if_igc.c revision 1.9 1 /* $NetBSD: if_igc.c,v 1.9 2023/12/20 18:09:19 skrll Exp $ */
2 /* $OpenBSD: if_igc.c,v 1.13 2023/04/28 10:18:57 bluhm Exp $ */
3 /*-
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 2016 Nicole Graziano <nicole (at) nextbsd.org>
7 * All rights reserved.
8 * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_igc.c,v 1.9 2023/12/20 18:09:19 skrll Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_if_igc.h"
37 #if 0 /* notyet */
38 #include "vlan.h"
39 #endif
40 #endif
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bus.h>
45 #include <sys/cpu.h>
46 #include <sys/device.h>
47 #include <sys/endian.h>
48 #include <sys/intr.h>
49 #include <sys/interrupt.h>
50 #include <sys/kernel.h>
51 #include <sys/kmem.h>
52 #include <sys/mbuf.h>
53 #include <sys/mutex.h>
54 #include <sys/socket.h>
55 #include <sys/workqueue.h>
56 #include <sys/xcall.h>
57
58 #include <net/bpf.h>
59 #include <net/if.h>
60 #include <net/if_ether.h>
61 #include <net/if_media.h>
62 #include <net/if_vlanvar.h>
63 #include <net/rss_config.h>
64
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/ip6.h>
68 #include <netinet/tcp.h>
69
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcireg.h>
72 #include <dev/pci/pcidevs.h>
73
74 #include <dev/pci/igc/if_igc.h>
75 #include <dev/pci/igc/igc_evcnt.h>
76 #include <dev/pci/igc/igc_hw.h>
77 #include <dev/mii/miivar.h>
78
79 #define IGC_WORKQUEUE_PRI PRI_SOFTNET
80
81 #ifndef IGC_RX_INTR_PROCESS_LIMIT_DEFAULT
82 #define IGC_RX_INTR_PROCESS_LIMIT_DEFAULT 0
83 #endif
84 #ifndef IGC_TX_INTR_PROCESS_LIMIT_DEFAULT
85 #define IGC_TX_INTR_PROCESS_LIMIT_DEFAULT 0
86 #endif
87
88 #ifndef IGC_RX_PROCESS_LIMIT_DEFAULT
89 #define IGC_RX_PROCESS_LIMIT_DEFAULT 256
90 #endif
91 #ifndef IGC_TX_PROCESS_LIMIT_DEFAULT
92 #define IGC_TX_PROCESS_LIMIT_DEFAULT 256
93 #endif
94
95 #define htolem32(p, x) (*((uint32_t *)(p)) = htole32(x))
96 #define htolem64(p, x) (*((uint64_t *)(p)) = htole64(x))
97
98 static const struct igc_product {
99 pci_vendor_id_t igcp_vendor;
100 pci_product_id_t igcp_product;
101 const char *igcp_name;
102 } igc_products[] = {
103 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_IT,
104 "Intel(R) Ethernet Controller I225-IT(2)" },
105 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LM,
106 "Intel(R) Ethernet Controller I226-LM" },
107 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_V,
108 "Intel(R) Ethernet Controller I226-V" },
109 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_IT,
110 "Intel(R) Ethernet Controller I226-IT" },
111 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I221_V,
112 "Intel(R) Ethernet Controller I221-V" },
113 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_BLANK_NVM,
114 "Intel(R) Ethernet Controller I226(blankNVM)" },
115 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LM,
116 "Intel(R) Ethernet Controller I225-LM" },
117 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_V,
118 "Intel(R) Ethernet Controller I225-V" },
119 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I220_V,
120 "Intel(R) Ethernet Controller I220-V" },
121 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_I,
122 "Intel(R) Ethernet Controller I225-I" },
123 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_BLANK_NVM,
124 "Intel(R) Ethernet Controller I225(blankNVM)" },
125 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K,
126 "Intel(R) Ethernet Controller I225-K" },
127 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_K2,
128 "Intel(R) Ethernet Controller I225-K(2)" },
129 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_K,
130 "Intel(R) Ethernet Controller I226-K" },
131 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I225_LMVP,
132 "Intel(R) Ethernet Controller I225-LMvP(2)" },
133 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_I226_LMVP,
134 "Intel(R) Ethernet Controller I226-LMvP" },
135 { 0, 0, NULL },
136 };
137
138 #define IGC_DF_CFG 0x1
139 #define IGC_DF_TX 0x2
140 #define IGC_DF_RX 0x4
141 #define IGC_DF_MISC 0x8
142
143 #ifdef IGC_DEBUG_FLAGS
144 int igc_debug_flags = IGC_DEBUG_FLAGS;
145 #else
146 int igc_debug_flags = 0;
147 #endif
148
149 #define DPRINTF(flag, fmt, args...) do { \
150 if (igc_debug_flags & (IGC_DF_ ## flag)) \
151 printf("%s: %d: " fmt, __func__, __LINE__, ##args); \
152 } while (0)
153
154 /*********************************************************************
