if_igc.c revision 1.3.2.4 1 /* $NetBSD: if_igc.c,v 1.3.2.4 2024/02/23 18:41:02 martin Exp $ */
2 /* $OpenBSD: if_igc.c,v 1.13 2023/04/28 10:18:57 bluhm Exp $ */
3 /*-
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 2016 Nicole Graziano <nicole (at) nextbsd.org>
7 * All rights reserved.
8 * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_igc.c,v 1.3.2.4 2024/02/23 18:41:02 martin Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_net_mpsafe.h"
37 #include "opt_if_igc.h"
38 #if 0 /* notyet */
39 #include "vlan.h"
40 #endif
41 #endif
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/bus.h>
46 #include <sys/cpu.h>
47 #include <sys/device.h>
48 #include <sys/endian.h>
49 #include <sys/intr.h>
50 #include <sys/interrupt.h>
51 #include <sys/kernel.h>
52 #include <sys/kmem.h>
53 #include <sys/mbuf.h>
54 #include <sys/mutex.h>
55 #include <sys/socket.h>
56 #include <sys/workqueue.h>
57 #include <sys/xcall.h>
58
59 #include <net/bpf.h>
60 #include <net/if.h>
61 #include <net/if_ether.h>
62 #include <net/if_media.h>
63 #include <net/if_vlanvar.h>
64 #include <net/rss_config.h>
65
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip6.h>
69 #include <netinet/tcp.h>
70
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcidevs.h>
74
75 #include <dev/pci/igc/if_igc.h>
76 #include <dev/pci/igc/igc_evcnt.h>
77 #include <dev/pci/igc/igc_hw.h>
78 #include <dev/mii/miivar.h>
79
80 #define IGC_WORKQUEUE_PRI PRI_SOFTNET
81
82 #ifndef IGC_RX_INTR_PROCESS_LIMIT_DEFAULT
83 #define IGC_RX_INTR_PROCESS_LIMIT_DEFAULT 0
84 #endif
85 #ifndef IGC_TX_INTR_PROCESS_LIMIT_DEFAULT
86 #define IGC_TX_INTR_PROCESS_LIMIT_DEFAULT 0
87 #endif
88
89 #ifndef IGC_RX_PROCESS_LIMIT_DEFAULT
90 #define IGC_RX_PROCESS_LIMIT_DEFAULT 256
91 #endif
92 #ifndef IGC_TX_PROCESS_LIMIT_DEFAULT
93 #define IGC_TX_PROCESS_LIMIT_DEFAULT 256
94 #endif
95
96 #define htolem32(p, x) (*((uint32_t *)(p)) = htole32(x))
97 #define htolem64(p, x) (*((uint64_t *)(p)) = htole64(x))
98
99 static const struct igc_product {
100 pci_vendor_id_t igcp_vendor;
101 pci_product_id_t igcp_product;
102 const char *igcp_name;
103 } igc_products[] = {
104 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_IT,
105 "Intel(R) Ethernet Controller I225-IT(2)" },
106 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LM,
107 "Intel(R) Ethernet Controller I226-LM" },
108 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_V,
109 "Intel(R) Ethernet Controller I226-V" },
110 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_IT,
111 "Intel(R) Ethernet Controller I226-IT" },
112 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I221_V,
113 "Intel(R) Ethernet Controller I221-V" },
114 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_BLANK_NVM,
115 "Intel(R) Ethernet Controller I226(blankNVM)" },
116 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LM,
117 "Intel(R) Ethernet Controller I225-LM" },
118 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_V,
119 "Intel(R) Ethernet Controller I225-V" },
120 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I220_V,
121 "Intel(R) Ethernet Controller I220-V" },
122 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_I,
123 "Intel(R) Ethernet Controller I225-I" },
124 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_BLANK_NVM,
125 "Intel(R) Ethernet Controller I225(blankNVM)" },
126 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K,
127 "Intel(R) Ethernet Controller I225-K" },
128 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K2,
129 "Intel(R) Ethernet Controller I225-K(2)" },
130 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_K,
131 "Intel(R) Ethernet Controller I226-K" },
132 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LMVP,
133 "Intel(R) Ethernet Controller I225-LMvP(2)" },
134 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LMVP,
135 "Intel(R) Ethernet Controller I226-LMvP" },
136 { 0, 0, NULL },
137 };
138
139 #define IGC_DF_CFG 0x1
140 #define IGC_DF_TX 0x2
141 #define IGC_DF_RX 0x4
142 #define IGC_DF_MISC 0x8
143
144 #ifdef IGC_DEBUG_FLAGS
145 int igc_debug_flags = IGC_DEBUG_FLAGS;
146 #else
147 int igc_debug_flags = 0;
148 #endif
149
150 #define DPRINTF(flag, fmt, args...) do { \
151 if (igc_debug_flags & (IGC_DF_ ## flag)) \
152 printf("%s: %d: " fmt, __func__, __LINE__, ##args); \
153 } while (0)
154
155 /*********************************************************************
156 * Function Prototypes
157 *********************************************************************/
158 static int igc_match(device_t, cfdata_t, void *);
159 static void igc_attach(device_t, device_t, void *);
160 static int igc_detach(device_t, int);
161
162 static void igc_identify_hardware(struct igc_softc *);
163 static int igc_adjust_nqueues(struct igc_softc *);
164 static int igc_allocate_pci_resources(struct igc_softc *);
165 static int igc_allocate_interrupts(struct igc_softc *);
166 static int igc_allocate_queues(struct igc_softc *);
167 static void igc_free_pci_resources(struct igc_softc *);
168 static void igc_free_interrupts(struct igc_softc *);
169 static void igc_free_queues(struct igc_softc *);
170 static void igc_reset(struct igc_softc *);
171 static void igc_init_dmac(struct igc_softc *, uint32_t);
172 static int igc_setup_interrupts(struct igc_softc *);
173 static void igc_attach_counters(struct igc_softc *sc);
174 static void igc_detach_counters(struct igc_softc *sc);
175 static void igc_update_counters(struct igc_softc *sc);
176 static void igc_clear_counters(struct igc_softc *sc);
177 static int igc_setup_msix(struct igc_softc *);
178 static int igc_setup_msi(struct igc_softc *);
179 static int igc_setup_intx(struct igc_softc *);
180 static int igc_dma_malloc(struct igc_softc *, bus_size_t,
181 struct igc_dma_alloc *);
182 static void igc_dma_free(struct igc_softc *, struct igc_dma_alloc *);
183 static void igc_setup_interface(struct igc_softc *);
184
185 static int igc_init(struct ifnet *);
186 static int igc_init_locked(struct igc_softc *);
187 static void igc_start(struct ifnet *);
188 static int igc_transmit(struct ifnet *, struct mbuf *);
189 static void igc_tx_common_locked(struct ifnet *, struct tx_ring *, int);
190 static bool igc_txeof(struct tx_ring *, u_int);
191 static void igc_intr_barrier(struct igc_softc *);
192 static void igc_stop(struct ifnet *, int);
193 static void igc_stop_locked(struct igc_softc *);
194 static int igc_ioctl(struct ifnet *, u_long, void *);
195 #ifdef IF_RXR
196 static int igc_rxrinfo(struct igc_softc *, struct if_rxrinfo *);
197 #endif
198 static void igc_rxfill(struct rx_ring *);
199 static void igc_rxrefill(struct rx_ring *, int);
200 static bool igc_rxeof(struct rx_ring *, u_int);
201 static int igc_rx_checksum(struct igc_queue *, uint64_t, uint32_t,
202 uint32_t);
203 static void igc_watchdog(struct ifnet *);
204 static void igc_tick(void *);
205 static void igc_media_status(struct ifnet *, struct ifmediareq *);
206 static int igc_media_change(struct ifnet *);
207 static int igc_ifflags_cb(struct ethercom *);
208 static void igc_set_filter(struct igc_softc *);
209 static void igc_update_link_status(struct igc_softc *);
210 static int igc_get_buf(struct rx_ring *, int, bool);
211 static int igc_tx_ctx_setup(struct tx_ring *, struct mbuf *, int,
212 uint32_t *, uint32_t *);
213 static int igc_tso_setup(struct tx_ring *, struct mbuf *, int,
214 uint32_t *, uint32_t *);
215
216 static void igc_configure_queues(struct igc_softc *);
217 static void igc_set_queues(struct igc_softc *, uint32_t, uint32_t, int);
218 static void igc_enable_queue(struct igc_softc *, uint32_t);
219 static void igc_enable_intr(struct igc_softc *);
220 static void igc_disable_intr(struct igc_softc *);
221 static int igc_intr_link(void *);
222 static int igc_intr_queue(void *);
223 static int igc_intr(void *);
224 static void igc_handle_queue(void *);
225 static void igc_handle_queue_work(struct work *, void *);
226 static void igc_sched_handle_queue(struct igc_softc *, struct igc_queue *);
227 static void igc_barrier_handle_queue(struct igc_softc *);
228
229 static int igc_allocate_transmit_buffers(struct tx_ring *);
230 static int igc_setup_transmit_structures(struct igc_softc *);
231 static int igc_setup_transmit_ring(struct tx_ring *);
232 static void igc_initialize_transmit_unit(struct igc_softc *);
233 static void igc_free_transmit_structures(struct igc_softc *);
234 static void igc_free_transmit_buffers(struct tx_ring *);
235 static void igc_withdraw_transmit_packets(struct tx_ring *, bool);
236 static int igc_allocate_receive_buffers(struct rx_ring *);
237 static int igc_setup_receive_structures(struct igc_softc *);
238 static int igc_setup_receive_ring(struct rx_ring *);
239 static void igc_initialize_receive_unit(struct igc_softc *);
240 static void igc_free_receive_structures(struct igc_softc *);
241 static void igc_free_receive_buffers(struct rx_ring *);
242 static void igc_clear_receive_status(struct rx_ring *);
243 static void igc_initialize_rss_mapping(struct igc_softc *);
244
245 static void igc_get_hw_control(struct igc_softc *);
246 static void igc_release_hw_control(struct igc_softc *);
247 static int igc_is_valid_ether_addr(uint8_t *);
248 static void igc_print_devinfo(struct igc_softc *);
249
250 CFATTACH_DECL3_NEW(igc, sizeof(struct igc_softc),
251 igc_match, igc_attach, igc_detach, NULL, NULL, NULL, 0);
252
253 static inline int
254 igc_txdesc_incr(struct igc_softc *sc, int id)
255 {
256
257 if (++id == sc->num_tx_desc)
258 id = 0;
259 return id;
260 }
261
262 static inline int __unused
263 igc_txdesc_decr(struct igc_softc *sc, int id)
264 {
265
266 if (--id < 0)
267 id = sc->num_tx_desc - 1;
268 return id;
269 }
270
271 static inline void
272 igc_txdesc_sync(struct tx_ring *txr, int id, int ops)
273 {
274
275 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
276 id * sizeof(union igc_adv_tx_desc), sizeof(union igc_adv_tx_desc),
277 ops);
278 }
279
280 static inline int
281 igc_rxdesc_incr(struct igc_softc *sc, int id)
282 {
283
284 if (++id == sc->num_rx_desc)
285 id = 0;
286 return id;
287 }
288
289 static inline int
290 igc_rxdesc_decr(struct igc_softc *sc, int id)
291 {
292
293 if (--id < 0)
294 id = sc->num_rx_desc - 1;
295 return id;
296 }
297
298 static inline void
299 igc_rxdesc_sync(struct rx_ring *rxr, int id, int ops)
300 {
301
302 bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
303 id * sizeof(union igc_adv_rx_desc), sizeof(union igc_adv_rx_desc),
304 ops);
305 }
306
307 static const struct igc_product *
308 igc_lookup(const struct pci_attach_args *pa)
309 {
310 const struct igc_product *igcp;
311
312 for (igcp = igc_products; igcp->igcp_name != NULL; igcp++) {
313 if (PCI_VENDOR(pa->pa_id) == igcp->igcp_vendor &&
314 PCI_PRODUCT(pa->pa_id) == igcp->igcp_product)
315 return igcp;
316 }
317 return NULL;
318 }
319
320 /*********************************************************************
321 * Device identification routine
322 *
323 * igc_match determines if the driver should be loaded on
324 * adapter based on PCI vendor/device id of the adapter.
325 *
326 * return 0 on success, positive on failure
327 *********************************************************************/
328 static int
329 igc_match(device_t parent, cfdata_t match, void *aux)
330 {
331 struct pci_attach_args *pa = aux;
332
333 if (igc_lookup(pa) != NULL)
334 return 1;
335
336 return 0;
337 }
338
339 /*********************************************************************
340 * Device initialization routine
341 *
342 * The attach entry point is called when the driver is being loaded.
343 * This routine identifies the type of hardware, allocates all resources
344 * and initializes the hardware.
345 *
346 * return 0 on success, positive on failure
347 *********************************************************************/
348 static void
349 igc_attach(device_t parent, device_t self, void *aux)
350 {
351 struct pci_attach_args *pa = aux;
352 struct igc_softc *sc = device_private(self);
353 struct igc_hw *hw = &sc->hw;
354
355 const struct igc_product *igcp = igc_lookup(pa);
356 KASSERT(igcp != NULL);
357 pci_aprint_devinfo_fancy(pa, "Ethernet controller", igcp->igcp_name, 1);
358
359 sc->sc_dev = self;
360 callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE);
361 callout_setfunc(&sc->sc_tick_ch, igc_tick, sc);
362 sc->sc_core_stopping = false;
363
364 sc->osdep.os_sc = sc;
365 sc->osdep.os_pa = *pa;
366 #ifdef __aarch64__
367 /*
368 * XXX PR port-arm/57643
369 * 64-bit DMA does not work at least for LX2K with 32/64GB memory.
370 * smmu(4) support may be required.
371 */
372 sc->osdep.os_dmat = pa->pa_dmat;
373 #else
374 sc->osdep.os_dmat = pci_dma64_available(pa) ?
375 pa->pa_dmat64 : pa->pa_dmat;
376 #endif
377
378 /* Determine hardware and mac info */
379 igc_identify_hardware(sc);
380
381 sc->num_tx_desc = IGC_DEFAULT_TXD;
382 sc->num_rx_desc = IGC_DEFAULT_RXD;
383
384 /* Setup PCI resources */
385 if (igc_allocate_pci_resources(sc)) {
386 aprint_error_dev(sc->sc_dev,
387 "unable to allocate PCI resources\n");
388 goto err_pci;
389 }
390
391 if (igc_allocate_interrupts(sc)) {
392 aprint_error_dev(sc->sc_dev, "unable to allocate interrupts\n");
393 goto err_pci;
394 }
395
396 /* Allocate TX/RX queues */
397 if (igc_allocate_queues(sc)) {
398 aprint_error_dev(sc->sc_dev, "unable to allocate queues\n");
399 goto err_alloc_intr;
400 }
401
402 /* Do shared code initialization */
403 if (igc_setup_init_funcs(hw, true)) {
404 aprint_error_dev(sc->sc_dev, "unable to initialize\n");
405 goto err_alloc_intr;
406 }
407
408 hw->mac.autoneg = DO_AUTO_NEG;
409 hw->phy.autoneg_wait_to_complete = false;
410 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
411
412 /* Copper options. */
413 if (hw->phy.media_type == igc_media_type_copper)
414 hw->phy.mdix = AUTO_ALL_MODES;
415
416 /* Set the max frame size. */
417 sc->hw.mac.max_frame_size = 9234;
418
419 /* Allocate multicast array memory. */
420 sc->mta = kmem_alloc(IGC_MTA_LEN, KM_SLEEP);
421
422 /* Check SOL/IDER usage. */
423 if (igc_check_reset_block(hw)) {
424 aprint_error_dev(sc->sc_dev,
425 "PHY reset is blocked due to SOL/IDER session\n");
426 }
427
428 /* Disable Energy Efficient Ethernet. */
429 sc->hw.dev_spec._i225.eee_disable = true;
430
431 igc_reset_hw(hw);
432
433 /* Make sure we have a good EEPROM before we read from it. */
434 if (igc_validate_nvm_checksum(hw) < 0) {
435 /*
436 * Some PCI-E parts fail the first check due to
437 * the link being in sleep state, call it again,
438 * if it fails a second time its a real issue.
