msix, 0);
2647 1.3.2.2 martin /* TX entries */
2648 1.3.2.2 martin igc_set_queues(sc, iq, q->msix, 1);
2649 1.3.2.2 martin newmask |= q->eims;
2650 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_EITR(q->msix), newitr);
2651 1.3.2.2 martin }
2652 1.3.2.2 martin sc->msix_queuesmask = newmask;
2653 1.3.2.2 martin
2654 1.3.2.2 martin #if 1
2655 1.3.2.2 martin ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 0);
2656 1.3.2.2 martin DPRINTF(CFG, "ivar(0)=0x%x\n", ivar);
2657 1.3.2.2 martin ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 1);
2658 1.3.2.2 martin DPRINTF(CFG, "ivar(1)=0x%x\n", ivar);
2659 1.3.2.2 martin #endif
2660 1.3.2.2 martin
2661 1.3.2.2 martin /* And for the link interrupt */
2662 1.3.2.2 martin ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
2663 1.3.2.2 martin sc->msix_linkmask = 1 << sc->linkvec;
2664 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
2665 1.3.2.2 martin }
2666 1.3.2.2 martin
2667 1.3.2.2 martin static void
2668 1.3.2.2 martin igc_set_queues(struct igc_softc *sc, uint32_t entry, uint32_t vector, int type)
2669 1.3.2.2 martin {
2670 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
2671 1.3.2.2 martin const uint32_t index = entry >> 1;
2672 1.3.2.2 martin uint32_t ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
2673 1.3.2.2 martin
2674 1.3.2.2 martin if (type) {
2675 1.3.2.2 martin if (entry & 1) {
2676 1.3.2.2 martin ivar &= 0x00FFFFFF;
2677 1.3.2.2 martin ivar |= (vector | IGC_IVAR_VALID) << 24;
2678 1.3.2.2 martin } else {
2679 1.3.2.2 martin ivar &= 0xFFFF00FF;
2680 1.3.2.2 martin ivar |= (vector | IGC_IVAR_VALID) << 8;
2681 1.3.2.2 martin }
2682 1.3.2.2 martin } else {
2683 1.3.2.2 martin if (entry & 1) {
2684 1.3.2.2 martin ivar &= 0xFF00FFFF;
2685 1.3.2.2 martin ivar |= (vector | IGC_IVAR_VALID) << 16;
2686 1.3.2.2 martin } else {
2687 1.3.2.2 martin ivar &= 0xFFFFFF00;
2688 1.3.2.2 martin ivar |= vector | IGC_IVAR_VALID;
2689 1.3.2.2 martin }
2690 1.3.2.2 martin }
2691 1.3.2.2 martin IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
2692 1.3.2.2 martin }
2693 1.3.2.2 martin
2694 1.3.2.2 martin static void
2695 1.3.2.2 martin igc_enable_queue(struct igc_softc *sc, uint32_t eims)
2696 1.3.2.2 martin {
2697 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_EIMS, eims);
2698 1.3.2.2 martin }
2699 1.3.2.2 martin
2700 1.3.2.2 martin static void
2701 1.3.2.2 martin igc_enable_intr(struct igc_softc *sc)
2702 1.3.2.2 martin {
2703 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
2704 1.3.2.2 martin
2705 1.3.2.2 martin if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
2706 1.3.2.2 martin const uint32_t mask = sc->msix_queuesmask | sc->msix_linkmask;
2707 1.3.2.2 martin
2708 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_EIAC, mask);
2709 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_EIAM, mask);
2710 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_EIMS, mask);
2711 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
2712 1.3.2.2 martin } else {
2713 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_IMS, IMS_ENABLE_MASK);
2714 1.3.2.2 martin }
2715 1.3.2.2 martin IGC_WRITE_FLUSH(hw);
2716 1.3.2.2 martin }
2717 1.3.2.2 martin
2718 1.3.2.2 martin static void
2719 1.3.2.2 martin igc_disable_intr(struct igc_softc *sc)
2720 1.3.2.2 martin {
2721 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
2722 1.3.2.2 martin
2723 1.3.2.2 martin if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
2724 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
2725 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_EIAC, 0);
2726 1.3.2.2 martin }
2727 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
2728 1.3.2.2 martin IGC_WRITE_FLUSH(hw);
2729 1.3.2.2 martin }
2730 1.3.2.2 martin
2731 1.3.2.2 martin static int
2732 1.3.2.2 martin igc_intr_link(void *arg)
2733 1.3.2.2 martin {
2734 1.3.2.2 martin struct igc_softc *sc = (struct igc_softc *)arg;
2735 1.3.2.2 martin const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
2736 1.3.2.2 martin
2737 1.3.2.2 martin IGC_GLOBAL_EVENT(sc, link, 1);
2738 1.3.2.2 martin
2739 1.3.2.2 martin if (reg_icr & IGC_ICR_LSC) {
2740 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
2741 1.3.2.2 martin sc->hw.mac.get_link_status = true;
2742 1.3.2.2 martin igc_update_link_status(sc);
2743 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
2744 1.3.2.2 martin }
2745 1.3.2.2 martin
2746 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
2747 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->msix_linkmask);
2748 1.3.2.2 martin
2749 1.3.2.2 martin return 1;
2750 1.3.2.2 martin }
2751 1.3.2.2 martin
2752 1.3.2.2 martin static int
2753 1.3.2.2 martin igc_intr_queue(void *arg)
2754 1.3.2.2 martin {
2755 1.3.2.2 martin struct igc_queue *iq = arg;
2756 1.3.2.2 martin struct igc_softc *sc = iq->sc;
2757 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
2758 1.3.2.2 martin struct rx_ring *rxr = iq->rxr;
2759 1.3.2.2 martin struct tx_ring *txr = iq->txr;
2760 1.3.2.2 martin const u_int txlimit = sc->sc_tx_intr_process_limit,
2761 1.3.2.2 martin rxlimit = sc->sc_rx_intr_process_limit;
2762 1.3.2.2 martin bool txmore, rxmore;
2763 1.3.2.2 martin
2764 1.3.2.2 martin IGC_QUEUE_EVENT(iq, irqs, 1);
2765 1.3.2.2 martin
2766 1.3.2.2 martin if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
2767 1.3.2.2 martin return 0;
2768 1.3.2.2 martin
2769 1.3.2.2 martin mutex_enter(&txr->txr_lock);
2770 1.3.2.2 martin txmore = igc_txeof(txr, txlimit);
2771 1.3.2.2 martin mutex_exit(&txr->txr_lock);
2772 1.3.2.2 martin mutex_enter(&rxr->rxr_lock);
2773 1.3.2.2 martin rxmore = igc_rxeof(rxr, rxlimit);
2774 1.3.2.2 martin mutex_exit(&rxr->rxr_lock);
2775 1.3.2.2 martin
2776 1.3.2.2 martin if (txmore || rxmore) {
2777 1.3.2.2 martin IGC_QUEUE_EVENT(iq, req, 1);
2778 1.3.2.2 martin igc_sched_handle_queue(sc, iq);
2779 1.3.2.2 martin } else {
2780 1.3.2.2 martin igc_enable_queue(sc, iq->eims);
2781 1.3.2.2 martin }
2782 1.3.2.2 martin
2783 1.3.2.2 martin return 1;
2784 1.3.2.2 martin }
2785 1.3.2.2 martin
2786 1.3.2.2 martin static int
2787 1.3.2.2 martin igc_intr(void *arg)
2788 1.3.2.2 martin {
2789 1.3.2.2 martin struct igc_softc *sc = arg;
2790 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
2791 1.3.2.2 martin struct igc_queue *iq = &sc->queues[0];
2792 1.3.2.2 martin struct rx_ring *rxr = iq->rxr;
2793 1.3.2.2 martin struct tx_ring *txr = iq->txr;
2794 1.3.2.2 martin const u_int txlimit = sc->sc_tx_intr_process_limit,
2795 1.3.2.2 martin rxlimit = sc->sc_rx_intr_process_limit;
2796 1.3.2.2 martin bool txmore, rxmore;
2797 1.3.2.2 martin
2798 1.3.2.2 martin if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
2799 1.3.2.2 martin return 0;
2800 1.3.2.2 martin
2801 1.3.2.2 martin const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
2802 1.3.2.2 martin DPRINTF(MISC, "reg_icr=0x%x\n", reg_icr);
2803 1.3.2.2 martin
2804 1.3.2.2 martin /* Definitely not our interrupt. */
2805 1.3.2.2 martin if (reg_icr == 0x0) {
2806 1.3.2.5 martin DPRINTF(MISC, "not for me\n");
2807 1.3.2.2 martin return 0;
2808 1.3.2.2 martin }
2809 1.3.2.2 martin
2810 1.3.2.2 martin IGC_QUEUE_EVENT(iq, irqs, 1);
2811 1.3.2.2 martin
2812 1.3.2.2 martin /* Hot eject? */
2813 1.3.2.2 martin if (__predict_false(reg_icr == 0xffffffff)) {
2814 1.3.2.2 martin DPRINTF(MISC, "hot eject\n");
2815 1.3.2.2 martin return 0;
2816 1.3.2.2 martin }
2817 1.3.2.2 martin
2818 1.3.2.2 martin if (__predict_false(!(reg_icr & IGC_ICR_INT_ASSERTED))) {
2819 1.3.2.2 martin DPRINTF(MISC, "not set IGC_ICR_INT_ASSERTED");
2820 1.3.2.2 martin return 0;
2821 1.3.2.2 martin }
2822 1.3.2.2 martin
2823 1.3.2.2 martin /*
2824 1.3.2.2 martin * Only MSI-X interrupts have one-shot behavior by taking advantage
2825 1.3.2.2 martin * of the EIAC register. Thus, explicitly disable interrupts. This
2826 1.3.2.2 martin * also works around the MSI message reordering errata on certain
2827 1.3.2.2 martin * systems.