155 * Function Prototypes
156 *********************************************************************/
157 static int igc_match(device_t, cfdata_t, void *);
158 static void igc_attach(device_t, device_t, void *);
159 static int igc_detach(device_t, int);
160
161 static void igc_identify_hardware(struct igc_softc *);
162 static int igc_adjust_nqueues(struct igc_softc *);
163 static int igc_allocate_pci_resources(struct igc_softc *);
164 static int igc_allocate_interrupts(struct igc_softc *);
165 static int igc_allocate_queues(struct igc_softc *);
166 static void igc_free_pci_resources(struct igc_softc *);
167 static void igc_free_interrupts(struct igc_softc *);
168 static void igc_free_queues(struct igc_softc *);
169 static void igc_reset(struct igc_softc *);
170 static void igc_init_dmac(struct igc_softc *, uint32_t);
171 static int igc_setup_interrupts(struct igc_softc *);
172 static void igc_attach_counters(struct igc_softc *sc);
173 static void igc_detach_counters(struct igc_softc *sc);
174 static void igc_update_counters(struct igc_softc *sc);
175 static void igc_clear_counters(struct igc_softc *sc);
176 static int igc_setup_msix(struct igc_softc *);
177 static int igc_setup_msi(struct igc_softc *);
178 static int igc_setup_intx(struct igc_softc *);
179 static int igc_dma_malloc(struct igc_softc *, bus_size_t,
180 struct igc_dma_alloc *);
181 static void igc_dma_free(struct igc_softc *, struct igc_dma_alloc *);
182 static void igc_setup_interface(struct igc_softc *);
183
184 static int igc_init(struct ifnet *);
185 static int igc_init_locked(struct igc_softc *);
186 static void igc_start(struct ifnet *);
187 static int igc_transmit(struct ifnet *, struct mbuf *);
188 static void igc_tx_common_locked(struct ifnet *, struct tx_ring *, int);
189 static bool igc_txeof(struct tx_ring *, u_int);
190 static void igc_intr_barrier(struct igc_softc *);
191 static void igc_stop(struct ifnet *, int);
192 static void igc_stop_locked(struct igc_softc *);
193 static int igc_ioctl(struct ifnet *, u_long, void *);
194 #ifdef IF_RXR
195 static int igc_rxrinfo(struct igc_softc *, struct if_rxrinfo *);
196 #endif
197 static void igc_rxfill(struct rx_ring *);
198 static void igc_rxrefill(struct rx_ring *, int);
199 static bool igc_rxeof(struct rx_ring *, u_int);
200 static int igc_rx_checksum(struct igc_queue *, uint64_t, uint32_t,
201 uint32_t);
202 static void igc_watchdog(struct ifnet *);
203 static void igc_tick(void *);
204 static void igc_media_status(struct ifnet *, struct ifmediareq *);
205 static int igc_media_change(struct ifnet *);
206 static int igc_ifflags_cb(struct ethercom *);
207 static void igc_set_filter(struct igc_softc *);
208 static void igc_update_link_status(struct igc_softc *);
209 static int igc_get_buf(struct rx_ring *, int, bool);
210 static int igc_tx_ctx_setup(struct tx_ring *, struct mbuf *, int,
211 uint32_t *, uint32_t *);
212 static int igc_tso_setup(struct tx_ring *, struct mbuf *, int,
213 uint32_t *, uint32_t *);
214
215 static void igc_configure_queues(struct igc_softc *);
216 static void igc_set_queues(struct igc_softc *, uint32_t, uint32_t, int);
217 static void igc_enable_queue(struct igc_softc *, uint32_t);
218 static void igc_enable_intr(struct igc_softc *);
219 static void igc_disable_intr(struct igc_softc *);
220 static int igc_intr_link(void *);
221 static int igc_intr_queue(void *);
222 static int igc_intr(void *);
223 static void igc_handle_queue(void *);
224 static void igc_handle_queue_work(struct work *, void *);
225 static void igc_sched_handle_queue(struct igc_softc *, struct igc_queue *);
226 static void igc_barrier_handle_queue(struct igc_softc *);
227
228 static int igc_allocate_transmit_buffers(struct tx_ring *);
229 static int igc_setup_transmit_structures(struct igc_softc *);
230 static int igc_setup_transmit_ring(struct tx_ring *);
231 static void igc_initialize_transmit_unit(struct igc_softc *);
232 static void igc_free_transmit_structures(struct igc_softc *);
233 static void igc_free_transmit_buffers(struct tx_ring *);
234 static void igc_withdraw_transmit_packets(struct tx_ring *, bool);
235 static int igc_allocate_receive_buffers(struct rx_ring *);
236 static int igc_setup_receive_structures(struct igc_softc *);
237 static int igc_setup_receive_ring(struct rx_ring *);
238 static void igc_initialize_receive_unit(struct igc_softc *);
239 static void igc_free_receive_structures(struct igc_softc *);
