if_igc.c revision 1.15 1 /* $NetBSD: if_igc.c,v 1.15 2024/06/29 12:11:12 riastradh Exp $ */
2 /* $OpenBSD: if_igc.c,v 1.13 2023/04/28 10:18:57 bluhm Exp $ */
3 /*-
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 2016 Nicole Graziano <nicole (at) nextbsd.org>
7 * All rights reserved.
8 * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_igc.c,v 1.15 2024/06/29 12:11:12 riastradh Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_if_igc.h"
37 #if 0 /* notyet */
38 #include "vlan.h"
39 #endif
40 #endif
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bus.h>
45 #include <sys/cpu.h>
46 #include <sys/device.h>
47 #include <sys/endian.h>
48 #include <sys/intr.h>
49 #include <sys/interrupt.h>
50 #include <sys/kernel.h>
51 #include <sys/kmem.h>
52 #include <sys/mbuf.h>
53 #include <sys/mutex.h>
54 #include <sys/socket.h>
55 #include <sys/workqueue.h>
56 #include <sys/xcall.h>
57
58 #include <net/bpf.h>
59 #include <net/if.h>
60 #include <net/if_ether.h>
61 #include <net/if_media.h>
62 #include <net/if_vlanvar.h>
63 #include <net/rss_config.h>
64
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/ip6.h>
68 #include <netinet/tcp.h>
69
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcireg.h>
72 #include <dev/pci/pcidevs.h>
73
74 #include <dev/pci/igc/if_igc.h>
75 #include <dev/pci/igc/igc_evcnt.h>
76 #include <dev/pci/igc/igc_hw.h>
77 #include <dev/mii/miivar.h>
78
79 #define IGC_WORKQUEUE_PRI PRI_SOFTNET
80
81 #ifndef IGC_RX_INTR_PROCESS_LIMIT_DEFAULT
82 #define IGC_RX_INTR_PROCESS_LIMIT_DEFAULT 0
83 #endif
84 #ifndef IGC_TX_INTR_PROCESS_LIMIT_DEFAULT
85 #define IGC_TX_INTR_PROCESS_LIMIT_DEFAULT 0
86 #endif
87
88 #ifndef IGC_RX_PROCESS_LIMIT_DEFAULT
89 #define IGC_RX_PROCESS_LIMIT_DEFAULT 256
90 #endif
91 #ifndef IGC_TX_PROCESS_LIMIT_DEFAULT
92 #define IGC_TX_PROCESS_LIMIT_DEFAULT 256
93 #endif
94
95 #define htolem32(p, x) (*((uint32_t *)(p)) = htole32(x))
96 #define htolem64(p, x) (*((uint64_t *)(p)) = htole64(x))
97
98 static const struct igc_product {
99 pci_vendor_id_t igcp_vendor;
100 pci_product_id_t igcp_product;
101 const char *igcp_name;
102 } igc_products[] = {
103 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_IT,
104 "Intel(R) Ethernet Controller I225-IT(2)" },
105 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LM,
106 "Intel(R) Ethernet Controller I226-LM" },
107 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_V,
108 "Intel(R) Ethernet Controller I226-V" },
109 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_IT,
110 "Intel(R) Ethernet Controller I226-IT" },
111 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I221_V,
112 "Intel(R) Ethernet Controller I221-V" },
113 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_BLANK_NVM,
114 "Intel(R) Ethernet Controller I226(blankNVM)" },
115 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LM,
116 "Intel(R) Ethernet Controller I225-LM" },
117 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_V,
118 "Intel(R) Ethernet Controller I225-V" },
119 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I220_V,
120 "Intel(R) Ethernet Controller I220-V" },
121 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_I,
122 "Intel(R) Ethernet Controller I225-I" },
123 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_BLANK_NVM,
124 "Intel(R) Ethernet Controller I225(blankNVM)" },
125 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K,
126 "Intel(R) Ethernet Controller I225-K" },
127 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K2,
128 "Intel(R) Ethernet Controller I225-K(2)" },
129 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_K,
130 "Intel(R) Ethernet Controller I226-K" },
131 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LMVP,
132 "Intel(R) Ethernet Controller I225-LMvP(2)" },
133 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LMVP,
134 "Intel(R) Ethernet Controller I226-LMvP" },
135 { 0, 0, NULL },
136 };
137
138 #define IGC_DF_CFG 0x1
139 #define IGC_DF_TX 0x2
140 #define IGC_DF_RX 0x4
141 #define IGC_DF_MISC 0x8
142
143 #ifdef IGC_DEBUG_FLAGS
144 int igc_debug_flags = IGC_DEBUG_FLAGS;
145 #else
146 int igc_debug_flags = 0;
147 #endif
148
149 #define DPRINTF(flag, fmt, args...) do { \
150 if (igc_debug_flags & (IGC_DF_ ## flag)) \
151 printf("%s: %d: " fmt, __func__, __LINE__, ##args); \
152 } while (0)
153
154 /*********************************************************************
155 * Function Prototypes
156 *********************************************************************/
157 static int igc_match(device_t, cfdata_t, void *);
158 static void igc_attach(device_t, device_t, void *);
159 static int igc_detach(device_t, int);
160
161 static void igc_identify_hardware(struct igc_softc *);
162 static int igc_adjust_nqueues(struct igc_softc *);
163 static int igc_allocate_pci_resources(struct igc_softc *);
164 static int igc_allocate_interrupts(struct igc_softc *);
165 static int igc_allocate_queues(struct igc_softc *);
166 static void igc_free_pci_resources(struct igc_softc *);
167 static void igc_free_interrupts(struct igc_softc *);
168 static void igc_free_queues(struct igc_softc *);
169 static void igc_reset(struct igc_softc *);
170 static void igc_init_dmac(struct igc_softc *, uint32_t);
171 static int igc_setup_interrupts(struct igc_softc *);
172 static void igc_attach_counters(struct igc_softc *sc);
173 static void igc_detach_counters(struct igc_softc *sc);
174 static void igc_update_counters(struct igc_softc *sc);
175 static void igc_clear_counters(struct igc_softc *sc);
176 static int igc_setup_msix(struct igc_softc *);
177 static int igc_setup_msi(struct igc_softc *);
178 static int igc_setup_intx(struct igc_softc *);
179 static int igc_dma_malloc(struct igc_softc *, bus_size_t,
180 struct igc_dma_alloc *);
181 static void igc_dma_free(struct igc_softc *, struct igc_dma_alloc *);
182 static void igc_setup_interface(struct igc_softc *);
183
184 static int igc_init(struct ifnet *);
185 static int igc_init_locked(struct igc_softc *);
186 static void igc_start(struct ifnet *);
187 static int igc_transmit(struct ifnet *, struct mbuf *);
188 static void igc_tx_common_locked(struct ifnet *, struct tx_ring *, int);
189 static bool igc_txeof(struct tx_ring *, u_int);
190 static void igc_intr_barrier(struct igc_softc *);
191 static void igc_stop(struct ifnet *, int);
192 static void igc_stop_locked(struct igc_softc *);
193 static int igc_ioctl(struct ifnet *, u_long, void *);
194 #ifdef IF_RXR
195 static int igc_rxrinfo(struct igc_softc *, struct if_rxrinfo *);
196 #endif
197 static void igc_rxfill(struct rx_ring *);
198 static void igc_rxrefill(struct rx_ring *, int);
199 static bool igc_rxeof(struct rx_ring *, u_int);
200 static int igc_rx_checksum(struct igc_queue *, uint64_t, uint32_t,
201 uint32_t);
202 static void igc_watchdog(struct ifnet *);
203 static void igc_tick(void *);
204 static void igc_media_status(struct ifnet *, struct ifmediareq *);
205 static int igc_media_change(struct ifnet *);
206 static int igc_ifflags_cb(struct ethercom *);
207 static void igc_set_filter(struct igc_softc *);
208 static void igc_update_link_status(struct igc_softc *);
209 static int igc_get_buf(struct rx_ring *, int, bool);
210 static int igc_tx_ctx_setup(struct tx_ring *, struct mbuf *, int,
211 uint32_t *, uint32_t *);
212 static int igc_tso_setup(struct tx_ring *, struct mbuf *, int,
213 uint32_t *, uint32_t *);
214
215 static void igc_configure_queues(struct igc_softc *);
216 static void igc_set_queues(struct igc_softc *, uint32_t, uint32_t, int);
217 static void igc_enable_queue(struct igc_softc *, uint32_t);
218 static void igc_enable_intr(struct igc_softc *);
219 static void igc_disable_intr(struct igc_softc *);
220 static int igc_intr_link(void *);
221 static int igc_intr_queue(void *);
222 static int igc_intr(void *);
223 static void igc_handle_queue(void *);
224 static void igc_handle_queue_work(struct work *, void *);
225 static void igc_sched_handle_queue(struct igc_softc *, struct igc_queue *);
226 static void igc_barrier_handle_queue(struct igc_softc *);
227
228 static int igc_allocate_transmit_buffers(struct tx_ring *);
229 static int igc_setup_transmit_structures(struct igc_softc *);
230 static int igc_setup_transmit_ring(struct tx_ring *);
231 static void igc_initialize_transmit_unit(struct igc_softc *);
232 static void igc_free_transmit_structures(struct igc_softc *);
233 static void igc_free_transmit_buffers(struct tx_ring *);
234 static void igc_withdraw_transmit_packets(struct tx_ring *, bool);
235 static int igc_allocate_receive_buffers(struct rx_ring *);
236 static int igc_setup_receive_structures(struct igc_softc *);
237 static int igc_setup_receive_ring(struct rx_ring *);
238 static void igc_initialize_receive_unit(struct igc_softc *);
239 static void igc_free_receive_structures(struct igc_softc *);
240 static void igc_free_receive_buffers(struct rx_ring *);
241 static void igc_clear_receive_status(struct rx_ring *);
242 static void igc_initialize_rss_mapping(struct igc_softc *);
243
244 static void igc_get_hw_control(struct igc_softc *);
245 static void igc_release_hw_control(struct igc_softc *);
246 static int igc_is_valid_ether_addr(uint8_t *);
247 static void igc_print_devinfo(struct igc_softc *);
248
249 CFATTACH_DECL3_NEW(igc, sizeof(struct igc_softc),
250 igc_match, igc_attach, igc_detach, NULL, NULL, NULL, 0);
251
252 static inline int
253 igc_txdesc_incr(struct igc_softc *sc, int id)
254 {
255
256 if (++id == sc->num_tx_desc)
257 id = 0;
258 return id;
259 }
260
261 static inline int __unused
262 igc_txdesc_decr(struct igc_softc *sc, int id)
263 {
264
265 if (--id < 0)
266 id = sc->num_tx_desc - 1;
267 return id;
268 }
269
270 static inline void
271 igc_txdesc_sync(struct tx_ring *txr, int id, int ops)
272 {
273
274 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
275 id * sizeof(union igc_adv_tx_desc), sizeof(union igc_adv_tx_desc),
276 ops);
277 }
278
279 static inline int
280 igc_rxdesc_incr(struct igc_softc *sc, int id)
281 {
282
283 if (++id == sc->num_rx_desc)
284 id = 0;
285 return id;
286 }
287
288 static inline int
289 igc_rxdesc_decr(struct igc_softc *sc, int id)
290 {
291
292 if (--id < 0)
293 id = sc->num_rx_desc - 1;
294 return id;
295 }
296
297 static inline void
298 igc_rxdesc_sync(struct rx_ring *rxr, int id, int ops)
299 {
300
301 bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
302 id * sizeof(union igc_adv_rx_desc), sizeof(union igc_adv_rx_desc),
303 ops);
304 }
305
306 static const struct igc_product *
307 igc_lookup(const struct pci_attach_args *pa)
308 {
309 const struct igc_product *igcp;
310
311 for (igcp = igc_products; igcp->igcp_name != NULL; igcp++) {
312 if (PCI_VENDOR(pa->pa_id) == igcp->igcp_vendor &&
313 PCI_PRODUCT(pa->pa_id) == igcp->igcp_product)
314 return igcp;
315 }
316 return NULL;
317 }
318
319 /*********************************************************************
320 * Device identification routine
321 *
322 * igc_match determines if the driver should be loaded on
323 * adapter based on PCI vendor/device id of the adapter.
324 *
325 * return 0 on success, positive on failure
326 *********************************************************************/
327 static int
328 igc_match(device_t parent, cfdata_t match, void *aux)
329 {
330 struct pci_attach_args *pa = aux;
331
332 if (igc_lookup(pa) != NULL)
333 return 1;
334
335 return 0;
336 }
337
338 /*********************************************************************
339 * Device initialization routine
340 *
341 * The attach entry point is called when the driver is being loaded.
342 * This routine identifies the type of hardware, allocates all resources
343 * and initializes the hardware.
344 *
345 * return 0 on success, positive on failure
346 *********************************************************************/
347 static void
348 igc_attach(device_t parent, device_t self, void *aux)
349 {
350 struct pci_attach_args *pa = aux;
351 struct igc_softc *sc = device_private(self);
352 struct igc_hw *hw = &sc->hw;
353
354 const struct igc_product *igcp = igc_lookup(pa);
355 KASSERT(igcp != NULL);
356
357 sc->sc_dev = self;
358 callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE);
359 callout_setfunc(&sc->sc_tick_ch, igc_tick, sc);
360 sc->sc_core_stopping = false;
361
362 sc->osdep.os_sc = sc;
363 sc->osdep.os_pa = *pa;
364 #ifndef __aarch64__
365 /*
366 * XXX PR port-arm/57643
367 * 64-bit DMA does not work at least for LX2K with 32/64GB memory.
368 * smmu(4) support may be required.
369 */
370 if (pci_dma64_available(pa)) {
371 aprint_verbose(", 64-bit DMA");
372 sc->osdep.os_dmat = pa->pa_dmat64;
373 } else
374 #endif
375 {
376 aprint_verbose(", 32-bit DMA");
377 sc->osdep.os_dmat = pa->pa_dmat;
378 }
379
380 pci_aprint_devinfo_fancy(pa, "Ethernet controller", igcp->igcp_name, 1);
381
382 /* Determine hardware and mac info */
383 igc_identify_hardware(sc);
384
385 sc->num_tx_desc = IGC_DEFAULT_TXD;
386 sc->num_rx_desc = IGC_DEFAULT_RXD;
387
388 /* Setup PCI resources */
389 if (igc_allocate_pci_resources(sc)) {
390 aprint_error_dev(sc->sc_dev,
391 "unable to allocate PCI resources\n");
392 goto err_pci;
393 }
394
395 if (igc_allocate_interrupts(sc)) {
396 aprint_error_dev(sc->sc_dev, "unable to allocate interrupts\n");
397 goto err_pci;
398 }
399
400 /* Allocate TX/RX queues */
401 if (igc_allocate_queues(sc)) {
402 aprint_error_dev(sc->sc_dev, "unable to allocate queues\n");
403 goto err_alloc_intr;
404 }
405
406 /* Do shared code initialization */
407 if (igc_setup_init_funcs(hw, true)) {
408 aprint_error_dev(sc->sc_dev, "unable to initialize\n");
409 goto err_alloc_intr;
410 }
411
412 hw->mac.autoneg = DO_AUTO_NEG;
413 hw->phy.autoneg_wait_to_complete = false;
414 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
415
416 /* Copper options. */
417 if (hw->phy.media_type == igc_media_type_copper)
418 hw->phy.mdix = AUTO_ALL_MODES;
419
420 /* Set the max frame size. */
421 sc->hw.mac.max_frame_size = 9234;
422
423 /* Allocate multicast array memory. */
424 sc->mta = kmem_alloc(IGC_MTA_LEN, KM_SLEEP);
425
426 /* Check SOL/IDER usage. */
427 if (igc_check_reset_block(hw)) {
428 aprint_error_dev(sc->sc_dev,
429 "PHY reset is blocked due to SOL/IDER session\n");
430 }
431
432 /* Disable Energy Efficient Ethernet. */
433 sc->hw.dev_spec._i225.eee_disable = true;
434
435 igc_reset_hw(hw);
436
437 /* Make sure we have a good EEPROM before we read from it. */
438 if (igc_validate_nvm_checksum(hw) < 0) {
439 /*
440 * Some PCI-E parts fail the first check due to
441 * the link being in sleep state, call it again,
442 * if it fails a second time its a real issue.
