Home | History | Annotate | Line # | Download | only in igc
if_igc.c revision 1.1.1.1
      1 /*	$OpenBSD: if_igc.c,v 1.13 2023/04/28 10:18:57 bluhm Exp $	*/
      2 /*-
      3  * SPDX-License-Identifier: BSD-2-Clause
      4  *
      5  * Copyright (c) 2016 Nicole Graziano <nicole (at) nextbsd.org>
      6  * All rights reserved.
      7  * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 #include "bpfilter.h"
     32 #include "vlan.h"
     33 
     34 #include <sys/param.h>
     35 #include <sys/systm.h>
     36 #include <sys/sockio.h>
     37 #include <sys/mbuf.h>
     38 #include <sys/malloc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/socket.h>
     41 #include <sys/device.h>
     42 #include <sys/endian.h>
     43 #include <sys/intrmap.h>
     44 
     45 #include <net/if.h>
     46 #include <net/if_media.h>
     47 #include <net/toeplitz.h>
     48 
     49 #include <netinet/in.h>
     50 #include <netinet/if_ether.h>
     51 #include <netinet/ip.h>
     52 #include <netinet/ip6.h>
     53 
     54 #if NBPFILTER > 0
     55 #include <net/bpf.h>
     56 #endif
     57 
     58 #include <machine/bus.h>
     59 #include <machine/intr.h>
     60 
     61 #include <dev/pci/pcivar.h>
     62 #include <dev/pci/pcireg.h>
     63 #include <dev/pci/pcidevs.h>
     64 #include <dev/pci/if_igc.h>
     65 #include <dev/pci/igc_hw.h>
     66 
     67 const struct pci_matchid igc_devices[] = {
     68 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I220_V },
     69 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I221_V },
     70 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_BLANK_NVM },
     71 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_I },
     72 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_IT },
     73 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K },
     74 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K2 },
     75 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LM },
     76 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LMVP },
     77 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_V },
     78 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_BLANK_NVM },
     79 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_IT },
     80 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LM },
     81 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_K },
     82 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_V }
     83 };
     84 
     85 /*********************************************************************
     86  *  Function Prototypes
     87  *********************************************************************/
     88 int	igc_match(struct device *, void *, void *);
     89 void	igc_attach(struct device *, struct device *, void *);
     90 int	igc_detach(struct device *, int);
     91 
     92 void	igc_identify_hardware(struct igc_softc *);
     93 int	igc_allocate_pci_resources(struct igc_softc *);
     94 int	igc_allocate_queues(struct igc_softc *);
     95 void	igc_free_pci_resources(struct igc_softc *);
     96 void	igc_reset(struct igc_softc *);
     97 void	igc_init_dmac(struct igc_softc *, uint32_t);
     98 int	igc_allocate_msix(struct igc_softc *);
     99 void	igc_setup_msix(struct igc_softc *);
    100 int	igc_dma_malloc(struct igc_softc *, bus_size_t, struct igc_dma_alloc *);
    101 void	igc_dma_free(struct igc_softc *, struct igc_dma_alloc *);
    102 void	igc_setup_interface(struct igc_softc *);
    103 
    104 void	igc_init(void *);
    105 void	igc_start(struct ifqueue *);
    106 int	igc_txeof(struct tx_ring *);
    107 void	igc_stop(struct igc_softc *);
    108 int	igc_ioctl(struct ifnet *, u_long, caddr_t);
    109 int	igc_rxrinfo(struct igc_softc *, struct if_rxrinfo *);
    110 int	igc_rxfill(struct rx_ring *);
    111 void	igc_rxrefill(void *);
    112 int	igc_rxeof(struct rx_ring *);
    113 void	igc_rx_checksum(uint32_t, struct mbuf *, uint32_t);
    114 void	igc_watchdog(struct ifnet *);
    115 void	igc_media_status(struct ifnet *, struct ifmediareq *);
    116 int	igc_media_change(struct ifnet *);
    117 void	igc_iff(struct igc_softc *);
    118 void	igc_update_link_status(struct igc_softc *);
    119 int	igc_get_buf(struct rx_ring *, int);
    120 int	igc_tx_ctx_setup(struct tx_ring *, struct mbuf *, int, uint32_t *);
    121 
    122 void	igc_configure_queues(struct igc_softc *);
    123 void	igc_set_queues(struct igc_softc *, uint32_t, uint32_t, int);
    124 void	igc_enable_queue(struct igc_softc *, uint32_t);
    125 void	igc_enable_intr(struct igc_softc *);
    126 void	igc_disable_intr(struct igc_softc *);
    127 int	igc_intr_link(void *);
    128 int	igc_intr_queue(void *);
    129 
    130 int	igc_allocate_transmit_buffers(struct tx_ring *);
    131 int	igc_setup_transmit_structures(struct igc_softc *);
    132 int	igc_setup_transmit_ring(struct tx_ring *);
    133 void	igc_initialize_transmit_unit(struct igc_softc *);
    134 void	igc_free_transmit_structures(struct igc_softc *);
    135 void	igc_free_transmit_buffers(struct tx_ring *);
    136 int	igc_allocate_receive_buffers(struct rx_ring *);
    137 int	igc_setup_receive_structures(struct igc_softc *);
    138 int	igc_setup_receive_ring(struct rx_ring *);
    139 void	igc_initialize_receive_unit(struct igc_softc *);
    140 void	igc_free_receive_structures(struct igc_softc *);
    141 void	igc_free_receive_buffers(struct rx_ring *);
    142 void	igc_initialize_rss_mapping(struct igc_softc *);
    143 
    144 void	igc_get_hw_control(struct igc_softc *);
    145 void	igc_release_hw_control(struct igc_softc *);
    146 int	igc_is_valid_ether_addr(uint8_t *);
    147 
    148 /*********************************************************************
    149  *  OpenBSD Device Interface Entry Points
    150  *********************************************************************/
    151 
    152 struct cfdriver igc_cd = {
    153 	NULL, "igc", DV_IFNET
    154 };
    155 
    156 const struct cfattach igc_ca = {
    157 	sizeof(struct igc_softc), igc_match, igc_attach, igc_detach
    158 };
    159 
    160 /*********************************************************************
    161  *  Device identification routine
    162  *
    163  *  igc_match determines if the driver should be loaded on
    164  *  adapter based on PCI vendor/device id of the adapter.
    165  *
    166  *  return 0 on success, positive on failure
    167  *********************************************************************/
    168 int
    169 igc_match(struct device *parent, void *match, void *aux)
    170 {
    171 	return pci_matchbyid((struct pci_attach_args *)aux, igc_devices,
    172 	    nitems(igc_devices));
    173 }
    174 
    175 /*********************************************************************
    176  *  Device initialization routine
    177  *
    178  *  The attach entry point is called when the driver is being loaded.
    179  *  This routine identifies the type of hardware, allocates all resources
    180  *  and initializes the hardware.
    181  *
    182  *  return 0 on success, positive on failure
    183  *********************************************************************/
    184 void
    185 igc_attach(struct device *parent, struct device *self, void *aux)
    186 {
    187 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    188 	struct igc_softc *sc = (struct igc_softc *)self;
    189 	struct igc_hw *hw = &sc->hw;
    190 
    191 	sc->osdep.os_sc = sc;
    192 	sc->osdep.os_pa = *pa;
    193 
    194 	/* Determine hardware and mac info */
    195 	igc_identify_hardware(sc);
    196 
    197 	sc->num_tx_desc = IGC_DEFAULT_TXD;
    198 	sc->num_rx_desc = IGC_DEFAULT_RXD;
    199 
    200 	 /* Setup PCI resources */
    201 	if (igc_allocate_pci_resources(sc))
    202 		 goto err_pci;
    203 
    204 	/* Allocate TX/RX queues */
    205 	if (igc_allocate_queues(sc))
    206 		 goto err_pci;
    207 
    208 	/* Do shared code initialization */
    209 	if (igc_setup_init_funcs(hw, true)) {
    210 		printf(": Setup of shared code failed\n");
    211 		goto err_pci;
    212 	}
    213 
    214 	hw->mac.autoneg = DO_AUTO_NEG;
    215 	hw->phy.autoneg_wait_to_complete = false;
    216 	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
    217 
    218 	/* Copper options. */
    219 	if (hw->phy.media_type == igc_media_type_copper)
    220 		hw->phy.mdix = AUTO_ALL_MODES;
    221 
    222 	/* Set the max frame size. */
    223 	sc->hw.mac.max_frame_size = 9234;
    224 
    225 	/* Allocate multicast array memory. */
    226 	sc->mta = mallocarray(ETHER_ADDR_LEN, MAX_NUM_MULTICAST_ADDRESSES,
    227 	    M_DEVBUF, M_NOWAIT);
    228 	if (sc->mta == NULL) {
    229 		printf(": Can not allocate multicast setup array\n");
    230 		goto err_late;
    231 	}
    232 
    233 	/* Check SOL/IDER usage. */
    234 	if (igc_check_reset_block(hw))
    235 		printf(": PHY reset is blocked due to SOL/IDER session\n");
    236 
    237 	/* Disable Energy Efficient Ethernet. */
    238 	sc->hw.dev_spec._i225.eee_disable = true;
    239 
    240 	igc_reset_hw(hw);
    241 
    242 	/* Make sure we have a good EEPROM before we read from it. */
    243 	if (igc_validate_nvm_checksum(hw) < 0) {
    244 		/*
    245 		 * Some PCI-E parts fail the first check due to
    246 		 * the link being in sleep state, call it again,
    247 		 * if it fails a second time its a real issue.
    248 		 */
    249 		if (igc_validate_nvm_checksum(hw) < 0) {
    250 			printf(": The EEPROM checksum is not valid\n");
    251 			goto err_late;
    252 		}
    253 	}
    254 
    255 	/* Copy the permanent MAC address out of the EEPROM. */
    256 	if (igc_read_mac_addr(hw) < 0) {
    257 		printf(": EEPROM read error while reading MAC address\n");
    258 		goto err_late;
    259 	}
    260 
    261 	if (!igc_is_valid_ether_addr(hw->mac.addr)) {
    262 		printf(": Invalid MAC address\n");
    263 		goto err_late;
    264 	}
    265 
    266 	memcpy(sc->sc_ac.ac_enaddr, sc->hw.mac.addr, ETHER_ADDR_LEN);
    267 
    268 	if (igc_allocate_msix(sc))
    269 		goto err_late;
    270 
    271 	/* Setup OS specific network interface. */
    272 	igc_setup_interface(sc);
    273 
    274 	igc_reset(sc);
    275 	hw->mac.get_link_status = true;
    276 	igc_update_link_status(sc);
    277 
    278 	/* The driver can now take control from firmware. */
    279 	igc_get_hw_control(sc);
    280 
    281 	printf(", address %s\n", ether_sprintf(sc->hw.mac.addr));
    282 	return;
    283 
    284 err_late:
    285 	igc_release_hw_control(sc);
    286 err_pci:
    287 	igc_free_pci_resources(sc);
    288 	free(sc->mta, M_DEVBUF, ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
    289 }
    290 
    291 /*********************************************************************
    292  *  Device removal routine
    293  *
    294  *  The detach entry point is called when the driver is being removed.
    295  *  This routine stops the adapter and deallocates all the resources
    296  *  that were allocated for driver operation.