2828 1.3.2.2 martin */
2829 1.3.2.2 martin igc_disable_intr(sc);
2830 1.3.2.2 martin
2831 1.3.2.2 martin mutex_enter(&txr->txr_lock);
2832 1.3.2.2 martin txmore = igc_txeof(txr, txlimit);
2833 1.3.2.2 martin mutex_exit(&txr->txr_lock);
2834 1.3.2.2 martin mutex_enter(&rxr->rxr_lock);
2835 1.3.2.2 martin rxmore = igc_rxeof(rxr, rxlimit);
2836 1.3.2.2 martin mutex_exit(&rxr->rxr_lock);
2837 1.3.2.2 martin
2838 1.3.2.2 martin /* Link status change */
2839 1.3.2.2 martin // XXXX FreeBSD checks IGC_ICR_RXSEQ
2840 1.3.2.2 martin if (__predict_false(reg_icr & IGC_ICR_LSC)) {
2841 1.3.2.2 martin IGC_GLOBAL_EVENT(sc, link, 1);
2842 1.3.2.2 martin mutex_enter(&sc->sc_core_lock);
2843 1.3.2.2 martin sc->hw.mac.get_link_status = true;
2844 1.3.2.2 martin igc_update_link_status(sc);
2845 1.3.2.2 martin mutex_exit(&sc->sc_core_lock);
2846 1.3.2.2 martin }
2847 1.3.2.2 martin
2848 1.3.2.2 martin if (txmore || rxmore) {
2849 1.3.2.2 martin IGC_QUEUE_EVENT(iq, req, 1);
2850 1.3.2.2 martin igc_sched_handle_queue(sc, iq);
2851 1.3.2.2 martin } else {
2852 1.3.2.2 martin igc_enable_intr(sc);
2853 1.3.2.2 martin }
2854 1.3.2.2 martin
2855 1.3.2.2 martin return 1;
2856 1.3.2.2 martin }
2857 1.3.2.2 martin
2858 1.3.2.2 martin static void
2859 1.3.2.2 martin igc_handle_queue(void *arg)
2860 1.3.2.2 martin {
2861 1.3.2.2 martin struct igc_queue *iq = arg;
2862 1.3.2.2 martin struct igc_softc *sc = iq->sc;
2863 1.3.2.2 martin struct tx_ring *txr = iq->txr;
2864 1.3.2.2 martin struct rx_ring *rxr = iq->rxr;
2865 1.3.2.2 martin const u_int txlimit = sc->sc_tx_process_limit,
2866 1.3.2.2 martin rxlimit = sc->sc_rx_process_limit;
2867 1.3.2.2 martin bool txmore, rxmore;
2868 1.3.2.2 martin
2869 1.3.2.2 martin IGC_QUEUE_EVENT(iq, handleq, 1);
2870 1.3.2.2 martin
2871 1.3.2.2 martin mutex_enter(&txr->txr_lock);
2872 1.3.2.2 martin txmore = igc_txeof(txr, txlimit);
2873 1.3.2.2 martin /* for ALTQ, dequeue from if_snd */
2874 1.3.2.2 martin if (txr->me == 0) {
2875 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
2876 1.3.2.2 martin
2877 1.3.2.2 martin igc_tx_common_locked(ifp, txr, IGC_TX_START);
2878 1.3.2.2 martin }
2879 1.3.2.2 martin mutex_exit(&txr->txr_lock);
2880 1.3.2.2 martin
2881 1.3.2.2 martin mutex_enter(&rxr->rxr_lock);
2882 1.3.2.2 martin rxmore = igc_rxeof(rxr, rxlimit);
2883 1.3.2.2 martin mutex_exit(&rxr->rxr_lock);
2884 1.3.2.2 martin
2885 1.3.2.2 martin if (txmore || rxmore) {
2886 1.3.2.2 martin igc_sched_handle_queue(sc, iq);
2887 1.3.2.2 martin } else {
2888 1.3.2.2 martin if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
2889 1.3.2.2 martin igc_enable_queue(sc, iq->eims);
2890 1.3.2.2 martin else
2891 1.3.2.2 martin igc_enable_intr(sc);
2892 1.3.2.2 martin }
2893 1.3.2.2 martin }
2894 1.3.2.2 martin
2895 1.3.2.2 martin static void
2896 1.3.2.2 martin igc_handle_queue_work(struct work *wk, void *context)
2897 1.3.2.2 martin {
2898 1.3.2.2 martin struct igc_queue *iq =
2899 1.3.2.2 martin container_of(wk, struct igc_queue, igcq_wq_cookie);
2900 1.3.2.2 martin
2901 1.3.2.2 martin igc_handle_queue(iq);
2902 1.3.2.2 martin }
2903 1.3.2.2 martin
2904 1.3.2.2 martin static void
2905 1.3.2.2 martin igc_sched_handle_queue(struct igc_softc *sc, struct igc_queue *iq)
2906 1.3.2.2 martin {
2907 1.3.2.2 martin
2908 1.3.2.2 martin if (iq->igcq_workqueue) {
2909 1.3.2.2 martin /* XXXRO notyet */
2910 1.3.2.2 martin workqueue_enqueue(sc->sc_queue_wq, &iq->igcq_wq_cookie,
2911 1.3.2.2 martin curcpu());
2912 1.3.2.2 martin } else {
2913 1.3.2.2 martin softint_schedule(iq->igcq_si);
2914 1.3.2.2 martin }
2915 1.3.2.2 martin }
2916 1.3.2.2 martin
2917 1.3.2.2 martin static void
2918 1.3.2.2 martin igc_barrier_handle_queue(struct igc_softc *sc)
2919 1.3.2.2 martin {
2920 1.3.2.2 martin
2921 1.3.2.2 martin if (sc->sc_txrx_workqueue) {
2922 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2923 1.3.2.2 martin struct igc_queue *q = &sc->queues[iq];
2924 1.3.2.2 martin
2925 1.3.2.2 martin workqueue_wait(sc->sc_queue_wq, &q->igcq_wq_cookie);
2926 1.3.2.2 martin }
2927 1.3.2.2 martin } else {
2928 1.3.2.2 martin xc_barrier(0);
2929 1.3.2.2 martin }
2930 1.3.2.2 martin }
2931 1.3.2.2 martin
2932 1.3.2.2 martin /*********************************************************************
2933 1.3.2.2 martin *
2934 1.3.2.2 martin * Allocate memory for tx_buffer structures. The tx_buffer stores all
2935 1.3.2.2 martin * the information needed to transmit a packet on the wire.
