Home | History | Annotate | Line # | Download | only in igc
if_igc.c revision 1.9
      1  1.9     skrll /*	$NetBSD: if_igc.c,v 1.9 2023/12/20 18:09:19 skrll Exp $	*/
      2  1.1       rin /*	$OpenBSD: if_igc.c,v 1.13 2023/04/28 10:18:57 bluhm Exp $	*/
      3  1.1       rin /*-
      4  1.1       rin  * SPDX-License-Identifier: BSD-2-Clause
      5  1.1       rin  *
      6  1.1       rin  * Copyright (c) 2016 Nicole Graziano <nicole (at) nextbsd.org>
      7  1.1       rin  * All rights reserved.
      8  1.1       rin  * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
      9  1.1       rin  *
     10  1.1       rin  * Redistribution and use in source and binary forms, with or without
     11  1.1       rin  * modification, are permitted provided that the following conditions
     12  1.1       rin  * are met:
     13  1.1       rin  * 1. Redistributions of source code must retain the above copyright
     14  1.1       rin  *    notice, this list of conditions and the following disclaimer.
     15  1.1       rin  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1       rin  *    notice, this list of conditions and the following disclaimer in the
     17  1.1       rin  *    documentation and/or other materials provided with the distribution.
     18  1.1       rin  *
     19  1.1       rin  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     20  1.1       rin  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  1.1       rin  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  1.1       rin  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  1.1       rin  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  1.1       rin  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  1.1       rin  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  1.1       rin  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  1.1       rin  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  1.1       rin  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  1.1       rin  * SUCH DAMAGE.
     30  1.1       rin  */
     31  1.1       rin 
     32  1.2       rin #include <sys/cdefs.h>
     33  1.9     skrll __KERNEL_RCSID(0, "$NetBSD: if_igc.c,v 1.9 2023/12/20 18:09:19 skrll Exp $");
     34  1.2       rin 
     35  1.2       rin #ifdef _KERNEL_OPT
     36  1.2       rin #include "opt_if_igc.h"
     37  1.2       rin #if 0 /* notyet */
     38  1.1       rin #include "vlan.h"
     39  1.2       rin #endif
     40  1.2       rin #endif
     41  1.1       rin 
     42  1.1       rin #include <sys/param.h>
     43  1.1       rin #include <sys/systm.h>
     44  1.2       rin #include <sys/bus.h>
     45  1.2       rin #include <sys/cpu.h>
     46  1.2       rin #include <sys/device.h>
     47  1.2       rin #include <sys/endian.h>
     48  1.2       rin #include <sys/intr.h>
     49  1.2       rin #include <sys/interrupt.h>
     50  1.2       rin #include <sys/kernel.h>
     51  1.2       rin #include <sys/kmem.h>
     52  1.1       rin #include <sys/mbuf.h>
     53  1.2       rin #include <sys/mutex.h>
     54  1.1       rin #include <sys/socket.h>
     55  1.2       rin #include <sys/workqueue.h>
     56  1.2       rin #include <sys/xcall.h>
     57  1.1       rin 
     58  1.2       rin #include <net/bpf.h>
     59  1.1       rin #include <net/if.h>
     60  1.2       rin #include <net/if_ether.h>
     61  1.1       rin #include <net/if_media.h>
     62  1.2       rin #include <net/if_vlanvar.h>
     63  1.2       rin #include <net/rss_config.h>
     64  1.1       rin 
     65  1.1       rin #include <netinet/in.h>
     66  1.1       rin #include <netinet/ip.h>
     67  1.1       rin #include <netinet/ip6.h>
     68  1.2       rin #include <netinet/tcp.h>
     69  1.1       rin 
     70  1.2       rin #include <dev/pci/pcivar.h>
     71  1.2       rin #include <dev/pci/pcireg.h>
     72  1.2       rin #include <dev/pci/pcidevs.h>
     73  1.2       rin 
     74  1.2       rin #include <dev/pci/igc/if_igc.h>
     75  1.2       rin #include <dev/pci/igc/igc_evcnt.h>
     76  1.2       rin #include <dev/pci/igc/igc_hw.h>
     77  1.2       rin #include <dev/mii/miivar.h>
     78  1.2       rin 
     79  1.2       rin #define IGC_WORKQUEUE_PRI	PRI_SOFTNET
     80  1.2       rin 
     81  1.2       rin #ifndef IGC_RX_INTR_PROCESS_LIMIT_DEFAULT
     82  1.2       rin #define IGC_RX_INTR_PROCESS_LIMIT_DEFAULT	0
     83  1.2       rin #endif
     84  1.2       rin #ifndef IGC_TX_INTR_PROCESS_LIMIT_DEFAULT
     85  1.2       rin #define IGC_TX_INTR_PROCESS_LIMIT_DEFAULT	0
     86  1.1       rin #endif
     87  1.1       rin 
     88  1.2       rin #ifndef IGC_RX_PROCESS_LIMIT_DEFAULT
     89  1.2       rin #define IGC_RX_PROCESS_LIMIT_DEFAULT		256
     90  1.2       rin #endif
     91  1.2       rin #ifndef IGC_TX_PROCESS_LIMIT_DEFAULT
     92  1.2       rin #define IGC_TX_PROCESS_LIMIT_DEFAULT		256
     93  1.2       rin #endif
     94  1.1       rin 
     95  1.2       rin #define	htolem32(p, x)	(*((uint32_t *)(p)) = htole32(x))
     96  1.2       rin #define	htolem64(p, x)	(*((uint64_t *)(p)) = htole64(x))
     97  1.1       rin 
     98  1.2       rin static const struct igc_product {
     99  1.2       rin 	pci_vendor_id_t		igcp_vendor;
    100  1.2       rin 	pci_product_id_t	igcp_product;
    101  1.2       rin 	const char		*igcp_name;
    102  1.2       rin } igc_products[] = {
    103  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_IT,
    104  1.2       rin 	    "Intel(R) Ethernet Controller I225-IT(2)" },
    105  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LM,
    106  1.2       rin 	    "Intel(R) Ethernet Controller I226-LM" },
    107  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_V,
    108  1.2       rin 	    "Intel(R) Ethernet Controller I226-V" },
    109  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_IT,
    110  1.2       rin 	    "Intel(R) Ethernet Controller I226-IT" },
    111  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I221_V,
    112  1.2       rin 	    "Intel(R) Ethernet Controller I221-V" },
    113  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_BLANK_NVM,
    114  1.2       rin 	    "Intel(R) Ethernet Controller I226(blankNVM)" },
    115  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LM,
    116  1.2       rin 	    "Intel(R) Ethernet Controller I225-LM" },
    117  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_V,
    118  1.2       rin 	    "Intel(R) Ethernet Controller I225-V" },
    119  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I220_V,
    120  1.2       rin 	    "Intel(R) Ethernet Controller I220-V" },
    121  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_I,
    122  1.2       rin 	    "Intel(R) Ethernet Controller I225-I" },
    123  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_BLANK_NVM,
    124  1.2       rin 	    "Intel(R) Ethernet Controller I225(blankNVM)" },
    125  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K,
    126  1.2       rin 	    "Intel(R) Ethernet Controller I225-K" },
    127  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K2,
    128  1.2       rin 	    "Intel(R) Ethernet Controller I225-K(2)" },
    129  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_K,
    130  1.2       rin 	    "Intel(R) Ethernet Controller I226-K" },
    131  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LMVP,
    132  1.2       rin 	    "Intel(R) Ethernet Controller I225-LMvP(2)" },
    133  1.2       rin 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LMVP,
    134  1.2       rin 	    "Intel(R) Ethernet Controller I226-LMvP" },
    135  1.2       rin 	{ 0, 0, NULL },
    136  1.1       rin };
    137  1.1       rin 
    138  1.2       rin #define	IGC_DF_CFG	0x1
    139  1.2       rin #define	IGC_DF_TX	0x2
    140  1.2       rin #define	IGC_DF_RX	0x4
    141  1.2       rin #define	IGC_DF_MISC	0x8
    142  1.2       rin 
    143  1.2       rin #ifdef IGC_DEBUG_FLAGS
    144  1.2       rin int igc_debug_flags = IGC_DEBUG_FLAGS;
    145  1.2       rin #else
    146  1.2       rin int igc_debug_flags = 0;
    147  1.2       rin #endif
    148  1.2       rin 
    149  1.2       rin #define	DPRINTF(flag, fmt, args...)		do {			\
    150  1.2       rin 	if (igc_debug_flags & (IGC_DF_ ## flag))			\
    151  1.2       rin 		printf("%s: %d: " fmt, __func__, __LINE__, ##args);	\
    152  1.2       rin     } while (0)
    153  1.2       rin 
    154  1.1       rin /*********************************************************************
    155  1.1       rin  *  Function Prototypes
    156  1.1       rin  *********************************************************************/
    157  1.2       rin static int	igc_match(device_t, cfdata_t, void *);
    158  1.2       rin static void	igc_attach(device_t, device_t, void *);
    159  1.2       rin static int	igc_detach(device_t, int);
    160  1.2       rin 
    161  1.2       rin static void	igc_identify_hardware(struct igc_softc *);
    162  1.2       rin static int	igc_adjust_nqueues(struct igc_softc *);
    163  1.2       rin static int	igc_allocate_pci_resources(struct igc_softc *);
    164  1.2       rin static int	igc_allocate_interrupts(struct igc_softc *);
    165  1.2       rin static int	igc_allocate_queues(struct igc_softc *);
    166  1.2       rin static void	igc_free_pci_resources(struct igc_softc *);
    167  1.2       rin static void	igc_free_interrupts(struct igc_softc *);
    168  1.2       rin static void	igc_free_queues(struct igc_softc *);
    169  1.2       rin static void	igc_reset(struct igc_softc *);
    170  1.2       rin static void	igc_init_dmac(struct igc_softc *, uint32_t);
    171  1.2       rin static int	igc_setup_interrupts(struct igc_softc *);
    172  1.2       rin static void	igc_attach_counters(struct igc_softc *sc);
    173  1.2       rin static void	igc_detach_counters(struct igc_softc *sc);
    174  1.2       rin static void	igc_update_counters(struct igc_softc *sc);
    175  1.2       rin static void	igc_clear_counters(struct igc_softc *sc);
    176  1.2       rin static int	igc_setup_msix(struct igc_softc *);
    177  1.2       rin static int	igc_setup_msi(struct igc_softc *);
    178  1.2       rin static int	igc_setup_intx(struct igc_softc *);
    179  1.2       rin static int	igc_dma_malloc(struct igc_softc *, bus_size_t,
    180  1.2       rin 		    struct igc_dma_alloc *);
    181  1.2       rin static void	igc_dma_free(struct igc_softc *, struct igc_dma_alloc *);
    182  1.2       rin static void	igc_setup_interface(struct igc_softc *);
    183  1.2       rin 
    184  1.2       rin static int	igc_init(struct ifnet *);
    185  1.2       rin static int	igc_init_locked(struct igc_softc *);
    186  1.2       rin static void	igc_start(struct ifnet *);
    187  1.2       rin static int	igc_transmit(struct ifnet *, struct mbuf *);
    188  1.2       rin static void	igc_tx_common_locked(struct ifnet *, struct tx_ring *, int);
    189  1.2       rin static bool	igc_txeof(struct tx_ring *, u_int);
    190  1.2       rin static void	igc_intr_barrier(struct igc_softc *);
    191  1.2       rin static void	igc_stop(struct ifnet *, int);
    192  1.2       rin static void	igc_stop_locked(struct igc_softc *);
    193  1.2       rin static int	igc_ioctl(struct ifnet *, u_long, void *);
    194  1.2       rin #ifdef IF_RXR
    195  1.2       rin static int	igc_rxrinfo(struct igc_softc *, struct if_rxrinfo *);
    196  1.2       rin #endif
    197  1.2       rin static void	igc_rxfill(struct rx_ring *);
    198  1.2       rin static void	igc_rxrefill(struct rx_ring *, int);
    199  1.2       rin static bool	igc_rxeof(struct rx_ring *, u_int);
    200  1.2       rin static int	igc_rx_checksum(struct igc_queue *, uint64_t, uint32_t,
    201  1.2       rin 		    uint32_t);
    202  1.2       rin static void	igc_watchdog(struct ifnet *);
    203  1.2       rin static void	igc_tick(void *);
    204  1.2       rin static void	igc_media_status(struct ifnet *, struct ifmediareq *);
    205  1.2       rin static int	igc_media_change(struct ifnet *);
    206  1.2       rin static int	igc_ifflags_cb(struct ethercom *);
    207  1.2       rin static void	igc_set_filter(struct igc_softc *);
    208  1.2       rin static void	igc_update_link_status(struct igc_softc *);
    209  1.2       rin static int	igc_get_buf(struct rx_ring *, int, bool);
    210  1.2       rin static int	igc_tx_ctx_setup(struct tx_ring *, struct mbuf *, int,
    211  1.2       rin 		    uint32_t *, uint32_t *);
    212  1.2       rin static int	igc_tso_setup(struct tx_ring *, struct mbuf *, int,
    213  1.2       rin 		    uint32_t *, uint32_t *);
    214  1.2       rin 
    215  1.2       rin static void	igc_configure_queues(struct igc_softc *);
    216  1.2       rin static void	igc_set_queues(struct igc_softc *, uint32_t, uint32_t, int);
    217  1.2       rin static void	igc_enable_queue(struct igc_softc *, uint32_t);
    218  1.2       rin static void	igc_enable_intr(struct igc_softc *);
    219  1.2       rin static void	igc_disable_intr(struct igc_softc *);
    220  1.2       rin static int	igc_intr_link(void *);
    221  1.2       rin static int	igc_intr_queue(void *);
    222  1.2       rin static int	igc_intr(void *);
    223  1.2       rin static void	igc_handle_queue(void *);
    224  1.2       rin static void	igc_handle_queue_work(struct work *, void *);
    225  1.2       rin static void	igc_sched_handle_queue(struct igc_softc *, struct igc_queue *);
    226  1.2       rin static void	igc_barrier_handle_queue(struct igc_softc *);
    227  1.2       rin 
    228  1.2       rin static int	igc_allocate_transmit_buffers(struct tx_ring *);
    229  1.2       rin static int	igc_setup_transmit_structures(struct igc_softc *);
    230  1.2       rin static int	igc_setup_transmit_ring(struct tx_ring *);
    231  1.2       rin static void	igc_initialize_transmit_unit(struct igc_softc *);
    232  1.2       rin static void	igc_free_transmit_structures(struct igc_softc *);
    233  1.2       rin static void	igc_free_transmit_buffers(struct tx_ring *);
    234  1.2       rin static void	igc_withdraw_transmit_packets(struct tx_ring *, bool);
    235  1.2       rin static int	igc_allocate_receive_buffers(struct rx_ring *);
    236  1.2       rin static int	igc_setup_receive_structures(struct igc_softc *);
    237  1.2       rin static int	igc_setup_receive_ring(struct rx_ring *);
    238  1.2       rin static void	igc_initialize_receive_unit(struct igc_softc *);
    239  1.2       rin static void	igc_free_receive_structures(struct igc_softc *);
    240  1.2       rin static void	igc_free_receive_buffers(struct rx_ring *);
    241  1.2       rin static void	igc_clear_receive_status(struct rx_ring *);
    242  1.2       rin static void	igc_initialize_rss_mapping(struct igc_softc *);
    243  1.2       rin 
    244  1.2       rin static void	igc_get_hw_control(struct igc_softc *);
    245  1.2       rin static void	igc_release_hw_control(struct igc_softc *);
    246  1.2       rin static int	igc_is_valid_ether_addr(uint8_t *);
    247  1.2       rin static void	igc_print_devinfo(struct igc_softc *);
    248  1.2       rin 
    249  1.2       rin CFATTACH_DECL3_NEW(igc, sizeof(struct igc_softc),
    250  1.2       rin     igc_match, igc_attach, igc_detach, NULL, NULL, NULL, 0);
    251  1.2       rin 
    252  1.2       rin static inline int
    253  1.2       rin igc_txdesc_incr(struct igc_softc *sc, int id)
    254  1.2       rin {
    255  1.2       rin 
    256  1.2       rin 	if (++id == sc->num_tx_desc)
    257  1.2       rin 		id = 0;
    258  1.2       rin 	return id;
    259  1.2       rin }
    260  1.2       rin 
    261  1.2       rin static inline int __unused
    262  1.2       rin igc_txdesc_decr(struct igc_softc *sc, int id)
    263  1.2       rin {
    264  1.2       rin 
    265  1.2       rin 	if (--id < 0)
    266  1.2       rin 		id = sc->num_tx_desc - 1;
    267  1.2       rin 	return id;
    268  1.2       rin }
    269  1.2       rin 
    270  1.2       rin static inline void
    271  1.2       rin igc_txdesc_sync(struct tx_ring *txr, int id, int ops)
    272  1.2       rin {
    273  1.2       rin 
    274  1.2       rin 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
    275  1.2       rin 	    id * sizeof(union igc_adv_tx_desc), sizeof(union igc_adv_tx_desc),
    276  1.2       rin 	    ops);
    277  1.2       rin }
    278  1.1       rin 
    279  1.2       rin static inline int
    280  1.2       rin igc_rxdesc_incr(struct igc_softc *sc, int id)
    281  1.2       rin {
    282  1.2       rin 
    283  1.2       rin 	if (++id == sc->num_rx_desc)
    284  1.2       rin 		id = 0;
    285  1.2       rin 	return id;
    286  1.2       rin }
    287  1.2       rin 
    288  1.2       rin static inline int
    289  1.2       rin igc_rxdesc_decr(struct igc_softc *sc, int id)
    290  1.2       rin {
    291  1.2       rin 
    292  1.2       rin 	if (--id < 0)
    293  1.2       rin 		id = sc->num_rx_desc - 1;
    294  1.2       rin 	return id;
    295  1.2       rin }
    296  1.2       rin 
    297  1.2       rin static inline void
    298  1.2       rin igc_rxdesc_sync(struct rx_ring *rxr, int id, int ops)
    299  1.2       rin {
    300  1.2       rin 
    301  1.2       rin 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
    302  1.2       rin 	    id * sizeof(union igc_adv_rx_desc), sizeof(union igc_adv_rx_desc),
    303  1.2       rin 	    ops);
    304  1.2       rin }
    305  1.1       rin 
    306  1.2       rin static const struct igc_product *
    307  1.2       rin igc_lookup(const struct pci_attach_args *pa)
    308  1.2       rin {
    309  1.2       rin 	const struct igc_product *igcp;
    310  1.1       rin 
    311  1.2       rin 	for (igcp = igc_products; igcp->igcp_name != NULL; igcp++) {
    312  1.2       rin 		if (PCI_VENDOR(pa->pa_id) == igcp->igcp_vendor &&
    313  1.2       rin 		    PCI_PRODUCT(pa->pa_id) == igcp->igcp_product)
    314  1.2       rin 			return igcp;
    315  1.2       rin 	}
    316  1.2       rin 	return NULL;
    317  1.2       rin }
    318  1.1       rin 
    319  1.1       rin /*********************************************************************
    320  1.1       rin  *  Device identification routine
    321  1.1       rin  *
    322  1.1       rin  *  igc_match determines if the driver should be loaded on
    323  1.1       rin  *  adapter based on PCI vendor/device id of the adapter.
    324  1.1       rin  *
    325  1.1       rin  *  return 0 on success, positive on failure
    326  1.1       rin  *********************************************************************/
    327  1.2       rin static int
    328  1.2       rin igc_match(device_t parent, cfdata_t match, void *aux)
    329  1.1       rin {
    330  1.2       rin 	struct pci_attach_args *pa = aux;
    331  1.2       rin 
    332  1.2       rin 	if (igc_lookup(pa) != NULL)
    333  1.2       rin 		return 1;
    334  1.2       rin 
    335  1.2       rin 	return 0;
    336  1.1       rin }
    337  1.1       rin 
    338  1.1       rin /*********************************************************************
    339  1.1       rin  *  Device initialization routine
    340  1.1       rin  *
    341  1.1       rin  *  The attach entry point is called when the driver is being loaded.
    342  1.1       rin  *  This routine identifies the type of hardware, allocates all resources
    343  1.1       rin  *  and initializes the hardware.
    344  1.1       rin  *
    345  1.1       rin  *  return 0 on success, positive on failure
    346  1.1       rin  *********************************************************************/
    347  1.2       rin static void
    348  1.2       rin igc_attach(device_t parent, device_t self, void *aux)
    349  1.1       rin {
    350  1.2       rin 	struct pci_attach_args *pa = aux;
    351  1.2       rin 	struct igc_softc *sc = device_private(self);
    352  1.1       rin 	struct igc_hw *hw = &sc->hw;
    353  1.1       rin 
    354  1.2       rin 	const struct igc_product *igcp = igc_lookup(pa);
    355  1.2       rin 	KASSERT(igcp != NULL);
    356  1.2       rin 
    357  1.2       rin 	sc->sc_dev = self;
    358  1.2       rin 	callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE);
    359  1.2       rin 	callout_setfunc(&sc->sc_tick_ch, igc_tick, sc);
    360  1.2       rin 	sc->sc_core_stopping = false;
    361  1.2       rin 
    362  1.1       rin 	sc->osdep.os_sc = sc;
    363  1.1       rin 	sc->osdep.os_pa = *pa;
    364  1.8       rin #ifndef __aarch64__
    365  1.3       rin 	/*
    366  1.3       rin 	 * XXX PR port-arm/57643
    367  1.3       rin 	 * 64-bit DMA does not work at least for LX2K with 32/64GB memory.
    368  1.3       rin 	 * smmu(4) support may be required.
    369  1.3       rin 	 */
    370  1.8       rin 	if (pci_dma64_available(pa)) {
    371  1.8       rin 		aprint_verbose(", 64-bit DMA");
    372  1.8       rin 		sc->osdep.os_dmat = pa->pa_dmat64;
    373  1.8       rin 	} else
    374  1.3       rin #endif
    375  1.8       rin 	{
    376  1.8       rin 		aprint_verbose(", 32-bit DMA");
    377  1.8       rin 		sc->osdep.os_dmat = pa->pa_dmat;
    378  1.8       rin 	}
    379  1.8       rin 
    380  1.8       rin 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", igcp->igcp_name, 1);
    381  1.1       rin 
    382  1.1       rin 	/* Determine hardware and mac info */
    383  1.1       rin 	igc_identify_hardware(sc);
    384  1.1       rin 
    385  1.1       rin 	sc->num_tx_desc = IGC_DEFAULT_TXD;
    386  1.1       rin 	sc->num_rx_desc = IGC_DEFAULT_RXD;
    387  1.1       rin 
    388  1.1       rin 	 /* Setup PCI resources */
    389  1.2       rin 	if (igc_allocate_pci_resources(sc)) {
    390  1.2       rin 		aprint_error_dev(sc->sc_dev,
    391  1.2       rin 		    "unable to allocate PCI resources\n");
    392  1.2       rin 		goto err_pci;
    393  1.2       rin 	}
    394  1.2       rin 
    395  1.2       rin 	if (igc_allocate_interrupts(sc)) {
    396  1.2       rin 		aprint_error_dev(sc->sc_dev, "unable to allocate interrupts\n");
    397  1.2       rin 		goto err_pci;
    398  1.2       rin 	}
    399  1.1       rin 
    400  1.1       rin 	/* Allocate TX/RX queues */
    401  1.2       rin 	if (igc_allocate_queues(sc)) {
    402  1.2       rin 		aprint_error_dev(sc->sc_dev, "unable to allocate queues\n");
    403  1.2       rin 		goto err_alloc_intr;
    404  1.2       rin 	}
    405  1.1       rin 
    406  1.1       rin 	/* Do shared code initialization */
    407  1.1       rin 	if (igc_setup_init_funcs(hw, true)) {
    408  1.2       rin 		aprint_error_dev(sc->sc_dev, "unable to initialize\n");
    409  1.2       rin 		goto err_alloc_intr;
    410  1.1       rin 	}
    411  1.1       rin 
    412  1.1       rin 	hw->mac.autoneg = DO_AUTO_NEG;
    413  1.1       rin 	hw->phy.autoneg_wait_to_complete = false;
    414  1.1       rin 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
    415  1.1       rin 
    416  1.1       rin 	/* Copper options. */
    417  1.1       rin 	if (hw->phy.media_type == igc_media_type_copper)
    418  1.1       rin 		hw->phy.mdix = AUTO_ALL_MODES;
    419  1.1       rin 
    420  1.1       rin 	/* Set the max frame size. */
    421  1.1       rin 	sc->hw.mac.max_frame_size = 9234;
    422  1.1       rin 
    423  1.1       rin 	/* Allocate multicast array memory. */
    424  1.2       rin 	sc->mta = kmem_alloc(IGC_MTA_LEN, KM_SLEEP);
    425  1.1       rin 
    426  1.1       rin 	/* Check SOL/IDER usage. */
    427  1.2       rin 	if (igc_check_reset_block(hw)) {
    428  1.2       rin 		aprint_error_dev(sc->sc_dev,
    429  1.2       rin 		    "PHY reset is blocked due to SOL/IDER session\n");
    430  1.2       rin 	}
    431  1.1       rin 
    432  1.1       rin 	/* Disable Energy Efficient Ethernet. */
    433  1.1       rin 	sc->hw.dev_spec._i225.eee_disable = true;
    434  1.1       rin 
    435  1.1       rin 	igc_reset_hw(hw);
    436  1.1       rin 
    437  1.1       rin 	/* Make sure we have a good EEPROM before we read from it. */
    438  1.1       rin 	if (igc_validate_nvm_checksum(hw) < 0) {
    439  1.1       rin 		/*
    440  1.1       rin 		 * Some PCI-E parts fail the first check due to
    441  1.1       rin 		 * the link being in sleep state, call it again,
    442  1.1       rin 		 * if it fails a second time its a real issue.