439 */
440 if (igc_validate_nvm_checksum(hw) < 0) {
441 aprint_error_dev(sc->sc_dev,
442 "EEPROM checksum invalid\n");
443 goto err_late;
444 }
445 }
446
447 /* Copy the permanent MAC address out of the EEPROM. */
448 if (igc_read_mac_addr(hw) < 0) {
449 aprint_error_dev(sc->sc_dev,
450 "unable to read MAC address from EEPROM\n");
451 goto err_late;
452 }
453
454 if (!igc_is_valid_ether_addr(hw->mac.addr)) {
455 aprint_error_dev(sc->sc_dev, "invalid MAC address\n");
456 goto err_late;
457 }
458
459 if (igc_setup_interrupts(sc))
460 goto err_late;
461
462 /* Attach counters. */
463 igc_attach_counters(sc);
464
465 /* Setup OS specific network interface. */
466 igc_setup_interface(sc);
467
468 igc_print_devinfo(sc);
469
470 igc_reset(sc);
471 hw->mac.get_link_status = true;
472 igc_update_link_status(sc);
473
474 /* The driver can now take control from firmware. */
475 igc_get_hw_control(sc);
476
477 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
478 ether_sprintf(sc->hw.mac.addr));
479
480 if (pmf_device_register(self, NULL, NULL))
481 pmf_class_network_register(self, &sc->sc_ec.ec_if);
482 else
483 aprint_error_dev(self, "couldn't establish power handler\n");
484
485 return;
486
487 err_late:
488 igc_release_hw_control(sc);
489 err_alloc_intr:
490 igc_free_interrupts(sc);
491 err_pci:
492 igc_free_pci_resources(sc);
493 kmem_free(sc->mta, IGC_MTA_LEN);
494 }
495
496 /*********************************************************************
497 * Device removal routine
498 *
499 * The detach entry point is called when the driver is being removed.
500 * This routine stops the adapter and deallocates all the resources
501 * that were allocated for driver operation.
502 *
503 * return 0 on success, positive on failure
504 *********************************************************************/
505 static int
506 igc_detach(device_t self, int flags)
507 {
508 struct igc_softc *sc = device_private(self);
509 struct ifnet *ifp = &sc->sc_ec.ec_if;
510
511 mutex_enter(&sc->sc_core_lock);
512 igc_stop_locked(sc);
513 mutex_exit(&sc->sc_core_lock);
514
515 igc_detach_counters(sc);
516
517 igc_free_queues(sc);
518
519 igc_phy_hw_reset(&sc->hw);
520 igc_release_hw_control(sc);
521
522 ether_ifdetach(ifp);
523 if_detach(ifp);
524 ifmedia_fini(&sc->media);
525
526 igc_free_interrupts(sc);
527 igc_free_pci_resources(sc);
528 kmem_free(sc->mta, IGC_MTA_LEN);
529
530 mutex_destroy(&sc->sc_core_lock);
531
532 return 0;
533 }
534
535 static void
536 igc_identify_hardware(struct igc_softc *sc)
537 {
538 struct igc_osdep *os = &sc->osdep;
539 struct pci_attach_args *pa = &os->os_pa;
540
541 /* Save off the information about this board. */
542 sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
543
544 /* Do shared code init and setup. */
545 if (igc_set_mac_type(&sc->hw)) {
546 aprint_error_dev(sc->sc_dev, "unable to identify hardware\n");
547 return;
548 }
549 }
550
551 static int
552 igc_allocate_pci_resources(struct igc_softc *sc)
553 {
554 struct igc_osdep *os = &sc->osdep;
555 struct pci_attach_args *pa = &os->os_pa;
556
557 /*
558 * Enable bus mastering and memory-mapped I/O for sure.
559 */
560 pcireg_t csr =
561 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
562 csr |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
563 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
564
565 const pcireg_t memtype =
566 pci_mapreg_type(pa->pa_pc, pa->pa_tag, IGC_PCIREG);
567 if (pci_mapreg_map(pa, IGC_PCIREG, memtype, 0, &os->os_memt,
568 &os->os_memh, &os->os_membase, &os->os_memsize)) {
569 aprint_error_dev(sc->sc_dev, "unable to map registers\n");
570 return ENXIO;
571 }
572
573 sc->hw.hw_addr = os->os_membase;
574 sc->hw.back = os;
575
576 return 0;
577 }
578
579 static int __unused
580 igc_adjust_nqueues(struct igc_softc *sc)
581 {
582 struct pci_attach_args *pa = &sc->osdep.os_pa;
583 int nqueues = MIN(IGC_MAX_NQUEUES, ncpu);
584
585 const int nmsix = pci_msix_count(pa->pa_pc, pa->pa_tag);
586 if (nmsix <= 1)
587 nqueues = 1;
588 else if (nmsix < nqueues + 1)
589 nqueues = nmsix - 1;
590
591 return nqueues;
592 }
593
594 static int
595 igc_allocate_interrupts(struct igc_softc *sc)
596 {
597 struct pci_attach_args *pa = &sc->osdep.os_pa;
598 int error;
599
600 #ifndef IGC_DISABLE_MSIX
601 const int nqueues = igc_adjust_nqueues(sc);
602 if (nqueues > 1) {
603 sc->sc_nintrs = nqueues + 1;
604 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
605 if (!error) {
606 sc->sc_nqueues = nqueues;
607 sc->sc_intr_type = PCI_INTR_TYPE_MSIX;
608 return 0;
609 }
610 }
611 #endif
612
613 /* fallback to MSI */
614 sc->sc_nintrs = sc->sc_nqueues = 1;
615
616 #ifndef IGC_DISABLE_MSI
617 error = pci_msi_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
618 if (!error) {
619 sc->sc_intr_type = PCI_INTR_TYPE_MSI;
620 return 0;
621 }
622 #endif
623
624 /* fallback to INTx */
625
626 error = pci_intx_alloc(pa, &sc->sc_intrs);
627 if (!error) {
628 sc->sc_intr_type = PCI_INTR_TYPE_INTX;
629 return 0;
630 }
631
632 return error;
633 }
634
635 static int
636 igc_allocate_queues(struct igc_softc *sc)
637 {
638 device_t dev = sc->sc_dev;
639 int rxconf = 0, txconf = 0;
640
641 /* Allocate the top level queue structs. */
642 sc->queues =
643 kmem_zalloc(sc->sc_nqueues * sizeof(struct igc_queue), KM_SLEEP);
644
645 /* Allocate the TX ring. */
646 sc->tx_rings =
647 kmem_zalloc(sc->sc_nqueues * sizeof(struct tx_ring), KM_SLEEP);
648
649 /* Allocate the RX ring. */
650 sc->rx_rings =
651 kmem_zalloc(sc->sc_nqueues * sizeof(struct rx_ring), KM_SLEEP);
652
653 /* Set up the TX queues. */
654 for (int iq = 0; iq < sc->sc_nqueues; iq++, txconf++) {
655 struct tx_ring *txr = &sc->tx_rings[iq];
656 const int tsize = roundup2(
657 sc->num_tx_desc * sizeof(union igc_adv_tx_desc),
658 IGC_DBA_ALIGN);
659
660 txr->sc = sc;
661 txr->txr_igcq = &sc->queues[iq];
662 txr->me = iq;
663 if (igc_dma_malloc(sc, tsize, &txr->txdma)) {
664 aprint_error_dev(dev,
665 "unable to allocate TX descriptor\n");
666 goto fail;
667 }
668 txr->tx_base = (union igc_adv_tx_desc *)txr->txdma.dma_vaddr;
669 memset(txr->tx_base, 0, tsize);
670 }
671
672 /* Prepare transmit descriptors and buffers. */
673 if (igc_setup_transmit_structures(sc)) {
674 aprint_error_dev(dev, "unable to setup transmit structures\n");
675 goto fail;
676 }
677
678 /* Set up the RX queues. */
679 for (int iq = 0; iq < sc->sc_nqueues; iq++, rxconf++) {
680 struct rx_ring *rxr = &sc->rx_rings[iq];
681 const int rsize = roundup2(
682 sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
683 IGC_DBA_ALIGN);
684
685 rxr->sc = sc;
686 rxr->rxr_igcq = &sc->queues[iq];
687 rxr->me = iq;
688 #ifdef OPENBSD
689 timeout_set(&rxr->rx_refill, igc_rxrefill, rxr);
690 #endif
691 if (igc_dma_malloc(sc, rsize, &rxr->rxdma)) {
692 aprint_error_dev(dev,
693 "unable to allocate RX descriptor\n");
694 goto fail;
695 }
696 rxr->rx_base = (union igc_adv_rx_desc *)rxr->rxdma.dma_vaddr;
697 memset(rxr->rx_base, 0, rsize);
698 }
699
700 sc->rx_mbuf_sz = MCLBYTES;
701 /* Prepare receive descriptors and buffers. */
702 if (igc_setup_receive_structures(sc)) {
703 aprint_error_dev(sc->sc_dev,
704 "unable to setup receive structures\n");
705 goto fail;
706 }
707
708 /* Set up the queue holding structs. */
709 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
710 struct igc_queue *q = &sc->queues[iq];
711
712 q->sc = sc;
713 q->txr = &sc->tx_rings[iq];
714 q->rxr = &sc->rx_rings[iq];
715 }
716
717 return 0;
718
719 fail:
720 for (struct rx_ring *rxr = sc->rx_rings; rxconf > 0; rxr++, rxconf--)
721 igc_dma_free(sc, &rxr->rxdma);
722 for (struct tx_ring *txr = sc->tx_rings; txconf > 0; txr++, txconf--)
723 igc_dma_free(sc, &txr->txdma);
724
725 kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
726 sc->rx_rings = NULL;
727 kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
728 sc->tx_rings = NULL;
729 kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
730 sc->queues = NULL;
731
732 return ENOMEM;
733 }
734
735 static void
736 igc_free_pci_resources(struct igc_softc *sc)
737 {
738 struct igc_osdep *os = &sc->osdep;
739
740 if (os->os_membase != 0)
741 bus_space_unmap(os->os_memt, os->os_memh, os->os_memsize);
742 os->os_membase = 0;
743 }
744
745 static void
746 igc_free_interrupts(struct igc_softc *sc)
747 {
748 struct pci_attach_args *pa = &sc->osdep.os_pa;
749 pci_chipset_tag_t pc = pa->pa_pc;
750
751 for (int i = 0; i < sc->sc_nintrs; i++) {
752 if (sc->sc_ihs[i] != NULL) {
753 pci_intr_disestablish(pc, sc->sc_ihs[i]);
754 sc->sc_ihs[i] = NULL;
755 }
756 }
757 pci_intr_release(pc, sc->sc_intrs, sc->sc_nintrs);
758 }
759
760 static void
761 igc_free_queues(struct igc_softc *sc)
762 {
763
764 igc_free_receive_structures(sc);
765 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
766 struct rx_ring *rxr = &sc->rx_rings[iq];
767
768 igc_dma_free(sc, &rxr->rxdma);
769 }
770
771 igc_free_transmit_structures(sc);
772 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
773 struct tx_ring *txr = &sc->tx_rings[iq];
774
775 igc_dma_free(sc, &txr->txdma);
776 }
777
778 kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
779 kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
780 kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
781 }
782
783 /*********************************************************************
784 *
785 * Initialize the hardware to a configuration as specified by the
786 * adapter structure.
787 *
788 **********************************************************************/
789 static void
790 igc_reset(struct igc_softc *sc)
791 {
792 struct igc_hw *hw = &sc->hw;
793
794 /* Let the firmware know the OS is in control */
795 igc_get_hw_control(sc);
796
797 /*
798 * Packet Buffer Allocation (PBA)
799 * Writing PBA sets the receive portion of the buffer
800 * the remainder is used for the transmit buffer.
801 */
802 const uint32_t pba = IGC_PBA_34K;
803
804 /*
805 * These parameters control the automatic generation (Tx) and
806 * response (Rx) to Ethernet PAUSE frames.
807 * - High water mark should allow for at least two frames to be
808 * received after sending an XOFF.
809 * - Low water mark works best when it is very near the high water mark.
810 * This allows the receiver to restart by sending XON when it has
811 * drained a bit. Here we use an arbitrary value of 1500 which will
812 * restart after one full frame is pulled from the buffer. There
813 * could be several smaller frames in the buffer and if so they will
814 * not trigger the XON until their total number reduces the buffer
815 * by 1500.
816 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
817 */
818 const uint16_t rx_buffer_size = (pba & 0xffff) << 10;
819
820 hw->fc.high_water = rx_buffer_size -
821 roundup2(sc->hw.mac.max_frame_size, 1024);
822 /* 16-byte granularity */
823 hw->fc.low_water = hw->fc.high_water - 16;
824
825 if (sc->fc) /* locally set flow control value? */
826 hw->fc.requested_mode = sc->fc;
827 else
828 hw->fc.requested_mode = igc_fc_full;
829
830 hw->fc.pause_time = IGC_FC_PAUSE_TIME;
831
832 hw->fc.send_xon = true;
833
834 /* Issue a global reset */
835 igc_reset_hw(hw);
836 IGC_WRITE_REG(hw, IGC_WUC, 0);
837
838 /* and a re-init */
839 if (igc_init_hw(hw) < 0) {
840 aprint_error_dev(sc->sc_dev, "unable to reset hardware\n");
841 return;
842 }
843
844 /* Setup DMA Coalescing */
845 igc_init_dmac(sc, pba);
846
847 IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
848 igc_get_phy_info(hw);
849 igc_check_for_link(hw);
850 }
851
852 /*********************************************************************
853 *
854 * Initialize the DMA Coalescing feature
855 *
856 **********************************************************************/
857 static void
858 igc_init_dmac(struct igc_softc *sc, uint32_t pba)
859 {
860 struct igc_hw *hw = &sc->hw;
861 const uint16_t max_frame_size = sc->hw.mac.max_frame_size;
862 uint32_t reg, status;
863
864 if (sc->dmac == 0) { /* Disabling it */
865 reg = ~IGC_DMACR_DMAC_EN; /* XXXRO */
866 IGC_WRITE_REG(hw, IGC_DMACR, reg);
867 DPRINTF(MISC, "DMA coalescing disabled\n");
868 return;
869 } else {
870 device_printf(sc->sc_dev, "DMA coalescing enabled\n");
871 }
872
873 /* Set starting threshold */
874 IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
875
876 uint16_t hwm = 64 * pba - max_frame_size / 16;
877 if (hwm < 64 * (pba - 6))
878 hwm = 64 * (pba - 6);
879 reg = IGC_READ_REG(hw, IGC_FCRTC);
880 reg &= ~IGC_FCRTC_RTH_COAL_MASK;
881 reg |= (hwm << IGC_FCRTC_RTH_COAL_SHIFT) & IGC_FCRTC_RTH_COAL_MASK;
882 IGC_WRITE_REG(hw, IGC_FCRTC, reg);
883
884 uint32_t dmac = pba - max_frame_size / 512;
885 if (dmac < pba - 10)
886 dmac = pba - 10;
887 reg = IGC_READ_REG(hw, IGC_DMACR);
888 reg &= ~IGC_DMACR_DMACTHR_MASK;
889 reg |= (dmac << IGC_DMACR_DMACTHR_SHIFT) & IGC_DMACR_DMACTHR_MASK;
890
891 /* transition to L0x or L1 if available..*/
892 reg |= IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK;
893
894 /* Check if status is 2.5Gb backplane connection
895 * before configuration of watchdog timer, which is
896 * in msec values in 12.8usec intervals
897 * watchdog timer= msec values in 32usec intervals
898 * for non 2.5Gb connection
899 */
900 status = IGC_READ_REG(hw, IGC_STATUS);
901 if ((status & IGC_STATUS_2P5_SKU) &&
902 !(status & IGC_STATUS_2P5_SKU_OVER))
903 reg |= (sc->dmac * 5) >> 6;
904 else
905 reg |= sc->dmac >> 5;
906
907 IGC_WRITE_REG(hw, IGC_DMACR, reg);
908
909 IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
910
911 /* Set the interval before transition */
912 reg = IGC_READ_REG(hw, IGC_DMCTLX);
913 reg |= IGC_DMCTLX_DCFLUSH_DIS;
914
915 /*
916 * in 2.5Gb connection, TTLX unit is 0.4 usec
917 * which is 0x4*2 = 0xA. But delay is still 4 usec
918 */
919 status = IGC_READ_REG(hw, IGC_STATUS);
920 if ((status & IGC_STATUS_2P5_SKU) &&
921 !(status & IGC_STATUS_2P5_SKU_OVER))
922 reg |= 0xA;
923 else
924 reg |= 0x4;
925
926 IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
927
928 /* free space in tx packet buffer to wake from DMA coal */
929 IGC_WRITE_REG(hw, IGC_DMCTXTH,
930 (IGC_TXPBSIZE - (2 * max_frame_size)) >> 6);
931
932 /* make low power state decision controlled by DMA coal */
933 reg = IGC_READ_REG(hw, IGC_PCIEMISC);
934 reg &= ~IGC_PCIEMISC_LX_DECISION;
935 IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
936 }
937
938 static int
939 igc_setup_interrupts(struct igc_softc *sc)
940 {
941 int error;
942
943 switch (sc->sc_intr_type) {
944 case PCI_INTR_TYPE_MSIX:
945 error = igc_setup_msix(sc);
946 break;
947 case PCI_INTR_TYPE_MSI:
948 error = igc_setup_msi(sc);
949 break;
950 case PCI_INTR_TYPE_INTX:
951 error = igc_setup_intx(sc);
952 break;
953 default:
954 panic("%s: invalid interrupt type: %d",
955 device_xname(sc->sc_dev), sc->sc_intr_type);
956 }
957
958 return error;
959 }
960
961 static void
962 igc_attach_counters(struct igc_softc *sc)
963 {
964 #ifdef IGC_EVENT_COUNTERS
965
966 /* Global counters */
967 sc->sc_global_evcnts = kmem_zalloc(
968 IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts[0]), KM_SLEEP);
969
970 for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++) {
971 evcnt_attach_dynamic(&sc->sc_global_evcnts[cnt],
972 igc_global_counters[cnt].type, NULL,
973 device_xname(sc->sc_dev), igc_global_counters[cnt].name);
974 }
975
976 /* Driver counters */
977 sc->sc_driver_evcnts = kmem_zalloc(
978 IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts[0]), KM_SLEEP);
979
980 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
981 evcnt_attach_dynamic(&sc->sc_driver_evcnts[cnt],
982 igc_driver_counters[cnt].type, NULL,
983 device_xname(sc->sc_dev), igc_driver_counters[cnt].name);
984 }
985
986 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
987 struct igc_queue *q = &sc->queues[iq];
988
989 q->igcq_driver_counters = kmem_zalloc(
990 IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]),
991 KM_SLEEP);
992 }
993
994 /* Queue counters */
995 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
996 struct igc_queue *q = &sc->queues[iq];
997
998 snprintf(q->igcq_queue_evname, sizeof(q->igcq_queue_evname),
999 "%s q%d", device_xname(sc->sc_dev), iq);
1000
1001 q->igcq_queue_evcnts = kmem_zalloc(
1002 IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]),
1003 KM_SLEEP);
1004
1005 for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++) {
1006 evcnt_attach_dynamic(&q->igcq_queue_evcnts[cnt],
1007 igc_queue_counters[cnt].type, NULL,
1008 q->igcq_queue_evname, igc_queue_counters[cnt].name);
1009 }
1010 }
1011
1012 /* MAC counters */
1013 snprintf(sc->sc_mac_evname, sizeof(sc->sc_mac_evname),
1014 "%s Mac Statistics", device_xname(sc->sc_dev));
1015
1016 sc->sc_mac_evcnts = kmem_zalloc(
1017 IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]), KM_SLEEP);
1018
1019 for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1020 evcnt_attach_dynamic(&sc->sc_mac_evcnts[cnt], EVCNT_TYPE_MISC,
1021 NULL, sc->sc_mac_evname, igc_mac_counters[cnt].name);
1022 }
1023 #endif
1024 }
1025
1026 static void
1027 igc_detach_counters(struct igc_softc *sc)
1028 {
1029 #ifdef IGC_EVENT_COUNTERS
1030
1031 /* Global counters */
1032 for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
1033 evcnt_detach(&sc->sc_global_evcnts[cnt]);
1034
1035 kmem_free(sc->sc_global_evcnts,
1036 IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts));
1037
1038 /* Driver counters */
1039 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1040 struct igc_queue *q = &sc->queues[iq];
1041
1042 kmem_free(q->igcq_driver_counters,
1043 IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]));
1044 }
1045
1046 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1047 evcnt_detach(&sc->sc_driver_evcnts[cnt]);
1048
1049 kmem_free(sc->sc_driver_evcnts,
1050 IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts));
1051
1052 /* Queue counters */
1053 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1054 struct igc_queue *q = &sc->queues[iq];
1055
1056 for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
1057 evcnt_detach(&q->igcq_queue_evcnts[cnt]);
1058
1059 kmem_free(q->igcq_queue_evcnts,
1060 IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]));
1061 }
1062
1063 /* MAC statistics */
1064 for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++)
1065 evcnt_detach(&sc->sc_mac_evcnts[cnt]);
1066
1067 kmem_free(sc->sc_mac_evcnts,
1068 IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]));
1069 #endif
1070 }
1071
1072 /*
1073 * XXX
1074 * FreeBSD uses 4-byte-wise read for 64-bit counters, while Linux just
1075 * drops hi words.
