if_igc.c revision 1.1 1 /* $OpenBSD: if_igc.c,v 1.13 2023/04/28 10:18:57 bluhm Exp $ */
2 /*-
3 * SPDX-License-Identifier: BSD-2-Clause
4 *
5 * Copyright (c) 2016 Nicole Graziano <nicole (at) nextbsd.org>
6 * All rights reserved.
7 * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include "bpfilter.h"
32 #include "vlan.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/sockio.h>
37 #include <sys/mbuf.h>
38 #include <sys/malloc.h>
39 #include <sys/kernel.h>
40 #include <sys/socket.h>
41 #include <sys/device.h>
42 #include <sys/endian.h>
43 #include <sys/intrmap.h>
44
45 #include <net/if.h>
46 #include <net/if_media.h>
47 #include <net/toeplitz.h>
48
49 #include <netinet/in.h>
50 #include <netinet/if_ether.h>
51 #include <netinet/ip.h>
52 #include <netinet/ip6.h>
53
54 #if NBPFILTER > 0
55 #include <net/bpf.h>
56 #endif
57
58 #include <machine/bus.h>
59 #include <machine/intr.h>
60
61 #include <dev/pci/pcivar.h>
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcidevs.h>
64 #include <dev/pci/if_igc.h>
65 #include <dev/pci/igc_hw.h>
66
67 const struct pci_matchid igc_devices[] = {
68 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I220_V },
69 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I221_V },
70 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_BLANK_NVM },
71 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_I },
72 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_IT },
73 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K },
74 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K2 },
75 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LM },
76 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LMVP },
77 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_V },
78 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_BLANK_NVM },
79 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_IT },
80 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LM },
81 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_K },
82 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_V }
83 };
84
85 /*********************************************************************
86 * Function Prototypes
87 *********************************************************************/
88 int igc_match(struct device *, void *, void *);
89 void igc_attach(struct device *, struct device *, void *);
90 int igc_detach(struct device *, int);
91
92 void igc_identify_hardware(struct igc_softc *);
93 int igc_allocate_pci_resources(struct igc_softc *);
94 int igc_allocate_queues(struct igc_softc *);
95 void igc_free_pci_resources(struct igc_softc *);
96 void igc_reset(struct igc_softc *);
97 void igc_init_dmac(struct igc_softc *, uint32_t);
98 int igc_allocate_msix(struct igc_softc *);
99 void igc_setup_msix(struct igc_softc *);
100 int igc_dma_malloc(struct igc_softc *, bus_size_t, struct igc_dma_alloc *);
101 void igc_dma_free(struct igc_softc *, struct igc_dma_alloc *);
102 void igc_setup_interface(struct igc_softc *);
103
104 void igc_init(void *);
105 void igc_start(struct ifqueue *);
106 int igc_txeof(struct tx_ring *);
107 void igc_stop(struct igc_softc *);
108 int igc_ioctl(struct ifnet *, u_long, caddr_t);
109 int igc_rxrinfo(struct igc_softc *, struct if_rxrinfo *);
110 int igc_rxfill(struct rx_ring *);
111 void igc_rxrefill(void *);
112 int igc_rxeof(struct rx_ring *);
113 void igc_rx_checksum(uint32_t, struct mbuf *, uint32_t);
114 void igc_watchdog(struct ifnet *);
115 void igc_media_status(struct ifnet *, struct ifmediareq *);
116 int igc_media_change(struct ifnet *);
117 void igc_iff(struct igc_softc *);
118 void igc_update_link_status(struct igc_softc *);
119 int igc_get_buf(struct rx_ring *, int);
120 int igc_tx_ctx_setup(struct tx_ring *, struct mbuf *, int, uint32_t *);
121
122 void igc_configure_queues(struct igc_softc *);
123 void igc_set_queues(struct igc_softc *, uint32_t, uint32_t, int);
124 void igc_enable_queue(struct igc_softc *, uint32_t);
125 void igc_enable_intr(struct igc_softc *);
126 void igc_disable_intr(struct igc_softc *);
127 int igc_intr_link(void *);
128 int igc_intr_queue(void *);
129
130 int igc_allocate_transmit_buffers(struct tx_ring *);
131 int igc_setup_transmit_structures(struct igc_softc *);
132 int igc_setup_transmit_ring(struct tx_ring *);
133 void igc_initialize_transmit_unit(struct igc_softc *);
134 void igc_free_transmit_structures(struct igc_softc *);
135 void igc_free_transmit_buffers(struct tx_ring *);
136 int igc_allocate_receive_buffers(struct rx_ring *);
137 int igc_setup_receive_structures(struct igc_softc *);
138 int igc_setup_receive_ring(struct rx_ring *);
139 void igc_initialize_receive_unit(struct igc_softc *);
140 void igc_free_receive_structures(struct igc_softc *);
141 void igc_free_receive_buffers(struct rx_ring *);
142 void igc_initialize_rss_mapping(struct igc_softc *);
143
144 void igc_get_hw_control(struct igc_softc *);
145 void igc_release_hw_control(struct igc_softc *);
146 int igc_is_valid_ether_addr(uint8_t *);
147
148 /*********************************************************************
149 * OpenBSD Device Interface Entry Points
150 *********************************************************************/
151
152 struct cfdriver igc_cd = {
153 NULL, "igc", DV_IFNET
154 };
155
156 const struct cfattach igc_ca = {
157 sizeof(struct igc_softc), igc_match, igc_attach, igc_detach
158 };
159
160 /*********************************************************************
161 * Device identification routine
162 *
163 * igc_match determines if the driver should be loaded on
164 * adapter based on PCI vendor/device id of the adapter.
165 *
166 * return 0 on success, positive on failure
167 *********************************************************************/
168 int
169 igc_match(struct device *parent, void *match, void *aux)
170 {
171 return pci_matchbyid((struct pci_attach_args *)aux, igc_devices,
172 nitems(igc_devices));
173 }
174
175 /*********************************************************************
176 * Device initialization routine
177 *
178 * The attach entry point is called when the driver is being loaded.
179 * This routine identifies the type of hardware, allocates all resources
180 * and initializes the hardware.
181 *
182 * return 0 on success, positive on failure
183 *********************************************************************/
184 void
185 igc_attach(struct device *parent, struct device *self, void *aux)
186 {
187 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
188 struct igc_softc *sc = (struct igc_softc *)self;
189 struct igc_hw *hw = &sc->hw;
190
191 sc->osdep.os_sc = sc;
192 sc->osdep.os_pa = *pa;
193
194 /* Determine hardware and mac info */
195 igc_identify_hardware(sc);
196
197 sc->num_tx_desc = IGC_DEFAULT_TXD;
198 sc->num_rx_desc = IGC_DEFAULT_RXD;
199
200 /* Setup PCI resources */
201 if (igc_allocate_pci_resources(sc))
202 goto err_pci;
203
204 /* Allocate TX/RX queues */
205 if (igc_allocate_queues(sc))
206 goto err_pci;
207
208 /* Do shared code initialization */
209 if (igc_setup_init_funcs(hw, true)) {
210 printf(": Setup of shared code failed\n");
211 goto err_pci;
212 }
213
214 hw->mac.autoneg = DO_AUTO_NEG;
215 hw->phy.autoneg_wait_to_complete = false;
216 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
217
218 /* Copper options. */
219 if (hw->phy.media_type == igc_media_type_copper)
220 hw->phy.mdix = AUTO_ALL_MODES;
221
222 /* Set the max frame size. */
223 sc->hw.mac.max_frame_size = 9234;
224
225 /* Allocate multicast array memory. */
226 sc->mta = mallocarray(ETHER_ADDR_LEN, MAX_NUM_MULTICAST_ADDRESSES,
227 M_DEVBUF, M_NOWAIT);
228 if (sc->mta == NULL) {
229 printf(": Can not allocate multicast setup array\n");
230 goto err_late;
231 }
232
233 /* Check SOL/IDER usage. */
234 if (igc_check_reset_block(hw))
235 printf(": PHY reset is blocked due to SOL/IDER session\n");
236
237 /* Disable Energy Efficient Ethernet. */
238 sc->hw.dev_spec._i225.eee_disable = true;
239
240 igc_reset_hw(hw);
241
242 /* Make sure we have a good EEPROM before we read from it. */
243 if (igc_validate_nvm_checksum(hw) < 0) {
244 /*
245 * Some PCI-E parts fail the first check due to
246 * the link being in sleep state, call it again,
247 * if it fails a second time its a real issue.
248 */
249 if (igc_validate_nvm_checksum(hw) < 0) {
250 printf(": The EEPROM checksum is not valid\n");
251 goto err_late;
252 }
253 }
254
255 /* Copy the permanent MAC address out of the EEPROM. */
256 if (igc_read_mac_addr(hw) < 0) {
257 printf(": EEPROM read error while reading MAC address\n");
258 goto err_late;
259 }
260
261 if (!igc_is_valid_ether_addr(hw->mac.addr)) {
262 printf(": Invalid MAC address\n");
263 goto err_late;
264 }
265
266 memcpy(sc->sc_ac.ac_enaddr, sc->hw.mac.addr, ETHER_ADDR_LEN);
267
268 if (igc_allocate_msix(sc))
269 goto err_late;
270
271 /* Setup OS specific network interface. */
272 igc_setup_interface(sc);
273
274 igc_reset(sc);
275 hw->mac.get_link_status = true;
276 igc_update_link_status(sc);
277
278 /* The driver can now take control from firmware. */
279 igc_get_hw_control(sc);
280
281 printf(", address %s\n", ether_sprintf(sc->hw.mac.addr));
282 return;
283
284 err_late:
285 igc_release_hw_control(sc);
286 err_pci:
287 igc_free_pci_resources(sc);
288 free(sc->mta, M_DEVBUF, ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
289 }
290
291 /*********************************************************************
292 * Device removal routine
293 *
294 * The detach entry point is called when the driver is being removed.
295 * This routine stops the adapter and deallocates all the resources
296 * that were allocated for driver operation.