    297  *
    298  *  return 0 on success, positive on failure
    299  *********************************************************************/
    300 int
    301 igc_detach(struct device *self, int flags)
    302 {
    303 	struct igc_softc *sc = (struct igc_softc *)self;
    304 	struct ifnet *ifp = &sc->sc_ac.ac_if;
    305 
    306 	igc_stop(sc);
    307 
    308 	igc_phy_hw_reset(&sc->hw);
    309 	igc_release_hw_control(sc);
    310 
    311 	ether_ifdetach(ifp);
    312 	if_detach(ifp);
    313 
    314 	igc_free_pci_resources(sc);
    315 
    316 	igc_free_transmit_structures(sc);
    317 	igc_free_receive_structures(sc);
    318 	free(sc->mta, M_DEVBUF, ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
    319 
    320 	return 0;
    321 }
    322 
    323 void
    324 igc_identify_hardware(struct igc_softc *sc)
    325 {
    326 	struct igc_osdep *os = &sc->osdep;
    327 	struct pci_attach_args *pa = &os->os_pa;
    328 
    329 	/* Save off the information about this board. */
    330 	sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
    331 
    332 	/* Do shared code init and setup. */
    333 	if (igc_set_mac_type(&sc->hw)) {
    334 		printf(": Setup init failure\n");
    335 		return;
    336         }
    337 }
    338 
    339 int
    340 igc_allocate_pci_resources(struct igc_softc *sc)
    341 {
    342 	struct igc_osdep *os = &sc->osdep;
    343 	struct pci_attach_args *pa = &os->os_pa;
    344 	pcireg_t memtype;
    345 
    346 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IGC_PCIREG);
    347 	if (pci_mapreg_map(pa, IGC_PCIREG, memtype, 0, &os->os_memt,
    348 	    &os->os_memh, &os->os_membase, &os->os_memsize, 0)) {
    349 		printf(": unable to map registers\n");
    350 		return ENXIO;
    351 	}
    352 	sc->hw.hw_addr = (uint8_t *)os->os_membase;
    353 	sc->hw.back = os;
    354 
    355 	igc_setup_msix(sc);
    356 
    357 	return 0;
    358 }
    359 
    360 int
    361 igc_allocate_queues(struct igc_softc *sc)
    362 {
    363 	struct igc_queue *iq;
    364 	struct tx_ring *txr;
    365 	struct rx_ring *rxr;
    366 	int i, rsize, rxconf, tsize, txconf;
    367 
    368 	/* Allocate the top level queue structs. */
    369 	sc->queues = mallocarray(sc->sc_nqueues, sizeof(struct igc_queue),
    370 	    M_DEVBUF, M_NOWAIT | M_ZERO);
    371 	if (sc->queues == NULL) {
    372 		printf("%s: unable to allocate queue\n", DEVNAME(sc));
    373 		goto fail;
    374 	}
    375 
    376 	/* Allocate the TX ring. */
    377 	sc->tx_rings = mallocarray(sc->sc_nqueues, sizeof(struct tx_ring),
    378 	    M_DEVBUF, M_NOWAIT | M_ZERO);
    379 	if (sc->tx_rings == NULL) {
    380 		printf("%s: unable to allocate TX ring\n", DEVNAME(sc));
    381 		goto fail;
    382 	}
    383 
    384 	/* Allocate the RX ring. */
    385 	sc->rx_rings = mallocarray(sc->sc_nqueues, sizeof(struct rx_ring),
    386 	    M_DEVBUF, M_NOWAIT | M_ZERO);
    387 	if (sc->rx_rings == NULL) {
    388 		printf("%s: unable to allocate RX ring\n", DEVNAME(sc));
    389 		goto rx_fail;
    390 	}
    391 
    392 	txconf = rxconf = 0;
    393 
    394 	/* Set up the TX queues. */
    395 	tsize = roundup2(sc->num_tx_desc * sizeof(union igc_adv_tx_desc),
    396 	    IGC_DBA_ALIGN);
    397 	for (i = 0; i < sc->sc_nqueues; i++, txconf++) {
    398 		txr = &sc->tx_rings[i];
    399 		txr->sc = sc;
    400 		txr->me = i;
    401 
    402 		if (igc_dma_malloc(sc, tsize, &txr->txdma)) {
    403 			printf("%s: unable to allocate TX descriptor\n",
    404 			    DEVNAME(sc));
    405 			goto err_tx_desc;
    406 		}
    407 		txr->tx_base = (union igc_adv_tx_desc *)txr->txdma.dma_vaddr;
    408 		bzero((void *)txr->tx_base, tsize);
    409 	}
    410 
    411 	/* Set up the RX queues. */
    412 	rsize = roundup2(sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
    413 	    IGC_DBA_ALIGN);
    414 	for (i = 0; i < sc->sc_nqueues; i++, rxconf++) {
    415 		rxr = &sc->rx_rings[i];
    416 		rxr->sc = sc;
    417 		rxr->me = i;
    418 		timeout_set(&rxr->rx_refill, igc_rxrefill, rxr);
    419 
    420 		if (igc_dma_malloc(sc, rsize, &rxr->rxdma)) {
    421 			printf("%s: unable to allocate RX descriptor\n",
    422 			    DEVNAME(sc));
    423 			goto err_rx_desc;
    424 		}
    425 		rxr->rx_base = (union igc_adv_rx_desc *)rxr->rxdma.dma_vaddr;
    426 		bzero((void *)rxr->rx_base, rsize);
    427 	}
    428 
    429 	/* Set up the queue holding structs. */
    430 	for (i = 0; i < sc->sc_nqueues; i++) {
    431 		iq = &sc->queues[i];
    432 		iq->sc = sc;
    433 		iq->txr = &sc->tx_rings[i];
    434 		iq->rxr = &sc->rx_rings[i];
    435 		snprintf(iq->name, sizeof(iq->name), "%s:%d", DEVNAME(sc), i);
    436 	}
    437 
    438 	return 0;
    439 
    440 err_rx_desc:
    441 	for (rxr = sc->rx_rings; rxconf > 0; rxr++, rxconf--)
    442 		igc_dma_free(sc, &rxr->rxdma);
    443 err_tx_desc:
    444 	for (txr = sc->tx_rings; txconf > 0; txr++, txconf--)
    445 		igc_dma_free(sc, &txr->txdma);
    446 	free(sc->rx_rings, M_DEVBUF, sc->sc_nqueues * sizeof(struct rx_ring));
    447 	sc->rx_rings = NULL;
    448 rx_fail:
    449 	free(sc->tx_rings, M_DEVBUF, sc->sc_nqueues * sizeof(struct tx_ring));
    450 	sc->tx_rings = NULL;
    451 fail:
    452 	return ENOMEM;
    453 }
    454 
    455 void
    456 igc_free_pci_resources(struct igc_softc *sc)
    457 {
    458 	struct igc_osdep *os = &sc->osdep;
    459 	struct pci_attach_args *pa = &os->os_pa;
    460 	struct igc_queue *iq = sc->queues;
    461 	int i;
    462 
    463 	/* Release all msix queue resources. */
    464 	for (i = 0; i < sc->sc_nqueues; i++, iq++) {
    465 		if (iq->tag)
    466 			pci_intr_disestablish(pa->pa_pc, iq->tag);
    467 		iq->tag = NULL;
    468 	}
    469 
    470 	if (sc->tag)
    471 		pci_intr_disestablish(pa->pa_pc, sc->tag);
    472 	sc->tag = NULL;
    473 	if (os->os_membase != 0)
    474 		bus_space_unmap(os->os_memt, os->os_memh, os->os_memsize);
    475 	os->os_membase = 0;
    476 }
    477 
    478 /*********************************************************************
    479  *
    480  *  Initialize the hardware to a configuration as specified by the
    481  *  adapter structure.
    482  *
    483  **********************************************************************/
    484 void
    485 igc_reset(struct igc_softc *sc)
    486 {
    487 	struct igc_hw *hw = &sc->hw;
    488 	uint32_t pba;
    489 	uint16_t rx_buffer_size;
    490 
    491 	/* Let the firmware know the OS is in control */
    492 	igc_get_hw_control(sc);
    493 
    494 	/*
    495 	 * Packet Buffer Allocation (PBA)
    496 	 * Writing PBA sets the receive portion of the buffer
    497 	 * the remainder is used for the transmit buffer.
    498 	 */
    499 	pba = IGC_PBA_34K;
    500 
    501 	/*
    502 	 * These parameters control the automatic generation (Tx) and
    503 	 * response (Rx) to Ethernet PAUSE frames.
    504 	 * - High water mark should allow for at least two frames to be
    505 	 *   received after sending an XOFF.
    506 	 * - Low water mark works best when it is very near the high water mark.
    507 	 *   This allows the receiver to restart by sending XON when it has
    508 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
    509 	 *   restart after one full frame is pulled from the buffer. There
    510 	 *   could be several smaller frames in the buffer and if so they will
    511 	 *   not trigger the XON until their total number reduces the buffer
    512 	 *   by 1500.