1076 */
1077 static inline uint64_t __unused
1078 igc_read_mac_counter(struct igc_hw *hw, bus_size_t reg, bool is64)
1079 {
1080 uint64_t val;
1081
1082 val = IGC_READ_REG(hw, reg);
1083 if (is64)
1084 val += ((uint64_t)IGC_READ_REG(hw, reg + 4)) << 32;
1085 return val;
1086 }
1087
1088 static void
1089 igc_update_counters(struct igc_softc *sc)
1090 {
1091 #ifdef IGC_EVENT_COUNTERS
1092
1093 /* Global counters: nop */
1094
1095 /* Driver counters */
1096 uint64_t sum[IGC_DRIVER_COUNTERS];
1097
1098 memset(sum, 0, sizeof(sum));
1099 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1100 struct igc_queue *q = &sc->queues[iq];
1101
1102 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
1103 sum[cnt] += IGC_QUEUE_DRIVER_COUNTER_VAL(q, cnt);
1104 IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
1105 }
1106 }
1107
1108 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1109 IGC_DRIVER_COUNTER_ADD(sc, cnt, sum[cnt]);
1110
1111 /* Queue counters: nop */
1112
1113 /* Mac statistics */
1114 struct igc_hw *hw = &sc->hw;
1115 struct ifnet *ifp = &sc->sc_ec.ec_if;
1116 uint64_t iqdrops = 0;
1117
1118 for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1119 uint64_t val;
1120 bus_size_t regaddr = igc_mac_counters[cnt].reg;
1121
1122 val = igc_read_mac_counter(hw, regaddr,
1123 igc_mac_counters[cnt].is64);
1124 IGC_MAC_COUNTER_ADD(sc, cnt, val);
1125 /* XXX Count MPC to iqdrops. */
1126 if (regaddr == IGC_MPC)
1127 iqdrops += val;
1128 }
1129
1130 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1131 uint32_t val;
1132
1133 /* XXX RQDPC should be visible via evcnt(9). */
1134 val = IGC_READ_REG(hw, IGC_RQDPC(iq));
1135
1136 /* RQDPC is not cleard on read. */
1137 if (val != 0)
1138 IGC_WRITE_REG(hw, IGC_RQDPC(iq), 0);
1139 iqdrops += val;
1140 }
1141
1142 if (iqdrops != 0)
1143 if_statadd(ifp, if_iqdrops, iqdrops);
1144 #endif
1145 }
1146
1147 static void
1148 igc_clear_counters(struct igc_softc *sc)
1149 {
1150 #ifdef IGC_EVENT_COUNTERS
1151
1152 /* Global counters */
1153 for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
1154 IGC_GLOBAL_COUNTER_STORE(sc, cnt, 0);
1155
1156 /* Driver counters */
1157 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1158 struct igc_queue *q = &sc->queues[iq];
1159
1160 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1161 IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
1162 }
1163
1164 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1165 IGC_DRIVER_COUNTER_STORE(sc, cnt, 0);
1166
1167 /* Queue counters */
1168 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1169 struct igc_queue *q = &sc->queues[iq];
1170
1171 for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
1172 IGC_QUEUE_COUNTER_STORE(q, cnt, 0);
1173 }
1174
1175 /* Mac statistics */
1176 struct igc_hw *hw = &sc->hw;
1177
1178 for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1179 (void)igc_read_mac_counter(hw, igc_mac_counters[cnt].reg,
1180 igc_mac_counters[cnt].is64);
1181 IGC_MAC_COUNTER_STORE(sc, cnt, 0);
1182 }
1183 #endif
1184 }
1185
1186 static int
1187 igc_setup_msix(struct igc_softc *sc)
1188 {
1189 pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1190 device_t dev = sc->sc_dev;
1191 pci_intr_handle_t *intrs;
1192 void **ihs;
1193 const char *intrstr;
1194 char intrbuf[PCI_INTRSTR_LEN];
1195 char xnamebuf[MAX(32, MAXCOMLEN)];
1196 int iq, error;
1197
1198 for (iq = 0, intrs = sc->sc_intrs, ihs = sc->sc_ihs;
1199 iq < sc->sc_nqueues; iq++, intrs++, ihs++) {
1200 struct igc_queue *q = &sc->queues[iq];
1201
1202 snprintf(xnamebuf, sizeof(xnamebuf), "%s: txrx %d",
1203 device_xname(dev), iq);
1204
1205 intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
1206
1207 pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
1208 *ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
1209 igc_intr_queue, q, xnamebuf);
1210 if (*ihs == NULL) {
1211 aprint_error_dev(dev,
1212 "unable to establish txrx interrupt at %s\n",
1213 intrstr);
1214 return ENOBUFS;
1215 }
1216 aprint_normal_dev(dev, "txrx interrupting at %s\n", intrstr);
1217
1218 kcpuset_t *affinity;
1219 kcpuset_create(&affinity, true);
1220 kcpuset_set(affinity, iq % ncpu);
1221 error = interrupt_distribute(*ihs, affinity, NULL);
1222 if (error) {
1223 aprint_normal_dev(dev,
1224 "%s: unable to change affinity, use default CPU\n",
1225 intrstr);
1226 }
1227 kcpuset_destroy(affinity);
1228
1229 q->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1230 igc_handle_queue, q);
1231 if (q->igcq_si == NULL) {
1232 aprint_error_dev(dev,
1233 "%s: unable to establish softint\n", intrstr);
1234 return ENOBUFS;
1235 }
1236
1237 q->msix = iq;
1238 q->eims = 1 << iq;
1239 }
1240
1241 snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
1242 error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
1243 igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
1244 WQ_PERCPU | WQ_MPSAFE);
1245 if (error) {
1246 aprint_error_dev(dev, "workqueue_create failed\n");
1247 return ENOBUFS;
1248 }
1249 sc->sc_txrx_workqueue = false;
1250
1251 intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
1252 snprintf(xnamebuf, sizeof(xnamebuf), "%s: link", device_xname(dev));
1253 pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
1254 *ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
1255 igc_intr_link, sc, xnamebuf);
1256 if (*ihs == NULL) {
1257 aprint_error_dev(dev,
1258 "unable to establish link interrupt at %s\n", intrstr);
1259 return ENOBUFS;
1260 }
1261 aprint_normal_dev(dev, "link interrupting at %s\n", intrstr);
1262 /* use later in igc_configure_queues() */
1263 sc->linkvec = iq;
1264
1265 return 0;
1266 }
1267
1268 static int
1269 igc_setup_msi(struct igc_softc *sc)
1270 {
1271 pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1272 device_t dev = sc->sc_dev;
1273 pci_intr_handle_t *intr = sc->sc_intrs;
1274 void **ihs = sc->sc_ihs;
1275 const char *intrstr;
1276 char intrbuf[PCI_INTRSTR_LEN];
1277 char xnamebuf[MAX(32, MAXCOMLEN)];
1278 int error;
1279
1280 intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
1281
1282 snprintf(xnamebuf, sizeof(xnamebuf), "%s: msi", device_xname(dev));
1283 pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
1284 *ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
1285 igc_intr, sc, xnamebuf);
1286 if (*ihs == NULL) {
1287 aprint_error_dev(dev,
1288 "unable to establish interrupt at %s\n", intrstr);
1289 return ENOBUFS;
1290 }
1291 aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
1292
1293 struct igc_queue *iq = sc->queues;
1294 iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1295 igc_handle_queue, iq);
1296 if (iq->igcq_si == NULL) {
1297 aprint_error_dev(dev,
1298 "%s: unable to establish softint\n", intrstr);
1299 return ENOBUFS;
1300 }
1301
1302 snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
1303 error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
1304 igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
1305 WQ_PERCPU | WQ_MPSAFE);
1306 if (error) {
1307 aprint_error_dev(dev, "workqueue_create failed\n");
1308 return ENOBUFS;
1309 }
1310 sc->sc_txrx_workqueue = false;
1311
1312 sc->queues[0].msix = 0;
1313 sc->linkvec = 0;
1314
1315 return 0;
1316 }
1317
1318 static int
1319 igc_setup_intx(struct igc_softc *sc)
1320 {
1321 pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1322 device_t dev = sc->sc_dev;
1323 pci_intr_handle_t *intr = sc->sc_intrs;
1324 void **ihs = sc->sc_ihs;
1325 const char *intrstr;
1326 char intrbuf[PCI_INTRSTR_LEN];
1327 char xnamebuf[32];
1328
1329 intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
1330
1331 snprintf(xnamebuf, sizeof(xnamebuf), "%s:intx", device_xname(dev));
1332 pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
1333 *ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
1334 igc_intr, sc, xnamebuf);
1335 if (*ihs == NULL) {
1336 aprint_error_dev(dev,
1337 "unable to establish interrupt at %s\n", intrstr);
1338 return ENOBUFS;
1339 }
1340 aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
1341
1342 struct igc_queue *iq = sc->queues;
1343 iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1344 igc_handle_queue, iq);
1345 if (iq->igcq_si == NULL) {
1346 aprint_error_dev(dev,
1347 "%s: unable to establish softint\n", intrstr);
1348 return ENOBUFS;
1349 }
1350
1351 /* create workqueue? */
1352 sc->sc_txrx_workqueue = false;
1353
1354 sc->queues[0].msix = 0;
1355 sc->linkvec = 0;
1356
1357 return 0;
1358 }
1359
1360 static int
1361 igc_dma_malloc(struct igc_softc *sc, bus_size_t size, struct igc_dma_alloc *dma)
1362 {
1363 struct igc_osdep *os = &sc->osdep;
1364
1365 dma->dma_tag = os->os_dmat;
1366
1367 if (bus_dmamap_create(dma->dma_tag, size, 1, size, 0,
1368 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->dma_map))
1369 return 1;
1370 if (bus_dmamem_alloc(dma->dma_tag, size, PAGE_SIZE, 0, &dma->dma_seg,
1371 1, &dma->dma_nseg, BUS_DMA_WAITOK))
1372 goto destroy;
1373 /*
1374 * XXXRO
1375 *
1376 * Coherent mapping for descriptors is required for now.
1377 *
1378 * Both TX and RX descriptors are 16-byte length, which is shorter
1379 * than dcache lines on modern CPUs. Therefore, sync for a descriptor
1380 * may overwrite DMA read for descriptors in the same cache line.
1381 *
1382 * Can't we avoid this by use cache-line-aligned descriptors at once?
1383 */
1384 if (bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
1385 &dma->dma_vaddr, BUS_DMA_WAITOK | BUS_DMA_COHERENT /* XXXRO */))
1386 goto free;
1387 if (bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
1388 NULL, BUS_DMA_WAITOK))
1389 goto unmap;
1390
1391 dma->dma_size = size;
1392
1393 return 0;
1394 unmap:
1395 bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
1396 free:
1397 bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
1398 destroy:
1399 bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1400 dma->dma_map = NULL;
1401 dma->dma_tag = NULL;
1402 return 1;
1403 }
1404
1405 static void
1406 igc_dma_free(struct igc_softc *sc, struct igc_dma_alloc *dma)
1407 {
1408
1409 if (dma->dma_tag == NULL)
1410 return;
1411
1412 if (dma->dma_map != NULL) {
1413 bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
1414 dma->dma_map->dm_mapsize,
1415 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1416 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1417 bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
1418 bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
1419 bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1420 dma->dma_map = NULL;
1421 }
1422 }
1423
1424 /*********************************************************************
1425 *
1426 * Setup networking device structure and register an interface.