2936 1.3.2.2 martin *
2937 1.3.2.2 martin **********************************************************************/
2938 1.3.2.2 martin static int
2939 1.3.2.2 martin igc_allocate_transmit_buffers(struct tx_ring *txr)
2940 1.3.2.2 martin {
2941 1.3.2.2 martin struct igc_softc *sc = txr->sc;
2942 1.3.2.2 martin int error;
2943 1.3.2.2 martin
2944 1.3.2.2 martin txr->tx_buffers =
2945 1.3.2.2 martin kmem_zalloc(sc->num_tx_desc * sizeof(struct igc_tx_buf), KM_SLEEP);
2946 1.3.2.2 martin txr->txtag = txr->txdma.dma_tag;
2947 1.3.2.2 martin
2948 1.3.2.2 martin /* Create the descriptor buffer dma maps. */
2949 1.3.2.2 martin for (int id = 0; id < sc->num_tx_desc; id++) {
2950 1.3.2.2 martin struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
2951 1.3.2.2 martin
2952 1.3.2.2 martin error = bus_dmamap_create(txr->txdma.dma_tag,
2953 1.3.2.2 martin round_page(IGC_TSO_SIZE + sizeof(struct ether_vlan_header)),
2954 1.3.2.2 martin IGC_MAX_SCATTER, PAGE_SIZE, 0, BUS_DMA_NOWAIT, &txbuf->map);
2955 1.3.2.2 martin if (error != 0) {
2956 1.3.2.2 martin aprint_error_dev(sc->sc_dev,
2957 1.3.2.2 martin "unable to create TX DMA map\n");
2958 1.3.2.2 martin goto fail;
2959 1.3.2.2 martin }
2960 1.3.2.2 martin
2961 1.3.2.2 martin txbuf->eop_index = -1;
2962 1.3.2.2 martin }
2963 1.3.2.2 martin
2964 1.3.2.2 martin return 0;
2965 1.3.2.2 martin fail:
2966 1.3.2.2 martin return error;
2967 1.3.2.2 martin }
2968 1.3.2.2 martin
2969 1.3.2.2 martin
2970 1.3.2.2 martin /*********************************************************************
2971 1.3.2.2 martin *
2972 1.3.2.2 martin * Allocate and initialize transmit structures.
2973 1.3.2.2 martin *
2974 1.3.2.2 martin **********************************************************************/
2975 1.3.2.2 martin static int
2976 1.3.2.2 martin igc_setup_transmit_structures(struct igc_softc *sc)
2977 1.3.2.2 martin {
2978 1.3.2.2 martin
2979 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2980 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[iq];
2981 1.3.2.2 martin
2982 1.3.2.2 martin if (igc_setup_transmit_ring(txr))
2983 1.3.2.2 martin goto fail;
2984 1.3.2.2 martin }
2985 1.3.2.2 martin
2986 1.3.2.2 martin return 0;
2987 1.3.2.2 martin fail:
2988 1.3.2.2 martin igc_free_transmit_structures(sc);
2989 1.3.2.2 martin return ENOBUFS;
2990 1.3.2.2 martin }
2991 1.3.2.2 martin
2992 1.3.2.2 martin /*********************************************************************
2993 1.3.2.2 martin *
2994 1.3.2.2 martin * Initialize a transmit ring.
2995 1.3.2.2 martin *
2996 1.3.2.2 martin **********************************************************************/
2997 1.3.2.2 martin static int
2998 1.3.2.2 martin igc_setup_transmit_ring(struct tx_ring *txr)
2999 1.3.2.2 martin {
3000 1.3.2.2 martin struct igc_softc *sc = txr->sc;
3001 1.3.2.2 martin
3002 1.3.2.2 martin /* Now allocate transmit buffers for the ring. */
3003 1.3.2.2 martin if (igc_allocate_transmit_buffers(txr))
3004 1.3.2.2 martin return ENOMEM;
3005 1.3.2.2 martin
3006 1.3.2.2 martin /* Clear the old ring contents */
3007 1.3.2.2 martin memset(txr->tx_base, 0,
3008 1.3.2.2 martin sizeof(union igc_adv_tx_desc) * sc->num_tx_desc);
3009 1.3.2.2 martin
3010 1.3.2.2 martin /* Reset indices. */
3011 1.3.2.2 martin txr->next_avail_desc = 0;
3012 1.3.2.2 martin txr->next_to_clean = 0;
3013 1.3.2.2 martin
3014 1.3.2.2 martin bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
3015 1.3.2.2 martin txr->txdma.dma_map->dm_mapsize,
3016 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3017 1.3.2.2 martin
3018 1.3.2.2 martin txr->txr_interq = pcq_create(sc->num_tx_desc, KM_SLEEP);
3019 1.3.2.2 martin
3020 1.3.2.2 martin mutex_init(&txr->txr_lock, MUTEX_DEFAULT, IPL_NET);
3021 1.3.2.2 martin
3022 1.3.2.2 martin return 0;
3023 1.3.2.2 martin }
3024 1.3.2.2 martin
3025 1.3.2.2 martin /*********************************************************************
3026 1.3.2.2 martin *
3027 1.3.2.2 martin * Enable transmit unit.
3028 1.3.2.2 martin *
3029 1.3.2.2 martin **********************************************************************/
3030 1.3.2.2 martin static void
3031 1.3.2.2 martin igc_initialize_transmit_unit(struct igc_softc *sc)
3032 1.3.2.2 martin {
3033 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
3034 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
3035 1.3.2.2 martin
3036 1.3.2.2 martin /* Setup the Base and Length of the TX descriptor ring. */
3037 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3038 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[iq];
3039 1.3.2.2 martin const uint64_t bus_addr =
3040 1.3.2.2 martin txr->txdma.dma_map->dm_segs[0].ds_addr;
3041 1.3.2.2 martin
3042 1.3.2.2 martin /* Base and len of TX ring */
3043 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_TDLEN(iq),
3044 1.3.2.2 martin sc->num_tx_desc * sizeof(union igc_adv_tx_desc));
3045 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_TDBAH(iq), (uint32_t)(bus_addr >> 32));
3046 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_TDBAL(iq), (uint32_t)bus_addr);
3047 1.3.2.2 martin
3048 1.3.2.2 martin /* Init the HEAD/TAIL indices */
3049 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_TDT(iq), 0 /* XXX txr->next_avail_desc */);
3050 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_TDH(iq), 0);
3051 1.3.2.2 martin
3052 1.3.2.2 martin txr->watchdog_timer = 0;
3053 1.3.2.2 martin
3054 1.3.2.2 martin uint32_t txdctl = 0; /* Clear txdctl */
3055 1.3.2.2 martin txdctl |= 0x1f; /* PTHRESH */
3056 1.3.2.2 martin txdctl |= 1 << 8; /* HTHRESH */
3057 1.3.2.2 martin txdctl |= 1 << 16; /* WTHRESH */
3058 1.3.2.2 martin txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3059 1.3.2.2 martin txdctl |= IGC_TXDCTL_GRAN;
3060 1.3.2.2 martin txdctl |= 1 << 25; /* LWTHRESH */
3061 1.3.2.2 martin
3062 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_TXDCTL(iq), txdctl);
3063 1.3.2.2 martin }
3064 1.3.2.2 martin ifp->if_timer = 0;
3065 1.3.2.2 martin
3066 1.3.2.2 martin /* Program the Transmit Control Register */
3067 1.3.2.2 martin uint32_t tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
3068 1.3.2.2 martin tctl &= ~IGC_TCTL_CT;
3069 1.3.2.2 martin tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
3070 1.3.2.2 martin (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
3071 1.3.2.2 martin
3072 1.3.2.2 martin /* This write will effectively turn on the transmit unit. */
3073 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
3074 1.3.2.2 martin }
3075 1.3.2.2 martin
3076 1.3.2.2 martin /*********************************************************************
3077 1.3.2.2 martin *
3078 1.3.2.2 martin * Free all transmit rings.