443 */
444 if (igc_validate_nvm_checksum(hw) < 0) {
445 aprint_error_dev(sc->sc_dev,
446 "EEPROM checksum invalid\n");
447 goto err_late;
448 }
449 }
450
451 /* Copy the permanent MAC address out of the EEPROM. */
452 if (igc_read_mac_addr(hw) < 0) {
453 aprint_error_dev(sc->sc_dev,
454 "unable to read MAC address from EEPROM\n");
455 goto err_late;
456 }
457
458 if (!igc_is_valid_ether_addr(hw->mac.addr)) {
459 aprint_error_dev(sc->sc_dev, "invalid MAC address\n");
460 goto err_late;
461 }
462
463 if (igc_setup_interrupts(sc))
464 goto err_late;
465
466 /* Attach counters. */
467 igc_attach_counters(sc);
468
469 /* Setup OS specific network interface. */
470 igc_setup_interface(sc);
471
472 igc_print_devinfo(sc);
473
474 igc_reset(sc);
475 hw->mac.get_link_status = true;
476 igc_update_link_status(sc);
477
478 /* The driver can now take control from firmware. */
479 igc_get_hw_control(sc);
480
481 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
482 ether_sprintf(sc->hw.mac.addr));
483
484 if (pmf_device_register(self, NULL, NULL))
485 pmf_class_network_register(self, &sc->sc_ec.ec_if);
486 else
487 aprint_error_dev(self, "couldn't establish power handler\n");
488
489 return;
490
491 err_late:
492 igc_release_hw_control(sc);
493 err_alloc_intr:
494 igc_free_interrupts(sc);
495 err_pci:
496 igc_free_pci_resources(sc);
497 kmem_free(sc->mta, IGC_MTA_LEN);
498 }
499
500 /*********************************************************************
501 * Device removal routine
502 *
503 * The detach entry point is called when the driver is being removed.
504 * This routine stops the adapter and deallocates all the resources
505 * that were allocated for driver operation.
506 *
507 * return 0 on success, positive on failure
508 *********************************************************************/
509 static int
510 igc_detach(device_t self, int flags)
511 {
512 struct igc_softc *sc = device_private(self);
513 struct ifnet *ifp = &sc->sc_ec.ec_if;
514
515 mutex_enter(&sc->sc_core_lock);
516 igc_stop_locked(sc);
517 mutex_exit(&sc->sc_core_lock);
518
519 igc_detach_counters(sc);
520
521 igc_free_queues(sc);
522
523 igc_phy_hw_reset(&sc->hw);
524 igc_release_hw_control(sc);
525
526 ether_ifdetach(ifp);
527 if_detach(ifp);
528 ifmedia_fini(&sc->media);
529
530 igc_free_interrupts(sc);
531 igc_free_pci_resources(sc);
532 kmem_free(sc->mta, IGC_MTA_LEN);
533
534 mutex_destroy(&sc->sc_core_lock);
535
536 return 0;
537 }
538
539 static void
540 igc_identify_hardware(struct igc_softc *sc)
541 {
542 struct igc_osdep *os = &sc->osdep;
543 struct pci_attach_args *pa = &os->os_pa;
544
545 /* Save off the information about this board. */
546 sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
547
548 /* Do shared code init and setup. */
549 if (igc_set_mac_type(&sc->hw)) {
550 aprint_error_dev(sc->sc_dev, "unable to identify hardware\n");
551 return;
552 }
553 }
554
555 static int
556 igc_allocate_pci_resources(struct igc_softc *sc)
557 {
558 struct igc_osdep *os = &sc->osdep;
559 struct pci_attach_args *pa = &os->os_pa;
560
561 /*
562 * Enable bus mastering and memory-mapped I/O for sure.
563 */
564 pcireg_t csr =
565 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
566 csr |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
567 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
568
569 const pcireg_t memtype =
570 pci_mapreg_type(pa->pa_pc, pa->pa_tag, IGC_PCIREG);
571 if (pci_mapreg_map(pa, IGC_PCIREG, memtype, 0, &os->os_memt,
572 &os->os_memh, &os->os_membase, &os->os_memsize)) {
573 aprint_error_dev(sc->sc_dev, "unable to map registers\n");
574 return ENXIO;
575 }
576
577 sc->hw.hw_addr = os->os_membase;
578 sc->hw.back = os;
579
580 return 0;
581 }
582
583 static int __unused
584 igc_adjust_nqueues(struct igc_softc *sc)
585 {
586 struct pci_attach_args *pa = &sc->osdep.os_pa;
587 int nqueues = MIN(IGC_MAX_NQUEUES, ncpu);
588
589 const int nmsix = pci_msix_count(pa->pa_pc, pa->pa_tag);
590 if (nmsix <= 1)
591 nqueues = 1;
592 else if (nmsix < nqueues + 1)
593 nqueues = nmsix - 1;
594
595 return nqueues;
596 }
597
598 static int
599 igc_allocate_interrupts(struct igc_softc *sc)
600 {
601 struct pci_attach_args *pa = &sc->osdep.os_pa;
602 int error;
603
604 #ifndef IGC_DISABLE_MSIX
605 const int nqueues = igc_adjust_nqueues(sc);
606 if (nqueues > 1) {
607 sc->sc_nintrs = nqueues + 1;
608 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
609 if (!error) {
610 sc->sc_nqueues = nqueues;
611 sc->sc_intr_type = PCI_INTR_TYPE_MSIX;
612 return 0;
613 }
614 }
615 #endif
616
617 /* fallback to MSI */
618 sc->sc_nintrs = sc->sc_nqueues = 1;
619
620 #ifndef IGC_DISABLE_MSI
621 error = pci_msi_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
622 if (!error) {
623 sc->sc_intr_type = PCI_INTR_TYPE_MSI;
624 return 0;
625 }
626 #endif
627
628 /* fallback to INTx */
629
630 error = pci_intx_alloc(pa, &sc->sc_intrs);
631 if (!error) {
632 sc->sc_intr_type = PCI_INTR_TYPE_INTX;
633 return 0;
634 }
635
636 return error;
637 }
638
639 static int
640 igc_allocate_queues(struct igc_softc *sc)
641 {
642 device_t dev = sc->sc_dev;
643 int rxconf = 0, txconf = 0;
644
645 /* Allocate the top level queue structs. */
646 sc->queues =
647 kmem_zalloc(sc->sc_nqueues * sizeof(struct igc_queue), KM_SLEEP);
648
649 /* Allocate the TX ring. */
650 sc->tx_rings =
651 kmem_zalloc(sc->sc_nqueues * sizeof(struct tx_ring), KM_SLEEP);
652
653 /* Allocate the RX ring. */
654 sc->rx_rings =
655 kmem_zalloc(sc->sc_nqueues * sizeof(struct rx_ring), KM_SLEEP);
656
657 /* Set up the TX queues. */
658 for (int iq = 0; iq < sc->sc_nqueues; iq++, txconf++) {
659 struct tx_ring *txr = &sc->tx_rings[iq];
660 const int tsize = roundup2(
661 sc->num_tx_desc * sizeof(union igc_adv_tx_desc),
662 IGC_DBA_ALIGN);
663
664 txr->sc = sc;
665 txr->txr_igcq = &sc->queues[iq];
666 txr->me = iq;
667 if (igc_dma_malloc(sc, tsize, &txr->txdma)) {
668 aprint_error_dev(dev,
669 "unable to allocate TX descriptor\n");
670 goto fail;
671 }
672 txr->tx_base = (union igc_adv_tx_desc *)txr->txdma.dma_vaddr;
673 memset(txr->tx_base, 0, tsize);
674 }
675
676 /* Prepare transmit descriptors and buffers. */
677 if (igc_setup_transmit_structures(sc)) {
678 aprint_error_dev(dev, "unable to setup transmit structures\n");
679 goto fail;
680 }
681
682 /* Set up the RX queues. */
683 for (int iq = 0; iq < sc->sc_nqueues; iq++, rxconf++) {
684 struct rx_ring *rxr = &sc->rx_rings[iq];
685 const int rsize = roundup2(
686 sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
687 IGC_DBA_ALIGN);
688
689 rxr->sc = sc;
690 rxr->rxr_igcq = &sc->queues[iq];
691 rxr->me = iq;
692 #ifdef OPENBSD
693 timeout_set(&rxr->rx_refill, igc_rxrefill, rxr);
694 #endif
695 if (igc_dma_malloc(sc, rsize, &rxr->rxdma)) {
696 aprint_error_dev(dev,
697 "unable to allocate RX descriptor\n");
698 goto fail;
699 }
700 rxr->rx_base = (union igc_adv_rx_desc *)rxr->rxdma.dma_vaddr;
701 memset(rxr->rx_base, 0, rsize);
702 }
703
704 sc->rx_mbuf_sz = MCLBYTES;
705 /* Prepare receive descriptors and buffers. */
706 if (igc_setup_receive_structures(sc)) {
707 aprint_error_dev(sc->sc_dev,
708 "unable to setup receive structures\n");
709 goto fail;
710 }
711
712 /* Set up the queue holding structs. */
713 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
714 struct igc_queue *q = &sc->queues[iq];
715
716 q->sc = sc;
717 q->txr = &sc->tx_rings[iq];
718 q->rxr = &sc->rx_rings[iq];
719 }
720
721 return 0;
722
723 fail:
724 for (struct rx_ring *rxr = sc->rx_rings; rxconf > 0; rxr++, rxconf--)
725 igc_dma_free(sc, &rxr->rxdma);
726 for (struct tx_ring *txr = sc->tx_rings; txconf > 0; txr++, txconf--)
727 igc_dma_free(sc, &txr->txdma);
728
729 kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
730 sc->rx_rings = NULL;
731 kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
732 sc->tx_rings = NULL;
733 kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
734 sc->queues = NULL;
735
736 return ENOMEM;
737 }
738
739 static void
740 igc_free_pci_resources(struct igc_softc *sc)
741 {
742 struct igc_osdep *os = &sc->osdep;
743
744 if (os->os_membase != 0)
745 bus_space_unmap(os->os_memt, os->os_memh, os->os_memsize);
746 os->os_membase = 0;
747 }
748
749 static void
750 igc_free_interrupts(struct igc_softc *sc)
751 {
752 struct pci_attach_args *pa = &sc->osdep.os_pa;
753 pci_chipset_tag_t pc = pa->pa_pc;
754
755 for (int i = 0; i < sc->sc_nintrs; i++) {
756 if (sc->sc_ihs[i] != NULL) {
757 pci_intr_disestablish(pc, sc->sc_ihs[i]);
758 sc->sc_ihs[i] = NULL;
759 }
760 }
761 pci_intr_release(pc, sc->sc_intrs, sc->sc_nintrs);
762 }
763
764 static void
765 igc_free_queues(struct igc_softc *sc)
766 {
767
768 igc_free_receive_structures(sc);
769 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
770 struct rx_ring *rxr = &sc->rx_rings[iq];
771
772 igc_dma_free(sc, &rxr->rxdma);
773 }
774
775 igc_free_transmit_structures(sc);
776 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
777 struct tx_ring *txr = &sc->tx_rings[iq];
778
779 igc_dma_free(sc, &txr->txdma);
780 }
781
782 kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
783 kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
784 kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
785 }
786
787 /*********************************************************************
788 *
789 * Initialize the hardware to a configuration as specified by the
790 * adapter structure.
791 *
792 **********************************************************************/
793 static void
794 igc_reset(struct igc_softc *sc)
795 {
796 struct igc_hw *hw = &sc->hw;
797
798 /* Let the firmware know the OS is in control */
799 igc_get_hw_control(sc);
800
801 /*
802 * Packet Buffer Allocation (PBA)
803 * Writing PBA sets the receive portion of the buffer
804 * the remainder is used for the transmit buffer.
805 */
806 const uint32_t pba = IGC_PBA_34K;
807
808 /*
809 * These parameters control the automatic generation (Tx) and
810 * response (Rx) to Ethernet PAUSE frames.
811 * - High water mark should allow for at least two frames to be
812 * received after sending an XOFF.
813 * - Low water mark works best when it is very near the high water mark.
814 * This allows the receiver to restart by sending XON when it has
815 * drained a bit. Here we use an arbitrary value of 1500 which will
816 * restart after one full frame is pulled from the buffer. There
817 * could be several smaller frames in the buffer and if so they will
818 * not trigger the XON until their total number reduces the buffer
819 * by 1500.
820 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
821 */
822 const uint16_t rx_buffer_size = (pba & 0xffff) << 10;
823
824 hw->fc.high_water = rx_buffer_size -
825 roundup2(sc->hw.mac.max_frame_size, 1024);
826 /* 16-byte granularity */
827 hw->fc.low_water = hw->fc.high_water - 16;
828
829 if (sc->fc) /* locally set flow control value? */
830 hw->fc.requested_mode = sc->fc;
831 else
832 hw->fc.requested_mode = igc_fc_full;
833
834 hw->fc.pause_time = IGC_FC_PAUSE_TIME;
835
836 hw->fc.send_xon = true;
837
838 /* Issue a global reset */
839 igc_reset_hw(hw);
840 IGC_WRITE_REG(hw, IGC_WUC, 0);
841
842 /* and a re-init */
843 if (igc_init_hw(hw) < 0) {
844 aprint_error_dev(sc->sc_dev, "unable to reset hardware\n");
845 return;
846 }
847
848 /* Setup DMA Coalescing */
849 igc_init_dmac(sc, pba);
850
851 IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
852 igc_get_phy_info(hw);
853 igc_check_for_link(hw);
854 }
855
856 /*********************************************************************
857 *
858 * Initialize the DMA Coalescing feature
859 *
860 **********************************************************************/
861 static void
862 igc_init_dmac(struct igc_softc *sc, uint32_t pba)
863 {
864 struct igc_hw *hw = &sc->hw;
865 const uint16_t max_frame_size = sc->hw.mac.max_frame_size;
866 uint32_t reg, status;
867
868 if (sc->dmac == 0) { /* Disabling it */
869 reg = ~IGC_DMACR_DMAC_EN; /* XXXRO */
870 IGC_WRITE_REG(hw, IGC_DMACR, reg);
871 DPRINTF(MISC, "DMA coalescing disabled\n");
872 return;
873 } else {
874 device_printf(sc->sc_dev, "DMA coalescing enabled\n");
875 }
876
877 /* Set starting threshold */
878 IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
879
880 uint16_t hwm = 64 * pba - max_frame_size / 16;
881 if (hwm < 64 * (pba - 6))
882 hwm = 64 * (pba - 6);
883 reg = IGC_READ_REG(hw, IGC_FCRTC);
884 reg &= ~IGC_FCRTC_RTH_COAL_MASK;
885 reg |= (hwm << IGC_FCRTC_RTH_COAL_SHIFT) & IGC_FCRTC_RTH_COAL_MASK;
886 IGC_WRITE_REG(hw, IGC_FCRTC, reg);
887
888 uint32_t dmac = pba - max_frame_size / 512;
889 if (dmac < pba - 10)
890 dmac = pba - 10;
891 reg = IGC_READ_REG(hw, IGC_DMACR);
892 reg &= ~IGC_DMACR_DMACTHR_MASK;
893 reg |= (dmac << IGC_DMACR_DMACTHR_SHIFT) & IGC_DMACR_DMACTHR_MASK;
894
895 /* transition to L0x or L1 if available..*/
896 reg |= IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK;
897
898 /* Check if status is 2.5Gb backplane connection
899 * before configuration of watchdog timer, which is
900 * in msec values in 12.8usec intervals
901 * watchdog timer= msec values in 32usec intervals
902 * for non 2.5Gb connection
903 */
904 status = IGC_READ_REG(hw, IGC_STATUS);
905 if ((status & IGC_STATUS_2P5_SKU) &&
906 !(status & IGC_STATUS_2P5_SKU_OVER))
907 reg |= (sc->dmac * 5) >> 6;
908 else
909 reg |= sc->dmac >> 5;
910
911 IGC_WRITE_REG(hw, IGC_DMACR, reg);
912
913 IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
914
915 /* Set the interval before transition */
916 reg = IGC_READ_REG(hw, IGC_DMCTLX);
917 reg |= IGC_DMCTLX_DCFLUSH_DIS;
918
919 /*
920 * in 2.5Gb connection, TTLX unit is 0.4 usec
921 * which is 0x4*2 = 0xA. But delay is still 4 usec
922 */
923 status = IGC_READ_REG(hw, IGC_STATUS);
924 if ((status & IGC_STATUS_2P5_SKU) &&
925 !(status & IGC_STATUS_2P5_SKU_OVER))
926 reg |= 0xA;
927 else
928 reg |= 0x4;
929
930 IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
931
932 /* free space in tx packet buffer to wake from DMA coal */
933 IGC_WRITE_REG(hw, IGC_DMCTXTH,
934 (IGC_TXPBSIZE - (2 * max_frame_size)) >> 6);
935
936 /* make low power state decision controlled by DMA coal */
937 reg = IGC_READ_REG(hw, IGC_PCIEMISC);
938 reg &= ~IGC_PCIEMISC_LX_DECISION;
939 IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
940 }
941
942 static int
943 igc_setup_interrupts(struct igc_softc *sc)
944 {
945 int error;
946
947 switch (sc->sc_intr_type) {
948 case PCI_INTR_TYPE_MSIX:
949 error = igc_setup_msix(sc);
950 break;
951 case PCI_INTR_TYPE_MSI:
952 error = igc_setup_msi(sc);
953 break;
954 case PCI_INTR_TYPE_INTX:
955 error = igc_setup_intx(sc);
956 break;
957 default:
958 panic("%s: invalid interrupt type: %d",
959 device_xname(sc->sc_dev), sc->sc_intr_type);
960 }
961
962 return error;
963 }
964
965 static void
966 igc_attach_counters(struct igc_softc *sc)
967 {
968 #ifdef IGC_EVENT_COUNTERS
969
970 /* Global counters */
971 sc->sc_global_evcnts = kmem_zalloc(
972 IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts[0]), KM_SLEEP);
973
974 for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++) {
975 evcnt_attach_dynamic(&sc->sc_global_evcnts[cnt],
976 igc_global_counters[cnt].type, NULL,
977 device_xname(sc->sc_dev), igc_global_counters[cnt].name);
978 }
979
980 /* Driver counters */
981 sc->sc_driver_evcnts = kmem_zalloc(
982 IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts[0]), KM_SLEEP);
983
984 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
985 evcnt_attach_dynamic(&sc->sc_driver_evcnts[cnt],
986 igc_driver_counters[cnt].type, NULL,
987 device_xname(sc->sc_dev), igc_driver_counters[cnt].name);
988 }
989
990 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
991 struct igc_queue *q = &sc->queues[iq];
992
993 q->igcq_driver_counters = kmem_zalloc(
994 IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]),
995 KM_SLEEP);
996 }
997
998 /* Queue counters */
999 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1000 struct igc_queue *q = &sc->queues[iq];
1001
1002 snprintf(q->igcq_queue_evname, sizeof(q->igcq_queue_evname),
1003 "%s q%d", device_xname(sc->sc_dev), iq);
1004
1005 q->igcq_queue_evcnts = kmem_zalloc(
1006 IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]),
1007 KM_SLEEP);
1008
1009 for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++) {
1010 evcnt_attach_dynamic(&q->igcq_queue_evcnts[cnt],
1011 igc_queue_counters[cnt].type, NULL,
1012 q->igcq_queue_evname, igc_queue_counters[cnt].name);
1013 }
1014 }
1015
1016 /* MAC counters */
1017 snprintf(sc->sc_mac_evname, sizeof(sc->sc_mac_evname),
1018 "%s Mac Statistics", device_xname(sc->sc_dev));
1019
1020 sc->sc_mac_evcnts = kmem_zalloc(
1021 IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]), KM_SLEEP);
1022
1023 for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1024 evcnt_attach_dynamic(&sc->sc_mac_evcnts[cnt], EVCNT_TYPE_MISC,
1025 NULL, sc->sc_mac_evname, igc_mac_counters[cnt].name);
1026 }
1027 #endif
1028 }
1029
1030 static void
1031 igc_detach_counters(struct igc_softc *sc)
1032 {
1033 #ifdef IGC_EVENT_COUNTERS
1034
1035 /* Global counters */
1036 for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
1037 evcnt_detach(&sc->sc_global_evcnts[cnt]);
1038
1039 kmem_free(sc->sc_global_evcnts,
1040 IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts));
1041
1042 /* Driver counters */
1043 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1044 struct igc_queue *q = &sc->queues[iq];
1045
1046 kmem_free(q->igcq_driver_counters,
1047 IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]));
1048 }
1049
1050 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1051 evcnt_detach(&sc->sc_driver_evcnts[cnt]);
1052
1053 kmem_free(sc->sc_driver_evcnts,
1054 IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts));
1055
1056 /* Queue counters */
1057 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1058 struct igc_queue *q = &sc->queues[iq];
1059
1060 for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
1061 evcnt_detach(&q->igcq_queue_evcnts[cnt]);
1062
1063 kmem_free(q->igcq_queue_evcnts,
1064 IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]));
1065 }
1066
1067 /* MAC statistics */
1068 for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++)
1069 evcnt_detach(&sc->sc_mac_evcnts[cnt]);
1070
1071 kmem_free(sc->sc_mac_evcnts,
1072 IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]));
1073 #endif
1074 }
1075
1076 /*
1077 * XXX
1078 * FreeBSD uses 4-byte-wise read for 64-bit counters, while Linux just
1079 * drops hi words.