    513 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
    514 	 */
    515 	rx_buffer_size = (pba & 0xffff) << 10;
    516 	hw->fc.high_water = rx_buffer_size -
    517 	    roundup2(sc->hw.mac.max_frame_size, 1024);
    518 	/* 16-byte granularity */
    519 	hw->fc.low_water = hw->fc.high_water - 16;
    520 
    521 	if (sc->fc) /* locally set flow control value? */
    522 		hw->fc.requested_mode = sc->fc;
    523 	else
    524 		hw->fc.requested_mode = igc_fc_full;
    525 
    526 	hw->fc.pause_time = IGC_FC_PAUSE_TIME;
    527 
    528 	hw->fc.send_xon = true;
    529 
    530 	/* Issue a global reset */
    531 	igc_reset_hw(hw);
    532 	IGC_WRITE_REG(hw, IGC_WUC, 0);
    533 
    534 	/* and a re-init */
    535 	if (igc_init_hw(hw) < 0) {
    536 		printf(": Hardware Initialization Failed\n");
    537 		return;
    538 	}
    539 
    540 	/* Setup DMA Coalescing */
    541 	igc_init_dmac(sc, pba);
    542 
    543 	IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
    544 	igc_get_phy_info(hw);
    545 	igc_check_for_link(hw);
    546 }
    547 
    548 /*********************************************************************
    549  *
    550  *  Initialize the DMA Coalescing feature
    551  *
    552  **********************************************************************/
    553 void
    554 igc_init_dmac(struct igc_softc *sc, uint32_t pba)
    555 {
    556 	struct igc_hw *hw = &sc->hw;
    557 	uint32_t dmac, reg = ~IGC_DMACR_DMAC_EN;
    558 	uint16_t hwm, max_frame_size;
    559 	int status;
    560 
    561 	max_frame_size = sc->hw.mac.max_frame_size;
    562 
    563 	if (sc->dmac == 0) { /* Disabling it */
    564 		IGC_WRITE_REG(hw, IGC_DMACR, reg);
    565 		return;
    566 	} else
    567 		printf(": DMA Coalescing enabled\n");
    568 
    569 	/* Set starting threshold */
    570 	IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
    571 
    572 	hwm = 64 * pba - max_frame_size / 16;
    573 	if (hwm < 64 * (pba - 6))
    574 		hwm = 64 * (pba - 6);
    575 	reg = IGC_READ_REG(hw, IGC_FCRTC);
    576 	reg &= ~IGC_FCRTC_RTH_COAL_MASK;
    577 	reg |= ((hwm << IGC_FCRTC_RTH_COAL_SHIFT)
    578 		& IGC_FCRTC_RTH_COAL_MASK);
    579 	IGC_WRITE_REG(hw, IGC_FCRTC, reg);
    580 
    581 	dmac = pba - max_frame_size / 512;
    582 	if (dmac < pba - 10)
    583 		dmac = pba - 10;
    584 	reg = IGC_READ_REG(hw, IGC_DMACR);
    585 	reg &= ~IGC_DMACR_DMACTHR_MASK;
    586 	reg |= ((dmac << IGC_DMACR_DMACTHR_SHIFT)
    587 		& IGC_DMACR_DMACTHR_MASK);
    588 
    589 	/* transition to L0x or L1 if available..*/
    590 	reg |= (IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK);
    591 
    592 	/* Check if status is 2.5Gb backplane connection
    593 	 * before configuration of watchdog timer, which is
    594 	 * in msec values in 12.8usec intervals
    595 	 * watchdog timer= msec values in 32usec intervals
    596 	 * for non 2.5Gb connection
    597 	 */
    598 	status = IGC_READ_REG(hw, IGC_STATUS);
    599 	if ((status & IGC_STATUS_2P5_SKU) &&
    600 	    (!(status & IGC_STATUS_2P5_SKU_OVER)))
    601 		reg |= ((sc->dmac * 5) >> 6);
    602 	else
    603 		reg |= (sc->dmac >> 5);
    604 
    605 	IGC_WRITE_REG(hw, IGC_DMACR, reg);
    606 
    607 	IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
    608 
    609 	/* Set the interval before transition */
    610 	reg = IGC_READ_REG(hw, IGC_DMCTLX);
    611 	reg |= IGC_DMCTLX_DCFLUSH_DIS;
    612 
    613 	/*
    614 	** in 2.5Gb connection, TTLX unit is 0.4 usec
    615 	** which is 0x4*2 = 0xA. But delay is still 4 usec
    616 	*/
    617 	status = IGC_READ_REG(hw, IGC_STATUS);
    618 	if ((status & IGC_STATUS_2P5_SKU) &&
    619 	    (!(status & IGC_STATUS_2P5_SKU_OVER)))
    620 		reg |= 0xA;
    621 	else
    622 		reg |= 0x4;
    623 
    624 	IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
    625 
    626 	/* free space in tx packet buffer to wake from DMA coal */
    627 	IGC_WRITE_REG(hw, IGC_DMCTXTH, (IGC_TXPBSIZE -
    628 	    (2 * max_frame_size)) >> 6);
    629 
    630 	/* make low power state decision controlled by DMA coal */
    631 	reg = IGC_READ_REG(hw, IGC_PCIEMISC);
    632 	reg &= ~IGC_PCIEMISC_LX_DECISION;
    633 	IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
    634 }
    635 
    636 int
    637 igc_allocate_msix(struct igc_softc *sc)
    638 {
    639 	struct igc_osdep *os = &sc->osdep;
    640 	struct pci_attach_args *pa = &os->os_pa;
    641 	struct igc_queue *iq;
    642 	pci_intr_handle_t ih;
    643 	int i, error = 0;
    644 
    645 	for (i = 0, iq = sc->queues; i < sc->sc_nqueues; i++, iq++) {
    646 		if (pci_intr_map_msix(pa, i, &ih)) {
    647 			printf("%s: unable to map msi-x vector %d\n",
    648 			    DEVNAME(sc), i);
    649 			error = ENOMEM;
    650 			goto fail;
    651 		}
    652 
    653 		iq->tag = pci_intr_establish_cpu(pa->pa_pc, ih,
    654 		    IPL_NET | IPL_MPSAFE, intrmap_cpu(sc->sc_intrmap, i),
    655 		    igc_intr_queue, iq, iq->name);
    656 		if (iq->tag == NULL) {
    657 			printf("%s: unable to establish interrupt %d\n",
    658 			    DEVNAME(sc), i);
    659 			error = ENOMEM;
    660 			goto fail;
    661 		}
    662 
    663 		iq->msix = i;
    664 		iq->eims = 1 << i;
    665 	}
    666 
    667 	/* Now the link status/control last MSI-X vector. */
    668 	if (pci_intr_map_msix(pa, i, &ih)) {
    669 		printf("%s: unable to map link vector\n", DEVNAME(sc));
    670 		error = ENOMEM;
    671 		goto fail;
    672 	}
    673 
    674 	sc->tag = pci_intr_establish(pa->pa_pc, ih, IPL_NET | IPL_MPSAFE,
    675 	    igc_intr_link, sc, sc->sc_dev.dv_xname);
    676 	if (sc->tag == NULL) {
    677 		printf("%s: unable to establish link interrupt\n", DEVNAME(sc));
    678 		error = ENOMEM;
    679 		goto fail;
    680 	}
    681 
    682 	sc->linkvec = i;
    683 	printf(", %s, %d queue%s", pci_intr_string(pa->pa_pc, ih),
    684 	    i, (i > 1) ? "s" : "");
    685 
    686 	return 0;
    687 fail:
    688 	for (iq = sc->queues; i > 0; i--, iq++) {
    689 		if (iq->tag == NULL)
    690 			continue;
    691 		pci_intr_disestablish(pa->pa_pc, iq->tag);
    692 		iq->tag = NULL;
    693 	}
    694 
    695 	return error;
    696 }
    697 
    698 void
    699 igc_setup_msix(struct igc_softc *sc)
    700 {
    701 	struct igc_osdep *os = &sc->osdep;
    702 	struct pci_attach_args *pa = &os->os_pa;
    703 	int nmsix;
    704 
    705 	nmsix = pci_intr_msix_count(pa);
    706 	if (nmsix <= 1)
    707 		printf(": not enough msi-x vectors\n");
    708 
    709 	/* Give one vector to events. */
    710 	nmsix--;
    711 
    712 	sc->sc_intrmap = intrmap_create(&sc->sc_dev, nmsix, IGC_MAX_VECTORS,
    713 	    INTRMAP_POWEROF2);
    714 	sc->sc_nqueues = intrmap_count(sc->sc_intrmap);
    715 }
    716 
    717 int
    718 igc_dma_malloc(struct igc_softc *sc, bus_size_t size, struct igc_dma_alloc *dma)
    719 {
    720 	struct igc_osdep *os = &sc->osdep;
    721 
    722 	dma->dma_tag = os->os_pa.pa_dmat;
    723 
    724 	if (bus_dmamap_create(dma->dma_tag, size, 1, size, 0, BUS_DMA_NOWAIT,
    725 	    &dma->dma_map))
    726 		return 1;
    727 	if (bus_dmamem_alloc(dma->dma_tag, size, PAGE_SIZE, 0, &dma->dma_seg,
    728 	    1, &dma->dma_nseg, BUS_DMA_NOWAIT))
    729 		goto destroy;
    730 	if (bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
    731 	    &dma->dma_vaddr, BUS_DMA_NOWAIT | BUS_DMA_COHERENT))
    732 		goto free;
    733 	if (bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
    734 	    NULL, BUS_DMA_NOWAIT))
    735 		goto unmap;
    736 
    737 	dma->dma_size = size;
    738 
    739 	return 0;
    740 unmap:
    741 	bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
    742 free:
    743 	bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
    744 destroy:
    745 	bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
    746 	dma->dma_map = NULL;
    747 	dma->dma_tag = NULL;
    748 	return 1;
    749 }
    750 
    751 void
    752 igc_dma_free(struct igc_softc *sc, struct igc_dma_alloc *dma)
    753 {
    754 	if (dma->dma_tag == NULL)
    755 		return;
    756 
    757 	if (dma->dma_map != NULL) {
    758 		bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
    759 		    dma->dma_map->dm_mapsize,
    760 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    761 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
    762 		bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
    763 		bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
    764 		bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
    765 		dma->dma_map = NULL;
    766 	}
    767 }
    768 
    769 /*********************************************************************
    770  *
    771  *  Setup networking device structure and register an interface.
    772  *
    773  **********************************************************************/
    774 void
    775 igc_setup_interface(struct igc_softc *sc)
    776 {
    777 	struct ifnet *ifp = &sc->sc_ac.ac_if;
    778 	int i;
    779 
    780 	ifp->if_softc = sc;
    781 	strlcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ);
    782 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    783 	ifp->if_xflags = IFXF_MPSAFE;
    784 	ifp->if_ioctl = igc_ioctl;
    785 	ifp->if_qstart = igc_start;
    786 	ifp->if_watchdog = igc_watchdog;
    787 	ifp->if_hardmtu = sc->hw.mac.max_frame_size - ETHER_HDR_LEN -
    788 	    ETHER_CRC_LEN;
    789 	ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
    790 
    791 	ifp->if_capabilities = IFCAP_VLAN_MTU;
    792 
    793 #ifdef notyet
    794 #if NVLAN > 0
    795 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
    796 #endif
    797 #endif
    798 
    799 	ifp->if_capabilities |= IFCAP_CSUM_IPv4;
    800 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    801 	ifp->if_capabilities |= IFCAP_CSUM_TCPv6 | IFCAP_CSUM_UDPv6;
    802 
    803 	/* Initialize ifmedia structures. */
    804 	ifmedia_init(&sc->media, IFM_IMASK, igc_media_change, igc_media_status);
    805 	ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
    806 	ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
    807 	ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
    808 	ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
    809 	ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
    810 	ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
    811 	ifmedia_add(&sc->media, IFM_ETHER | IFM_2500_T, 0, NULL);
    812 
    813 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
    814 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
    815 
    816 	if_attach(ifp);
    817 	ether_ifattach(ifp);
    818 
    819 	if_attach_queues(ifp, sc->sc_nqueues);
    820 	if_attach_iqueues(ifp, sc->sc_nqueues);
    821 	for (i = 0; i < sc->sc_nqueues; i++) {
    822 		struct ifqueue *ifq = ifp->if_ifqs[i];
    823 		struct ifiqueue *ifiq = ifp->if_iqs[i];
    824 		struct tx_ring *txr = &sc->tx_rings[i];
    825 		struct rx_ring *rxr = &sc->rx_rings[i];
    826 
    827 		ifq->ifq_softc = txr;
    828 		txr->ifq = ifq;
    829 
    830 		ifiq->ifiq_softc = rxr;
    831 		rxr->ifiq = ifiq;
    832 	}
    833 }
    834 
    835 void
    836 igc_init(void *arg)
    837 {
    838 	struct igc_softc *sc = (struct igc_softc *)arg;
    839 	struct ifnet *ifp = &sc->sc_ac.ac_if;
    840 	struct rx_ring *rxr;
    841 	uint32_t ctrl = 0;
    842 	int i, s;
    843 
    844 	s = splnet();
    845 
    846 	igc_stop(sc);
    847 
    848 	/* Get the latest mac address, user can use a LAA. */
    849 	bcopy(sc->sc_ac.ac_enaddr, sc->hw.mac.addr, ETHER_ADDR_LEN);
    850 
    851 	/* Put the address into the receive address array. */
    852 	igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
    853 
    854 	/* Initialize the hardware. */
    855 	igc_reset(sc);
    856 	igc_update_link_status(sc);
    857 
    858 	/* Setup VLAN support, basic and offload if available. */
    859 	IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
    860 
    861 	/* Prepare transmit descriptors and buffers. */
    862 	if (igc_setup_transmit_structures(sc)) {
    863 		printf("%s: Could not setup transmit structures\n",
    864 		    DEVNAME(sc));
    865 		igc_stop(sc);
    866 		splx(s);
    867 		return;
    868 	}
    869 	igc_initialize_transmit_unit(sc);
    870 
    871 	sc->rx_mbuf_sz = MCLBYTES + ETHER_ALIGN;