3079 1.3.2.2 martin *
3080 1.3.2.2 martin **********************************************************************/
3081 1.3.2.2 martin static void
3082 1.3.2.2 martin igc_free_transmit_structures(struct igc_softc *sc)
3083 1.3.2.2 martin {
3084 1.3.2.2 martin
3085 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3086 1.3.2.2 martin struct tx_ring *txr = &sc->tx_rings[iq];
3087 1.3.2.2 martin
3088 1.3.2.2 martin igc_free_transmit_buffers(txr);
3089 1.3.2.2 martin }
3090 1.3.2.2 martin }
3091 1.3.2.2 martin
3092 1.3.2.2 martin /*********************************************************************
3093 1.3.2.2 martin *
3094 1.3.2.2 martin * Free transmit ring related data structures.
3095 1.3.2.2 martin *
3096 1.3.2.2 martin **********************************************************************/
3097 1.3.2.2 martin static void
3098 1.3.2.2 martin igc_free_transmit_buffers(struct tx_ring *txr)
3099 1.3.2.2 martin {
3100 1.3.2.2 martin struct igc_softc *sc = txr->sc;
3101 1.3.2.2 martin
3102 1.3.2.2 martin if (txr->tx_buffers == NULL)
3103 1.3.2.2 martin return;
3104 1.3.2.2 martin
3105 1.3.2.2 martin igc_withdraw_transmit_packets(txr, true);
3106 1.3.2.2 martin
3107 1.3.2.2 martin kmem_free(txr->tx_buffers,
3108 1.3.2.2 martin sc->num_tx_desc * sizeof(struct igc_tx_buf));
3109 1.3.2.2 martin txr->tx_buffers = NULL;
3110 1.3.2.2 martin txr->txtag = NULL;
3111 1.3.2.2 martin
3112 1.3.2.2 martin pcq_destroy(txr->txr_interq);
3113 1.3.2.2 martin mutex_destroy(&txr->txr_lock);
3114 1.3.2.2 martin }
3115 1.3.2.2 martin
3116 1.3.2.2 martin /*********************************************************************
3117 1.3.2.2 martin *
3118 1.3.2.2 martin * Withdraw transmit packets.
3119 1.3.2.2 martin *
3120 1.3.2.2 martin **********************************************************************/
3121 1.3.2.2 martin static void
3122 1.3.2.2 martin igc_withdraw_transmit_packets(struct tx_ring *txr, bool destroy)
3123 1.3.2.2 martin {
3124 1.3.2.2 martin struct igc_softc *sc = txr->sc;
3125 1.3.2.2 martin struct igc_queue *q = txr->txr_igcq;
3126 1.3.2.2 martin
3127 1.3.2.2 martin mutex_enter(&txr->txr_lock);
3128 1.3.2.2 martin
3129 1.3.2.2 martin for (int id = 0; id < sc->num_tx_desc; id++) {
3130 1.3.2.2 martin union igc_adv_tx_desc *txdesc = &txr->tx_base[id];
3131 1.3.2.2 martin
3132 1.3.2.2 martin igc_txdesc_sync(txr, id,
3133 1.3.2.2 martin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3134 1.3.2.2 martin txdesc->read.buffer_addr = 0;
3135 1.3.2.2 martin txdesc->read.cmd_type_len = 0;
3136 1.3.2.2 martin txdesc->read.olinfo_status = 0;
3137 1.3.2.2 martin igc_txdesc_sync(txr, id,
3138 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3139 1.3.2.2 martin
3140 1.3.2.2 martin struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
3141 1.3.2.2 martin bus_dmamap_t map = txbuf->map;
3142 1.3.2.2 martin
3143 1.3.2.2 martin if (map != NULL && map->dm_nsegs > 0) {
3144 1.3.2.2 martin bus_dmamap_sync(txr->txdma.dma_tag, map,
3145 1.3.2.2 martin 0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3146 1.3.2.2 martin bus_dmamap_unload(txr->txdma.dma_tag, map);
3147 1.3.2.2 martin }
3148 1.3.2.2 martin if (txbuf->m_head != NULL) {
3149 1.3.2.2 martin m_freem(txbuf->m_head);
3150 1.3.2.2 martin txbuf->m_head = NULL;
3151 1.3.2.2 martin }
3152 1.3.2.2 martin if (map != NULL && destroy) {
3153 1.3.2.2 martin bus_dmamap_destroy(txr->txdma.dma_tag, map);
3154 1.3.2.2 martin txbuf->map = NULL;
3155 1.3.2.2 martin }
3156 1.3.2.2 martin txbuf->eop_index = -1;
3157 1.3.2.2 martin
3158 1.3.2.2 martin txr->next_avail_desc = 0;
3159 1.3.2.2 martin txr->next_to_clean = 0;
3160 1.3.2.2 martin }
3161 1.3.2.2 martin
3162 1.3.2.2 martin struct mbuf *m;
3163 1.3.2.2 martin while ((m = pcq_get(txr->txr_interq)) != NULL) {
3164 1.3.2.2 martin IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
3165 1.3.2.2 martin m_freem(m);
3166 1.3.2.2 martin }
3167 1.3.2.2 martin
3168 1.3.2.2 martin mutex_exit(&txr->txr_lock);
3169 1.3.2.2 martin }
3170 1.3.2.2 martin
3171 1.3.2.2 martin
3172 1.3.2.2 martin /*********************************************************************
3173 1.3.2.2 martin *
3174 1.3.2.2 martin * Advanced Context Descriptor setup for VLAN, CSUM or TSO
3175 1.3.2.2 martin *
3176 1.3.2.2 martin **********************************************************************/
3177 1.3.2.2 martin
3178 1.3.2.7 martin static bool
3179 1.3.2.2 martin igc_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
3180 1.3.2.2 martin uint32_t *cmd_type_len, uint32_t *olinfo_status)
3181 1.3.2.2 martin {
3182 1.3.2.2 martin struct ether_vlan_header *evl;
3183 1.3.2.7 martin struct tcphdr *th = NULL /* XXXGCC */;
3184 1.3.2.2 martin uint32_t vlan_macip_lens = 0;
3185 1.3.2.7 martin uint32_t type_tucmd_mlhl = 0;
3186 1.3.2.7 martin uint32_t mss_l4len_idx = 0;
3187 1.3.2.2 martin uint32_t ehlen, iphlen;
3188 1.3.2.2 martin uint16_t ehtype;
3189 1.3.2.2 martin
3190 1.3.2.2 martin const int csum_flags = mp->m_pkthdr.csum_flags;
3191 1.3.2.2 martin const bool v4 = (csum_flags &
3192 1.3.2.7 martin (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TSOv4)) != 0;
3193 1.3.2.7 martin const bool v6 = (csum_flags &
3194 1.3.2.7 martin (M_CSUM_UDPv6 | M_CSUM_TCPv6 | M_CSUM_TSOv6)) != 0;
3195 1.3.2.7 martin const bool tso = (csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
3196 1.3.2.7 martin const bool tcp = tso ||
3197 1.3.2.7 martin (csum_flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0;
3198 1.3.2.7 martin const bool udp = (csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0;
3199 1.3.2.2 martin
3200 1.3.2.2 martin /* Indicate the whole packet as payload when not doing TSO */
3201 1.3.2.7 martin if (!tso) {
3202 1.3.2.7 martin *olinfo_status |= mp->m_pkthdr.len << IGC_ADVTXD_PAYLEN_SHIFT;
3203 1.3.2.7 martin } else {
3204 1.3.2.7 martin /* Set L4 payload length later... */
3205 1.3.2.7 martin }
3206 1.3.2.2 martin
3207 1.3.2.7 martin #if NVLAN > 0
3208 1.3.2.2 martin /*
3209 1.3.2.2 martin * In advanced descriptors the vlan tag must
3210 1.3.2.2 martin * be placed into the context descriptor. Hence
3211 1.3.2.2 martin * we need to make one even if not doing offloads.