297 *
298 * return 0 on success, positive on failure
299 *********************************************************************/
300 int
301 igc_detach(struct device *self, int flags)
302 {
303 struct igc_softc *sc = (struct igc_softc *)self;
304 struct ifnet *ifp = &sc->sc_ac.ac_if;
305
306 igc_stop(sc);
307
308 igc_phy_hw_reset(&sc->hw);
309 igc_release_hw_control(sc);
310
311 ether_ifdetach(ifp);
312 if_detach(ifp);
313
314 igc_free_pci_resources(sc);
315
316 igc_free_transmit_structures(sc);
317 igc_free_receive_structures(sc);
318 free(sc->mta, M_DEVBUF, ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
319
320 return 0;
321 }
322
323 void
324 igc_identify_hardware(struct igc_softc *sc)
325 {
326 struct igc_osdep *os = &sc->osdep;
327 struct pci_attach_args *pa = &os->os_pa;
328
329 /* Save off the information about this board. */
330 sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
331
332 /* Do shared code init and setup. */
333 if (igc_set_mac_type(&sc->hw)) {
334 printf(": Setup init failure\n");
335 return;
336 }
337 }
338
339 int
340 igc_allocate_pci_resources(struct igc_softc *sc)
341 {
342 struct igc_osdep *os = &sc->osdep;
343 struct pci_attach_args *pa = &os->os_pa;
344 pcireg_t memtype;
345
346 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IGC_PCIREG);
347 if (pci_mapreg_map(pa, IGC_PCIREG, memtype, 0, &os->os_memt,
348 &os->os_memh, &os->os_membase, &os->os_memsize, 0)) {
349 printf(": unable to map registers\n");
350 return ENXIO;
351 }
352 sc->hw.hw_addr = (uint8_t *)os->os_membase;
353 sc->hw.back = os;
354
355 igc_setup_msix(sc);
356
357 return 0;
358 }
359
360 int
361 igc_allocate_queues(struct igc_softc *sc)
362 {
363 struct igc_queue *iq;
364 struct tx_ring *txr;
365 struct rx_ring *rxr;
366 int i, rsize, rxconf, tsize, txconf;
367
368 /* Allocate the top level queue structs. */
369 sc->queues = mallocarray(sc->sc_nqueues, sizeof(struct igc_queue),
370 M_DEVBUF, M_NOWAIT | M_ZERO);
371 if (sc->queues == NULL) {
372 printf("%s: unable to allocate queue\n", DEVNAME(sc));
373 goto fail;
374 }
375
376 /* Allocate the TX ring. */
377 sc->tx_rings = mallocarray(sc->sc_nqueues, sizeof(struct tx_ring),
378 M_DEVBUF, M_NOWAIT | M_ZERO);
379 if (sc->tx_rings == NULL) {
380 printf("%s: unable to allocate TX ring\n", DEVNAME(sc));
381 goto fail;
382 }
383
384 /* Allocate the RX ring. */
385 sc->rx_rings = mallocarray(sc->sc_nqueues, sizeof(struct rx_ring),
386 M_DEVBUF, M_NOWAIT | M_ZERO);
387 if (sc->rx_rings == NULL) {
388 printf("%s: unable to allocate RX ring\n", DEVNAME(sc));
389 goto rx_fail;
390 }
391
392 txconf = rxconf = 0;
393
394 /* Set up the TX queues. */
395 tsize = roundup2(sc->num_tx_desc * sizeof(union igc_adv_tx_desc),
396 IGC_DBA_ALIGN);
397 for (i = 0; i < sc->sc_nqueues; i++, txconf++) {
398 txr = &sc->tx_rings[i];
399 txr->sc = sc;
400 txr->me = i;
401
402 if (igc_dma_malloc(sc, tsize, &txr->txdma)) {
403 printf("%s: unable to allocate TX descriptor\n",
404 DEVNAME(sc));
405 goto err_tx_desc;
406 }
407 txr->tx_base = (union igc_adv_tx_desc *)txr->txdma.dma_vaddr;
408 bzero((void *)txr->tx_base, tsize);
409 }
410
411 /* Set up the RX queues. */
412 rsize = roundup2(sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
413 IGC_DBA_ALIGN);
414 for (i = 0; i < sc->sc_nqueues; i++, rxconf++) {
415 rxr = &sc->rx_rings[i];
416 rxr->sc = sc;
417 rxr->me = i;
418 timeout_set(&rxr->rx_refill, igc_rxrefill, rxr);
419
420 if (igc_dma_malloc(sc, rsize, &rxr->rxdma)) {
421 printf("%s: unable to allocate RX descriptor\n",
422 DEVNAME(sc));
423 goto err_rx_desc;
424 }
425 rxr->rx_base = (union igc_adv_rx_desc *)rxr->rxdma.dma_vaddr;
426 bzero((void *)rxr->rx_base, rsize);
427 }
428
429 /* Set up the queue holding structs. */
430 for (i = 0; i < sc->sc_nqueues; i++) {
431 iq = &sc->queues[i];
432 iq->sc = sc;
433 iq->txr = &sc->tx_rings[i];
434 iq->rxr = &sc->rx_rings[i];
435 snprintf(iq->name, sizeof(iq->name), "%s:%d", DEVNAME(sc), i);
436 }
437
438 return 0;
439
440 err_rx_desc:
441 for (rxr = sc->rx_rings; rxconf > 0; rxr++, rxconf--)
442 igc_dma_free(sc, &rxr->rxdma);
443 err_tx_desc:
444 for (txr = sc->tx_rings; txconf > 0; txr++, txconf--)
445 igc_dma_free(sc, &txr->txdma);
446 free(sc->rx_rings, M_DEVBUF, sc->sc_nqueues * sizeof(struct rx_ring));
447 sc->rx_rings = NULL;
448 rx_fail:
449 free(sc->tx_rings, M_DEVBUF, sc->sc_nqueues * sizeof(struct tx_ring));
450 sc->tx_rings = NULL;
451 fail:
452 return ENOMEM;
453 }
454
455 void
456 igc_free_pci_resources(struct igc_softc *sc)
457 {
458 struct igc_osdep *os = &sc->osdep;
459 struct pci_attach_args *pa = &os->os_pa;
460 struct igc_queue *iq = sc->queues;
461 int i;
462
463 /* Release all msix queue resources. */
464 for (i = 0; i < sc->sc_nqueues; i++, iq++) {
465 if (iq->tag)
466 pci_intr_disestablish(pa->pa_pc, iq->tag);
467 iq->tag = NULL;
468 }
469
470 if (sc->tag)
471 pci_intr_disestablish(pa->pa_pc, sc->tag);
472 sc->tag = NULL;
473 if (os->os_membase != 0)
474 bus_space_unmap(os->os_memt, os->os_memh, os->os_memsize);
475 os->os_membase = 0;
476 }
477
478 /*********************************************************************
479 *
480 * Initialize the hardware to a configuration as specified by the
481 * adapter structure.
482 *
483 **********************************************************************/
484 void
485 igc_reset(struct igc_softc *sc)
486 {
487 struct igc_hw *hw = &sc->hw;
488 uint32_t pba;
489 uint16_t rx_buffer_size;
490
491 /* Let the firmware know the OS is in control */
492 igc_get_hw_control(sc);
493
494 /*
495 * Packet Buffer Allocation (PBA)
496 * Writing PBA sets the receive portion of the buffer
497 * the remainder is used for the transmit buffer.
498 */
499 pba = IGC_PBA_34K;
500
501 /*
502 * These parameters control the automatic generation (Tx) and
503 * response (Rx) to Ethernet PAUSE frames.
504 * - High water mark should allow for at least two frames to be
505 * received after sending an XOFF.
506 * - Low water mark works best when it is very near the high water mark.
507 * This allows the receiver to restart by sending XON when it has
508 * drained a bit. Here we use an arbitrary value of 1500 which will
509 * restart after one full frame is pulled from the buffer. There
510 * could be several smaller frames in the buffer and if so they will
511 * not trigger the XON until their total number reduces the buffer
512 * by 1500.