    872 	/* Prepare receive descriptors and buffers. */
    873 	if (igc_setup_receive_structures(sc)) {
    874 		printf("%s: Could not setup receive structures\n",
    875 		    DEVNAME(sc));
    876 		igc_stop(sc);
    877 		splx(s);
    878 		return;
    879         }
    880 	igc_initialize_receive_unit(sc);
    881 
    882 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) {
    883 		ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
    884 		ctrl |= IGC_CTRL_VME;
    885 		IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
    886 	}
    887 
    888 	/* Setup multicast table. */
    889 	igc_iff(sc);
    890 
    891 	igc_clear_hw_cntrs_base_generic(&sc->hw);
    892 
    893 	igc_configure_queues(sc);
    894 
    895 	/* This clears any pending interrupts */
    896 	IGC_READ_REG(&sc->hw, IGC_ICR);
    897 	IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
    898 
    899 	/* The driver can now take control from firmware. */
    900 	igc_get_hw_control(sc);
    901 
    902 	/* Set Energy Efficient Ethernet. */
    903 	igc_set_eee_i225(&sc->hw, true, true, true);
    904 
    905 	for (i = 0; i < sc->sc_nqueues; i++) {
    906 		rxr = &sc->rx_rings[i];
    907 		igc_rxfill(rxr);
    908 		if (if_rxr_inuse(&rxr->rx_ring) == 0) {
    909 			printf("%s: Unable to fill any rx descriptors\n",
    910 			    DEVNAME(sc));
    911 			igc_stop(sc);
    912 			splx(s);
    913 		}
    914 		IGC_WRITE_REG(&sc->hw, IGC_RDT(i),
    915 		    (rxr->last_desc_filled + 1) % sc->num_rx_desc);
    916 	}
    917 
    918 	igc_enable_intr(sc);
    919 
    920 	ifp->if_flags |= IFF_RUNNING;
    921 	for (i = 0; i < sc->sc_nqueues; i++)
    922 		ifq_clr_oactive(ifp->if_ifqs[i]);
    923 
    924 	splx(s);
    925 }
    926 
    927 static inline int
    928 igc_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m)
    929 {
    930 	int error;
    931 
    932 	error = bus_dmamap_load_mbuf(dmat, map, m,
    933 	    BUS_DMA_STREAMING | BUS_DMA_NOWAIT);
    934 	if (error != EFBIG)
    935 		return (error);
    936 
    937 	error = m_defrag(m, M_DONTWAIT);
    938 	if (error != 0)
    939 		return (error);
    940 
    941 	return (bus_dmamap_load_mbuf(dmat, map, m,
    942 	    BUS_DMA_STREAMING | BUS_DMA_NOWAIT));
    943 }
    944 
    945 void
    946 igc_start(struct ifqueue *ifq)
    947 {
    948 	struct ifnet *ifp = ifq->ifq_if;
    949 	struct igc_softc *sc = ifp->if_softc;
    950 	struct tx_ring *txr = ifq->ifq_softc;
    951 	union igc_adv_tx_desc *txdesc;
    952 	struct igc_tx_buf *txbuf;
    953 	bus_dmamap_t map;
    954 	struct mbuf *m;
    955 	unsigned int prod, free, last, i;
    956 	unsigned int mask;
    957 	uint32_t cmd_type_len;
    958 	uint32_t olinfo_status;
    959 	int post = 0;
    960 #if NBPFILTER > 0
    961 	caddr_t if_bpf;
    962 #endif
    963 
    964 	if (!sc->link_active) {
    965 		ifq_purge(ifq);
    966 		return;
    967 	}
    968 
    969 	prod = txr->next_avail_desc;
    970 	free = txr->next_to_clean;
    971 	if (free <= prod)
    972 		free += sc->num_tx_desc;
    973 	free -= prod;
    974 
    975 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
    976 	    txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    977 
    978 	mask = sc->num_tx_desc - 1;
    979 
    980 	for (;;) {
    981 		if (free <= IGC_MAX_SCATTER + 1) {
    982 			ifq_set_oactive(ifq);
    983 			break;
    984 		}
    985 
    986 		m = ifq_dequeue(ifq);
    987 		if (m == NULL)
    988 			break;
    989 
    990 		txbuf = &txr->tx_buffers[prod];
    991 		map = txbuf->map;
    992 
    993 		if (igc_load_mbuf(txr->txdma.dma_tag, map, m) != 0) {
    994 			ifq->ifq_errors++;
    995 			m_freem(m);
    996 			continue;
    997 		}
    998 
    999 		olinfo_status = m->m_pkthdr.len << IGC_ADVTXD_PAYLEN_SHIFT;
   1000 
   1001 		bus_dmamap_sync(txr->txdma.dma_tag, map, 0,
   1002 		    map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1003 
   1004 		if (igc_tx_ctx_setup(txr, m, prod, &olinfo_status)) {
   1005 			/* Consume the first descriptor */
   1006 			prod++;
   1007 			prod &= mask;
   1008 			free--;
   1009 		}
   1010 
   1011 		for (i = 0; i < map->dm_nsegs; i++) {
   1012 			txdesc = &txr->tx_base[prod];
   1013 
   1014 			cmd_type_len = IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DTYP_DATA |
   1015 			    IGC_ADVTXD_DCMD_DEXT | map->dm_segs[i].ds_len;
   1016 			if (i == map->dm_nsegs - 1)
   1017 				cmd_type_len |= IGC_ADVTXD_DCMD_EOP |
   1018 				    IGC_ADVTXD_DCMD_RS;
   1019 
   1020 			htolem64(&txdesc->read.buffer_addr, map->dm_segs[i].ds_addr);
   1021 			htolem32(&txdesc->read.cmd_type_len, cmd_type_len);
   1022 			htolem32(&txdesc->read.olinfo_status, olinfo_status);
   1023 
   1024 			last = prod;
   1025 
   1026 			prod++;
   1027 			prod &= mask;
   1028 		}
   1029 
   1030 		txbuf->m_head = m;
   1031 		txbuf->eop_index = last;
   1032 
   1033 #if NBPFILTER > 0
   1034 		if_bpf = ifp->if_bpf;
   1035 		if (if_bpf)
   1036 			bpf_mtap_ether(if_bpf, m, BPF_DIRECTION_OUT);
   1037 #endif
   1038 
   1039 		free -= i;
   1040 		post = 1;
   1041 	}
   1042 
   1043 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
   1044 	    txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1045 
   1046 	if (post) {
   1047 		txr->next_avail_desc = prod;
   1048 		IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), prod);
   1049 	}
   1050 }
   1051 
   1052 int
   1053 igc_txeof(struct tx_ring *txr)
   1054 {
   1055 	struct igc_softc *sc = txr->sc;
   1056 	struct ifqueue *ifq = txr->ifq;
   1057 	union igc_adv_tx_desc *txdesc;
   1058 	struct igc_tx_buf *txbuf;
   1059 	bus_dmamap_t map;
   1060 	unsigned int cons, prod, last;
   1061 	unsigned int mask;
   1062 	int done = 0;
   1063 
   1064 	prod = txr->next_avail_desc;
   1065 	cons = txr->next_to_clean;
   1066 
   1067 	if (cons == prod)
   1068 		return (0);
   1069 
   1070 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
   1071 	    txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1072 
   1073 	mask = sc->num_tx_desc - 1;
   1074 
   1075 	do {
   1076 		txbuf = &txr->tx_buffers[cons];
   1077 		last = txbuf->eop_index;
   1078 		txdesc = &txr->tx_base[last];
   1079 
   1080 		if (!(txdesc->wb.status & htole32(IGC_TXD_STAT_DD)))
   1081 			break;
   1082 
   1083 		map = txbuf->map;
   1084 
   1085 		bus_dmamap_sync(txr->txdma.dma_tag, map, 0, map->dm_mapsize,
   1086 		    BUS_DMASYNC_POSTWRITE);
   1087 		bus_dmamap_unload(txr->txdma.dma_tag, map);
   1088 		m_freem(txbuf->m_head);
   1089 
   1090 		txbuf->m_head = NULL;
   1091 		txbuf->eop_index = -1;
   1092 
   1093 		cons = last + 1;
   1094 		cons &= mask;
   1095 
   1096 		done = 1;
   1097 	} while (cons != prod);
   1098 
   1099 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
   1100 	    txr->txdma.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   1101 
   1102 	txr->next_to_clean = cons;
   1103 
   1104 	if (ifq_is_oactive(ifq))
   1105 		ifq_restart(ifq);
   1106 
   1107 	return (done);
   1108 }
   1109 
   1110 /*********************************************************************
   1111  *
   1112  *  This routine disables all traffic on the adapter by issuing a
   1113  *  global reset on the MAC.
   1114  *
   1115  **********************************************************************/
   1116 void
   1117 igc_stop(struct igc_softc *sc)
   1118 {
   1119 	struct ifnet *ifp = &sc->sc_ac.ac_if;
   1120 	int i;
   1121 
   1122 	/* Tell the stack that the interface is no longer active. */
   1123         ifp->if_flags &= ~IFF_RUNNING;
   1124 
   1125 	igc_disable_intr(sc);
   1126 
   1127 	igc_reset_hw(&sc->hw);
   1128 	IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
   1129 
   1130 	intr_barrier(sc->tag);
   1131         for (i = 0; i < sc->sc_nqueues; i++) {
   1132                 struct ifqueue *ifq = ifp->if_ifqs[i];
   1133                 ifq_barrier(ifq);
   1134                 ifq_clr_oactive(ifq);
   1135 
   1136                 if (sc->queues[i].tag != NULL)
   1137                         intr_barrier(sc->queues[i].tag);
   1138                 timeout_del(&sc->rx_rings[i].rx_refill);
   1139         }
   1140 
   1141         igc_free_transmit_structures(sc);
   1142         igc_free_receive_structures(sc);
   1143 
   1144 	igc_update_link_status(sc);
   1145 }
   1146 
   1147 /*********************************************************************
   1148  *  Ioctl entry point
   1149  *
   1150  *  igc_ioctl is called when the user wants to configure the
   1151  *  interface.
   1152  *
   1153  *  return 0 on success, positive on failure
   1154  **********************************************************************/
   1155 int
   1156 igc_ioctl(struct ifnet * ifp, u_long cmd, caddr_t data)
   1157 {
   1158 	struct igc_softc *sc = ifp->if_softc;
   1159 	struct ifreq *ifr = (struct ifreq *)data;
   1160 	int s, error = 0;
   1161 
   1162 	s = splnet();
   1163 
   1164 	switch (cmd) {
   1165 	case SIOCSIFADDR:
   1166 		ifp->if_flags |= IFF_UP;
   1167 		if (!(ifp->if_flags & IFF_RUNNING))
   1168 			igc_init(sc);
   1169 		break;
   1170 	case SIOCSIFFLAGS:
   1171 		if (ifp->if_flags & IFF_UP) {
   1172 			if (ifp->if_flags & IFF_RUNNING)
   1173 				error = ENETRESET;
   1174 			else
   1175 				igc_init(sc);
   1176 		} else {
   1177 			if (ifp->if_flags & IFF_RUNNING)
   1178 				igc_stop(sc);
   1179 		}
   1180 		break;
   1181 	case SIOCSIFMEDIA:
   1182 	case SIOCGIFMEDIA:
   1183 		error = ifmedia_ioctl(ifp, ifr, &sc->media, cmd);
   1184 		break;
   1185 	case SIOCGIFRXR:
   1186 		error = igc_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
   1187 		break;
   1188 	default:
   1189 		error = ether_ioctl(ifp, &sc->sc_ac, cmd, data);
   1190 	}
   1191 
   1192 	if (error == ENETRESET) {
   1193 		if (ifp->if_flags & IFF_RUNNING) {
   1194 			igc_disable_intr(sc);
   1195 			igc_iff(sc);
   1196 			igc_enable_intr(sc);
   1197 		}
   1198 		error = 0;
   1199 	}
   1200 
   1201 	splx(s);
   1202 	return error;
   1203 }
   1204 
   1205 int
   1206 igc_rxrinfo(struct igc_softc *sc, struct if_rxrinfo *ifri)
   1207 {
   1208 	struct if_rxring_info *ifr;
   1209 	struct rx_ring *rxr;
   1210 	int error, i, n = 0;
   1211 
   1212 	ifr = mallocarray(sc->sc_nqueues, sizeof(*ifr), M_DEVBUF,
   1213 	    M_WAITOK | M_ZERO);
   1214 
   1215 	for (i = 0; i < sc->sc_nqueues; i++) {
   1216 		rxr = &sc->rx_rings[i];
   1217 		ifr[n].ifr_size = MCLBYTES;
   1218 		snprintf(ifr[n].ifr_name, sizeof(ifr[n].ifr_name), "%d", i);
   1219 		ifr[n].ifr_info = rxr->rx_ring;
   1220 		n++;
   1221 	}
   1222 
   1223 	error = if_rxr_info_ioctl(ifri, sc->sc_nqueues, ifr);
   1224 	free(ifr, M_DEVBUF, sc->sc_nqueues * sizeof(*ifr));
   1225 
   1226 	return error;
   1227 }
   1228 
   1229 int
   1230 igc_rxfill(struct rx_ring *rxr)
   1231 {
   1232 	struct igc_softc *sc = rxr->sc;
   1233 	int i, post = 0;
   1234 	u_int slots;
   1235 
   1236 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
   1237 	    rxr->rxdma.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1238 
   1239 	i = rxr->last_desc_filled;
   1240 	for (slots = if_rxr_get(&rxr->rx_ring, sc->num_rx_desc); slots > 0;
   1241 	    slots--) {
   1242 		if (++i == sc->num_rx_desc)
   1243 			i = 0;
   1244 
   1245 		if (igc_get_buf(rxr, i) != 0)
   1246 			break;
   1247 
   1248 		rxr->last_desc_filled = i;
   1249 		post = 1;
   1250 	}
   1251 
   1252 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
   1253 	    rxr->rxdma.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1254 
   1255 	if_rxr_put(&rxr->rx_ring, slots);
   1256 
   1257 	return post;
   1258 }
   1259 
   1260 void
   1261 igc_rxrefill(void *xrxr)
   1262 {
   1263 	struct rx_ring *rxr = xrxr;
   1264 	struct igc_softc *sc = rxr->sc;
   1265 
   1266 	if (igc_rxfill(rxr)) {
   1267 		IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me),
   1268 		    (rxr->last_desc_filled + 1) % sc->num_rx_desc);
   1269 	}
   1270 	else if (if_rxr_inuse(&rxr->rx_ring) == 0)
   1271 		timeout_add(&rxr->rx_refill, 1);
   1272 }
   1273 
   1274 /*********************************************************************
   1275  *
   1276  *  This routine executes in interrupt context. It replenishes
   1277  *  the mbufs in the descriptor and sends data which has been
   1278  *  dma'ed into host memory to upper layer.