1080 */
1081 static inline uint64_t __unused
1082 igc_read_mac_counter(struct igc_hw *hw, bus_size_t reg, bool is64)
1083 {
1084 uint64_t val;
1085
1086 val = IGC_READ_REG(hw, reg);
1087 if (is64)
1088 val += ((uint64_t)IGC_READ_REG(hw, reg + 4)) << 32;
1089 return val;
1090 }
1091
1092 static void
1093 igc_update_counters(struct igc_softc *sc)
1094 {
1095 #ifdef IGC_EVENT_COUNTERS
1096
1097 /* Global counters: nop */
1098
1099 /* Driver counters */
1100 uint64_t sum[IGC_DRIVER_COUNTERS];
1101
1102 memset(sum, 0, sizeof(sum));
1103 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1104 struct igc_queue *q = &sc->queues[iq];
1105
1106 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
1107 sum[cnt] += IGC_QUEUE_DRIVER_COUNTER_VAL(q, cnt);
1108 IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
1109 }
1110 }
1111
1112 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1113 IGC_DRIVER_COUNTER_ADD(sc, cnt, sum[cnt]);
1114
1115 /* Queue counters: nop */
1116
1117 /* Mac statistics */
1118 struct igc_hw *hw = &sc->hw;
1119 struct ifnet *ifp = &sc->sc_ec.ec_if;
1120 uint64_t iqdrops = 0;
1121
1122 for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1123 uint64_t val;
1124 bus_size_t regaddr = igc_mac_counters[cnt].reg;
1125
1126 val = igc_read_mac_counter(hw, regaddr,
1127 igc_mac_counters[cnt].is64);
1128 IGC_MAC_COUNTER_ADD(sc, cnt, val);
1129 /* XXX Count MPC to iqdrops. */
1130 if (regaddr == IGC_MPC)
1131 iqdrops += val;
1132 }
1133
1134 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1135 uint32_t val;
1136
1137 /* XXX RQDPC should be visible via evcnt(9). */
1138 val = IGC_READ_REG(hw, IGC_RQDPC(iq));
1139
1140 /* RQDPC is not cleard on read. */
1141 if (val != 0)
1142 IGC_WRITE_REG(hw, IGC_RQDPC(iq), 0);
1143 iqdrops += val;
1144 }
1145
1146 if (iqdrops != 0)
1147 if_statadd(ifp, if_iqdrops, iqdrops);
1148 #endif
1149 }
1150
1151 static void
1152 igc_clear_counters(struct igc_softc *sc)
1153 {
1154 #ifdef IGC_EVENT_COUNTERS
1155
1156 /* Global counters */
1157 for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
1158 IGC_GLOBAL_COUNTER_STORE(sc, cnt, 0);
1159
1160 /* Driver counters */
1161 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1162 struct igc_queue *q = &sc->queues[iq];
1163
1164 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1165 IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
1166 }
1167
1168 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1169 IGC_DRIVER_COUNTER_STORE(sc, cnt, 0);
1170
1171 /* Queue counters */
1172 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1173 struct igc_queue *q = &sc->queues[iq];
1174
1175 for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
1176 IGC_QUEUE_COUNTER_STORE(q, cnt, 0);
1177 }
1178
1179 /* Mac statistics */
1180 struct igc_hw *hw = &sc->hw;
1181
1182 for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1183 (void)igc_read_mac_counter(hw, igc_mac_counters[cnt].reg,
1184 igc_mac_counters[cnt].is64);
1185 IGC_MAC_COUNTER_STORE(sc, cnt, 0);
1186 }
1187 #endif
1188 }
1189
1190 static int
1191 igc_setup_msix(struct igc_softc *sc)
1192 {
1193 pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1194 device_t dev = sc->sc_dev;
1195 pci_intr_handle_t *intrs;
1196 void **ihs;
1197 const char *intrstr;
1198 char intrbuf[PCI_INTRSTR_LEN];
1199 char xnamebuf[MAX(32, MAXCOMLEN)];
1200 int iq, error;
1201
1202 for (iq = 0, intrs = sc->sc_intrs, ihs = sc->sc_ihs;
1203 iq < sc->sc_nqueues; iq++, intrs++, ihs++) {
1204 struct igc_queue *q = &sc->queues[iq];
1205
1206 snprintf(xnamebuf, sizeof(xnamebuf), "%s: txrx %d",
1207 device_xname(dev), iq);
1208
1209 intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
1210
1211 pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
1212 *ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
1213 igc_intr_queue, q, xnamebuf);
1214 if (*ihs == NULL) {
1215 aprint_error_dev(dev,
1216 "unable to establish txrx interrupt at %s\n",
1217 intrstr);
1218 return ENOBUFS;
1219 }
1220 aprint_normal_dev(dev, "txrx interrupting at %s\n", intrstr);
1221
1222 kcpuset_t *affinity;
1223 kcpuset_create(&affinity, true);
1224 kcpuset_set(affinity, iq % ncpu);
1225 error = interrupt_distribute(*ihs, affinity, NULL);
1226 if (error) {
1227 aprint_normal_dev(dev,
1228 "%s: unable to change affinity, use default CPU\n",
1229 intrstr);
1230 }
1231 kcpuset_destroy(affinity);
1232
1233 q->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1234 igc_handle_queue, q);
1235 if (q->igcq_si == NULL) {
1236 aprint_error_dev(dev,
1237 "%s: unable to establish softint\n", intrstr);
1238 return ENOBUFS;
1239 }
1240
1241 q->msix = iq;
1242 q->eims = 1 << iq;
1243 }
1244
1245 snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
1246 error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
1247 igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
1248 WQ_PERCPU | WQ_MPSAFE);
1249 if (error) {
1250 aprint_error_dev(dev, "workqueue_create failed\n");
1251 return ENOBUFS;
1252 }
1253 sc->sc_txrx_workqueue = false;
1254
1255 intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
1256 snprintf(xnamebuf, sizeof(xnamebuf), "%s: link", device_xname(dev));
1257 pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
1258 *ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
1259 igc_intr_link, sc, xnamebuf);
1260 if (*ihs == NULL) {
1261 aprint_error_dev(dev,
1262 "unable to establish link interrupt at %s\n", intrstr);
1263 return ENOBUFS;
1264 }
1265 aprint_normal_dev(dev, "link interrupting at %s\n", intrstr);
1266 /* use later in igc_configure_queues() */
1267 sc->linkvec = iq;
1268
1269 return 0;
1270 }
1271
1272 static int
1273 igc_setup_msi(struct igc_softc *sc)
1274 {
1275 pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1276 device_t dev = sc->sc_dev;
1277 pci_intr_handle_t *intr = sc->sc_intrs;
1278 void **ihs = sc->sc_ihs;
1279 const char *intrstr;
1280 char intrbuf[PCI_INTRSTR_LEN];
1281 char xnamebuf[MAX(32, MAXCOMLEN)];
1282 int error;
1283
1284 intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
1285
1286 snprintf(xnamebuf, sizeof(xnamebuf), "%s: msi", device_xname(dev));
1287 pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
1288 *ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
1289 igc_intr, sc, xnamebuf);
1290 if (*ihs == NULL) {
1291 aprint_error_dev(dev,
1292 "unable to establish interrupt at %s\n", intrstr);
1293 return ENOBUFS;
1294 }
1295 aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
1296
1297 struct igc_queue *iq = sc->queues;
1298 iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1299 igc_handle_queue, iq);
1300 if (iq->igcq_si == NULL) {
1301 aprint_error_dev(dev,
1302 "%s: unable to establish softint\n", intrstr);
1303 return ENOBUFS;
1304 }
1305
1306 snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
1307 error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
1308 igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
1309 WQ_PERCPU | WQ_MPSAFE);
1310 if (error) {
1311 aprint_error_dev(dev, "workqueue_create failed\n");
1312 return ENOBUFS;
1313 }
1314 sc->sc_txrx_workqueue = false;
1315
1316 sc->queues[0].msix = 0;
1317 sc->linkvec = 0;
1318
1319 return 0;
1320 }
1321
1322 static int
1323 igc_setup_intx(struct igc_softc *sc)
1324 {
1325 pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1326 device_t dev = sc->sc_dev;
1327 pci_intr_handle_t *intr = sc->sc_intrs;
1328 void **ihs = sc->sc_ihs;
1329 const char *intrstr;
1330 char intrbuf[PCI_INTRSTR_LEN];
1331 char xnamebuf[32];
1332
1333 intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
1334
1335 snprintf(xnamebuf, sizeof(xnamebuf), "%s:intx", device_xname(dev));
1336 pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
1337 *ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
1338 igc_intr, sc, xnamebuf);
1339 if (*ihs == NULL) {
1340 aprint_error_dev(dev,
1341 "unable to establish interrupt at %s\n", intrstr);
1342 return ENOBUFS;
1343 }
1344 aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
1345
1346 struct igc_queue *iq = sc->queues;
1347 iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1348 igc_handle_queue, iq);
1349 if (iq->igcq_si == NULL) {
1350 aprint_error_dev(dev,
1351 "%s: unable to establish softint\n", intrstr);
1352 return ENOBUFS;
1353 }
1354
1355 /* create workqueue? */
1356 sc->sc_txrx_workqueue = false;
1357
1358 sc->queues[0].msix = 0;
1359 sc->linkvec = 0;
1360
1361 return 0;
1362 }
1363
1364 static int
1365 igc_dma_malloc(struct igc_softc *sc, bus_size_t size, struct igc_dma_alloc *dma)
1366 {
1367 struct igc_osdep *os = &sc->osdep;
1368
1369 dma->dma_tag = os->os_dmat;
1370
1371 if (bus_dmamap_create(dma->dma_tag, size, 1, size, 0,
1372 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->dma_map))
1373 return 1;
1374 if (bus_dmamem_alloc(dma->dma_tag, size, PAGE_SIZE, 0, &dma->dma_seg,
1375 1, &dma->dma_nseg, BUS_DMA_WAITOK))
1376 goto destroy;
1377 /*
1378 * XXXRO
1379 *
1380 * Coherent mapping for descriptors is required for now.
1381 *
1382 * Both TX and RX descriptors are 16-byte length, which is shorter
1383 * than dcache lines on modern CPUs. Therefore, sync for a descriptor
1384 * may overwrite DMA read for descriptors in the same cache line.
1385 *
1386 * Can't we avoid this by use cache-line-aligned descriptors at once?
1387 */
1388 if (bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
1389 &dma->dma_vaddr, BUS_DMA_WAITOK | BUS_DMA_COHERENT /* XXXRO */))
1390 goto free;
1391 if (bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
1392 NULL, BUS_DMA_WAITOK))
1393 goto unmap;
1394
1395 dma->dma_size = size;
1396
1397 return 0;
1398 unmap:
1399 bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
1400 free:
1401 bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
1402 destroy:
1403 bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1404 dma->dma_map = NULL;
1405 dma->dma_tag = NULL;
1406 return 1;
1407 }
1408
1409 static void
1410 igc_dma_free(struct igc_softc *sc, struct igc_dma_alloc *dma)
1411 {
1412
1413 if (dma->dma_tag == NULL)
1414 return;
1415
1416 if (dma->dma_map != NULL) {
1417 bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
1418 dma->dma_map->dm_mapsize,
1419 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1420 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1421 bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
1422 bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
1423 bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1424 dma->dma_map = NULL;
1425 }
1426 }
1427
1428 /*********************************************************************
1429 *
1430 * Setup networking device structure and register an interface.