    443  1.1       rin 		 */
    444  1.1       rin 		if (igc_validate_nvm_checksum(hw) < 0) {
    445  1.2       rin 			aprint_error_dev(sc->sc_dev,
    446  1.2       rin 			    "EEPROM checksum invalid\n");
    447  1.1       rin 			goto err_late;
    448  1.1       rin 		}
    449  1.1       rin 	}
    450  1.1       rin 
    451  1.1       rin 	/* Copy the permanent MAC address out of the EEPROM. */
    452  1.1       rin 	if (igc_read_mac_addr(hw) < 0) {
    453  1.2       rin 		aprint_error_dev(sc->sc_dev,
    454  1.2       rin 		    "unable to read MAC address from EEPROM\n");
    455  1.1       rin 		goto err_late;
    456  1.1       rin 	}
    457  1.1       rin 
    458  1.1       rin 	if (!igc_is_valid_ether_addr(hw->mac.addr)) {
    459  1.2       rin 		aprint_error_dev(sc->sc_dev, "invalid MAC address\n");
    460  1.1       rin 		goto err_late;
    461  1.1       rin 	}
    462  1.1       rin 
    463  1.2       rin 	if (igc_setup_interrupts(sc))
    464  1.2       rin 		goto err_late;
    465  1.1       rin 
    466  1.2       rin 	/* Attach counters. */
    467  1.2       rin 	igc_attach_counters(sc);
    468  1.1       rin 
    469  1.1       rin 	/* Setup OS specific network interface. */
    470  1.1       rin 	igc_setup_interface(sc);
    471  1.1       rin 
    472  1.2       rin 	igc_print_devinfo(sc);
    473  1.2       rin 
    474  1.1       rin 	igc_reset(sc);
    475  1.1       rin 	hw->mac.get_link_status = true;
    476  1.1       rin 	igc_update_link_status(sc);
    477  1.1       rin 
    478  1.1       rin 	/* The driver can now take control from firmware. */
    479  1.1       rin 	igc_get_hw_control(sc);
    480  1.1       rin 
    481  1.2       rin 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    482  1.2       rin 	    ether_sprintf(sc->hw.mac.addr));
    483  1.2       rin 
    484  1.2       rin 	if (pmf_device_register(self, NULL, NULL))
    485  1.2       rin 		pmf_class_network_register(self, &sc->sc_ec.ec_if);
    486  1.2       rin 	else
    487  1.2       rin 		aprint_error_dev(self, "couldn't establish power handler\n");
    488  1.2       rin 
    489  1.1       rin 	return;
    490  1.1       rin 
    491  1.2       rin  err_late:
    492  1.1       rin 	igc_release_hw_control(sc);
    493  1.2       rin  err_alloc_intr:
    494  1.2       rin 	igc_free_interrupts(sc);
    495  1.2       rin  err_pci:
    496  1.1       rin 	igc_free_pci_resources(sc);
    497  1.2       rin 	kmem_free(sc->mta, IGC_MTA_LEN);
    498  1.1       rin }
    499  1.1       rin 
    500  1.1       rin /*********************************************************************
    501  1.1       rin  *  Device removal routine
    502  1.1       rin  *
    503  1.1       rin  *  The detach entry point is called when the driver is being removed.
    504  1.1       rin  *  This routine stops the adapter and deallocates all the resources
    505  1.1       rin  *  that were allocated for driver operation.
    506  1.1       rin  *
    507  1.1       rin  *  return 0 on success, positive on failure
    508  1.1       rin  *********************************************************************/
    509  1.2       rin static int
    510  1.2       rin igc_detach(device_t self, int flags)
    511  1.1       rin {
    512  1.2       rin 	struct igc_softc *sc = device_private(self);
    513  1.2       rin 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    514  1.2       rin 
    515  1.2       rin 	mutex_enter(&sc->sc_core_lock);
    516  1.2       rin 	igc_stop_locked(sc);
    517  1.2       rin 	mutex_exit(&sc->sc_core_lock);
    518  1.2       rin 
    519  1.2       rin 	igc_detach_counters(sc);
    520  1.1       rin 
    521  1.2       rin 	igc_free_queues(sc);
    522  1.1       rin 
    523  1.1       rin 	igc_phy_hw_reset(&sc->hw);
    524  1.1       rin 	igc_release_hw_control(sc);
    525  1.1       rin 
    526  1.1       rin 	ether_ifdetach(ifp);
    527  1.1       rin 	if_detach(ifp);
    528  1.2       rin 	ifmedia_fini(&sc->media);
    529  1.1       rin 
    530  1.2       rin 	igc_free_interrupts(sc);
    531  1.1       rin 	igc_free_pci_resources(sc);
    532  1.2       rin 	kmem_free(sc->mta, IGC_MTA_LEN);
    533  1.1       rin 
    534  1.2       rin 	mutex_destroy(&sc->sc_core_lock);
    535  1.1       rin 
    536  1.1       rin 	return 0;
    537  1.1       rin }
    538  1.1       rin 
    539  1.2       rin static void
    540  1.1       rin igc_identify_hardware(struct igc_softc *sc)
    541  1.1       rin {
    542  1.1       rin 	struct igc_osdep *os = &sc->osdep;
    543  1.1       rin 	struct pci_attach_args *pa = &os->os_pa;
    544  1.1       rin 
    545  1.1       rin 	/* Save off the information about this board. */
    546  1.1       rin 	sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
    547  1.1       rin 
    548  1.1       rin 	/* Do shared code init and setup. */
    549  1.1       rin 	if (igc_set_mac_type(&sc->hw)) {
    550  1.2       rin 		aprint_error_dev(sc->sc_dev, "unable to identify hardware\n");
    551  1.1       rin 		return;
    552  1.2       rin 	}
    553  1.1       rin }
    554  1.1       rin 
    555  1.2       rin static int
    556  1.1       rin igc_allocate_pci_resources(struct igc_softc *sc)
    557  1.1       rin {
    558  1.1       rin 	struct igc_osdep *os = &sc->osdep;
    559  1.1       rin 	struct pci_attach_args *pa = &os->os_pa;
    560  1.1       rin 
    561  1.2       rin 	/*
    562  1.2       rin 	 * Enable bus mastering and memory-mapped I/O for sure.
    563  1.2       rin 	 */
    564  1.2       rin 	pcireg_t csr =
    565  1.2       rin 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    566  1.2       rin 	csr |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
    567  1.2       rin 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
    568  1.2       rin 
    569  1.2       rin 	const pcireg_t memtype =
    570  1.2       rin 	    pci_mapreg_type(pa->pa_pc, pa->pa_tag, IGC_PCIREG);
    571  1.1       rin 	if (pci_mapreg_map(pa, IGC_PCIREG, memtype, 0, &os->os_memt,
    572  1.2       rin 	    &os->os_memh, &os->os_membase, &os->os_memsize)) {
    573  1.2       rin 		aprint_error_dev(sc->sc_dev, "unable to map registers\n");
    574  1.1       rin 		return ENXIO;
    575  1.1       rin 	}
    576  1.2       rin 
    577  1.2       rin 	sc->hw.hw_addr = os->os_membase;
    578  1.1       rin 	sc->hw.back = os;
    579  1.1       rin 
    580  1.2       rin 	return 0;
    581  1.2       rin }
    582  1.2       rin 
    583  1.2       rin static int __unused
    584  1.2       rin igc_adjust_nqueues(struct igc_softc *sc)
    585  1.2       rin {
    586  1.2       rin 	struct pci_attach_args *pa = &sc->osdep.os_pa;
    587  1.2       rin 	int nqueues = MIN(IGC_MAX_NQUEUES, ncpu);
    588  1.2       rin 
    589  1.2       rin 	const int nmsix = pci_msix_count(pa->pa_pc, pa->pa_tag);
    590  1.2       rin 	if (nmsix <= 1)
    591  1.2       rin 		nqueues = 1;
    592  1.2       rin 	else if (nmsix < nqueues + 1)
    593  1.2       rin 		nqueues = nmsix - 1;
    594  1.2       rin 
    595  1.2       rin 	return nqueues;
    596  1.2       rin }
    597  1.2       rin 
    598  1.2       rin static int
    599  1.2       rin igc_allocate_interrupts(struct igc_softc *sc)
    600  1.2       rin {
    601  1.2       rin 	struct pci_attach_args *pa = &sc->osdep.os_pa;
    602  1.2       rin 	int error;
    603  1.2       rin 
    604  1.2       rin #ifndef IGC_DISABLE_MSIX
    605  1.2       rin 	const int nqueues = igc_adjust_nqueues(sc);
    606  1.2       rin 	if (nqueues > 1) {
    607  1.2       rin 		sc->sc_nintrs = nqueues + 1;
    608  1.2       rin 		error = pci_msix_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
    609  1.2       rin 		if (!error) {
    610  1.2       rin 			sc->sc_nqueues = nqueues;
    611  1.2       rin 			sc->sc_intr_type = PCI_INTR_TYPE_MSIX;
    612  1.2       rin 			return 0;
    613  1.2       rin 		}
    614  1.2       rin 	}
    615  1.2       rin #endif
    616  1.2       rin 
    617  1.2       rin 	/* fallback to MSI */
    618  1.2       rin 	sc->sc_nintrs = sc->sc_nqueues = 1;
    619  1.2       rin 
    620  1.2       rin #ifndef IGC_DISABLE_MSI
    621  1.2       rin 	error = pci_msi_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
    622  1.2       rin 	if (!error) {
    623  1.2       rin 		sc->sc_intr_type = PCI_INTR_TYPE_MSI;
    624  1.2       rin 		return 0;
    625  1.2       rin 	}
    626  1.2       rin #endif
    627  1.2       rin 
    628  1.2       rin 	/* fallback to INTx */
    629  1.1       rin 
    630  1.2       rin 	error = pci_intx_alloc(pa, &sc->sc_intrs);
    631  1.2       rin 	if (!error) {
    632  1.2       rin 		sc->sc_intr_type = PCI_INTR_TYPE_INTX;
    633  1.2       rin 		return 0;
    634  1.2       rin 	}
    635  1.2       rin 
    636  1.2       rin 	return error;
    637  1.1       rin }
    638  1.1       rin 
    639  1.2       rin static int
    640  1.1       rin igc_allocate_queues(struct igc_softc *sc)
    641  1.1       rin {
    642  1.2       rin 	device_t dev = sc->sc_dev;
    643  1.2       rin 	int rxconf = 0, txconf = 0;
    644  1.1       rin 
    645  1.1       rin 	/* Allocate the top level queue structs. */
    646  1.2       rin 	sc->queues =
    647  1.2       rin 	    kmem_zalloc(sc->sc_nqueues * sizeof(struct igc_queue), KM_SLEEP);
    648  1.1       rin 
    649  1.1       rin 	/* Allocate the TX ring. */
    650  1.2       rin 	sc->tx_rings =
    651  1.2       rin 	    kmem_zalloc(sc->sc_nqueues * sizeof(struct tx_ring), KM_SLEEP);
    652  1.2       rin 
    653  1.1       rin 	/* Allocate the RX ring. */
    654  1.2       rin 	sc->rx_rings =
    655  1.2       rin 	    kmem_zalloc(sc->sc_nqueues * sizeof(struct rx_ring), KM_SLEEP);
    656  1.1       rin 
    657  1.2       rin 	/* Set up the TX queues. */
    658  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++, txconf++) {
    659  1.2       rin 		struct tx_ring *txr = &sc->tx_rings[iq];
    660  1.2       rin 		const int tsize = roundup2(
    661  1.2       rin 		    sc->num_tx_desc * sizeof(union igc_adv_tx_desc),
    662  1.2       rin 		    IGC_DBA_ALIGN);
    663  1.1       rin 
    664  1.1       rin 		txr->sc = sc;
    665  1.2       rin 		txr->txr_igcq = &sc->queues[iq];
    666  1.2       rin 		txr->me = iq;
    667  1.1       rin 		if (igc_dma_malloc(sc, tsize, &txr->txdma)) {
    668  1.2       rin 			aprint_error_dev(dev,
    669  1.2       rin 			    "unable to allocate TX descriptor\n");
    670  1.2       rin 			goto fail;
    671  1.1       rin 		}
    672  1.1       rin 		txr->tx_base = (union igc_adv_tx_desc *)txr->txdma.dma_vaddr;
    673  1.2       rin 		memset(txr->tx_base, 0, tsize);
    674  1.2       rin 	}
    675  1.2       rin 
    676  1.2       rin 	/* Prepare transmit descriptors and buffers. */
    677  1.2       rin 	if (igc_setup_transmit_structures(sc)) {
    678  1.2       rin 		aprint_error_dev(dev, "unable to setup transmit structures\n");
    679  1.2       rin 		goto fail;
    680  1.1       rin 	}
    681  1.1       rin 
    682  1.1       rin 	/* Set up the RX queues. */
    683  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++, rxconf++) {
    684  1.2       rin 		struct rx_ring *rxr = &sc->rx_rings[iq];
    685  1.2       rin 		const int rsize = roundup2(
    686  1.2       rin 		    sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
    687  1.2       rin 		    IGC_DBA_ALIGN);
    688  1.2       rin 
    689  1.1       rin 		rxr->sc = sc;
    690  1.2       rin 		rxr->rxr_igcq = &sc->queues[iq];
    691  1.2       rin 		rxr->me = iq;
    692  1.2       rin #ifdef OPENBSD
    693  1.1       rin 		timeout_set(&rxr->rx_refill, igc_rxrefill, rxr);
    694  1.2       rin #endif
    695  1.1       rin 		if (igc_dma_malloc(sc, rsize, &rxr->rxdma)) {
    696  1.2       rin 			aprint_error_dev(dev,
    697  1.2       rin 			    "unable to allocate RX descriptor\n");
    698  1.2       rin 			goto fail;
    699  1.1       rin 		}
    700  1.1       rin 		rxr->rx_base = (union igc_adv_rx_desc *)rxr->rxdma.dma_vaddr;
    701  1.2       rin 		memset(rxr->rx_base, 0, rsize);
    702  1.2       rin 	}
    703  1.2       rin 
    704  1.2       rin 	sc->rx_mbuf_sz = MCLBYTES;
    705  1.2       rin 	/* Prepare receive descriptors and buffers. */
    706  1.2       rin 	if (igc_setup_receive_structures(sc)) {
    707  1.2       rin 		aprint_error_dev(sc->sc_dev,
    708  1.2       rin 		    "unable to setup receive structures\n");
    709  1.2       rin 		goto fail;
    710  1.1       rin 	}
    711  1.1       rin 
    712  1.1       rin 	/* Set up the queue holding structs. */
    713  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
    714  1.2       rin 		struct igc_queue *q = &sc->queues[iq];
    715  1.2       rin 
    716  1.2       rin 		q->sc = sc;
    717  1.2       rin 		q->txr = &sc->tx_rings[iq];
    718  1.2       rin 		q->rxr = &sc->rx_rings[iq];
    719  1.1       rin 	}
    720  1.1       rin 
    721  1.1       rin 	return 0;
    722  1.1       rin 
    723  1.2       rin  fail:
    724  1.2       rin 	for (struct rx_ring *rxr = sc->rx_rings; rxconf > 0; rxr++, rxconf--)
    725  1.1       rin 		igc_dma_free(sc, &rxr->rxdma);
    726  1.2       rin 	for (struct tx_ring *txr = sc->tx_rings; txconf > 0; txr++, txconf--)
    727  1.1       rin 		igc_dma_free(sc, &txr->txdma);
    728  1.2       rin 
    729  1.2       rin 	kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
    730  1.1       rin 	sc->rx_rings = NULL;
    731  1.2       rin 	kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
    732  1.1       rin 	sc->tx_rings = NULL;
    733  1.2       rin 	kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
    734  1.2       rin 	sc->queues = NULL;
    735  1.2       rin 
    736  1.1       rin 	return ENOMEM;
    737  1.1       rin }
    738  1.1       rin 
    739  1.2       rin static void
    740  1.1       rin igc_free_pci_resources(struct igc_softc *sc)
    741  1.1       rin {
    742  1.1       rin 	struct igc_osdep *os = &sc->osdep;
    743  1.1       rin 
    744  1.1       rin 	if (os->os_membase != 0)
    745  1.1       rin 		bus_space_unmap(os->os_memt, os->os_memh, os->os_memsize);
    746  1.1       rin 	os->os_membase = 0;
    747  1.1       rin }
    748  1.1       rin 
    749  1.2       rin static void
    750  1.2       rin igc_free_interrupts(struct igc_softc *sc)
    751  1.2       rin {
    752  1.2       rin 	struct pci_attach_args *pa = &sc->osdep.os_pa;
    753  1.2       rin 	pci_chipset_tag_t pc = pa->pa_pc;
    754  1.2       rin 
    755  1.2       rin 	for (int i = 0; i < sc->sc_nintrs; i++) {
    756  1.2       rin 		if (sc->sc_ihs[i] != NULL) {
    757  1.2       rin 			pci_intr_disestablish(pc, sc->sc_ihs[i]);
    758  1.2       rin 			sc->sc_ihs[i] = NULL;
    759  1.2       rin 		}
    760  1.2       rin 	}
    761  1.2       rin 	pci_intr_release(pc, sc->sc_intrs, sc->sc_nintrs);
    762  1.2       rin }
    763  1.2       rin 
    764  1.2       rin static void
    765  1.2       rin igc_free_queues(struct igc_softc *sc)
    766  1.2       rin {
    767  1.2       rin 
    768  1.2       rin 	igc_free_receive_structures(sc);
    769  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
    770  1.2       rin 		struct rx_ring *rxr = &sc->rx_rings[iq];
    771  1.2       rin 
    772  1.2       rin 		igc_dma_free(sc, &rxr->rxdma);
    773  1.2       rin 	}
    774  1.2       rin 
    775  1.2       rin 	igc_free_transmit_structures(sc);
    776  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
    777  1.2       rin 		struct tx_ring *txr = &sc->tx_rings[iq];
    778  1.2       rin 
    779  1.2       rin 		igc_dma_free(sc, &txr->txdma);
    780  1.2       rin 	}
    781  1.2       rin 
    782  1.2       rin 	kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
    783  1.2       rin 	kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
    784  1.2       rin 	kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
    785  1.2       rin }
    786  1.2       rin 
    787  1.1       rin /*********************************************************************
    788  1.1       rin  *
    789  1.1       rin  *  Initialize the hardware to a configuration as specified by the
    790  1.1       rin  *  adapter structure.
    791  1.1       rin  *
    792  1.1       rin  **********************************************************************/
    793  1.2       rin static void
    794  1.1       rin igc_reset(struct igc_softc *sc)
    795  1.1       rin {
    796  1.1       rin 	struct igc_hw *hw = &sc->hw;
    797  1.1       rin 
    798  1.1       rin 	/* Let the firmware know the OS is in control */
    799  1.1       rin 	igc_get_hw_control(sc);
    800  1.1       rin 
    801  1.1       rin 	/*
    802  1.1       rin 	 * Packet Buffer Allocation (PBA)
    803  1.1       rin 	 * Writing PBA sets the receive portion of the buffer
    804  1.1       rin 	 * the remainder is used for the transmit buffer.
    805  1.1       rin 	 */
    806  1.2       rin 	const uint32_t pba = IGC_PBA_34K;
    807  1.1       rin 
    808  1.1       rin 	/*
    809  1.1       rin 	 * These parameters control the automatic generation (Tx) and
    810  1.1       rin 	 * response (Rx) to Ethernet PAUSE frames.
    811  1.1       rin 	 * - High water mark should allow for at least two frames to be
    812  1.1       rin 	 *   received after sending an XOFF.
    813  1.1       rin 	 * - Low water mark works best when it is very near the high water mark.
    814  1.1       rin 	 *   This allows the receiver to restart by sending XON when it has
    815  1.1       rin 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
    816  1.1       rin 	 *   restart after one full frame is pulled from the buffer. There
    817  1.1       rin 	 *   could be several smaller frames in the buffer and if so they will
    818  1.1       rin 	 *   not trigger the XON until their total number reduces the buffer
    819  1.1       rin 	 *   by 1500.