   1279  *
   1280  *********************************************************************/
   1281 int
   1282 igc_rxeof(struct rx_ring *rxr)
   1283 {
   1284 	struct igc_softc *sc = rxr->sc;
   1285 	struct ifnet *ifp = &sc->sc_ac.ac_if;
   1286 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
   1287 	struct mbuf *mp, *m;
   1288 	struct igc_rx_buf *rxbuf, *nxbuf;
   1289 	union igc_adv_rx_desc *rxdesc;
   1290 	uint32_t ptype, staterr = 0;
   1291 	uint16_t len, vtag;
   1292 	uint8_t eop = 0;
   1293 	int i, nextp;
   1294 
   1295 	if (!ISSET(ifp->if_flags, IFF_RUNNING))
   1296 		return 0;
   1297 
   1298 	i = rxr->next_to_check;
   1299 	while (if_rxr_inuse(&rxr->rx_ring) > 0) {
   1300 		uint32_t hash;
   1301 		uint16_t hashtype;
   1302 
   1303 		bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
   1304 		    i * sizeof(union igc_adv_rx_desc),
   1305 		    sizeof(union igc_adv_rx_desc), BUS_DMASYNC_POSTREAD);
   1306 
   1307 		rxdesc = &rxr->rx_base[i];
   1308 		staterr = letoh32(rxdesc->wb.upper.status_error);
   1309 		if (!ISSET(staterr, IGC_RXD_STAT_DD)) {
   1310 			bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
   1311 			    i * sizeof(union igc_adv_rx_desc),
   1312 			    sizeof(union igc_adv_rx_desc), BUS_DMASYNC_PREREAD);
   1313 			break;
   1314 		}
   1315 
   1316 		/* Zero out the receive descriptors status. */
   1317 		rxdesc->wb.upper.status_error = 0;
   1318 		rxbuf = &rxr->rx_buffers[i];
   1319 
   1320 		/* Pull the mbuf off the ring. */
   1321 		bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map, 0,
   1322 		    rxbuf->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1323 		bus_dmamap_unload(rxr->rxdma.dma_tag, rxbuf->map);
   1324 
   1325 		mp = rxbuf->buf;
   1326 		len = letoh16(rxdesc->wb.upper.length);
   1327 		vtag = letoh16(rxdesc->wb.upper.vlan);
   1328 		eop = ((staterr & IGC_RXD_STAT_EOP) == IGC_RXD_STAT_EOP);
   1329 		ptype = letoh32(rxdesc->wb.lower.lo_dword.data) &
   1330 		    IGC_PKTTYPE_MASK;
   1331 		hash = letoh32(rxdesc->wb.lower.hi_dword.rss);
   1332 		hashtype = le16toh(rxdesc->wb.lower.lo_dword.hs_rss.pkt_info) &
   1333 		    IGC_RXDADV_RSSTYPE_MASK;
   1334 
   1335 		if (staterr & IGC_RXDEXT_STATERR_RXE) {
   1336 			if (rxbuf->fmp) {
   1337 				m_freem(rxbuf->fmp);
   1338 				rxbuf->fmp = NULL;
   1339 			}
   1340 
   1341 			m_freem(mp);
   1342 			rxbuf->buf = NULL;
   1343 			goto next_desc;
   1344 		}
   1345 
   1346 		if (mp == NULL) {
   1347 			panic("%s: igc_rxeof: NULL mbuf in slot %d "
   1348 			    "(nrx %d, filled %d)", DEVNAME(sc), i,
   1349 			    if_rxr_inuse(&rxr->rx_ring), rxr->last_desc_filled);
   1350 		}
   1351 
   1352 		if (!eop) {
   1353 			/*
   1354 			 * Figure out the next descriptor of this frame.
   1355 			 */
   1356 			nextp = i + 1;
   1357 			if (nextp == sc->num_rx_desc)
   1358 				nextp = 0;
   1359 			nxbuf = &rxr->rx_buffers[nextp];
   1360 			/* prefetch(nxbuf); */
   1361 		}
   1362 
   1363 		mp->m_len = len;
   1364 
   1365 		m = rxbuf->fmp;
   1366 		rxbuf->buf = rxbuf->fmp = NULL;
   1367 
   1368 		if (m != NULL)
   1369 			m->m_pkthdr.len += mp->m_len;
   1370 		else {
   1371 			m = mp;
   1372 			m->m_pkthdr.len = mp->m_len;
   1373 #if NVLAN > 0
   1374 			if (staterr & IGC_RXD_STAT_VP) {
   1375 				m->m_pkthdr.ether_vtag = vtag;
   1376 				m->m_flags |= M_VLANTAG;
   1377 			}
   1378 #endif
   1379 		}
   1380 
   1381 		/* Pass the head pointer on */
   1382 		if (eop == 0) {
   1383 			nxbuf->fmp = m;
   1384 			m = NULL;
   1385 			mp->m_next = nxbuf->buf;
   1386 		} else {
   1387 			igc_rx_checksum(staterr, m, ptype);
   1388 
   1389 			if (hashtype != IGC_RXDADV_RSSTYPE_NONE) {
   1390 				m->m_pkthdr.ph_flowid = hash;
   1391 				SET(m->m_pkthdr.csum_flags, M_FLOWID);
   1392 			}
   1393 
   1394 			ml_enqueue(&ml, m);
   1395 		}
   1396 next_desc:
   1397 		if_rxr_put(&rxr->rx_ring, 1);
   1398 		bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
   1399 		    i * sizeof(union igc_adv_rx_desc),
   1400 		    sizeof(union igc_adv_rx_desc), BUS_DMASYNC_PREREAD);
   1401 
   1402 		/* Advance our pointers to the next descriptor. */
   1403 		if (++i == sc->num_rx_desc)
   1404 			i = 0;
   1405 	}
   1406 	rxr->next_to_check = i;
   1407 
   1408 	if (ifiq_input(rxr->ifiq, &ml))
   1409 		if_rxr_livelocked(&rxr->rx_ring);
   1410 
   1411 	if (!(staterr & IGC_RXD_STAT_DD))
   1412 		return 0;
   1413 
   1414 	return 1;
   1415 }
   1416 
   1417 /*********************************************************************
   1418  *
   1419  *  Verify that the hardware indicated that the checksum is valid.
   1420  *  Inform the stack about the status of checksum so that stack
   1421  *  doesn't spend time verifying the checksum.
   1422  *
   1423  *********************************************************************/
   1424 void
   1425 igc_rx_checksum(uint32_t staterr, struct mbuf *m, uint32_t ptype)
   1426 {
   1427 	uint16_t status = (uint16_t)staterr;
   1428 	uint8_t errors = (uint8_t)(staterr >> 24);
   1429 
   1430 	if (status & IGC_RXD_STAT_IPCS) {
   1431 		if (!(errors & IGC_RXD_ERR_IPE)) {
   1432 			/* IP Checksum Good */
   1433 			m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;
   1434 		} else
   1435 			m->m_pkthdr.csum_flags = 0;
   1436 	}
   1437 
   1438 	if (status & (IGC_RXD_STAT_TCPCS | IGC_RXD_STAT_UDPCS)) {
   1439 		if (!(errors & IGC_RXD_ERR_TCPE))
   1440 			m->m_pkthdr.csum_flags |=
   1441 			    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
   1442 	}
   1443 }
   1444 
   1445 void
   1446 igc_watchdog(struct ifnet * ifp)
   1447 {
   1448 }
   1449 
   1450 /*********************************************************************
   1451  *
   1452  *  Media Ioctl callback
   1453  *
   1454  *  This routine is called whenever the user queries the status of
   1455  *  the interface using ifconfig.
   1456  *
   1457  **********************************************************************/
   1458 void
   1459 igc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
   1460 {
   1461 	struct igc_softc *sc = ifp->if_softc;
   1462 
   1463 	igc_update_link_status(sc);
   1464 
   1465 	ifmr->ifm_status = IFM_AVALID;
   1466 	ifmr->ifm_active = IFM_ETHER;
   1467 
   1468 	if (!sc->link_active) {
   1469 		ifmr->ifm_active |= IFM_NONE;
   1470 		return;
   1471 	}
   1472 
   1473 	ifmr->ifm_status |= IFM_ACTIVE;
   1474 
   1475 	switch (sc->link_speed) {
   1476 	case 10:
   1477 		ifmr->ifm_active |= IFM_10_T;
   1478 		break;
   1479 	case 100:
   1480 		ifmr->ifm_active |= IFM_100_TX;
   1481                 break;
   1482 	case 1000:
   1483 		ifmr->ifm_active |= IFM_1000_T;
   1484 		break;
   1485 	case 2500:
   1486                 ifmr->ifm_active |= IFM_2500_T;
   1487                 break;
   1488 	}
   1489 
   1490 	if (sc->link_duplex == FULL_DUPLEX)
   1491 		ifmr->ifm_active |= IFM_FDX;
   1492 	else
   1493 		ifmr->ifm_active |= IFM_HDX;
   1494 }
   1495 
   1496 /*********************************************************************
   1497  *
   1498  *  Media Ioctl callback
   1499  *
   1500  *  This routine is called when the user changes speed/duplex using
   1501  *  media/mediopt option with ifconfig.