1427 *
1428 **********************************************************************/
1429 static void
1430 igc_setup_interface(struct igc_softc *sc)
1431 {
1432 struct ifnet *ifp = &sc->sc_ec.ec_if;
1433
1434 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
1435 ifp->if_softc = sc;
1436 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1437 ifp->if_extflags = IFEF_MPSAFE;
1438 ifp->if_ioctl = igc_ioctl;
1439 ifp->if_start = igc_start;
1440 if (sc->sc_nqueues > 1)
1441 ifp->if_transmit = igc_transmit;
1442 ifp->if_watchdog = igc_watchdog;
1443 ifp->if_init = igc_init;
1444 ifp->if_stop = igc_stop;
1445
1446 #if 0 /* notyet */
1447 ifp->if_capabilities = IFCAP_TSOv4 | IFCAP_TSOv6;
1448 #endif
1449
1450 ifp->if_capabilities |=
1451 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1452 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1453 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1454 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
1455 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
1456
1457 ifp->if_capenable = 0;
1458
1459 sc->sc_ec.ec_capabilities |=
1460 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
1461
1462 IFQ_SET_MAXLEN(&ifp->if_snd, sc->num_tx_desc - 1);
1463 IFQ_SET_READY(&ifp->if_snd);
1464
1465 #if NVLAN > 0
1466 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
1467 #endif
1468
1469 mutex_init(&sc->sc_core_lock, MUTEX_DEFAULT, IPL_NET);
1470
1471 /* Initialize ifmedia structures. */
1472 sc->sc_ec.ec_ifmedia = &sc->media;
1473 ifmedia_init_with_lock(&sc->media, IFM_IMASK, igc_media_change,
1474 igc_media_status, &sc->sc_core_lock);
1475 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1476 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1477 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1478 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1479 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1480 ifmedia_add(&sc->media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
1481 ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1482 ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1483
1484 sc->sc_rx_intr_process_limit = IGC_RX_INTR_PROCESS_LIMIT_DEFAULT;
1485 sc->sc_tx_intr_process_limit = IGC_TX_INTR_PROCESS_LIMIT_DEFAULT;
1486 sc->sc_rx_process_limit = IGC_RX_PROCESS_LIMIT_DEFAULT;
1487 sc->sc_tx_process_limit = IGC_TX_PROCESS_LIMIT_DEFAULT;
1488
1489 if_initialize(ifp);
1490 sc->sc_ipq = if_percpuq_create(ifp);
1491 if_deferred_start_init(ifp, NULL);
1492 ether_ifattach(ifp, sc->hw.mac.addr);
1493 ether_set_ifflags_cb(&sc->sc_ec, igc_ifflags_cb);
1494 if_register(ifp);
1495 }
1496
1497 static int
1498 igc_init(struct ifnet *ifp)
1499 {
1500 struct igc_softc *sc = ifp->if_softc;
1501 int error;
1502
1503 mutex_enter(&sc->sc_core_lock);
1504 error = igc_init_locked(sc);
1505 mutex_exit(&sc->sc_core_lock);
1506
1507 return error;
1508 }
1509
1510 static int
1511 igc_init_locked(struct igc_softc *sc)
1512 {
1513 struct ethercom *ec = &sc->sc_ec;
1514 struct ifnet *ifp = &ec->ec_if;
1515
1516 DPRINTF(CFG, "called\n");
1517
1518 KASSERT(mutex_owned(&sc->sc_core_lock));
1519
1520 if (ISSET(ifp->if_flags, IFF_RUNNING))
1521 igc_stop_locked(sc);
1522
1523 /* Put the address into the receive address array. */
1524 igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1525
1526 /* Initialize the hardware. */
1527 igc_reset(sc);
1528 igc_update_link_status(sc);
1529
1530 /* Setup VLAN support, basic and offload if available. */
1531 IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
1532
1533 igc_initialize_transmit_unit(sc);
1534 igc_initialize_receive_unit(sc);
1535
1536 if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1537 uint32_t ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
1538 ctrl |= IGC_CTRL_VME;
1539 IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
1540 }
1541
1542 /* Setup multicast table. */
1543 igc_set_filter(sc);
1544
1545 igc_clear_hw_cntrs_base_generic(&sc->hw);
1546
1547 if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
1548 igc_configure_queues(sc);
1549
1550 /* This clears any pending interrupts */
1551 IGC_READ_REG(&sc->hw, IGC_ICR);
1552 IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
1553
1554 /* The driver can now take control from firmware. */
1555 igc_get_hw_control(sc);
1556
1557 /* Set Energy Efficient Ethernet. */
1558 igc_set_eee_i225(&sc->hw, true, true, true);
1559
1560 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1561 struct rx_ring *rxr = &sc->rx_rings[iq];
1562
1563 mutex_enter(&rxr->rxr_lock);
1564 igc_rxfill(rxr);
1565 mutex_exit(&rxr->rxr_lock);
1566 }
1567
1568 sc->sc_core_stopping = false;
1569
1570 ifp->if_flags |= IFF_RUNNING;
1571
1572 /* Save last flags for the callback */
1573 sc->sc_if_flags = ifp->if_flags;
1574
1575 callout_schedule(&sc->sc_tick_ch, hz);
1576
1577 igc_enable_intr(sc);
1578
1579 return 0;
1580 }
1581
1582 static inline int
1583 igc_load_mbuf(struct igc_queue *q, bus_dma_tag_t dmat, bus_dmamap_t map,
1584 struct mbuf *m)
1585 {
1586 int error;
1587
1588 error = bus_dmamap_load_mbuf(dmat, map, m,
1589 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1590
1591 if (__predict_false(error == EFBIG)) {
1592 IGC_DRIVER_EVENT(q, txdma_efbig, 1);
1593 m = m_defrag(m, M_NOWAIT);
1594 if (__predict_false(m == NULL)) {
1595 IGC_DRIVER_EVENT(q, txdma_defrag, 1);
1596 return ENOBUFS;
1597 }
1598 error = bus_dmamap_load_mbuf(dmat, map, m,
1599 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1600 }
1601
1602 switch (error) {
1603 case 0:
1604 break;
1605 case ENOMEM:
1606 IGC_DRIVER_EVENT(q, txdma_enomem, 1);
1607 break;
1608 case EINVAL:
1609 IGC_DRIVER_EVENT(q, txdma_einval, 1);
1610 break;
1611 case EAGAIN:
1612 IGC_DRIVER_EVENT(q, txdma_eagain, 1);
1613 break;
1614 default:
1615 IGC_DRIVER_EVENT(q, txdma_other, 1);
1616 break;
1617 }
1618
1619 return error;
1620 }
1621
1622 #define IGC_TX_START 1
1623 #define IGC_TX_TRANSMIT 2
1624
1625 static void
1626 igc_start(struct ifnet *ifp)
1627 {
1628 struct igc_softc *sc = ifp->if_softc;
1629
1630 if (__predict_false(!sc->link_active)) {
1631 IFQ_PURGE(&ifp->if_snd);
1632 return;
1633 }
1634
1635 struct tx_ring *txr = &sc->tx_rings[0]; /* queue 0 */
1636 mutex_enter(&txr->txr_lock);
1637 igc_tx_common_locked(ifp, txr, IGC_TX_START);
1638 mutex_exit(&txr->txr_lock);
1639 }
1640
1641 static inline u_int
1642 igc_select_txqueue(struct igc_softc *sc, struct mbuf *m __unused)
1643 {
1644 const u_int cpuid = cpu_index(curcpu());
1645
1646 return cpuid % sc->sc_nqueues;
1647 }
1648
1649 static int
1650 igc_transmit(struct ifnet *ifp, struct mbuf *m)
1651 {
1652 struct igc_softc *sc = ifp->if_softc;
1653 const u_int qid = igc_select_txqueue(sc, m);
1654 struct tx_ring *txr = &sc->tx_rings[qid];
1655 struct igc_queue *q = txr->txr_igcq;
1656
1657 if (__predict_false(!pcq_put(txr->txr_interq, m))) {
1658 IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
1659 m_freem(m);
1660 return ENOBUFS;
1661 }
1662
1663 mutex_enter(&txr->txr_lock);
1664 igc_tx_common_locked(ifp, txr, IGC_TX_TRANSMIT);
1665 mutex_exit(&txr->txr_lock);
1666
1667 return 0;
1668 }
1669
1670 static void
1671 igc_tx_common_locked(struct ifnet *ifp, struct tx_ring *txr, int caller)
1672 {
1673 struct igc_softc *sc = ifp->if_softc;
1674 struct igc_queue *q = txr->txr_igcq;
1675 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1676 int prod, free, last = -1;
1677 bool post = false;
1678
1679 prod = txr->next_avail_desc;
1680 free = txr->next_to_clean;
1681 if (free <= prod)
1682 free += sc->num_tx_desc;
1683 free -= prod;
1684
1685 DPRINTF(TX, "%s: begin: msix %d prod %d n2c %d free %d\n",
1686 caller == IGC_TX_TRANSMIT ? "transmit" : "start",
1687 txr->me, prod, txr->next_to_clean, free);
1688
1689 for (;;) {
1690 struct mbuf *m;
1691
1692 if (__predict_false(free <= IGC_MAX_SCATTER)) {
1693 IGC_QUEUE_EVENT(q, tx_no_desc, 1);
1694 break;
1695 }
1696
1697 if (caller == IGC_TX_TRANSMIT)
1698 m = pcq_get(txr->txr_interq);
1699 else
1700 IFQ_DEQUEUE(&ifp->if_snd, m);
1701 if (__predict_false(m == NULL))
1702 break;
1703
1704 struct igc_tx_buf *txbuf = &txr->tx_buffers[prod];
1705 bus_dmamap_t map = txbuf->map;
1706
1707 if (__predict_false(
1708 igc_load_mbuf(q, txr->txdma.dma_tag, map, m))) {
1709 if (caller == IGC_TX_TRANSMIT)
1710 IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
1711 m_freem(m);
1712 if_statinc_ref(nsr, if_oerrors);
1713 continue;
1714 }
1715
1716 bus_dmamap_sync(txr->txdma.dma_tag, map, 0,
1717 map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1718
1719 uint32_t ctx_cmd_type_len = 0, olinfo_status = 0;
1720 if (igc_tx_ctx_setup(txr, m, prod, &ctx_cmd_type_len,
1721 &olinfo_status)) {
1722 IGC_QUEUE_EVENT(q, tx_ctx, 1);
1723 /* Consume the first descriptor */
1724 prod = igc_txdesc_incr(sc, prod);
1725 free--;
1726 }
1727 for (int i = 0; i < map->dm_nsegs; i++) {
1728 union igc_adv_tx_desc *txdesc = &txr->tx_base[prod];
1729
1730 uint32_t cmd_type_len = ctx_cmd_type_len |
1731 IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DTYP_DATA |
1732 IGC_ADVTXD_DCMD_DEXT | map->dm_segs[i].ds_len;
1733 if (i == map->dm_nsegs - 1) {
1734 cmd_type_len |=
1735 IGC_ADVTXD_DCMD_EOP | IGC_ADVTXD_DCMD_RS;
1736 }
1737
1738 igc_txdesc_sync(txr, prod,
1739 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1740 htolem64(&txdesc->read.buffer_addr,
1741 map->dm_segs[i].ds_addr);
1742 htolem32(&txdesc->read.cmd_type_len, cmd_type_len);
1743 htolem32(&txdesc->read.olinfo_status, olinfo_status);
1744 igc_txdesc_sync(txr, prod,
1745 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1746
1747 last = prod;
1748 prod = igc_txdesc_incr(sc, prod);
1749 }
1750
1751 txbuf->m_head = m;
1752 txbuf->eop_index = last;
1753
1754 bpf_mtap(ifp, m, BPF_D_OUT);
1755
1756 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
1757 if (m->m_flags & M_MCAST)
1758 if_statinc_ref(nsr, if_omcasts);
1759 IGC_QUEUE_EVENT(q, tx_packets, 1);
1760 IGC_QUEUE_EVENT(q, tx_bytes, m->m_pkthdr.len);
1761
1762 free -= map->dm_nsegs;
1763 post = true;
1764 }
1765
1766 if (post) {
1767 txr->next_avail_desc = prod;
1768 IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), prod);
1769 }
1770
1771 DPRINTF(TX, "%s: done : msix %d prod %d n2c %d free %d\n",
1772 caller == IGC_TX_TRANSMIT ? "transmit" : "start",
1773 txr->me, prod, txr->next_to_clean, free);
1774
1775 IF_STAT_PUTREF(ifp);
1776 }
1777
1778 static bool
1779 igc_txeof(struct tx_ring *txr, u_int limit)
1780 {
1781 struct igc_softc *sc = txr->sc;
1782 struct ifnet *ifp = &sc->sc_ec.ec_if;
1783 int cons, prod;
1784 bool more = false;
1785
1786 prod = txr->next_avail_desc;
1787 cons = txr->next_to_clean;
1788
1789 if (cons == prod) {
1790 DPRINTF(TX, "false: msix %d cons %d prod %d\n",
1791 txr->me, cons, prod);
1792 return false;
1793 }
1794
1795 do {
1796 struct igc_tx_buf *txbuf = &txr->tx_buffers[cons];
1797 const int last = txbuf->eop_index;
1798
1799 membar_consumer(); /* XXXRO necessary? */
1800
1801 KASSERT(last != -1);
1802 union igc_adv_tx_desc *txdesc = &txr->tx_base[last];
1803 igc_txdesc_sync(txr, last, BUS_DMASYNC_POSTREAD);
1804 const uint32_t status = le32toh(txdesc->wb.status);
1805 igc_txdesc_sync(txr, last, BUS_DMASYNC_PREREAD);
1806
1807 if (!(status & IGC_TXD_STAT_DD))
1808 break;
1809
1810 if (limit-- == 0) {
1811 more = true;
1812 DPRINTF(TX, "pending TX "
1813 "msix %d cons %d last %d prod %d "
1814 "status 0x%08x\n",
1815 txr->me, cons, last, prod, status);
1816 break;
1817 }
1818
1819 DPRINTF(TX, "handled TX "
1820 "msix %d cons %d last %d prod %d "
1821 "status 0x%08x\n",
1822 txr->me, cons, last, prod, status);
1823
1824 if_statinc(ifp, if_opackets);
1825
1826 bus_dmamap_t map = txbuf->map;
1827 bus_dmamap_sync(txr->txdma.dma_tag, map, 0, map->dm_mapsize,
1828 BUS_DMASYNC_POSTWRITE);
1829 bus_dmamap_unload(txr->txdma.dma_tag, map);
1830 m_freem(txbuf->m_head);
1831
1832 txbuf->m_head = NULL;
1833 txbuf->eop_index = -1;
1834
1835 cons = igc_txdesc_incr(sc, last);
1836 } while (cons != prod);
1837
1838 txr->next_to_clean = cons;
1839
1840 return more;
1841 }
1842
1843 static void
1844 igc_intr_barrier(struct igc_softc *sc __unused)
1845 {
1846
1847 xc_barrier(0);
1848 }
1849
1850 static void
1851 igc_stop(struct ifnet *ifp, int disable)
1852 {
1853 struct igc_softc *sc = ifp->if_softc;
1854
1855 mutex_enter(&sc->sc_core_lock);
1856 igc_stop_locked(sc);
1857 mutex_exit(&sc->sc_core_lock);
1858 }
1859
1860 /*********************************************************************
1861 *
1862 * This routine disables all traffic on the adapter by issuing a
1863 * global reset on the MAC.
1864 *
1865 **********************************************************************/
1866 static void
1867 igc_stop_locked(struct igc_softc *sc)
1868 {
1869 struct ifnet *ifp = &sc->sc_ec.ec_if;
1870
1871 DPRINTF(CFG, "called\n");
1872
1873 KASSERT(mutex_owned(&sc->sc_core_lock));
1874
1875 /*
1876 * If stopping processing has already started, do nothing.
1877 */
1878 if ((ifp->if_flags & IFF_RUNNING) == 0)
1879 return;
1880
1881 /* Tell the stack that the interface is no longer active. */
1882 ifp->if_flags &= ~IFF_RUNNING;
1883
1884 /*
1885 * igc_handle_queue() can enable interrupts, so wait for completion of
1886 * last igc_handle_queue() after unset IFF_RUNNING.
1887 */
1888 mutex_exit(&sc->sc_core_lock);
1889 igc_barrier_handle_queue(sc);
1890 mutex_enter(&sc->sc_core_lock);
1891
1892 sc->sc_core_stopping = true;
1893
1894 igc_disable_intr(sc);
1895
1896 callout_halt(&sc->sc_tick_ch, &sc->sc_core_lock);
1897
1898 igc_reset_hw(&sc->hw);
1899 IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
1900
1901 /*
1902 * Wait for completion of interrupt handlers.
1903 */
1904 mutex_exit(&sc->sc_core_lock);
1905 igc_intr_barrier(sc);
1906 mutex_enter(&sc->sc_core_lock);
1907
1908 igc_update_link_status(sc);
1909
1910 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1911 struct tx_ring *txr = &sc->tx_rings[iq];
1912
1913 igc_withdraw_transmit_packets(txr, false);
1914 }
1915
1916 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1917 struct rx_ring *rxr = &sc->rx_rings[iq];
1918
1919 igc_clear_receive_status(rxr);
1920 }
1921
1922 /* Save last flags for the callback */
1923 sc->sc_if_flags = ifp->if_flags;
1924 }
1925
1926 /*********************************************************************
1927 * Ioctl entry point
1928 *
1929 * igc_ioctl is called when the user wants to configure the
1930 * interface.