513 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
514 */
515 rx_buffer_size = (pba & 0xffff) << 10;
516 hw->fc.high_water = rx_buffer_size -
517 roundup2(sc->hw.mac.max_frame_size, 1024);
518 /* 16-byte granularity */
519 hw->fc.low_water = hw->fc.high_water - 16;
520
521 if (sc->fc) /* locally set flow control value? */
522 hw->fc.requested_mode = sc->fc;
523 else
524 hw->fc.requested_mode = igc_fc_full;
525
526 hw->fc.pause_time = IGC_FC_PAUSE_TIME;
527
528 hw->fc.send_xon = true;
529
530 /* Issue a global reset */
531 igc_reset_hw(hw);
532 IGC_WRITE_REG(hw, IGC_WUC, 0);
533
534 /* and a re-init */
535 if (igc_init_hw(hw) < 0) {
536 printf(": Hardware Initialization Failed\n");
537 return;
538 }
539
540 /* Setup DMA Coalescing */
541 igc_init_dmac(sc, pba);
542
543 IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
544 igc_get_phy_info(hw);
545 igc_check_for_link(hw);
546 }
547
548 /*********************************************************************
549 *
550 * Initialize the DMA Coalescing feature
551 *
552 **********************************************************************/
553 void
554 igc_init_dmac(struct igc_softc *sc, uint32_t pba)
555 {
556 struct igc_hw *hw = &sc->hw;
557 uint32_t dmac, reg = ~IGC_DMACR_DMAC_EN;
558 uint16_t hwm, max_frame_size;
559 int status;
560
561 max_frame_size = sc->hw.mac.max_frame_size;
562
563 if (sc->dmac == 0) { /* Disabling it */
564 IGC_WRITE_REG(hw, IGC_DMACR, reg);
565 return;
566 } else
567 printf(": DMA Coalescing enabled\n");
568
569 /* Set starting threshold */
570 IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
571
572 hwm = 64 * pba - max_frame_size / 16;
573 if (hwm < 64 * (pba - 6))
574 hwm = 64 * (pba - 6);
575 reg = IGC_READ_REG(hw, IGC_FCRTC);
576 reg &= ~IGC_FCRTC_RTH_COAL_MASK;
577 reg |= ((hwm << IGC_FCRTC_RTH_COAL_SHIFT)
578 & IGC_FCRTC_RTH_COAL_MASK);
579 IGC_WRITE_REG(hw, IGC_FCRTC, reg);
580
581 dmac = pba - max_frame_size / 512;
582 if (dmac < pba - 10)
583 dmac = pba - 10;
584 reg = IGC_READ_REG(hw, IGC_DMACR);
585 reg &= ~IGC_DMACR_DMACTHR_MASK;
586 reg |= ((dmac << IGC_DMACR_DMACTHR_SHIFT)
587 & IGC_DMACR_DMACTHR_MASK);
588
589 /* transition to L0x or L1 if available..*/
590 reg |= (IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK);
591
592 /* Check if status is 2.5Gb backplane connection
593 * before configuration of watchdog timer, which is
594 * in msec values in 12.8usec intervals
595 * watchdog timer= msec values in 32usec intervals
596 * for non 2.5Gb connection
597 */
598 status = IGC_READ_REG(hw, IGC_STATUS);
599 if ((status & IGC_STATUS_2P5_SKU) &&
600 (!(status & IGC_STATUS_2P5_SKU_OVER)))
601 reg |= ((sc->dmac * 5) >> 6);
602 else
603 reg |= (sc->dmac >> 5);
604
605 IGC_WRITE_REG(hw, IGC_DMACR, reg);
606
607 IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
608
609 /* Set the interval before transition */
610 reg = IGC_READ_REG(hw, IGC_DMCTLX);
611 reg |= IGC_DMCTLX_DCFLUSH_DIS;
612
613 /*
614 ** in 2.5Gb connection, TTLX unit is 0.4 usec
615 ** which is 0x4*2 = 0xA. But delay is still 4 usec
616 */
617 status = IGC_READ_REG(hw, IGC_STATUS);
618 if ((status & IGC_STATUS_2P5_SKU) &&
619 (!(status & IGC_STATUS_2P5_SKU_OVER)))
620 reg |= 0xA;
621 else
622 reg |= 0x4;
623
624 IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
625
626 /* free space in tx packet buffer to wake from DMA coal */
627 IGC_WRITE_REG(hw, IGC_DMCTXTH, (IGC_TXPBSIZE -
628 (2 * max_frame_size)) >> 6);
629
630 /* make low power state decision controlled by DMA coal */
631 reg = IGC_READ_REG(hw, IGC_PCIEMISC);
632 reg &= ~IGC_PCIEMISC_LX_DECISION;
633 IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
634 }
635
636 int
637 igc_allocate_msix(struct igc_softc *sc)
638 {
639 struct igc_osdep *os = &sc->osdep;
640 struct pci_attach_args *pa = &os->os_pa;
641 struct igc_queue *iq;
642 pci_intr_handle_t ih;
643 int i, error = 0;
644
645 for (i = 0, iq = sc->queues; i < sc->sc_nqueues; i++, iq++) {
646 if (pci_intr_map_msix(pa, i, &ih)) {
647 printf("%s: unable to map msi-x vector %d\n",
648 DEVNAME(sc), i);
649 error = ENOMEM;
650 goto fail;
651 }
652
653 iq->tag = pci_intr_establish_cpu(pa->pa_pc, ih,
654 IPL_NET | IPL_MPSAFE, intrmap_cpu(sc->sc_intrmap, i),
655 igc_intr_queue, iq, iq->name);
656 if (iq->tag == NULL) {
657 printf("%s: unable to establish interrupt %d\n",
658 DEVNAME(sc), i);
659 error = ENOMEM;
660 goto fail;
661 }
662
663 iq->msix = i;
664 iq->eims = 1 << i;
665 }
666
667 /* Now the link status/control last MSI-X vector. */
668 if (pci_intr_map_msix(pa, i, &ih)) {
669 printf("%s: unable to map link vector\n", DEVNAME(sc));
670 error = ENOMEM;
671 goto fail;
672 }
673
674 sc->tag = pci_intr_establish(pa->pa_pc, ih, IPL_NET | IPL_MPSAFE,
675 igc_intr_link, sc, sc->sc_dev.dv_xname);
676 if (sc->tag == NULL) {
677 printf("%s: unable to establish link interrupt\n", DEVNAME(sc));
678 error = ENOMEM;
679 goto fail;
680 }
681
682 sc->linkvec = i;
683 printf(", %s, %d queue%s", pci_intr_string(pa->pa_pc, ih),
684 i, (i > 1) ? "s" : "");
685
686 return 0;
687 fail:
688 for (iq = sc->queues; i > 0; i--, iq++) {
689 if (iq->tag == NULL)
690 continue;
691 pci_intr_disestablish(pa->pa_pc, iq->tag);
692 iq->tag = NULL;
693 }
694
695 return error;
696 }
697
698 void
699 igc_setup_msix(struct igc_softc *sc)
700 {
701 struct igc_osdep *os = &sc->osdep;
702 struct pci_attach_args *pa = &os->os_pa;
703 int nmsix;
704
705 nmsix = pci_intr_msix_count(pa);
706 if (nmsix <= 1)
707 printf(": not enough msi-x vectors\n");
708
709 /* Give one vector to events. */
710 nmsix--;
711
712 sc->sc_intrmap = intrmap_create(&sc->sc_dev, nmsix, IGC_MAX_VECTORS,
713 INTRMAP_POWEROF2);
714 sc->sc_nqueues = intrmap_count(sc->sc_intrmap);
715 }
716
717 int
718 igc_dma_malloc(struct igc_softc *sc, bus_size_t size, struct igc_dma_alloc *dma)
719 {
720 struct igc_osdep *os = &sc->osdep;
721
722 dma->dma_tag = os->os_pa.pa_dmat;
723
724 if (bus_dmamap_create(dma->dma_tag, size, 1, size, 0, BUS_DMA_NOWAIT,
725 &dma->dma_map))
726 return 1;
727 if (bus_dmamem_alloc(dma->dma_tag, size, PAGE_SIZE, 0, &dma->dma_seg,
728 1, &dma->dma_nseg, BUS_DMA_NOWAIT))
729 goto destroy;
730 if (bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
731 &dma->dma_vaddr, BUS_DMA_NOWAIT | BUS_DMA_COHERENT))
732 goto free;
733 if (bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
734 NULL, BUS_DMA_NOWAIT))
735 goto unmap;
736
737 dma->dma_size = size;
738
739 return 0;
740 unmap:
741 bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
742 free:
743 bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
744 destroy:
745 bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
746 dma->dma_map = NULL;
747 dma->dma_tag = NULL;
748 return 1;
749 }
750
751 void
752 igc_dma_free(struct igc_softc *sc, struct igc_dma_alloc *dma)
753 {
754 if (dma->dma_tag == NULL)
755 return;
756
757 if (dma->dma_map != NULL) {
758 bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
759 dma->dma_map->dm_mapsize,
760 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
761 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
762 bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
763 bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
764 bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
765 dma->dma_map = NULL;
766 }
767 }
768
769 /*********************************************************************
770 *
771 * Setup networking device structure and register an interface.
772 *
773 **********************************************************************/
774 void
775 igc_setup_interface(struct igc_softc *sc)
776 {
777 struct ifnet *ifp = &sc->sc_ac.ac_if;
778 int i;
779
780 ifp->if_softc = sc;
781 strlcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ);
782 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
783 ifp->if_xflags = IFXF_MPSAFE;
784 ifp->if_ioctl = igc_ioctl;
785 ifp->if_qstart = igc_start;
786 ifp->if_watchdog = igc_watchdog;
787 ifp->if_hardmtu = sc->hw.mac.max_frame_size - ETHER_HDR_LEN -
788 ETHER_CRC_LEN;
789 ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
790
791 ifp->if_capabilities = IFCAP_VLAN_MTU;
792
793 #ifdef notyet
794 #if NVLAN > 0
795 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
796 #endif
797 #endif
798
799 ifp->if_capabilities |= IFCAP_CSUM_IPv4;
800 ifp->if_capabilities |= IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
801 ifp->if_capabilities |= IFCAP_CSUM_TCPv6 | IFCAP_CSUM_UDPv6;
802
803 /* Initialize ifmedia structures. */
804 ifmedia_init(&sc->media, IFM_IMASK, igc_media_change, igc_media_status);
805 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
806 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
807 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
808 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
809 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
810 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
811 ifmedia_add(&sc->media, IFM_ETHER | IFM_2500_T, 0, NULL);
812
813 ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
814 ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
815
816 if_attach(ifp);
817 ether_ifattach(ifp);
818
819 if_attach_queues(ifp, sc->sc_nqueues);
820 if_attach_iqueues(ifp, sc->sc_nqueues);
821 for (i = 0; i < sc->sc_nqueues; i++) {
822 struct ifqueue *ifq = ifp->if_ifqs[i];
823 struct ifiqueue *ifiq = ifp->if_iqs[i];
824 struct tx_ring *txr = &sc->tx_rings[i];
825 struct rx_ring *rxr = &sc->rx_rings[i];
826
827 ifq->ifq_softc = txr;
828 txr->ifq = ifq;
829
830 ifiq->ifiq_softc = rxr;
831 rxr->ifiq = ifiq;
832 }
833 }
834
835 void
836 igc_init(void *arg)
837 {
838 struct igc_softc *sc = (struct igc_softc *)arg;
839 struct ifnet *ifp = &sc->sc_ac.ac_if;
840 struct rx_ring *rxr;
841 uint32_t ctrl = 0;
842 int i, s;
843
844 s = splnet();
845
846 igc_stop(sc);
847
848 /* Get the latest mac address, user can use a LAA. */
849 bcopy(sc->sc_ac.ac_enaddr, sc->hw.mac.addr, ETHER_ADDR_LEN);
850
851 /* Put the address into the receive address array. */
852 igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
853
854 /* Initialize the hardware. */
855 igc_reset(sc);
856 igc_update_link_status(sc);
857
858 /* Setup VLAN support, basic and offload if available. */
859 IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
860
861 /* Prepare transmit descriptors and buffers. */
862 if (igc_setup_transmit_structures(sc)) {
863 printf("%s: Could not setup transmit structures\n",
864 DEVNAME(sc));
865 igc_stop(sc);
866 splx(s);
867 return;