    820  1.1       rin 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
    821  1.1       rin 	 */
    822  1.2       rin 	const uint16_t rx_buffer_size = (pba & 0xffff) << 10;
    823  1.2       rin 
    824  1.1       rin 	hw->fc.high_water = rx_buffer_size -
    825  1.1       rin 	    roundup2(sc->hw.mac.max_frame_size, 1024);
    826  1.1       rin 	/* 16-byte granularity */
    827  1.1       rin 	hw->fc.low_water = hw->fc.high_water - 16;
    828  1.1       rin 
    829  1.1       rin 	if (sc->fc) /* locally set flow control value? */
    830  1.1       rin 		hw->fc.requested_mode = sc->fc;
    831  1.1       rin 	else
    832  1.1       rin 		hw->fc.requested_mode = igc_fc_full;
    833  1.1       rin 
    834  1.1       rin 	hw->fc.pause_time = IGC_FC_PAUSE_TIME;
    835  1.1       rin 
    836  1.1       rin 	hw->fc.send_xon = true;
    837  1.1       rin 
    838  1.1       rin 	/* Issue a global reset */
    839  1.1       rin 	igc_reset_hw(hw);
    840  1.1       rin 	IGC_WRITE_REG(hw, IGC_WUC, 0);
    841  1.1       rin 
    842  1.1       rin 	/* and a re-init */
    843  1.1       rin 	if (igc_init_hw(hw) < 0) {
    844  1.2       rin 		aprint_error_dev(sc->sc_dev, "unable to reset hardware\n");
    845  1.1       rin 		return;
    846  1.1       rin 	}
    847  1.1       rin 
    848  1.1       rin 	/* Setup DMA Coalescing */
    849  1.1       rin 	igc_init_dmac(sc, pba);
    850  1.1       rin 
    851  1.1       rin 	IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
    852  1.1       rin 	igc_get_phy_info(hw);
    853  1.1       rin 	igc_check_for_link(hw);
    854  1.1       rin }
    855  1.1       rin 
    856  1.1       rin /*********************************************************************
    857  1.1       rin  *
    858  1.1       rin  *  Initialize the DMA Coalescing feature
    859  1.1       rin  *
    860  1.1       rin  **********************************************************************/
    861  1.2       rin static void
    862  1.1       rin igc_init_dmac(struct igc_softc *sc, uint32_t pba)
    863  1.1       rin {
    864  1.1       rin 	struct igc_hw *hw = &sc->hw;
    865  1.2       rin 	const uint16_t max_frame_size = sc->hw.mac.max_frame_size;
    866  1.2       rin 	uint32_t reg, status;
    867  1.1       rin 
    868  1.1       rin 	if (sc->dmac == 0) { /* Disabling it */
    869  1.2       rin 		reg = ~IGC_DMACR_DMAC_EN;	/* XXXRO */
    870  1.1       rin 		IGC_WRITE_REG(hw, IGC_DMACR, reg);
    871  1.2       rin 		DPRINTF(MISC, "DMA coalescing disabled\n");
    872  1.1       rin 		return;
    873  1.2       rin 	} else {
    874  1.2       rin 		device_printf(sc->sc_dev, "DMA coalescing enabled\n");
    875  1.2       rin 	}
    876  1.1       rin 
    877  1.1       rin 	/* Set starting threshold */
    878  1.1       rin 	IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
    879  1.1       rin 
    880  1.2       rin 	uint16_t hwm = 64 * pba - max_frame_size / 16;
    881  1.1       rin 	if (hwm < 64 * (pba - 6))
    882  1.1       rin 		hwm = 64 * (pba - 6);
    883  1.1       rin 	reg = IGC_READ_REG(hw, IGC_FCRTC);
    884  1.1       rin 	reg &= ~IGC_FCRTC_RTH_COAL_MASK;
    885  1.2       rin 	reg |= (hwm << IGC_FCRTC_RTH_COAL_SHIFT) & IGC_FCRTC_RTH_COAL_MASK;
    886  1.1       rin 	IGC_WRITE_REG(hw, IGC_FCRTC, reg);
    887  1.1       rin 
    888  1.2       rin 	uint32_t dmac = pba - max_frame_size / 512;
    889  1.1       rin 	if (dmac < pba - 10)
    890  1.1       rin 		dmac = pba - 10;
    891  1.1       rin 	reg = IGC_READ_REG(hw, IGC_DMACR);
    892  1.1       rin 	reg &= ~IGC_DMACR_DMACTHR_MASK;
    893  1.2       rin 	reg |= (dmac << IGC_DMACR_DMACTHR_SHIFT) & IGC_DMACR_DMACTHR_MASK;
    894  1.1       rin 
    895  1.1       rin 	/* transition to L0x or L1 if available..*/
    896  1.2       rin 	reg |= IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK;
    897  1.1       rin 
    898  1.1       rin 	/* Check if status is 2.5Gb backplane connection
    899  1.1       rin 	 * before configuration of watchdog timer, which is
    900  1.1       rin 	 * in msec values in 12.8usec intervals
    901  1.1       rin 	 * watchdog timer= msec values in 32usec intervals
    902  1.1       rin 	 * for non 2.5Gb connection
    903  1.1       rin 	 */
    904  1.1       rin 	status = IGC_READ_REG(hw, IGC_STATUS);
    905  1.1       rin 	if ((status & IGC_STATUS_2P5_SKU) &&
    906  1.2       rin 	    !(status & IGC_STATUS_2P5_SKU_OVER))
    907  1.2       rin 		reg |= (sc->dmac * 5) >> 6;
    908  1.1       rin 	else
    909  1.2       rin 		reg |= sc->dmac >> 5;
    910  1.1       rin 
    911  1.1       rin 	IGC_WRITE_REG(hw, IGC_DMACR, reg);
    912  1.1       rin 
    913  1.1       rin 	IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
    914  1.1       rin 
    915  1.1       rin 	/* Set the interval before transition */
    916  1.1       rin 	reg = IGC_READ_REG(hw, IGC_DMCTLX);
    917  1.1       rin 	reg |= IGC_DMCTLX_DCFLUSH_DIS;
    918  1.1       rin 
    919  1.1       rin 	/*
    920  1.2       rin 	 * in 2.5Gb connection, TTLX unit is 0.4 usec
    921  1.2       rin 	 * which is 0x4*2 = 0xA. But delay is still 4 usec
    922  1.2       rin 	 */
    923  1.1       rin 	status = IGC_READ_REG(hw, IGC_STATUS);
    924  1.1       rin 	if ((status & IGC_STATUS_2P5_SKU) &&
    925  1.2       rin 	    !(status & IGC_STATUS_2P5_SKU_OVER))
    926  1.1       rin 		reg |= 0xA;
    927  1.1       rin 	else
    928  1.1       rin 		reg |= 0x4;
    929  1.1       rin 
    930  1.1       rin 	IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
    931  1.1       rin 
    932  1.1       rin 	/* free space in tx packet buffer to wake from DMA coal */
    933  1.2       rin 	IGC_WRITE_REG(hw, IGC_DMCTXTH,
    934  1.2       rin 	    (IGC_TXPBSIZE - (2 * max_frame_size)) >> 6);
    935  1.1       rin 
    936  1.1       rin 	/* make low power state decision controlled by DMA coal */
    937  1.1       rin 	reg = IGC_READ_REG(hw, IGC_PCIEMISC);
    938  1.1       rin 	reg &= ~IGC_PCIEMISC_LX_DECISION;
    939  1.1       rin 	IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
    940  1.1       rin }
    941  1.1       rin 
    942  1.2       rin static int
    943  1.2       rin igc_setup_interrupts(struct igc_softc *sc)
    944  1.2       rin {
    945  1.2       rin 	int error;
    946  1.2       rin 
    947  1.2       rin 	switch (sc->sc_intr_type) {
    948  1.2       rin 	case PCI_INTR_TYPE_MSIX:
    949  1.2       rin 		error = igc_setup_msix(sc);
    950  1.2       rin 		break;
    951  1.2       rin 	case PCI_INTR_TYPE_MSI:
    952  1.2       rin 		error = igc_setup_msi(sc);
    953  1.2       rin 		break;
    954  1.2       rin 	case PCI_INTR_TYPE_INTX:
    955  1.2       rin 		error = igc_setup_intx(sc);
    956  1.2       rin 		break;
    957  1.2       rin 	default:
    958  1.2       rin 		panic("%s: invalid interrupt type: %d",
    959  1.2       rin 		    device_xname(sc->sc_dev), sc->sc_intr_type);
    960  1.2       rin 	}
    961  1.2       rin 
    962  1.2       rin 	return error;
    963  1.2       rin }
    964  1.2       rin 
    965  1.2       rin static void
    966  1.2       rin igc_attach_counters(struct igc_softc *sc)
    967  1.1       rin {
    968  1.2       rin #ifdef IGC_EVENT_COUNTERS
    969  1.2       rin 
    970  1.2       rin 	/* Global counters */
    971  1.2       rin 	sc->sc_global_evcnts = kmem_zalloc(
    972  1.2       rin 	    IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts[0]), KM_SLEEP);
    973  1.2       rin 
    974  1.2       rin 	for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++) {
    975  1.2       rin 		evcnt_attach_dynamic(&sc->sc_global_evcnts[cnt],
    976  1.2       rin 		    igc_global_counters[cnt].type, NULL,
    977  1.2       rin 		    device_xname(sc->sc_dev), igc_global_counters[cnt].name);
    978  1.2       rin 	}
    979  1.2       rin 
    980  1.2       rin 	/* Driver counters */
    981  1.2       rin 	sc->sc_driver_evcnts = kmem_zalloc(
    982  1.2       rin 	    IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts[0]), KM_SLEEP);
    983  1.2       rin 
    984  1.2       rin 	for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
    985  1.2       rin 		evcnt_attach_dynamic(&sc->sc_driver_evcnts[cnt],
    986  1.2       rin 		    igc_driver_counters[cnt].type, NULL,
    987  1.2       rin 		    device_xname(sc->sc_dev), igc_driver_counters[cnt].name);
    988  1.2       rin 	}
    989  1.2       rin 
    990  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
    991  1.2       rin 		struct igc_queue *q = &sc->queues[iq];
    992  1.2       rin 
    993  1.2       rin 		q->igcq_driver_counters = kmem_zalloc(
    994  1.2       rin 		    IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]),
    995  1.2       rin 		    KM_SLEEP);
    996  1.2       rin 	}
    997  1.2       rin 
    998  1.2       rin 	/* Queue counters */
    999  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   1000  1.2       rin 		struct igc_queue *q = &sc->queues[iq];
   1001  1.2       rin 
   1002  1.2       rin 		snprintf(q->igcq_queue_evname, sizeof(q->igcq_queue_evname),
   1003  1.2       rin 		    "%s q%d", device_xname(sc->sc_dev), iq);
   1004  1.2       rin 
   1005  1.2       rin 		q->igcq_queue_evcnts = kmem_zalloc(
   1006  1.2       rin 		    IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]),
   1007  1.2       rin 		    KM_SLEEP);
   1008  1.2       rin 
   1009  1.2       rin 		for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++) {
   1010  1.2       rin 			evcnt_attach_dynamic(&q->igcq_queue_evcnts[cnt],
   1011  1.2       rin 			    igc_queue_counters[cnt].type, NULL,
   1012  1.2       rin 			    q->igcq_queue_evname, igc_queue_counters[cnt].name);
   1013  1.1       rin 		}
   1014  1.2       rin 	}
   1015  1.2       rin 
   1016  1.2       rin 	/* MAC counters */
   1017  1.2       rin 	snprintf(sc->sc_mac_evname, sizeof(sc->sc_mac_evname),
   1018  1.2       rin 	    "%s Mac Statistics", device_xname(sc->sc_dev));
   1019  1.2       rin 
   1020  1.2       rin 	sc->sc_mac_evcnts = kmem_zalloc(
   1021  1.2       rin 	    IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]), KM_SLEEP);
   1022  1.2       rin 
   1023  1.2       rin 	for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
   1024  1.2       rin 		evcnt_attach_dynamic(&sc->sc_mac_evcnts[cnt], EVCNT_TYPE_MISC,
   1025  1.2       rin 		    NULL, sc->sc_mac_evname, igc_mac_counters[cnt].name);
   1026  1.2       rin 	}
   1027  1.2       rin #endif
   1028  1.2       rin }
   1029  1.2       rin 
   1030  1.2       rin static void
   1031  1.2       rin igc_detach_counters(struct igc_softc *sc)
   1032  1.2       rin {
   1033  1.2       rin #ifdef IGC_EVENT_COUNTERS
   1034  1.2       rin 
   1035  1.2       rin 	/* Global counters */
   1036  1.2       rin 	for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
   1037  1.2       rin 		evcnt_detach(&sc->sc_global_evcnts[cnt]);
   1038  1.2       rin 
   1039  1.2       rin 	kmem_free(sc->sc_global_evcnts,
   1040  1.2       rin 	    IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts));
   1041  1.2       rin 
   1042  1.2       rin 	/* Driver counters */
   1043  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   1044  1.2       rin 		struct igc_queue *q = &sc->queues[iq];
   1045  1.2       rin 
   1046  1.2       rin 		kmem_free(q->igcq_driver_counters,
   1047  1.2       rin 		    IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]));
   1048  1.2       rin 	}
   1049  1.2       rin 
   1050  1.2       rin 	for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
   1051  1.2       rin 		evcnt_detach(&sc->sc_driver_evcnts[cnt]);
   1052  1.2       rin 
   1053  1.2       rin 	kmem_free(sc->sc_driver_evcnts,
   1054  1.2       rin 	    IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts));
   1055  1.2       rin 
   1056  1.2       rin 	/* Queue counters */
   1057  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   1058  1.2       rin 		struct igc_queue *q = &sc->queues[iq];
   1059  1.2       rin 
   1060  1.2       rin 		for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
   1061  1.2       rin 			evcnt_detach(&q->igcq_queue_evcnts[cnt]);
   1062  1.2       rin 
   1063  1.2       rin 		kmem_free(q->igcq_queue_evcnts,
   1064  1.2       rin 		    IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]));
   1065  1.2       rin 	}
   1066  1.2       rin 
   1067  1.2       rin 	/* MAC statistics */
   1068  1.2       rin 	for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++)
   1069  1.2       rin 		evcnt_detach(&sc->sc_mac_evcnts[cnt]);
   1070  1.2       rin 
   1071  1.2       rin 	kmem_free(sc->sc_mac_evcnts,
   1072  1.2       rin 	    IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]));
   1073  1.2       rin #endif
   1074  1.2       rin }
   1075  1.2       rin 
   1076  1.2       rin /*
   1077  1.2       rin  * XXX
   1078  1.2       rin  * FreeBSD uses 4-byte-wise read for 64-bit counters, while Linux just
   1079  1.2       rin  * drops hi words.
   1080  1.2       rin  */
   1081  1.2       rin static inline uint64_t __unused
   1082  1.2       rin igc_read_mac_counter(struct igc_hw *hw, bus_size_t reg, bool is64)
   1083  1.2       rin {
   1084  1.2       rin 	uint64_t val;
   1085  1.2       rin 
   1086  1.2       rin 	val = IGC_READ_REG(hw, reg);
   1087  1.2       rin 	if (is64)
   1088  1.2       rin 		val += ((uint64_t)IGC_READ_REG(hw, reg + 4)) << 32;
   1089  1.2       rin 	return val;
   1090  1.2       rin }
   1091  1.2       rin 
   1092  1.2       rin static void
   1093  1.2       rin igc_update_counters(struct igc_softc *sc)
   1094  1.2       rin {
   1095  1.2       rin #ifdef IGC_EVENT_COUNTERS
   1096  1.2       rin 
   1097  1.2       rin 	/* Global counters: nop */
   1098  1.2       rin 
   1099  1.2       rin 	/* Driver counters */
   1100  1.2       rin 	uint64_t sum[IGC_DRIVER_COUNTERS];
   1101  1.1       rin 
   1102  1.2       rin 	memset(sum, 0, sizeof(sum));
   1103  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   1104  1.2       rin 		struct igc_queue *q = &sc->queues[iq];
   1105  1.2       rin 
   1106  1.2       rin 		for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
   1107  1.2       rin 			sum[cnt] += IGC_QUEUE_DRIVER_COUNTER_VAL(q, cnt);
   1108  1.2       rin 			IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
   1109  1.1       rin 		}
   1110  1.2       rin 	}
   1111  1.2       rin 
   1112  1.2       rin 	for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
   1113  1.2       rin 		IGC_DRIVER_COUNTER_ADD(sc, cnt, sum[cnt]);
   1114  1.2       rin 
   1115  1.2       rin 	/* Queue counters: nop */
   1116  1.1       rin 
   1117  1.2       rin 	/* Mac statistics */
   1118  1.2       rin 	struct igc_hw *hw = &sc->hw;
   1119  1.2       rin 
   1120  1.2       rin 	for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
   1121  1.2       rin 		IGC_MAC_COUNTER_ADD(sc, cnt, igc_read_mac_counter(hw,
   1122  1.2       rin 		    igc_mac_counters[cnt].reg, igc_mac_counters[cnt].is64));
   1123  1.2       rin 	}
   1124  1.2       rin #endif
   1125  1.2       rin }
   1126  1.2       rin 
   1127  1.2       rin static void
   1128  1.2       rin igc_clear_counters(struct igc_softc *sc)
   1129  1.2       rin {
   1130  1.2       rin #ifdef IGC_EVENT_COUNTERS
   1131  1.2       rin 
   1132  1.2       rin 	/* Global counters */
   1133  1.2       rin 	for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
   1134  1.2       rin 		IGC_GLOBAL_COUNTER_STORE(sc, cnt, 0);
   1135  1.2       rin 
   1136  1.2       rin 	/* Driver counters */
   1137  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   1138  1.2       rin 		struct igc_queue *q = &sc->queues[iq];
   1139  1.2       rin 
   1140  1.2       rin 		for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
   1141  1.2       rin 			IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
   1142  1.1       rin 	}
   1143  1.1       rin 
   1144  1.2       rin 	for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
   1145  1.2       rin 		IGC_DRIVER_COUNTER_STORE(sc, cnt, 0);
   1146  1.2       rin 
   1147  1.2       rin 	/* Queue counters */
   1148  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   1149  1.2       rin 		struct igc_queue *q = &sc->queues[iq];
   1150  1.2       rin 
   1151  1.2       rin 		for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
   1152  1.2       rin 			IGC_QUEUE_COUNTER_STORE(q, cnt, 0);
   1153  1.2       rin 	}
   1154  1.2       rin 
   1155  1.2       rin 	/* Mac statistics */
   1156  1.2       rin 	struct igc_hw *hw = &sc->hw;
   1157  1.2       rin 
   1158  1.2       rin 	for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
   1159  1.2       rin 		(void)igc_read_mac_counter(hw, igc_mac_counters[cnt].reg,
   1160  1.2       rin 		    igc_mac_counters[cnt].is64);
   1161  1.2       rin 		IGC_MAC_COUNTER_STORE(sc, cnt, 0);
   1162  1.2       rin 	}
   1163  1.2       rin #endif
   1164  1.2       rin }
   1165  1.2       rin 
   1166  1.2       rin static int
   1167  1.2       rin igc_setup_msix(struct igc_softc *sc)
   1168  1.2       rin {
   1169  1.2       rin 	pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
   1170  1.2       rin 	device_t dev = sc->sc_dev;
   1171  1.2       rin 	pci_intr_handle_t *intrs;
   1172  1.2       rin 	void **ihs;
   1173  1.2       rin 	const char *intrstr;
   1174  1.2       rin 	char intrbuf[PCI_INTRSTR_LEN];
   1175  1.2       rin 	char xnamebuf[MAX(32, MAXCOMLEN)];
   1176  1.2       rin 	int iq, error;
   1177  1.2       rin 
   1178  1.2       rin 	for (iq = 0, intrs = sc->sc_intrs, ihs = sc->sc_ihs;
   1179  1.2       rin 	    iq < sc->sc_nqueues; iq++, intrs++, ihs++) {
   1180  1.2       rin 		struct igc_queue *q = &sc->queues[iq];
   1181  1.2       rin 
   1182  1.2       rin 		snprintf(xnamebuf, sizeof(xnamebuf), "%s: txrx %d",
   1183  1.2       rin 		    device_xname(dev), iq);
   1184  1.2       rin 
   1185  1.2       rin 		intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
   1186  1.2       rin 
   1187  1.2       rin 		pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
   1188  1.2       rin 		*ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
   1189  1.2       rin 		    igc_intr_queue, q, xnamebuf);
   1190  1.2       rin 		if (*ihs == NULL) {
   1191  1.2       rin 			aprint_error_dev(dev,
   1192  1.2       rin 			    "unable to establish txrx interrupt at %s\n",
   1193  1.2       rin 			    intrstr);
   1194  1.2       rin 			return ENOBUFS;
   1195  1.2       rin 		}
   1196  1.2       rin 		aprint_normal_dev(dev, "txrx interrupting at %s\n", intrstr);
   1197  1.2       rin 
   1198  1.2       rin 		kcpuset_t *affinity;
   1199  1.2       rin 		kcpuset_create(&affinity, true);
   1200  1.2       rin 		kcpuset_set(affinity, iq % ncpu);
   1201  1.2       rin 		error = interrupt_distribute(*ihs, affinity, NULL);
   1202  1.2       rin 		if (error) {
   1203  1.2       rin 			aprint_normal_dev(dev,
   1204  1.2       rin 			    "%s: unable to change affinity, use default CPU\n",
   1205  1.2       rin 			    intrstr);
   1206  1.2       rin 		}
   1207  1.2       rin 		kcpuset_destroy(affinity);
   1208  1.2       rin 
   1209  1.2       rin 		q->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
   1210  1.2       rin 		    igc_handle_queue, q);
   1211  1.2       rin 		if (q->igcq_si == NULL) {
   1212  1.2       rin 			aprint_error_dev(dev,
   1213  1.2       rin 			    "%s: unable to establish softint\n", intrstr);
   1214  1.2       rin 			return ENOBUFS;
   1215  1.2       rin 		}
   1216  1.2       rin 
   1217  1.2       rin 		q->msix = iq;
   1218  1.2       rin 		q->eims = 1 << iq;
   1219  1.1       rin 	}
   1220  1.1       rin 
   1221  1.2       rin 	snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
   1222  1.2       rin 	error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
   1223  1.2       rin 	    igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
   1224  1.2       rin 	    WQ_PERCPU | WQ_MPSAFE);
   1225  1.2       rin 	if (error) {
   1226  1.2       rin 		aprint_error_dev(dev, "workqueue_create failed\n");
   1227  1.2       rin 		return ENOBUFS;
   1228  1.1       rin 	}
   1229  1.2       rin 	sc->sc_txrx_workqueue = false;
   1230  1.1       rin 
   1231  1.2       rin 	intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
   1232  1.2       rin 	snprintf(xnamebuf, sizeof(xnamebuf), "%s: link", device_xname(dev));
   1233  1.2       rin 	pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
   1234  1.2       rin 	*ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
   1235  1.2       rin 	    igc_intr_link, sc, xnamebuf);
   1236  1.2       rin 	if (*ihs == NULL) {
   1237  1.2       rin 		aprint_error_dev(dev,
   1238  1.2       rin 		    "unable to establish link interrupt at %s\n", intrstr);
   1239  1.2       rin 		return ENOBUFS;
   1240  1.2       rin 	}
   1241  1.2       rin 	aprint_normal_dev(dev, "link interrupting at %s\n", intrstr);
   1242  1.2       rin 	/* use later in igc_configure_queues() */
   1243  1.2       rin 	sc->linkvec = iq;
   1244  1.1       rin 
   1245  1.1       rin 	return 0;
   1246  1.2       rin }
   1247  1.2       rin 
   1248  1.2       rin static int
   1249  1.2       rin igc_setup_msi(struct igc_softc *sc)
   1250  1.2       rin {
   1251  1.2       rin 	pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
   1252  1.2       rin 	device_t dev = sc->sc_dev;
   1253  1.2       rin 	pci_intr_handle_t *intr = sc->sc_intrs;
   1254  1.2       rin 	void **ihs = sc->sc_ihs;
   1255  1.2       rin 	const char *intrstr;
   1256  1.2       rin 	char intrbuf[PCI_INTRSTR_LEN];
   1257  1.2       rin 	char xnamebuf[MAX(32, MAXCOMLEN)];
   1258  1.2       rin 	int error;
   1259  1.2       rin 
   1260  1.2       rin 	intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
   1261  1.2       rin 
   1262  1.2       rin 	snprintf(xnamebuf, sizeof(xnamebuf), "%s: msi", device_xname(dev));
   1263  1.2       rin 	pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
   1264  1.2       rin 	*ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
   1265  1.2       rin 	    igc_intr, sc, xnamebuf);
   1266  1.2       rin 	if (*ihs == NULL) {
   1267  1.2       rin 		aprint_error_dev(dev,
   1268  1.2       rin 		    "unable to establish interrupt at %s\n", intrstr);
   1269  1.2       rin 		return ENOBUFS;
   1270  1.2       rin 	}
   1271  1.2       rin 	aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
   1272  1.2       rin 
   1273  1.2       rin 	struct igc_queue *iq = sc->queues;
   1274  1.2       rin 	iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
   1275  1.2       rin 	    igc_handle_queue, iq);
   1276  1.2       rin 	if (iq->igcq_si == NULL) {
   1277  1.2       rin 		aprint_error_dev(dev,
   1278  1.2       rin 		    "%s: unable to establish softint\n", intrstr);
   1279  1.2       rin 		return ENOBUFS;
   1280  1.2       rin 	}
   1281  1.2       rin 
   1282  1.2       rin 	snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
   1283  1.2       rin 	error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
   1284  1.2       rin 	    igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
   1285  1.2       rin 	    WQ_PERCPU | WQ_MPSAFE);
   1286  1.2       rin 	if (error) {
   1287  1.2       rin 		aprint_error_dev(dev, "workqueue_create failed\n");
   1288  1.2       rin 		return ENOBUFS;
   1289  1.1       rin 	}
   1290  1.2       rin 	sc->sc_txrx_workqueue = false;
   1291  1.2       rin 
   1292  1.2       rin 	sc->queues[0].msix = 0;
   1293  1.2       rin 	sc->linkvec = 0;
   1294  1.1       rin 
   1295  1.2       rin 	return 0;
   1296  1.1       rin }
   1297  1.1       rin 
   1298  1.2       rin static int
   1299  1.2       rin igc_setup_intx(struct igc_softc *sc)
   1300  1.1       rin {
   1301  1.2       rin 	pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
   1302  1.2       rin 	device_t dev = sc->sc_dev;
   1303  1.2       rin 	pci_intr_handle_t *intr = sc->sc_intrs;
   1304  1.2       rin 	void **ihs = sc->sc_ihs;
   1305  1.2       rin 	const char *intrstr;
   1306  1.2       rin 	char intrbuf[PCI_INTRSTR_LEN];
   1307  1.2       rin 	char xnamebuf[32];
   1308  1.2       rin 
   1309  1.2       rin 	intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
   1310  1.2       rin 
   1311  1.2       rin 	snprintf(xnamebuf, sizeof(xnamebuf), "%s:intx", device_xname(dev));
   1312  1.2       rin 	pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
   1313  1.2       rin 	*ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
   1314  1.2       rin 	    igc_intr, sc, xnamebuf);
   1315  1.2       rin 	if (*ihs == NULL) {
   1316  1.2       rin 		aprint_error_dev(dev,
   1317  1.2       rin 		    "unable to establish interrupt at %s\n", intrstr);
   1318  1.2       rin 		return ENOBUFS;
   1319  1.2       rin 	}
   1320  1.2       rin 	aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
   1321  1.2       rin 
   1322  1.2       rin 	struct igc_queue *iq = sc->queues;
   1323  1.2       rin 	iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
   1324  1.2       rin 	    igc_handle_queue, iq);
   1325  1.2       rin 	if (iq->igcq_si == NULL) {
   1326  1.2       rin 		aprint_error_dev(dev,
   1327  1.2       rin 		    "%s: unable to establish softint\n", intrstr);
   1328  1.2       rin 		return ENOBUFS;
   1329  1.2       rin 	}
   1330  1.1       rin 
   1331  1.2       rin 	/* create workqueue? */
   1332  1.2       rin 	sc->sc_txrx_workqueue = false;
   1333  1.1       rin 
   1334  1.2       rin 	sc->queues[0].msix = 0;
   1335  1.2       rin 	sc->linkvec = 0;
   1336  1.1       rin 
   1337  1.2       rin 	return 0;
   1338  1.1       rin }
   1339  1.1       rin 
   1340  1.2       rin static int
   1341  1.1       rin igc_dma_malloc(struct igc_softc *sc, bus_size_t size, struct igc_dma_alloc *dma)
   1342  1.1       rin {
   1343  1.1       rin 	struct igc_osdep *os = &sc->osdep;
   1344  1.1       rin 
   1345  1.2       rin 	dma->dma_tag = os->os_dmat;
   1346  1.1       rin 
   1347  1.2       rin 	if (bus_dmamap_create(dma->dma_tag, size, 1, size, 0,
   1348  1.2       rin 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->dma_map))
   1349  1.1       rin 		return 1;
   1350  1.1       rin 	if (bus_dmamem_alloc(dma->dma_tag, size, PAGE_SIZE, 0, &dma->dma_seg,
   1351  1.2       rin 	    1, &dma->dma_nseg, BUS_DMA_WAITOK))
   1352  1.1       rin 		goto destroy;
   1353  1.2       rin 	/*
   1354  1.2       rin 	 * XXXRO
   1355  1.2       rin 	 *
   1356  1.2       rin 	 * Coherent mapping for descriptors is required for now.
   1357  1.2       rin 	 *
   1358  1.2       rin 	 * Both TX and RX descriptors are 16-byte length, which is shorter
   1359  1.2       rin 	 * than dcache lines on modern CPUs. Therefore, sync for a descriptor
   1360  1.2       rin 	 * may overwrite DMA read for descriptors in the same cache line.
   1361  1.2       rin 	 *
   1362  1.2       rin 	 * Can't we avoid this by use cache-line-aligned descriptors at once?
   1363  1.2       rin 	 */
   1364  1.1       rin 	if (bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
   1365  1.2       rin 	    &dma->dma_vaddr, BUS_DMA_WAITOK | BUS_DMA_COHERENT /* XXXRO */))
   1366  1.1       rin 		goto free;
   1367  1.1       rin 	if (bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
   1368  1.2       rin 	    NULL, BUS_DMA_WAITOK))
   1369  1.1       rin 		goto unmap;
   1370  1.1       rin 
   1371  1.1       rin 	dma->dma_size = size;
   1372  1.1       rin 
   1373  1.1       rin 	return 0;
   1374  1.2       rin  unmap:
   1375  1.1       rin 	bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
   1376  1.2       rin  free:
   1377  1.1       rin 	bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
   1378  1.2       rin  destroy:
   1379  1.1       rin 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
   1380  1.1       rin 	dma->dma_map = NULL;
   1381  1.1       rin 	dma->dma_tag = NULL;
   1382  1.1       rin 	return 1;
   1383  1.1       rin }
   1384  1.1       rin 
   1385  1.2       rin static void
   1386  1.1       rin igc_dma_free(struct igc_softc *sc, struct igc_dma_alloc *dma)
   1387  1.1       rin {
   1388  1.2       rin 
   1389  1.1       rin 	if (dma->dma_tag == NULL)
   1390  1.1       rin 		return;
   1391  1.1       rin 
   1392  1.1       rin 	if (dma->dma_map != NULL) {
   1393  1.1       rin 		bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
   1394  1.1       rin 		    dma->dma_map->dm_mapsize,
   1395  1.1       rin 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1396  1.1       rin 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
   1397  1.1       rin 		bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
   1398  1.1       rin 		bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
   1399  1.1       rin 		bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
   1400  1.1       rin 		dma->dma_map = NULL;
   1401  1.1       rin 	}
   1402  1.1       rin }
   1403  1.1       rin 
   1404  1.1       rin /*********************************************************************
   1405  1.1       rin  *
   1406  1.1       rin  *  Setup networking device structure and register an interface.