1931 *
1932 * return 0 on success, positive on failure
1933 **********************************************************************/
1934 static int
1935 igc_ioctl(struct ifnet * ifp, u_long cmd, void *data)
1936 {
1937 struct igc_softc *sc __unused = ifp->if_softc;
1938 int s;
1939 int error;
1940
1941 DPRINTF(CFG, "cmd 0x%016lx\n", cmd);
1942
1943 switch (cmd) {
1944 case SIOCADDMULTI:
1945 case SIOCDELMULTI:
1946 break;
1947 default:
1948 KASSERT(IFNET_LOCKED(ifp));
1949 }
1950
1951 if (cmd == SIOCZIFDATA) {
1952 mutex_enter(&sc->sc_core_lock);
1953 igc_clear_counters(sc);
1954 mutex_exit(&sc->sc_core_lock);
1955 }
1956
1957 switch (cmd) {
1958 #ifdef IF_RXR
1959 case SIOCGIFRXR:
1960 s = splnet();
1961 error = igc_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
1962 splx(s);
1963 break;
1964 #endif
1965 default:
1966 s = splnet();
1967 error = ether_ioctl(ifp, cmd, data);
1968 splx(s);
1969 break;
1970 }
1971
1972 if (error != ENETRESET)
1973 return error;
1974
1975 error = 0;
1976
1977 if (cmd == SIOCSIFCAP)
1978 error = if_init(ifp);
1979 else if ((cmd == SIOCADDMULTI) || (cmd == SIOCDELMULTI)) {
1980 mutex_enter(&sc->sc_core_lock);
1981 if (sc->sc_if_flags & IFF_RUNNING) {
1982 /*
1983 * Multicast list has changed; set the hardware filter
1984 * accordingly.
1985 */
1986 igc_disable_intr(sc);
1987 igc_set_filter(sc);
1988 igc_enable_intr(sc);
1989 }
1990 mutex_exit(&sc->sc_core_lock);
1991 }
1992
1993 return error;
1994 }
1995
1996 #ifdef IF_RXR
1997 static int
1998 igc_rxrinfo(struct igc_softc *sc, struct if_rxrinfo *ifri)
1999 {
2000 struct if_rxring_info *ifr, ifr1;
2001 int error;
2002
2003 if (sc->sc_nqueues > 1) {
2004 ifr = kmem_zalloc(sc->sc_nqueues * sizeof(*ifr), KM_SLEEP);
2005 } else {
2006 ifr = &ifr1;
2007 memset(ifr, 0, sizeof(*ifr));
2008 }
2009
2010 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2011 struct rx_ring *rxr = &sc->rx_rings[iq];
2012
2013 ifr[iq].ifr_size = MCLBYTES;
2014 snprintf(ifr[iq].ifr_name, sizeof(ifr[iq].ifr_name), "%d", iq);
2015 ifr[iq].ifr_info = rxr->rx_ring;
2016 }
2017
2018 error = if_rxr_info_ioctl(ifri, sc->sc_nqueues, ifr);
2019 if (sc->sc_nqueues > 1)
2020 kmem_free(ifr, sc->sc_nqueues * sizeof(*ifr));
2021
2022 return error;
2023 }
2024 #endif
2025
2026 static void
2027 igc_rxfill(struct rx_ring *rxr)
2028 {
2029 struct igc_softc *sc = rxr->sc;
2030 int id;
2031
2032 for (id = 0; id < sc->num_rx_desc; id++) {
2033 if (igc_get_buf(rxr, id, false)) {
2034 panic("%s: msix=%d i=%d\n", __func__, rxr->me, id);
2035 }
2036 }
2037
2038 id = sc->num_rx_desc - 1;
2039 rxr->last_desc_filled = id;
2040 IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
2041 rxr->next_to_check = 0;
2042 }
2043
2044 static void
2045 igc_rxrefill(struct rx_ring *rxr, int end)
2046 {
2047 struct igc_softc *sc = rxr->sc;
2048 int id;
2049
2050 for (id = rxr->next_to_check; id != end; id = igc_rxdesc_incr(sc, id)) {
2051 if (igc_get_buf(rxr, id, true)) {
2052 /* XXXRO */
2053 panic("%s: msix=%d id=%d\n", __func__, rxr->me, id);
2054 }
2055 }
2056
2057 id = igc_rxdesc_decr(sc, id);
2058 DPRINTF(RX, "%s RDT %d id %d\n",
2059 rxr->last_desc_filled == id ? "same" : "diff",
2060 rxr->last_desc_filled, id);
2061 rxr->last_desc_filled = id;
2062 IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
2063 }
2064
2065 /*********************************************************************
2066 *
2067 * This routine executes in interrupt context. It replenishes
2068 * the mbufs in the descriptor and sends data which has been
2069 * dma'ed into host memory to upper layer.
2070 *
2071 *********************************************************************/
2072 static bool
2073 igc_rxeof(struct rx_ring *rxr, u_int limit)
2074 {
2075 struct igc_softc *sc = rxr->sc;
2076 struct igc_queue *q = rxr->rxr_igcq;
2077 struct ifnet *ifp = &sc->sc_ec.ec_if;
2078 int id;
2079 bool more = false;
2080
2081 id = rxr->next_to_check;
2082 for (;;) {
2083 union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
2084 struct igc_rx_buf *rxbuf, *nxbuf;
2085 struct mbuf *mp, *m;
2086
2087 igc_rxdesc_sync(rxr, id,
2088 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2089
2090 const uint32_t staterr = le32toh(rxdesc->wb.upper.status_error);
2091
2092 if (!ISSET(staterr, IGC_RXD_STAT_DD)) {
2093 igc_rxdesc_sync(rxr, id,
2094 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2095 break;
2096 }
2097
2098 if (limit-- == 0) {
2099 igc_rxdesc_sync(rxr, id,
2100 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2101 DPRINTF(RX, "more=true\n");
2102 more = true;
2103 break;
2104 }
2105
2106 /* Zero out the receive descriptors status. */
2107 rxdesc->wb.upper.status_error = 0;
2108
2109 /* Pull the mbuf off the ring. */
2110 rxbuf = &rxr->rx_buffers[id];
2111 bus_dmamap_t map = rxbuf->map;
2112 bus_dmamap_sync(rxr->rxdma.dma_tag, map,
2113 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2114 bus_dmamap_unload(rxr->rxdma.dma_tag, map);
2115
2116 mp = rxbuf->buf;
2117 rxbuf->buf = NULL;
2118
2119 const bool eop = staterr & IGC_RXD_STAT_EOP;
2120 const uint16_t len = le16toh(rxdesc->wb.upper.length);
2121
2122 const uint16_t vtag = le16toh(rxdesc->wb.upper.vlan);
2123
2124 const uint32_t ptype = le32toh(rxdesc->wb.lower.lo_dword.data) &
2125 IGC_PKTTYPE_MASK;
2126
2127 const uint32_t hash __unused =
2128 le32toh(rxdesc->wb.lower.hi_dword.rss);
2129 const uint16_t hashtype __unused =
2130 le16toh(rxdesc->wb.lower.lo_dword.hs_rss.pkt_info) &
2131 IGC_RXDADV_RSSTYPE_MASK;
2132
2133 igc_rxdesc_sync(rxr, id,
2134 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2135
2136 if (__predict_false(staterr & IGC_RXDEXT_STATERR_RXE)) {
2137 if (rxbuf->fmp) {
2138 m_freem(rxbuf->fmp);
2139 rxbuf->fmp = NULL;
2140 }
2141
2142 m_freem(mp);
2143 m = NULL;
2144
2145 if_statinc(ifp, if_ierrors);
2146 IGC_QUEUE_EVENT(q, rx_discard, 1);
2147
2148 DPRINTF(RX, "ierrors++\n");
2149
2150 goto next_desc;
2151 }
2152
2153 if (__predict_false(mp == NULL)) {
2154 panic("%s: igc_rxeof: NULL mbuf in slot %d "
2155 "(filled %d)", device_xname(sc->sc_dev),
2156 id, rxr->last_desc_filled);
2157 }
2158
2159 if (!eop) {
2160 /*
2161 * Figure out the next descriptor of this frame.
2162 */
2163 int nextp = igc_rxdesc_incr(sc, id);
2164
2165 nxbuf = &rxr->rx_buffers[nextp];
2166 /*
2167 * TODO prefetch(nxbuf);
2168 */
2169 }
2170
2171 mp->m_len = len;
2172
2173 m = rxbuf->fmp;
2174 rxbuf->fmp = NULL;
2175
2176 if (m != NULL) {
2177 m->m_pkthdr.len += mp->m_len;
2178 } else {
2179 m = mp;
2180 m->m_pkthdr.len = mp->m_len;
2181 #if NVLAN > 0
2182 if (staterr & IGC_RXD_STAT_VP)
2183 vlan_set_tag(m, vtag);
2184 #endif
2185 }
2186
2187 /* Pass the head pointer on */
2188 if (!eop) {
2189 nxbuf->fmp = m;
2190 m = NULL;
2191 mp->m_next = nxbuf->buf;
2192 } else {
2193 m_set_rcvif(m, ifp);
2194
2195 m->m_pkthdr.csum_flags = igc_rx_checksum(q,
2196 ifp->if_capenable, staterr, ptype);
2197
2198 #ifdef notyet
2199 if (hashtype != IGC_RXDADV_RSSTYPE_NONE) {
2200 m->m_pkthdr.ph_flowid = hash;
2201 SET(m->m_pkthdr.csum_flags, M_FLOWID);
2202 }
2203 ml_enqueue(&ml, m);
2204 #endif
2205
2206 if_percpuq_enqueue(sc->sc_ipq, m);
2207
2208 if_statinc(ifp, if_ipackets);
2209 IGC_QUEUE_EVENT(q, rx_packets, 1);
2210 IGC_QUEUE_EVENT(q, rx_bytes, m->m_pkthdr.len);
2211 }
2212 next_desc:
2213 /* Advance our pointers to the next descriptor. */
2214 id = igc_rxdesc_incr(sc, id);
2215 }
2216
2217 DPRINTF(RX, "fill queue[%d]\n", rxr->me);
2218 igc_rxrefill(rxr, id);
2219
2220 DPRINTF(RX, "%s n2c %d id %d\n",
2221 rxr->next_to_check == id ? "same" : "diff",
2222 rxr->next_to_check, id);
2223 rxr->next_to_check = id;
2224
2225 #ifdef OPENBSD
2226 if (!(staterr & IGC_RXD_STAT_DD))
2227 return 0;
2228 #endif
2229
2230 return more;
2231 }
2232
2233 /*********************************************************************
2234 *
2235 * Verify that the hardware indicated that the checksum is valid.
2236 * Inform the stack about the status of checksum so that stack
2237 * doesn't spend time verifying the checksum.
2238 *
2239 *********************************************************************/
2240 static int
2241 igc_rx_checksum(struct igc_queue *q, uint64_t capenable, uint32_t staterr,
2242 uint32_t ptype)
2243 {
2244 const uint16_t status = (uint16_t)staterr;
2245 const uint8_t errors = (uint8_t)(staterr >> 24);
2246 int flags = 0;
2247
2248 if ((status & IGC_RXD_STAT_IPCS) != 0 &&
2249 (capenable & IFCAP_CSUM_IPv4_Rx) != 0) {
2250 IGC_DRIVER_EVENT(q, rx_ipcs, 1);
2251 flags |= M_CSUM_IPv4;
2252 if (__predict_false((errors & IGC_RXD_ERR_IPE) != 0)) {
2253 IGC_DRIVER_EVENT(q, rx_ipcs_bad, 1);
2254 flags |= M_CSUM_IPv4_BAD;
2255 }
2256 }
2257
2258 if ((status & IGC_RXD_STAT_TCPCS) != 0) {
2259 IGC_DRIVER_EVENT(q, rx_tcpcs, 1);
2260 if ((capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
2261 flags |= M_CSUM_TCPv4;
2262 if ((capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
2263 flags |= M_CSUM_TCPv6;
2264 }
2265
2266 if ((status & IGC_RXD_STAT_UDPCS) != 0) {
2267 IGC_DRIVER_EVENT(q, rx_udpcs, 1);
2268 if ((capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
2269 flags |= M_CSUM_UDPv4;
2270 if ((capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
2271 flags |= M_CSUM_UDPv6;
2272 }
2273
2274 if (__predict_false((errors & IGC_RXD_ERR_TCPE) != 0)) {
2275 IGC_DRIVER_EVENT(q, rx_l4cs_bad, 1);
2276 if ((flags & ~M_CSUM_IPv4) != 0)
2277 flags |= M_CSUM_TCP_UDP_BAD;
2278 }
2279
2280 return flags;
2281 }
2282
2283 static void
2284 igc_watchdog(struct ifnet * ifp)
2285 {
2286 }
2287
2288 static void
2289 igc_tick(void *arg)
2290 {
2291 struct igc_softc *sc = arg;
2292
2293 mutex_enter(&sc->sc_core_lock);
2294
2295 if (__predict_false(sc->sc_core_stopping)) {
2296 mutex_exit(&sc->sc_core_lock);
2297 return;
2298 }
2299
2300 /* XXX watchdog */
2301 if (0) {
2302 IGC_GLOBAL_EVENT(sc, watchdog, 1);
2303 }
2304
2305 igc_update_counters(sc);
2306
2307 mutex_exit(&sc->sc_core_lock);
2308
2309 callout_schedule(&sc->sc_tick_ch, hz);
2310 }
2311
2312 /*********************************************************************
2313 *
2314 * Media Ioctl callback
2315 *
2316 * This routine is called whenever the user queries the status of
2317 * the interface using ifconfig.
2318 *
2319 **********************************************************************/
2320 static void
2321 igc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2322 {
2323 struct igc_softc *sc = ifp->if_softc;
2324 struct igc_hw *hw = &sc->hw;
2325
2326 igc_update_link_status(sc);
2327
2328 ifmr->ifm_status = IFM_AVALID;
2329 ifmr->ifm_active = IFM_ETHER;
2330
2331 if (!sc->link_active) {
2332 ifmr->ifm_active |= IFM_NONE;
2333 return;
2334 }
2335
2336 ifmr->ifm_status |= IFM_ACTIVE;
2337
2338 switch (sc->link_speed) {
2339 case 10:
2340 ifmr->ifm_active |= IFM_10_T;
2341 break;
2342 case 100:
2343 ifmr->ifm_active |= IFM_100_TX;
2344 break;
2345 case 1000:
2346 ifmr->ifm_active |= IFM_1000_T;
2347 break;
2348 case 2500:
2349 ifmr->ifm_active |= IFM_2500_T;
2350 break;
2351 }
2352
2353 if (sc->link_duplex == FULL_DUPLEX)
2354 ifmr->ifm_active |= IFM_FDX;
2355 else
2356 ifmr->ifm_active |= IFM_HDX;
2357
2358 switch (hw->fc.current_mode) {
2359 case igc_fc_tx_pause:
2360 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
2361 break;
2362 case igc_fc_rx_pause:
2363 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
2364 break;
2365 case igc_fc_full:
2366 ifmr->ifm_active |= IFM_FLOW |
2367 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2368 break;
2369 case igc_fc_none:
2370 default:
2371 break;
2372 }
2373 }
2374
2375 /*********************************************************************
2376 *
2377 * Media Ioctl callback
2378 *
2379 * This routine is called when the user changes speed/duplex using
2380 * media/mediopt option with ifconfig.
2381 *
2382 **********************************************************************/
2383 static int
2384 igc_media_change(struct ifnet *ifp)
2385 {
2386 struct igc_softc *sc = ifp->if_softc;
2387 struct ifmedia *ifm = &sc->media;
2388
2389 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2390 return EINVAL;
2391
2392 sc->hw.mac.autoneg = DO_AUTO_NEG;
2393
2394 switch (IFM_SUBTYPE(ifm->ifm_media)) {
2395 case IFM_AUTO:
2396 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
2397 break;
2398 case IFM_2500_T:
2399 sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
2400 break;
2401 case IFM_1000_T:
2402 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
2403 break;
2404 case IFM_100_TX:
2405 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2406 sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
2407 else
2408 sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
2409 break;
2410 case IFM_10_T:
2411 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2412 sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
2413 else
2414 sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
2415 break;
2416 default:
2417 return EINVAL;
2418 }
2419
2420 igc_init_locked(sc);
2421
2422 return 0;
2423 }
2424
2425 static int
2426 igc_ifflags_cb(struct ethercom *ec)
2427 {
2428 struct ifnet *ifp = &ec->ec_if;
2429 struct igc_softc *sc = ifp->if_softc;
2430 int rc = 0;
2431 u_short iffchange;
2432 bool needreset = false;
2433
2434 DPRINTF(CFG, "called\n");
2435
2436 KASSERT(IFNET_LOCKED(ifp));
2437
2438 mutex_enter(&sc->sc_core_lock);
2439
2440 /*
2441 * Check for if_flags.