868 }
869 igc_initialize_transmit_unit(sc);
870
871 sc->rx_mbuf_sz = MCLBYTES + ETHER_ALIGN;
872 /* Prepare receive descriptors and buffers. */
873 if (igc_setup_receive_structures(sc)) {
874 printf("%s: Could not setup receive structures\n",
875 DEVNAME(sc));
876 igc_stop(sc);
877 splx(s);
878 return;
879 }
880 igc_initialize_receive_unit(sc);
881
882 if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) {
883 ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
884 ctrl |= IGC_CTRL_VME;
885 IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
886 }
887
888 /* Setup multicast table. */
889 igc_iff(sc);
890
891 igc_clear_hw_cntrs_base_generic(&sc->hw);
892
893 igc_configure_queues(sc);
894
895 /* This clears any pending interrupts */
896 IGC_READ_REG(&sc->hw, IGC_ICR);
897 IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
898
899 /* The driver can now take control from firmware. */
900 igc_get_hw_control(sc);
901
902 /* Set Energy Efficient Ethernet. */
903 igc_set_eee_i225(&sc->hw, true, true, true);
904
905 for (i = 0; i < sc->sc_nqueues; i++) {
906 rxr = &sc->rx_rings[i];
907 igc_rxfill(rxr);
908 if (if_rxr_inuse(&rxr->rx_ring) == 0) {
909 printf("%s: Unable to fill any rx descriptors\n",
910 DEVNAME(sc));
911 igc_stop(sc);
912 splx(s);
913 }
914 IGC_WRITE_REG(&sc->hw, IGC_RDT(i),
915 (rxr->last_desc_filled + 1) % sc->num_rx_desc);
916 }
917
918 igc_enable_intr(sc);
919
920 ifp->if_flags |= IFF_RUNNING;
921 for (i = 0; i < sc->sc_nqueues; i++)
922 ifq_clr_oactive(ifp->if_ifqs[i]);
923
924 splx(s);
925 }
926
927 static inline int
928 igc_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m)
929 {
930 int error;
931
932 error = bus_dmamap_load_mbuf(dmat, map, m,
933 BUS_DMA_STREAMING | BUS_DMA_NOWAIT);
934 if (error != EFBIG)
935 return (error);
936
937 error = m_defrag(m, M_DONTWAIT);
938 if (error != 0)
939 return (error);
940
941 return (bus_dmamap_load_mbuf(dmat, map, m,
942 BUS_DMA_STREAMING | BUS_DMA_NOWAIT));
943 }
944
945 void
946 igc_start(struct ifqueue *ifq)
947 {
948 struct ifnet *ifp = ifq->ifq_if;
949 struct igc_softc *sc = ifp->if_softc;
950 struct tx_ring *txr = ifq->ifq_softc;
951 union igc_adv_tx_desc *txdesc;
952 struct igc_tx_buf *txbuf;
953 bus_dmamap_t map;
954 struct mbuf *m;
955 unsigned int prod, free, last, i;
956 unsigned int mask;
957 uint32_t cmd_type_len;
958 uint32_t olinfo_status;
959 int post = 0;
960 #if NBPFILTER > 0
961 caddr_t if_bpf;
962 #endif
963
964 if (!sc->link_active) {
965 ifq_purge(ifq);
966 return;
967 }
968
969 prod = txr->next_avail_desc;
970 free = txr->next_to_clean;
971 if (free <= prod)
972 free += sc->num_tx_desc;
973 free -= prod;
974
975 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
976 txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
977
978 mask = sc->num_tx_desc - 1;
979
980 for (;;) {
981 if (free <= IGC_MAX_SCATTER + 1) {
982 ifq_set_oactive(ifq);
983 break;
984 }
985
986 m = ifq_dequeue(ifq);
987 if (m == NULL)
988 break;
989
990 txbuf = &txr->tx_buffers[prod];
991 map = txbuf->map;
992
993 if (igc_load_mbuf(txr->txdma.dma_tag, map, m) != 0) {
994 ifq->ifq_errors++;
995 m_freem(m);
996 continue;
997 }
998
999 olinfo_status = m->m_pkthdr.len << IGC_ADVTXD_PAYLEN_SHIFT;
1000
1001 bus_dmamap_sync(txr->txdma.dma_tag, map, 0,
1002 map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1003
1004 if (igc_tx_ctx_setup(txr, m, prod, &olinfo_status)) {
1005 /* Consume the first descriptor */
1006 prod++;
1007 prod &= mask;
1008 free--;
1009 }
1010
1011 for (i = 0; i < map->dm_nsegs; i++) {
1012 txdesc = &txr->tx_base[prod];
1013
1014 cmd_type_len = IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DTYP_DATA |
1015 IGC_ADVTXD_DCMD_DEXT | map->dm_segs[i].ds_len;
1016 if (i == map->dm_nsegs - 1)
1017 cmd_type_len |= IGC_ADVTXD_DCMD_EOP |
1018 IGC_ADVTXD_DCMD_RS;
1019
1020 htolem64(&txdesc->read.buffer_addr, map->dm_segs[i].ds_addr);
1021 htolem32(&txdesc->read.cmd_type_len, cmd_type_len);
1022 htolem32(&txdesc->read.olinfo_status, olinfo_status);
1023
1024 last = prod;
1025
1026 prod++;
1027 prod &= mask;
1028 }
1029
1030 txbuf->m_head = m;
1031 txbuf->eop_index = last;
1032
1033 #if NBPFILTER > 0
1034 if_bpf = ifp->if_bpf;
1035 if (if_bpf)
1036 bpf_mtap_ether(if_bpf, m, BPF_DIRECTION_OUT);
1037 #endif
1038
1039 free -= i;
1040 post = 1;
1041 }
1042
1043 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
1044 txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1045
1046 if (post) {
1047 txr->next_avail_desc = prod;
1048 IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), prod);
1049 }
1050 }
1051
1052 int
1053 igc_txeof(struct tx_ring *txr)
1054 {
1055 struct igc_softc *sc = txr->sc;
1056 struct ifqueue *ifq = txr->ifq;
1057 union igc_adv_tx_desc *txdesc;
1058 struct igc_tx_buf *txbuf;
1059 bus_dmamap_t map;
1060 unsigned int cons, prod, last;
1061 unsigned int mask;
1062 int done = 0;
1063
1064 prod = txr->next_avail_desc;
1065 cons = txr->next_to_clean;
1066
1067 if (cons == prod)
1068 return (0);
1069
1070 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
1071 txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1072
1073 mask = sc->num_tx_desc - 1;
1074
1075 do {
1076 txbuf = &txr->tx_buffers[cons];
1077 last = txbuf->eop_index;
1078 txdesc = &txr->tx_base[last];
1079
1080 if (!(txdesc->wb.status & htole32(IGC_TXD_STAT_DD)))
1081 break;
1082
1083 map = txbuf->map;
1084
1085 bus_dmamap_sync(txr->txdma.dma_tag, map, 0, map->dm_mapsize,
1086 BUS_DMASYNC_POSTWRITE);
1087 bus_dmamap_unload(txr->txdma.dma_tag, map);
1088 m_freem(txbuf->m_head);
1089
1090 txbuf->m_head = NULL;
1091 txbuf->eop_index = -1;
1092
1093 cons = last + 1;
1094 cons &= mask;
1095
1096 done = 1;
1097 } while (cons != prod);
1098
1099 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
1100 txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1101
1102 txr->next_to_clean = cons;
1103
1104 if (ifq_is_oactive(ifq))
1105 ifq_restart(ifq);
1106
1107 return (done);
1108 }
1109
1110 /*********************************************************************
1111 *
1112 * This routine disables all traffic on the adapter by issuing a
1113 * global reset on the MAC.
1114 *
1115 **********************************************************************/
1116 void
1117 igc_stop(struct igc_softc *sc)
1118 {
1119 struct ifnet *ifp = &sc->sc_ac.ac_if;
1120 int i;
1121
1122 /* Tell the stack that the interface is no longer active. */
1123 ifp->if_flags &= ~IFF_RUNNING;
1124
1125 igc_disable_intr(sc);
1126
1127 igc_reset_hw(&sc->hw);
1128 IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
1129
1130 intr_barrier(sc->tag);
1131 for (i = 0; i < sc->sc_nqueues; i++) {
1132 struct ifqueue *ifq = ifp->if_ifqs[i];
1133 ifq_barrier(ifq);
1134 ifq_clr_oactive(ifq);
1135
1136 if (sc->queues[i].tag != NULL)
1137 intr_barrier(sc->queues[i].tag);
1138 timeout_del(&sc->rx_rings[i].rx_refill);
1139 }
1140
1141 igc_free_transmit_structures(sc);
1142 igc_free_receive_structures(sc);
1143
1144 igc_update_link_status(sc);
1145 }
1146
1147 /*********************************************************************
1148 * Ioctl entry point
1149 *
1150 * igc_ioctl is called when the user wants to configure the
1151 * interface.
1152 *
1153 * return 0 on success, positive on failure
1154 **********************************************************************/
1155 int
1156 igc_ioctl(struct ifnet * ifp, u_long cmd, caddr_t data)
1157 {
1158 struct igc_softc *sc = ifp->if_softc;
1159 struct ifreq *ifr = (struct ifreq *)data;
1160 int s, error = 0;
1161
1162 s = splnet();
1163
1164 switch (cmd) {
1165 case SIOCSIFADDR:
1166 ifp->if_flags |= IFF_UP;
1167 if (!(ifp->if_flags & IFF_RUNNING))
1168 igc_init(sc);
1169 break;
1170 case SIOCSIFFLAGS:
1171 if (ifp->if_flags & IFF_UP) {
1172 if (ifp->if_flags & IFF_RUNNING)
1173 error = ENETRESET;
1174 else
1175 igc_init(sc);
1176 } else {
1177 if (ifp->if_flags & IFF_RUNNING)
1178 igc_stop(sc);
1179 }
1180 break;
1181 case SIOCSIFMEDIA:
1182 case SIOCGIFMEDIA:
1183 error = ifmedia_ioctl(ifp, ifr, &sc->media, cmd);
1184 break;
1185 case SIOCGIFRXR:
1186 error = igc_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
1187 break;
1188 default:
1189 error = ether_ioctl(ifp, &sc->sc_ac, cmd, data);
1190 }
1191
1192 if (error == ENETRESET) {
1193 if (ifp->if_flags & IFF_RUNNING) {
1194 igc_disable_intr(sc);
1195 igc_iff(sc);
1196 igc_enable_intr(sc);
1197 }
1198 error = 0;
1199 }
1200
1201 splx(s);
1202 return error;
1203 }
1204
1205 int
1206 igc_rxrinfo(struct igc_softc *sc, struct if_rxrinfo *ifri)
1207 {
1208 struct if_rxring_info *ifr;
1209 struct rx_ring *rxr;
1210 int error, i, n = 0;
1211
1212 ifr = mallocarray(sc->sc_nqueues, sizeof(*ifr), M_DEVBUF,
1213 M_WAITOK | M_ZERO);
1214
1215 for (i = 0; i < sc->sc_nqueues; i++) {
1216 rxr = &sc->rx_rings[i];
1217 ifr[n].ifr_size = MCLBYTES;
1218 snprintf(ifr[n].ifr_name, sizeof(ifr[n].ifr_name), "%d", i);
1219 ifr[n].ifr_info = rxr->rx_ring;
1220 n++;
1221 }
1222
1223 error = if_rxr_info_ioctl(ifri, sc->sc_nqueues, ifr);
1224 free(ifr, M_DEVBUF, sc->sc_nqueues * sizeof(*ifr));
1225
1226 return error;
1227 }
1228
1229 int
1230 igc_rxfill(struct rx_ring *rxr)
1231 {
1232 struct igc_softc *sc = rxr->sc;
1233 int i, post = 0;
1234 u_int slots;
1235
1236 bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
1237 rxr->rxdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1238
1239 i = rxr->last_desc_filled;
1240 for (slots = if_rxr_get(&rxr->rx_ring, sc->num_rx_desc); slots > 0;
1241 slots--) {
1242 if (++i == sc->num_rx_desc)
1243 i = 0;
1244
1245 if (igc_get_buf(rxr, i) != 0)
1246 break;
1247
1248 rxr->last_desc_filled = i;
1249 post = 1;
1250 }
1251
1252 bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
1253 rxr->rxdma.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1254
1255 if_rxr_put(&rxr->rx_ring, slots);
1256
1257 return post;
1258 }
1259
1260 void
1261 igc_rxrefill(void *xrxr)
1262 {
1263 struct rx_ring *rxr = xrxr;
1264 struct igc_softc *sc = rxr->sc;
1265
1266 if (igc_rxfill(rxr)) {
1267 IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me),
1268 (rxr->last_desc_filled + 1) % sc->num_rx_desc);
1269 }
1270 else if (if_rxr_inuse(&rxr->rx_ring) == 0)
1271 timeout_add(&rxr->rx_refill, 1);
1272 }
1273
1274 /*********************************************************************
1275 *
1276 * This routine executes in interrupt context. It replenishes
1277 * the mbufs in the descriptor and sends data which has been
1278 * dma'ed into host memory to upper layer.