3212 1.3.2.2 martin */
3213 1.3.2.2 martin if (vlan_has_tag(mp)) {
3214 1.3.2.2 martin vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
3215 1.3.2.2 martin << IGC_ADVTXD_VLAN_SHIFT;
3216 1.3.2.2 martin } else
3217 1.3.2.2 martin #endif
3218 1.3.2.2 martin if (!v4 && !v6)
3219 1.3.2.7 martin return false;
3220 1.3.2.2 martin
3221 1.3.2.2 martin KASSERT(mp->m_len >= sizeof(struct ether_header));
3222 1.3.2.2 martin evl = mtod(mp, struct ether_vlan_header *);
3223 1.3.2.2 martin if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3224 1.3.2.2 martin KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
3225 1.3.2.2 martin ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3226 1.3.2.2 martin ehtype = evl->evl_proto;
3227 1.3.2.2 martin } else {
3228 1.3.2.2 martin ehlen = ETHER_HDR_LEN;
3229 1.3.2.2 martin ehtype = evl->evl_encap_proto;
3230 1.3.2.2 martin }
3231 1.3.2.2 martin
3232 1.3.2.2 martin switch (ntohs(ehtype)) {
3233 1.3.2.2 martin case ETHERTYPE_IP:
3234 1.3.2.2 martin iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
3235 1.3.2.2 martin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
3236 1.3.2.2 martin
3237 1.3.2.7 martin if ((csum_flags & (M_CSUM_IPv4 | M_CSUM_TSOv4)) != 0)
3238 1.3.2.2 martin *olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
3239 1.3.2.7 martin
3240 1.3.2.7 martin if (!tso)
3241 1.3.2.7 martin break;
3242 1.3.2.7 martin
3243 1.3.2.7 martin struct ip *ip;
3244 1.3.2.7 martin KASSERT(mp->m_len >= ehlen + sizeof(*ip));
3245 1.3.2.7 martin ip = (void *)(mtod(mp, char *) + ehlen);
3246 1.3.2.7 martin ip->ip_len = 0;
3247 1.3.2.7 martin
3248 1.3.2.7 martin KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
3249 1.3.2.7 martin th = (void *)((char *)ip + iphlen);
3250 1.3.2.7 martin th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3251 1.3.2.7 martin ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3252 1.3.2.2 martin break;
3253 1.3.2.2 martin case ETHERTYPE_IPV6:
3254 1.3.2.2 martin iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
3255 1.3.2.2 martin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
3256 1.3.2.7 martin
3257 1.3.2.7 martin if (!tso)
3258 1.3.2.7 martin break;
3259 1.3.2.7 martin
3260 1.3.2.7 martin struct ip6_hdr *ip6;
3261 1.3.2.7 martin KASSERT(mp->m_len >= ehlen + sizeof(*ip6));
3262 1.3.2.7 martin ip6 = (void *)(mtod(mp, char *) + ehlen);
3263 1.3.2.7 martin ip6->ip6_plen = 0;
3264 1.3.2.7 martin
3265 1.3.2.7 martin KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
3266 1.3.2.7 martin th = (void *)((char *)ip6 + iphlen);
3267 1.3.2.7 martin th->th_sum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 0,
3268 1.3.2.7 martin htonl(IPPROTO_TCP));
3269 1.3.2.2 martin break;
3270 1.3.2.2 martin default:
3271 1.3.2.2 martin /*
3272 1.3.2.2 martin * Unknown L3 protocol. Clear L3 header length and proceed for
3273 1.3.2.2 martin * LAN as done by Linux driver.
3274 1.3.2.2 martin */
3275 1.3.2.2 martin KASSERT(!v4 && !v6);
3276 1.3.2.7 martin iphlen = 0;
3277 1.3.2.2 martin break;
3278 1.3.2.2 martin }
3279 1.3.2.2 martin
3280 1.3.2.2 martin if (tcp) {
3281 1.3.2.2 martin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
3282 1.3.2.2 martin *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3283 1.3.2.2 martin } else if (udp) {
3284 1.3.2.2 martin type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
3285 1.3.2.2 martin *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3286 1.3.2.2 martin }
3287 1.3.2.2 martin
3288 1.3.2.7 martin if (tso) {
3289 1.3.2.7 martin const uint32_t tcphlen = th->th_off << 2;
3290 1.3.2.7 martin const uint32_t paylen =
3291 1.3.2.7 martin mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
3292 1.3.2.2 martin
3293 1.3.2.7 martin mss_l4len_idx |= mp->m_pkthdr.segsz << IGC_ADVTXD_MSS_SHIFT;
3294 1.3.2.7 martin mss_l4len_idx |= tcphlen << IGC_ADVTXD_L4LEN_SHIFT;
3295 1.3.2.2 martin
3296 1.3.2.7 martin *cmd_type_len |= IGC_ADVTXD_DCMD_TSE;
3297 1.3.2.2 martin
3298 1.3.2.7 martin *olinfo_status |= paylen << IGC_ADVTXD_PAYLEN_SHIFT;
3299 1.3.2.2 martin }
3300 1.3.2.2 martin
3301 1.3.2.2 martin vlan_macip_lens |= iphlen;
3302 1.3.2.7 martin vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
3303 1.3.2.2 martin
3304 1.3.2.2 martin type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
3305 1.3.2.2 martin
3306 1.3.2.2 martin /* Now ready a context descriptor */
3307 1.3.2.2 martin struct igc_adv_tx_context_desc *txdesc =
3308 1.3.2.2 martin (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
3309 1.3.2.2 martin
3310 1.3.2.2 martin igc_txdesc_sync(txr, prod,
3311 1.3.2.2 martin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3312 1.3.2.7 martin
3313 1.3.2.7 martin /* Now copy bits into descriptor */
3314 1.3.2.2 martin htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
3315 1.3.2.2 martin htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
3316 1.3.2.2 martin htolem32(&txdesc->seqnum_seed, 0);
3317 1.3.2.2 martin htolem32(&txdesc->mss_l4len_idx, mss_l4len_idx);
3318 1.3.2.7 martin
3319 1.3.2.2 martin igc_txdesc_sync(txr, prod,
3320 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3321 1.3.2.2 martin
3322 1.3.2.2 martin return 1;
3323 1.3.2.2 martin }
3324 1.3.2.2 martin
3325 1.3.2.2 martin /*********************************************************************
3326 1.3.2.2 martin *
3327 1.3.2.2 martin * Allocate memory for rx_buffer structures. Since we use one
3328 1.3.2.2 martin * rx_buffer per received packet, the maximum number of rx_buffer's
3329 1.3.2.2 martin * that we'll need is equal to the number of receive descriptors
3330 1.3.2.2 martin * that we've allocated.