1431 *
1432 **********************************************************************/
1433 static void
1434 igc_setup_interface(struct igc_softc *sc)
1435 {
1436 struct ifnet *ifp = &sc->sc_ec.ec_if;
1437
1438 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
1439 ifp->if_softc = sc;
1440 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1441 ifp->if_extflags = IFEF_MPSAFE;
1442 ifp->if_ioctl = igc_ioctl;
1443 ifp->if_start = igc_start;
1444 if (sc->sc_nqueues > 1)
1445 ifp->if_transmit = igc_transmit;
1446 ifp->if_watchdog = igc_watchdog;
1447 ifp->if_init = igc_init;
1448 ifp->if_stop = igc_stop;
1449
1450 #if 0 /* notyet */
1451 ifp->if_capabilities = IFCAP_TSOv4 | IFCAP_TSOv6;
1452 #endif
1453
1454 ifp->if_capabilities |=
1455 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1456 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1457 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1458 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
1459 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
1460
1461 ifp->if_capenable = 0;
1462
1463 sc->sc_ec.ec_capabilities |=
1464 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
1465
1466 IFQ_SET_MAXLEN(&ifp->if_snd, sc->num_tx_desc - 1);
1467 IFQ_SET_READY(&ifp->if_snd);
1468
1469 #if NVLAN > 0
1470 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
1471 #endif
1472
1473 mutex_init(&sc->sc_core_lock, MUTEX_DEFAULT, IPL_NET);
1474
1475 /* Initialize ifmedia structures. */
1476 sc->sc_ec.ec_ifmedia = &sc->media;
1477 ifmedia_init_with_lock(&sc->media, IFM_IMASK, igc_media_change,
1478 igc_media_status, &sc->sc_core_lock);
1479 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1480 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1481 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1482 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1483 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1484 ifmedia_add(&sc->media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
1485 ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1486 ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1487
1488 sc->sc_rx_intr_process_limit = IGC_RX_INTR_PROCESS_LIMIT_DEFAULT;
1489 sc->sc_tx_intr_process_limit = IGC_TX_INTR_PROCESS_LIMIT_DEFAULT;
1490 sc->sc_rx_process_limit = IGC_RX_PROCESS_LIMIT_DEFAULT;
1491 sc->sc_tx_process_limit = IGC_TX_PROCESS_LIMIT_DEFAULT;
1492
1493 if_initialize(ifp);
1494 sc->sc_ipq = if_percpuq_create(ifp);
1495 if_deferred_start_init(ifp, NULL);
1496 ether_ifattach(ifp, sc->hw.mac.addr);
1497 ether_set_ifflags_cb(&sc->sc_ec, igc_ifflags_cb);
1498 if_register(ifp);
1499 }
1500
1501 static int
1502 igc_init(struct ifnet *ifp)
1503 {
1504 struct igc_softc *sc = ifp->if_softc;
1505 int error;
1506
1507 mutex_enter(&sc->sc_core_lock);
1508 error = igc_init_locked(sc);
1509 mutex_exit(&sc->sc_core_lock);
1510
1511 return error;
1512 }
1513
1514 static int
1515 igc_init_locked(struct igc_softc *sc)
1516 {
1517 struct ethercom *ec = &sc->sc_ec;
1518 struct ifnet *ifp = &ec->ec_if;
1519
1520 DPRINTF(CFG, "called\n");
1521
1522 KASSERT(mutex_owned(&sc->sc_core_lock));
1523
1524 if (ISSET(ifp->if_flags, IFF_RUNNING))
1525 igc_stop_locked(sc);
1526
1527 /* Put the address into the receive address array. */
1528 igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1529
1530 /* Initialize the hardware. */
1531 igc_reset(sc);
1532 igc_update_link_status(sc);
1533
1534 /* Setup VLAN support, basic and offload if available. */
1535 IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
1536
1537 igc_initialize_transmit_unit(sc);
1538 igc_initialize_receive_unit(sc);
1539
1540 if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1541 uint32_t ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
1542 ctrl |= IGC_CTRL_VME;
1543 IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
1544 }
1545
1546 /* Setup multicast table. */
1547 igc_set_filter(sc);
1548
1549 igc_clear_hw_cntrs_base_generic(&sc->hw);
1550
1551 if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
1552 igc_configure_queues(sc);
1553
1554 /* This clears any pending interrupts */
1555 IGC_READ_REG(&sc->hw, IGC_ICR);
1556 IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
1557
1558 /* The driver can now take control from firmware. */
1559 igc_get_hw_control(sc);
1560
1561 /* Set Energy Efficient Ethernet. */
1562 igc_set_eee_i225(&sc->hw, true, true, true);
1563
1564 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1565 struct rx_ring *rxr = &sc->rx_rings[iq];
1566
1567 mutex_enter(&rxr->rxr_lock);
1568 igc_rxfill(rxr);
1569 mutex_exit(&rxr->rxr_lock);
1570 }
1571
1572 sc->sc_core_stopping = false;
1573
1574 ifp->if_flags |= IFF_RUNNING;
1575
1576 /* Save last flags for the callback */
1577 sc->sc_if_flags = ifp->if_flags;
1578
1579 callout_schedule(&sc->sc_tick_ch, hz);
1580
1581 igc_enable_intr(sc);
1582
1583 return 0;
1584 }
1585
1586 static inline int
1587 igc_load_mbuf(struct igc_queue *q, bus_dma_tag_t dmat, bus_dmamap_t map,
1588 struct mbuf *m)
1589 {
1590 int error;
1591
1592 error = bus_dmamap_load_mbuf(dmat, map, m,
1593 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1594
1595 if (__predict_false(error == EFBIG)) {
1596 IGC_DRIVER_EVENT(q, txdma_efbig, 1);
1597 m = m_defrag(m, M_NOWAIT);
1598 if (__predict_false(m == NULL)) {
1599 IGC_DRIVER_EVENT(q, txdma_defrag, 1);
1600 return ENOBUFS;
1601 }
1602 error = bus_dmamap_load_mbuf(dmat, map, m,
1603 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1604 }
1605
1606 switch (error) {
1607 case 0:
1608 break;
1609 case ENOMEM:
1610 IGC_DRIVER_EVENT(q, txdma_enomem, 1);
1611 break;
1612 case EINVAL:
1613 IGC_DRIVER_EVENT(q, txdma_einval, 1);
1614 break;
1615 case EAGAIN:
1616 IGC_DRIVER_EVENT(q, txdma_eagain, 1);
1617 break;
1618 default:
1619 IGC_DRIVER_EVENT(q, txdma_other, 1);
1620 break;
1621 }
1622
1623 return error;
1624 }
1625
1626 #define IGC_TX_START 1
1627 #define IGC_TX_TRANSMIT 2
1628
1629 static void
1630 igc_start(struct ifnet *ifp)
1631 {
1632 struct igc_softc *sc = ifp->if_softc;
1633
1634 if (__predict_false(!sc->link_active)) {
1635 IFQ_PURGE(&ifp->if_snd);
1636 return;
1637 }
1638
1639 struct tx_ring *txr = &sc->tx_rings[0]; /* queue 0 */
1640 mutex_enter(&txr->txr_lock);
1641 igc_tx_common_locked(ifp, txr, IGC_TX_START);
1642 mutex_exit(&txr->txr_lock);
1643 }
1644
1645 static inline u_int
1646 igc_select_txqueue(struct igc_softc *sc, struct mbuf *m __unused)
1647 {
1648 const u_int cpuid = cpu_index(curcpu());
1649
1650 return cpuid % sc->sc_nqueues;
1651 }
1652
1653 static int
1654 igc_transmit(struct ifnet *ifp, struct mbuf *m)
1655 {
1656 struct igc_softc *sc = ifp->if_softc;
1657 const u_int qid = igc_select_txqueue(sc, m);
1658 struct tx_ring *txr = &sc->tx_rings[qid];
1659 struct igc_queue *q = txr->txr_igcq;
1660
1661 if (__predict_false(!pcq_put(txr->txr_interq, m))) {
1662 IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
1663 m_freem(m);
1664 return ENOBUFS;
1665 }
1666
1667 mutex_enter(&txr->txr_lock);
1668 igc_tx_common_locked(ifp, txr, IGC_TX_TRANSMIT);
1669 mutex_exit(&txr->txr_lock);
1670
1671 return 0;
1672 }
1673
1674 static void
1675 igc_tx_common_locked(struct ifnet *ifp, struct tx_ring *txr, int caller)
1676 {
1677 struct igc_softc *sc = ifp->if_softc;
1678 struct igc_queue *q = txr->txr_igcq;
1679 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1680 int prod, free, last = -1;
1681 bool post = false;
1682
1683 prod = txr->next_avail_desc;
1684 free = txr->next_to_clean;
1685 if (free <= prod)
1686 free += sc->num_tx_desc;
1687 free -= prod;
1688
1689 DPRINTF(TX, "%s: begin: msix %d prod %d n2c %d free %d\n",
1690 caller == IGC_TX_TRANSMIT ? "transmit" : "start",
1691 txr->me, prod, txr->next_to_clean, free);
1692
1693 for (;;) {
1694 struct mbuf *m;
1695
1696 if (__predict_false(free <= IGC_MAX_SCATTER)) {
1697 IGC_QUEUE_EVENT(q, tx_no_desc, 1);
1698 break;
1699 }
1700
1701 if (caller == IGC_TX_TRANSMIT)
1702 m = pcq_get(txr->txr_interq);
1703 else
1704 IFQ_DEQUEUE(&ifp->if_snd, m);
1705 if (__predict_false(m == NULL))
1706 break;
1707
1708 struct igc_tx_buf *txbuf = &txr->tx_buffers[prod];
1709 bus_dmamap_t map = txbuf->map;
1710
1711 if (__predict_false(
1712 igc_load_mbuf(q, txr->txdma.dma_tag, map, m))) {
1713 if (caller == IGC_TX_TRANSMIT)
1714 IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
1715 m_freem(m);
1716 if_statinc_ref(ifp, nsr, if_oerrors);
1717 continue;
1718 }
1719
1720 bus_dmamap_sync(txr->txdma.dma_tag, map, 0,
1721 map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1722
1723 uint32_t ctx_cmd_type_len = 0, olinfo_status = 0;
1724 if (igc_tx_ctx_setup(txr, m, prod, &ctx_cmd_type_len,
1725 &olinfo_status)) {
1726 IGC_QUEUE_EVENT(q, tx_ctx, 1);
1727 /* Consume the first descriptor */
1728 prod = igc_txdesc_incr(sc, prod);
1729 free--;
1730 }
1731 for (int i = 0; i < map->dm_nsegs; i++) {
1732 union igc_adv_tx_desc *txdesc = &txr->tx_base[prod];
1733
1734 uint32_t cmd_type_len = ctx_cmd_type_len |
1735 IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DTYP_DATA |
1736 IGC_ADVTXD_DCMD_DEXT | map->dm_segs[i].ds_len;
1737 if (i == map->dm_nsegs - 1) {
1738 cmd_type_len |=
1739 IGC_ADVTXD_DCMD_EOP | IGC_ADVTXD_DCMD_RS;
1740 }
1741
1742 igc_txdesc_sync(txr, prod,
1743 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1744 htolem64(&txdesc->read.buffer_addr,
1745 map->dm_segs[i].ds_addr);
1746 htolem32(&txdesc->read.cmd_type_len, cmd_type_len);
1747 htolem32(&txdesc->read.olinfo_status, olinfo_status);
1748 igc_txdesc_sync(txr, prod,
1749 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1750
1751 last = prod;
1752 prod = igc_txdesc_incr(sc, prod);
1753 }
1754
1755 txbuf->m_head = m;
1756 txbuf->eop_index = last;
1757
1758 bpf_mtap(ifp, m, BPF_D_OUT);
1759
1760 if_statadd_ref(ifp, nsr, if_obytes, m->m_pkthdr.len);
1761 if (m->m_flags & M_MCAST)
1762 if_statinc_ref(ifp, nsr, if_omcasts);
1763 IGC_QUEUE_EVENT(q, tx_packets, 1);
1764 IGC_QUEUE_EVENT(q, tx_bytes, m->m_pkthdr.len);
1765
1766 free -= map->dm_nsegs;
1767 post = true;
1768 }
1769
1770 if (post) {
1771 txr->next_avail_desc = prod;
1772 IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), prod);
1773 }
1774
1775 DPRINTF(TX, "%s: done : msix %d prod %d n2c %d free %d\n",
1776 caller == IGC_TX_TRANSMIT ? "transmit" : "start",
1777 txr->me, prod, txr->next_to_clean, free);
1778
1779 IF_STAT_PUTREF(ifp);
1780 }
1781
1782 static bool
1783 igc_txeof(struct tx_ring *txr, u_int limit)
1784 {
1785 struct igc_softc *sc = txr->sc;
1786 struct ifnet *ifp = &sc->sc_ec.ec_if;
1787 int cons, prod;
1788 bool more = false;
1789
1790 prod = txr->next_avail_desc;
1791 cons = txr->next_to_clean;
1792
1793 if (cons == prod) {
1794 DPRINTF(TX, "false: msix %d cons %d prod %d\n",
1795 txr->me, cons, prod);
1796 return false;
1797 }
1798
1799 do {
1800 struct igc_tx_buf *txbuf = &txr->tx_buffers[cons];
1801 const int last = txbuf->eop_index;
1802
1803 membar_consumer(); /* XXXRO necessary? */
1804
1805 KASSERT(last != -1);
1806 union igc_adv_tx_desc *txdesc = &txr->tx_base[last];
1807 igc_txdesc_sync(txr, last, BUS_DMASYNC_POSTREAD);
1808 const uint32_t status = le32toh(txdesc->wb.status);
1809 igc_txdesc_sync(txr, last, BUS_DMASYNC_PREREAD);
1810
1811 if (!(status & IGC_TXD_STAT_DD))
1812 break;
1813
1814 if (limit-- == 0) {
1815 more = true;
1816 DPRINTF(TX, "pending TX "
1817 "msix %d cons %d last %d prod %d "
1818 "status 0x%08x\n",
1819 txr->me, cons, last, prod, status);
1820 break;
1821 }
1822
1823 DPRINTF(TX, "handled TX "
1824 "msix %d cons %d last %d prod %d "
1825 "status 0x%08x\n",
1826 txr->me, cons, last, prod, status);
1827
1828 if_statinc(ifp, if_opackets);
1829
1830 bus_dmamap_t map = txbuf->map;
1831 bus_dmamap_sync(txr->txdma.dma_tag, map, 0, map->dm_mapsize,
1832 BUS_DMASYNC_POSTWRITE);
1833 bus_dmamap_unload(txr->txdma.dma_tag, map);
1834 m_freem(txbuf->m_head);
1835
1836 txbuf->m_head = NULL;
1837 txbuf->eop_index = -1;
1838
1839 cons = igc_txdesc_incr(sc, last);
1840 } while (cons != prod);
1841
1842 txr->next_to_clean = cons;
1843
1844 return more;
1845 }
1846
1847 static void
1848 igc_intr_barrier(struct igc_softc *sc __unused)
1849 {
1850
1851 xc_barrier(0);
1852 }
1853
1854 static void
1855 igc_stop(struct ifnet *ifp, int disable)
1856 {
1857 struct igc_softc *sc = ifp->if_softc;
1858
1859 mutex_enter(&sc->sc_core_lock);
1860 igc_stop_locked(sc);
1861 mutex_exit(&sc->sc_core_lock);
1862 }
1863
1864 /*********************************************************************
1865 *
1866 * This routine disables all traffic on the adapter by issuing a
1867 * global reset on the MAC.
1868 *
1869 **********************************************************************/
1870 static void
1871 igc_stop_locked(struct igc_softc *sc)
1872 {
1873 struct ifnet *ifp = &sc->sc_ec.ec_if;
1874
1875 DPRINTF(CFG, "called\n");
1876
1877 KASSERT(mutex_owned(&sc->sc_core_lock));
1878
1879 /*
1880 * If stopping processing has already started, do nothing.
1881 */
1882 if ((ifp->if_flags & IFF_RUNNING) == 0)
1883 return;
1884
1885 /* Tell the stack that the interface is no longer active. */
1886 ifp->if_flags &= ~IFF_RUNNING;
1887
1888 /*
1889 * igc_handle_queue() can enable interrupts, so wait for completion of
1890 * last igc_handle_queue() after unset IFF_RUNNING.
1891 */
1892 mutex_exit(&sc->sc_core_lock);
1893 igc_barrier_handle_queue(sc);
1894 mutex_enter(&sc->sc_core_lock);
1895
1896 sc->sc_core_stopping = true;
1897
1898 igc_disable_intr(sc);
1899
1900 callout_halt(&sc->sc_tick_ch, &sc->sc_core_lock);
1901
1902 igc_reset_hw(&sc->hw);
1903 IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
1904
1905 /*
1906 * Wait for completion of interrupt handlers.
1907 */
1908 mutex_exit(&sc->sc_core_lock);
1909 igc_intr_barrier(sc);
1910 mutex_enter(&sc->sc_core_lock);
1911
1912 igc_update_link_status(sc);
1913
1914 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1915 struct tx_ring *txr = &sc->tx_rings[iq];
1916
1917 igc_withdraw_transmit_packets(txr, false);
1918 }
1919
1920 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1921 struct rx_ring *rxr = &sc->rx_rings[iq];
1922
1923 igc_clear_receive_status(rxr);
1924 }
1925
1926 /* Save last flags for the callback */
1927 sc->sc_if_flags = ifp->if_flags;
1928 }
1929
1930 /*********************************************************************
1931 * Ioctl entry point
1932 *
1933 * igc_ioctl is called when the user wants to configure the
1934 * interface.