   1407  1.1       rin  *
   1408  1.1       rin  **********************************************************************/
   1409  1.2       rin static void
   1410  1.1       rin igc_setup_interface(struct igc_softc *sc)
   1411  1.2       rin {
   1412  1.2       rin 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1413  1.2       rin 
   1414  1.2       rin 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
   1415  1.2       rin 	ifp->if_softc = sc;
   1416  1.2       rin 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   1417  1.2       rin 	ifp->if_extflags = IFEF_MPSAFE;
   1418  1.2       rin 	ifp->if_ioctl = igc_ioctl;
   1419  1.2       rin 	ifp->if_start = igc_start;
   1420  1.2       rin 	if (sc->sc_nqueues > 1)
   1421  1.2       rin 		ifp->if_transmit = igc_transmit;
   1422  1.2       rin 	ifp->if_watchdog = igc_watchdog;
   1423  1.2       rin 	ifp->if_init = igc_init;
   1424  1.2       rin 	ifp->if_stop = igc_stop;
   1425  1.2       rin 
   1426  1.2       rin #if 0 /* notyet */
   1427  1.2       rin 	ifp->if_capabilities = IFCAP_TSOv4 | IFCAP_TSOv6;
   1428  1.2       rin #endif
   1429  1.2       rin 
   1430  1.2       rin 	ifp->if_capabilities |=
   1431  1.2       rin 	    IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx  |
   1432  1.2       rin 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   1433  1.2       rin 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
   1434  1.2       rin 	    IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
   1435  1.2       rin 	    IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
   1436  1.2       rin 
   1437  1.2       rin 	ifp->if_capenable = 0;
   1438  1.1       rin 
   1439  1.2       rin 	sc->sc_ec.ec_capabilities |=
   1440  1.2       rin 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
   1441  1.1       rin 
   1442  1.2       rin 	IFQ_SET_MAXLEN(&ifp->if_snd, sc->num_tx_desc - 1);
   1443  1.2       rin 	IFQ_SET_READY(&ifp->if_snd);
   1444  1.1       rin 
   1445  1.1       rin #if NVLAN > 0
   1446  1.2       rin 	sc->sc_ec.ec_capabilities |=  ETHERCAP_VLAN_HWTAGGING;
   1447  1.1       rin #endif
   1448  1.1       rin 
   1449  1.2       rin 	mutex_init(&sc->sc_core_lock, MUTEX_DEFAULT, IPL_NET);
   1450  1.1       rin 
   1451  1.1       rin 	/* Initialize ifmedia structures. */
   1452  1.2       rin 	sc->sc_ec.ec_ifmedia = &sc->media;
   1453  1.2       rin 	ifmedia_init_with_lock(&sc->media, IFM_IMASK, igc_media_change,
   1454  1.2       rin 	    igc_media_status, &sc->sc_core_lock);
   1455  1.1       rin 	ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
   1456  1.1       rin 	ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
   1457  1.1       rin 	ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
   1458  1.1       rin 	ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
   1459  1.1       rin 	ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
   1460  1.2       rin 	ifmedia_add(&sc->media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
   1461  1.1       rin 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
   1462  1.1       rin 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
   1463  1.1       rin 
   1464  1.2       rin 	sc->sc_rx_intr_process_limit = IGC_RX_INTR_PROCESS_LIMIT_DEFAULT;
   1465  1.2       rin 	sc->sc_tx_intr_process_limit = IGC_TX_INTR_PROCESS_LIMIT_DEFAULT;
   1466  1.2       rin 	sc->sc_rx_process_limit = IGC_RX_PROCESS_LIMIT_DEFAULT;
   1467  1.2       rin 	sc->sc_tx_process_limit = IGC_TX_PROCESS_LIMIT_DEFAULT;
   1468  1.2       rin 
   1469  1.2       rin 	if_initialize(ifp);
   1470  1.2       rin 	sc->sc_ipq = if_percpuq_create(ifp);
   1471  1.2       rin 	if_deferred_start_init(ifp, NULL);
   1472  1.2       rin 	ether_ifattach(ifp, sc->hw.mac.addr);
   1473  1.2       rin 	ether_set_ifflags_cb(&sc->sc_ec, igc_ifflags_cb);
   1474  1.2       rin 	if_register(ifp);
   1475  1.2       rin }
   1476  1.1       rin 
   1477  1.2       rin static int
   1478  1.2       rin igc_init(struct ifnet *ifp)
   1479  1.2       rin {
   1480  1.2       rin 	struct igc_softc *sc = ifp->if_softc;
   1481  1.2       rin 	int error;
   1482  1.1       rin 
   1483  1.2       rin 	mutex_enter(&sc->sc_core_lock);
   1484  1.2       rin 	error = igc_init_locked(sc);
   1485  1.2       rin 	mutex_exit(&sc->sc_core_lock);
   1486  1.1       rin 
   1487  1.2       rin 	return error;
   1488  1.1       rin }
   1489  1.1       rin 
   1490  1.2       rin static int
   1491  1.2       rin igc_init_locked(struct igc_softc *sc)
   1492  1.1       rin {
   1493  1.2       rin 	struct ethercom *ec = &sc->sc_ec;
   1494  1.2       rin 	struct ifnet *ifp = &ec->ec_if;
   1495  1.1       rin 
   1496  1.2       rin 	DPRINTF(CFG, "called\n");
   1497  1.1       rin 
   1498  1.2       rin 	KASSERT(mutex_owned(&sc->sc_core_lock));
   1499  1.1       rin 
   1500  1.2       rin 	if (ISSET(ifp->if_flags, IFF_RUNNING))
   1501  1.2       rin 		igc_stop_locked(sc);
   1502  1.1       rin 
   1503  1.1       rin 	/* Put the address into the receive address array. */
   1504  1.1       rin 	igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
   1505  1.1       rin 
   1506  1.1       rin 	/* Initialize the hardware. */
   1507  1.1       rin 	igc_reset(sc);
   1508  1.1       rin 	igc_update_link_status(sc);
   1509  1.1       rin 
   1510  1.1       rin 	/* Setup VLAN support, basic and offload if available. */
   1511  1.1       rin 	IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
   1512  1.1       rin 
   1513  1.1       rin 	igc_initialize_transmit_unit(sc);
   1514  1.1       rin 	igc_initialize_receive_unit(sc);
   1515  1.1       rin 
   1516  1.2       rin 	if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
   1517  1.2       rin 		uint32_t ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
   1518  1.1       rin 		ctrl |= IGC_CTRL_VME;
   1519  1.1       rin 		IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
   1520  1.1       rin 	}
   1521  1.1       rin 
   1522  1.1       rin 	/* Setup multicast table. */
   1523  1.2       rin 	igc_set_filter(sc);
   1524  1.1       rin 
   1525  1.1       rin 	igc_clear_hw_cntrs_base_generic(&sc->hw);
   1526  1.1       rin 
   1527  1.2       rin 	if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
   1528  1.2       rin 		igc_configure_queues(sc);
   1529  1.1       rin 
   1530  1.1       rin 	/* This clears any pending interrupts */
   1531  1.1       rin 	IGC_READ_REG(&sc->hw, IGC_ICR);
   1532  1.1       rin 	IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
   1533  1.1       rin 
   1534  1.1       rin 	/* The driver can now take control from firmware. */
   1535  1.1       rin 	igc_get_hw_control(sc);
   1536  1.1       rin 
   1537  1.1       rin 	/* Set Energy Efficient Ethernet. */
   1538  1.1       rin 	igc_set_eee_i225(&sc->hw, true, true, true);
   1539  1.1       rin 
   1540  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   1541  1.2       rin 		struct rx_ring *rxr = &sc->rx_rings[iq];
   1542  1.2       rin 
   1543  1.2       rin 		mutex_enter(&rxr->rxr_lock);
   1544  1.1       rin 		igc_rxfill(rxr);
   1545  1.2       rin 		mutex_exit(&rxr->rxr_lock);
   1546  1.1       rin 	}
   1547  1.1       rin 
   1548  1.2       rin 	sc->sc_core_stopping = false;
   1549  1.2       rin 
   1550  1.1       rin 	ifp->if_flags |= IFF_RUNNING;
   1551  1.1       rin 
   1552  1.2       rin 	/* Save last flags for the callback */
   1553  1.2       rin 	sc->sc_if_flags = ifp->if_flags;
   1554  1.2       rin 
   1555  1.6       rin 	callout_schedule(&sc->sc_tick_ch, hz);
   1556  1.6       rin 
   1557  1.6       rin 	igc_enable_intr(sc);
   1558  1.6       rin 
   1559  1.2       rin 	return 0;
   1560  1.1       rin }
   1561  1.1       rin 
   1562  1.1       rin static inline int
   1563  1.2       rin igc_load_mbuf(struct igc_queue *q, bus_dma_tag_t dmat, bus_dmamap_t map,
   1564  1.2       rin     struct mbuf *m)
   1565  1.1       rin {
   1566  1.1       rin 	int error;
   1567  1.1       rin 
   1568  1.1       rin 	error = bus_dmamap_load_mbuf(dmat, map, m,
   1569  1.2       rin 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1570  1.2       rin 
   1571  1.2       rin 	if (__predict_false(error == EFBIG)) {
   1572  1.2       rin 		IGC_DRIVER_EVENT(q, txdma_efbig, 1);
   1573  1.2       rin 		m = m_defrag(m, M_NOWAIT);
   1574  1.2       rin 		if (__predict_false(m == NULL)) {
   1575  1.2       rin 			IGC_DRIVER_EVENT(q, txdma_defrag, 1);
   1576  1.2       rin 			return ENOBUFS;
   1577  1.2       rin 		}
   1578  1.2       rin 		error = bus_dmamap_load_mbuf(dmat, map, m,
   1579  1.2       rin 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1580  1.2       rin 	}
   1581  1.1       rin 
   1582  1.2       rin 	switch (error) {
   1583  1.2       rin 	case 0:
   1584  1.2       rin 		break;
   1585  1.2       rin 	case ENOMEM:
   1586  1.2       rin 		IGC_DRIVER_EVENT(q, txdma_enomem, 1);
   1587  1.2       rin 		break;
   1588  1.2       rin 	case EINVAL:
   1589  1.2       rin 		IGC_DRIVER_EVENT(q, txdma_einval, 1);
   1590  1.2       rin 		break;
   1591  1.2       rin 	case EAGAIN:
   1592  1.2       rin 		IGC_DRIVER_EVENT(q, txdma_eagain, 1);
   1593  1.2       rin 		break;
   1594  1.2       rin 	default:
   1595  1.2       rin 		IGC_DRIVER_EVENT(q, txdma_other, 1);
   1596  1.2       rin 		break;
   1597  1.2       rin 	}
   1598  1.1       rin 
   1599  1.2       rin 	return error;
   1600  1.1       rin }
   1601  1.1       rin 
   1602  1.2       rin #define IGC_TX_START	1
   1603  1.2       rin #define IGC_TX_TRANSMIT	2
   1604  1.2       rin 
   1605  1.2       rin static void
   1606  1.2       rin igc_start(struct ifnet *ifp)
   1607  1.1       rin {
   1608  1.1       rin 	struct igc_softc *sc = ifp->if_softc;
   1609  1.1       rin 
   1610  1.2       rin 	if (__predict_false(!sc->link_active)) {
   1611  1.2       rin 		IFQ_PURGE(&ifp->if_snd);
   1612  1.1       rin 		return;
   1613  1.1       rin 	}
   1614  1.1       rin 
   1615  1.2       rin 	struct tx_ring *txr = &sc->tx_rings[0]; /* queue 0 */
   1616  1.2       rin 	mutex_enter(&txr->txr_lock);
   1617  1.2       rin 	igc_tx_common_locked(ifp, txr, IGC_TX_START);
   1618  1.2       rin 	mutex_exit(&txr->txr_lock);
   1619  1.2       rin }
   1620  1.2       rin 
   1621  1.2       rin static inline u_int
   1622  1.2       rin igc_select_txqueue(struct igc_softc *sc, struct mbuf *m __unused)
   1623  1.2       rin {
   1624  1.2       rin 	const u_int cpuid = cpu_index(curcpu());
   1625  1.2       rin 
   1626  1.2       rin 	return cpuid % sc->sc_nqueues;
   1627  1.2       rin }
   1628  1.2       rin 
   1629  1.2       rin static int
   1630  1.2       rin igc_transmit(struct ifnet *ifp, struct mbuf *m)
   1631  1.2       rin {
   1632  1.2       rin 	struct igc_softc *sc = ifp->if_softc;
   1633  1.2       rin 	const u_int qid = igc_select_txqueue(sc, m);
   1634  1.2       rin 	struct tx_ring *txr = &sc->tx_rings[qid];
   1635  1.2       rin 	struct igc_queue *q = txr->txr_igcq;
   1636  1.2       rin 
   1637  1.2       rin 	if (__predict_false(!pcq_put(txr->txr_interq, m))) {
   1638  1.2       rin 		IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
   1639  1.2       rin 		m_freem(m);
   1640  1.2       rin 		return ENOBUFS;
   1641  1.2       rin 	}
   1642  1.2       rin 
   1643  1.2       rin 	mutex_enter(&txr->txr_lock);
   1644  1.2       rin 	igc_tx_common_locked(ifp, txr, IGC_TX_TRANSMIT);
   1645  1.2       rin 	mutex_exit(&txr->txr_lock);
   1646  1.2       rin 
   1647  1.2       rin 	return 0;
   1648  1.2       rin }
   1649  1.2       rin 
   1650  1.2       rin static void
   1651  1.2       rin igc_tx_common_locked(struct ifnet *ifp, struct tx_ring *txr, int caller)
   1652  1.2       rin {
   1653  1.2       rin 	struct igc_softc *sc = ifp->if_softc;
   1654  1.2       rin 	struct igc_queue *q = txr->txr_igcq;
   1655  1.2       rin 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1656  1.2       rin 	int prod, free, last = -1;
   1657  1.2       rin 	bool post = false;
   1658  1.2       rin 
   1659  1.1       rin 	prod = txr->next_avail_desc;
   1660  1.1       rin 	free = txr->next_to_clean;
   1661  1.1       rin 	if (free <= prod)
   1662  1.1       rin 		free += sc->num_tx_desc;
   1663  1.1       rin 	free -= prod;
   1664  1.1       rin 
   1665  1.2       rin 	DPRINTF(TX, "%s: begin: msix %d prod %d n2c %d free %d\n",
   1666  1.2       rin 	    caller == IGC_TX_TRANSMIT ? "transmit" : "start",
   1667  1.2       rin 	    txr->me, prod, txr->next_to_clean, free);
   1668  1.1       rin 
   1669  1.2       rin 	for (;;) {
   1670  1.2       rin 		struct mbuf *m;
   1671  1.1       rin 
   1672  1.2       rin 		if (__predict_false(free <= IGC_MAX_SCATTER)) {
   1673  1.2       rin 			IGC_QUEUE_EVENT(q, tx_no_desc, 1);
   1674  1.1       rin 			break;
   1675  1.1       rin 		}
   1676  1.1       rin 
   1677  1.2       rin 		if (caller == IGC_TX_TRANSMIT)
   1678  1.2       rin 			m = pcq_get(txr->txr_interq);
   1679  1.2       rin 		else
   1680  1.2       rin 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1681  1.2       rin 		if (__predict_false(m == NULL))
   1682  1.1       rin 			break;
   1683  1.1       rin 
   1684  1.2       rin 		struct igc_tx_buf *txbuf = &txr->tx_buffers[prod];
   1685  1.2       rin 		bus_dmamap_t map = txbuf->map;
   1686  1.1       rin 
   1687  1.2       rin 		if (__predict_false(
   1688  1.2       rin 		    igc_load_mbuf(q, txr->txdma.dma_tag, map, m))) {
   1689  1.2       rin 			if (caller == IGC_TX_TRANSMIT)
   1690  1.2       rin 				IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
   1691  1.1       rin 			m_freem(m);
   1692  1.2       rin 			if_statinc_ref(nsr, if_oerrors);
   1693  1.1       rin 			continue;
   1694  1.1       rin 		}
   1695  1.1       rin 
   1696  1.1       rin 		bus_dmamap_sync(txr->txdma.dma_tag, map, 0,
   1697  1.1       rin 		    map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1698  1.1       rin 
   1699  1.2       rin 		uint32_t ctx_cmd_type_len = 0, olinfo_status = 0;
   1700  1.2       rin 		if (igc_tx_ctx_setup(txr, m, prod, &ctx_cmd_type_len,
   1701  1.2       rin 		    &olinfo_status)) {
   1702  1.2       rin 			IGC_QUEUE_EVENT(q, tx_ctx, 1);
   1703  1.1       rin 			/* Consume the first descriptor */
   1704  1.2       rin 			prod = igc_txdesc_incr(sc, prod);
   1705  1.1       rin 			free--;
   1706  1.1       rin 		}
   1707  1.2       rin 		for (int i = 0; i < map->dm_nsegs; i++) {
   1708  1.2       rin 			union igc_adv_tx_desc *txdesc = &txr->tx_base[prod];
   1709  1.1       rin 
   1710  1.2       rin 			uint32_t cmd_type_len = ctx_cmd_type_len |
   1711  1.2       rin 			    IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DTYP_DATA |
   1712  1.1       rin 			    IGC_ADVTXD_DCMD_DEXT | map->dm_segs[i].ds_len;
   1713  1.2       rin 			if (i == map->dm_nsegs - 1) {
   1714  1.2       rin 				cmd_type_len |=
   1715  1.2       rin 				    IGC_ADVTXD_DCMD_EOP | IGC_ADVTXD_DCMD_RS;
   1716  1.2       rin 			}
   1717  1.1       rin 
   1718  1.2       rin 			igc_txdesc_sync(txr, prod,
   1719  1.2       rin 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1720  1.2       rin 			htolem64(&txdesc->read.buffer_addr,
   1721  1.2       rin 			    map->dm_segs[i].ds_addr);
   1722  1.1       rin 			htolem32(&txdesc->read.cmd_type_len, cmd_type_len);
   1723  1.1       rin 			htolem32(&txdesc->read.olinfo_status, olinfo_status);
   1724  1.2       rin 			igc_txdesc_sync(txr, prod,
   1725  1.2       rin 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1726  1.1       rin 
   1727  1.1       rin 			last = prod;
   1728  1.2       rin 			prod = igc_txdesc_incr(sc, prod);
   1729  1.1       rin 		}
   1730  1.1       rin 
   1731  1.1       rin 		txbuf->m_head = m;
   1732  1.1       rin 		txbuf->eop_index = last;
   1733  1.1       rin 
   1734  1.2       rin 		bpf_mtap(ifp, m, BPF_D_OUT);
   1735  1.2       rin 
   1736  1.2       rin 		if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
   1737  1.2       rin 		if (m->m_flags & M_MCAST)
   1738  1.2       rin 			if_statinc_ref(nsr, if_omcasts);
   1739  1.2       rin 		IGC_QUEUE_EVENT(q, tx_packets, 1);
   1740  1.2       rin 		IGC_QUEUE_EVENT(q, tx_bytes, m->m_pkthdr.len);
   1741  1.1       rin 
   1742  1.2       rin 		free -= map->dm_nsegs;
   1743  1.2       rin 		post = true;
   1744  1.1       rin 	}
   1745  1.1       rin 
   1746  1.1       rin 	if (post) {
   1747  1.1       rin 		txr->next_avail_desc = prod;
   1748  1.1       rin 		IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), prod);
   1749  1.1       rin 	}
   1750  1.2       rin 
   1751  1.2       rin 	DPRINTF(TX, "%s: done : msix %d prod %d n2c %d free %d\n",
   1752  1.2       rin 	    caller == IGC_TX_TRANSMIT ? "transmit" : "start",
   1753  1.2       rin 	    txr->me, prod, txr->next_to_clean, free);
   1754  1.2       rin 
   1755  1.2       rin 	IF_STAT_PUTREF(ifp);
   1756  1.1       rin }
   1757  1.1       rin 
   1758  1.2       rin static bool
   1759  1.2       rin igc_txeof(struct tx_ring *txr, u_int limit)
   1760  1.1       rin {
   1761  1.1       rin 	struct igc_softc *sc = txr->sc;
   1762  1.2       rin 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1763  1.2       rin 	int cons, prod;
   1764  1.2       rin 	bool more = false;
   1765  1.1       rin 
   1766  1.1       rin 	prod = txr->next_avail_desc;
   1767  1.1       rin 	cons = txr->next_to_clean;
   1768  1.1       rin 
   1769  1.2       rin 	if (cons == prod) {
   1770  1.2       rin 		DPRINTF(TX, "false: msix %d cons %d prod %d\n",
   1771  1.2       rin 		    txr->me, cons, prod);
   1772  1.2       rin 		return false;
   1773  1.2       rin 	}
   1774  1.2       rin 
   1775  1.2       rin 	do {
   1776  1.2       rin 		struct igc_tx_buf *txbuf = &txr->tx_buffers[cons];
   1777  1.2       rin 		const int last = txbuf->eop_index;
   1778  1.1       rin 
   1779  1.2       rin 		membar_consumer();	/* XXXRO necessary? */
   1780  1.1       rin 
   1781  1.2       rin 		KASSERT(last != -1);
   1782  1.2       rin 		union igc_adv_tx_desc *txdesc = &txr->tx_base[last];
   1783  1.2       rin 		igc_txdesc_sync(txr, last, BUS_DMASYNC_POSTREAD);
   1784  1.2       rin 		const uint32_t status = le32toh(txdesc->wb.status);
   1785  1.2       rin 		igc_txdesc_sync(txr, last, BUS_DMASYNC_PREREAD);
   1786  1.1       rin 
   1787  1.2       rin 		if (!(status & IGC_TXD_STAT_DD))
   1788  1.2       rin 			break;
   1789  1.1       rin 
   1790  1.2       rin 		if (limit-- == 0) {
   1791  1.2       rin 			more = true;
   1792  1.2       rin 			DPRINTF(TX, "pending TX "
   1793  1.2       rin 			    "msix %d cons %d last %d prod %d "
   1794  1.2       rin 			    "status 0x%08x\n",
   1795  1.2       rin 			    txr->me, cons, last, prod, status);
   1796  1.1       rin 			break;
   1797  1.2       rin 		}
   1798  1.2       rin 
   1799  1.2       rin 		DPRINTF(TX, "handled TX "
   1800  1.2       rin 		    "msix %d cons %d last %d prod %d "
   1801  1.2       rin 		    "status 0x%08x\n",
   1802  1.2       rin 		    txr->me, cons, last, prod, status);
   1803  1.1       rin 
   1804  1.2       rin 		if_statinc(ifp, if_opackets);
   1805  1.1       rin 
   1806  1.2       rin 		bus_dmamap_t map = txbuf->map;
   1807  1.1       rin 		bus_dmamap_sync(txr->txdma.dma_tag, map, 0, map->dm_mapsize,
   1808  1.1       rin 		    BUS_DMASYNC_POSTWRITE);
   1809  1.1       rin 		bus_dmamap_unload(txr->txdma.dma_tag, map);
   1810  1.1       rin 		m_freem(txbuf->m_head);
   1811  1.1       rin 
   1812  1.1       rin 		txbuf->m_head = NULL;
   1813  1.1       rin 		txbuf->eop_index = -1;
   1814  1.1       rin 
   1815  1.2       rin 		cons = igc_txdesc_incr(sc, last);
   1816  1.2       rin 	} while (cons != prod);
   1817  1.2       rin 
   1818  1.2       rin 	txr->next_to_clean = cons;
   1819  1.1       rin 
   1820  1.2       rin 	return more;
   1821  1.2       rin }
   1822  1.1       rin 
   1823  1.2       rin static void
   1824  1.2       rin igc_intr_barrier(struct igc_softc *sc __unused)
   1825  1.2       rin {
   1826  1.1       rin 
   1827  1.2       rin 	xc_barrier(0);
   1828  1.2       rin }
   1829  1.1       rin 
   1830  1.2       rin static void
   1831  1.2       rin igc_stop(struct ifnet *ifp, int disable)
   1832  1.2       rin {
   1833  1.2       rin 	struct igc_softc *sc = ifp->if_softc;
   1834  1.1       rin 
   1835  1.2       rin 	mutex_enter(&sc->sc_core_lock);
   1836  1.2       rin 	igc_stop_locked(sc);
   1837  1.2       rin 	mutex_exit(&sc->sc_core_lock);
   1838  1.1       rin }
   1839  1.1       rin 
   1840  1.1       rin /*********************************************************************
   1841  1.1       rin  *
   1842  1.1       rin  *  This routine disables all traffic on the adapter by issuing a
   1843  1.1       rin  *  global reset on the MAC.
   1844  1.1       rin  *
   1845  1.1       rin  **********************************************************************/
   1846  1.2       rin static void
   1847  1.2       rin igc_stop_locked(struct igc_softc *sc)
   1848  1.1       rin {
   1849  1.2       rin 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1850  1.2       rin 
   1851  1.2       rin 	DPRINTF(CFG, "called\n");
   1852  1.2       rin 
   1853  1.2       rin 	KASSERT(mutex_owned(&sc->sc_core_lock));
   1854  1.2       rin 
   1855  1.2       rin 	/*
   1856  1.2       rin 	 * If stopping processing has already started, do nothing.
   1857  1.2       rin 	 */
   1858  1.2       rin 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   1859  1.2       rin 		return;
   1860  1.1       rin 
   1861  1.1       rin 	/* Tell the stack that the interface is no longer active. */
   1862  1.2       rin 	ifp->if_flags &= ~IFF_RUNNING;
   1863  1.2       rin 
   1864  1.2       rin 	/*
   1865  1.2       rin 	 * igc_handle_queue() can enable interrupts, so wait for completion of
   1866  1.2       rin 	 * last igc_handle_queue() after unset IFF_RUNNING.
   1867  1.2       rin 	 */
   1868  1.2       rin 	mutex_exit(&sc->sc_core_lock);
   1869  1.2       rin 	igc_barrier_handle_queue(sc);
   1870  1.2       rin 	mutex_enter(&sc->sc_core_lock);
   1871  1.2       rin 
   1872  1.2       rin 	sc->sc_core_stopping = true;
   1873  1.1       rin 
   1874  1.1       rin 	igc_disable_intr(sc);
   1875  1.1       rin 
   1876  1.2       rin 	callout_halt(&sc->sc_tick_ch, &sc->sc_core_lock);
   1877  1.2       rin 
   1878  1.1       rin 	igc_reset_hw(&sc->hw);
   1879  1.1       rin 	IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
   1880  1.1       rin 
   1881  1.2       rin 	/*
   1882  1.2       rin 	 * Wait for completion of interrupt handlers.
   1883  1.2       rin 	 */
   1884  1.2       rin 	mutex_exit(&sc->sc_core_lock);
   1885  1.2       rin 	igc_intr_barrier(sc);
   1886  1.2       rin 	mutex_enter(&sc->sc_core_lock);
   1887  1.2       rin 
   1888  1.2       rin 	igc_update_link_status(sc);
   1889  1.2       rin 
   1890  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   1891  1.2       rin 		struct tx_ring *txr = &sc->tx_rings[iq];
   1892  1.2       rin 
   1893  1.2       rin 		igc_withdraw_transmit_packets(txr, false);
   1894  1.2       rin 	}
   1895  1.2       rin 
   1896  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   1897  1.2       rin 		struct rx_ring *rxr = &sc->rx_rings[iq];
   1898  1.1       rin 
   1899  1.2       rin 		igc_clear_receive_status(rxr);
   1900  1.2       rin 	}
   1901  1.1       rin 
   1902  1.2       rin 	/* Save last flags for the callback */
   1903  1.2       rin 	sc->sc_if_flags = ifp->if_flags;
   1904  1.1       rin }
   1905  1.1       rin 
   1906  1.1       rin /*********************************************************************
   1907  1.1       rin  *  Ioctl entry point
   1908  1.1       rin  *
   1909  1.1       rin  *  igc_ioctl is called when the user wants to configure the
   1910  1.1       rin  *  interface.