3331 1.3.2.2 martin *
3332 1.3.2.2 martin **********************************************************************/
3333 1.3.2.2 martin static int
3334 1.3.2.2 martin igc_allocate_receive_buffers(struct rx_ring *rxr)
3335 1.3.2.2 martin {
3336 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
3337 1.3.2.2 martin int error;
3338 1.3.2.2 martin
3339 1.3.2.2 martin rxr->rx_buffers =
3340 1.3.2.2 martin kmem_zalloc(sc->num_rx_desc * sizeof(struct igc_rx_buf), KM_SLEEP);
3341 1.3.2.2 martin
3342 1.3.2.2 martin for (int id = 0; id < sc->num_rx_desc; id++) {
3343 1.3.2.2 martin struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
3344 1.3.2.2 martin
3345 1.3.2.2 martin error = bus_dmamap_create(rxr->rxdma.dma_tag, MCLBYTES, 1,
3346 1.3.2.2 martin MCLBYTES, 0, BUS_DMA_WAITOK, &rxbuf->map);
3347 1.3.2.2 martin if (error) {
3348 1.3.2.2 martin aprint_error_dev(sc->sc_dev,
3349 1.3.2.2 martin "unable to create RX DMA map\n");
3350 1.3.2.2 martin goto fail;
3351 1.3.2.2 martin }
3352 1.3.2.2 martin }
3353 1.3.2.2 martin bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
3354 1.3.2.2 martin rxr->rxdma.dma_map->dm_mapsize,
3355 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3356 1.3.2.2 martin
3357 1.3.2.2 martin return 0;
3358 1.3.2.2 martin fail:
3359 1.3.2.2 martin return error;
3360 1.3.2.2 martin }
3361 1.3.2.2 martin
3362 1.3.2.2 martin /*********************************************************************
3363 1.3.2.2 martin *
3364 1.3.2.2 martin * Allocate and initialize receive structures.
3365 1.3.2.2 martin *
3366 1.3.2.2 martin **********************************************************************/
3367 1.3.2.2 martin static int
3368 1.3.2.2 martin igc_setup_receive_structures(struct igc_softc *sc)
3369 1.3.2.2 martin {
3370 1.3.2.2 martin
3371 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3372 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
3373 1.3.2.2 martin
3374 1.3.2.2 martin if (igc_setup_receive_ring(rxr))
3375 1.3.2.2 martin goto fail;
3376 1.3.2.2 martin }
3377 1.3.2.2 martin
3378 1.3.2.2 martin return 0;
3379 1.3.2.2 martin fail:
3380 1.3.2.2 martin igc_free_receive_structures(sc);
3381 1.3.2.2 martin return ENOBUFS;
3382 1.3.2.2 martin }
3383 1.3.2.2 martin
3384 1.3.2.2 martin /*********************************************************************
3385 1.3.2.2 martin *
3386 1.3.2.2 martin * Initialize a receive ring and its buffers.
3387 1.3.2.2 martin *
3388 1.3.2.2 martin **********************************************************************/
3389 1.3.2.2 martin static int
3390 1.3.2.2 martin igc_setup_receive_ring(struct rx_ring *rxr)
3391 1.3.2.2 martin {
3392 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
3393 1.3.2.2 martin const int rsize = roundup2(
3394 1.3.2.2 martin sc->num_rx_desc * sizeof(union igc_adv_rx_desc), IGC_DBA_ALIGN);
3395 1.3.2.2 martin
3396 1.3.2.2 martin /* Clear the ring contents. */
3397 1.3.2.2 martin memset(rxr->rx_base, 0, rsize);
3398 1.3.2.2 martin
3399 1.3.2.2 martin if (igc_allocate_receive_buffers(rxr))
3400 1.3.2.2 martin return ENOMEM;
3401 1.3.2.2 martin
3402 1.3.2.2 martin /* Setup our descriptor indices. */
3403 1.3.2.2 martin rxr->next_to_check = 0;
3404 1.3.2.2 martin rxr->last_desc_filled = 0;
3405 1.3.2.2 martin
3406 1.3.2.2 martin mutex_init(&rxr->rxr_lock, MUTEX_DEFAULT, IPL_NET);
3407 1.3.2.2 martin
3408 1.3.2.2 martin return 0;
3409 1.3.2.2 martin }
3410 1.3.2.2 martin
3411 1.3.2.2 martin /*********************************************************************
3412 1.3.2.2 martin *
3413 1.3.2.2 martin * Enable receive unit.
3414 1.3.2.2 martin *
3415 1.3.2.2 martin **********************************************************************/
3416 1.3.2.2 martin static void
3417 1.3.2.2 martin igc_initialize_receive_unit(struct igc_softc *sc)
3418 1.3.2.2 martin {
3419 1.3.2.2 martin struct ifnet *ifp = &sc->sc_ec.ec_if;
3420 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
3421 1.3.2.2 martin uint32_t rctl, rxcsum, srrctl;
3422 1.3.2.2 martin
3423 1.3.2.2 martin DPRINTF(RX, "called\n");
3424 1.3.2.2 martin
3425 1.3.2.2 martin /*
3426 1.3.2.2 martin * Make sure receives are disabled while setting
3427 1.3.2.2 martin * up the descriptor ring.
3428 1.3.2.2 martin */
3429 1.3.2.2 martin rctl = IGC_READ_REG(hw, IGC_RCTL);
3430 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
3431 1.3.2.2 martin
3432 1.3.2.2 martin /* Setup the Receive Control Register */
3433 1.3.2.2 martin rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
3434 1.3.2.2 martin rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
3435 1.3.2.2 martin IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
3436 1.3.2.2 martin
3437 1.3.2.2 martin #if 1
3438 1.3.2.2 martin /* Do not store bad packets */
3439 1.3.2.2 martin rctl &= ~IGC_RCTL_SBP;
3440 1.3.2.2 martin #else
3441 1.3.2.2 martin /* for debug */
3442 1.3.2.2 martin rctl |= IGC_RCTL_SBP;
3443 1.3.2.2 martin #endif
3444 1.3.2.2 martin
3445 1.3.2.2 martin /* Enable Long Packet receive */
3446 1.3.2.2 martin if (sc->hw.mac.max_frame_size > ETHER_MAX_LEN)
3447 1.3.2.2 martin rctl |= IGC_RCTL_LPE;
3448 1.3.2.2 martin else
3449 1.3.2.2 martin rctl &= ~IGC_RCTL_LPE;
3450 1.3.2.2 martin
3451 1.3.2.2 martin /* Strip the CRC */
3452 1.3.2.2 martin rctl |= IGC_RCTL_SECRC;
3453 1.3.2.2 martin
3454 1.3.2.2 martin /*
3455 1.3.2.2 martin * Set the interrupt throttling rate. Value is calculated
3456 1.3.2.2 martin * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3457 1.3.2.2 martin *
3458 1.3.2.2 martin * XXX Sync with Linux, especially for jumbo MTU or TSO.
3459 1.3.2.2 martin * XXX Shouldn't be here?
3460 1.3.2.2 martin */
3461 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
3462 1.3.2.2 martin
3463 1.3.2.2 martin rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
3464 1.3.2.2 martin rxcsum &= ~(IGC_RXCSUM_IPOFL | IGC_RXCSUM_TUOFL | IGC_RXCSUM_PCSD);
3465 1.3.2.2 martin if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3466 1.3.2.2 martin rxcsum |= IGC_RXCSUM_IPOFL;
3467 1.3.2.2 martin if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
3468 1.3.2.2 martin IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
3469 1.3.2.2 martin rxcsum |= IGC_RXCSUM_TUOFL;
3470 1.3.2.2 martin if (sc->sc_nqueues > 1)
3471 1.3.2.2 martin rxcsum |= IGC_RXCSUM_PCSD;
3472 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
3473 1.3.2.2 martin
3474 1.3.2.2 martin if (sc->sc_nqueues > 1)
3475 1.3.2.2 martin igc_initialize_rss_mapping(sc);
3476 1.3.2.2 martin
3477 1.3.2.2 martin srrctl = 0;
3478 1.3.2.2 martin #if 0
3479 1.3.2.2 martin srrctl |= 4096 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
3480 1.3.2.2 martin rctl |= IGC_RCTL_SZ_4096 | IGC_RCTL_BSEX;
3481 1.3.2.2 martin #else
3482 1.3.2.2 martin srrctl |= 2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
3483 1.3.2.2 martin rctl |= IGC_RCTL_SZ_2048;
3484 1.3.2.2 martin #endif
3485 1.3.2.2 martin
3486 1.3.2.2 martin /*
3487 1.3.2.2 martin * If TX flow control is disabled and there's > 1 queue defined,
3488 1.3.2.2 martin * enable DROP.