   1502  *
   1503  **********************************************************************/
   1504 int
   1505 igc_media_change(struct ifnet *ifp)
   1506 {
   1507 	struct igc_softc *sc = ifp->if_softc;
   1508 	struct ifmedia *ifm = &sc->media;
   1509 
   1510 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   1511 		return (EINVAL);
   1512 
   1513 	sc->hw.mac.autoneg = DO_AUTO_NEG;
   1514 
   1515 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
   1516 	case IFM_AUTO:
   1517 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
   1518 		break;
   1519         case IFM_2500_T:
   1520                 sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
   1521                 break;
   1522 	case IFM_1000_T:
   1523 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
   1524 		break;
   1525 	case IFM_100_TX:
   1526 		if ((ifm->ifm_media & IFM_GMASK) == IFM_HDX)
   1527 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
   1528 		else
   1529 			sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
   1530 		break;
   1531 	case IFM_10_T:
   1532 		if ((ifm->ifm_media & IFM_GMASK) == IFM_HDX)
   1533 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
   1534 		else
   1535 			sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
   1536 		break;
   1537 	default:
   1538 		return EINVAL;
   1539 	}
   1540 
   1541 	igc_init(sc);
   1542 
   1543 	return 0;
   1544 }
   1545 
   1546 void
   1547 igc_iff(struct igc_softc *sc)
   1548 {
   1549 	struct ifnet *ifp = &sc->sc_ac.ac_if;
   1550         struct arpcom *ac = &sc->sc_ac;
   1551 	struct ether_multi *enm;
   1552 	struct ether_multistep step;
   1553 	uint32_t reg_rctl = 0;
   1554 	uint8_t *mta;
   1555 	int mcnt = 0;
   1556 
   1557 	mta = sc->mta;
   1558         bzero(mta, sizeof(uint8_t) * ETHER_ADDR_LEN *
   1559 	    MAX_NUM_MULTICAST_ADDRESSES);
   1560 
   1561 	reg_rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
   1562 	reg_rctl &= ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
   1563 	ifp->if_flags &= ~IFF_ALLMULTI;
   1564 
   1565 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0 ||
   1566 	    ac->ac_multicnt > MAX_NUM_MULTICAST_ADDRESSES) {
   1567 		ifp->if_flags |= IFF_ALLMULTI;
   1568 		reg_rctl |= IGC_RCTL_MPE;
   1569 		if (ifp->if_flags & IFF_PROMISC)
   1570 			reg_rctl |= IGC_RCTL_UPE;
   1571 	} else {
   1572 		ETHER_FIRST_MULTI(step, ac, enm);
   1573 		while (enm != NULL) {
   1574 			bcopy(enm->enm_addrlo,
   1575 			    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
   1576 			mcnt++;
   1577 
   1578 			ETHER_NEXT_MULTI(step, enm);
   1579 		}
   1580 
   1581 		igc_update_mc_addr_list(&sc->hw, mta, mcnt);
   1582 	}
   1583 
   1584 	IGC_WRITE_REG(&sc->hw, IGC_RCTL, reg_rctl);
   1585 }
   1586 
   1587 void
   1588 igc_update_link_status(struct igc_softc *sc)
   1589 {
   1590 	struct ifnet *ifp = &sc->sc_ac.ac_if;
   1591 	struct igc_hw *hw = &sc->hw;
   1592 	int link_state;
   1593 
   1594 	if (IGC_READ_REG(&sc->hw, IGC_STATUS) & IGC_STATUS_LU) {
   1595 		if (sc->link_active == 0) {
   1596 			igc_get_speed_and_duplex(hw, &sc->link_speed,
   1597 			    &sc->link_duplex);
   1598 			sc->link_active = 1;
   1599 			ifp->if_baudrate = IF_Mbps(sc->link_speed);
   1600 		}
   1601 		link_state = (sc->link_duplex == FULL_DUPLEX) ?
   1602 		    LINK_STATE_FULL_DUPLEX : LINK_STATE_HALF_DUPLEX;
   1603 	} else {
   1604 		if (sc->link_active == 1) {
   1605 			ifp->if_baudrate = sc->link_speed = 0;
   1606 			sc->link_duplex = 0;
   1607 			sc->link_active = 0;
   1608 		}
   1609 		link_state = LINK_STATE_DOWN;
   1610 	}
   1611 	if (ifp->if_link_state != link_state) {
   1612 		ifp->if_link_state = link_state;
   1613 		if_link_state_change(ifp);
   1614 	}
   1615 }
   1616 
   1617 /*********************************************************************
   1618  *
   1619  *  Get a buffer from system mbuf buffer pool.
   1620  *
   1621  **********************************************************************/
   1622 int
   1623 igc_get_buf(struct rx_ring *rxr, int i)
   1624 {
   1625 	struct igc_softc *sc = rxr->sc;
   1626 	struct igc_rx_buf *rxbuf;
   1627 	struct mbuf *m;
   1628 	union igc_adv_rx_desc *rxdesc;
   1629 	int error;
   1630 
   1631 	rxbuf = &rxr->rx_buffers[i];
   1632 	rxdesc = &rxr->rx_base[i];
   1633 	if (rxbuf->buf) {
   1634 		printf("%s: slot %d already has an mbuf\n", DEVNAME(sc), i);
   1635 		return ENOBUFS;
   1636 	}
   1637 
   1638 	m = MCLGETL(NULL, M_DONTWAIT, sc->rx_mbuf_sz);
   1639 	if (!m)
   1640 		return ENOBUFS;
   1641 
   1642 	m->m_data += (m->m_ext.ext_size - sc->rx_mbuf_sz);
   1643 	m->m_len = m->m_pkthdr.len = sc->rx_mbuf_sz;
   1644 
   1645 	error = bus_dmamap_load_mbuf(rxr->rxdma.dma_tag, rxbuf->map, m,
   1646 	    BUS_DMA_NOWAIT);
   1647 	if (error) {
   1648 		m_freem(m);
   1649 		return error;
   1650 	}
   1651 
   1652 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map, 0,
   1653 	    rxbuf->map->dm_mapsize, BUS_DMASYNC_PREREAD);
   1654 	rxbuf->buf = m;
   1655 
   1656 	rxdesc->read.pkt_addr = htole64(rxbuf->map->dm_segs[0].ds_addr);
   1657 
   1658 	return 0;
   1659 }
   1660 
   1661 void
   1662 igc_configure_queues(struct igc_softc *sc)
   1663 {
   1664 	struct igc_hw *hw = &sc->hw;
   1665 	struct igc_queue *iq = sc->queues;
   1666 	uint32_t ivar, newitr = 0;
   1667 	int i;
   1668 
   1669 	/* First turn on RSS capability */
   1670 	IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME |
   1671 	    IGC_GPIE_PBA | IGC_GPIE_NSICR);
   1672 
   1673 	/* Set the starting interrupt rate */
   1674 	newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;
   1675 
   1676 	newitr |= IGC_EITR_CNT_IGNR;
   1677 
   1678 	/* Turn on MSI-X */
   1679 	for (i = 0; i < sc->sc_nqueues; i++, iq++) {
   1680 		/* RX entries */
   1681 		igc_set_queues(sc, i, iq->msix, 0);
   1682 		/* TX entries */
   1683 		igc_set_queues(sc, i, iq->msix, 1);
   1684 		sc->msix_queuesmask |= iq->eims;
   1685 		IGC_WRITE_REG(hw, IGC_EITR(iq->msix), newitr);
   1686 	}
   1687 
   1688 	/* And for the link interrupt */
   1689 	ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
   1690 	sc->msix_linkmask = 1 << sc->linkvec;
   1691 	IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
   1692 }
   1693 
   1694 void
   1695 igc_set_queues(struct igc_softc *sc, uint32_t entry, uint32_t vector, int type)
   1696 {
   1697 	struct igc_hw *hw = &sc->hw;
   1698 	uint32_t ivar, index;
   1699 
   1700 	index = entry >> 1;
   1701 	ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
   1702 	if (type) {
   1703 		if (entry & 1) {
   1704 			ivar &= 0x00FFFFFF;
   1705 			ivar |= (vector | IGC_IVAR_VALID) << 24;
   1706 		} else {
   1707 			ivar &= 0xFFFF00FF;
   1708 			ivar |= (vector | IGC_IVAR_VALID) << 8;
   1709 		}
   1710 	} else {
   1711 		if (entry & 1) {
   1712 			ivar &= 0xFF00FFFF;
   1713 			ivar |= (vector | IGC_IVAR_VALID) << 16;
   1714 		} else {
   1715 			ivar &= 0xFFFFFF00;
   1716 			ivar |= vector | IGC_IVAR_VALID;
   1717 		}
   1718 	}
   1719 	IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
   1720 }
   1721 
   1722 void
   1723 igc_enable_queue(struct igc_softc *sc, uint32_t eims)
   1724 {
   1725 	IGC_WRITE_REG(&sc->hw, IGC_EIMS, eims);
   1726 }
   1727 
   1728 void
   1729 igc_enable_intr(struct igc_softc *sc)
   1730 {
   1731 	struct igc_hw *hw = &sc->hw;
   1732 	uint32_t mask;
   1733 
   1734 	mask = (sc->msix_queuesmask | sc->msix_linkmask);
   1735 	IGC_WRITE_REG(hw, IGC_EIAC, mask);
   1736 	IGC_WRITE_REG(hw, IGC_EIAM, mask);
   1737 	IGC_WRITE_REG(hw, IGC_EIMS, mask);
   1738 	IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
   1739 	IGC_WRITE_FLUSH(hw);
   1740 }
   1741 
   1742 void
   1743 igc_disable_intr(struct igc_softc *sc)
   1744 {
   1745 	struct igc_hw *hw = &sc->hw;
   1746 
   1747 	IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
   1748 	IGC_WRITE_REG(hw, IGC_EIAC, 0);
   1749 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
   1750 	IGC_WRITE_FLUSH(hw);
   1751 }
   1752 
   1753 int
   1754 igc_intr_link(void *arg)
   1755 {
   1756 	struct igc_softc *sc = (struct igc_softc *)arg;
   1757 	uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
   1758 
   1759 	if (reg_icr & IGC_ICR_LSC) {
   1760 		KERNEL_LOCK();
   1761 		sc->hw.mac.get_link_status = true;
   1762 		igc_update_link_status(sc);
   1763 		KERNEL_UNLOCK();
   1764 	}
   1765 
   1766 	IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
   1767 	IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->msix_linkmask);
   1768 
   1769 	return 1;
   1770 }
   1771 
   1772 int
   1773 igc_intr_queue(void *arg)
   1774 {
   1775 	struct igc_queue *iq = arg;
   1776 	struct igc_softc *sc = iq->sc;
   1777 	struct ifnet *ifp = &sc->sc_ac.ac_if;
   1778 	struct rx_ring *rxr = iq->rxr;
   1779 	struct tx_ring *txr = iq->txr;
   1780 
   1781 	if (ifp->if_flags & IFF_RUNNING) {
   1782 		igc_txeof(txr);
   1783 		igc_rxeof(rxr);
   1784 		igc_rxrefill(rxr);
   1785 	}
   1786 
   1787 	igc_enable_queue(sc, iq->eims);
   1788 
   1789 	return 1;
   1790 }
   1791 
   1792 /*********************************************************************
   1793  *
   1794  *  Allocate memory for tx_buffer structures. The tx_buffer stores all
   1795  *  the information needed to transmit a packet on the wire.
   1796  *
   1797  **********************************************************************/
   1798 int
   1799 igc_allocate_transmit_buffers(struct tx_ring *txr)
   1800 {
   1801 	struct igc_softc *sc = txr->sc;
   1802 	struct igc_tx_buf *txbuf;
   1803 	int error, i;
   1804 
   1805 	txr->tx_buffers = mallocarray(sc->num_tx_desc,
   1806 	    sizeof(struct igc_tx_buf), M_DEVBUF, M_NOWAIT | M_ZERO);
   1807 	if (txr->tx_buffers == NULL) {
   1808 		printf("%s: Unable to allocate tx_buffer memory\n",
   1809 		    DEVNAME(sc));
   1810 		error = ENOMEM;
   1811 		goto fail;
   1812 	}
   1813 	txr->txtag = txr->txdma.dma_tag;
   1814 
   1815 	/* Create the descriptor buffer dma maps. */
   1816 	for (i = 0; i < sc->num_tx_desc; i++) {
   1817 		txbuf = &txr->tx_buffers[i];
   1818 		error = bus_dmamap_create(txr->txdma.dma_tag, IGC_TSO_SIZE,
   1819 		    IGC_MAX_SCATTER, PAGE_SIZE, 0, BUS_DMA_NOWAIT, &txbuf->map);
   1820 		if (error != 0) {
   1821 			printf("%s: Unable to create TX DMA map\n",
   1822 			    DEVNAME(sc));
   1823 			goto fail;
   1824 		}
   1825 	}
   1826 
   1827 	return 0;
   1828 fail:
   1829 	return error;
   1830 }
   1831 
   1832 
   1833 /*********************************************************************
   1834  *
   1835  *  Allocate and initialize transmit structures.