   1911  1.1       rin  *
   1912  1.1       rin  *  return 0 on success, positive on failure
   1913  1.1       rin  **********************************************************************/
   1914  1.2       rin static int
   1915  1.2       rin igc_ioctl(struct ifnet * ifp, u_long cmd, void *data)
   1916  1.1       rin {
   1917  1.2       rin 	struct igc_softc *sc __unused = ifp->if_softc;
   1918  1.2       rin 	int s;
   1919  1.2       rin 	int error;
   1920  1.1       rin 
   1921  1.2       rin 	DPRINTF(CFG, "cmd 0x%016lx\n", cmd);
   1922  1.1       rin 
   1923  1.1       rin 	switch (cmd) {
   1924  1.2       rin 	case SIOCADDMULTI:
   1925  1.2       rin 	case SIOCDELMULTI:
   1926  1.1       rin 		break;
   1927  1.2       rin 	default:
   1928  1.2       rin 		KASSERT(IFNET_LOCKED(ifp));
   1929  1.2       rin 	}
   1930  1.2       rin 
   1931  1.2       rin 	if (cmd == SIOCZIFDATA) {
   1932  1.2       rin 		mutex_enter(&sc->sc_core_lock);
   1933  1.2       rin 		igc_clear_counters(sc);
   1934  1.2       rin 		mutex_exit(&sc->sc_core_lock);
   1935  1.2       rin 	}
   1936  1.2       rin 
   1937  1.2       rin 	switch (cmd) {
   1938  1.2       rin #ifdef IF_RXR
   1939  1.1       rin 	case SIOCGIFRXR:
   1940  1.2       rin 		s = splnet();
   1941  1.1       rin 		error = igc_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
   1942  1.2       rin 		splx(s);
   1943  1.1       rin 		break;
   1944  1.2       rin #endif
   1945  1.1       rin 	default:
   1946  1.2       rin 		s = splnet();
   1947  1.2       rin 		error = ether_ioctl(ifp, cmd, data);
   1948  1.2       rin 		splx(s);
   1949  1.2       rin 		break;
   1950  1.1       rin 	}
   1951  1.1       rin 
   1952  1.2       rin 	if (error != ENETRESET)
   1953  1.2       rin 		return error;
   1954  1.2       rin 
   1955  1.2       rin 	error = 0;
   1956  1.2       rin 
   1957  1.2       rin 	if (cmd == SIOCSIFCAP)
   1958  1.2       rin 		error = if_init(ifp);
   1959  1.2       rin 	else if ((cmd == SIOCADDMULTI) || (cmd == SIOCDELMULTI)) {
   1960  1.2       rin 		mutex_enter(&sc->sc_core_lock);
   1961  1.2       rin 		if (sc->sc_if_flags & IFF_RUNNING) {
   1962  1.2       rin 			/*
   1963  1.2       rin 			 * Multicast list has changed; set the hardware filter
   1964  1.2       rin 			 * accordingly.
   1965  1.2       rin 			 */
   1966  1.1       rin 			igc_disable_intr(sc);
   1967  1.2       rin 			igc_set_filter(sc);
   1968  1.1       rin 			igc_enable_intr(sc);
   1969  1.1       rin 		}
   1970  1.2       rin 		mutex_exit(&sc->sc_core_lock);
   1971  1.1       rin 	}
   1972  1.1       rin 
   1973  1.1       rin 	return error;
   1974  1.1       rin }
   1975  1.1       rin 
   1976  1.2       rin #ifdef IF_RXR
   1977  1.2       rin static int
   1978  1.1       rin igc_rxrinfo(struct igc_softc *sc, struct if_rxrinfo *ifri)
   1979  1.1       rin {
   1980  1.2       rin 	struct if_rxring_info *ifr, ifr1;
   1981  1.2       rin 	int error;
   1982  1.2       rin 
   1983  1.2       rin 	if (sc->sc_nqueues > 1) {
   1984  1.2       rin 		ifr = kmem_zalloc(sc->sc_nqueues * sizeof(*ifr), KM_SLEEP);
   1985  1.2       rin 	} else {
   1986  1.2       rin 		ifr = &ifr1;
   1987  1.2       rin 		memset(ifr, 0, sizeof(*ifr));
   1988  1.2       rin 	}
   1989  1.2       rin 
   1990  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   1991  1.2       rin 		struct rx_ring *rxr = &sc->rx_rings[iq];
   1992  1.2       rin 
   1993  1.2       rin 		ifr[iq].ifr_size = MCLBYTES;
   1994  1.2       rin 		snprintf(ifr[iq].ifr_name, sizeof(ifr[iq].ifr_name), "%d", iq);
   1995  1.2       rin 		ifr[iq].ifr_info = rxr->rx_ring;
   1996  1.1       rin 	}
   1997  1.1       rin 
   1998  1.1       rin 	error = if_rxr_info_ioctl(ifri, sc->sc_nqueues, ifr);
   1999  1.2       rin 	if (sc->sc_nqueues > 1)
   2000  1.2       rin 		kmem_free(ifr, sc->sc_nqueues * sizeof(*ifr));
   2001  1.1       rin 
   2002  1.1       rin 	return error;
   2003  1.1       rin }
   2004  1.2       rin #endif
   2005  1.1       rin 
   2006  1.2       rin static void
   2007  1.1       rin igc_rxfill(struct rx_ring *rxr)
   2008  1.1       rin {
   2009  1.1       rin 	struct igc_softc *sc = rxr->sc;
   2010  1.2       rin 	int id;
   2011  1.1       rin 
   2012  1.2       rin 	for (id = 0; id < sc->num_rx_desc; id++) {
   2013  1.2       rin 		if (igc_get_buf(rxr, id, false)) {
   2014  1.2       rin 			panic("%s: msix=%d i=%d\n", __func__, rxr->me, id);
   2015  1.2       rin 		}
   2016  1.1       rin 	}
   2017  1.1       rin 
   2018  1.2       rin 	id = sc->num_rx_desc - 1;
   2019  1.2       rin 	rxr->last_desc_filled = id;
   2020  1.2       rin 	IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
   2021  1.2       rin 	rxr->next_to_check = 0;
   2022  1.1       rin }
   2023  1.1       rin 
   2024  1.2       rin static void
   2025  1.2       rin igc_rxrefill(struct rx_ring *rxr, int end)
   2026  1.1       rin {
   2027  1.1       rin 	struct igc_softc *sc = rxr->sc;
   2028  1.2       rin 	int id;
   2029  1.1       rin 
   2030  1.2       rin 	for (id = rxr->next_to_check; id != end; id = igc_rxdesc_incr(sc, id)) {
   2031  1.2       rin 		if (igc_get_buf(rxr, id, true)) {
   2032  1.2       rin 			/* XXXRO */
   2033  1.2       rin 			panic("%s: msix=%d id=%d\n", __func__, rxr->me, id);
   2034  1.2       rin 		}
   2035  1.1       rin 	}
   2036  1.2       rin 
   2037  1.2       rin 	id = igc_rxdesc_decr(sc, id);
   2038  1.2       rin 	DPRINTF(RX, "%s RDT %d id %d\n",
   2039  1.2       rin 	    rxr->last_desc_filled == id ? "same" : "diff",
   2040  1.2       rin 	    rxr->last_desc_filled, id);
   2041  1.2       rin 	rxr->last_desc_filled = id;
   2042  1.2       rin 	IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
   2043  1.1       rin }
   2044  1.1       rin 
   2045  1.1       rin /*********************************************************************
   2046  1.1       rin  *
   2047  1.1       rin  *  This routine executes in interrupt context. It replenishes
   2048  1.1       rin  *  the mbufs in the descriptor and sends data which has been
   2049  1.1       rin  *  dma'ed into host memory to upper layer.
   2050  1.1       rin  *
   2051  1.1       rin  *********************************************************************/
   2052  1.2       rin static bool
   2053  1.2       rin igc_rxeof(struct rx_ring *rxr, u_int limit)
   2054  1.1       rin {
   2055  1.1       rin 	struct igc_softc *sc = rxr->sc;
   2056  1.2       rin 	struct igc_queue *q = rxr->rxr_igcq;
   2057  1.2       rin 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2058  1.2       rin 	int id;
   2059  1.2       rin 	bool more = false;
   2060  1.2       rin 
   2061  1.2       rin 	id = rxr->next_to_check;
   2062  1.2       rin 	for (;;) {
   2063  1.2       rin 		union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
   2064  1.2       rin 		struct igc_rx_buf *rxbuf, *nxbuf;
   2065  1.2       rin 		struct mbuf *mp, *m;
   2066  1.1       rin 
   2067  1.2       rin 		igc_rxdesc_sync(rxr, id,
   2068  1.2       rin 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2069  1.1       rin 
   2070  1.2       rin 		const uint32_t staterr = le32toh(rxdesc->wb.upper.status_error);
   2071  1.1       rin 
   2072  1.1       rin 		if (!ISSET(staterr, IGC_RXD_STAT_DD)) {
   2073  1.2       rin 			igc_rxdesc_sync(rxr, id,
   2074  1.2       rin 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2075  1.2       rin 			break;
   2076  1.2       rin 		}
   2077  1.2       rin 
   2078  1.2       rin 		if (limit-- == 0) {
   2079  1.2       rin 			igc_rxdesc_sync(rxr, id,
   2080  1.2       rin 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2081  1.2       rin 			DPRINTF(RX, "more=true\n");
   2082  1.2       rin 			more = true;
   2083  1.1       rin 			break;
   2084  1.1       rin 		}
   2085  1.1       rin 
   2086  1.1       rin 		/* Zero out the receive descriptors status. */
   2087  1.1       rin 		rxdesc->wb.upper.status_error = 0;
   2088  1.1       rin 
   2089  1.1       rin 		/* Pull the mbuf off the ring. */
   2090  1.2       rin 		rxbuf = &rxr->rx_buffers[id];
   2091  1.2       rin 		bus_dmamap_t map = rxbuf->map;
   2092  1.2       rin 		bus_dmamap_sync(rxr->rxdma.dma_tag, map,
   2093  1.2       rin 		    0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2094  1.2       rin 		bus_dmamap_unload(rxr->rxdma.dma_tag, map);
   2095  1.1       rin 
   2096  1.1       rin 		mp = rxbuf->buf;
   2097  1.2       rin 		rxbuf->buf = NULL;
   2098  1.2       rin 
   2099  1.2       rin 		const bool eop = staterr & IGC_RXD_STAT_EOP;
   2100  1.2       rin 		const uint16_t len = le16toh(rxdesc->wb.upper.length);
   2101  1.2       rin 
   2102  1.7     oster #if NVLAN > 0
   2103  1.2       rin 		const uint16_t vtag = le16toh(rxdesc->wb.upper.vlan);
   2104  1.7     oster #endif
   2105  1.2       rin 
   2106  1.2       rin 		const uint32_t ptype = le32toh(rxdesc->wb.lower.lo_dword.data) &
   2107  1.1       rin 		    IGC_PKTTYPE_MASK;
   2108  1.1       rin 
   2109  1.2       rin 		const uint32_t hash __unused =
   2110  1.2       rin 		    le32toh(rxdesc->wb.lower.hi_dword.rss);
   2111  1.2       rin 		const uint16_t hashtype __unused =
   2112  1.2       rin 		    le16toh(rxdesc->wb.lower.lo_dword.hs_rss.pkt_info) &
   2113  1.2       rin 		    IGC_RXDADV_RSSTYPE_MASK;
   2114  1.2       rin 
   2115  1.2       rin 		igc_rxdesc_sync(rxr, id,
   2116  1.2       rin 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2117  1.2       rin 
   2118  1.2       rin 		if (__predict_false(staterr & IGC_RXDEXT_STATERR_RXE)) {
   2119  1.1       rin 			if (rxbuf->fmp) {
   2120  1.1       rin 				m_freem(rxbuf->fmp);
   2121  1.1       rin 				rxbuf->fmp = NULL;
   2122  1.1       rin 			}
   2123  1.1       rin 
   2124  1.1       rin 			m_freem(mp);
   2125  1.2       rin 			m = NULL;
   2126  1.2       rin 
   2127  1.2       rin 			if_statinc(ifp, if_ierrors);
   2128  1.2       rin 			IGC_QUEUE_EVENT(q, rx_discard, 1);
   2129  1.2       rin 
   2130  1.2       rin 			DPRINTF(RX, "ierrors++\n");
   2131  1.2       rin 
   2132  1.1       rin 			goto next_desc;
   2133  1.1       rin 		}
   2134  1.1       rin 
   2135  1.2       rin 		if (__predict_false(mp == NULL)) {
   2136  1.1       rin 			panic("%s: igc_rxeof: NULL mbuf in slot %d "
   2137  1.2       rin 			    "(filled %d)", device_xname(sc->sc_dev),
   2138  1.2       rin 			    id, rxr->last_desc_filled);
   2139  1.1       rin 		}
   2140  1.1       rin 
   2141  1.1       rin 		if (!eop) {
   2142  1.1       rin 			/*
   2143  1.1       rin 			 * Figure out the next descriptor of this frame.
   2144  1.1       rin 			 */
   2145  1.2       rin 			int nextp = igc_rxdesc_incr(sc, id);
   2146  1.2       rin 
   2147  1.1       rin 			nxbuf = &rxr->rx_buffers[nextp];
   2148  1.2       rin 			/*
   2149  1.2       rin 			 * TODO prefetch(nxbuf);
   2150  1.2       rin 			 */
   2151  1.1       rin 		}
   2152  1.1       rin 
   2153  1.1       rin 		mp->m_len = len;
   2154  1.1       rin 
   2155  1.1       rin 		m = rxbuf->fmp;
   2156  1.2       rin 		rxbuf->fmp = NULL;
   2157  1.1       rin 
   2158  1.2       rin 		if (m != NULL) {
   2159  1.1       rin 			m->m_pkthdr.len += mp->m_len;
   2160  1.2       rin 		} else {
   2161  1.1       rin 			m = mp;
   2162  1.1       rin 			m->m_pkthdr.len = mp->m_len;
   2163  1.1       rin #if NVLAN > 0
   2164  1.2       rin 			if (staterr & IGC_RXD_STAT_VP)
   2165  1.2       rin 				vlan_set_tag(m, vtag);
   2166  1.1       rin #endif
   2167  1.1       rin 		}
   2168  1.1       rin 
   2169  1.1       rin 		/* Pass the head pointer on */
   2170  1.2       rin 		if (!eop) {
   2171  1.1       rin 			nxbuf->fmp = m;
   2172  1.1       rin 			m = NULL;
   2173  1.1       rin 			mp->m_next = nxbuf->buf;
   2174  1.1       rin 		} else {
   2175  1.2       rin 			m_set_rcvif(m, ifp);
   2176  1.2       rin 
   2177  1.2       rin 			m->m_pkthdr.csum_flags = igc_rx_checksum(q,
   2178  1.2       rin 			    ifp->if_capenable, staterr, ptype);
   2179  1.1       rin 
   2180  1.2       rin #ifdef notyet
   2181  1.1       rin 			if (hashtype != IGC_RXDADV_RSSTYPE_NONE) {
   2182  1.1       rin 				m->m_pkthdr.ph_flowid = hash;
   2183  1.1       rin 				SET(m->m_pkthdr.csum_flags, M_FLOWID);
   2184  1.1       rin 			}
   2185  1.2       rin 			ml_enqueue(&ml, m);
   2186  1.2       rin #endif
   2187  1.2       rin 
   2188  1.2       rin 			if_percpuq_enqueue(sc->sc_ipq, m);
   2189  1.1       rin 
   2190  1.2       rin 			if_statinc(ifp, if_ipackets);
   2191  1.2       rin 			IGC_QUEUE_EVENT(q, rx_packets, 1);
   2192  1.2       rin 			IGC_QUEUE_EVENT(q, rx_bytes, m->m_pkthdr.len);
   2193  1.1       rin 		}
   2194  1.2       rin  next_desc:
   2195  1.1       rin 		/* Advance our pointers to the next descriptor. */
   2196  1.2       rin 		id = igc_rxdesc_incr(sc, id);
   2197  1.1       rin 	}
   2198  1.1       rin 
   2199  1.2       rin 	DPRINTF(RX, "fill queue[%d]\n", rxr->me);
   2200  1.2       rin 	igc_rxrefill(rxr, id);
   2201  1.1       rin 
   2202  1.2       rin 	DPRINTF(RX, "%s n2c %d id %d\n",
   2203  1.2       rin 	    rxr->next_to_check == id ? "same" : "diff",
   2204  1.2       rin 	    rxr->next_to_check, id);
   2205  1.2       rin 	rxr->next_to_check = id;
   2206  1.2       rin 
   2207  1.2       rin #ifdef OPENBSD
   2208  1.1       rin 	if (!(staterr & IGC_RXD_STAT_DD))
   2209  1.1       rin 		return 0;
   2210  1.2       rin #endif
   2211  1.1       rin 
   2212  1.2       rin 	return more;
   2213  1.1       rin }
   2214  1.1       rin 
   2215  1.1       rin /*********************************************************************
   2216  1.1       rin  *
   2217  1.1       rin  *  Verify that the hardware indicated that the checksum is valid.
   2218  1.1       rin  *  Inform the stack about the status of checksum so that stack
   2219  1.1       rin  *  doesn't spend time verifying the checksum.
   2220  1.1       rin  *
   2221  1.1       rin  *********************************************************************/
   2222  1.2       rin static int
   2223  1.2       rin igc_rx_checksum(struct igc_queue *q, uint64_t capenable, uint32_t staterr,
   2224  1.2       rin     uint32_t ptype)
   2225  1.1       rin {
   2226  1.2       rin 	const uint16_t status = (uint16_t)staterr;
   2227  1.2       rin 	const uint8_t errors = (uint8_t)(staterr >> 24);
   2228  1.2       rin 	int flags = 0;
   2229  1.2       rin 
   2230  1.2       rin 	if ((status & IGC_RXD_STAT_IPCS) != 0 &&
   2231  1.2       rin 	    (capenable & IFCAP_CSUM_IPv4_Rx) != 0) {
   2232  1.2       rin 		IGC_DRIVER_EVENT(q, rx_ipcs, 1);
   2233  1.2       rin 		flags |= M_CSUM_IPv4;
   2234  1.2       rin 		if (__predict_false((errors & IGC_RXD_ERR_IPE) != 0)) {
   2235  1.2       rin 			IGC_DRIVER_EVENT(q, rx_ipcs_bad, 1);
   2236  1.2       rin 			flags |= M_CSUM_IPv4_BAD;
   2237  1.2       rin 		}
   2238  1.2       rin 	}
   2239  1.2       rin 
   2240  1.2       rin 	if ((status & IGC_RXD_STAT_TCPCS) != 0) {
   2241  1.2       rin 		IGC_DRIVER_EVENT(q, rx_tcpcs, 1);
   2242  1.2       rin 		if ((capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
   2243  1.2       rin 			flags |= M_CSUM_TCPv4;
   2244  1.2       rin 		if ((capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
   2245  1.2       rin 			flags |= M_CSUM_TCPv6;
   2246  1.2       rin 	}
   2247  1.1       rin 
   2248  1.2       rin 	if ((status & IGC_RXD_STAT_UDPCS) != 0) {
   2249  1.2       rin 		IGC_DRIVER_EVENT(q, rx_udpcs, 1);
   2250  1.2       rin 		if ((capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
   2251  1.2       rin 			flags |= M_CSUM_UDPv4;
   2252  1.2       rin 		if ((capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
   2253  1.2       rin 			flags |= M_CSUM_UDPv6;
   2254  1.1       rin 	}
   2255  1.1       rin 
   2256  1.2       rin 	if (__predict_false((errors & IGC_RXD_ERR_TCPE) != 0)) {
   2257  1.2       rin 		IGC_DRIVER_EVENT(q, rx_l4cs_bad, 1);
   2258  1.2       rin 		if ((flags & ~M_CSUM_IPv4) != 0)
   2259  1.2       rin 			flags |= M_CSUM_TCP_UDP_BAD;
   2260  1.1       rin 	}
   2261  1.2       rin 
   2262  1.2       rin 	return flags;
   2263  1.1       rin }
   2264  1.1       rin 
   2265  1.2       rin static void
   2266  1.1       rin igc_watchdog(struct ifnet * ifp)
   2267  1.1       rin {
   2268  1.1       rin }
   2269  1.1       rin 
   2270  1.2       rin static void
   2271  1.2       rin igc_tick(void *arg)
   2272  1.2       rin {
   2273  1.2       rin 	struct igc_softc *sc = arg;
   2274  1.2       rin 
   2275  1.2       rin 	mutex_enter(&sc->sc_core_lock);
   2276  1.2       rin 
   2277  1.2       rin 	if (__predict_false(sc->sc_core_stopping)) {
   2278  1.2       rin 		mutex_exit(&sc->sc_core_lock);
   2279  1.2       rin 		return;
   2280  1.2       rin 	}
   2281  1.2       rin 
   2282  1.2       rin 	/* XXX watchdog */
   2283  1.2       rin 	if (0) {
   2284  1.2       rin 		IGC_GLOBAL_EVENT(sc, watchdog, 1);
   2285  1.2       rin 	}
   2286  1.2       rin 
   2287  1.2       rin 	igc_update_counters(sc);
   2288  1.2       rin 
   2289  1.2       rin 	mutex_exit(&sc->sc_core_lock);
   2290  1.2       rin 
   2291  1.2       rin 	callout_schedule(&sc->sc_tick_ch, hz);
   2292  1.2       rin }
   2293  1.2       rin 
   2294  1.1       rin /*********************************************************************
   2295  1.1       rin  *
   2296  1.1       rin  *  Media Ioctl callback
   2297  1.1       rin  *
   2298  1.1       rin  *  This routine is called whenever the user queries the status of
   2299  1.1       rin  *  the interface using ifconfig.
   2300  1.1       rin  *
   2301  1.1       rin  **********************************************************************/
   2302  1.2       rin static void
   2303  1.1       rin igc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
   2304  1.1       rin {
   2305  1.1       rin 	struct igc_softc *sc = ifp->if_softc;
   2306  1.2       rin 	struct igc_hw *hw = &sc->hw;
   2307  1.1       rin 
   2308  1.1       rin 	igc_update_link_status(sc);
   2309  1.1       rin 
   2310  1.1       rin 	ifmr->ifm_status = IFM_AVALID;
   2311  1.1       rin 	ifmr->ifm_active = IFM_ETHER;
   2312  1.1       rin 
   2313  1.1       rin 	if (!sc->link_active) {
   2314  1.1       rin 		ifmr->ifm_active |= IFM_NONE;
   2315  1.1       rin 		return;
   2316  1.1       rin 	}
   2317  1.1       rin 
   2318  1.1       rin 	ifmr->ifm_status |= IFM_ACTIVE;
   2319  1.1       rin 
   2320  1.1       rin 	switch (sc->link_speed) {
   2321  1.1       rin 	case 10:
   2322  1.1       rin 		ifmr->ifm_active |= IFM_10_T;
   2323  1.1       rin 		break;
   2324  1.1       rin 	case 100:
   2325  1.1       rin 		ifmr->ifm_active |= IFM_100_TX;
   2326  1.2       rin 		break;
   2327  1.1       rin 	case 1000:
   2328  1.1       rin 		ifmr->ifm_active |= IFM_1000_T;
   2329  1.1       rin 		break;
   2330  1.1       rin 	case 2500:
   2331  1.2       rin 		ifmr->ifm_active |= IFM_2500_T;
   2332  1.2       rin 		break;
   2333  1.1       rin 	}
   2334  1.1       rin 
   2335  1.1       rin 	if (sc->link_duplex == FULL_DUPLEX)
   2336  1.1       rin 		ifmr->ifm_active |= IFM_FDX;
   2337  1.1       rin 	else
   2338  1.1       rin 		ifmr->ifm_active |= IFM_HDX;
   2339  1.2       rin 
   2340  1.2       rin 	switch (hw->fc.current_mode) {
   2341  1.2       rin 	case igc_fc_tx_pause:
   2342  1.2       rin 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
   2343  1.2       rin 		break;
   2344  1.2       rin 	case igc_fc_rx_pause:
   2345  1.2       rin 		ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
   2346  1.2       rin 		break;
   2347  1.2       rin 	case igc_fc_full:
   2348  1.2       rin 		ifmr->ifm_active |= IFM_FLOW |
   2349  1.2       rin 		    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   2350  1.2       rin 		break;
   2351  1.2       rin 	case igc_fc_none:
   2352  1.2       rin 	default:
   2353  1.2       rin 		break;
   2354  1.2       rin 	}
   2355  1.1       rin }
   2356  1.1       rin 
   2357  1.1       rin /*********************************************************************
   2358  1.1       rin  *
   2359  1.1       rin  *  Media Ioctl callback
   2360  1.1       rin  *
   2361  1.1       rin  *  This routine is called when the user changes speed/duplex using
   2362  1.1       rin  *  media/mediopt option with ifconfig.
   2363  1.1       rin  *
   2364  1.1       rin  **********************************************************************/
   2365  1.2       rin static int
   2366  1.1       rin igc_media_change(struct ifnet *ifp)
   2367  1.1       rin {
   2368  1.1       rin 	struct igc_softc *sc = ifp->if_softc;
   2369  1.1       rin 	struct ifmedia *ifm = &sc->media;
   2370  1.1       rin 
   2371  1.1       rin 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   2372  1.2       rin 		return EINVAL;
   2373  1.1       rin 
   2374  1.1       rin 	sc->hw.mac.autoneg = DO_AUTO_NEG;
   2375  1.1       rin 
   2376  1.1       rin 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
   2377  1.1       rin 	case IFM_AUTO:
   2378  1.1       rin 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
   2379  1.1       rin 		break;
   2380  1.2       rin 	case IFM_2500_T:
   2381  1.2       rin 		sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
   2382  1.2       rin 		break;
   2383  1.1       rin 	case IFM_1000_T:
   2384  1.1       rin 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
   2385  1.1       rin 		break;
   2386  1.1       rin 	case IFM_100_TX:
   2387  1.4   msaitoh 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
   2388  1.4   msaitoh 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
   2389  1.4   msaitoh 		else
   2390  1.1       rin 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
   2391  1.1       rin 		break;
   2392  1.1       rin 	case IFM_10_T:
   2393  1.4   msaitoh 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
   2394  1.4   msaitoh 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
   2395  1.4   msaitoh 		else
   2396  1.1       rin 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
   2397  1.1       rin 		break;
   2398  1.1       rin 	default:
   2399  1.1       rin 		return EINVAL;
   2400  1.1       rin 	}
   2401  1.1       rin 
   2402  1.2       rin 	igc_init_locked(sc);
   2403  1.1       rin 
   2404  1.1       rin 	return 0;
   2405  1.1       rin }
   2406  1.1       rin 
   2407  1.2       rin static int
   2408  1.2       rin igc_ifflags_cb(struct ethercom *ec)
   2409  1.2       rin {
   2410  1.2       rin 	struct ifnet *ifp = &ec->ec_if;
   2411  1.2       rin 	struct igc_softc *sc = ifp->if_softc;
   2412  1.2       rin 	int rc = 0;
   2413  1.2       rin 	u_short iffchange;
   2414  1.2       rin 	bool needreset = false;
   2415  1.2       rin 
   2416  1.2       rin 	DPRINTF(CFG, "called\n");
   2417  1.2       rin 
   2418  1.2       rin 	KASSERT(IFNET_LOCKED(ifp));
   2419  1.2       rin 
   2420  1.2       rin 	mutex_enter(&sc->sc_core_lock);
   2421  1.2       rin 
   2422  1.2       rin 	/*
   2423  1.2       rin 	 * Check for if_flags.