1279 *
1280 *********************************************************************/
1281 int
1282 igc_rxeof(struct rx_ring *rxr)
1283 {
1284 struct igc_softc *sc = rxr->sc;
1285 struct ifnet *ifp = &sc->sc_ac.ac_if;
1286 struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1287 struct mbuf *mp, *m;
1288 struct igc_rx_buf *rxbuf, *nxbuf;
1289 union igc_adv_rx_desc *rxdesc;
1290 uint32_t ptype, staterr = 0;
1291 uint16_t len, vtag;
1292 uint8_t eop = 0;
1293 int i, nextp;
1294
1295 if (!ISSET(ifp->if_flags, IFF_RUNNING))
1296 return 0;
1297
1298 i = rxr->next_to_check;
1299 while (if_rxr_inuse(&rxr->rx_ring) > 0) {
1300 uint32_t hash;
1301 uint16_t hashtype;
1302
1303 bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
1304 i * sizeof(union igc_adv_rx_desc),
1305 sizeof(union igc_adv_rx_desc), BUS_DMASYNC_POSTREAD);
1306
1307 rxdesc = &rxr->rx_base[i];
1308 staterr = letoh32(rxdesc->wb.upper.status_error);
1309 if (!ISSET(staterr, IGC_RXD_STAT_DD)) {
1310 bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
1311 i * sizeof(union igc_adv_rx_desc),
1312 sizeof(union igc_adv_rx_desc), BUS_DMASYNC_PREREAD);
1313 break;
1314 }
1315
1316 /* Zero out the receive descriptors status. */
1317 rxdesc->wb.upper.status_error = 0;
1318 rxbuf = &rxr->rx_buffers[i];
1319
1320 /* Pull the mbuf off the ring. */
1321 bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map, 0,
1322 rxbuf->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1323 bus_dmamap_unload(rxr->rxdma.dma_tag, rxbuf->map);
1324
1325 mp = rxbuf->buf;
1326 len = letoh16(rxdesc->wb.upper.length);
1327 vtag = letoh16(rxdesc->wb.upper.vlan);
1328 eop = ((staterr & IGC_RXD_STAT_EOP) == IGC_RXD_STAT_EOP);
1329 ptype = letoh32(rxdesc->wb.lower.lo_dword.data) &
1330 IGC_PKTTYPE_MASK;
1331 hash = letoh32(rxdesc->wb.lower.hi_dword.rss);
1332 hashtype = le16toh(rxdesc->wb.lower.lo_dword.hs_rss.pkt_info) &
1333 IGC_RXDADV_RSSTYPE_MASK;
1334
1335 if (staterr & IGC_RXDEXT_STATERR_RXE) {
1336 if (rxbuf->fmp) {
1337 m_freem(rxbuf->fmp);
1338 rxbuf->fmp = NULL;
1339 }
1340
1341 m_freem(mp);
1342 rxbuf->buf = NULL;
1343 goto next_desc;
1344 }
1345
1346 if (mp == NULL) {
1347 panic("%s: igc_rxeof: NULL mbuf in slot %d "
1348 "(nrx %d, filled %d)", DEVNAME(sc), i,
1349 if_rxr_inuse(&rxr->rx_ring), rxr->last_desc_filled);
1350 }
1351
1352 if (!eop) {
1353 /*
1354 * Figure out the next descriptor of this frame.
1355 */
1356 nextp = i + 1;
1357 if (nextp == sc->num_rx_desc)
1358 nextp = 0;
1359 nxbuf = &rxr->rx_buffers[nextp];
1360 /* prefetch(nxbuf); */
1361 }
1362
1363 mp->m_len = len;
1364
1365 m = rxbuf->fmp;
1366 rxbuf->buf = rxbuf->fmp = NULL;
1367
1368 if (m != NULL)
1369 m->m_pkthdr.len += mp->m_len;
1370 else {
1371 m = mp;
1372 m->m_pkthdr.len = mp->m_len;
1373 #if NVLAN > 0
1374 if (staterr & IGC_RXD_STAT_VP) {
1375 m->m_pkthdr.ether_vtag = vtag;
1376 m->m_flags |= M_VLANTAG;
1377 }
1378 #endif
1379 }
1380
1381 /* Pass the head pointer on */
1382 if (eop == 0) {
1383 nxbuf->fmp = m;
1384 m = NULL;
1385 mp->m_next = nxbuf->buf;
1386 } else {
1387 igc_rx_checksum(staterr, m, ptype);
1388
1389 if (hashtype != IGC_RXDADV_RSSTYPE_NONE) {
1390 m->m_pkthdr.ph_flowid = hash;
1391 SET(m->m_pkthdr.csum_flags, M_FLOWID);
1392 }
1393
1394 ml_enqueue(&ml, m);
1395 }
1396 next_desc:
1397 if_rxr_put(&rxr->rx_ring, 1);
1398 bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
1399 i * sizeof(union igc_adv_rx_desc),
1400 sizeof(union igc_adv_rx_desc), BUS_DMASYNC_PREREAD);
1401
1402 /* Advance our pointers to the next descriptor. */
1403 if (++i == sc->num_rx_desc)
1404 i = 0;
1405 }
1406 rxr->next_to_check = i;
1407
1408 if (ifiq_input(rxr->ifiq, &ml))
1409 if_rxr_livelocked(&rxr->rx_ring);
1410
1411 if (!(staterr & IGC_RXD_STAT_DD))
1412 return 0;
1413
1414 return 1;
1415 }
1416
1417 /*********************************************************************
1418 *
1419 * Verify that the hardware indicated that the checksum is valid.
1420 * Inform the stack about the status of checksum so that stack
1421 * doesn't spend time verifying the checksum.
1422 *
1423 *********************************************************************/
1424 void
1425 igc_rx_checksum(uint32_t staterr, struct mbuf *m, uint32_t ptype)
1426 {
1427 uint16_t status = (uint16_t)staterr;
1428 uint8_t errors = (uint8_t)(staterr >> 24);
1429
1430 if (status & IGC_RXD_STAT_IPCS) {
1431 if (!(errors & IGC_RXD_ERR_IPE)) {
1432 /* IP Checksum Good */
1433 m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;
1434 } else
1435 m->m_pkthdr.csum_flags = 0;
1436 }
1437
1438 if (status & (IGC_RXD_STAT_TCPCS | IGC_RXD_STAT_UDPCS)) {
1439 if (!(errors & IGC_RXD_ERR_TCPE))
1440 m->m_pkthdr.csum_flags |=
1441 M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1442 }
1443 }
1444
1445 void
1446 igc_watchdog(struct ifnet * ifp)
1447 {
1448 }
1449
1450 /*********************************************************************
1451 *
1452 * Media Ioctl callback
1453 *
1454 * This routine is called whenever the user queries the status of
1455 * the interface using ifconfig.
1456 *
1457 **********************************************************************/
1458 void
1459 igc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1460 {
1461 struct igc_softc *sc = ifp->if_softc;
1462
1463 igc_update_link_status(sc);
1464
1465 ifmr->ifm_status = IFM_AVALID;
1466 ifmr->ifm_active = IFM_ETHER;
1467
1468 if (!sc->link_active) {
1469 ifmr->ifm_active |= IFM_NONE;
1470 return;
1471 }
1472
1473 ifmr->ifm_status |= IFM_ACTIVE;
1474
1475 switch (sc->link_speed) {
1476 case 10:
1477 ifmr->ifm_active |= IFM_10_T;
1478 break;
1479 case 100:
1480 ifmr->ifm_active |= IFM_100_TX;
1481 break;
1482 case 1000:
1483 ifmr->ifm_active |= IFM_1000_T;
1484 break;
1485 case 2500:
1486 ifmr->ifm_active |= IFM_2500_T;
1487 break;
1488 }
1489
1490 if (sc->link_duplex == FULL_DUPLEX)
1491 ifmr->ifm_active |= IFM_FDX;
1492 else
1493 ifmr->ifm_active |= IFM_HDX;
1494 }
1495
1496 /*********************************************************************
1497 *
1498 * Media Ioctl callback
1499 *
1500 * This routine is called when the user changes speed/duplex using
1501 * media/mediopt option with ifconfig.