2442 * Main usage is to prevent linkdown when opening bpf.
2443 */
2444 iffchange = ifp->if_flags ^ sc->sc_if_flags;
2445 sc->sc_if_flags = ifp->if_flags;
2446 if ((iffchange & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
2447 needreset = true;
2448 goto ec;
2449 }
2450
2451 /* iff related updates */
2452 if ((iffchange & IFF_PROMISC) != 0)
2453 igc_set_filter(sc);
2454
2455 #ifdef notyet
2456 igc_set_vlan(sc);
2457 #endif
2458
2459 ec:
2460 #ifdef notyet
2461 /* Check for ec_capenable. */
2462 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
2463 sc->sc_ec_capenable = ec->ec_capenable;
2464 if ((ecchange & ~ETHERCAP_SOMETHING) != 0) {
2465 needreset = true;
2466 goto out;
2467 }
2468 #endif
2469 if (needreset)
2470 rc = ENETRESET;
2471
2472 mutex_exit(&sc->sc_core_lock);
2473
2474 return rc;
2475 }
2476
2477 static void
2478 igc_set_filter(struct igc_softc *sc)
2479 {
2480 struct ethercom *ec = &sc->sc_ec;
2481 uint32_t rctl;
2482
2483 rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
2484 rctl &= ~(IGC_RCTL_BAM |IGC_RCTL_UPE | IGC_RCTL_MPE);
2485
2486 if ((sc->sc_if_flags & IFF_BROADCAST) != 0)
2487 rctl |= IGC_RCTL_BAM;
2488 if ((sc->sc_if_flags & IFF_PROMISC) != 0) {
2489 DPRINTF(CFG, "promisc\n");
2490 rctl |= IGC_RCTL_UPE;
2491 ETHER_LOCK(ec);
2492 allmulti:
2493 ec->ec_flags |= ETHER_F_ALLMULTI;
2494 ETHER_UNLOCK(ec);
2495 rctl |= IGC_RCTL_MPE;
2496 } else {
2497 struct ether_multistep step;
2498 struct ether_multi *enm;
2499 int mcnt = 0;
2500
2501 memset(sc->mta, 0, IGC_MTA_LEN);
2502
2503 ETHER_LOCK(ec);
2504 ETHER_FIRST_MULTI(step, ec, enm);
2505 while (enm != NULL) {
2506 if (((memcmp(enm->enm_addrlo, enm->enm_addrhi,
2507 ETHER_ADDR_LEN)) != 0) ||
2508 (mcnt >= MAX_NUM_MULTICAST_ADDRESSES)) {
2509 /*
2510 * We must listen to a range of multicast
2511 * addresses. For now, just accept all
2512 * multicasts, rather than trying to set only
2513 * those filter bits needed to match the range.
2514 * (At this time, the only use of address
2515 * ranges is for IP multicast routing, for
2516 * which the range is big enough to require all
2517 * bits set.)
2518 */
2519 goto allmulti;
2520 }
2521 DPRINTF(CFG, "%d: %s\n", mcnt,
2522 ether_sprintf(enm->enm_addrlo));
2523 memcpy(&sc->mta[mcnt * ETHER_ADDR_LEN],
2524 enm->enm_addrlo, ETHER_ADDR_LEN);
2525
2526 mcnt++;
2527 ETHER_NEXT_MULTI(step, enm);
2528 }
2529 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2530 ETHER_UNLOCK(ec);
2531
2532 DPRINTF(CFG, "hw filter\n");
2533 igc_update_mc_addr_list(&sc->hw, sc->mta, mcnt);
2534 }
2535
2536 IGC_WRITE_REG(&sc->hw, IGC_RCTL, rctl);
2537 }
2538
2539 static void
2540 igc_update_link_status(struct igc_softc *sc)
2541 {
2542 struct ifnet *ifp = &sc->sc_ec.ec_if;
2543 struct igc_hw *hw = &sc->hw;
2544
2545 if (hw->mac.get_link_status == true)
2546 igc_check_for_link(hw);
2547
2548 if (IGC_READ_REG(&sc->hw, IGC_STATUS) & IGC_STATUS_LU) {
2549 if (sc->link_active == 0) {
2550 igc_get_speed_and_duplex(hw, &sc->link_speed,
2551 &sc->link_duplex);
2552 sc->link_active = 1;
2553 ifp->if_baudrate = IF_Mbps(sc->link_speed);
2554 if_link_state_change(ifp, LINK_STATE_UP);
2555 }
2556 } else {
2557 if (sc->link_active == 1) {
2558 ifp->if_baudrate = sc->link_speed = 0;
2559 sc->link_duplex = 0;
2560 sc->link_active = 0;
2561 if_link_state_change(ifp, LINK_STATE_DOWN);
2562 }
2563 }
2564 }
2565
2566 /*********************************************************************
2567 *
2568 * Get a buffer from system mbuf buffer pool.
2569 *
2570 **********************************************************************/
2571 static int
2572 igc_get_buf(struct rx_ring *rxr, int id, bool strict)
2573 {
2574 struct igc_softc *sc = rxr->sc;
2575 struct igc_queue *q = rxr->rxr_igcq;
2576 struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
2577 bus_dmamap_t map = rxbuf->map;
2578 struct mbuf *m;
2579 int error;
2580
2581 if (__predict_false(rxbuf->buf)) {
2582 if (strict) {
2583 DPRINTF(RX, "slot %d already has an mbuf\n", id);
2584 return EINVAL;
2585 }
2586 return 0;
2587 }
2588
2589 MGETHDR(m, M_DONTWAIT, MT_DATA);
2590 if (__predict_false(m == NULL)) {
2591 enobuf:
2592 IGC_QUEUE_EVENT(q, rx_no_mbuf, 1);
2593 return ENOBUFS;
2594 }
2595
2596 MCLGET(m, M_DONTWAIT);
2597 if (__predict_false(!(m->m_flags & M_EXT))) {
2598 m_freem(m);
2599 goto enobuf;
2600 }
2601
2602 m->m_len = m->m_pkthdr.len = sc->rx_mbuf_sz;
2603
2604 error = bus_dmamap_load_mbuf(rxr->rxdma.dma_tag, map, m,
2605 BUS_DMA_READ | BUS_DMA_NOWAIT);
2606 if (error) {
2607 m_freem(m);
2608 return error;
2609 }
2610
2611 bus_dmamap_sync(rxr->rxdma.dma_tag, map, 0,
2612 map->dm_mapsize, BUS_DMASYNC_PREREAD);
2613 rxbuf->buf = m;
2614
2615 union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
2616 igc_rxdesc_sync(rxr, id, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
2617 rxdesc->read.pkt_addr = htole64(map->dm_segs[0].ds_addr);
2618 igc_rxdesc_sync(rxr, id, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2619
2620 return 0;
2621 }
2622
2623 static void
2624 igc_configure_queues(struct igc_softc *sc)
2625 {
2626 struct igc_hw *hw = &sc->hw;
2627 uint32_t ivar;
2628
2629 /* First turn on RSS capability */
2630 IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME |
2631 IGC_GPIE_PBA | IGC_GPIE_NSICR);
2632
2633 /* Set the starting interrupt rate */
2634 uint32_t newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;
2635 newitr |= IGC_EITR_CNT_IGNR;
2636
2637 /* Turn on MSI-X */
2638 uint32_t newmask = 0;
2639 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2640 struct igc_queue *q = &sc->queues[iq];
2641
2642 /* RX entries */
2643 igc_set_queues(sc, iq, q->msix, 0);
2644 /* TX entries */
2645 igc_set_queues(sc, iq, q->msix, 1);
2646 newmask |= q->eims;
2647 IGC_WRITE_REG(hw, IGC_EITR(q->msix), newitr);
2648 }
2649 sc->msix_queuesmask = newmask;
2650
2651 #if 1
2652 ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 0);
2653 DPRINTF(CFG, "ivar(0)=0x%x\n", ivar);
2654 ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 1);
2655 DPRINTF(CFG, "ivar(1)=0x%x\n", ivar);
2656 #endif
2657
2658 /* And for the link interrupt */
2659 ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
2660 sc->msix_linkmask = 1 << sc->linkvec;
2661 IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
2662 }
2663
2664 static void
2665 igc_set_queues(struct igc_softc *sc, uint32_t entry, uint32_t vector, int type)
2666 {
2667 struct igc_hw *hw = &sc->hw;
2668 const uint32_t index = entry >> 1;
2669 uint32_t ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
2670
2671 if (type) {
2672 if (entry & 1) {
2673 ivar &= 0x00FFFFFF;
2674 ivar |= (vector | IGC_IVAR_VALID) << 24;
2675 } else {
2676 ivar &= 0xFFFF00FF;
2677 ivar |= (vector | IGC_IVAR_VALID) << 8;
2678 }
2679 } else {
2680 if (entry & 1) {
2681 ivar &= 0xFF00FFFF;
2682 ivar |= (vector | IGC_IVAR_VALID) << 16;
2683 } else {
2684 ivar &= 0xFFFFFF00;
2685 ivar |= vector | IGC_IVAR_VALID;
2686 }
2687 }
2688 IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
2689 }
2690
2691 static void
2692 igc_enable_queue(struct igc_softc *sc, uint32_t eims)
2693 {
2694 IGC_WRITE_REG(&sc->hw, IGC_EIMS, eims);
2695 }
2696
2697 static void
2698 igc_enable_intr(struct igc_softc *sc)
2699 {
2700 struct igc_hw *hw = &sc->hw;
2701
2702 if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
2703 const uint32_t mask = sc->msix_queuesmask | sc->msix_linkmask;
2704
2705 IGC_WRITE_REG(hw, IGC_EIAC, mask);
2706 IGC_WRITE_REG(hw, IGC_EIAM, mask);
2707 IGC_WRITE_REG(hw, IGC_EIMS, mask);
2708 IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
2709 } else {
2710 IGC_WRITE_REG(hw, IGC_IMS, IMS_ENABLE_MASK);
2711 }
2712 IGC_WRITE_FLUSH(hw);
2713 }
2714
2715 static void
2716 igc_disable_intr(struct igc_softc *sc)
2717 {
2718 struct igc_hw *hw = &sc->hw;
2719
2720 if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
2721 IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
2722 IGC_WRITE_REG(hw, IGC_EIAC, 0);
2723 }
2724 IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
2725 IGC_WRITE_FLUSH(hw);
2726 }
2727
2728 static int
2729 igc_intr_link(void *arg)
2730 {
2731 struct igc_softc *sc = (struct igc_softc *)arg;
2732 const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
2733
2734 IGC_GLOBAL_EVENT(sc, link, 1);
2735
2736 if (reg_icr & IGC_ICR_LSC) {
2737 mutex_enter(&sc->sc_core_lock);
2738 sc->hw.mac.get_link_status = true;
2739 igc_update_link_status(sc);
2740 mutex_exit(&sc->sc_core_lock);
2741 }
2742
2743 IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
2744 IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->msix_linkmask);
2745
2746 return 1;
2747 }
2748
2749 static int
2750 igc_intr_queue(void *arg)
2751 {
2752 struct igc_queue *iq = arg;
2753 struct igc_softc *sc = iq->sc;
2754 struct ifnet *ifp = &sc->sc_ec.ec_if;
2755 struct rx_ring *rxr = iq->rxr;
2756 struct tx_ring *txr = iq->txr;
2757 const u_int txlimit = sc->sc_tx_intr_process_limit,
2758 rxlimit = sc->sc_rx_intr_process_limit;
2759 bool txmore, rxmore;
2760
2761 IGC_QUEUE_EVENT(iq, irqs, 1);
2762
2763 if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
2764 return 0;
2765
2766 mutex_enter(&txr->txr_lock);
2767 txmore = igc_txeof(txr, txlimit);
2768 mutex_exit(&txr->txr_lock);
2769 mutex_enter(&rxr->rxr_lock);
2770 rxmore = igc_rxeof(rxr, rxlimit);
2771 mutex_exit(&rxr->rxr_lock);
2772
2773 if (txmore || rxmore) {
2774 IGC_QUEUE_EVENT(iq, req, 1);
2775 igc_sched_handle_queue(sc, iq);
2776 } else {
2777 igc_enable_queue(sc, iq->eims);
2778 }
2779
2780 return 1;
2781 }
2782
2783 static int
2784 igc_intr(void *arg)
2785 {
2786 struct igc_softc *sc = arg;
2787 struct ifnet *ifp = &sc->sc_ec.ec_if;
2788 struct igc_queue *iq = &sc->queues[0];
2789 struct rx_ring *rxr = iq->rxr;
2790 struct tx_ring *txr = iq->txr;
2791 const u_int txlimit = sc->sc_tx_intr_process_limit,
2792 rxlimit = sc->sc_rx_intr_process_limit;
2793 bool txmore, rxmore;
2794
2795 if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
2796 return 0;
2797
2798 const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
2799 DPRINTF(MISC, "reg_icr=0x%x\n", reg_icr);
2800
2801 /* Definitely not our interrupt. */
2802 if (reg_icr == 0x0) {
2803 DPRINTF(MISC, "not for me");
2804 return 0;
2805 }
2806
2807 IGC_QUEUE_EVENT(iq, irqs, 1);
2808
2809 /* Hot eject? */
2810 if (__predict_false(reg_icr == 0xffffffff)) {
2811 DPRINTF(MISC, "hot eject\n");
2812 return 0;
2813 }
2814
2815 if (__predict_false(!(reg_icr & IGC_ICR_INT_ASSERTED))) {
2816 DPRINTF(MISC, "not set IGC_ICR_INT_ASSERTED");
2817 return 0;
2818 }
2819
2820 /*
2821 * Only MSI-X interrupts have one-shot behavior by taking advantage
2822 * of the EIAC register. Thus, explicitly disable interrupts. This
2823 * also works around the MSI message reordering errata on certain
2824 * systems.
2825 */
2826 igc_disable_intr(sc);
2827
2828 mutex_enter(&txr->txr_lock);
2829 txmore = igc_txeof(txr, txlimit);
2830 mutex_exit(&txr->txr_lock);
2831 mutex_enter(&rxr->rxr_lock);
2832 rxmore = igc_rxeof(rxr, rxlimit);
2833 mutex_exit(&rxr->rxr_lock);
2834
2835 /* Link status change */
2836 // XXXX FreeBSD checks IGC_ICR_RXSEQ
2837 if (__predict_false(reg_icr & IGC_ICR_LSC)) {
2838 IGC_GLOBAL_EVENT(sc, link, 1);
2839 mutex_enter(&sc->sc_core_lock);
2840 sc->hw.mac.get_link_status = true;
2841 igc_update_link_status(sc);
2842 mutex_exit(&sc->sc_core_lock);
2843 }
2844
2845 if (txmore || rxmore) {
2846 IGC_QUEUE_EVENT(iq, req, 1);
2847 igc_sched_handle_queue(sc, iq);
2848 } else {
2849 igc_enable_intr(sc);
2850 }
2851
2852 return 1;
2853 }
2854
2855 static void
2856 igc_handle_queue(void *arg)
2857 {
2858 struct igc_queue *iq = arg;
2859 struct igc_softc *sc = iq->sc;
2860 struct tx_ring *txr = iq->txr;
2861 struct rx_ring *rxr = iq->rxr;
2862 const u_int txlimit = sc->sc_tx_process_limit,
2863 rxlimit = sc->sc_rx_process_limit;
2864 bool txmore, rxmore;
2865
2866 IGC_QUEUE_EVENT(iq, handleq, 1);
2867
2868 mutex_enter(&txr->txr_lock);
2869 txmore = igc_txeof(txr, txlimit);
2870 /* for ALTQ, dequeue from if_snd */
2871 if (txr->me == 0) {
2872 struct ifnet *ifp = &sc->sc_ec.ec_if;
2873
2874 igc_tx_common_locked(ifp, txr, IGC_TX_START);
2875 }
2876 mutex_exit(&txr->txr_lock);
2877
2878 mutex_enter(&rxr->rxr_lock);
2879 rxmore = igc_rxeof(rxr, rxlimit);
2880 mutex_exit(&rxr->rxr_lock);
2881
2882 if (txmore || rxmore) {
2883 igc_sched_handle_queue(sc, iq);
2884 } else {
2885 if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
2886 igc_enable_queue(sc, iq->eims);
2887 else
2888 igc_enable_intr(sc);
2889 }
2890 }
2891
2892 static void
2893 igc_handle_queue_work(struct work *wk, void *context)
2894 {
2895 struct igc_queue *iq =
2896 container_of(wk, struct igc_queue, igcq_wq_cookie);
2897
2898 igc_handle_queue(iq);
2899 }
2900
2901 static void
2902 igc_sched_handle_queue(struct igc_softc *sc, struct igc_queue *iq)
2903 {
2904
2905 if (iq->igcq_workqueue) {
2906 /* XXXRO notyet */
2907 workqueue_enqueue(sc->sc_queue_wq, &iq->igcq_wq_cookie,
2908 curcpu());
2909 } else {
2910 softint_schedule(iq->igcq_si);
2911 }
2912 }
2913
2914 static void
2915 igc_barrier_handle_queue(struct igc_softc *sc)
2916 {
2917
2918 if (sc->sc_txrx_workqueue) {
2919 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2920 struct igc_queue *q = &sc->queues[iq];
2921
2922 workqueue_wait(sc->sc_queue_wq, &q->igcq_wq_cookie);
2923 }
2924 } else {
2925 xc_barrier(0);
2926 }
2927 }
2928
2929 /*********************************************************************
2930 *
2931 * Allocate memory for tx_buffer structures. The tx_buffer stores all
2932 * the information needed to transmit a packet on the wire.