   2424  1.2       rin 	 * Main usage is to prevent linkdown when opening bpf.
   2425  1.2       rin 	 */
   2426  1.2       rin 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
   2427  1.2       rin 	sc->sc_if_flags = ifp->if_flags;
   2428  1.2       rin 	if ((iffchange & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
   2429  1.2       rin 		needreset = true;
   2430  1.2       rin 		goto ec;
   2431  1.2       rin 	}
   2432  1.2       rin 
   2433  1.2       rin 	/* iff related updates */
   2434  1.2       rin 	if ((iffchange & IFF_PROMISC) != 0)
   2435  1.2       rin 		igc_set_filter(sc);
   2436  1.2       rin 
   2437  1.2       rin #ifdef notyet
   2438  1.2       rin 	igc_set_vlan(sc);
   2439  1.2       rin #endif
   2440  1.2       rin 
   2441  1.2       rin ec:
   2442  1.2       rin #ifdef notyet
   2443  1.2       rin 	/* Check for ec_capenable. */
   2444  1.2       rin 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
   2445  1.2       rin 	sc->sc_ec_capenable = ec->ec_capenable;
   2446  1.2       rin 	if ((ecchange & ~ETHERCAP_SOMETHING) != 0) {
   2447  1.2       rin 		needreset = true;
   2448  1.2       rin 		goto out;
   2449  1.2       rin 	}
   2450  1.2       rin #endif
   2451  1.2       rin 	if (needreset)
   2452  1.2       rin 		rc = ENETRESET;
   2453  1.2       rin 
   2454  1.2       rin 	mutex_exit(&sc->sc_core_lock);
   2455  1.2       rin 
   2456  1.2       rin 	return rc;
   2457  1.2       rin }
   2458  1.2       rin 
   2459  1.2       rin static void
   2460  1.2       rin igc_set_filter(struct igc_softc *sc)
   2461  1.1       rin {
   2462  1.2       rin 	struct ethercom *ec = &sc->sc_ec;
   2463  1.2       rin 	uint32_t rctl;
   2464  1.2       rin 
   2465  1.2       rin 	rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
   2466  1.2       rin 	rctl &= ~(IGC_RCTL_BAM |IGC_RCTL_UPE | IGC_RCTL_MPE);
   2467  1.2       rin 
   2468  1.2       rin 	if ((sc->sc_if_flags & IFF_BROADCAST) != 0)
   2469  1.2       rin 		rctl |= IGC_RCTL_BAM;
   2470  1.2       rin 	if ((sc->sc_if_flags & IFF_PROMISC) != 0) {
   2471  1.2       rin 		DPRINTF(CFG, "promisc\n");
   2472  1.2       rin 		rctl |= IGC_RCTL_UPE;
   2473  1.2       rin 		ETHER_LOCK(ec);
   2474  1.2       rin  allmulti:
   2475  1.2       rin 		ec->ec_flags |= ETHER_F_ALLMULTI;
   2476  1.2       rin 		ETHER_UNLOCK(ec);
   2477  1.2       rin 		rctl |= IGC_RCTL_MPE;
   2478  1.1       rin 	} else {
   2479  1.2       rin 		struct ether_multistep step;
   2480  1.2       rin 		struct ether_multi *enm;
   2481  1.2       rin 		int mcnt = 0;
   2482  1.2       rin 
   2483  1.2       rin 		memset(sc->mta, 0, IGC_MTA_LEN);
   2484  1.2       rin 
   2485  1.2       rin 		ETHER_LOCK(ec);
   2486  1.2       rin 		ETHER_FIRST_MULTI(step, ec, enm);
   2487  1.1       rin 		while (enm != NULL) {
   2488  1.2       rin 			if (((memcmp(enm->enm_addrlo, enm->enm_addrhi,
   2489  1.2       rin 					ETHER_ADDR_LEN)) != 0) ||
   2490  1.2       rin 			    (mcnt >= MAX_NUM_MULTICAST_ADDRESSES)) {
   2491  1.2       rin 				/*
   2492  1.2       rin 				 * We must listen to a range of multicast
   2493  1.2       rin 				 * addresses. For now, just accept all
   2494  1.2       rin 				 * multicasts, rather than trying to set only
   2495  1.2       rin 				 * those filter bits needed to match the range.
   2496  1.2       rin 				 * (At this time, the only use of address
   2497  1.2       rin 				 * ranges is for IP multicast routing, for
   2498  1.2       rin 				 * which the range is big enough to require all
   2499  1.2       rin 				 * bits set.)
   2500  1.2       rin 				 */
   2501  1.2       rin 				goto allmulti;
   2502  1.2       rin 			}
   2503  1.2       rin 			DPRINTF(CFG, "%d: %s\n", mcnt,
   2504  1.2       rin 			    ether_sprintf(enm->enm_addrlo));
   2505  1.2       rin 			memcpy(&sc->mta[mcnt * ETHER_ADDR_LEN],
   2506  1.2       rin 			    enm->enm_addrlo, ETHER_ADDR_LEN);
   2507  1.2       rin 
   2508  1.1       rin 			mcnt++;
   2509  1.1       rin 			ETHER_NEXT_MULTI(step, enm);
   2510  1.1       rin 		}
   2511  1.2       rin 		ec->ec_flags &= ~ETHER_F_ALLMULTI;
   2512  1.2       rin 		ETHER_UNLOCK(ec);
   2513  1.1       rin 
   2514  1.2       rin 		DPRINTF(CFG, "hw filter\n");
   2515  1.2       rin 		igc_update_mc_addr_list(&sc->hw, sc->mta, mcnt);
   2516  1.1       rin 	}
   2517  1.1       rin 
   2518  1.2       rin 	IGC_WRITE_REG(&sc->hw, IGC_RCTL, rctl);
   2519  1.1       rin }
   2520  1.1       rin 
   2521  1.2       rin static void
   2522  1.1       rin igc_update_link_status(struct igc_softc *sc)
   2523  1.1       rin {
   2524  1.2       rin 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2525  1.1       rin 	struct igc_hw *hw = &sc->hw;
   2526  1.1       rin 
   2527  1.1       rin 	if (IGC_READ_REG(&sc->hw, IGC_STATUS) & IGC_STATUS_LU) {
   2528  1.1       rin 		if (sc->link_active == 0) {
   2529  1.1       rin 			igc_get_speed_and_duplex(hw, &sc->link_speed,
   2530  1.1       rin 			    &sc->link_duplex);
   2531  1.1       rin 			sc->link_active = 1;
   2532  1.1       rin 			ifp->if_baudrate = IF_Mbps(sc->link_speed);
   2533  1.2       rin 			if_link_state_change(ifp, LINK_STATE_UP);
   2534  1.1       rin 		}
   2535  1.1       rin 	} else {
   2536  1.1       rin 		if (sc->link_active == 1) {
   2537  1.1       rin 			ifp->if_baudrate = sc->link_speed = 0;
   2538  1.1       rin 			sc->link_duplex = 0;
   2539  1.1       rin 			sc->link_active = 0;
   2540  1.2       rin 			if_link_state_change(ifp, LINK_STATE_DOWN);
   2541  1.1       rin 		}
   2542  1.1       rin 	}
   2543  1.1       rin }
   2544  1.1       rin 
   2545  1.1       rin /*********************************************************************
   2546  1.1       rin  *
   2547  1.1       rin  *  Get a buffer from system mbuf buffer pool.
   2548  1.1       rin  *
   2549  1.1       rin  **********************************************************************/
   2550  1.2       rin static int
   2551  1.2       rin igc_get_buf(struct rx_ring *rxr, int id, bool strict)
   2552  1.1       rin {
   2553  1.1       rin 	struct igc_softc *sc = rxr->sc;
   2554  1.2       rin 	struct igc_queue *q = rxr->rxr_igcq;
   2555  1.2       rin 	struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
   2556  1.2       rin 	bus_dmamap_t map = rxbuf->map;
   2557  1.2       rin 	struct mbuf *m;
   2558  1.2       rin 	int error;
   2559  1.2       rin 
   2560  1.2       rin 	if (__predict_false(rxbuf->buf)) {
   2561  1.2       rin 		if (strict) {
   2562  1.2       rin 			DPRINTF(RX, "slot %d already has an mbuf\n", id);
   2563  1.2       rin 			return EINVAL;
   2564  1.2       rin 		}
   2565  1.2       rin 		return 0;
   2566  1.2       rin 	}
   2567  1.1       rin 
   2568  1.2       rin 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2569  1.2       rin 	if (__predict_false(m == NULL)) {
   2570  1.2       rin  enobuf:
   2571  1.2       rin 		IGC_QUEUE_EVENT(q, rx_no_mbuf, 1);
   2572  1.1       rin 		return ENOBUFS;
   2573  1.1       rin 	}
   2574  1.1       rin 
   2575  1.2       rin 	MCLGET(m, M_DONTWAIT);
   2576  1.2       rin 	if (__predict_false(!(m->m_flags & M_EXT))) {
   2577  1.2       rin 		m_freem(m);
   2578  1.2       rin 		goto enobuf;
   2579  1.2       rin 	}
   2580  1.1       rin 
   2581  1.1       rin 	m->m_len = m->m_pkthdr.len = sc->rx_mbuf_sz;
   2582  1.1       rin 
   2583  1.2       rin 	error = bus_dmamap_load_mbuf(rxr->rxdma.dma_tag, map, m,
   2584  1.2       rin 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   2585  1.1       rin 	if (error) {
   2586  1.1       rin 		m_freem(m);
   2587  1.1       rin 		return error;
   2588  1.1       rin 	}
   2589  1.1       rin 
   2590  1.2       rin 	bus_dmamap_sync(rxr->rxdma.dma_tag, map, 0,
   2591  1.2       rin 	    map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2592  1.1       rin 	rxbuf->buf = m;
   2593  1.1       rin 
   2594  1.2       rin 	union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
   2595  1.2       rin 	igc_rxdesc_sync(rxr, id, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
   2596  1.2       rin 	rxdesc->read.pkt_addr = htole64(map->dm_segs[0].ds_addr);
   2597  1.2       rin 	igc_rxdesc_sync(rxr, id, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   2598  1.1       rin 
   2599  1.1       rin 	return 0;
   2600  1.1       rin }
   2601  1.1       rin 
   2602  1.2       rin static void
   2603  1.1       rin igc_configure_queues(struct igc_softc *sc)
   2604  1.1       rin {
   2605  1.1       rin 	struct igc_hw *hw = &sc->hw;
   2606  1.2       rin 	uint32_t ivar;
   2607  1.1       rin 
   2608  1.1       rin 	/* First turn on RSS capability */
   2609  1.1       rin 	IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME |
   2610  1.1       rin 	    IGC_GPIE_PBA | IGC_GPIE_NSICR);
   2611  1.1       rin 
   2612  1.1       rin 	/* Set the starting interrupt rate */
   2613  1.2       rin 	uint32_t newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;
   2614  1.1       rin 	newitr |= IGC_EITR_CNT_IGNR;
   2615  1.1       rin 
   2616  1.1       rin 	/* Turn on MSI-X */
   2617  1.2       rin 	uint32_t newmask = 0;
   2618  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   2619  1.2       rin 		struct igc_queue *q = &sc->queues[iq];
   2620  1.2       rin 
   2621  1.1       rin 		/* RX entries */
   2622  1.2       rin 		igc_set_queues(sc, iq, q->msix, 0);
   2623  1.1       rin 		/* TX entries */
   2624  1.2       rin 		igc_set_queues(sc, iq, q->msix, 1);
   2625  1.2       rin 		newmask |= q->eims;
   2626  1.2       rin 		IGC_WRITE_REG(hw, IGC_EITR(q->msix), newitr);
   2627  1.2       rin 	}
   2628  1.2       rin 	sc->msix_queuesmask = newmask;
   2629  1.2       rin 
   2630  1.2       rin #if 1
   2631  1.2       rin 	ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 0);
   2632  1.2       rin 	DPRINTF(CFG, "ivar(0)=0x%x\n", ivar);
   2633  1.2       rin 	ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 1);
   2634  1.2       rin 	DPRINTF(CFG, "ivar(1)=0x%x\n", ivar);
   2635  1.2       rin #endif
   2636  1.1       rin 
   2637  1.1       rin 	/* And for the link interrupt */
   2638  1.1       rin 	ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
   2639  1.1       rin 	sc->msix_linkmask = 1 << sc->linkvec;
   2640  1.1       rin 	IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
   2641  1.1       rin }
   2642  1.1       rin 
   2643  1.2       rin static void
   2644  1.1       rin igc_set_queues(struct igc_softc *sc, uint32_t entry, uint32_t vector, int type)
   2645  1.1       rin {
   2646  1.1       rin 	struct igc_hw *hw = &sc->hw;
   2647  1.2       rin 	const uint32_t index = entry >> 1;
   2648  1.2       rin 	uint32_t ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
   2649  1.1       rin 
   2650  1.1       rin 	if (type) {
   2651  1.1       rin 		if (entry & 1) {
   2652  1.1       rin 			ivar &= 0x00FFFFFF;
   2653  1.1       rin 			ivar |= (vector | IGC_IVAR_VALID) << 24;
   2654  1.1       rin 		} else {
   2655  1.1       rin 			ivar &= 0xFFFF00FF;
   2656  1.1       rin 			ivar |= (vector | IGC_IVAR_VALID) << 8;
   2657  1.1       rin 		}
   2658  1.1       rin 	} else {
   2659  1.1       rin 		if (entry & 1) {
   2660  1.1       rin 			ivar &= 0xFF00FFFF;
   2661  1.1       rin 			ivar |= (vector | IGC_IVAR_VALID) << 16;
   2662  1.1       rin 		} else {
   2663  1.1       rin 			ivar &= 0xFFFFFF00;
   2664  1.1       rin 			ivar |= vector | IGC_IVAR_VALID;
   2665  1.1       rin 		}
   2666  1.1       rin 	}
   2667  1.1       rin 	IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
   2668  1.1       rin }
   2669  1.1       rin 
   2670  1.2       rin static void
   2671  1.1       rin igc_enable_queue(struct igc_softc *sc, uint32_t eims)
   2672  1.1       rin {
   2673  1.1       rin 	IGC_WRITE_REG(&sc->hw, IGC_EIMS, eims);
   2674  1.1       rin }
   2675  1.1       rin 
   2676  1.2       rin static void
   2677  1.1       rin igc_enable_intr(struct igc_softc *sc)
   2678  1.1       rin {
   2679  1.1       rin 	struct igc_hw *hw = &sc->hw;
   2680  1.1       rin 
   2681  1.2       rin 	if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
   2682  1.2       rin 		const uint32_t mask = sc->msix_queuesmask | sc->msix_linkmask;
   2683  1.2       rin 
   2684  1.2       rin 		IGC_WRITE_REG(hw, IGC_EIAC, mask);
   2685  1.2       rin 		IGC_WRITE_REG(hw, IGC_EIAM, mask);
   2686  1.2       rin 		IGC_WRITE_REG(hw, IGC_EIMS, mask);
   2687  1.2       rin 		IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
   2688  1.2       rin 	} else {
   2689  1.2       rin 		IGC_WRITE_REG(hw, IGC_IMS, IMS_ENABLE_MASK);
   2690  1.2       rin 	}
   2691  1.1       rin 	IGC_WRITE_FLUSH(hw);
   2692  1.1       rin }
   2693  1.1       rin 
   2694  1.2       rin static void
   2695  1.1       rin igc_disable_intr(struct igc_softc *sc)
   2696  1.1       rin {
   2697  1.1       rin 	struct igc_hw *hw = &sc->hw;
   2698  1.1       rin 
   2699  1.2       rin 	if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
   2700  1.2       rin 		IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
   2701  1.2       rin 		IGC_WRITE_REG(hw, IGC_EIAC, 0);
   2702  1.2       rin 	}
   2703  1.1       rin 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
   2704  1.1       rin 	IGC_WRITE_FLUSH(hw);
   2705  1.1       rin }
   2706  1.1       rin 
   2707  1.2       rin static int
   2708  1.1       rin igc_intr_link(void *arg)
   2709  1.1       rin {
   2710  1.1       rin 	struct igc_softc *sc = (struct igc_softc *)arg;
   2711  1.2       rin 	const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
   2712  1.2       rin 
   2713  1.2       rin 	IGC_GLOBAL_EVENT(sc, link, 1);
   2714  1.1       rin 
   2715  1.1       rin 	if (reg_icr & IGC_ICR_LSC) {
   2716  1.2       rin 		mutex_enter(&sc->sc_core_lock);
   2717  1.1       rin 		sc->hw.mac.get_link_status = true;
   2718  1.1       rin 		igc_update_link_status(sc);
   2719  1.2       rin 		mutex_exit(&sc->sc_core_lock);
   2720  1.1       rin 	}
   2721  1.1       rin 
   2722  1.1       rin 	IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
   2723  1.1       rin 	IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->msix_linkmask);
   2724  1.1       rin 
   2725  1.1       rin 	return 1;
   2726  1.1       rin }
   2727  1.1       rin 
   2728  1.2       rin static int
   2729  1.1       rin igc_intr_queue(void *arg)
   2730  1.1       rin {
   2731  1.1       rin 	struct igc_queue *iq = arg;
   2732  1.1       rin 	struct igc_softc *sc = iq->sc;
   2733  1.2       rin 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2734  1.2       rin 	struct rx_ring *rxr = iq->rxr;
   2735  1.2       rin 	struct tx_ring *txr = iq->txr;
   2736  1.2       rin 	const u_int txlimit = sc->sc_tx_intr_process_limit,
   2737  1.2       rin 		    rxlimit = sc->sc_rx_intr_process_limit;
   2738  1.2       rin 	bool txmore, rxmore;
   2739  1.2       rin 
   2740  1.2       rin 	IGC_QUEUE_EVENT(iq, irqs, 1);
   2741  1.2       rin 
   2742  1.2       rin 	if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
   2743  1.2       rin 		return 0;
   2744  1.2       rin 
   2745  1.2       rin 	mutex_enter(&txr->txr_lock);
   2746  1.2       rin 	txmore = igc_txeof(txr, txlimit);
   2747  1.2       rin 	mutex_exit(&txr->txr_lock);
   2748  1.2       rin 	mutex_enter(&rxr->rxr_lock);
   2749  1.2       rin 	rxmore = igc_rxeof(rxr, rxlimit);
   2750  1.2       rin 	mutex_exit(&rxr->rxr_lock);
   2751  1.2       rin 
   2752  1.2       rin 	if (txmore || rxmore) {
   2753  1.2       rin 		IGC_QUEUE_EVENT(iq, req, 1);
   2754  1.2       rin 		igc_sched_handle_queue(sc, iq);
   2755  1.2       rin 	} else {
   2756  1.2       rin 		igc_enable_queue(sc, iq->eims);
   2757  1.2       rin 	}
   2758  1.2       rin 
   2759  1.2       rin 	return 1;
   2760  1.2       rin }
   2761  1.2       rin 
   2762  1.2       rin static int
   2763  1.2       rin igc_intr(void *arg)
   2764  1.2       rin {
   2765  1.2       rin 	struct igc_softc *sc = arg;
   2766  1.2       rin 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   2767  1.2       rin 	struct igc_queue *iq = &sc->queues[0];
   2768  1.1       rin 	struct rx_ring *rxr = iq->rxr;
   2769  1.1       rin 	struct tx_ring *txr = iq->txr;
   2770  1.2       rin 	const u_int txlimit = sc->sc_tx_intr_process_limit,
   2771  1.2       rin 		    rxlimit = sc->sc_rx_intr_process_limit;
   2772  1.2       rin 	bool txmore, rxmore;
   2773  1.2       rin 
   2774  1.2       rin 	if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
   2775  1.2       rin 		return 0;
   2776  1.2       rin 
   2777  1.2       rin 	const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
   2778  1.2       rin 	DPRINTF(MISC, "reg_icr=0x%x\n", reg_icr);
   2779  1.2       rin 
   2780  1.2       rin 	/* Definitely not our interrupt. */
   2781  1.2       rin 	if (reg_icr == 0x0) {
   2782  1.2       rin 		DPRINTF(MISC, "not for me");
   2783  1.2       rin 		return 0;
   2784  1.2       rin 	}
   2785  1.2       rin 
   2786  1.2       rin 	IGC_QUEUE_EVENT(iq, irqs, 1);
   2787  1.2       rin 
   2788  1.2       rin 	/* Hot eject? */
   2789  1.2       rin 	if (__predict_false(reg_icr == 0xffffffff)) {
   2790  1.2       rin 		DPRINTF(MISC, "hot eject\n");
   2791  1.2       rin 		return 0;
   2792  1.2       rin 	}
   2793  1.2       rin 
   2794  1.2       rin 	if (__predict_false(!(reg_icr & IGC_ICR_INT_ASSERTED))) {
   2795  1.2       rin 		DPRINTF(MISC, "not set IGC_ICR_INT_ASSERTED");
   2796  1.2       rin 		return 0;
   2797  1.2       rin 	}
   2798  1.2       rin 
   2799  1.2       rin 	/*
   2800  1.2       rin 	 * Only MSI-X interrupts have one-shot behavior by taking advantage
   2801  1.2       rin 	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
   2802  1.2       rin 	 * also works around the MSI message reordering errata on certain
   2803  1.2       rin 	 * systems.
   2804  1.2       rin 	 */
   2805  1.2       rin 	igc_disable_intr(sc);
   2806  1.1       rin 
   2807  1.2       rin 	mutex_enter(&txr->txr_lock);
   2808  1.2       rin 	txmore = igc_txeof(txr, txlimit);
   2809  1.2       rin 	mutex_exit(&txr->txr_lock);
   2810  1.2       rin 	mutex_enter(&rxr->rxr_lock);
   2811  1.2       rin 	rxmore = igc_rxeof(rxr, rxlimit);
   2812  1.2       rin 	mutex_exit(&rxr->rxr_lock);
   2813  1.2       rin 
   2814  1.2       rin 	/* Link status change */
   2815  1.2       rin 	// XXXX FreeBSD checks IGC_ICR_RXSEQ
   2816  1.2       rin 	if (__predict_false(reg_icr & IGC_ICR_LSC)) {
   2817  1.2       rin 		IGC_GLOBAL_EVENT(sc, link, 1);
   2818  1.2       rin 		mutex_enter(&sc->sc_core_lock);
   2819  1.2       rin 		sc->hw.mac.get_link_status = true;
   2820  1.2       rin 		igc_update_link_status(sc);
   2821  1.2       rin 		mutex_exit(&sc->sc_core_lock);
   2822  1.1       rin 	}
   2823  1.1       rin 
   2824  1.2       rin 	if (txmore || rxmore) {
   2825  1.2       rin 		IGC_QUEUE_EVENT(iq, req, 1);
   2826  1.2       rin 		igc_sched_handle_queue(sc, iq);
   2827  1.2       rin 	} else {
   2828  1.2       rin 		igc_enable_intr(sc);
   2829  1.2       rin 	}
   2830  1.1       rin 
   2831  1.1       rin 	return 1;
   2832  1.1       rin }
   2833  1.1       rin 
   2834  1.2       rin static void
   2835  1.2       rin igc_handle_queue(void *arg)
   2836  1.2       rin {
   2837  1.2       rin 	struct igc_queue *iq = arg;
   2838  1.2       rin 	struct igc_softc *sc = iq->sc;
   2839  1.2       rin 	struct tx_ring *txr = iq->txr;
   2840  1.2       rin 	struct rx_ring *rxr = iq->rxr;
   2841  1.2       rin 	const u_int txlimit = sc->sc_tx_process_limit,
   2842  1.2       rin 		    rxlimit = sc->sc_rx_process_limit;
   2843  1.2       rin 	bool txmore, rxmore;
   2844  1.2       rin 
   2845  1.2       rin 	IGC_QUEUE_EVENT(iq, handleq, 1);
   2846  1.2       rin 
   2847  1.2       rin 	mutex_enter(&txr->txr_lock);
   2848  1.2       rin 	txmore = igc_txeof(txr, txlimit);
   2849  1.2       rin 	/* for ALTQ, dequeue from if_snd */
   2850  1.2       rin 	if (txr->me == 0) {
   2851  1.2       rin 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   2852  1.2       rin 
   2853  1.2       rin 		igc_tx_common_locked(ifp, txr, IGC_TX_START);
   2854  1.2       rin 	}
   2855  1.2       rin 	mutex_exit(&txr->txr_lock);
   2856  1.2       rin 
   2857  1.2       rin 	mutex_enter(&rxr->rxr_lock);
   2858  1.2       rin 	rxmore = igc_rxeof(rxr, rxlimit);
   2859  1.2       rin 	mutex_exit(&rxr->rxr_lock);
   2860  1.2       rin 
   2861  1.2       rin 	if (txmore || rxmore) {
   2862  1.2       rin 		igc_sched_handle_queue(sc, iq);
   2863  1.2       rin 	} else {
   2864  1.2       rin 		if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
   2865  1.2       rin 			igc_enable_queue(sc, iq->eims);
   2866  1.2       rin 		else
   2867  1.2       rin 			igc_enable_intr(sc);
   2868  1.2       rin 	}
   2869  1.2       rin }
   2870  1.2       rin 
   2871  1.2       rin static void
   2872  1.2       rin igc_handle_queue_work(struct work *wk, void *context)
   2873  1.2       rin {
   2874  1.2       rin 	struct igc_queue *iq =
   2875  1.2       rin 	    container_of(wk, struct igc_queue, igcq_wq_cookie);
   2876  1.2       rin 
   2877  1.2       rin 	igc_handle_queue(iq);
   2878  1.2       rin }
   2879  1.2       rin 
   2880  1.2       rin static void
   2881  1.2       rin igc_sched_handle_queue(struct igc_softc *sc, struct igc_queue *iq)
   2882  1.2       rin {
   2883  1.2       rin 
   2884  1.2       rin 	if (iq->igcq_workqueue) {
   2885  1.2       rin 		/* XXXRO notyet */
   2886  1.2       rin 		workqueue_enqueue(sc->sc_queue_wq, &iq->igcq_wq_cookie,
   2887  1.2       rin 		    curcpu());
   2888  1.2       rin 	} else {
   2889  1.2       rin 		softint_schedule(iq->igcq_si);
   2890  1.2       rin 	}
   2891  1.2       rin }
   2892  1.2       rin 
   2893  1.2       rin static void
   2894  1.2       rin igc_barrier_handle_queue(struct igc_softc *sc)
   2895  1.2       rin {
   2896  1.2       rin 
   2897  1.2       rin 	if (sc->sc_txrx_workqueue) {
   2898  1.2       rin 		for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   2899  1.2       rin 			struct igc_queue *q = &sc->queues[iq];
   2900  1.2       rin 
   2901  1.2       rin 			workqueue_wait(sc->sc_queue_wq, &q->igcq_wq_cookie);
   2902  1.2       rin 		}
   2903  1.2       rin 	} else {
   2904  1.2       rin 		xc_barrier(0);
   2905  1.2       rin 	}
   2906  1.2       rin }
   2907  1.2       rin 
   2908  1.1       rin /*********************************************************************
   2909  1.1       rin  *
   2910  1.1       rin  *  Allocate memory for tx_buffer structures. The tx_buffer stores all
   2911  1.1       rin  *  the information needed to transmit a packet on the wire.