1502 *
1503 **********************************************************************/
1504 int
1505 igc_media_change(struct ifnet *ifp)
1506 {
1507 struct igc_softc *sc = ifp->if_softc;
1508 struct ifmedia *ifm = &sc->media;
1509
1510 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1511 return (EINVAL);
1512
1513 sc->hw.mac.autoneg = DO_AUTO_NEG;
1514
1515 switch (IFM_SUBTYPE(ifm->ifm_media)) {
1516 case IFM_AUTO:
1517 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1518 break;
1519 case IFM_2500_T:
1520 sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
1521 break;
1522 case IFM_1000_T:
1523 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1524 break;
1525 case IFM_100_TX:
1526 if ((ifm->ifm_media & IFM_GMASK) == IFM_HDX)
1527 sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
1528 else
1529 sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
1530 break;
1531 case IFM_10_T:
1532 if ((ifm->ifm_media & IFM_GMASK) == IFM_HDX)
1533 sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
1534 else
1535 sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
1536 break;
1537 default:
1538 return EINVAL;
1539 }
1540
1541 igc_init(sc);
1542
1543 return 0;
1544 }
1545
1546 void
1547 igc_iff(struct igc_softc *sc)
1548 {
1549 struct ifnet *ifp = &sc->sc_ac.ac_if;
1550 struct arpcom *ac = &sc->sc_ac;
1551 struct ether_multi *enm;
1552 struct ether_multistep step;
1553 uint32_t reg_rctl = 0;
1554 uint8_t *mta;
1555 int mcnt = 0;
1556
1557 mta = sc->mta;
1558 bzero(mta, sizeof(uint8_t) * ETHER_ADDR_LEN *
1559 MAX_NUM_MULTICAST_ADDRESSES);
1560
1561 reg_rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
1562 reg_rctl &= ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
1563 ifp->if_flags &= ~IFF_ALLMULTI;
1564
1565 if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0 ||
1566 ac->ac_multicnt > MAX_NUM_MULTICAST_ADDRESSES) {
1567 ifp->if_flags |= IFF_ALLMULTI;
1568 reg_rctl |= IGC_RCTL_MPE;
1569 if (ifp->if_flags & IFF_PROMISC)
1570 reg_rctl |= IGC_RCTL_UPE;
1571 } else {
1572 ETHER_FIRST_MULTI(step, ac, enm);
1573 while (enm != NULL) {
1574 bcopy(enm->enm_addrlo,
1575 &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1576 mcnt++;
1577
1578 ETHER_NEXT_MULTI(step, enm);
1579 }
1580
1581 igc_update_mc_addr_list(&sc->hw, mta, mcnt);
1582 }
1583
1584 IGC_WRITE_REG(&sc->hw, IGC_RCTL, reg_rctl);
1585 }
1586
1587 void
1588 igc_update_link_status(struct igc_softc *sc)
1589 {
1590 struct ifnet *ifp = &sc->sc_ac.ac_if;
1591 struct igc_hw *hw = &sc->hw;
1592 int link_state;
1593
1594 if (IGC_READ_REG(&sc->hw, IGC_STATUS) & IGC_STATUS_LU) {
1595 if (sc->link_active == 0) {
1596 igc_get_speed_and_duplex(hw, &sc->link_speed,
1597 &sc->link_duplex);
1598 sc->link_active = 1;
1599 ifp->if_baudrate = IF_Mbps(sc->link_speed);
1600 }
1601 link_state = (sc->link_duplex == FULL_DUPLEX) ?
1602 LINK_STATE_FULL_DUPLEX : LINK_STATE_HALF_DUPLEX;
1603 } else {
1604 if (sc->link_active == 1) {
1605 ifp->if_baudrate = sc->link_speed = 0;
1606 sc->link_duplex = 0;
1607 sc->link_active = 0;
1608 }
1609 link_state = LINK_STATE_DOWN;
1610 }
1611 if (ifp->if_link_state != link_state) {
1612 ifp->if_link_state = link_state;
1613 if_link_state_change(ifp);
1614 }
1615 }
1616
1617 /*********************************************************************
1618 *
1619 * Get a buffer from system mbuf buffer pool.
1620 *
1621 **********************************************************************/
1622 int
1623 igc_get_buf(struct rx_ring *rxr, int i)
1624 {
1625 struct igc_softc *sc = rxr->sc;
1626 struct igc_rx_buf *rxbuf;
1627 struct mbuf *m;
1628 union igc_adv_rx_desc *rxdesc;
1629 int error;
1630
1631 rxbuf = &rxr->rx_buffers[i];
1632 rxdesc = &rxr->rx_base[i];
1633 if (rxbuf->buf) {
1634 printf("%s: slot %d already has an mbuf\n", DEVNAME(sc), i);
1635 return ENOBUFS;
1636 }
1637
1638 m = MCLGETL(NULL, M_DONTWAIT, sc->rx_mbuf_sz);
1639 if (!m)
1640 return ENOBUFS;
1641
1642 m->m_data += (m->m_ext.ext_size - sc->rx_mbuf_sz);
1643 m->m_len = m->m_pkthdr.len = sc->rx_mbuf_sz;
1644
1645 error = bus_dmamap_load_mbuf(rxr->rxdma.dma_tag, rxbuf->map, m,
1646 BUS_DMA_NOWAIT);
1647 if (error) {
1648 m_freem(m);
1649 return error;
1650 }
1651
1652 bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map, 0,
1653 rxbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1654 rxbuf->buf = m;
1655
1656 rxdesc->read.pkt_addr = htole64(rxbuf->map->dm_segs[0].ds_addr);
1657
1658 return 0;
1659 }
1660
1661 void
1662 igc_configure_queues(struct igc_softc *sc)
1663 {
1664 struct igc_hw *hw = &sc->hw;
1665 struct igc_queue *iq = sc->queues;
1666 uint32_t ivar, newitr = 0;
1667 int i;
1668
1669 /* First turn on RSS capability */
1670 IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME |
1671 IGC_GPIE_PBA | IGC_GPIE_NSICR);
1672
1673 /* Set the starting interrupt rate */
1674 newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;
1675
1676 newitr |= IGC_EITR_CNT_IGNR;
1677
1678 /* Turn on MSI-X */
1679 for (i = 0; i < sc->sc_nqueues; i++, iq++) {
1680 /* RX entries */
1681 igc_set_queues(sc, i, iq->msix, 0);
1682 /* TX entries */
1683 igc_set_queues(sc, i, iq->msix, 1);
1684 sc->msix_queuesmask |= iq->eims;
1685 IGC_WRITE_REG(hw, IGC_EITR(iq->msix), newitr);
1686 }
1687
1688 /* And for the link interrupt */
1689 ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
1690 sc->msix_linkmask = 1 << sc->linkvec;
1691 IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
1692 }
1693
1694 void
1695 igc_set_queues(struct igc_softc *sc, uint32_t entry, uint32_t vector, int type)
1696 {
1697 struct igc_hw *hw = &sc->hw;
1698 uint32_t ivar, index;
1699
1700 index = entry >> 1;
1701 ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
1702 if (type) {
1703 if (entry & 1) {
1704 ivar &= 0x00FFFFFF;
1705 ivar |= (vector | IGC_IVAR_VALID) << 24;
1706 } else {
1707 ivar &= 0xFFFF00FF;
1708 ivar |= (vector | IGC_IVAR_VALID) << 8;
1709 }
1710 } else {
1711 if (entry & 1) {
1712 ivar &= 0xFF00FFFF;
1713 ivar |= (vector | IGC_IVAR_VALID) << 16;
1714 } else {
1715 ivar &= 0xFFFFFF00;
1716 ivar |= vector | IGC_IVAR_VALID;
1717 }
1718 }
1719 IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
1720 }
1721
1722 void
1723 igc_enable_queue(struct igc_softc *sc, uint32_t eims)
1724 {
1725 IGC_WRITE_REG(&sc->hw, IGC_EIMS, eims);
1726 }
1727
1728 void
1729 igc_enable_intr(struct igc_softc *sc)
1730 {
1731 struct igc_hw *hw = &sc->hw;
1732 uint32_t mask;
1733
1734 mask = (sc->msix_queuesmask | sc->msix_linkmask);
1735 IGC_WRITE_REG(hw, IGC_EIAC, mask);
1736 IGC_WRITE_REG(hw, IGC_EIAM, mask);
1737 IGC_WRITE_REG(hw, IGC_EIMS, mask);
1738 IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
1739 IGC_WRITE_FLUSH(hw);
1740 }
1741
1742 void
1743 igc_disable_intr(struct igc_softc *sc)
1744 {
1745 struct igc_hw *hw = &sc->hw;
1746
1747 IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
1748 IGC_WRITE_REG(hw, IGC_EIAC, 0);
1749 IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
1750 IGC_WRITE_FLUSH(hw);
1751 }
1752
1753 int
1754 igc_intr_link(void *arg)
1755 {
1756 struct igc_softc *sc = (struct igc_softc *)arg;
1757 uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
1758
1759 if (reg_icr & IGC_ICR_LSC) {
1760 KERNEL_LOCK();
1761 sc->hw.mac.get_link_status = true;
1762 igc_update_link_status(sc);
1763 KERNEL_UNLOCK();
1764 }
1765
1766 IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
1767 IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->msix_linkmask);
1768
1769 return 1;
1770 }
1771
1772 int
1773 igc_intr_queue(void *arg)
1774 {
1775 struct igc_queue *iq = arg;
1776 struct igc_softc *sc = iq->sc;
1777 struct ifnet *ifp = &sc->sc_ac.ac_if;
1778 struct rx_ring *rxr = iq->rxr;
1779 struct tx_ring *txr = iq->txr;
1780
1781 if (ifp->if_flags & IFF_RUNNING) {
1782 igc_txeof(txr);
1783 igc_rxeof(rxr);
1784 igc_rxrefill(rxr);
1785 }
1786
1787 igc_enable_queue(sc, iq->eims);
1788
1789 return 1;
1790 }
1791
1792 /*********************************************************************
1793 *
1794 * Allocate memory for tx_buffer structures. The tx_buffer stores all
1795 * the information needed to transmit a packet on the wire.
1796 *
1797 **********************************************************************/
1798 int
1799 igc_allocate_transmit_buffers(struct tx_ring *txr)
1800 {
1801 struct igc_softc *sc = txr->sc;
1802 struct igc_tx_buf *txbuf;
1803 int error, i;
1804
1805 txr->tx_buffers = mallocarray(sc->num_tx_desc,
1806 sizeof(struct igc_tx_buf), M_DEVBUF, M_NOWAIT | M_ZERO);
1807 if (txr->tx_buffers == NULL) {
1808 printf("%s: Unable to allocate tx_buffer memory\n",
1809 DEVNAME(sc));
1810 error = ENOMEM;
1811 goto fail;
1812 }
1813 txr->txtag = txr->txdma.dma_tag;
1814
1815 /* Create the descriptor buffer dma maps. */
1816 for (i = 0; i < sc->num_tx_desc; i++) {
1817 txbuf = &txr->tx_buffers[i];
1818 error = bus_dmamap_create(txr->txdma.dma_tag, IGC_TSO_SIZE,
1819 IGC_MAX_SCATTER, PAGE_SIZE, 0, BUS_DMA_NOWAIT, &txbuf->map);
1820 if (error != 0) {
1821 printf("%s: Unable to create TX DMA map\n",
1822 DEVNAME(sc));
1823 goto fail;
1824 }
1825 }
1826
1827 return 0;
1828 fail:
1829 return error;
1830 }
1831
1832
1833 /*********************************************************************
1834 *
1835 * Allocate and initialize transmit structures.