1935 *
1936 * return 0 on success, positive on failure
1937 **********************************************************************/
1938 static int
1939 igc_ioctl(struct ifnet * ifp, u_long cmd, void *data)
1940 {
1941 struct igc_softc *sc __unused = ifp->if_softc;
1942 int s;
1943 int error;
1944
1945 DPRINTF(CFG, "cmd 0x%016lx\n", cmd);
1946
1947 switch (cmd) {
1948 case SIOCADDMULTI:
1949 case SIOCDELMULTI:
1950 break;
1951 default:
1952 KASSERT(IFNET_LOCKED(ifp));
1953 }
1954
1955 if (cmd == SIOCZIFDATA) {
1956 mutex_enter(&sc->sc_core_lock);
1957 igc_clear_counters(sc);
1958 mutex_exit(&sc->sc_core_lock);
1959 }
1960
1961 switch (cmd) {
1962 #ifdef IF_RXR
1963 case SIOCGIFRXR:
1964 s = splnet();
1965 error = igc_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
1966 splx(s);
1967 break;
1968 #endif
1969 default:
1970 s = splnet();
1971 error = ether_ioctl(ifp, cmd, data);
1972 splx(s);
1973 break;
1974 }
1975
1976 if (error != ENETRESET)
1977 return error;
1978
1979 error = 0;
1980
1981 if (cmd == SIOCSIFCAP)
1982 error = if_init(ifp);
1983 else if ((cmd == SIOCADDMULTI) || (cmd == SIOCDELMULTI)) {
1984 mutex_enter(&sc->sc_core_lock);
1985 if (sc->sc_if_flags & IFF_RUNNING) {
1986 /*
1987 * Multicast list has changed; set the hardware filter
1988 * accordingly.
1989 */
1990 igc_disable_intr(sc);
1991 igc_set_filter(sc);
1992 igc_enable_intr(sc);
1993 }
1994 mutex_exit(&sc->sc_core_lock);
1995 }
1996
1997 return error;
1998 }
1999
2000 #ifdef IF_RXR
2001 static int
2002 igc_rxrinfo(struct igc_softc *sc, struct if_rxrinfo *ifri)
2003 {
2004 struct if_rxring_info *ifr, ifr1;
2005 int error;
2006
2007 if (sc->sc_nqueues > 1) {
2008 ifr = kmem_zalloc(sc->sc_nqueues * sizeof(*ifr), KM_SLEEP);
2009 } else {
2010 ifr = &ifr1;
2011 memset(ifr, 0, sizeof(*ifr));
2012 }
2013
2014 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2015 struct rx_ring *rxr = &sc->rx_rings[iq];
2016
2017 ifr[iq].ifr_size = MCLBYTES;
2018 snprintf(ifr[iq].ifr_name, sizeof(ifr[iq].ifr_name), "%d", iq);
2019 ifr[iq].ifr_info = rxr->rx_ring;
2020 }
2021
2022 error = if_rxr_info_ioctl(ifri, sc->sc_nqueues, ifr);
2023 if (sc->sc_nqueues > 1)
2024 kmem_free(ifr, sc->sc_nqueues * sizeof(*ifr));
2025
2026 return error;
2027 }
2028 #endif
2029
2030 static void
2031 igc_rxfill(struct rx_ring *rxr)
2032 {
2033 struct igc_softc *sc = rxr->sc;
2034 int id;
2035
2036 for (id = 0; id < sc->num_rx_desc; id++) {
2037 if (igc_get_buf(rxr, id, false)) {
2038 panic("%s: msix=%d i=%d\n", __func__, rxr->me, id);
2039 }
2040 }
2041
2042 id = sc->num_rx_desc - 1;
2043 rxr->last_desc_filled = id;
2044 IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
2045 rxr->next_to_check = 0;
2046 }
2047
2048 static void
2049 igc_rxrefill(struct rx_ring *rxr, int end)
2050 {
2051 struct igc_softc *sc = rxr->sc;
2052 int id;
2053
2054 for (id = rxr->next_to_check; id != end; id = igc_rxdesc_incr(sc, id)) {
2055 if (igc_get_buf(rxr, id, true)) {
2056 /* XXXRO */
2057 panic("%s: msix=%d id=%d\n", __func__, rxr->me, id);
2058 }
2059 }
2060
2061 id = igc_rxdesc_decr(sc, id);
2062 DPRINTF(RX, "%s RDT %d id %d\n",
2063 rxr->last_desc_filled == id ? "same" : "diff",
2064 rxr->last_desc_filled, id);
2065 rxr->last_desc_filled = id;
2066 IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
2067 }
2068
2069 /*********************************************************************
2070 *
2071 * This routine executes in interrupt context. It replenishes
2072 * the mbufs in the descriptor and sends data which has been
2073 * dma'ed into host memory to upper layer.
2074 *
2075 *********************************************************************/
2076 static bool
2077 igc_rxeof(struct rx_ring *rxr, u_int limit)
2078 {
2079 struct igc_softc *sc = rxr->sc;
2080 struct igc_queue *q = rxr->rxr_igcq;
2081 struct ifnet *ifp = &sc->sc_ec.ec_if;
2082 int id;
2083 bool more = false;
2084
2085 id = rxr->next_to_check;
2086 for (;;) {
2087 union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
2088 struct igc_rx_buf *rxbuf, *nxbuf;
2089 struct mbuf *mp, *m;
2090
2091 igc_rxdesc_sync(rxr, id,
2092 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2093
2094 const uint32_t staterr = le32toh(rxdesc->wb.upper.status_error);
2095
2096 if (!ISSET(staterr, IGC_RXD_STAT_DD)) {
2097 igc_rxdesc_sync(rxr, id,
2098 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2099 break;
2100 }
2101
2102 if (limit-- == 0) {
2103 igc_rxdesc_sync(rxr, id,
2104 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2105 DPRINTF(RX, "more=true\n");
2106 more = true;
2107 break;
2108 }
2109
2110 /* Zero out the receive descriptors status. */
2111 rxdesc->wb.upper.status_error = 0;
2112
2113 /* Pull the mbuf off the ring. */
2114 rxbuf = &rxr->rx_buffers[id];
2115 bus_dmamap_t map = rxbuf->map;
2116 bus_dmamap_sync(rxr->rxdma.dma_tag, map,
2117 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2118 bus_dmamap_unload(rxr->rxdma.dma_tag, map);
2119
2120 mp = rxbuf->buf;
2121 rxbuf->buf = NULL;
2122
2123 const bool eop = staterr & IGC_RXD_STAT_EOP;
2124 const uint16_t len = le16toh(rxdesc->wb.upper.length);
2125
2126 #if NVLAN > 0
2127 const uint16_t vtag = le16toh(rxdesc->wb.upper.vlan);
2128 #endif
2129
2130 const uint32_t ptype = le32toh(rxdesc->wb.lower.lo_dword.data) &
2131 IGC_PKTTYPE_MASK;
2132
2133 const uint32_t hash __unused =
2134 le32toh(rxdesc->wb.lower.hi_dword.rss);
2135 const uint16_t hashtype __unused =
2136 le16toh(rxdesc->wb.lower.lo_dword.hs_rss.pkt_info) &
2137 IGC_RXDADV_RSSTYPE_MASK;
2138
2139 igc_rxdesc_sync(rxr, id,
2140 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2141
2142 if (__predict_false(staterr & IGC_RXDEXT_STATERR_RXE)) {
2143 if (rxbuf->fmp) {
2144 m_freem(rxbuf->fmp);
2145 rxbuf->fmp = NULL;
2146 }
2147
2148 m_freem(mp);
2149 m = NULL;
2150
2151 if_statinc(ifp, if_ierrors);
2152 IGC_QUEUE_EVENT(q, rx_discard, 1);
2153
2154 DPRINTF(RX, "ierrors++\n");
2155
2156 goto next_desc;
2157 }
2158
2159 if (__predict_false(mp == NULL)) {
2160 panic("%s: igc_rxeof: NULL mbuf in slot %d "
2161 "(filled %d)", device_xname(sc->sc_dev),
2162 id, rxr->last_desc_filled);
2163 }
2164
2165 if (!eop) {
2166 /*
2167 * Figure out the next descriptor of this frame.
2168 */
2169 int nextp = igc_rxdesc_incr(sc, id);
2170
2171 nxbuf = &rxr->rx_buffers[nextp];
2172 /*
2173 * TODO prefetch(nxbuf);
2174 */
2175 }
2176
2177 mp->m_len = len;
2178
2179 m = rxbuf->fmp;
2180 rxbuf->fmp = NULL;
2181
2182 if (m != NULL) {
2183 m->m_pkthdr.len += mp->m_len;
2184 } else {
2185 m = mp;
2186 m->m_pkthdr.len = mp->m_len;
2187 #if NVLAN > 0
2188 if (staterr & IGC_RXD_STAT_VP)
2189 vlan_set_tag(m, vtag);
2190 #endif
2191 }
2192
2193 /* Pass the head pointer on */
2194 if (!eop) {
2195 nxbuf->fmp = m;
2196 m = NULL;
2197 mp->m_next = nxbuf->buf;
2198 } else {
2199 m_set_rcvif(m, ifp);
2200
2201 m->m_pkthdr.csum_flags = igc_rx_checksum(q,
2202 ifp->if_capenable, staterr, ptype);
2203
2204 #ifdef notyet
2205 if (hashtype != IGC_RXDADV_RSSTYPE_NONE) {
2206 m->m_pkthdr.ph_flowid = hash;
2207 SET(m->m_pkthdr.csum_flags, M_FLOWID);
2208 }
2209 ml_enqueue(&ml, m);
2210 #endif
2211
2212 if_percpuq_enqueue(sc->sc_ipq, m);
2213
2214 if_statinc(ifp, if_ipackets);
2215 IGC_QUEUE_EVENT(q, rx_packets, 1);
2216 IGC_QUEUE_EVENT(q, rx_bytes, m->m_pkthdr.len);
2217 }
2218 next_desc:
2219 /* Advance our pointers to the next descriptor. */
2220 id = igc_rxdesc_incr(sc, id);
2221 }
2222
2223 DPRINTF(RX, "fill queue[%d]\n", rxr->me);
2224 igc_rxrefill(rxr, id);
2225
2226 DPRINTF(RX, "%s n2c %d id %d\n",
2227 rxr->next_to_check == id ? "same" : "diff",
2228 rxr->next_to_check, id);
2229 rxr->next_to_check = id;
2230
2231 #ifdef OPENBSD
2232 if (!(staterr & IGC_RXD_STAT_DD))
2233 return 0;
2234 #endif
2235
2236 return more;
2237 }
2238
2239 /*********************************************************************
2240 *
2241 * Verify that the hardware indicated that the checksum is valid.
2242 * Inform the stack about the status of checksum so that stack
2243 * doesn't spend time verifying the checksum.
2244 *
2245 *********************************************************************/
2246 static int
2247 igc_rx_checksum(struct igc_queue *q, uint64_t capenable, uint32_t staterr,
2248 uint32_t ptype)
2249 {
2250 const uint16_t status = (uint16_t)staterr;
2251 const uint8_t errors = (uint8_t)(staterr >> 24);
2252 int flags = 0;
2253
2254 if ((status & IGC_RXD_STAT_IPCS) != 0 &&
2255 (capenable & IFCAP_CSUM_IPv4_Rx) != 0) {
2256 IGC_DRIVER_EVENT(q, rx_ipcs, 1);
2257 flags |= M_CSUM_IPv4;
2258 if (__predict_false((errors & IGC_RXD_ERR_IPE) != 0)) {
2259 IGC_DRIVER_EVENT(q, rx_ipcs_bad, 1);
2260 flags |= M_CSUM_IPv4_BAD;
2261 }
2262 }
2263
2264 if ((status & IGC_RXD_STAT_TCPCS) != 0) {
2265 IGC_DRIVER_EVENT(q, rx_tcpcs, 1);
2266 if ((capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
2267 flags |= M_CSUM_TCPv4;
2268 if ((capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
2269 flags |= M_CSUM_TCPv6;
2270 }
2271
2272 if ((status & IGC_RXD_STAT_UDPCS) != 0) {
2273 IGC_DRIVER_EVENT(q, rx_udpcs, 1);
2274 if ((capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
2275 flags |= M_CSUM_UDPv4;
2276 if ((capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
2277 flags |= M_CSUM_UDPv6;
2278 }
2279
2280 if (__predict_false((errors & IGC_RXD_ERR_TCPE) != 0)) {
2281 IGC_DRIVER_EVENT(q, rx_l4cs_bad, 1);
2282 if ((flags & ~M_CSUM_IPv4) != 0)
2283 flags |= M_CSUM_TCP_UDP_BAD;
2284 }
2285
2286 return flags;
2287 }
2288
2289 static void
2290 igc_watchdog(struct ifnet * ifp)
2291 {
2292 }
2293
2294 static void
2295 igc_tick(void *arg)
2296 {
2297 struct igc_softc *sc = arg;
2298
2299 mutex_enter(&sc->sc_core_lock);
2300
2301 if (__predict_false(sc->sc_core_stopping)) {
2302 mutex_exit(&sc->sc_core_lock);
2303 return;
2304 }
2305
2306 /* XXX watchdog */
2307 if (0) {
2308 IGC_GLOBAL_EVENT(sc, watchdog, 1);
2309 }
2310
2311 igc_update_counters(sc);
2312
2313 mutex_exit(&sc->sc_core_lock);
2314
2315 callout_schedule(&sc->sc_tick_ch, hz);
2316 }
2317
2318 /*********************************************************************
2319 *
2320 * Media Ioctl callback
2321 *
2322 * This routine is called whenever the user queries the status of
2323 * the interface using ifconfig.
2324 *
2325 **********************************************************************/
2326 static void
2327 igc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2328 {
2329 struct igc_softc *sc = ifp->if_softc;
2330 struct igc_hw *hw = &sc->hw;
2331
2332 igc_update_link_status(sc);
2333
2334 ifmr->ifm_status = IFM_AVALID;
2335 ifmr->ifm_active = IFM_ETHER;
2336
2337 if (!sc->link_active) {
2338 ifmr->ifm_active |= IFM_NONE;
2339 return;
2340 }
2341
2342 ifmr->ifm_status |= IFM_ACTIVE;
2343
2344 switch (sc->link_speed) {
2345 case 10:
2346 ifmr->ifm_active |= IFM_10_T;
2347 break;
2348 case 100:
2349 ifmr->ifm_active |= IFM_100_TX;
2350 break;
2351 case 1000:
2352 ifmr->ifm_active |= IFM_1000_T;
2353 break;
2354 case 2500:
2355 ifmr->ifm_active |= IFM_2500_T;
2356 break;
2357 }
2358
2359 if (sc->link_duplex == FULL_DUPLEX)
2360 ifmr->ifm_active |= IFM_FDX;
2361 else
2362 ifmr->ifm_active |= IFM_HDX;
2363
2364 switch (hw->fc.current_mode) {
2365 case igc_fc_tx_pause:
2366 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
2367 break;
2368 case igc_fc_rx_pause:
2369 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
2370 break;
2371 case igc_fc_full:
2372 ifmr->ifm_active |= IFM_FLOW |
2373 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2374 break;
2375 case igc_fc_none:
2376 default:
2377 break;
2378 }
2379 }
2380
2381 /*********************************************************************
2382 *
2383 * Media Ioctl callback
2384 *
2385 * This routine is called when the user changes speed/duplex using
2386 * media/mediopt option with ifconfig.
2387 *
2388 **********************************************************************/
2389 static int
2390 igc_media_change(struct ifnet *ifp)
2391 {
2392 struct igc_softc *sc = ifp->if_softc;
2393 struct ifmedia *ifm = &sc->media;
2394
2395 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2396 return EINVAL;
2397
2398 sc->hw.mac.autoneg = DO_AUTO_NEG;
2399
2400 switch (IFM_SUBTYPE(ifm->ifm_media)) {
2401 case IFM_AUTO:
2402 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
2403 break;
2404 case IFM_2500_T:
2405 sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
2406 break;
2407 case IFM_1000_T:
2408 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
2409 break;
2410 case IFM_100_TX:
2411 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2412 sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
2413 else
2414 sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
2415 break;
2416 case IFM_10_T:
2417 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2418 sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
2419 else
2420 sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
2421 break;
2422 default:
2423 return EINVAL;
2424 }
2425
2426 igc_init_locked(sc);
2427
2428 return 0;
2429 }
2430
2431 static int
2432 igc_ifflags_cb(struct ethercom *ec)
2433 {
2434 struct ifnet *ifp = &ec->ec_if;
2435 struct igc_softc *sc = ifp->if_softc;
2436 int rc = 0;
2437 u_short iffchange;
2438 bool needreset = false;
2439
2440 DPRINTF(CFG, "called\n");
2441
2442 KASSERT(IFNET_LOCKED(ifp));
2443
2444 mutex_enter(&sc->sc_core_lock);
2445
2446 /*
2447 * Check for if_flags.