   2912  1.1       rin  *
   2913  1.1       rin  **********************************************************************/
   2914  1.2       rin static int
   2915  1.1       rin igc_allocate_transmit_buffers(struct tx_ring *txr)
   2916  1.1       rin {
   2917  1.1       rin 	struct igc_softc *sc = txr->sc;
   2918  1.2       rin 	int error;
   2919  1.1       rin 
   2920  1.2       rin 	txr->tx_buffers =
   2921  1.2       rin 	    kmem_zalloc(sc->num_tx_desc * sizeof(struct igc_tx_buf), KM_SLEEP);
   2922  1.1       rin 	txr->txtag = txr->txdma.dma_tag;
   2923  1.1       rin 
   2924  1.1       rin 	/* Create the descriptor buffer dma maps. */
   2925  1.2       rin 	for (int id = 0; id < sc->num_tx_desc; id++) {
   2926  1.2       rin 		struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
   2927  1.2       rin 
   2928  1.2       rin 		error = bus_dmamap_create(txr->txdma.dma_tag,
   2929  1.2       rin 		    round_page(IGC_TSO_SIZE + sizeof(struct ether_vlan_header)),
   2930  1.1       rin 		    IGC_MAX_SCATTER, PAGE_SIZE, 0, BUS_DMA_NOWAIT, &txbuf->map);
   2931  1.1       rin 		if (error != 0) {
   2932  1.2       rin 			aprint_error_dev(sc->sc_dev,
   2933  1.2       rin 			    "unable to create TX DMA map\n");
   2934  1.1       rin 			goto fail;
   2935  1.1       rin 		}
   2936  1.2       rin 
   2937  1.2       rin 		txbuf->eop_index = -1;
   2938  1.1       rin 	}
   2939  1.1       rin 
   2940  1.1       rin 	return 0;
   2941  1.2       rin  fail:
   2942  1.1       rin 	return error;
   2943  1.1       rin }
   2944  1.1       rin 
   2945  1.1       rin 
   2946  1.1       rin /*********************************************************************
   2947  1.1       rin  *
   2948  1.1       rin  *  Allocate and initialize transmit structures.
   2949  1.1       rin  *
   2950  1.1       rin  **********************************************************************/
   2951  1.2       rin static int
   2952  1.1       rin igc_setup_transmit_structures(struct igc_softc *sc)
   2953  1.1       rin {
   2954  1.1       rin 
   2955  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   2956  1.2       rin 		struct tx_ring *txr = &sc->tx_rings[iq];
   2957  1.2       rin 
   2958  1.1       rin 		if (igc_setup_transmit_ring(txr))
   2959  1.1       rin 			goto fail;
   2960  1.1       rin 	}
   2961  1.1       rin 
   2962  1.1       rin 	return 0;
   2963  1.2       rin  fail:
   2964  1.1       rin 	igc_free_transmit_structures(sc);
   2965  1.1       rin 	return ENOBUFS;
   2966  1.1       rin }
   2967  1.1       rin 
   2968  1.1       rin /*********************************************************************
   2969  1.1       rin  *
   2970  1.1       rin  *  Initialize a transmit ring.
   2971  1.1       rin  *
   2972  1.1       rin  **********************************************************************/
   2973  1.2       rin static int
   2974  1.1       rin igc_setup_transmit_ring(struct tx_ring *txr)
   2975  1.1       rin {
   2976  1.1       rin 	struct igc_softc *sc = txr->sc;
   2977  1.1       rin 
   2978  1.1       rin 	/* Now allocate transmit buffers for the ring. */
   2979  1.1       rin 	if (igc_allocate_transmit_buffers(txr))
   2980  1.1       rin 		return ENOMEM;
   2981  1.1       rin 
   2982  1.1       rin 	/* Clear the old ring contents */
   2983  1.2       rin 	memset(txr->tx_base, 0,
   2984  1.2       rin 	    sizeof(union igc_adv_tx_desc) * sc->num_tx_desc);
   2985  1.1       rin 
   2986  1.1       rin 	/* Reset indices. */
   2987  1.1       rin 	txr->next_avail_desc = 0;
   2988  1.1       rin 	txr->next_to_clean = 0;
   2989  1.1       rin 
   2990  1.1       rin 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
   2991  1.1       rin 	    txr->txdma.dma_map->dm_mapsize,
   2992  1.1       rin 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2993  1.1       rin 
   2994  1.2       rin 	txr->txr_interq = pcq_create(sc->num_tx_desc, KM_SLEEP);
   2995  1.2       rin 
   2996  1.2       rin 	mutex_init(&txr->txr_lock, MUTEX_DEFAULT, IPL_NET);
   2997  1.2       rin 
   2998  1.1       rin 	return 0;
   2999  1.1       rin }
   3000  1.1       rin 
   3001  1.1       rin /*********************************************************************
   3002  1.1       rin  *
   3003  1.1       rin  *  Enable transmit unit.
   3004  1.1       rin  *
   3005  1.1       rin  **********************************************************************/
   3006  1.2       rin static void
   3007  1.1       rin igc_initialize_transmit_unit(struct igc_softc *sc)
   3008  1.1       rin {
   3009  1.2       rin 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   3010  1.1       rin 	struct igc_hw *hw = &sc->hw;
   3011  1.1       rin 
   3012  1.1       rin 	/* Setup the Base and Length of the TX descriptor ring. */
   3013  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   3014  1.2       rin 		struct tx_ring *txr = &sc->tx_rings[iq];
   3015  1.2       rin 		const uint64_t bus_addr =
   3016  1.2       rin 		    txr->txdma.dma_map->dm_segs[0].ds_addr;
   3017  1.1       rin 
   3018  1.1       rin 		/* Base and len of TX ring */
   3019  1.2       rin 		IGC_WRITE_REG(hw, IGC_TDLEN(iq),
   3020  1.1       rin 		    sc->num_tx_desc * sizeof(union igc_adv_tx_desc));
   3021  1.2       rin 		IGC_WRITE_REG(hw, IGC_TDBAH(iq), (uint32_t)(bus_addr >> 32));
   3022  1.2       rin 		IGC_WRITE_REG(hw, IGC_TDBAL(iq), (uint32_t)bus_addr);
   3023  1.1       rin 
   3024  1.1       rin 		/* Init the HEAD/TAIL indices */
   3025  1.2       rin 		IGC_WRITE_REG(hw, IGC_TDT(iq), 0 /* XXX txr->next_avail_desc */);
   3026  1.2       rin 		IGC_WRITE_REG(hw, IGC_TDH(iq), 0);
   3027  1.1       rin 
   3028  1.1       rin 		txr->watchdog_timer = 0;
   3029  1.1       rin 
   3030  1.2       rin 		uint32_t txdctl = 0;	/* Clear txdctl */
   3031  1.1       rin 		txdctl |= 0x1f;		/* PTHRESH */
   3032  1.1       rin 		txdctl |= 1 << 8;	/* HTHRESH */
   3033  1.1       rin 		txdctl |= 1 << 16;	/* WTHRESH */
   3034  1.1       rin 		txdctl |= 1 << 22;	/* Reserved bit 22 must always be 1 */
   3035  1.1       rin 		txdctl |= IGC_TXDCTL_GRAN;
   3036  1.1       rin 		txdctl |= 1 << 25;	/* LWTHRESH */
   3037  1.1       rin 
   3038  1.2       rin 		IGC_WRITE_REG(hw, IGC_TXDCTL(iq), txdctl);
   3039  1.1       rin 	}
   3040  1.1       rin 	ifp->if_timer = 0;
   3041  1.1       rin 
   3042  1.1       rin 	/* Program the Transmit Control Register */
   3043  1.2       rin 	uint32_t tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
   3044  1.1       rin 	tctl &= ~IGC_TCTL_CT;
   3045  1.1       rin 	tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
   3046  1.1       rin 	    (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
   3047  1.1       rin 
   3048  1.1       rin 	/* This write will effectively turn on the transmit unit. */
   3049  1.1       rin 	IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
   3050  1.1       rin }
   3051  1.1       rin 
   3052  1.1       rin /*********************************************************************
   3053  1.1       rin  *
   3054  1.1       rin  *  Free all transmit rings.
   3055  1.1       rin  *
   3056  1.1       rin  **********************************************************************/
   3057  1.2       rin static void
   3058  1.1       rin igc_free_transmit_structures(struct igc_softc *sc)
   3059  1.1       rin {
   3060  1.1       rin 
   3061  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   3062  1.2       rin 		struct tx_ring *txr = &sc->tx_rings[iq];
   3063  1.2       rin 
   3064  1.1       rin 		igc_free_transmit_buffers(txr);
   3065  1.2       rin 	}
   3066  1.1       rin }
   3067  1.1       rin 
   3068  1.1       rin /*********************************************************************
   3069  1.1       rin  *
   3070  1.1       rin  *  Free transmit ring related data structures.
   3071  1.1       rin  *
   3072  1.1       rin  **********************************************************************/
   3073  1.2       rin static void
   3074  1.1       rin igc_free_transmit_buffers(struct tx_ring *txr)
   3075  1.1       rin {
   3076  1.1       rin 	struct igc_softc *sc = txr->sc;
   3077  1.1       rin 
   3078  1.1       rin 	if (txr->tx_buffers == NULL)
   3079  1.1       rin 		return;
   3080  1.1       rin 
   3081  1.2       rin 	igc_withdraw_transmit_packets(txr, true);
   3082  1.2       rin 
   3083  1.2       rin 	kmem_free(txr->tx_buffers,
   3084  1.2       rin 	    sc->num_tx_desc * sizeof(struct igc_tx_buf));
   3085  1.2       rin 	txr->tx_buffers = NULL;
   3086  1.2       rin 	txr->txtag = NULL;
   3087  1.2       rin 
   3088  1.2       rin 	pcq_destroy(txr->txr_interq);
   3089  1.2       rin 	mutex_destroy(&txr->txr_lock);
   3090  1.2       rin }
   3091  1.2       rin 
   3092  1.2       rin /*********************************************************************
   3093  1.2       rin  *
   3094  1.2       rin  *  Withdraw transmit packets.
   3095  1.2       rin  *
   3096  1.2       rin  **********************************************************************/
   3097  1.2       rin static void
   3098  1.2       rin igc_withdraw_transmit_packets(struct tx_ring *txr, bool destroy)
   3099  1.2       rin {
   3100  1.2       rin 	struct igc_softc *sc = txr->sc;
   3101  1.2       rin 	struct igc_queue *q = txr->txr_igcq;
   3102  1.2       rin 
   3103  1.2       rin 	mutex_enter(&txr->txr_lock);
   3104  1.2       rin 
   3105  1.2       rin 	for (int id = 0; id < sc->num_tx_desc; id++) {
   3106  1.2       rin 		union igc_adv_tx_desc *txdesc = &txr->tx_base[id];
   3107  1.2       rin 
   3108  1.2       rin 		igc_txdesc_sync(txr, id,
   3109  1.2       rin 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   3110  1.2       rin 		txdesc->read.buffer_addr = 0;
   3111  1.2       rin 		txdesc->read.cmd_type_len = 0;
   3112  1.2       rin 		txdesc->read.olinfo_status = 0;
   3113  1.2       rin 		igc_txdesc_sync(txr, id,
   3114  1.2       rin 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3115  1.2       rin 
   3116  1.2       rin 		struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
   3117  1.2       rin 		bus_dmamap_t map = txbuf->map;
   3118  1.2       rin 
   3119  1.2       rin 		if (map != NULL && map->dm_nsegs > 0) {
   3120  1.2       rin 			bus_dmamap_sync(txr->txdma.dma_tag, map,
   3121  1.2       rin 			    0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3122  1.2       rin 			bus_dmamap_unload(txr->txdma.dma_tag, map);
   3123  1.1       rin 		}
   3124  1.1       rin 		if (txbuf->m_head != NULL) {
   3125  1.1       rin 			m_freem(txbuf->m_head);
   3126  1.1       rin 			txbuf->m_head = NULL;
   3127  1.1       rin 		}
   3128  1.2       rin 		if (map != NULL && destroy) {
   3129  1.2       rin 			bus_dmamap_destroy(txr->txdma.dma_tag, map);
   3130  1.1       rin 			txbuf->map = NULL;
   3131  1.1       rin 		}
   3132  1.2       rin 		txbuf->eop_index = -1;
   3133  1.2       rin 
   3134  1.2       rin 		txr->next_avail_desc = 0;
   3135  1.2       rin 		txr->next_to_clean = 0;
   3136  1.2       rin 	}
   3137  1.2       rin 
   3138  1.2       rin 	struct mbuf *m;
   3139  1.2       rin 	while ((m = pcq_get(txr->txr_interq)) != NULL) {
   3140  1.2       rin 		IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
   3141  1.2       rin 		m_freem(m);
   3142  1.1       rin 	}
   3143  1.1       rin 
   3144  1.2       rin 	mutex_exit(&txr->txr_lock);
   3145  1.1       rin }
   3146  1.1       rin 
   3147  1.1       rin 
   3148  1.1       rin /*********************************************************************
   3149  1.1       rin  *
   3150  1.1       rin  *  Advanced Context Descriptor setup for VLAN, CSUM or TSO
   3151  1.1       rin  *
   3152  1.1       rin  **********************************************************************/
   3153  1.1       rin 
   3154  1.2       rin static int
   3155  1.1       rin igc_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
   3156  1.2       rin     uint32_t *cmd_type_len, uint32_t *olinfo_status)
   3157  1.1       rin {
   3158  1.2       rin 	struct ether_vlan_header *evl;
   3159  1.1       rin 	uint32_t type_tucmd_mlhl = 0;
   3160  1.1       rin 	uint32_t vlan_macip_lens = 0;
   3161  1.2       rin 	uint32_t ehlen, iphlen;
   3162  1.2       rin 	uint16_t ehtype;
   3163  1.1       rin 	int off = 0;
   3164  1.1       rin 
   3165  1.2       rin 	const int csum_flags = mp->m_pkthdr.csum_flags;
   3166  1.2       rin 
   3167  1.2       rin 	/* First check if TSO is to be used */
   3168  1.2       rin 	if ((csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
   3169  1.2       rin 		return igc_tso_setup(txr, mp, prod, cmd_type_len,
   3170  1.2       rin 		    olinfo_status);
   3171  1.2       rin 	}
   3172  1.2       rin 
   3173  1.2       rin 	const bool v4 = (csum_flags &
   3174  1.2       rin 	    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0;
   3175  1.2       rin 	const bool v6 = (csum_flags & (M_CSUM_UDPv6 | M_CSUM_TCPv6)) != 0;
   3176  1.2       rin 
   3177  1.2       rin 	/* Indicate the whole packet as payload when not doing TSO */
   3178  1.2       rin 	*olinfo_status |= mp->m_pkthdr.len << IGC_ADVTXD_PAYLEN_SHIFT;
   3179  1.1       rin 
   3180  1.1       rin 	/*
   3181  1.1       rin 	 * In advanced descriptors the vlan tag must
   3182  1.1       rin 	 * be placed into the context descriptor. Hence
   3183  1.1       rin 	 * we need to make one even if not doing offloads.
   3184  1.1       rin 	 */
   3185  1.1       rin #if NVLAN > 0
   3186  1.2       rin 	if (vlan_has_tag(mp)) {
   3187  1.2       rin 		vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
   3188  1.2       rin 		    << IGC_ADVTXD_VLAN_SHIFT;
   3189  1.1       rin 		off = 1;
   3190  1.2       rin 	} else
   3191  1.2       rin #endif
   3192  1.2       rin 	if (!v4 && !v6)
   3193  1.2       rin 		return 0;
   3194  1.2       rin 
   3195  1.2       rin 	KASSERT(mp->m_len >= sizeof(struct ether_header));
   3196  1.2       rin 	evl = mtod(mp, struct ether_vlan_header *);
   3197  1.2       rin 	if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
   3198  1.2       rin 		KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
   3199  1.2       rin 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3200  1.2       rin 		ehtype = evl->evl_proto;
   3201  1.2       rin 	} else {
   3202  1.2       rin 		ehlen = ETHER_HDR_LEN;
   3203  1.2       rin 		ehtype = evl->evl_encap_proto;
   3204  1.1       rin 	}
   3205  1.1       rin 
   3206  1.2       rin 	vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
   3207  1.2       rin 
   3208  1.2       rin #ifdef IGC_DEBUG
   3209  1.2       rin 	/*
   3210  1.2       rin 	 * For checksum offloading, L3 headers are not mandatory.
   3211  1.2       rin 	 * We use these only for consistency checks.
   3212  1.2       rin 	 */
   3213  1.2       rin 	struct ip *ip;
   3214  1.2       rin 	struct ip6_hdr *ip6;
   3215  1.2       rin 	uint8_t ipproto;
   3216  1.2       rin 	char *l3d;
   3217  1.1       rin 
   3218  1.2       rin 	if (mp->m_len == ehlen && mp->m_next != NULL)
   3219  1.2       rin 		l3d = mtod(mp->m_next, char *);
   3220  1.2       rin 	else
   3221  1.2       rin 		l3d = mtod(mp, char *) + ehlen;
   3222  1.2       rin #endif
   3223  1.1       rin 
   3224  1.2       rin 	switch (ntohs(ehtype)) {
   3225  1.2       rin 	case ETHERTYPE_IP:
   3226  1.2       rin 		iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
   3227  1.1       rin 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
   3228  1.2       rin 
   3229  1.2       rin 		if ((csum_flags & M_CSUM_IPv4) != 0) {
   3230  1.1       rin 			*olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
   3231  1.1       rin 			off = 1;
   3232  1.1       rin 		}
   3233  1.2       rin #ifdef IGC_DEBUG
   3234  1.2       rin 		KASSERT(!v6);
   3235  1.2       rin 		ip = (void *)l3d;
   3236  1.2       rin 		ipproto = ip->ip_p;
   3237  1.2       rin 		KASSERT(iphlen == ip->ip_hl << 2);
   3238  1.2       rin 		KASSERT((mp->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0 ||
   3239  1.2       rin 		    ip->ip_sum == 0);
   3240  1.2       rin #endif
   3241  1.2       rin 		break;
   3242  1.2       rin 	case ETHERTYPE_IPV6:
   3243  1.2       rin 		iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
   3244  1.1       rin 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
   3245  1.2       rin #ifdef IGC_DEBUG
   3246  1.2       rin 		KASSERT(!v4);
   3247  1.2       rin 		ip6 = (void *)l3d;
   3248  1.2       rin 		ipproto = ip6->ip6_nxt;	/* XXX */
   3249  1.2       rin 		KASSERT(iphlen == sizeof(struct ip6_hdr));
   3250  1.2       rin #endif
   3251  1.2       rin 		break;
   3252  1.2       rin 	default:
   3253  1.2       rin 		/*
   3254  1.2       rin 		 * Unknown L3 protocol. Clear L3 header length and proceed for
   3255  1.2       rin 		 * LAN as done by Linux driver.
   3256  1.2       rin 		 */
   3257  1.2       rin 		iphlen = 0;
   3258  1.2       rin #ifdef IGC_DEBUG
   3259  1.2       rin 		KASSERT(!v4 && !v6);
   3260  1.2       rin 		ipproto = 0;
   3261  1.1       rin #endif
   3262  1.2       rin 		break;
   3263  1.1       rin 	}
   3264  1.1       rin 
   3265  1.1       rin 	vlan_macip_lens |= iphlen;
   3266  1.1       rin 
   3267  1.2       rin 	const bool tcp = (csum_flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0;
   3268  1.2       rin 	const bool udp = (csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0;
   3269  1.2       rin 
   3270  1.2       rin 	if (tcp) {
   3271  1.2       rin #ifdef IGC_DEBUG
   3272  1.2       rin 		KASSERTMSG(ipproto == IPPROTO_TCP, "ipproto = %d", ipproto);
   3273  1.2       rin #endif
   3274  1.1       rin 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
   3275  1.2       rin 		*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
   3276  1.2       rin 		off = 1;
   3277  1.2       rin 	} else if (udp) {
   3278  1.2       rin #ifdef IGC_DEBUG
   3279  1.2       rin 		KASSERTMSG(ipproto == IPPROTO_UDP, "ipproto = %d", ipproto);
   3280  1.2       rin #endif
   3281  1.1       rin 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
   3282  1.2       rin 		*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
   3283  1.2       rin 		off = 1;
   3284  1.1       rin 	}
   3285  1.1       rin 
   3286  1.1       rin 	if (off == 0)
   3287  1.1       rin 		return 0;
   3288  1.1       rin 
   3289  1.2       rin 	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
   3290  1.2       rin 
   3291  1.1       rin 	/* Now ready a context descriptor */
   3292  1.2       rin 	struct igc_adv_tx_context_desc *txdesc =
   3293  1.2       rin 	    (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
   3294  1.1       rin 
   3295  1.1       rin 	/* Now copy bits into descriptor */
   3296  1.2       rin 	igc_txdesc_sync(txr, prod,
   3297  1.2       rin 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   3298  1.1       rin 	htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
   3299  1.1       rin 	htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
   3300  1.1       rin 	htolem32(&txdesc->seqnum_seed, 0);
   3301  1.1       rin 	htolem32(&txdesc->mss_l4len_idx, 0);
   3302  1.2       rin 	igc_txdesc_sync(txr, prod,
   3303  1.2       rin 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3304  1.2       rin 
   3305  1.2       rin 	return 1;
   3306  1.2       rin }
   3307  1.2       rin 
   3308  1.2       rin /*********************************************************************
   3309  1.2       rin  *
   3310  1.2       rin  *  Advanced Context Descriptor setup for TSO
   3311  1.2       rin  *
   3312  1.2       rin  *  XXX XXXRO
   3313  1.2       rin  *	Not working. Some packets are sent with correct csums, but
   3314  1.2       rin  *	others aren't. th->th_sum may be adjusted.
   3315  1.2       rin  *
   3316  1.2       rin  **********************************************************************/
   3317  1.2       rin 
   3318  1.2       rin static int
   3319  1.2       rin igc_tso_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
   3320  1.2       rin     uint32_t *cmd_type_len, uint32_t *olinfo_status)
   3321  1.2       rin {
   3322  1.2       rin #if 1 /* notyet */
   3323  1.2       rin 	return 0;
   3324  1.2       rin #else
   3325  1.2       rin 	struct ether_vlan_header *evl;
   3326  1.2       rin 	struct ip *ip;
   3327  1.2       rin 	struct ip6_hdr *ip6;
   3328  1.2       rin 	struct tcphdr *th;
   3329  1.2       rin 	uint32_t type_tucmd_mlhl = 0;
   3330  1.2       rin 	uint32_t vlan_macip_lens = 0;
   3331  1.2       rin 	uint32_t mss_l4len_idx = 0;
   3332  1.2       rin 	uint32_t ehlen, iphlen, tcphlen, paylen;
   3333  1.2       rin 	uint16_t ehtype;
   3334  1.2       rin 
   3335  1.2       rin 	/*
   3336  1.2       rin 	 * In advanced descriptors the vlan tag must
   3337  1.2       rin 	 * be placed into the context descriptor. Hence
   3338  1.2       rin 	 * we need to make one even if not doing offloads.