1836 *
1837 **********************************************************************/
1838 int
1839 igc_setup_transmit_structures(struct igc_softc *sc)
1840 {
1841 struct tx_ring *txr = sc->tx_rings;
1842 int i;
1843
1844 for (i = 0; i < sc->sc_nqueues; i++, txr++) {
1845 if (igc_setup_transmit_ring(txr))
1846 goto fail;
1847 }
1848
1849 return 0;
1850 fail:
1851 igc_free_transmit_structures(sc);
1852 return ENOBUFS;
1853 }
1854
1855 /*********************************************************************
1856 *
1857 * Initialize a transmit ring.
1858 *
1859 **********************************************************************/
1860 int
1861 igc_setup_transmit_ring(struct tx_ring *txr)
1862 {
1863 struct igc_softc *sc = txr->sc;
1864
1865 /* Now allocate transmit buffers for the ring. */
1866 if (igc_allocate_transmit_buffers(txr))
1867 return ENOMEM;
1868
1869 /* Clear the old ring contents */
1870 bzero((void *)txr->tx_base,
1871 (sizeof(union igc_adv_tx_desc)) * sc->num_tx_desc);
1872
1873 /* Reset indices. */
1874 txr->next_avail_desc = 0;
1875 txr->next_to_clean = 0;
1876
1877 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
1878 txr->txdma.dma_map->dm_mapsize,
1879 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1880
1881 return 0;
1882 }
1883
1884 /*********************************************************************
1885 *
1886 * Enable transmit unit.
1887 *
1888 **********************************************************************/
1889 void
1890 igc_initialize_transmit_unit(struct igc_softc *sc)
1891 {
1892 struct ifnet *ifp = &sc->sc_ac.ac_if;
1893 struct tx_ring *txr;
1894 struct igc_hw *hw = &sc->hw;
1895 uint64_t bus_addr;
1896 uint32_t tctl, txdctl = 0;
1897 int i;
1898
1899 /* Setup the Base and Length of the TX descriptor ring. */
1900 for (i = 0; i < sc->sc_nqueues; i++) {
1901 txr = &sc->tx_rings[i];
1902
1903 bus_addr = txr->txdma.dma_map->dm_segs[0].ds_addr;
1904
1905 /* Base and len of TX ring */
1906 IGC_WRITE_REG(hw, IGC_TDLEN(i),
1907 sc->num_tx_desc * sizeof(union igc_adv_tx_desc));
1908 IGC_WRITE_REG(hw, IGC_TDBAH(i), (uint32_t)(bus_addr >> 32));
1909 IGC_WRITE_REG(hw, IGC_TDBAL(i), (uint32_t)bus_addr);
1910
1911 /* Init the HEAD/TAIL indices */
1912 IGC_WRITE_REG(hw, IGC_TDT(i), 0);
1913 IGC_WRITE_REG(hw, IGC_TDH(i), 0);
1914
1915 txr->watchdog_timer = 0;
1916
1917 txdctl = 0; /* Clear txdctl */
1918 txdctl |= 0x1f; /* PTHRESH */
1919 txdctl |= 1 << 8; /* HTHRESH */
1920 txdctl |= 1 << 16; /* WTHRESH */
1921 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
1922 txdctl |= IGC_TXDCTL_GRAN;
1923 txdctl |= 1 << 25; /* LWTHRESH */
1924
1925 IGC_WRITE_REG(hw, IGC_TXDCTL(i), txdctl);
1926 }
1927 ifp->if_timer = 0;
1928
1929 /* Program the Transmit Control Register */
1930 tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
1931 tctl &= ~IGC_TCTL_CT;
1932 tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
1933 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
1934
1935 /* This write will effectively turn on the transmit unit. */
1936 IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
1937 }
1938
1939 /*********************************************************************
1940 *
1941 * Free all transmit rings.
1942 *
1943 **********************************************************************/
1944 void
1945 igc_free_transmit_structures(struct igc_softc *sc)
1946 {
1947 struct tx_ring *txr = sc->tx_rings;
1948 int i;
1949
1950 for (i = 0; i < sc->sc_nqueues; i++, txr++)
1951 igc_free_transmit_buffers(txr);
1952 }
1953
1954 /*********************************************************************
1955 *
1956 * Free transmit ring related data structures.
1957 *
1958 **********************************************************************/
1959 void
1960 igc_free_transmit_buffers(struct tx_ring *txr)
1961 {
1962 struct igc_softc *sc = txr->sc;
1963 struct igc_tx_buf *txbuf;
1964 int i;
1965
1966 if (txr->tx_buffers == NULL)
1967 return;
1968
1969 txbuf = txr->tx_buffers;
1970 for (i = 0; i < sc->num_tx_desc; i++, txbuf++) {
1971 if (txbuf->map != NULL && txbuf->map->dm_nsegs > 0) {
1972 bus_dmamap_sync(txr->txdma.dma_tag, txbuf->map,
1973 0, txbuf->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1974 bus_dmamap_unload(txr->txdma.dma_tag, txbuf->map);
1975 }
1976 if (txbuf->m_head != NULL) {
1977 m_freem(txbuf->m_head);
1978 txbuf->m_head = NULL;
1979 }
1980 if (txbuf->map != NULL) {
1981 bus_dmamap_destroy(txr->txdma.dma_tag, txbuf->map);
1982 txbuf->map = NULL;
1983 }
1984 }
1985
1986 if (txr->tx_buffers != NULL)
1987 free(txr->tx_buffers, M_DEVBUF,
1988 sc->num_tx_desc * sizeof(struct igc_tx_buf));
1989 txr->tx_buffers = NULL;
1990 txr->txtag = NULL;
1991 }
1992
1993
1994 /*********************************************************************
1995 *
1996 * Advanced Context Descriptor setup for VLAN, CSUM or TSO
1997 *
1998 **********************************************************************/
1999
2000 int
2001 igc_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
2002 uint32_t *olinfo_status)
2003 {
2004 struct ether_extracted ext;
2005 struct igc_adv_tx_context_desc *txdesc;
2006 uint32_t type_tucmd_mlhl = 0;
2007 uint32_t vlan_macip_lens = 0;
2008 uint32_t iphlen;
2009 int off = 0;
2010
2011 vlan_macip_lens |= (sizeof(*ext.eh) << IGC_ADVTXD_MACLEN_SHIFT);
2012
2013 /*
2014 * In advanced descriptors the vlan tag must
2015 * be placed into the context descriptor. Hence
2016 * we need to make one even if not doing offloads.
2017 */
2018 #ifdef notyet
2019 #if NVLAN > 0
2020 if (ISSET(mp->m_flags, M_VLANTAG)) {
2021 uint32_t vtag = mp->m_pkthdr.ether_vtag;
2022 vlan_macip_lens |= (vtag << IGC_ADVTXD_VLAN_SHIFT);
2023 off = 1;
2024 }
2025 #endif
2026 #endif
2027
2028 ether_extract_headers(mp, &ext);
2029
2030 if (ext.ip4) {
2031 iphlen = ext.ip4->ip_hl << 2;
2032
2033 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
2034 if (ISSET(mp->m_pkthdr.csum_flags, M_IPV4_CSUM_OUT)) {
2035 *olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
2036 off = 1;
2037 }
2038 #ifdef INET6
2039 } else if (ext.ip6) {
2040 iphlen = sizeof(*ext.ip6);
2041
2042 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
2043 #endif
2044 } else {
2045 return 0;
2046 }
2047
2048 vlan_macip_lens |= iphlen;
2049 type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
2050
2051 if (ext.tcp) {
2052 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
2053 if (ISSET(mp->m_pkthdr.csum_flags, M_TCP_CSUM_OUT)) {
2054 *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
2055 off = 1;
2056 }
2057 } else if (ext.udp) {
2058 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
2059 if (ISSET(mp->m_pkthdr.csum_flags, M_UDP_CSUM_OUT)) {
2060 *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
2061 off = 1;
2062 }
2063 }
2064
2065 if (off == 0)
2066 return 0;
2067
2068 /* Now ready a context descriptor */
2069 txdesc = (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
2070
2071 /* Now copy bits into descriptor */
2072 htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
2073 htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
2074 htolem32(&txdesc->seqnum_seed, 0);
2075 htolem32(&txdesc->mss_l4len_idx, 0);
2076
2077 return 1;
2078 }
2079
2080 /*********************************************************************
2081 *
2082 * Allocate memory for rx_buffer structures. Since we use one
2083 * rx_buffer per received packet, the maximum number of rx_buffer's
2084 * that we'll need is equal to the number of receive descriptors
2085 * that we've allocated.
2086 *
2087 **********************************************************************/
2088 int
2089 igc_allocate_receive_buffers(struct rx_ring *rxr)
2090 {
2091 struct igc_softc *sc = rxr->sc;
2092 struct igc_rx_buf *rxbuf;
2093 int i, error;
2094
2095 rxr->rx_buffers = mallocarray(sc->num_rx_desc,
2096 sizeof(struct igc_rx_buf), M_DEVBUF, M_NOWAIT | M_ZERO);
2097 if (rxr->rx_buffers == NULL) {
2098 printf("%s: Unable to allocate rx_buffer memory\n",
2099 DEVNAME(sc));
2100 error = ENOMEM;
2101 goto fail;
2102 }
2103
2104 rxbuf = rxr->rx_buffers;
2105 for (i = 0; i < sc->num_rx_desc; i++, rxbuf++) {
2106 error = bus_dmamap_create(rxr->rxdma.dma_tag,
2107 MAX_JUMBO_FRAME_SIZE, 1, MAX_JUMBO_FRAME_SIZE, 0,
2108 BUS_DMA_NOWAIT, &rxbuf->map);
2109 if (error) {
2110 printf("%s: Unable to create RX DMA map\n",
2111 DEVNAME(sc));
2112 goto fail;
2113 }
2114 }
2115 bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
2116 rxr->rxdma.dma_map->dm_mapsize,
2117 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2118
2119 return 0;
2120 fail:
2121 return error;
2122 }
2123
2124 /*********************************************************************
2125 *
2126 * Allocate and initialize receive structures.