2933 *
2934 **********************************************************************/
2935 static int
2936 igc_allocate_transmit_buffers(struct tx_ring *txr)
2937 {
2938 struct igc_softc *sc = txr->sc;
2939 int error;
2940
2941 txr->tx_buffers =
2942 kmem_zalloc(sc->num_tx_desc * sizeof(struct igc_tx_buf), KM_SLEEP);
2943 txr->txtag = txr->txdma.dma_tag;
2944
2945 /* Create the descriptor buffer dma maps. */
2946 for (int id = 0; id < sc->num_tx_desc; id++) {
2947 struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
2948
2949 error = bus_dmamap_create(txr->txdma.dma_tag,
2950 round_page(IGC_TSO_SIZE + sizeof(struct ether_vlan_header)),
2951 IGC_MAX_SCATTER, PAGE_SIZE, 0, BUS_DMA_NOWAIT, &txbuf->map);
2952 if (error != 0) {
2953 aprint_error_dev(sc->sc_dev,
2954 "unable to create TX DMA map\n");
2955 goto fail;
2956 }
2957
2958 txbuf->eop_index = -1;
2959 }
2960
2961 return 0;
2962 fail:
2963 return error;
2964 }
2965
2966
2967 /*********************************************************************
2968 *
2969 * Allocate and initialize transmit structures.
2970 *
2971 **********************************************************************/
2972 static int
2973 igc_setup_transmit_structures(struct igc_softc *sc)
2974 {
2975
2976 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2977 struct tx_ring *txr = &sc->tx_rings[iq];
2978
2979 if (igc_setup_transmit_ring(txr))
2980 goto fail;
2981 }
2982
2983 return 0;
2984 fail:
2985 igc_free_transmit_structures(sc);
2986 return ENOBUFS;
2987 }
2988
2989 /*********************************************************************
2990 *
2991 * Initialize a transmit ring.
2992 *
2993 **********************************************************************/
2994 static int
2995 igc_setup_transmit_ring(struct tx_ring *txr)
2996 {
2997 struct igc_softc *sc = txr->sc;
2998
2999 /* Now allocate transmit buffers for the ring. */
3000 if (igc_allocate_transmit_buffers(txr))
3001 return ENOMEM;
3002
3003 /* Clear the old ring contents */
3004 memset(txr->tx_base, 0,
3005 sizeof(union igc_adv_tx_desc) * sc->num_tx_desc);
3006
3007 /* Reset indices. */
3008 txr->next_avail_desc = 0;
3009 txr->next_to_clean = 0;
3010
3011 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
3012 txr->txdma.dma_map->dm_mapsize,
3013 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3014
3015 txr->txr_interq = pcq_create(sc->num_tx_desc, KM_SLEEP);
3016
3017 mutex_init(&txr->txr_lock, MUTEX_DEFAULT, IPL_NET);
3018
3019 return 0;
3020 }
3021
3022 /*********************************************************************
3023 *
3024 * Enable transmit unit.
3025 *
3026 **********************************************************************/
3027 static void
3028 igc_initialize_transmit_unit(struct igc_softc *sc)
3029 {
3030 struct ifnet *ifp = &sc->sc_ec.ec_if;
3031 struct igc_hw *hw = &sc->hw;
3032
3033 /* Setup the Base and Length of the TX descriptor ring. */
3034 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3035 struct tx_ring *txr = &sc->tx_rings[iq];
3036 const uint64_t bus_addr =
3037 txr->txdma.dma_map->dm_segs[0].ds_addr;
3038
3039 /* Base and len of TX ring */
3040 IGC_WRITE_REG(hw, IGC_TDLEN(iq),
3041 sc->num_tx_desc * sizeof(union igc_adv_tx_desc));
3042 IGC_WRITE_REG(hw, IGC_TDBAH(iq), (uint32_t)(bus_addr >> 32));
3043 IGC_WRITE_REG(hw, IGC_TDBAL(iq), (uint32_t)bus_addr);
3044
3045 /* Init the HEAD/TAIL indices */
3046 IGC_WRITE_REG(hw, IGC_TDT(iq), 0 /* XXX txr->next_avail_desc */);
3047 IGC_WRITE_REG(hw, IGC_TDH(iq), 0);
3048
3049 txr->watchdog_timer = 0;
3050
3051 uint32_t txdctl = 0; /* Clear txdctl */
3052 txdctl |= 0x1f; /* PTHRESH */
3053 txdctl |= 1 << 8; /* HTHRESH */
3054 txdctl |= 1 << 16; /* WTHRESH */
3055 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3056 txdctl |= IGC_TXDCTL_GRAN;
3057 txdctl |= 1 << 25; /* LWTHRESH */
3058
3059 IGC_WRITE_REG(hw, IGC_TXDCTL(iq), txdctl);
3060 }
3061 ifp->if_timer = 0;
3062
3063 /* Program the Transmit Control Register */
3064 uint32_t tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
3065 tctl &= ~IGC_TCTL_CT;
3066 tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
3067 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
3068
3069 /* This write will effectively turn on the transmit unit. */
3070 IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
3071 }
3072
3073 /*********************************************************************
3074 *
3075 * Free all transmit rings.
3076 *
3077 **********************************************************************/
3078 static void
3079 igc_free_transmit_structures(struct igc_softc *sc)
3080 {
3081
3082 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3083 struct tx_ring *txr = &sc->tx_rings[iq];
3084
3085 igc_free_transmit_buffers(txr);
3086 }
3087 }
3088
3089 /*********************************************************************
3090 *
3091 * Free transmit ring related data structures.
3092 *
3093 **********************************************************************/
3094 static void
3095 igc_free_transmit_buffers(struct tx_ring *txr)
3096 {
3097 struct igc_softc *sc = txr->sc;
3098
3099 if (txr->tx_buffers == NULL)
3100 return;
3101
3102 igc_withdraw_transmit_packets(txr, true);
3103
3104 kmem_free(txr->tx_buffers,
3105 sc->num_tx_desc * sizeof(struct igc_tx_buf));
3106 txr->tx_buffers = NULL;
3107 txr->txtag = NULL;
3108
3109 pcq_destroy(txr->txr_interq);
3110 mutex_destroy(&txr->txr_lock);
3111 }
3112
3113 /*********************************************************************
3114 *
3115 * Withdraw transmit packets.
3116 *
3117 **********************************************************************/
3118 static void
3119 igc_withdraw_transmit_packets(struct tx_ring *txr, bool destroy)
3120 {
3121 struct igc_softc *sc = txr->sc;
3122 struct igc_queue *q = txr->txr_igcq;
3123
3124 mutex_enter(&txr->txr_lock);
3125
3126 for (int id = 0; id < sc->num_tx_desc; id++) {
3127 union igc_adv_tx_desc *txdesc = &txr->tx_base[id];
3128
3129 igc_txdesc_sync(txr, id,
3130 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3131 txdesc->read.buffer_addr = 0;
3132 txdesc->read.cmd_type_len = 0;
3133 txdesc->read.olinfo_status = 0;
3134 igc_txdesc_sync(txr, id,
3135 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3136
3137 struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
3138 bus_dmamap_t map = txbuf->map;
3139
3140 if (map != NULL && map->dm_nsegs > 0) {
3141 bus_dmamap_sync(txr->txdma.dma_tag, map,
3142 0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3143 bus_dmamap_unload(txr->txdma.dma_tag, map);
3144 }
3145 if (txbuf->m_head != NULL) {
3146 m_freem(txbuf->m_head);
3147 txbuf->m_head = NULL;
3148 }
3149 if (map != NULL && destroy) {
3150 bus_dmamap_destroy(txr->txdma.dma_tag, map);
3151 txbuf->map = NULL;
3152 }
3153 txbuf->eop_index = -1;
3154
3155 txr->next_avail_desc = 0;
3156 txr->next_to_clean = 0;
3157 }
3158
3159 struct mbuf *m;
3160 while ((m = pcq_get(txr->txr_interq)) != NULL) {
3161 IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
3162 m_freem(m);
3163 }
3164
3165 mutex_exit(&txr->txr_lock);
3166 }
3167
3168
3169 /*********************************************************************
3170 *
3171 * Advanced Context Descriptor setup for VLAN, CSUM or TSO
3172 *
3173 **********************************************************************/
3174
3175 static int
3176 igc_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
3177 uint32_t *cmd_type_len, uint32_t *olinfo_status)
3178 {
3179 struct ether_vlan_header *evl;
3180 uint32_t type_tucmd_mlhl = 0;
3181 uint32_t vlan_macip_lens = 0;
3182 uint32_t ehlen, iphlen;
3183 uint16_t ehtype;
3184 int off = 0;
3185
3186 const int csum_flags = mp->m_pkthdr.csum_flags;
3187
3188 /* First check if TSO is to be used */
3189 if ((csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
3190 return igc_tso_setup(txr, mp, prod, cmd_type_len,
3191 olinfo_status);
3192 }
3193
3194 const bool v4 = (csum_flags &
3195 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0;
3196 const bool v6 = (csum_flags & (M_CSUM_UDPv6 | M_CSUM_TCPv6)) != 0;
3197
3198 /* Indicate the whole packet as payload when not doing TSO */
3199 *olinfo_status |= mp->m_pkthdr.len << IGC_ADVTXD_PAYLEN_SHIFT;
3200
3201 /*
3202 * In advanced descriptors the vlan tag must
3203 * be placed into the context descriptor. Hence
3204 * we need to make one even if not doing offloads.
3205 */
3206 #if NVLAN > 0
3207 if (vlan_has_tag(mp)) {
3208 vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
3209 << IGC_ADVTXD_VLAN_SHIFT;
3210 off = 1;
3211 } else
3212 #endif
3213 if (!v4 && !v6)
3214 return 0;
3215
3216 KASSERT(mp->m_len >= sizeof(struct ether_header));
3217 evl = mtod(mp, struct ether_vlan_header *);
3218 if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3219 KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
3220 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3221 ehtype = evl->evl_proto;
3222 } else {
3223 ehlen = ETHER_HDR_LEN;
3224 ehtype = evl->evl_encap_proto;
3225 }
3226
3227 vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
3228
3229 #ifdef IGC_DEBUG
3230 /*
3231 * For checksum offloading, L3 headers are not mandatory.
3232 * We use these only for consistency checks.
3233 */
3234 struct ip *ip;
3235 struct ip6_hdr *ip6;
3236 uint8_t ipproto;
3237 char *l3d;
3238
3239 if (mp->m_len == ehlen && mp->m_next != NULL)
3240 l3d = mtod(mp->m_next, char *);
3241 else
3242 l3d = mtod(mp, char *) + ehlen;
3243 #endif
3244
3245 switch (ntohs(ehtype)) {
3246 case ETHERTYPE_IP:
3247 iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
3248 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
3249
3250 if ((csum_flags & M_CSUM_IPv4) != 0) {
3251 *olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
3252 off = 1;
3253 }
3254 #ifdef IGC_DEBUG
3255 KASSERT(!v6);
3256 ip = (void *)l3d;
3257 ipproto = ip->ip_p;
3258 KASSERT(iphlen == ip->ip_hl << 2);
3259 KASSERT((mp->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0 ||
3260 ip->ip_sum == 0);
3261 #endif
3262 break;
3263 case ETHERTYPE_IPV6:
3264 iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
3265 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
3266 #ifdef IGC_DEBUG
3267 KASSERT(!v4);
3268 ip6 = (void *)l3d;
3269 ipproto = ip6->ip6_nxt; /* XXX */
3270 KASSERT(iphlen == sizeof(struct ip6_hdr));
3271 #endif
3272 break;
3273 default:
3274 /*
3275 * Unknown L3 protocol. Clear L3 header length and proceed for
3276 * LAN as done by Linux driver.
3277 */
3278 iphlen = 0;
3279 #ifdef IGC_DEBUG
3280 KASSERT(!v4 && !v6);
3281 ipproto = 0;
3282 #endif
3283 break;
3284 }
3285
3286 vlan_macip_lens |= iphlen;
3287
3288 const bool tcp = (csum_flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0;
3289 const bool udp = (csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0;
3290
3291 if (tcp) {
3292 #ifdef IGC_DEBUG
3293 KASSERTMSG(ipproto == IPPROTO_TCP, "ipproto = %d", ipproto);
3294 #endif
3295 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
3296 *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3297 off = 1;
3298 } else if (udp) {
3299 #ifdef IGC_DEBUG
3300 KASSERTMSG(ipproto == IPPROTO_UDP, "ipproto = %d", ipproto);
3301 #endif
3302 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
3303 *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3304 off = 1;
3305 }
3306
3307 if (off == 0)
3308 return 0;
3309
3310 type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
3311
3312 /* Now ready a context descriptor */
3313 struct igc_adv_tx_context_desc *txdesc =
3314 (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
3315
3316 /* Now copy bits into descriptor */
3317 igc_txdesc_sync(txr, prod,
3318 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3319 htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
3320 htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
3321 htolem32(&txdesc->seqnum_seed, 0);
3322 htolem32(&txdesc->mss_l4len_idx, 0);
3323 igc_txdesc_sync(txr, prod,
3324 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3325
3326 return 1;
3327 }
3328
3329 /*********************************************************************
3330 *
3331 * Advanced Context Descriptor setup for TSO
3332 *
3333 * XXX XXXRO
3334 * Not working. Some packets are sent with correct csums, but
3335 * others aren't. th->th_sum may be adjusted.
3336 *
3337 **********************************************************************/
3338
3339 static int
3340 igc_tso_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
3341 uint32_t *cmd_type_len, uint32_t *olinfo_status)
3342 {
3343 #if 1 /* notyet */
3344 return 0;
3345 #else
3346 struct ether_vlan_header *evl;
3347 struct ip *ip;
3348 struct ip6_hdr *ip6;
3349 struct tcphdr *th;
3350 uint32_t type_tucmd_mlhl = 0;
3351 uint32_t vlan_macip_lens = 0;
3352 uint32_t mss_l4len_idx = 0;
3353 uint32_t ehlen, iphlen, tcphlen, paylen;
3354 uint16_t ehtype;
3355
3356 /*
3357 * In advanced descriptors the vlan tag must
3358 * be placed into the context descriptor. Hence
3359 * we need to make one even if not doing offloads.