   3339  1.2       rin 	 */
   3340  1.2       rin #if NVLAN > 0
   3341  1.2       rin 	if (vlan_has_tag(mp)) {
   3342  1.2       rin 		vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
   3343  1.2       rin 		    << IGC_ADVTXD_VLAN_SHIFT;
   3344  1.2       rin 	}
   3345  1.2       rin #endif
   3346  1.2       rin 
   3347  1.2       rin 	KASSERT(mp->m_len >= sizeof(struct ether_header));
   3348  1.2       rin 	evl = mtod(mp, struct ether_vlan_header *);
   3349  1.2       rin 	if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
   3350  1.2       rin 		KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
   3351  1.2       rin 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   3352  1.2       rin 		ehtype = evl->evl_proto;
   3353  1.2       rin 	} else {
   3354  1.2       rin 		ehlen = ETHER_HDR_LEN;
   3355  1.2       rin 		ehtype = evl->evl_encap_proto;
   3356  1.2       rin 	}
   3357  1.2       rin 
   3358  1.2       rin 	vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
   3359  1.2       rin 
   3360  1.2       rin 	switch (ntohs(ehtype)) {
   3361  1.2       rin 	case ETHERTYPE_IP:
   3362  1.2       rin 		iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
   3363  1.2       rin 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
   3364  1.2       rin 		*olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
   3365  1.2       rin 
   3366  1.2       rin 		KASSERT(mp->m_len >= ehlen + sizeof(*ip));
   3367  1.2       rin 		ip = (void *)(mtod(mp, char *) + ehlen);
   3368  1.2       rin 		ip->ip_len = 0;
   3369  1.2       rin 		KASSERT(iphlen == ip->ip_hl << 2);
   3370  1.2       rin 		KASSERT(ip->ip_sum == 0);
   3371  1.2       rin 		KASSERT(ip->ip_p == IPPROTO_TCP);
   3372  1.2       rin 
   3373  1.2       rin 		KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
   3374  1.2       rin 		th = (void *)((char *)ip + iphlen);
   3375  1.2       rin 		th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, ip->ip_dst.s_addr,
   3376  1.2       rin 		    htons(IPPROTO_TCP));
   3377  1.2       rin 		break;
   3378  1.2       rin 	case ETHERTYPE_IPV6:
   3379  1.2       rin 		iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
   3380  1.2       rin 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
   3381  1.2       rin 
   3382  1.2       rin 		KASSERT(mp->m_len >= ehlen + sizeof(*ip6));
   3383  1.2       rin 		ip6 = (void *)(mtod(mp, char *) + ehlen);
   3384  1.2       rin 		ip6->ip6_plen = 0;
   3385  1.2       rin 		KASSERT(iphlen == sizeof(struct ip6_hdr));
   3386  1.2       rin 		KASSERT(ip6->ip6_nxt == IPPROTO_TCP);
   3387  1.2       rin 
   3388  1.2       rin 		KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
   3389  1.2       rin 		th = (void *)((char *)ip6 + iphlen);
   3390  1.2       rin 		tcphlen = th->th_off << 2;
   3391  1.2       rin 		paylen = mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
   3392  1.2       rin 		th->th_sum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 0,
   3393  1.2       rin 		    htonl(IPPROTO_TCP));
   3394  1.2       rin 		break;
   3395  1.2       rin 	default:
   3396  1.2       rin 		panic("%s", __func__);
   3397  1.2       rin 	}
   3398  1.2       rin 
   3399  1.2       rin 	tcphlen = th->th_off << 2;
   3400  1.2       rin 	paylen = mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
   3401  1.2       rin 
   3402  1.2       rin 	vlan_macip_lens |= iphlen;
   3403  1.2       rin 
   3404  1.2       rin 	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
   3405  1.2       rin 	type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
   3406  1.2       rin 
   3407  1.2       rin 	mss_l4len_idx |= mp->m_pkthdr.segsz << IGC_ADVTXD_MSS_SHIFT;
   3408  1.2       rin 	mss_l4len_idx |= tcphlen << IGC_ADVTXD_L4LEN_SHIFT;
   3409  1.2       rin 
   3410  1.2       rin 	/* Now ready a context descriptor */
   3411  1.2       rin 	struct igc_adv_tx_context_desc *txdesc =
   3412  1.2       rin 	    (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
   3413  1.2       rin 
   3414  1.2       rin 	/* Now copy bits into descriptor */
   3415  1.2       rin 	igc_txdesc_sync(txr, prod,
   3416  1.2       rin 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   3417  1.2       rin 	htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
   3418  1.2       rin 	htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
   3419  1.2       rin 	htolem32(&txdesc->seqnum_seed, 0);
   3420  1.2       rin 	htolem32(&txdesc->mss_l4len_idx, mss_l4len_idx);
   3421  1.2       rin 	igc_txdesc_sync(txr, prod,
   3422  1.2       rin 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3423  1.2       rin 
   3424  1.2       rin 	*cmd_type_len |= IGC_ADVTXD_DCMD_TSE;
   3425  1.2       rin 	*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
   3426  1.2       rin 	*olinfo_status |= paylen << IGC_ADVTXD_PAYLEN_SHIFT;
   3427  1.1       rin 
   3428  1.1       rin 	return 1;
   3429  1.2       rin #endif /* notyet */
   3430  1.1       rin }
   3431  1.1       rin 
   3432  1.1       rin /*********************************************************************
   3433  1.1       rin  *
   3434  1.1       rin  *  Allocate memory for rx_buffer structures. Since we use one
   3435  1.1       rin  *  rx_buffer per received packet, the maximum number of rx_buffer's
   3436  1.1       rin  *  that we'll need is equal to the number of receive descriptors
   3437  1.1       rin  *  that we've allocated.
   3438  1.1       rin  *
   3439  1.1       rin  **********************************************************************/
   3440  1.2       rin static int
   3441  1.1       rin igc_allocate_receive_buffers(struct rx_ring *rxr)
   3442  1.1       rin {
   3443  1.1       rin 	struct igc_softc *sc = rxr->sc;
   3444  1.2       rin 	int error;
   3445  1.1       rin 
   3446  1.2       rin 	rxr->rx_buffers =
   3447  1.2       rin 	    kmem_zalloc(sc->num_rx_desc * sizeof(struct igc_rx_buf), KM_SLEEP);
   3448  1.2       rin 
   3449  1.2       rin 	for (int id = 0; id < sc->num_rx_desc; id++) {
   3450  1.2       rin 		struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
   3451  1.1       rin 
   3452  1.2       rin 		error = bus_dmamap_create(rxr->rxdma.dma_tag, MCLBYTES, 1,
   3453  1.2       rin 		    MCLBYTES, 0, BUS_DMA_WAITOK, &rxbuf->map);
   3454  1.1       rin 		if (error) {
   3455  1.2       rin 			aprint_error_dev(sc->sc_dev,
   3456  1.2       rin 			    "unable to create RX DMA map\n");
   3457  1.1       rin 			goto fail;
   3458  1.1       rin 		}
   3459  1.1       rin 	}
   3460  1.1       rin 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
   3461  1.1       rin 	    rxr->rxdma.dma_map->dm_mapsize,
   3462  1.1       rin 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3463  1.1       rin 
   3464  1.1       rin 	return 0;
   3465  1.2       rin  fail:
   3466  1.1       rin 	return error;
   3467  1.1       rin }
   3468  1.1       rin 
   3469  1.1       rin /*********************************************************************
   3470  1.1       rin  *
   3471  1.1       rin  *  Allocate and initialize receive structures.
   3472  1.1       rin  *
   3473  1.1       rin  **********************************************************************/
   3474  1.2       rin static int
   3475  1.1       rin igc_setup_receive_structures(struct igc_softc *sc)
   3476  1.1       rin {
   3477  1.1       rin 
   3478  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   3479  1.2       rin 		struct rx_ring *rxr = &sc->rx_rings[iq];
   3480  1.2       rin 
   3481  1.1       rin 		if (igc_setup_receive_ring(rxr))
   3482  1.1       rin 			goto fail;
   3483  1.1       rin 	}
   3484  1.1       rin 
   3485  1.1       rin 	return 0;
   3486  1.2       rin  fail:
   3487  1.1       rin 	igc_free_receive_structures(sc);
   3488  1.1       rin 	return ENOBUFS;
   3489  1.1       rin }
   3490  1.1       rin 
   3491  1.1       rin /*********************************************************************
   3492  1.1       rin  *
   3493  1.1       rin  *  Initialize a receive ring and its buffers.
   3494  1.1       rin  *
   3495  1.1       rin  **********************************************************************/
   3496  1.2       rin static int
   3497  1.1       rin igc_setup_receive_ring(struct rx_ring *rxr)
   3498  1.1       rin {
   3499  1.1       rin 	struct igc_softc *sc = rxr->sc;
   3500  1.2       rin 	const int rsize = roundup2(
   3501  1.2       rin 	    sc->num_rx_desc * sizeof(union igc_adv_rx_desc), IGC_DBA_ALIGN);
   3502  1.1       rin 
   3503  1.1       rin 	/* Clear the ring contents. */
   3504  1.2       rin 	memset(rxr->rx_base, 0, rsize);
   3505  1.1       rin 
   3506  1.1       rin 	if (igc_allocate_receive_buffers(rxr))
   3507  1.1       rin 		return ENOMEM;
   3508  1.1       rin 
   3509  1.1       rin 	/* Setup our descriptor indices. */
   3510  1.1       rin 	rxr->next_to_check = 0;
   3511  1.2       rin 	rxr->last_desc_filled = 0;
   3512  1.1       rin 
   3513  1.2       rin 	mutex_init(&rxr->rxr_lock, MUTEX_DEFAULT, IPL_NET);
   3514  1.1       rin 
   3515  1.1       rin 	return 0;
   3516  1.1       rin }
   3517  1.1       rin 
   3518  1.1       rin /*********************************************************************
   3519  1.1       rin  *
   3520  1.1       rin  *  Enable receive unit.
   3521  1.1       rin  *
   3522  1.1       rin  **********************************************************************/
   3523  1.2       rin static void
   3524  1.1       rin igc_initialize_receive_unit(struct igc_softc *sc)
   3525  1.1       rin {
   3526  1.2       rin 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   3527  1.2       rin 	struct igc_hw *hw = &sc->hw;
   3528  1.2       rin 	uint32_t rctl, rxcsum, srrctl;
   3529  1.2       rin 
   3530  1.2       rin 	DPRINTF(RX, "called\n");
   3531  1.1       rin 
   3532  1.1       rin 	/*
   3533  1.1       rin 	 * Make sure receives are disabled while setting
   3534  1.1       rin 	 * up the descriptor ring.
   3535  1.1       rin 	 */
   3536  1.1       rin 	rctl = IGC_READ_REG(hw, IGC_RCTL);
   3537  1.1       rin 	IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
   3538  1.1       rin 
   3539  1.1       rin 	/* Setup the Receive Control Register */
   3540  1.1       rin 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
   3541  1.1       rin 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
   3542  1.1       rin 	    IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
   3543  1.1       rin 
   3544  1.2       rin #if 1
   3545  1.1       rin 	/* Do not store bad packets */
   3546  1.1       rin 	rctl &= ~IGC_RCTL_SBP;
   3547  1.2       rin #else
   3548  1.2       rin 	/* for debug */
   3549  1.2       rin 	rctl |= IGC_RCTL_SBP;
   3550  1.2       rin #endif
   3551  1.1       rin 
   3552  1.1       rin 	/* Enable Long Packet receive */
   3553  1.2       rin 	if (sc->hw.mac.max_frame_size > ETHER_MAX_LEN)
   3554  1.1       rin 		rctl |= IGC_RCTL_LPE;
   3555  1.2       rin 	else
   3556  1.2       rin 		rctl &= ~IGC_RCTL_LPE;
   3557  1.1       rin 
   3558  1.1       rin 	/* Strip the CRC */
   3559  1.1       rin 	rctl |= IGC_RCTL_SECRC;
   3560  1.1       rin 
   3561  1.1       rin 	/*
   3562  1.1       rin 	 * Set the interrupt throttling rate. Value is calculated
   3563  1.1       rin 	 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
   3564  1.2       rin 	 *
   3565  1.2       rin 	 * XXX Sync with Linux, especially for jumbo MTU or TSO.
   3566  1.2       rin 	 * XXX Shouldn't be here?
   3567  1.1       rin 	 */
   3568  1.1       rin 	IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
   3569  1.1       rin 
   3570  1.1       rin 	rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
   3571  1.2       rin 	rxcsum &= ~(IGC_RXCSUM_IPOFL | IGC_RXCSUM_TUOFL | IGC_RXCSUM_PCSD);
   3572  1.2       rin 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   3573  1.2       rin 		rxcsum |= IGC_RXCSUM_IPOFL;
   3574  1.2       rin 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
   3575  1.2       rin 				 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
   3576  1.2       rin 		rxcsum |= IGC_RXCSUM_TUOFL;
   3577  1.1       rin 	if (sc->sc_nqueues > 1)
   3578  1.1       rin 		rxcsum |= IGC_RXCSUM_PCSD;
   3579  1.1       rin 	IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
   3580  1.1       rin 
   3581  1.1       rin 	if (sc->sc_nqueues > 1)
   3582  1.1       rin 		igc_initialize_rss_mapping(sc);
   3583  1.1       rin 
   3584  1.2       rin 	srrctl = 0;
   3585  1.1       rin #if 0
   3586  1.1       rin 	srrctl |= 4096 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
   3587  1.1       rin 	rctl |= IGC_RCTL_SZ_4096 | IGC_RCTL_BSEX;
   3588  1.2       rin #else
   3589  1.1       rin 	srrctl |= 2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
   3590  1.1       rin 	rctl |= IGC_RCTL_SZ_2048;
   3591  1.2       rin #endif
   3592  1.1       rin 
   3593  1.1       rin 	/*
   3594  1.1       rin 	 * If TX flow control is disabled and there's > 1 queue defined,
   3595  1.1       rin 	 * enable DROP.
   3596  1.1       rin 	 *
   3597  1.1       rin 	 * This drops frames rather than hanging the RX MAC for all queues.
   3598  1.1       rin 	 */
   3599  1.2       rin 	if (sc->sc_nqueues > 1 &&
   3600  1.2       rin 	    (sc->fc == igc_fc_none || sc->fc == igc_fc_rx_pause))
   3601  1.1       rin 		srrctl |= IGC_SRRCTL_DROP_EN;
   3602  1.1       rin 
   3603  1.1       rin 	/* Setup the Base and Length of the RX descriptor rings. */
   3604  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   3605  1.2       rin 		struct rx_ring *rxr = &sc->rx_rings[iq];
   3606  1.2       rin 		const uint64_t bus_addr =
   3607  1.2       rin 		    rxr->rxdma.dma_map->dm_segs[0].ds_addr;
   3608  1.2       rin 
   3609  1.2       rin 		IGC_WRITE_REG(hw, IGC_RXDCTL(iq), 0);
   3610  1.1       rin 
   3611  1.1       rin 		srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
   3612  1.1       rin 
   3613  1.2       rin 		IGC_WRITE_REG(hw, IGC_RDLEN(iq),
   3614  1.1       rin 		    sc->num_rx_desc * sizeof(union igc_adv_rx_desc));
   3615  1.2       rin 		IGC_WRITE_REG(hw, IGC_RDBAH(iq), (uint32_t)(bus_addr >> 32));
   3616  1.2       rin 		IGC_WRITE_REG(hw, IGC_RDBAL(iq), (uint32_t)bus_addr);
   3617  1.2       rin 		IGC_WRITE_REG(hw, IGC_SRRCTL(iq), srrctl);
   3618  1.1       rin 
   3619  1.1       rin 		/* Setup the Head and Tail Descriptor Pointers */
   3620  1.2       rin 		IGC_WRITE_REG(hw, IGC_RDH(iq), 0);
   3621  1.2       rin 		IGC_WRITE_REG(hw, IGC_RDT(iq), 0 /* XXX rxr->last_desc_filled */);
   3622  1.1       rin 
   3623  1.1       rin 		/* Enable this Queue */
   3624  1.2       rin 		uint32_t rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(iq));
   3625  1.1       rin 		rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
   3626  1.1       rin 		rxdctl &= 0xFFF00000;
   3627  1.1       rin 		rxdctl |= IGC_RX_PTHRESH;
   3628  1.1       rin 		rxdctl |= IGC_RX_HTHRESH << 8;
   3629  1.1       rin 		rxdctl |= IGC_RX_WTHRESH << 16;
   3630  1.2       rin 		IGC_WRITE_REG(hw, IGC_RXDCTL(iq), rxdctl);
   3631  1.1       rin 	}
   3632  1.1       rin 
   3633  1.1       rin 	/* Make sure VLAN Filters are off */
   3634  1.1       rin 	rctl &= ~IGC_RCTL_VFE;
   3635  1.1       rin 
   3636  1.1       rin 	/* Write out the settings */
   3637  1.1       rin 	IGC_WRITE_REG(hw, IGC_RCTL, rctl);
   3638  1.1       rin }
   3639  1.1       rin 
   3640  1.1       rin /*********************************************************************
   3641  1.1       rin  *
   3642  1.1       rin  *  Free all receive rings.
   3643  1.1       rin  *
   3644  1.1       rin  **********************************************************************/
   3645  1.2       rin static void
   3646  1.1       rin igc_free_receive_structures(struct igc_softc *sc)
   3647  1.1       rin {
   3648  1.1       rin 
   3649  1.2       rin 	for (int iq = 0; iq < sc->sc_nqueues; iq++) {
   3650  1.2       rin 		struct rx_ring *rxr = &sc->rx_rings[iq];
   3651  1.1       rin 
   3652  1.1       rin 		igc_free_receive_buffers(rxr);
   3653  1.2       rin 	}
   3654  1.1       rin }
   3655  1.1       rin 
   3656  1.1       rin /*********************************************************************
   3657  1.1       rin  *
   3658  1.1       rin  *  Free receive ring data structures
   3659  1.1       rin  *
   3660  1.1       rin  **********************************************************************/
   3661  1.2       rin static void
   3662  1.1       rin igc_free_receive_buffers(struct rx_ring *rxr)
   3663  1.1       rin {
   3664  1.1       rin 	struct igc_softc *sc = rxr->sc;
   3665  1.1       rin 
   3666  1.1       rin 	if (rxr->rx_buffers != NULL) {
   3667  1.2       rin 		for (int id = 0; id < sc->num_rx_desc; id++) {
   3668  1.2       rin 			struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
   3669  1.2       rin 			bus_dmamap_t map = rxbuf->map;
   3670  1.2       rin 
   3671  1.1       rin 			if (rxbuf->buf != NULL) {
   3672  1.2       rin 				bus_dmamap_sync(rxr->rxdma.dma_tag, map,
   3673  1.2       rin 				    0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   3674  1.2       rin 				bus_dmamap_unload(rxr->rxdma.dma_tag, map);
   3675  1.1       rin 				m_freem(rxbuf->buf);
   3676  1.1       rin 				rxbuf->buf = NULL;
   3677  1.1       rin 			}
   3678  1.2       rin 			bus_dmamap_destroy(rxr->rxdma.dma_tag, map);
   3679  1.1       rin 			rxbuf->map = NULL;
   3680  1.1       rin 		}
   3681  1.2       rin 		kmem_free(rxr->rx_buffers,
   3682  1.1       rin 		    sc->num_rx_desc * sizeof(struct igc_rx_buf));
   3683  1.1       rin 		rxr->rx_buffers = NULL;
   3684  1.1       rin 	}
   3685  1.2       rin 
   3686  1.2       rin 	mutex_destroy(&rxr->rxr_lock);
   3687  1.2       rin }
   3688  1.2       rin 
   3689  1.2       rin /*********************************************************************
   3690  1.2       rin  *
   3691  1.2       rin  * Clear status registers in all RX descriptors.
   3692  1.2       rin  *
   3693  1.2       rin  **********************************************************************/
   3694  1.2       rin static void
   3695  1.2       rin igc_clear_receive_status(struct rx_ring *rxr)
   3696  1.2       rin {
   3697  1.2       rin 	struct igc_softc *sc = rxr->sc;
   3698  1.2       rin 
   3699  1.2       rin 	mutex_enter(&rxr->rxr_lock);
   3700  1.2       rin 
   3701  1.2       rin 	for (int id = 0; id < sc->num_rx_desc; id++) {
   3702  1.2       rin 		union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
   3703  1.2       rin 
   3704  1.2       rin 		igc_rxdesc_sync(rxr, id,
   3705  1.2       rin 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   3706  1.2       rin 		rxdesc->wb.upper.status_error = 0;
   3707  1.2       rin 		igc_rxdesc_sync(rxr, id,
   3708  1.2       rin 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3709  1.2       rin 	}
   3710  1.2       rin 
   3711  1.2       rin 	mutex_exit(&rxr->rxr_lock);
   3712  1.1       rin }
   3713  1.1       rin 
   3714  1.1       rin /*
   3715  1.1       rin  * Initialise the RSS mapping for NICs that support multiple transmit/
   3716  1.1       rin  * receive rings.
   3717  1.1       rin  */
   3718  1.2       rin static void
   3719  1.1       rin igc_initialize_rss_mapping(struct igc_softc *sc)
   3720  1.1       rin {
   3721  1.1       rin 	struct igc_hw *hw = &sc->hw;
   3722  1.1       rin 
   3723  1.1       rin 	/*
   3724  1.1       rin 	 * The redirection table controls which destination
   3725  1.1       rin 	 * queue each bucket redirects traffic to.
   3726  1.1       rin 	 * Each DWORD represents four queues, with the LSB
   3727  1.1       rin 	 * being the first queue in the DWORD.
   3728  1.1       rin 	 *
   3729  1.1       rin 	 * This just allocates buckets to queues using round-robin
   3730  1.1       rin 	 * allocation.
   3731  1.1       rin 	 *
   3732  1.1       rin 	 * NOTE: It Just Happens to line up with the default
   3733  1.1       rin 	 * RSS allocation method.
   3734  1.1       rin 	 */
   3735  1.1       rin 
   3736  1.1       rin 	/* Warning FM follows */
   3737  1.2       rin 	uint32_t reta = 0;
   3738  1.2       rin 	for (int i = 0; i < 128; i++) {
   3739  1.2       rin 		const int shift = 0; /* XXXRO */
   3740  1.2       rin 		int queue_id = i % sc->sc_nqueues;
   3741  1.1       rin 		/* Adjust if required */
   3742  1.2       rin 		queue_id <<= shift;
   3743  1.1       rin 
   3744  1.1       rin 		/*
   3745  1.1       rin 		 * The low 8 bits are for hash value (n+0);
   3746  1.1       rin 		 * The next 8 bits are for hash value (n+1), etc.
   3747  1.1       rin 		 */
   3748  1.2       rin 		reta >>= 8;
   3749  1.2       rin 		reta |= ((uint32_t)queue_id) << 24;
   3750  1.1       rin 		if ((i & 3) == 3) {
   3751  1.1       rin 			IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
   3752  1.1       rin 			reta = 0;
   3753  1.1       rin 		}
   3754  1.1       rin 	}
   3755  1.1       rin 
   3756  1.1       rin 	/*
   3757  1.1       rin 	 * MRQC: Multiple Receive Queues Command
   3758  1.1       rin 	 * Set queuing to RSS control, number depends on the device.
   3759  1.1       rin 	 */
   3760  1.1       rin 
   3761  1.1       rin 	/* Set up random bits */
   3762  1.2       rin 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
   3763  1.2       rin 	rss_getkey((uint8_t *)rss_key);
   3764  1.1       rin 
   3765  1.1       rin 	/* Now fill our hash function seeds */
   3766  1.2       rin 	for (int i = 0; i < __arraycount(rss_key); i++)
   3767  1.1       rin 		IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
   3768  1.1       rin 
   3769  1.1       rin 	/*
   3770  1.1       rin 	 * Configure the RSS fields to hash upon.
   3771  1.1       rin 	 */
   3772  1.2       rin 	uint32_t mrqc = IGC_MRQC_ENABLE_RSS_4Q;
   3773  1.2       rin 	mrqc |= IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP;
   3774  1.2       rin 	mrqc |= IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP;
   3775  1.1       rin 	mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
   3776  1.1       rin 
   3777  1.1       rin 	IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
   3778  1.1       rin }
   3779  1.1       rin 
   3780  1.1       rin /*
   3781  1.1       rin  * igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
   3782  1.1       rin  * For ASF and Pass Through versions of f/w this means
   3783  1.1       rin  * that the driver is loaded. For AMT version type f/w
   3784  1.1       rin  * this means that the network i/f is open.
   3785  1.1       rin  */
   3786  1.2       rin static void
   3787  1.1       rin igc_get_hw_control(struct igc_softc *sc)
   3788  1.1       rin {
   3789  1.2       rin 	const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
   3790  1.1       rin 
   3791  1.1       rin 	IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
   3792  1.1       rin }
   3793  1.1       rin 
   3794  1.1       rin /*
   3795  1.1       rin  * igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
   3796  1.1       rin  * For ASF and Pass Through versions of f/w this means that
   3797  1.1       rin  * the driver is no longer loaded. For AMT versions of the
   3798  1.1       rin  * f/w this means that the network i/f is closed.
   3799  1.1       rin  */
   3800  1.2       rin static void
   3801  1.1       rin igc_release_hw_control(struct igc_softc *sc)
   3802  1.1       rin {
   3803  1.2       rin 	const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
   3804  1.1       rin 
   3805  1.1       rin 	IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
   3806  1.1       rin }
   3807  1.1       rin 
   3808  1.2       rin static int
   3809  1.1       rin igc_is_valid_ether_addr(uint8_t *addr)
   3810  1.1       rin {
   3811  1.2       rin 	const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
   3812  1.1       rin 
   3813  1.2       rin 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
   3814  1.1       rin 		return 0;
   3815  1.1       rin 
   3816  1.1       rin 	return 1;
   3817  1.1       rin }
   3818  1.2       rin 
   3819  1.2       rin static void
   3820  1.2       rin igc_print_devinfo(struct igc_softc *sc)
   3821  1.2       rin {
   3822  1.2       rin 	device_t dev = sc->sc_dev;
   3823  1.2       rin 	struct igc_hw *hw = &sc->hw;
   3824  1.2       rin 	struct igc_phy_info *phy = &hw->phy;
   3825  1.2       rin 	u_int oui, model, rev;
   3826  1.2       rin 	uint16_t id1, id2, nvm_ver, phy_ver;
   3827  1.2       rin 	char descr[MII_MAX_DESCR_LEN];
   3828  1.2       rin 
   3829  1.2       rin 	/* Print PHY Info */
   3830  1.2       rin 	id1 = phy->id >> 16;
   3831  1.2       rin 	/* The revision field in phy->id is cleard and it's in phy->revision */
   3832  1.2       rin 	id2 = (phy->id & 0xfff0) | phy->revision;
   3833  1.2       rin 	oui = MII_OUI(id1, id2);
   3834  1.2       rin 	model = MII_MODEL(id2);
   3835  1.2       rin 	rev = MII_REV(id2);
   3836  1.2       rin 	mii_get_descr(descr, sizeof(descr), oui, model);
   3837  1.2       rin 	if (descr[0])
   3838  1.2       rin 		aprint_normal_dev(dev, "PHY: %s, rev. %d\n",
   3839  1.2       rin 		    descr, rev);
   3840  1.2       rin 	else
   3841  1.2       rin 		aprint_normal_dev(dev,
   3842  1.2       rin 		    "PHY OUI 0x%06x, model 0x%04x, rev. %d\n",
   3843  1.2       rin 		    oui, model, rev);
   3844  1.2       rin 
   3845  1.2       rin 	/* Get NVM version */
   3846  1.2       rin 	hw->nvm.ops.read(hw, NVM_VERSION, 1, &nvm_ver);
   3847  1.2       rin 
   3848  1.2       rin 	/* Get PHY FW version */
   3849  1.2       rin 	phy->ops.read_reg(hw, 0x1e, &phy_ver);
   3850  1.2       rin 
   3851  1.5  riastrad 	aprint_normal_dev(dev, "ROM image version %x.%02x",
   3852  1.2       rin 	    (nvm_ver & NVM_VERSION_MAJOR) >> NVM_VERSION_MAJOR_SHIFT,
   3853  1.2       rin 	    (nvm_ver & NVM_VERSION_MINOR));
   3854  1.2       rin 	aprint_debug("(0x%04hx)", nvm_ver);
   3855  1.2       rin 
   3856  1.2       rin 	aprint_normal(", PHY FW version 0x%04hx\n", phy_ver);
   3857  1.2       rin }
   3858