2127 *
2128 **********************************************************************/
2129 int
2130 igc_setup_receive_structures(struct igc_softc *sc)
2131 {
2132 struct rx_ring *rxr = sc->rx_rings;
2133 int i;
2134
2135 for (i = 0; i < sc->sc_nqueues; i++, rxr++) {
2136 if (igc_setup_receive_ring(rxr))
2137 goto fail;
2138 }
2139
2140 return 0;
2141 fail:
2142 igc_free_receive_structures(sc);
2143 return ENOBUFS;
2144 }
2145
2146 /*********************************************************************
2147 *
2148 * Initialize a receive ring and its buffers.
2149 *
2150 **********************************************************************/
2151 int
2152 igc_setup_receive_ring(struct rx_ring *rxr)
2153 {
2154 struct igc_softc *sc = rxr->sc;
2155 struct ifnet *ifp = &sc->sc_ac.ac_if;
2156 int rsize;
2157
2158 rsize = roundup2(sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
2159 IGC_DBA_ALIGN);
2160
2161 /* Clear the ring contents. */
2162 bzero((void *)rxr->rx_base, rsize);
2163
2164 if (igc_allocate_receive_buffers(rxr))
2165 return ENOMEM;
2166
2167 /* Setup our descriptor indices. */
2168 rxr->next_to_check = 0;
2169 rxr->last_desc_filled = sc->num_rx_desc - 1;
2170
2171 if_rxr_init(&rxr->rx_ring, 2 * ((ifp->if_hardmtu / MCLBYTES) + 1),
2172 sc->num_rx_desc - 1);
2173
2174 return 0;
2175 }
2176
2177 /*********************************************************************
2178 *
2179 * Enable receive unit.
2180 *
2181 **********************************************************************/
2182 void
2183 igc_initialize_receive_unit(struct igc_softc *sc)
2184 {
2185 struct rx_ring *rxr = sc->rx_rings;
2186 struct igc_hw *hw = &sc->hw;
2187 uint32_t rctl, rxcsum, srrctl = 0;
2188 int i;
2189
2190 /*
2191 * Make sure receives are disabled while setting
2192 * up the descriptor ring.
2193 */
2194 rctl = IGC_READ_REG(hw, IGC_RCTL);
2195 IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
2196
2197 /* Setup the Receive Control Register */
2198 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
2199 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
2200 IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
2201
2202 /* Do not store bad packets */
2203 rctl &= ~IGC_RCTL_SBP;
2204
2205 /* Enable Long Packet receive */
2206 if (sc->hw.mac.max_frame_size != ETHER_MAX_LEN)
2207 rctl |= IGC_RCTL_LPE;
2208
2209 /* Strip the CRC */
2210 rctl |= IGC_RCTL_SECRC;
2211
2212 /*
2213 * Set the interrupt throttling rate. Value is calculated
2214 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
2215 */
2216 IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
2217
2218 rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
2219 rxcsum &= ~IGC_RXCSUM_PCSD;
2220
2221 if (sc->sc_nqueues > 1)
2222 rxcsum |= IGC_RXCSUM_PCSD;
2223
2224 IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
2225
2226 if (sc->sc_nqueues > 1)
2227 igc_initialize_rss_mapping(sc);
2228
2229 #if 0
2230 srrctl |= 4096 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
2231 rctl |= IGC_RCTL_SZ_4096 | IGC_RCTL_BSEX;
2232 #endif
2233
2234 srrctl |= 2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
2235 rctl |= IGC_RCTL_SZ_2048;
2236
2237 /*
2238 * If TX flow control is disabled and there's > 1 queue defined,
2239 * enable DROP.
2240 *
2241 * This drops frames rather than hanging the RX MAC for all queues.
2242 */
2243 if ((sc->sc_nqueues > 1) && (sc->fc == igc_fc_none ||
2244 sc->fc == igc_fc_rx_pause)) {
2245 srrctl |= IGC_SRRCTL_DROP_EN;
2246 }
2247
2248 /* Setup the Base and Length of the RX descriptor rings. */
2249 for (i = 0; i < sc->sc_nqueues; i++, rxr++) {
2250 IGC_WRITE_REG(hw, IGC_RXDCTL(i), 0);
2251 uint64_t bus_addr = rxr->rxdma.dma_map->dm_segs[0].ds_addr;
2252 uint32_t rxdctl;
2253
2254 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
2255
2256 IGC_WRITE_REG(hw, IGC_RDLEN(i),
2257 sc->num_rx_desc * sizeof(union igc_adv_rx_desc));
2258 IGC_WRITE_REG(hw, IGC_RDBAH(i), (uint32_t)(bus_addr >> 32));
2259 IGC_WRITE_REG(hw, IGC_RDBAL(i), (uint32_t)bus_addr);
2260 IGC_WRITE_REG(hw, IGC_SRRCTL(i), srrctl);
2261
2262 /* Setup the Head and Tail Descriptor Pointers */
2263 IGC_WRITE_REG(hw, IGC_RDH(i), 0);
2264 IGC_WRITE_REG(hw, IGC_RDT(i), 0);
2265
2266 /* Enable this Queue */
2267 rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(i));
2268 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
2269 rxdctl &= 0xFFF00000;
2270 rxdctl |= IGC_RX_PTHRESH;
2271 rxdctl |= IGC_RX_HTHRESH << 8;
2272 rxdctl |= IGC_RX_WTHRESH << 16;
2273 IGC_WRITE_REG(hw, IGC_RXDCTL(i), rxdctl);
2274 }
2275
2276 /* Make sure VLAN Filters are off */
2277 rctl &= ~IGC_RCTL_VFE;
2278
2279 /* Write out the settings */
2280 IGC_WRITE_REG(hw, IGC_RCTL, rctl);
2281 }
2282
2283 /*********************************************************************
2284 *
2285 * Free all receive rings.
2286 *
2287 **********************************************************************/
2288 void
2289 igc_free_receive_structures(struct igc_softc *sc)
2290 {
2291 struct rx_ring *rxr;
2292 int i;
2293
2294 for (i = 0, rxr = sc->rx_rings; i < sc->sc_nqueues; i++, rxr++)
2295 if_rxr_init(&rxr->rx_ring, 0, 0);
2296
2297 for (i = 0, rxr = sc->rx_rings; i < sc->sc_nqueues; i++, rxr++)
2298 igc_free_receive_buffers(rxr);
2299 }
2300
2301 /*********************************************************************
2302 *
2303 * Free receive ring data structures
2304 *
2305 **********************************************************************/
2306 void
2307 igc_free_receive_buffers(struct rx_ring *rxr)
2308 {
2309 struct igc_softc *sc = rxr->sc;
2310 struct igc_rx_buf *rxbuf;
2311 int i;
2312
2313 if (rxr->rx_buffers != NULL) {
2314 for (i = 0; i < sc->num_rx_desc; i++) {
2315 rxbuf = &rxr->rx_buffers[i];
2316 if (rxbuf->buf != NULL) {
2317 bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map,
2318 0, rxbuf->map->dm_mapsize,
2319 BUS_DMASYNC_POSTREAD);
2320 bus_dmamap_unload(rxr->rxdma.dma_tag,
2321 rxbuf->map);
2322 m_freem(rxbuf->buf);
2323 rxbuf->buf = NULL;
2324 }
2325 bus_dmamap_destroy(rxr->rxdma.dma_tag, rxbuf->map);
2326 rxbuf->map = NULL;
2327 }
2328 free(rxr->rx_buffers, M_DEVBUF,
2329 sc->num_rx_desc * sizeof(struct igc_rx_buf));
2330 rxr->rx_buffers = NULL;
2331 }
2332 }
2333
2334 /*
2335 * Initialise the RSS mapping for NICs that support multiple transmit/
2336 * receive rings.
2337 */
2338 void
2339 igc_initialize_rss_mapping(struct igc_softc *sc)
2340 {
2341 struct igc_hw *hw = &sc->hw;
2342 uint32_t rss_key[10], mrqc, reta, shift = 0;
2343 int i, queue_id;
2344
2345 /*
2346 * The redirection table controls which destination
2347 * queue each bucket redirects traffic to.
2348 * Each DWORD represents four queues, with the LSB
2349 * being the first queue in the DWORD.
2350 *
2351 * This just allocates buckets to queues using round-robin
2352 * allocation.
2353 *
2354 * NOTE: It Just Happens to line up with the default
2355 * RSS allocation method.
2356 */
2357
2358 /* Warning FM follows */
2359 reta = 0;
2360 for (i = 0; i < 128; i++) {
2361 queue_id = (i % sc->sc_nqueues);
2362 /* Adjust if required */
2363 queue_id = queue_id << shift;
2364
2365 /*
2366 * The low 8 bits are for hash value (n+0);
2367 * The next 8 bits are for hash value (n+1), etc.
2368 */
2369 reta = reta >> 8;
2370 reta = reta | ( ((uint32_t) queue_id) << 24);
2371 if ((i & 3) == 3) {
2372 IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
2373 reta = 0;
2374 }
2375 }
2376
2377 /*
2378 * MRQC: Multiple Receive Queues Command
2379 * Set queuing to RSS control, number depends on the device.
2380 */
2381 mrqc = IGC_MRQC_ENABLE_RSS_4Q;
2382
2383 /* Set up random bits */
2384 stoeplitz_to_key(&rss_key, sizeof(rss_key));
2385
2386 /* Now fill our hash function seeds */
2387 for (i = 0; i < 10; i++)
2388 IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
2389
2390 /*
2391 * Configure the RSS fields to hash upon.
2392 */
2393 mrqc |= (IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP);
2394 mrqc |= (IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP);
2395 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
2396
2397 IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
2398 }
2399
2400 /*
2401 * igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
2402 * For ASF and Pass Through versions of f/w this means
2403 * that the driver is loaded. For AMT version type f/w
2404 * this means that the network i/f is open.
2405 */
2406 void
2407 igc_get_hw_control(struct igc_softc *sc)
2408 {
2409 uint32_t ctrl_ext;
2410
2411 ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
2412 IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
2413 }
2414
2415 /*
2416 * igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
2417 * For ASF and Pass Through versions of f/w this means that
2418 * the driver is no longer loaded. For AMT versions of the
2419 * f/w this means that the network i/f is closed.
2420 */
2421 void
2422 igc_release_hw_control(struct igc_softc *sc)
2423 {
2424 uint32_t ctrl_ext;
2425
2426 ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
2427 IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
2428 }
2429
2430 int
2431 igc_is_valid_ether_addr(uint8_t *addr)
2432 {
2433 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
2434
2435 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
2436 return 0;
2437 }
2438
2439 return 1;
2440 }
2441