   1836  *
   1837  **********************************************************************/
   1838 int
   1839 igc_setup_transmit_structures(struct igc_softc *sc)
   1840 {
   1841 	struct tx_ring *txr = sc->tx_rings;
   1842 	int i;
   1843 
   1844 	for (i = 0; i < sc->sc_nqueues; i++, txr++) {
   1845 		if (igc_setup_transmit_ring(txr))
   1846 			goto fail;
   1847 	}
   1848 
   1849 	return 0;
   1850 fail:
   1851 	igc_free_transmit_structures(sc);
   1852 	return ENOBUFS;
   1853 }
   1854 
   1855 /*********************************************************************
   1856  *
   1857  *  Initialize a transmit ring.
   1858  *
   1859  **********************************************************************/
   1860 int
   1861 igc_setup_transmit_ring(struct tx_ring *txr)
   1862 {
   1863 	struct igc_softc *sc = txr->sc;
   1864 
   1865 	/* Now allocate transmit buffers for the ring. */
   1866 	if (igc_allocate_transmit_buffers(txr))
   1867 		return ENOMEM;
   1868 
   1869 	/* Clear the old ring contents */
   1870 	bzero((void *)txr->tx_base,
   1871 	    (sizeof(union igc_adv_tx_desc)) * sc->num_tx_desc);
   1872 
   1873 	/* Reset indices. */
   1874 	txr->next_avail_desc = 0;
   1875 	txr->next_to_clean = 0;
   1876 
   1877 	bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
   1878 	    txr->txdma.dma_map->dm_mapsize,
   1879 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1880 
   1881 	return 0;
   1882 }
   1883 
   1884 /*********************************************************************
   1885  *
   1886  *  Enable transmit unit.
   1887  *
   1888  **********************************************************************/
   1889 void
   1890 igc_initialize_transmit_unit(struct igc_softc *sc)
   1891 {
   1892 	struct ifnet *ifp = &sc->sc_ac.ac_if;
   1893 	struct tx_ring *txr;
   1894 	struct igc_hw *hw = &sc->hw;
   1895 	uint64_t bus_addr;
   1896 	uint32_t tctl, txdctl = 0;
   1897         int i;
   1898 
   1899 	/* Setup the Base and Length of the TX descriptor ring. */
   1900 	for (i = 0; i < sc->sc_nqueues; i++) {
   1901 		txr = &sc->tx_rings[i];
   1902 
   1903 		bus_addr = txr->txdma.dma_map->dm_segs[0].ds_addr;
   1904 
   1905 		/* Base and len of TX ring */
   1906 		IGC_WRITE_REG(hw, IGC_TDLEN(i),
   1907 		    sc->num_tx_desc * sizeof(union igc_adv_tx_desc));
   1908 		IGC_WRITE_REG(hw, IGC_TDBAH(i), (uint32_t)(bus_addr >> 32));
   1909 		IGC_WRITE_REG(hw, IGC_TDBAL(i), (uint32_t)bus_addr);
   1910 
   1911 		/* Init the HEAD/TAIL indices */
   1912 		IGC_WRITE_REG(hw, IGC_TDT(i), 0);
   1913 		IGC_WRITE_REG(hw, IGC_TDH(i), 0);
   1914 
   1915 		txr->watchdog_timer = 0;
   1916 
   1917 		txdctl = 0;		/* Clear txdctl */
   1918 		txdctl |= 0x1f;		/* PTHRESH */
   1919 		txdctl |= 1 << 8;	/* HTHRESH */
   1920 		txdctl |= 1 << 16;	/* WTHRESH */
   1921 		txdctl |= 1 << 22;	/* Reserved bit 22 must always be 1 */
   1922 		txdctl |= IGC_TXDCTL_GRAN;
   1923 		txdctl |= 1 << 25;	/* LWTHRESH */
   1924 
   1925 		IGC_WRITE_REG(hw, IGC_TXDCTL(i), txdctl);
   1926 	}
   1927 	ifp->if_timer = 0;
   1928 
   1929 	/* Program the Transmit Control Register */
   1930 	tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
   1931 	tctl &= ~IGC_TCTL_CT;
   1932 	tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
   1933 	    (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
   1934 
   1935 	/* This write will effectively turn on the transmit unit. */
   1936 	IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
   1937 }
   1938 
   1939 /*********************************************************************
   1940  *
   1941  *  Free all transmit rings.
   1942  *
   1943  **********************************************************************/
   1944 void
   1945 igc_free_transmit_structures(struct igc_softc *sc)
   1946 {
   1947 	struct tx_ring *txr = sc->tx_rings;
   1948 	int i;
   1949 
   1950 	for (i = 0; i < sc->sc_nqueues; i++, txr++)
   1951 		igc_free_transmit_buffers(txr);
   1952 }
   1953 
   1954 /*********************************************************************
   1955  *
   1956  *  Free transmit ring related data structures.
   1957  *
   1958  **********************************************************************/
   1959 void
   1960 igc_free_transmit_buffers(struct tx_ring *txr)
   1961 {
   1962 	struct igc_softc *sc = txr->sc;
   1963 	struct igc_tx_buf *txbuf;
   1964 	int i;
   1965 
   1966 	if (txr->tx_buffers == NULL)
   1967 		return;
   1968 
   1969 	txbuf = txr->tx_buffers;
   1970 	for (i = 0; i < sc->num_tx_desc; i++, txbuf++) {
   1971 		if (txbuf->map != NULL && txbuf->map->dm_nsegs > 0) {
   1972 			bus_dmamap_sync(txr->txdma.dma_tag, txbuf->map,
   1973 			    0, txbuf->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1974 			bus_dmamap_unload(txr->txdma.dma_tag, txbuf->map);
   1975 		}
   1976 		if (txbuf->m_head != NULL) {
   1977 			m_freem(txbuf->m_head);
   1978 			txbuf->m_head = NULL;
   1979 		}
   1980 		if (txbuf->map != NULL) {
   1981 			bus_dmamap_destroy(txr->txdma.dma_tag, txbuf->map);
   1982 			txbuf->map = NULL;
   1983 		}
   1984 	}
   1985 
   1986 	if (txr->tx_buffers != NULL)
   1987 		free(txr->tx_buffers, M_DEVBUF,
   1988 		    sc->num_tx_desc * sizeof(struct igc_tx_buf));
   1989 	txr->tx_buffers = NULL;
   1990 	txr->txtag = NULL;
   1991 }
   1992 
   1993 
   1994 /*********************************************************************
   1995  *
   1996  *  Advanced Context Descriptor setup for VLAN, CSUM or TSO
   1997  *
   1998  **********************************************************************/
   1999 
   2000 int
   2001 igc_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
   2002     uint32_t *olinfo_status)
   2003 {
   2004 	struct ether_extracted ext;
   2005 	struct igc_adv_tx_context_desc *txdesc;
   2006 	uint32_t type_tucmd_mlhl = 0;
   2007 	uint32_t vlan_macip_lens = 0;
   2008 	uint32_t iphlen;
   2009 	int off = 0;
   2010 
   2011 	vlan_macip_lens |= (sizeof(*ext.eh) << IGC_ADVTXD_MACLEN_SHIFT);
   2012 
   2013 	/*
   2014 	 * In advanced descriptors the vlan tag must
   2015 	 * be placed into the context descriptor. Hence
   2016 	 * we need to make one even if not doing offloads.
   2017 	 */
   2018 #ifdef notyet
   2019 #if NVLAN > 0
   2020 	if (ISSET(mp->m_flags, M_VLANTAG)) {
   2021 		uint32_t vtag = mp->m_pkthdr.ether_vtag;
   2022 		vlan_macip_lens |= (vtag << IGC_ADVTXD_VLAN_SHIFT);
   2023 		off = 1;
   2024 	}
   2025 #endif
   2026 #endif
   2027 
   2028 	ether_extract_headers(mp, &ext);
   2029 
   2030 	if (ext.ip4) {
   2031 		iphlen = ext.ip4->ip_hl << 2;
   2032 
   2033 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
   2034 		if (ISSET(mp->m_pkthdr.csum_flags, M_IPV4_CSUM_OUT)) {
   2035 			*olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
   2036 			off = 1;
   2037 		}
   2038 #ifdef INET6
   2039 	} else if (ext.ip6) {
   2040 		iphlen = sizeof(*ext.ip6);
   2041 
   2042 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
   2043 #endif
   2044 	} else {
   2045 		return 0;
   2046 	}
   2047 
   2048 	vlan_macip_lens |= iphlen;
   2049 	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
   2050 
   2051 	if (ext.tcp) {
   2052 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
   2053 		if (ISSET(mp->m_pkthdr.csum_flags, M_TCP_CSUM_OUT)) {
   2054 			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
   2055 			off = 1;
   2056 		}
   2057 	} else if (ext.udp) {
   2058 		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
   2059 		if (ISSET(mp->m_pkthdr.csum_flags, M_UDP_CSUM_OUT)) {
   2060 			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
   2061 			off = 1;
   2062 		}
   2063 	}
   2064 
   2065 	if (off == 0)
   2066 		return 0;
   2067 
   2068 	/* Now ready a context descriptor */
   2069 	txdesc = (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
   2070 
   2071 	/* Now copy bits into descriptor */
   2072 	htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
   2073 	htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
   2074 	htolem32(&txdesc->seqnum_seed, 0);
   2075 	htolem32(&txdesc->mss_l4len_idx, 0);
   2076 
   2077 	return 1;
   2078 }
   2079 
   2080 /*********************************************************************
   2081  *
   2082  *  Allocate memory for rx_buffer structures. Since we use one
   2083  *  rx_buffer per received packet, the maximum number of rx_buffer's
   2084  *  that we'll need is equal to the number of receive descriptors
   2085  *  that we've allocated.
   2086  *
   2087  **********************************************************************/
   2088 int
   2089 igc_allocate_receive_buffers(struct rx_ring *rxr)
   2090 {
   2091 	struct igc_softc *sc = rxr->sc;
   2092 	struct igc_rx_buf *rxbuf;
   2093 	int i, error;
   2094 
   2095 	rxr->rx_buffers = mallocarray(sc->num_rx_desc,
   2096 	    sizeof(struct igc_rx_buf), M_DEVBUF, M_NOWAIT | M_ZERO);
   2097 	if (rxr->rx_buffers == NULL) {
   2098 		printf("%s: Unable to allocate rx_buffer memory\n",
   2099 		    DEVNAME(sc));
   2100 		error = ENOMEM;
   2101 		goto fail;
   2102 	}
   2103 
   2104 	rxbuf = rxr->rx_buffers;
   2105 	for (i = 0; i < sc->num_rx_desc; i++, rxbuf++) {
   2106 		error = bus_dmamap_create(rxr->rxdma.dma_tag,
   2107 		    MAX_JUMBO_FRAME_SIZE, 1, MAX_JUMBO_FRAME_SIZE, 0,
   2108 		    BUS_DMA_NOWAIT, &rxbuf->map);
   2109 		if (error) {
   2110 			printf("%s: Unable to create RX DMA map\n",
   2111 			    DEVNAME(sc));
   2112 			goto fail;
   2113 		}
   2114 	}
   2115 	bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
   2116 	    rxr->rxdma.dma_map->dm_mapsize,
   2117 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2118 
   2119 	return 0;
   2120 fail:
   2121 	return error;
   2122 }
   2123 
   2124 /*********************************************************************
   2125  *
   2126  *  Allocate and initialize receive structures.