3489 1.3.2.2 martin *
3490 1.3.2.2 martin * This drops frames rather than hanging the RX MAC for all queues.
3491 1.3.2.2 martin */
3492 1.3.2.2 martin if (sc->sc_nqueues > 1 &&
3493 1.3.2.2 martin (sc->fc == igc_fc_none || sc->fc == igc_fc_rx_pause))
3494 1.3.2.2 martin srrctl |= IGC_SRRCTL_DROP_EN;
3495 1.3.2.2 martin
3496 1.3.2.2 martin /* Setup the Base and Length of the RX descriptor rings. */
3497 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3498 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
3499 1.3.2.2 martin const uint64_t bus_addr =
3500 1.3.2.2 martin rxr->rxdma.dma_map->dm_segs[0].ds_addr;
3501 1.3.2.2 martin
3502 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RXDCTL(iq), 0);
3503 1.3.2.2 martin
3504 1.3.2.2 martin srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
3505 1.3.2.2 martin
3506 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RDLEN(iq),
3507 1.3.2.2 martin sc->num_rx_desc * sizeof(union igc_adv_rx_desc));
3508 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RDBAH(iq), (uint32_t)(bus_addr >> 32));
3509 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RDBAL(iq), (uint32_t)bus_addr);
3510 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_SRRCTL(iq), srrctl);
3511 1.3.2.2 martin
3512 1.3.2.2 martin /* Setup the Head and Tail Descriptor Pointers */
3513 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RDH(iq), 0);
3514 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RDT(iq), 0 /* XXX rxr->last_desc_filled */);
3515 1.3.2.2 martin
3516 1.3.2.2 martin /* Enable this Queue */
3517 1.3.2.2 martin uint32_t rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(iq));
3518 1.3.2.2 martin rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
3519 1.3.2.2 martin rxdctl &= 0xFFF00000;
3520 1.3.2.2 martin rxdctl |= IGC_RX_PTHRESH;
3521 1.3.2.2 martin rxdctl |= IGC_RX_HTHRESH << 8;
3522 1.3.2.2 martin rxdctl |= IGC_RX_WTHRESH << 16;
3523 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RXDCTL(iq), rxdctl);
3524 1.3.2.2 martin }
3525 1.3.2.2 martin
3526 1.3.2.2 martin /* Make sure VLAN Filters are off */
3527 1.3.2.2 martin rctl &= ~IGC_RCTL_VFE;
3528 1.3.2.2 martin
3529 1.3.2.2 martin /* Write out the settings */
3530 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RCTL, rctl);
3531 1.3.2.2 martin }
3532 1.3.2.2 martin
3533 1.3.2.2 martin /*********************************************************************
3534 1.3.2.2 martin *
3535 1.3.2.2 martin * Free all receive rings.
3536 1.3.2.2 martin *
3537 1.3.2.2 martin **********************************************************************/
3538 1.3.2.2 martin static void
3539 1.3.2.2 martin igc_free_receive_structures(struct igc_softc *sc)
3540 1.3.2.2 martin {
3541 1.3.2.2 martin
3542 1.3.2.2 martin for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3543 1.3.2.2 martin struct rx_ring *rxr = &sc->rx_rings[iq];
3544 1.3.2.2 martin
3545 1.3.2.2 martin igc_free_receive_buffers(rxr);
3546 1.3.2.2 martin }
3547 1.3.2.2 martin }
3548 1.3.2.2 martin
3549 1.3.2.2 martin /*********************************************************************
3550 1.3.2.2 martin *
3551 1.3.2.2 martin * Free receive ring data structures
3552 1.3.2.2 martin *
3553 1.3.2.2 martin **********************************************************************/
3554 1.3.2.2 martin static void
3555 1.3.2.2 martin igc_free_receive_buffers(struct rx_ring *rxr)
3556 1.3.2.2 martin {
3557 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
3558 1.3.2.2 martin
3559 1.3.2.2 martin if (rxr->rx_buffers != NULL) {
3560 1.3.2.2 martin for (int id = 0; id < sc->num_rx_desc; id++) {
3561 1.3.2.2 martin struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
3562 1.3.2.2 martin bus_dmamap_t map = rxbuf->map;
3563 1.3.2.2 martin
3564 1.3.2.2 martin if (rxbuf->buf != NULL) {
3565 1.3.2.2 martin bus_dmamap_sync(rxr->rxdma.dma_tag, map,
3566 1.3.2.2 martin 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
3567 1.3.2.2 martin bus_dmamap_unload(rxr->rxdma.dma_tag, map);
3568 1.3.2.2 martin m_freem(rxbuf->buf);
3569 1.3.2.2 martin rxbuf->buf = NULL;
3570 1.3.2.2 martin }
3571 1.3.2.2 martin bus_dmamap_destroy(rxr->rxdma.dma_tag, map);
3572 1.3.2.2 martin rxbuf->map = NULL;
3573 1.3.2.2 martin }
3574 1.3.2.2 martin kmem_free(rxr->rx_buffers,
3575 1.3.2.2 martin sc->num_rx_desc * sizeof(struct igc_rx_buf));
3576 1.3.2.2 martin rxr->rx_buffers = NULL;
3577 1.3.2.2 martin }
3578 1.3.2.2 martin
3579 1.3.2.2 martin mutex_destroy(&rxr->rxr_lock);
3580 1.3.2.2 martin }
3581 1.3.2.2 martin
3582 1.3.2.2 martin /*********************************************************************
3583 1.3.2.2 martin *
3584 1.3.2.2 martin * Clear status registers in all RX descriptors.
3585 1.3.2.2 martin *
3586 1.3.2.2 martin **********************************************************************/
3587 1.3.2.2 martin static void
3588 1.3.2.2 martin igc_clear_receive_status(struct rx_ring *rxr)
3589 1.3.2.2 martin {
3590 1.3.2.2 martin struct igc_softc *sc = rxr->sc;
3591 1.3.2.2 martin
3592 1.3.2.2 martin mutex_enter(&rxr->rxr_lock);
3593 1.3.2.2 martin
3594 1.3.2.2 martin for (int id = 0; id < sc->num_rx_desc; id++) {
3595 1.3.2.2 martin union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
3596 1.3.2.2 martin
3597 1.3.2.2 martin igc_rxdesc_sync(rxr, id,
3598 1.3.2.2 martin BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3599 1.3.2.2 martin rxdesc->wb.upper.status_error = 0;
3600 1.3.2.2 martin igc_rxdesc_sync(rxr, id,
3601 1.3.2.2 martin BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3602 1.3.2.2 martin }
3603 1.3.2.2 martin
3604 1.3.2.2 martin mutex_exit(&rxr->rxr_lock);
3605 1.3.2.2 martin }
3606 1.3.2.2 martin
3607 1.3.2.2 martin /*
3608 1.3.2.2 martin * Initialise the RSS mapping for NICs that support multiple transmit/
3609 1.3.2.2 martin * receive rings.
3610 1.3.2.2 martin */
3611 1.3.2.2 martin static void
3612 1.3.2.2 martin igc_initialize_rss_mapping(struct igc_softc *sc)
3613 1.3.2.2 martin {
3614 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
3615 1.3.2.2 martin
3616 1.3.2.2 martin /*
3617 1.3.2.2 martin * The redirection table controls which destination
3618 1.3.2.2 martin * queue each bucket redirects traffic to.
3619 1.3.2.2 martin * Each DWORD represents four queues, with the LSB
3620 1.3.2.2 martin * being the first queue in the DWORD.