2448 * Main usage is to prevent linkdown when opening bpf.
2449 */
2450 iffchange = ifp->if_flags ^ sc->sc_if_flags;
2451 sc->sc_if_flags = ifp->if_flags;
2452 if ((iffchange & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
2453 needreset = true;
2454 goto ec;
2455 }
2456
2457 /* iff related updates */
2458 if ((iffchange & IFF_PROMISC) != 0)
2459 igc_set_filter(sc);
2460
2461 #ifdef notyet
2462 igc_set_vlan(sc);
2463 #endif
2464
2465 ec:
2466 #ifdef notyet
2467 /* Check for ec_capenable. */
2468 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
2469 sc->sc_ec_capenable = ec->ec_capenable;
2470 if ((ecchange & ~ETHERCAP_SOMETHING) != 0) {
2471 needreset = true;
2472 goto out;
2473 }
2474 #endif
2475 if (needreset)
2476 rc = ENETRESET;
2477
2478 mutex_exit(&sc->sc_core_lock);
2479
2480 return rc;
2481 }
2482
2483 static void
2484 igc_set_filter(struct igc_softc *sc)
2485 {
2486 struct ethercom *ec = &sc->sc_ec;
2487 uint32_t rctl;
2488
2489 rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
2490 rctl &= ~(IGC_RCTL_BAM |IGC_RCTL_UPE | IGC_RCTL_MPE);
2491
2492 if ((sc->sc_if_flags & IFF_BROADCAST) != 0)
2493 rctl |= IGC_RCTL_BAM;
2494 if ((sc->sc_if_flags & IFF_PROMISC) != 0) {
2495 DPRINTF(CFG, "promisc\n");
2496 rctl |= IGC_RCTL_UPE;
2497 ETHER_LOCK(ec);
2498 allmulti:
2499 ec->ec_flags |= ETHER_F_ALLMULTI;
2500 ETHER_UNLOCK(ec);
2501 rctl |= IGC_RCTL_MPE;
2502 } else {
2503 struct ether_multistep step;
2504 struct ether_multi *enm;
2505 int mcnt = 0;
2506
2507 memset(sc->mta, 0, IGC_MTA_LEN);
2508
2509 ETHER_LOCK(ec);
2510 ETHER_FIRST_MULTI(step, ec, enm);
2511 while (enm != NULL) {
2512 if (((memcmp(enm->enm_addrlo, enm->enm_addrhi,
2513 ETHER_ADDR_LEN)) != 0) ||
2514 (mcnt >= MAX_NUM_MULTICAST_ADDRESSES)) {
2515 /*
2516 * We must listen to a range of multicast
2517 * addresses. For now, just accept all
2518 * multicasts, rather than trying to set only
2519 * those filter bits needed to match the range.
2520 * (At this time, the only use of address
2521 * ranges is for IP multicast routing, for
2522 * which the range is big enough to require all
2523 * bits set.)
2524 */
2525 goto allmulti;
2526 }
2527 DPRINTF(CFG, "%d: %s\n", mcnt,
2528 ether_sprintf(enm->enm_addrlo));
2529 memcpy(&sc->mta[mcnt * ETHER_ADDR_LEN],
2530 enm->enm_addrlo, ETHER_ADDR_LEN);
2531
2532 mcnt++;
2533 ETHER_NEXT_MULTI(step, enm);
2534 }
2535 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2536 ETHER_UNLOCK(ec);
2537
2538 DPRINTF(CFG, "hw filter\n");
2539 igc_update_mc_addr_list(&sc->hw, sc->mta, mcnt);
2540 }
2541
2542 IGC_WRITE_REG(&sc->hw, IGC_RCTL, rctl);
2543 }
2544
2545 static void
2546 igc_update_link_status(struct igc_softc *sc)
2547 {
2548 struct ifnet *ifp = &sc->sc_ec.ec_if;
2549 struct igc_hw *hw = &sc->hw;
2550
2551 if (hw->mac.get_link_status == true)
2552 igc_check_for_link(hw);
2553
2554 if (IGC_READ_REG(&sc->hw, IGC_STATUS) & IGC_STATUS_LU) {
2555 if (sc->link_active == 0) {
2556 igc_get_speed_and_duplex(hw, &sc->link_speed,
2557 &sc->link_duplex);
2558 sc->link_active = 1;
2559 ifp->if_baudrate = IF_Mbps(sc->link_speed);
2560 if_link_state_change(ifp, LINK_STATE_UP);
2561 }
2562 } else {
2563 if (sc->link_active == 1) {
2564 ifp->if_baudrate = sc->link_speed = 0;
2565 sc->link_duplex = 0;
2566 sc->link_active = 0;
2567 if_link_state_change(ifp, LINK_STATE_DOWN);
2568 }
2569 }
2570 }
2571
2572 /*********************************************************************
2573 *
2574 * Get a buffer from system mbuf buffer pool.
2575 *
2576 **********************************************************************/
2577 static int
2578 igc_get_buf(struct rx_ring *rxr, int id, bool strict)
2579 {
2580 struct igc_softc *sc = rxr->sc;
2581 struct igc_queue *q = rxr->rxr_igcq;
2582 struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
2583 bus_dmamap_t map = rxbuf->map;
2584 struct mbuf *m;
2585 int error;
2586
2587 if (__predict_false(rxbuf->buf)) {
2588 if (strict) {
2589 DPRINTF(RX, "slot %d already has an mbuf\n", id);
2590 return EINVAL;
2591 }
2592 return 0;
2593 }
2594
2595 MGETHDR(m, M_DONTWAIT, MT_DATA);
2596 if (__predict_false(m == NULL)) {
2597 enobuf:
2598 IGC_QUEUE_EVENT(q, rx_no_mbuf, 1);
2599 return ENOBUFS;
2600 }
2601
2602 MCLGET(m, M_DONTWAIT);
2603 if (__predict_false(!(m->m_flags & M_EXT))) {
2604 m_freem(m);
2605 goto enobuf;
2606 }
2607
2608 m->m_len = m->m_pkthdr.len = sc->rx_mbuf_sz;
2609
2610 error = bus_dmamap_load_mbuf(rxr->rxdma.dma_tag, map, m,
2611 BUS_DMA_READ | BUS_DMA_NOWAIT);
2612 if (error) {
2613 m_freem(m);
2614 return error;
2615 }
2616
2617 bus_dmamap_sync(rxr->rxdma.dma_tag, map, 0,
2618 map->dm_mapsize, BUS_DMASYNC_PREREAD);
2619 rxbuf->buf = m;
2620
2621 union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
2622 igc_rxdesc_sync(rxr, id, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
2623 rxdesc->read.pkt_addr = htole64(map->dm_segs[0].ds_addr);
2624 igc_rxdesc_sync(rxr, id, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2625
2626 return 0;
2627 }
2628
2629 static void
2630 igc_configure_queues(struct igc_softc *sc)
2631 {
2632 struct igc_hw *hw = &sc->hw;
2633 uint32_t ivar;
2634
2635 /* First turn on RSS capability */
2636 IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME |
2637 IGC_GPIE_PBA | IGC_GPIE_NSICR);
2638
2639 /* Set the starting interrupt rate */
2640 uint32_t newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;
2641 newitr |= IGC_EITR_CNT_IGNR;
2642
2643 /* Turn on MSI-X */
2644 uint32_t newmask = 0;
2645 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2646 struct igc_queue *q = &sc->queues[iq];
2647
2648 /* RX entries */
2649 igc_set_queues(sc, iq, q->msix, 0);
2650 /* TX entries */
2651 igc_set_queues(sc, iq, q->msix, 1);
2652 newmask |= q->eims;
2653 IGC_WRITE_REG(hw, IGC_EITR(q->msix), newitr);
2654 }
2655 sc->msix_queuesmask = newmask;
2656
2657 #if 1
2658 ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 0);
2659 DPRINTF(CFG, "ivar(0)=0x%x\n", ivar);
2660 ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 1);
2661 DPRINTF(CFG, "ivar(1)=0x%x\n", ivar);
2662 #endif
2663
2664 /* And for the link interrupt */
2665 ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
2666 sc->msix_linkmask = 1 << sc->linkvec;
2667 IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
2668 }
2669
2670 static void
2671 igc_set_queues(struct igc_softc *sc, uint32_t entry, uint32_t vector, int type)
2672 {
2673 struct igc_hw *hw = &sc->hw;
2674 const uint32_t index = entry >> 1;
2675 uint32_t ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
2676
2677 if (type) {
2678 if (entry & 1) {
2679 ivar &= 0x00FFFFFF;
2680 ivar |= (vector | IGC_IVAR_VALID) << 24;
2681 } else {
2682 ivar &= 0xFFFF00FF;
2683 ivar |= (vector | IGC_IVAR_VALID) << 8;
2684 }
2685 } else {
2686 if (entry & 1) {
2687 ivar &= 0xFF00FFFF;
2688 ivar |= (vector | IGC_IVAR_VALID) << 16;
2689 } else {
2690 ivar &= 0xFFFFFF00;
2691 ivar |= vector | IGC_IVAR_VALID;
2692 }
2693 }
2694 IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
2695 }
2696
2697 static void
2698 igc_enable_queue(struct igc_softc *sc, uint32_t eims)
2699 {
2700 IGC_WRITE_REG(&sc->hw, IGC_EIMS, eims);
2701 }
2702
2703 static void
2704 igc_enable_intr(struct igc_softc *sc)
2705 {
2706 struct igc_hw *hw = &sc->hw;
2707
2708 if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
2709 const uint32_t mask = sc->msix_queuesmask | sc->msix_linkmask;
2710
2711 IGC_WRITE_REG(hw, IGC_EIAC, mask);
2712 IGC_WRITE_REG(hw, IGC_EIAM, mask);
2713 IGC_WRITE_REG(hw, IGC_EIMS, mask);
2714 IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
2715 } else {
2716 IGC_WRITE_REG(hw, IGC_IMS, IMS_ENABLE_MASK);
2717 }
2718 IGC_WRITE_FLUSH(hw);
2719 }
2720
2721 static void
2722 igc_disable_intr(struct igc_softc *sc)
2723 {
2724 struct igc_hw *hw = &sc->hw;
2725
2726 if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
2727 IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
2728 IGC_WRITE_REG(hw, IGC_EIAC, 0);
2729 }
2730 IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
2731 IGC_WRITE_FLUSH(hw);
2732 }
2733
2734 static int
2735 igc_intr_link(void *arg)
2736 {
2737 struct igc_softc *sc = (struct igc_softc *)arg;
2738 const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
2739
2740 IGC_GLOBAL_EVENT(sc, link, 1);
2741
2742 if (reg_icr & IGC_ICR_LSC) {
2743 mutex_enter(&sc->sc_core_lock);
2744 sc->hw.mac.get_link_status = true;
2745 igc_update_link_status(sc);
2746 mutex_exit(&sc->sc_core_lock);
2747 }
2748
2749 IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
2750 IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->msix_linkmask);
2751
2752 return 1;
2753 }
2754
2755 static int
2756 igc_intr_queue(void *arg)
2757 {
2758 struct igc_queue *iq = arg;
2759 struct igc_softc *sc = iq->sc;
2760 struct ifnet *ifp = &sc->sc_ec.ec_if;
2761 struct rx_ring *rxr = iq->rxr;
2762 struct tx_ring *txr = iq->txr;
2763 const u_int txlimit = sc->sc_tx_intr_process_limit,
2764 rxlimit = sc->sc_rx_intr_process_limit;
2765 bool txmore, rxmore;
2766
2767 IGC_QUEUE_EVENT(iq, irqs, 1);
2768
2769 if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
2770 return 0;
2771
2772 mutex_enter(&txr->txr_lock);
2773 txmore = igc_txeof(txr, txlimit);
2774 mutex_exit(&txr->txr_lock);
2775 mutex_enter(&rxr->rxr_lock);
2776 rxmore = igc_rxeof(rxr, rxlimit);
2777 mutex_exit(&rxr->rxr_lock);
2778
2779 if (txmore || rxmore) {
2780 IGC_QUEUE_EVENT(iq, req, 1);
2781 igc_sched_handle_queue(sc, iq);
2782 } else {
2783 igc_enable_queue(sc, iq->eims);
2784 }
2785
2786 return 1;
2787 }
2788
2789 static int
2790 igc_intr(void *arg)
2791 {
2792 struct igc_softc *sc = arg;
2793 struct ifnet *ifp = &sc->sc_ec.ec_if;
2794 struct igc_queue *iq = &sc->queues[0];
2795 struct rx_ring *rxr = iq->rxr;
2796 struct tx_ring *txr = iq->txr;
2797 const u_int txlimit = sc->sc_tx_intr_process_limit,
2798 rxlimit = sc->sc_rx_intr_process_limit;
2799 bool txmore, rxmore;
2800
2801 if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
2802 return 0;
2803
2804 const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
2805 DPRINTF(MISC, "reg_icr=0x%x\n", reg_icr);
2806
2807 /* Definitely not our interrupt. */
2808 if (reg_icr == 0x0) {
2809 DPRINTF(MISC, "not for me\n");
2810 return 0;
2811 }
2812
2813 IGC_QUEUE_EVENT(iq, irqs, 1);
2814
2815 /* Hot eject? */
2816 if (__predict_false(reg_icr == 0xffffffff)) {
2817 DPRINTF(MISC, "hot eject\n");
2818 return 0;
2819 }
2820
2821 if (__predict_false(!(reg_icr & IGC_ICR_INT_ASSERTED))) {
2822 DPRINTF(MISC, "not set IGC_ICR_INT_ASSERTED");
2823 return 0;
2824 }
2825
2826 /*
2827 * Only MSI-X interrupts have one-shot behavior by taking advantage
2828 * of the EIAC register. Thus, explicitly disable interrupts. This
2829 * also works around the MSI message reordering errata on certain
2830 * systems.
2831 */
2832 igc_disable_intr(sc);
2833
2834 mutex_enter(&txr->txr_lock);
2835 txmore = igc_txeof(txr, txlimit);
2836 mutex_exit(&txr->txr_lock);
2837 mutex_enter(&rxr->rxr_lock);
2838 rxmore = igc_rxeof(rxr, rxlimit);
2839 mutex_exit(&rxr->rxr_lock);
2840
2841 /* Link status change */
2842 // XXXX FreeBSD checks IGC_ICR_RXSEQ
2843 if (__predict_false(reg_icr & IGC_ICR_LSC)) {
2844 IGC_GLOBAL_EVENT(sc, link, 1);
2845 mutex_enter(&sc->sc_core_lock);
2846 sc->hw.mac.get_link_status = true;
2847 igc_update_link_status(sc);
2848 mutex_exit(&sc->sc_core_lock);
2849 }
2850
2851 if (txmore || rxmore) {
2852 IGC_QUEUE_EVENT(iq, req, 1);
2853 igc_sched_handle_queue(sc, iq);
2854 } else {
2855 igc_enable_intr(sc);
2856 }
2857
2858 return 1;
2859 }
2860
2861 static void
2862 igc_handle_queue(void *arg)
2863 {
2864 struct igc_queue *iq = arg;
2865 struct igc_softc *sc = iq->sc;
2866 struct tx_ring *txr = iq->txr;
2867 struct rx_ring *rxr = iq->rxr;
2868 const u_int txlimit = sc->sc_tx_process_limit,
2869 rxlimit = sc->sc_rx_process_limit;
2870 bool txmore, rxmore;
2871
2872 IGC_QUEUE_EVENT(iq, handleq, 1);
2873
2874 mutex_enter(&txr->txr_lock);
2875 txmore = igc_txeof(txr, txlimit);
2876 /* for ALTQ, dequeue from if_snd */
2877 if (txr->me == 0) {
2878 struct ifnet *ifp = &sc->sc_ec.ec_if;
2879
2880 igc_tx_common_locked(ifp, txr, IGC_TX_START);
2881 }
2882 mutex_exit(&txr->txr_lock);
2883
2884 mutex_enter(&rxr->rxr_lock);
2885 rxmore = igc_rxeof(rxr, rxlimit);
2886 mutex_exit(&rxr->rxr_lock);
2887
2888 if (txmore || rxmore) {
2889 igc_sched_handle_queue(sc, iq);
2890 } else {
2891 if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
2892 igc_enable_queue(sc, iq->eims);
2893 else
2894 igc_enable_intr(sc);
2895 }
2896 }
2897
2898 static void
2899 igc_handle_queue_work(struct work *wk, void *context)
2900 {
2901 struct igc_queue *iq =
2902 container_of(wk, struct igc_queue, igcq_wq_cookie);
2903
2904 igc_handle_queue(iq);
2905 }
2906
2907 static void
2908 igc_sched_handle_queue(struct igc_softc *sc, struct igc_queue *iq)
2909 {
2910
2911 if (iq->igcq_workqueue) {
2912 /* XXXRO notyet */
2913 workqueue_enqueue(sc->sc_queue_wq, &iq->igcq_wq_cookie,
2914 curcpu());
2915 } else {
2916 softint_schedule(iq->igcq_si);
2917 }
2918 }
2919
2920 static void
2921 igc_barrier_handle_queue(struct igc_softc *sc)
2922 {
2923
2924 if (sc->sc_txrx_workqueue) {
2925 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2926 struct igc_queue *q = &sc->queues[iq];
2927
2928 workqueue_wait(sc->sc_queue_wq, &q->igcq_wq_cookie);
2929 }
2930 } else {
2931 xc_barrier(0);
2932 }
2933 }
2934
2935 /*********************************************************************
2936 *
2937 * Allocate memory for tx_buffer structures. The tx_buffer stores all
2938 * the information needed to transmit a packet on the wire.