   2127  *
   2128  **********************************************************************/
   2129 int
   2130 igc_setup_receive_structures(struct igc_softc *sc)
   2131 {
   2132 	struct rx_ring *rxr = sc->rx_rings;
   2133 	int i;
   2134 
   2135 	for (i = 0; i < sc->sc_nqueues; i++, rxr++) {
   2136 		if (igc_setup_receive_ring(rxr))
   2137 			goto fail;
   2138 	}
   2139 
   2140 	return 0;
   2141 fail:
   2142 	igc_free_receive_structures(sc);
   2143 	return ENOBUFS;
   2144 }
   2145 
   2146 /*********************************************************************
   2147  *
   2148  *  Initialize a receive ring and its buffers.
   2149  *
   2150  **********************************************************************/
   2151 int
   2152 igc_setup_receive_ring(struct rx_ring *rxr)
   2153 {
   2154 	struct igc_softc *sc = rxr->sc;
   2155 	struct ifnet *ifp = &sc->sc_ac.ac_if;
   2156 	int rsize;
   2157 
   2158 	rsize = roundup2(sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
   2159 	    IGC_DBA_ALIGN);
   2160 
   2161 	/* Clear the ring contents. */
   2162 	bzero((void *)rxr->rx_base, rsize);
   2163 
   2164 	if (igc_allocate_receive_buffers(rxr))
   2165 		return ENOMEM;
   2166 
   2167 	/* Setup our descriptor indices. */
   2168 	rxr->next_to_check = 0;
   2169 	rxr->last_desc_filled = sc->num_rx_desc - 1;
   2170 
   2171 	if_rxr_init(&rxr->rx_ring, 2 * ((ifp->if_hardmtu / MCLBYTES) + 1),
   2172 	    sc->num_rx_desc - 1);
   2173 
   2174 	return 0;
   2175 }
   2176 
   2177 /*********************************************************************
   2178  *
   2179  *  Enable receive unit.
   2180  *
   2181  **********************************************************************/
   2182 void
   2183 igc_initialize_receive_unit(struct igc_softc *sc)
   2184 {
   2185         struct rx_ring *rxr = sc->rx_rings;
   2186         struct igc_hw *hw = &sc->hw;
   2187 	uint32_t rctl, rxcsum, srrctl = 0;
   2188 	int i;
   2189 
   2190 	/*
   2191 	 * Make sure receives are disabled while setting
   2192 	 * up the descriptor ring.
   2193 	 */
   2194 	rctl = IGC_READ_REG(hw, IGC_RCTL);
   2195 	IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
   2196 
   2197 	/* Setup the Receive Control Register */
   2198 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
   2199 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
   2200 	    IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
   2201 
   2202 	/* Do not store bad packets */
   2203 	rctl &= ~IGC_RCTL_SBP;
   2204 
   2205 	/* Enable Long Packet receive */
   2206 	if (sc->hw.mac.max_frame_size != ETHER_MAX_LEN)
   2207 		rctl |= IGC_RCTL_LPE;
   2208 
   2209 	/* Strip the CRC */
   2210 	rctl |= IGC_RCTL_SECRC;
   2211 
   2212 	/*
   2213 	 * Set the interrupt throttling rate. Value is calculated
   2214 	 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
   2215 	 */
   2216 	IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
   2217 
   2218 	rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
   2219 	rxcsum &= ~IGC_RXCSUM_PCSD;
   2220 
   2221 	if (sc->sc_nqueues > 1)
   2222 		rxcsum |= IGC_RXCSUM_PCSD;
   2223 
   2224 	IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
   2225 
   2226 	if (sc->sc_nqueues > 1)
   2227 		igc_initialize_rss_mapping(sc);
   2228 
   2229 #if 0
   2230 	srrctl |= 4096 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
   2231 	rctl |= IGC_RCTL_SZ_4096 | IGC_RCTL_BSEX;
   2232 #endif
   2233 
   2234 	srrctl |= 2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
   2235 	rctl |= IGC_RCTL_SZ_2048;
   2236 
   2237 	/*
   2238 	 * If TX flow control is disabled and there's > 1 queue defined,
   2239 	 * enable DROP.
   2240 	 *
   2241 	 * This drops frames rather than hanging the RX MAC for all queues.
   2242 	 */
   2243 	if ((sc->sc_nqueues > 1) && (sc->fc == igc_fc_none ||
   2244 	    sc->fc == igc_fc_rx_pause)) {
   2245 		srrctl |= IGC_SRRCTL_DROP_EN;
   2246 	}
   2247 
   2248 	/* Setup the Base and Length of the RX descriptor rings. */
   2249 	for (i = 0; i < sc->sc_nqueues; i++, rxr++) {
   2250 		IGC_WRITE_REG(hw, IGC_RXDCTL(i), 0);
   2251 		uint64_t bus_addr = rxr->rxdma.dma_map->dm_segs[0].ds_addr;
   2252 		uint32_t rxdctl;
   2253 
   2254 		srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
   2255 
   2256 		IGC_WRITE_REG(hw, IGC_RDLEN(i),
   2257 		    sc->num_rx_desc * sizeof(union igc_adv_rx_desc));
   2258 		IGC_WRITE_REG(hw, IGC_RDBAH(i), (uint32_t)(bus_addr >> 32));
   2259 		IGC_WRITE_REG(hw, IGC_RDBAL(i), (uint32_t)bus_addr);
   2260 		IGC_WRITE_REG(hw, IGC_SRRCTL(i), srrctl);
   2261 
   2262 		/* Setup the Head and Tail Descriptor Pointers */
   2263 		IGC_WRITE_REG(hw, IGC_RDH(i), 0);
   2264 		IGC_WRITE_REG(hw, IGC_RDT(i), 0);
   2265 
   2266 		/* Enable this Queue */
   2267 		rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(i));
   2268 		rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
   2269 		rxdctl &= 0xFFF00000;
   2270 		rxdctl |= IGC_RX_PTHRESH;
   2271 		rxdctl |= IGC_RX_HTHRESH << 8;
   2272 		rxdctl |= IGC_RX_WTHRESH << 16;
   2273 		IGC_WRITE_REG(hw, IGC_RXDCTL(i), rxdctl);
   2274 	}
   2275 
   2276 	/* Make sure VLAN Filters are off */
   2277 	rctl &= ~IGC_RCTL_VFE;
   2278 
   2279 	/* Write out the settings */
   2280 	IGC_WRITE_REG(hw, IGC_RCTL, rctl);
   2281 }
   2282 
   2283 /*********************************************************************
   2284  *
   2285  *  Free all receive rings.
   2286  *
   2287  **********************************************************************/
   2288 void
   2289 igc_free_receive_structures(struct igc_softc *sc)
   2290 {
   2291 	struct rx_ring *rxr;
   2292 	int i;
   2293 
   2294 	for (i = 0, rxr = sc->rx_rings; i < sc->sc_nqueues; i++, rxr++)
   2295 		if_rxr_init(&rxr->rx_ring, 0, 0);
   2296 
   2297 	for (i = 0, rxr = sc->rx_rings; i < sc->sc_nqueues; i++, rxr++)
   2298 		igc_free_receive_buffers(rxr);
   2299 }
   2300 
   2301 /*********************************************************************
   2302  *
   2303  *  Free receive ring data structures
   2304  *
   2305  **********************************************************************/
   2306 void
   2307 igc_free_receive_buffers(struct rx_ring *rxr)
   2308 {
   2309 	struct igc_softc *sc = rxr->sc;
   2310 	struct igc_rx_buf *rxbuf;
   2311 	int i;
   2312 
   2313 	if (rxr->rx_buffers != NULL) {
   2314 		for (i = 0; i < sc->num_rx_desc; i++) {
   2315 			rxbuf = &rxr->rx_buffers[i];
   2316 			if (rxbuf->buf != NULL) {
   2317 				bus_dmamap_sync(rxr->rxdma.dma_tag, rxbuf->map,
   2318 				    0, rxbuf->map->dm_mapsize,
   2319 				    BUS_DMASYNC_POSTREAD);
   2320 				bus_dmamap_unload(rxr->rxdma.dma_tag,
   2321 				    rxbuf->map);
   2322 				m_freem(rxbuf->buf);
   2323 				rxbuf->buf = NULL;
   2324 			}
   2325 			bus_dmamap_destroy(rxr->rxdma.dma_tag, rxbuf->map);
   2326 			rxbuf->map = NULL;
   2327 		}
   2328 		free(rxr->rx_buffers, M_DEVBUF,
   2329 		    sc->num_rx_desc * sizeof(struct igc_rx_buf));
   2330 		rxr->rx_buffers = NULL;
   2331 	}
   2332 }
   2333 
   2334 /*
   2335  * Initialise the RSS mapping for NICs that support multiple transmit/
   2336  * receive rings.
   2337  */
   2338 void
   2339 igc_initialize_rss_mapping(struct igc_softc *sc)
   2340 {
   2341 	struct igc_hw *hw = &sc->hw;
   2342 	uint32_t rss_key[10], mrqc, reta, shift = 0;
   2343 	int i, queue_id;
   2344 
   2345 	/*
   2346 	 * The redirection table controls which destination
   2347 	 * queue each bucket redirects traffic to.
   2348 	 * Each DWORD represents four queues, with the LSB
   2349 	 * being the first queue in the DWORD.
   2350 	 *
   2351 	 * This just allocates buckets to queues using round-robin
   2352 	 * allocation.
   2353 	 *
   2354 	 * NOTE: It Just Happens to line up with the default
   2355 	 * RSS allocation method.
   2356 	 */
   2357 
   2358 	/* Warning FM follows */
   2359 	reta = 0;
   2360 	for (i = 0; i < 128; i++) {
   2361 		queue_id = (i % sc->sc_nqueues);
   2362 		/* Adjust if required */
   2363 		queue_id = queue_id << shift;
   2364 
   2365 		/*
   2366 		 * The low 8 bits are for hash value (n+0);
   2367 		 * The next 8 bits are for hash value (n+1), etc.
   2368 		 */
   2369 		reta = reta >> 8;
   2370 		reta = reta | ( ((uint32_t) queue_id) << 24);
   2371 		if ((i & 3) == 3) {
   2372 			IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
   2373 			reta = 0;
   2374 		}
   2375 	}
   2376 
   2377 	/*
   2378 	 * MRQC: Multiple Receive Queues Command
   2379 	 * Set queuing to RSS control, number depends on the device.
   2380 	 */
   2381 	mrqc = IGC_MRQC_ENABLE_RSS_4Q;
   2382 
   2383 	/* Set up random bits */
   2384         stoeplitz_to_key(&rss_key, sizeof(rss_key));
   2385 
   2386 	/* Now fill our hash function seeds */
   2387 	for (i = 0; i < 10; i++)
   2388 		IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
   2389 
   2390 	/*
   2391 	 * Configure the RSS fields to hash upon.
   2392 	 */
   2393 	mrqc |= (IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP);
   2394 	mrqc |= (IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP);
   2395 	mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
   2396 
   2397 	IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
   2398 }
   2399 
   2400 /*
   2401  * igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
   2402  * For ASF and Pass Through versions of f/w this means
   2403  * that the driver is loaded. For AMT version type f/w
   2404  * this means that the network i/f is open.
   2405  */
   2406 void
   2407 igc_get_hw_control(struct igc_softc *sc)
   2408 {
   2409 	uint32_t ctrl_ext;
   2410 
   2411 	ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
   2412 	IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
   2413 }
   2414 
   2415 /*
   2416  * igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
   2417  * For ASF and Pass Through versions of f/w this means that
   2418  * the driver is no longer loaded. For AMT versions of the
   2419  * f/w this means that the network i/f is closed.
   2420  */
   2421 void
   2422 igc_release_hw_control(struct igc_softc *sc)
   2423 {
   2424 	uint32_t ctrl_ext;
   2425 
   2426 	ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
   2427 	IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
   2428 }
   2429 
   2430 int
   2431 igc_is_valid_ether_addr(uint8_t *addr)
   2432 {
   2433 	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
   2434 
   2435 	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
   2436 		return 0;
   2437 	}
   2438 
   2439 	return 1;
   2440 }
   2441