3621 1.3.2.2 martin *
3622 1.3.2.2 martin * This just allocates buckets to queues using round-robin
3623 1.3.2.2 martin * allocation.
3624 1.3.2.2 martin *
3625 1.3.2.2 martin * NOTE: It Just Happens to line up with the default
3626 1.3.2.2 martin * RSS allocation method.
3627 1.3.2.2 martin */
3628 1.3.2.2 martin
3629 1.3.2.2 martin /* Warning FM follows */
3630 1.3.2.2 martin uint32_t reta = 0;
3631 1.3.2.2 martin for (int i = 0; i < 128; i++) {
3632 1.3.2.2 martin const int shift = 0; /* XXXRO */
3633 1.3.2.2 martin int queue_id = i % sc->sc_nqueues;
3634 1.3.2.2 martin /* Adjust if required */
3635 1.3.2.2 martin queue_id <<= shift;
3636 1.3.2.2 martin
3637 1.3.2.2 martin /*
3638 1.3.2.2 martin * The low 8 bits are for hash value (n+0);
3639 1.3.2.2 martin * The next 8 bits are for hash value (n+1), etc.
3640 1.3.2.2 martin */
3641 1.3.2.2 martin reta >>= 8;
3642 1.3.2.2 martin reta |= ((uint32_t)queue_id) << 24;
3643 1.3.2.2 martin if ((i & 3) == 3) {
3644 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
3645 1.3.2.2 martin reta = 0;
3646 1.3.2.2 martin }
3647 1.3.2.2 martin }
3648 1.3.2.2 martin
3649 1.3.2.2 martin /*
3650 1.3.2.2 martin * MRQC: Multiple Receive Queues Command
3651 1.3.2.2 martin * Set queuing to RSS control, number depends on the device.
3652 1.3.2.2 martin */
3653 1.3.2.2 martin
3654 1.3.2.2 martin /* Set up random bits */
3655 1.3.2.2 martin uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3656 1.3.2.2 martin rss_getkey((uint8_t *)rss_key);
3657 1.3.2.2 martin
3658 1.3.2.2 martin /* Now fill our hash function seeds */
3659 1.3.2.2 martin for (int i = 0; i < __arraycount(rss_key); i++)
3660 1.3.2.2 martin IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
3661 1.3.2.2 martin
3662 1.3.2.2 martin /*
3663 1.3.2.2 martin * Configure the RSS fields to hash upon.
3664 1.3.2.2 martin */
3665 1.3.2.2 martin uint32_t mrqc = IGC_MRQC_ENABLE_RSS_4Q;
3666 1.3.2.2 martin mrqc |= IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP;
3667 1.3.2.2 martin mrqc |= IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP;
3668 1.3.2.2 martin mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
3669 1.3.2.2 martin
3670 1.3.2.2 martin IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
3671 1.3.2.2 martin }
3672 1.3.2.2 martin
3673 1.3.2.2 martin /*
3674 1.3.2.2 martin * igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3675 1.3.2.2 martin * For ASF and Pass Through versions of f/w this means
3676 1.3.2.2 martin * that the driver is loaded. For AMT version type f/w
3677 1.3.2.2 martin * this means that the network i/f is open.
3678 1.3.2.2 martin */
3679 1.3.2.2 martin static void
3680 1.3.2.2 martin igc_get_hw_control(struct igc_softc *sc)
3681 1.3.2.2 martin {
3682 1.3.2.2 martin const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
3683 1.3.2.2 martin
3684 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
3685 1.3.2.2 martin }
3686 1.3.2.2 martin
3687 1.3.2.2 martin /*
3688 1.3.2.2 martin * igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3689 1.3.2.2 martin * For ASF and Pass Through versions of f/w this means that
3690 1.3.2.2 martin * the driver is no longer loaded. For AMT versions of the
3691 1.3.2.2 martin * f/w this means that the network i/f is closed.
3692 1.3.2.2 martin */
3693 1.3.2.2 martin static void
3694 1.3.2.2 martin igc_release_hw_control(struct igc_softc *sc)
3695 1.3.2.2 martin {
3696 1.3.2.2 martin const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
3697 1.3.2.2 martin
3698 1.3.2.2 martin IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
3699 1.3.2.2 martin }
3700 1.3.2.2 martin
3701 1.3.2.2 martin static int
3702 1.3.2.2 martin igc_is_valid_ether_addr(uint8_t *addr)
3703 1.3.2.2 martin {
3704 1.3.2.2 martin const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3705 1.3.2.2 martin
3706 1.3.2.2 martin if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3707 1.3.2.2 martin return 0;
3708 1.3.2.2 martin
3709 1.3.2.2 martin return 1;
3710 1.3.2.2 martin }
3711 1.3.2.2 martin
3712 1.3.2.2 martin static void
3713 1.3.2.2 martin igc_print_devinfo(struct igc_softc *sc)
3714 1.3.2.2 martin {
3715 1.3.2.2 martin device_t dev = sc->sc_dev;
3716 1.3.2.2 martin struct igc_hw *hw = &sc->hw;
3717 1.3.2.2 martin struct igc_phy_info *phy = &hw->phy;
3718 1.3.2.2 martin u_int oui, model, rev;
3719 1.3.2.4 martin uint16_t id1, id2, nvm_ver, phy_ver, etk_lo, etk_hi;
3720 1.3.2.2 martin char descr[MII_MAX_DESCR_LEN];
3721 1.3.2.2 martin
3722 1.3.2.2 martin /* Print PHY Info */
3723 1.3.2.2 martin id1 = phy->id >> 16;
3724 1.3.2.2 martin /* The revision field in phy->id is cleard and it's in phy->revision */
3725 1.3.2.2 martin id2 = (phy->id & 0xfff0) | phy->revision;
3726 1.3.2.2 martin oui = MII_OUI(id1, id2);
3727 1.3.2.2 martin model = MII_MODEL(id2);
3728 1.3.2.2 martin rev = MII_REV(id2);
3729 1.3.2.2 martin mii_get_descr(descr, sizeof(descr), oui, model);
3730 1.3.2.2 martin if (descr[0])
3731 1.3.2.4 martin aprint_normal_dev(dev, "PHY: %s, rev. %d",
3732 1.3.2.2 martin descr, rev);
3733 1.3.2.2 martin else
3734 1.3.2.2 martin aprint_normal_dev(dev,
3735 1.3.2.4 martin "PHY OUI 0x%06x, model 0x%04x, rev. %d",
3736 1.3.2.2 martin oui, model, rev);
3737 1.3.2.2 martin
3738 1.3.2.4 martin /* PHY FW version */
3739 1.3.2.4 martin phy->ops.read_reg(hw, 0x1e, &phy_ver);
3740 1.3.2.4 martin aprint_normal(", PHY FW version 0x%04hx\n", phy_ver);
3741 1.3.2.4 martin
3742 1.3.2.4 martin /* NVM version */
3743 1.3.2.2 martin hw->nvm.ops.read(hw, NVM_VERSION, 1, &nvm_ver);
3744 1.3.2.2 martin
3745 1.3.2.4 martin /* EtrackID */
3746 1.3.2.4 martin hw->nvm.ops.read(hw, NVM_ETKID_LO, 1, &etk_lo);
3747 1.3.2.4 martin hw->nvm.ops.read(hw, NVM_ETKID_HI, 1, &etk_hi);
3748 1.3.2.2 martin
3749 1.3.2.4 martin aprint_normal_dev(dev,
3750 1.3.2.4 martin "NVM image version %x.%02x, EtrackID %04hx%04hx\n",
3751 1.3.2.2 martin (nvm_ver & NVM_VERSION_MAJOR) >> NVM_VERSION_MAJOR_SHIFT,
3752 1.3.2.4 martin nvm_ver & NVM_VERSION_MINOR, etk_hi, etk_lo);
3753 1.3.2.2 martin }
3754