2939 *
2940 **********************************************************************/
2941 static int
2942 igc_allocate_transmit_buffers(struct tx_ring *txr)
2943 {
2944 struct igc_softc *sc = txr->sc;
2945 int error;
2946
2947 txr->tx_buffers =
2948 kmem_zalloc(sc->num_tx_desc * sizeof(struct igc_tx_buf), KM_SLEEP);
2949 txr->txtag = txr->txdma.dma_tag;
2950
2951 /* Create the descriptor buffer dma maps. */
2952 for (int id = 0; id < sc->num_tx_desc; id++) {
2953 struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
2954
2955 error = bus_dmamap_create(txr->txdma.dma_tag,
2956 round_page(IGC_TSO_SIZE + sizeof(struct ether_vlan_header)),
2957 IGC_MAX_SCATTER, PAGE_SIZE, 0, BUS_DMA_NOWAIT, &txbuf->map);
2958 if (error != 0) {
2959 aprint_error_dev(sc->sc_dev,
2960 "unable to create TX DMA map\n");
2961 goto fail;
2962 }
2963
2964 txbuf->eop_index = -1;
2965 }
2966
2967 return 0;
2968 fail:
2969 return error;
2970 }
2971
2972
2973 /*********************************************************************
2974 *
2975 * Allocate and initialize transmit structures.
2976 *
2977 **********************************************************************/
2978 static int
2979 igc_setup_transmit_structures(struct igc_softc *sc)
2980 {
2981
2982 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2983 struct tx_ring *txr = &sc->tx_rings[iq];
2984
2985 if (igc_setup_transmit_ring(txr))
2986 goto fail;
2987 }
2988
2989 return 0;
2990 fail:
2991 igc_free_transmit_structures(sc);
2992 return ENOBUFS;
2993 }
2994
2995 /*********************************************************************
2996 *
2997 * Initialize a transmit ring.
2998 *
2999 **********************************************************************/
3000 static int
3001 igc_setup_transmit_ring(struct tx_ring *txr)
3002 {
3003 struct igc_softc *sc = txr->sc;
3004
3005 /* Now allocate transmit buffers for the ring. */
3006 if (igc_allocate_transmit_buffers(txr))
3007 return ENOMEM;
3008
3009 /* Clear the old ring contents */
3010 memset(txr->tx_base, 0,
3011 sizeof(union igc_adv_tx_desc) * sc->num_tx_desc);
3012
3013 /* Reset indices. */
3014 txr->next_avail_desc = 0;
3015 txr->next_to_clean = 0;
3016
3017 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
3018 txr->txdma.dma_map->dm_mapsize,
3019 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3020
3021 txr->txr_interq = pcq_create(sc->num_tx_desc, KM_SLEEP);
3022
3023 mutex_init(&txr->txr_lock, MUTEX_DEFAULT, IPL_NET);
3024
3025 return 0;
3026 }
3027
3028 /*********************************************************************
3029 *
3030 * Enable transmit unit.
3031 *
3032 **********************************************************************/
3033 static void
3034 igc_initialize_transmit_unit(struct igc_softc *sc)
3035 {
3036 struct ifnet *ifp = &sc->sc_ec.ec_if;
3037 struct igc_hw *hw = &sc->hw;
3038
3039 /* Setup the Base and Length of the TX descriptor ring. */
3040 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3041 struct tx_ring *txr = &sc->tx_rings[iq];
3042 const uint64_t bus_addr =
3043 txr->txdma.dma_map->dm_segs[0].ds_addr;
3044
3045 /* Base and len of TX ring */
3046 IGC_WRITE_REG(hw, IGC_TDLEN(iq),
3047 sc->num_tx_desc * sizeof(union igc_adv_tx_desc));
3048 IGC_WRITE_REG(hw, IGC_TDBAH(iq), (uint32_t)(bus_addr >> 32));
3049 IGC_WRITE_REG(hw, IGC_TDBAL(iq), (uint32_t)bus_addr);
3050
3051 /* Init the HEAD/TAIL indices */
3052 IGC_WRITE_REG(hw, IGC_TDT(iq), 0 /* XXX txr->next_avail_desc */);
3053 IGC_WRITE_REG(hw, IGC_TDH(iq), 0);
3054
3055 txr->watchdog_timer = 0;
3056
3057 uint32_t txdctl = 0; /* Clear txdctl */
3058 txdctl |= 0x1f; /* PTHRESH */
3059 txdctl |= 1 << 8; /* HTHRESH */
3060 txdctl |= 1 << 16; /* WTHRESH */
3061 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3062 txdctl |= IGC_TXDCTL_GRAN;
3063 txdctl |= 1 << 25; /* LWTHRESH */
3064
3065 IGC_WRITE_REG(hw, IGC_TXDCTL(iq), txdctl);
3066 }
3067 ifp->if_timer = 0;
3068
3069 /* Program the Transmit Control Register */
3070 uint32_t tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
3071 tctl &= ~IGC_TCTL_CT;
3072 tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
3073 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
3074
3075 /* This write will effectively turn on the transmit unit. */
3076 IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
3077 }
3078
3079 /*********************************************************************
3080 *
3081 * Free all transmit rings.
3082 *
3083 **********************************************************************/
3084 static void
3085 igc_free_transmit_structures(struct igc_softc *sc)
3086 {
3087
3088 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3089 struct tx_ring *txr = &sc->tx_rings[iq];
3090
3091 igc_free_transmit_buffers(txr);
3092 }
3093 }
3094
3095 /*********************************************************************
3096 *
3097 * Free transmit ring related data structures.
3098 *
3099 **********************************************************************/
3100 static void
3101 igc_free_transmit_buffers(struct tx_ring *txr)
3102 {
3103 struct igc_softc *sc = txr->sc;
3104
3105 if (txr->tx_buffers == NULL)
3106 return;
3107
3108 igc_withdraw_transmit_packets(txr, true);
3109
3110 kmem_free(txr->tx_buffers,
3111 sc->num_tx_desc * sizeof(struct igc_tx_buf));
3112 txr->tx_buffers = NULL;
3113 txr->txtag = NULL;
3114
3115 pcq_destroy(txr->txr_interq);
3116 mutex_destroy(&txr->txr_lock);
3117 }
3118
3119 /*********************************************************************
3120 *
3121 * Withdraw transmit packets.
3122 *
3123 **********************************************************************/
3124 static void
3125 igc_withdraw_transmit_packets(struct tx_ring *txr, bool destroy)
3126 {
3127 struct igc_softc *sc = txr->sc;
3128 struct igc_queue *q = txr->txr_igcq;
3129
3130 mutex_enter(&txr->txr_lock);
3131
3132 for (int id = 0; id < sc->num_tx_desc; id++) {
3133 union igc_adv_tx_desc *txdesc = &txr->tx_base[id];
3134
3135 igc_txdesc_sync(txr, id,
3136 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3137 txdesc->read.buffer_addr = 0;
3138 txdesc->read.cmd_type_len = 0;
3139 txdesc->read.olinfo_status = 0;
3140 igc_txdesc_sync(txr, id,
3141 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3142
3143 struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
3144 bus_dmamap_t map = txbuf->map;
3145
3146 if (map != NULL && map->dm_nsegs > 0) {
3147 bus_dmamap_sync(txr->txdma.dma_tag, map,
3148 0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3149 bus_dmamap_unload(txr->txdma.dma_tag, map);
3150 }
3151 if (txbuf->m_head != NULL) {
3152 m_freem(txbuf->m_head);
3153 txbuf->m_head = NULL;
3154 }
3155 if (map != NULL && destroy) {
3156 bus_dmamap_destroy(txr->txdma.dma_tag, map);
3157 txbuf->map = NULL;
3158 }
3159 txbuf->eop_index = -1;
3160
3161 txr->next_avail_desc = 0;
3162 txr->next_to_clean = 0;
3163 }
3164
3165 struct mbuf *m;
3166 while ((m = pcq_get(txr->txr_interq)) != NULL) {
3167 IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
3168 m_freem(m);
3169 }
3170
3171 mutex_exit(&txr->txr_lock);
3172 }
3173
3174
3175 /*********************************************************************
3176 *
3177 * Advanced Context Descriptor setup for VLAN, CSUM or TSO
3178 *
3179 **********************************************************************/
3180
3181 static int
3182 igc_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
3183 uint32_t *cmd_type_len, uint32_t *olinfo_status)
3184 {
3185 struct ether_vlan_header *evl;
3186 uint32_t type_tucmd_mlhl = 0;
3187 uint32_t vlan_macip_lens = 0;
3188 uint32_t ehlen, iphlen;
3189 uint16_t ehtype;
3190 int off = 0;
3191
3192 const int csum_flags = mp->m_pkthdr.csum_flags;
3193
3194 /* First check if TSO is to be used */
3195 if ((csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
3196 return igc_tso_setup(txr, mp, prod, cmd_type_len,
3197 olinfo_status);
3198 }
3199
3200 const bool v4 = (csum_flags &
3201 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0;
3202 const bool v6 = (csum_flags & (M_CSUM_UDPv6 | M_CSUM_TCPv6)) != 0;
3203
3204 /* Indicate the whole packet as payload when not doing TSO */
3205 *olinfo_status |= mp->m_pkthdr.len << IGC_ADVTXD_PAYLEN_SHIFT;
3206
3207 /*
3208 * In advanced descriptors the vlan tag must
3209 * be placed into the context descriptor. Hence
3210 * we need to make one even if not doing offloads.
3211 */
3212 #if NVLAN > 0
3213 if (vlan_has_tag(mp)) {
3214 vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
3215 << IGC_ADVTXD_VLAN_SHIFT;
3216 off = 1;
3217 } else
3218 #endif
3219 if (!v4 && !v6)
3220 return 0;
3221
3222 KASSERT(mp->m_len >= sizeof(struct ether_header));
3223 evl = mtod(mp, struct ether_vlan_header *);
3224 if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3225 KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
3226 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3227 ehtype = evl->evl_proto;
3228 } else {
3229 ehlen = ETHER_HDR_LEN;
3230 ehtype = evl->evl_encap_proto;
3231 }
3232
3233 vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
3234
3235 #ifdef IGC_DEBUG
3236 /*
3237 * For checksum offloading, L3 headers are not mandatory.
3238 * We use these only for consistency checks.
3239 */
3240 struct ip *ip;
3241 struct ip6_hdr *ip6;
3242 uint8_t ipproto;
3243 char *l3d;
3244
3245 if (mp->m_len == ehlen && mp->m_next != NULL)
3246 l3d = mtod(mp->m_next, char *);
3247 else
3248 l3d = mtod(mp, char *) + ehlen;
3249 #endif
3250
3251 switch (ntohs(ehtype)) {
3252 case ETHERTYPE_IP:
3253 iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
3254 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
3255
3256 if ((csum_flags & M_CSUM_IPv4) != 0) {
3257 *olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
3258 off = 1;
3259 }
3260 #ifdef IGC_DEBUG
3261 KASSERT(!v6);
3262 ip = (void *)l3d;
3263 ipproto = ip->ip_p;
3264 KASSERT(iphlen == ip->ip_hl << 2);
3265 KASSERT((mp->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0 ||
3266 ip->ip_sum == 0);
3267 #endif
3268 break;
3269 case ETHERTYPE_IPV6:
3270 iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
3271 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
3272 #ifdef IGC_DEBUG
3273 KASSERT(!v4);
3274 ip6 = (void *)l3d;
3275 ipproto = ip6->ip6_nxt; /* XXX */
3276 KASSERT(iphlen == sizeof(struct ip6_hdr));
3277 #endif
3278 break;
3279 default:
3280 /*
3281 * Unknown L3 protocol. Clear L3 header length and proceed for
3282 * LAN as done by Linux driver.
3283 */
3284 iphlen = 0;
3285 #ifdef IGC_DEBUG
3286 KASSERT(!v4 && !v6);
3287 ipproto = 0;
3288 #endif
3289 break;
3290 }
3291
3292 vlan_macip_lens |= iphlen;
3293
3294 const bool tcp = (csum_flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0;
3295 const bool udp = (csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0;
3296
3297 if (tcp) {
3298 #ifdef IGC_DEBUG
3299 KASSERTMSG(ipproto == IPPROTO_TCP, "ipproto = %d", ipproto);
3300 #endif
3301 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
3302 *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3303 off = 1;
3304 } else if (udp) {
3305 #ifdef IGC_DEBUG
3306 KASSERTMSG(ipproto == IPPROTO_UDP, "ipproto = %d", ipproto);
3307 #endif
3308 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
3309 *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3310 off = 1;
3311 }
3312
3313 if (off == 0)
3314 return 0;
3315
3316 type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
3317
3318 /* Now ready a context descriptor */
3319 struct igc_adv_tx_context_desc *txdesc =
3320 (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
3321
3322 /* Now copy bits into descriptor */
3323 igc_txdesc_sync(txr, prod,
3324 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3325 htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
3326 htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
3327 htolem32(&txdesc->seqnum_seed, 0);
3328 htolem32(&txdesc->mss_l4len_idx, 0);
3329 igc_txdesc_sync(txr, prod,
3330 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3331
3332 return 1;
3333 }
3334
3335 /*********************************************************************
3336 *
3337 * Advanced Context Descriptor setup for TSO
3338 *
3339 * XXX XXXRO
3340 * Not working. Some packets are sent with correct csums, but
3341 * others aren't. th->th_sum may be adjusted.
3342 *
3343 **********************************************************************/
3344
3345 static int
3346 igc_tso_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
3347 uint32_t *cmd_type_len, uint32_t *olinfo_status)
3348 {
3349 #if 1 /* notyet */
3350 return 0;
3351 #else
3352 struct ether_vlan_header *evl;
3353 struct ip *ip;
3354 struct ip6_hdr *ip6;
3355 struct tcphdr *th;
3356 uint32_t type_tucmd_mlhl = 0;
3357 uint32_t vlan_macip_lens = 0;
3358 uint32_t mss_l4len_idx = 0;
3359 uint32_t ehlen, iphlen, tcphlen, paylen;
3360 uint16_t ehtype;
3361
3362 /*
3363 * In advanced descriptors the vlan tag must
3364 * be placed into the context descriptor. Hence
3365 * we need to make one even if not doing offloads.