3360 */
3361 #if NVLAN > 0
3362 if (vlan_has_tag(mp)) {
3363 vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
3364 << IGC_ADVTXD_VLAN_SHIFT;
3365 }
3366 #endif
3367
3368 KASSERT(mp->m_len >= sizeof(struct ether_header));
3369 evl = mtod(mp, struct ether_vlan_header *);
3370 if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3371 KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
3372 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3373 ehtype = evl->evl_proto;
3374 } else {
3375 ehlen = ETHER_HDR_LEN;
3376 ehtype = evl->evl_encap_proto;
3377 }
3378
3379 vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
3380
3381 switch (ntohs(ehtype)) {
3382 case ETHERTYPE_IP:
3383 iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
3384 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
3385 *olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
3386
3387 KASSERT(mp->m_len >= ehlen + sizeof(*ip));
3388 ip = (void *)(mtod(mp, char *) + ehlen);
3389 ip->ip_len = 0;
3390 KASSERT(iphlen == ip->ip_hl << 2);
3391 KASSERT(ip->ip_sum == 0);
3392 KASSERT(ip->ip_p == IPPROTO_TCP);
3393
3394 KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
3395 th = (void *)((char *)ip + iphlen);
3396 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, ip->ip_dst.s_addr,
3397 htons(IPPROTO_TCP));
3398 break;
3399 case ETHERTYPE_IPV6:
3400 iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
3401 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
3402
3403 KASSERT(mp->m_len >= ehlen + sizeof(*ip6));
3404 ip6 = (void *)(mtod(mp, char *) + ehlen);
3405 ip6->ip6_plen = 0;
3406 KASSERT(iphlen == sizeof(struct ip6_hdr));
3407 KASSERT(ip6->ip6_nxt == IPPROTO_TCP);
3408
3409 KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
3410 th = (void *)((char *)ip6 + iphlen);
3411 tcphlen = th->th_off << 2;
3412 paylen = mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
3413 th->th_sum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 0,
3414 htonl(IPPROTO_TCP));
3415 break;
3416 default:
3417 panic("%s", __func__);
3418 }
3419
3420 tcphlen = th->th_off << 2;
3421 paylen = mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
3422
3423 vlan_macip_lens |= iphlen;
3424
3425 type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
3426 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
3427
3428 mss_l4len_idx |= mp->m_pkthdr.segsz << IGC_ADVTXD_MSS_SHIFT;
3429 mss_l4len_idx |= tcphlen << IGC_ADVTXD_L4LEN_SHIFT;
3430
3431 /* Now ready a context descriptor */
3432 struct igc_adv_tx_context_desc *txdesc =
3433 (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
3434
3435 /* Now copy bits into descriptor */
3436 igc_txdesc_sync(txr, prod,
3437 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3438 htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
3439 htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
3440 htolem32(&txdesc->seqnum_seed, 0);
3441 htolem32(&txdesc->mss_l4len_idx, mss_l4len_idx);
3442 igc_txdesc_sync(txr, prod,
3443 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3444
3445 *cmd_type_len |= IGC_ADVTXD_DCMD_TSE;
3446 *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3447 *olinfo_status |= paylen << IGC_ADVTXD_PAYLEN_SHIFT;
3448
3449 return 1;
3450 #endif /* notyet */
3451 }
3452
3453 /*********************************************************************
3454 *
3455 * Allocate memory for rx_buffer structures. Since we use one
3456 * rx_buffer per received packet, the maximum number of rx_buffer's
3457 * that we'll need is equal to the number of receive descriptors
3458 * that we've allocated.
3459 *
3460 **********************************************************************/
3461 static int
3462 igc_allocate_receive_buffers(struct rx_ring *rxr)
3463 {
3464 struct igc_softc *sc = rxr->sc;
3465 int error;
3466
3467 rxr->rx_buffers =
3468 kmem_zalloc(sc->num_rx_desc * sizeof(struct igc_rx_buf), KM_SLEEP);
3469
3470 for (int id = 0; id < sc->num_rx_desc; id++) {
3471 struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
3472
3473 error = bus_dmamap_create(rxr->rxdma.dma_tag, MCLBYTES, 1,
3474 MCLBYTES, 0, BUS_DMA_WAITOK, &rxbuf->map);
3475 if (error) {
3476 aprint_error_dev(sc->sc_dev,
3477 "unable to create RX DMA map\n");
3478 goto fail;
3479 }
3480 }
3481 bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
3482 rxr->rxdma.dma_map->dm_mapsize,
3483 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3484
3485 return 0;
3486 fail:
3487 return error;
3488 }
3489
3490 /*********************************************************************
3491 *
3492 * Allocate and initialize receive structures.
3493 *
3494 **********************************************************************/
3495 static int
3496 igc_setup_receive_structures(struct igc_softc *sc)
3497 {
3498
3499 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3500 struct rx_ring *rxr = &sc->rx_rings[iq];
3501
3502 if (igc_setup_receive_ring(rxr))
3503 goto fail;
3504 }
3505
3506 return 0;
3507 fail:
3508 igc_free_receive_structures(sc);
3509 return ENOBUFS;
3510 }
3511
3512 /*********************************************************************
3513 *
3514 * Initialize a receive ring and its buffers.
3515 *
3516 **********************************************************************/
3517 static int
3518 igc_setup_receive_ring(struct rx_ring *rxr)
3519 {
3520 struct igc_softc *sc = rxr->sc;
3521 const int rsize = roundup2(
3522 sc->num_rx_desc * sizeof(union igc_adv_rx_desc), IGC_DBA_ALIGN);
3523
3524 /* Clear the ring contents. */
3525 memset(rxr->rx_base, 0, rsize);
3526
3527 if (igc_allocate_receive_buffers(rxr))
3528 return ENOMEM;
3529
3530 /* Setup our descriptor indices. */
3531 rxr->next_to_check = 0;
3532 rxr->last_desc_filled = 0;
3533
3534 mutex_init(&rxr->rxr_lock, MUTEX_DEFAULT, IPL_NET);
3535
3536 return 0;
3537 }
3538
3539 /*********************************************************************
3540 *
3541 * Enable receive unit.
3542 *
3543 **********************************************************************/
3544 static void
3545 igc_initialize_receive_unit(struct igc_softc *sc)
3546 {
3547 struct ifnet *ifp = &sc->sc_ec.ec_if;
3548 struct igc_hw *hw = &sc->hw;
3549 uint32_t rctl, rxcsum, srrctl;
3550
3551 DPRINTF(RX, "called\n");
3552
3553 /*
3554 * Make sure receives are disabled while setting
3555 * up the descriptor ring.
3556 */
3557 rctl = IGC_READ_REG(hw, IGC_RCTL);
3558 IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
3559
3560 /* Setup the Receive Control Register */
3561 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
3562 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
3563 IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
3564
3565 #if 1
3566 /* Do not store bad packets */
3567 rctl &= ~IGC_RCTL_SBP;
3568 #else
3569 /* for debug */
3570 rctl |= IGC_RCTL_SBP;
3571 #endif
3572
3573 /* Enable Long Packet receive */
3574 if (sc->hw.mac.max_frame_size > ETHER_MAX_LEN)
3575 rctl |= IGC_RCTL_LPE;
3576 else
3577 rctl &= ~IGC_RCTL_LPE;
3578
3579 /* Strip the CRC */
3580 rctl |= IGC_RCTL_SECRC;
3581
3582 /*
3583 * Set the interrupt throttling rate. Value is calculated
3584 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3585 *
3586 * XXX Sync with Linux, especially for jumbo MTU or TSO.
3587 * XXX Shouldn't be here?
3588 */
3589 IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
3590
3591 rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
3592 rxcsum &= ~(IGC_RXCSUM_IPOFL | IGC_RXCSUM_TUOFL | IGC_RXCSUM_PCSD);
3593 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3594 rxcsum |= IGC_RXCSUM_IPOFL;
3595 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
3596 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
3597 rxcsum |= IGC_RXCSUM_TUOFL;
3598 if (sc->sc_nqueues > 1)
3599 rxcsum |= IGC_RXCSUM_PCSD;
3600 IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
3601
3602 if (sc->sc_nqueues > 1)
3603 igc_initialize_rss_mapping(sc);
3604
3605 srrctl = 0;
3606 #if 0
3607 srrctl |= 4096 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
3608 rctl |= IGC_RCTL_SZ_4096 | IGC_RCTL_BSEX;
3609 #else
3610 srrctl |= 2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
3611 rctl |= IGC_RCTL_SZ_2048;
3612 #endif
3613
3614 /*
3615 * If TX flow control is disabled and there's > 1 queue defined,
3616 * enable DROP.
3617 *
3618 * This drops frames rather than hanging the RX MAC for all queues.
3619 */
3620 if (sc->sc_nqueues > 1 &&
3621 (sc->fc == igc_fc_none || sc->fc == igc_fc_rx_pause))
3622 srrctl |= IGC_SRRCTL_DROP_EN;
3623
3624 /* Setup the Base and Length of the RX descriptor rings. */
3625 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3626 struct rx_ring *rxr = &sc->rx_rings[iq];
3627 const uint64_t bus_addr =
3628 rxr->rxdma.dma_map->dm_segs[0].ds_addr;
3629
3630 IGC_WRITE_REG(hw, IGC_RXDCTL(iq), 0);
3631
3632 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
3633
3634 IGC_WRITE_REG(hw, IGC_RDLEN(iq),
3635 sc->num_rx_desc * sizeof(union igc_adv_rx_desc));
3636 IGC_WRITE_REG(hw, IGC_RDBAH(iq), (uint32_t)(bus_addr >> 32));
3637 IGC_WRITE_REG(hw, IGC_RDBAL(iq), (uint32_t)bus_addr);
3638 IGC_WRITE_REG(hw, IGC_SRRCTL(iq), srrctl);
3639
3640 /* Setup the Head and Tail Descriptor Pointers */
3641 IGC_WRITE_REG(hw, IGC_RDH(iq), 0);
3642 IGC_WRITE_REG(hw, IGC_RDT(iq), 0 /* XXX rxr->last_desc_filled */);
3643
3644 /* Enable this Queue */
3645 uint32_t rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(iq));
3646 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
3647 rxdctl &= 0xFFF00000;
3648 rxdctl |= IGC_RX_PTHRESH;
3649 rxdctl |= IGC_RX_HTHRESH << 8;
3650 rxdctl |= IGC_RX_WTHRESH << 16;
3651 IGC_WRITE_REG(hw, IGC_RXDCTL(iq), rxdctl);
3652 }
3653
3654 /* Make sure VLAN Filters are off */
3655 rctl &= ~IGC_RCTL_VFE;
3656
3657 /* Write out the settings */
3658 IGC_WRITE_REG(hw, IGC_RCTL, rctl);
3659 }
3660
3661 /*********************************************************************
3662 *
3663 * Free all receive rings.
3664 *
3665 **********************************************************************/
3666 static void
3667 igc_free_receive_structures(struct igc_softc *sc)
3668 {
3669
3670 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3671 struct rx_ring *rxr = &sc->rx_rings[iq];
3672
3673 igc_free_receive_buffers(rxr);
3674 }
3675 }
3676
3677 /*********************************************************************
3678 *
3679 * Free receive ring data structures
3680 *
3681 **********************************************************************/
3682 static void
3683 igc_free_receive_buffers(struct rx_ring *rxr)
3684 {
3685 struct igc_softc *sc = rxr->sc;
3686
3687 if (rxr->rx_buffers != NULL) {
3688 for (int id = 0; id < sc->num_rx_desc; id++) {
3689 struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
3690 bus_dmamap_t map = rxbuf->map;
3691
3692 if (rxbuf->buf != NULL) {
3693 bus_dmamap_sync(rxr->rxdma.dma_tag, map,
3694 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
3695 bus_dmamap_unload(rxr->rxdma.dma_tag, map);
3696 m_freem(rxbuf->buf);
3697 rxbuf->buf = NULL;
3698 }
3699 bus_dmamap_destroy(rxr->rxdma.dma_tag, map);
3700 rxbuf->map = NULL;
3701 }
3702 kmem_free(rxr->rx_buffers,
3703 sc->num_rx_desc * sizeof(struct igc_rx_buf));
3704 rxr->rx_buffers = NULL;
3705 }
3706
3707 mutex_destroy(&rxr->rxr_lock);
3708 }
3709
3710 /*********************************************************************
3711 *
3712 * Clear status registers in all RX descriptors.
3713 *
3714 **********************************************************************/
3715 static void
3716 igc_clear_receive_status(struct rx_ring *rxr)
3717 {
3718 struct igc_softc *sc = rxr->sc;
3719
3720 mutex_enter(&rxr->rxr_lock);
3721
3722 for (int id = 0; id < sc->num_rx_desc; id++) {
3723 union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
3724
3725 igc_rxdesc_sync(rxr, id,
3726 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3727 rxdesc->wb.upper.status_error = 0;
3728 igc_rxdesc_sync(rxr, id,
3729 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3730 }
3731
3732 mutex_exit(&rxr->rxr_lock);
3733 }
3734
3735 /*
3736 * Initialise the RSS mapping for NICs that support multiple transmit/
3737 * receive rings.
3738 */
3739 static void
3740 igc_initialize_rss_mapping(struct igc_softc *sc)
3741 {
3742 struct igc_hw *hw = &sc->hw;
3743
3744 /*
3745 * The redirection table controls which destination
3746 * queue each bucket redirects traffic to.
3747 * Each DWORD represents four queues, with the LSB
3748 * being the first queue in the DWORD.
3749 *
3750 * This just allocates buckets to queues using round-robin
3751 * allocation.
3752 *
3753 * NOTE: It Just Happens to line up with the default
3754 * RSS allocation method.
3755 */
3756
3757 /* Warning FM follows */
3758 uint32_t reta = 0;
3759 for (int i = 0; i < 128; i++) {
3760 const int shift = 0; /* XXXRO */
3761 int queue_id = i % sc->sc_nqueues;
3762 /* Adjust if required */
3763 queue_id <<= shift;
3764
3765 /*
3766 * The low 8 bits are for hash value (n+0);
3767 * The next 8 bits are for hash value (n+1), etc.
3768 */
3769 reta >>= 8;
3770 reta |= ((uint32_t)queue_id) << 24;
3771 if ((i & 3) == 3) {
3772 IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
3773 reta = 0;
3774 }
3775 }
3776
3777 /*
3778 * MRQC: Multiple Receive Queues Command
3779 * Set queuing to RSS control, number depends on the device.
3780 */
3781
3782 /* Set up random bits */
3783 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3784 rss_getkey((uint8_t *)rss_key);
3785
3786 /* Now fill our hash function seeds */
3787 for (int i = 0; i < __arraycount(rss_key); i++)
3788 IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
3789
3790 /*
3791 * Configure the RSS fields to hash upon.
3792 */
3793 uint32_t mrqc = IGC_MRQC_ENABLE_RSS_4Q;
3794 mrqc |= IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP;
3795 mrqc |= IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP;
3796 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
3797
3798 IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
3799 }
3800
3801 /*
3802 * igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3803 * For ASF and Pass Through versions of f/w this means
3804 * that the driver is loaded. For AMT version type f/w
3805 * this means that the network i/f is open.
3806 */
3807 static void
3808 igc_get_hw_control(struct igc_softc *sc)
3809 {
3810 const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
3811
3812 IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
3813 }
3814
3815 /*
3816 * igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3817 * For ASF and Pass Through versions of f/w this means that
3818 * the driver is no longer loaded. For AMT versions of the
3819 * f/w this means that the network i/f is closed.
3820 */
3821 static void
3822 igc_release_hw_control(struct igc_softc *sc)
3823 {
3824 const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
3825
3826 IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
3827 }
3828
3829 static int
3830 igc_is_valid_ether_addr(uint8_t *addr)
3831 {
3832 const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3833
3834 if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3835 return 0;
3836
3837 return 1;
3838 }
3839
3840 static void
3841 igc_print_devinfo(struct igc_softc *sc)
3842 {
3843 device_t dev = sc->sc_dev;
3844 struct igc_hw *hw = &sc->hw;
3845 struct igc_phy_info *phy = &hw->phy;
3846 u_int oui, model, rev;
3847 uint16_t id1, id2, nvm_ver, phy_ver, etk_lo, etk_hi;
3848 char descr[MII_MAX_DESCR_LEN];
3849
3850 /* Print PHY Info */
3851 id1 = phy->id >> 16;
3852 /* The revision field in phy->id is cleard and it's in phy->revision */
3853 id2 = (phy->id & 0xfff0) | phy->revision;
3854 oui = MII_OUI(id1, id2);
3855 model = MII_MODEL(id2);
3856 rev = MII_REV(id2);
3857 mii_get_descr(descr, sizeof(descr), oui, model);
3858 if (descr[0])
3859 aprint_normal_dev(dev, "PHY: %s, rev. %d",
3860 descr, rev);
3861 else
3862 aprint_normal_dev(dev,
3863 "PHY OUI 0x%06x, model 0x%04x, rev. %d",
3864 oui, model, rev);
3865
3866 /* PHY FW version */
3867 phy->ops.read_reg(hw, 0x1e, &phy_ver);
3868 aprint_normal(", PHY FW version 0x%04hx\n", phy_ver);
3869
3870 /* NVM version */
3871 hw->nvm.ops.read(hw, NVM_VERSION, 1, &nvm_ver);
3872
3873 /* EtrackID */
3874 hw->nvm.ops.read(hw, NVM_ETKID_LO, 1, &etk_lo);
3875 hw->nvm.ops.read(hw, NVM_ETKID_HI, 1, &etk_hi);
3876
3877 aprint_normal_dev(dev,
3878 "NVM image version %x.%02x, EtrackID %04hx%04hx\n",
3879 (nvm_ver & NVM_VERSION_MAJOR) >> NVM_VERSION_MAJOR_SHIFT,
3880 nvm_ver & NVM_VERSION_MINOR, etk_hi, etk_lo);
3881 }
3882