3366 */
3367 #if NVLAN > 0
3368 if (vlan_has_tag(mp)) {
3369 vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
3370 << IGC_ADVTXD_VLAN_SHIFT;
3371 }
3372 #endif
3373
3374 KASSERT(mp->m_len >= sizeof(struct ether_header));
3375 evl = mtod(mp, struct ether_vlan_header *);
3376 if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3377 KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
3378 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3379 ehtype = evl->evl_proto;
3380 } else {
3381 ehlen = ETHER_HDR_LEN;
3382 ehtype = evl->evl_encap_proto;
3383 }
3384
3385 vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
3386
3387 switch (ntohs(ehtype)) {
3388 case ETHERTYPE_IP:
3389 iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
3390 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
3391 *olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
3392
3393 KASSERT(mp->m_len >= ehlen + sizeof(*ip));
3394 ip = (void *)(mtod(mp, char *) + ehlen);
3395 ip->ip_len = 0;
3396 KASSERT(iphlen == ip->ip_hl << 2);
3397 KASSERT(ip->ip_sum == 0);
3398 KASSERT(ip->ip_p == IPPROTO_TCP);
3399
3400 KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
3401 th = (void *)((char *)ip + iphlen);
3402 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, ip->ip_dst.s_addr,
3403 htons(IPPROTO_TCP));
3404 break;
3405 case ETHERTYPE_IPV6:
3406 iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
3407 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
3408
3409 KASSERT(mp->m_len >= ehlen + sizeof(*ip6));
3410 ip6 = (void *)(mtod(mp, char *) + ehlen);
3411 ip6->ip6_plen = 0;
3412 KASSERT(iphlen == sizeof(struct ip6_hdr));
3413 KASSERT(ip6->ip6_nxt == IPPROTO_TCP);
3414
3415 KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
3416 th = (void *)((char *)ip6 + iphlen);
3417 tcphlen = th->th_off << 2;
3418 paylen = mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
3419 th->th_sum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 0,
3420 htonl(IPPROTO_TCP));
3421 break;
3422 default:
3423 panic("%s", __func__);
3424 }
3425
3426 tcphlen = th->th_off << 2;
3427 paylen = mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
3428
3429 vlan_macip_lens |= iphlen;
3430
3431 type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
3432 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
3433
3434 mss_l4len_idx |= mp->m_pkthdr.segsz << IGC_ADVTXD_MSS_SHIFT;
3435 mss_l4len_idx |= tcphlen << IGC_ADVTXD_L4LEN_SHIFT;
3436
3437 /* Now ready a context descriptor */
3438 struct igc_adv_tx_context_desc *txdesc =
3439 (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
3440
3441 /* Now copy bits into descriptor */
3442 igc_txdesc_sync(txr, prod,
3443 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3444 htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
3445 htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
3446 htolem32(&txdesc->seqnum_seed, 0);
3447 htolem32(&txdesc->mss_l4len_idx, mss_l4len_idx);
3448 igc_txdesc_sync(txr, prod,
3449 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3450
3451 *cmd_type_len |= IGC_ADVTXD_DCMD_TSE;
3452 *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3453 *olinfo_status |= paylen << IGC_ADVTXD_PAYLEN_SHIFT;
3454
3455 return 1;
3456 #endif /* notyet */
3457 }
3458
3459 /*********************************************************************
3460 *
3461 * Allocate memory for rx_buffer structures. Since we use one
3462 * rx_buffer per received packet, the maximum number of rx_buffer's
3463 * that we'll need is equal to the number of receive descriptors
3464 * that we've allocated.
3465 *
3466 **********************************************************************/
3467 static int
3468 igc_allocate_receive_buffers(struct rx_ring *rxr)
3469 {
3470 struct igc_softc *sc = rxr->sc;
3471 int error;
3472
3473 rxr->rx_buffers =
3474 kmem_zalloc(sc->num_rx_desc * sizeof(struct igc_rx_buf), KM_SLEEP);
3475
3476 for (int id = 0; id < sc->num_rx_desc; id++) {
3477 struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
3478
3479 error = bus_dmamap_create(rxr->rxdma.dma_tag, MCLBYTES, 1,
3480 MCLBYTES, 0, BUS_DMA_WAITOK, &rxbuf->map);
3481 if (error) {
3482 aprint_error_dev(sc->sc_dev,
3483 "unable to create RX DMA map\n");
3484 goto fail;
3485 }
3486 }
3487 bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
3488 rxr->rxdma.dma_map->dm_mapsize,
3489 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3490
3491 return 0;
3492 fail:
3493 return error;
3494 }
3495
3496 /*********************************************************************
3497 *
3498 * Allocate and initialize receive structures.
3499 *
3500 **********************************************************************/
3501 static int
3502 igc_setup_receive_structures(struct igc_softc *sc)
3503 {
3504
3505 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3506 struct rx_ring *rxr = &sc->rx_rings[iq];
3507
3508 if (igc_setup_receive_ring(rxr))
3509 goto fail;
3510 }
3511
3512 return 0;
3513 fail:
3514 igc_free_receive_structures(sc);
3515 return ENOBUFS;
3516 }
3517
3518 /*********************************************************************
3519 *
3520 * Initialize a receive ring and its buffers.
3521 *
3522 **********************************************************************/
3523 static int
3524 igc_setup_receive_ring(struct rx_ring *rxr)
3525 {
3526 struct igc_softc *sc = rxr->sc;
3527 const int rsize = roundup2(
3528 sc->num_rx_desc * sizeof(union igc_adv_rx_desc), IGC_DBA_ALIGN);
3529
3530 /* Clear the ring contents. */
3531 memset(rxr->rx_base, 0, rsize);
3532
3533 if (igc_allocate_receive_buffers(rxr))
3534 return ENOMEM;
3535
3536 /* Setup our descriptor indices. */
3537 rxr->next_to_check = 0;
3538 rxr->last_desc_filled = 0;
3539
3540 mutex_init(&rxr->rxr_lock, MUTEX_DEFAULT, IPL_NET);
3541
3542 return 0;
3543 }
3544
3545 /*********************************************************************
3546 *
3547 * Enable receive unit.
3548 *
3549 **********************************************************************/
3550 static void
3551 igc_initialize_receive_unit(struct igc_softc *sc)
3552 {
3553 struct ifnet *ifp = &sc->sc_ec.ec_if;
3554 struct igc_hw *hw = &sc->hw;
3555 uint32_t rctl, rxcsum, srrctl;
3556
3557 DPRINTF(RX, "called\n");
3558
3559 /*
3560 * Make sure receives are disabled while setting
3561 * up the descriptor ring.
3562 */
3563 rctl = IGC_READ_REG(hw, IGC_RCTL);
3564 IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
3565
3566 /* Setup the Receive Control Register */
3567 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
3568 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
3569 IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
3570
3571 #if 1
3572 /* Do not store bad packets */
3573 rctl &= ~IGC_RCTL_SBP;
3574 #else
3575 /* for debug */
3576 rctl |= IGC_RCTL_SBP;
3577 #endif
3578
3579 /* Enable Long Packet receive */
3580 if (sc->hw.mac.max_frame_size > ETHER_MAX_LEN)
3581 rctl |= IGC_RCTL_LPE;
3582 else
3583 rctl &= ~IGC_RCTL_LPE;
3584
3585 /* Strip the CRC */
3586 rctl |= IGC_RCTL_SECRC;
3587
3588 /*
3589 * Set the interrupt throttling rate. Value is calculated
3590 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3591 *
3592 * XXX Sync with Linux, especially for jumbo MTU or TSO.
3593 * XXX Shouldn't be here?
3594 */
3595 IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
3596
3597 rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
3598 rxcsum &= ~(IGC_RXCSUM_IPOFL | IGC_RXCSUM_TUOFL | IGC_RXCSUM_PCSD);
3599 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3600 rxcsum |= IGC_RXCSUM_IPOFL;
3601 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
3602 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
3603 rxcsum |= IGC_RXCSUM_TUOFL;
3604 if (sc->sc_nqueues > 1)
3605 rxcsum |= IGC_RXCSUM_PCSD;
3606 IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
3607
3608 if (sc->sc_nqueues > 1)
3609 igc_initialize_rss_mapping(sc);
3610
3611 srrctl = 0;
3612 #if 0
3613 srrctl |= 4096 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
3614 rctl |= IGC_RCTL_SZ_4096 | IGC_RCTL_BSEX;
3615 #else
3616 srrctl |= 2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
3617 rctl |= IGC_RCTL_SZ_2048;
3618 #endif
3619
3620 /*
3621 * If TX flow control is disabled and there's > 1 queue defined,
3622 * enable DROP.
3623 *
3624 * This drops frames rather than hanging the RX MAC for all queues.
3625 */
3626 if (sc->sc_nqueues > 1 &&
3627 (sc->fc == igc_fc_none || sc->fc == igc_fc_rx_pause))
3628 srrctl |= IGC_SRRCTL_DROP_EN;
3629
3630 /* Setup the Base and Length of the RX descriptor rings. */
3631 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3632 struct rx_ring *rxr = &sc->rx_rings[iq];
3633 const uint64_t bus_addr =
3634 rxr->rxdma.dma_map->dm_segs[0].ds_addr;
3635
3636 IGC_WRITE_REG(hw, IGC_RXDCTL(iq), 0);
3637
3638 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
3639
3640 IGC_WRITE_REG(hw, IGC_RDLEN(iq),
3641 sc->num_rx_desc * sizeof(union igc_adv_rx_desc));
3642 IGC_WRITE_REG(hw, IGC_RDBAH(iq), (uint32_t)(bus_addr >> 32));
3643 IGC_WRITE_REG(hw, IGC_RDBAL(iq), (uint32_t)bus_addr);
3644 IGC_WRITE_REG(hw, IGC_SRRCTL(iq), srrctl);
3645
3646 /* Setup the Head and Tail Descriptor Pointers */
3647 IGC_WRITE_REG(hw, IGC_RDH(iq), 0);
3648 IGC_WRITE_REG(hw, IGC_RDT(iq), 0 /* XXX rxr->last_desc_filled */);
3649
3650 /* Enable this Queue */
3651 uint32_t rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(iq));
3652 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
3653 rxdctl &= 0xFFF00000;
3654 rxdctl |= IGC_RX_PTHRESH;
3655 rxdctl |= IGC_RX_HTHRESH << 8;
3656 rxdctl |= IGC_RX_WTHRESH << 16;
3657 IGC_WRITE_REG(hw, IGC_RXDCTL(iq), rxdctl);
3658 }
3659
3660 /* Make sure VLAN Filters are off */
3661 rctl &= ~IGC_RCTL_VFE;
3662
3663 /* Write out the settings */
3664 IGC_WRITE_REG(hw, IGC_RCTL, rctl);
3665 }
3666
3667 /*********************************************************************
3668 *
3669 * Free all receive rings.
3670 *
3671 **********************************************************************/
3672 static void
3673 igc_free_receive_structures(struct igc_softc *sc)
3674 {
3675
3676 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3677 struct rx_ring *rxr = &sc->rx_rings[iq];
3678
3679 igc_free_receive_buffers(rxr);
3680 }
3681 }
3682
3683 /*********************************************************************
3684 *
3685 * Free receive ring data structures
3686 *
3687 **********************************************************************/
3688 static void
3689 igc_free_receive_buffers(struct rx_ring *rxr)
3690 {
3691 struct igc_softc *sc = rxr->sc;
3692
3693 if (rxr->rx_buffers != NULL) {
3694 for (int id = 0; id < sc->num_rx_desc; id++) {
3695 struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
3696 bus_dmamap_t map = rxbuf->map;
3697
3698 if (rxbuf->buf != NULL) {
3699 bus_dmamap_sync(rxr->rxdma.dma_tag, map,
3700 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
3701 bus_dmamap_unload(rxr->rxdma.dma_tag, map);
3702 m_freem(rxbuf->buf);
3703 rxbuf->buf = NULL;
3704 }
3705 bus_dmamap_destroy(rxr->rxdma.dma_tag, map);
3706 rxbuf->map = NULL;
3707 }
3708 kmem_free(rxr->rx_buffers,
3709 sc->num_rx_desc * sizeof(struct igc_rx_buf));
3710 rxr->rx_buffers = NULL;
3711 }
3712
3713 mutex_destroy(&rxr->rxr_lock);
3714 }
3715
3716 /*********************************************************************
3717 *
3718 * Clear status registers in all RX descriptors.
3719 *
3720 **********************************************************************/
3721 static void
3722 igc_clear_receive_status(struct rx_ring *rxr)
3723 {
3724 struct igc_softc *sc = rxr->sc;
3725
3726 mutex_enter(&rxr->rxr_lock);
3727
3728 for (int id = 0; id < sc->num_rx_desc; id++) {
3729 union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
3730
3731 igc_rxdesc_sync(rxr, id,
3732 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3733 rxdesc->wb.upper.status_error = 0;
3734 igc_rxdesc_sync(rxr, id,
3735 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3736 }
3737
3738 mutex_exit(&rxr->rxr_lock);
3739 }
3740
3741 /*
3742 * Initialise the RSS mapping for NICs that support multiple transmit/
3743 * receive rings.
3744 */
3745 static void
3746 igc_initialize_rss_mapping(struct igc_softc *sc)
3747 {
3748 struct igc_hw *hw = &sc->hw;
3749
3750 /*
3751 * The redirection table controls which destination
3752 * queue each bucket redirects traffic to.
3753 * Each DWORD represents four queues, with the LSB
3754 * being the first queue in the DWORD.
3755 *
3756 * This just allocates buckets to queues using round-robin
3757 * allocation.
3758 *
3759 * NOTE: It Just Happens to line up with the default
3760 * RSS allocation method.
3761 */
3762
3763 /* Warning FM follows */
3764 uint32_t reta = 0;
3765 for (int i = 0; i < 128; i++) {
3766 const int shift = 0; /* XXXRO */
3767 int queue_id = i % sc->sc_nqueues;
3768 /* Adjust if required */
3769 queue_id <<= shift;
3770
3771 /*
3772 * The low 8 bits are for hash value (n+0);
3773 * The next 8 bits are for hash value (n+1), etc.
3774 */
3775 reta >>= 8;
3776 reta |= ((uint32_t)queue_id) << 24;
3777 if ((i & 3) == 3) {
3778 IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
3779 reta = 0;
3780 }
3781 }
3782
3783 /*
3784 * MRQC: Multiple Receive Queues Command
3785 * Set queuing to RSS control, number depends on the device.
3786 */
3787
3788 /* Set up random bits */
3789 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3790 rss_getkey((uint8_t *)rss_key);
3791
3792 /* Now fill our hash function seeds */
3793 for (int i = 0; i < __arraycount(rss_key); i++)
3794 IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
3795
3796 /*
3797 * Configure the RSS fields to hash upon.
3798 */
3799 uint32_t mrqc = IGC_MRQC_ENABLE_RSS_4Q;
3800 mrqc |= IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP;
3801 mrqc |= IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP;
3802 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
3803
3804 IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
3805 }
3806
3807 /*
3808 * igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3809 * For ASF and Pass Through versions of f/w this means
3810 * that the driver is loaded. For AMT version type f/w
3811 * this means that the network i/f is open.
3812 */
3813 static void
3814 igc_get_hw_control(struct igc_softc *sc)
3815 {
3816 const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
3817
3818 IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
3819 }
3820
3821 /*
3822 * igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3823 * For ASF and Pass Through versions of f/w this means that
3824 * the driver is no longer loaded. For AMT versions of the
3825 * f/w this means that the network i/f is closed.
3826 */
3827 static void
3828 igc_release_hw_control(struct igc_softc *sc)
3829 {
3830 const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
3831
3832 IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
3833 }
3834
3835 static int
3836 igc_is_valid_ether_addr(uint8_t *addr)
3837 {
3838 const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3839
3840 if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3841 return 0;
3842
3843 return 1;
3844 }
3845
3846 static void
3847 igc_print_devinfo(struct igc_softc *sc)
3848 {
3849 device_t dev = sc->sc_dev;
3850 struct igc_hw *hw = &sc->hw;
3851 struct igc_phy_info *phy = &hw->phy;
3852 u_int oui, model, rev;
3853 uint16_t id1, id2, nvm_ver, phy_ver, etk_lo, etk_hi;
3854 char descr[MII_MAX_DESCR_LEN];
3855
3856 /* Print PHY Info */
3857 id1 = phy->id >> 16;
3858 /* The revision field in phy->id is cleard and it's in phy->revision */
3859 id2 = (phy->id & 0xfff0) | phy->revision;
3860 oui = MII_OUI(id1, id2);
3861 model = MII_MODEL(id2);
3862 rev = MII_REV(id2);
3863 mii_get_descr(descr, sizeof(descr), oui, model);
3864 if (descr[0])
3865 aprint_normal_dev(dev, "PHY: %s, rev. %d",
3866 descr, rev);
3867 else
3868 aprint_normal_dev(dev,
3869 "PHY OUI 0x%06x, model 0x%04x, rev. %d",
3870 oui, model, rev);
3871
3872 /* PHY FW version */
3873 phy->ops.read_reg(hw, 0x1e, &phy_ver);
3874 aprint_normal(", PHY FW version 0x%04hx\n", phy_ver);
3875
3876 /* NVM version */
3877 hw->nvm.ops.read(hw, NVM_VERSION, 1, &nvm_ver);
3878
3879 /* EtrackID */
3880 hw->nvm.ops.read(hw, NVM_ETKID_LO, 1, &etk_lo);
3881 hw->nvm.ops.read(hw, NVM_ETKID_HI, 1, &etk_hi);
3882
3883 aprint_normal_dev(dev,
3884 "NVM image version %x.%02x, EtrackID %04hx%04hx\n",
3885 (nvm_ver & NVM_VERSION_MAJOR) >> NVM_VERSION_MAJOR_SHIFT,
3886 nvm_ver & NVM_VERSION_MINOR, etk_hi, etk_lo);
3887 }
3888