240 static void igc_free_receive_buffers(struct rx_ring *);
241 static void igc_clear_receive_status(struct rx_ring *);
242 static void igc_initialize_rss_mapping(struct igc_softc *);
243
244 static void igc_get_hw_control(struct igc_softc *);
245 static void igc_release_hw_control(struct igc_softc *);
246 static int igc_is_valid_ether_addr(uint8_t *);
247 static void igc_print_devinfo(struct igc_softc *);
248
249 CFATTACH_DECL3_NEW(igc, sizeof(struct igc_softc),
250 igc_match, igc_attach, igc_detach, NULL, NULL, NULL, 0);
251
252 static inline int
253 igc_txdesc_incr(struct igc_softc *sc, int id)
254 {
255
256 if (++id == sc->num_tx_desc)
257 id = 0;
258 return id;
259 }
260
261 static inline int __unused
262 igc_txdesc_decr(struct igc_softc *sc, int id)
263 {
264
265 if (--id < 0)
266 id = sc->num_tx_desc - 1;
267 return id;
268 }
269
270 static inline void
271 igc_txdesc_sync(struct tx_ring *txr, int id, int ops)
272 {
273
274 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
275 id * sizeof(union igc_adv_tx_desc), sizeof(union igc_adv_tx_desc),
276 ops);
277 }
278
279 static inline int
280 igc_rxdesc_incr(struct igc_softc *sc, int id)
281 {
282
283 if (++id == sc->num_rx_desc)
284 id = 0;
285 return id;
286 }
287
288 static inline int
289 igc_rxdesc_decr(struct igc_softc *sc, int id)
290 {
291
292 if (--id < 0)
293 id = sc->num_rx_desc - 1;
294 return id;
295 }
296
297 static inline void
298 igc_rxdesc_sync(struct rx_ring *rxr, int id, int ops)
299 {
300
301 bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
302 id * sizeof(union igc_adv_rx_desc), sizeof(union igc_adv_rx_desc),
303 ops);
304 }
305
306 static const struct igc_product *
307 igc_lookup(const struct pci_attach_args *pa)
308 {
309 const struct igc_product *igcp;
310
311 for (igcp = igc_products; igcp->igcp_name != NULL; igcp++) {
312 if (PCI_VENDOR(pa->pa_id) == igcp->igcp_vendor &&
313 PCI_PRODUCT(pa->pa_id) == igcp->igcp_product)
314 return igcp;
315 }
316 return NULL;
317 }
318
319 /*********************************************************************
320 * Device identification routine
321 *
322 * igc_match determines if the driver should be loaded on
323 * adapter based on PCI vendor/device id of the adapter.
324 *
325 * return 0 on success, positive on failure
326 *********************************************************************/
327 static int
328 igc_match(device_t parent, cfdata_t match, void *aux)
329 {
330 struct pci_attach_args *pa = aux;
331
332 if (igc_lookup(pa) != NULL)
333 return 1;
334
335 return 0;
336 }
337
338 /*********************************************************************
339 * Device initialization routine
340 *
341 * The attach entry point is called when the driver is being loaded.
342 * This routine identifies the type of hardware, allocates all resources
343 * and initializes the hardware.
344 *
345 * return 0 on success, positive on failure
346 *********************************************************************/
347 static void
348 igc_attach(device_t parent, device_t self, void *aux)
349 {
350 struct pci_attach_args *pa = aux;
351 struct igc_softc *sc = device_private(self);
352 struct igc_hw *hw = &sc->hw;
353
354 const struct igc_product *igcp = igc_lookup(pa);
355 KASSERT(igcp != NULL);
356
357 sc->sc_dev = self;
358 callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE);
359 callout_setfunc(&sc->sc_tick_ch, igc_tick, sc);
360 sc->sc_core_stopping = false;
361
362 sc->osdep.os_sc = sc;
363 sc->osdep.os_pa = *pa;
364 #ifndef __aarch64__
365 /*
366 * XXX PR port-arm/57643
367 * 64-bit DMA does not work at least for LX2K with 32/64GB memory.
368 * smmu(4) support may be required.
369 */
370 if (pci_dma64_available(pa)) {
371 aprint_verbose(", 64-bit DMA");
372 sc->osdep.os_dmat = pa->pa_dmat64;
373 } else
374 #endif
375 {
376 aprint_verbose(", 32-bit DMA");
377 sc->osdep.os_dmat = pa->pa_dmat;
378 }
379
380 pci_aprint_devinfo_fancy(pa, "Ethernet controller", igcp->igcp_name, 1);
381
382 /* Determine hardware and mac info */
383 igc_identify_hardware(sc);
384
385 sc->num_tx_desc = IGC_DEFAULT_TXD;
386 sc->num_rx_desc = IGC_DEFAULT_RXD;
387
388 /* Setup PCI resources */
389 if (igc_allocate_pci_resources(sc)) {
390 aprint_error_dev(sc->sc_dev,
391 "unable to allocate PCI resources\n");
392 goto err_pci;
393 }
394
395 if (igc_allocate_interrupts(sc)) {
396 aprint_error_dev(sc->sc_dev, "unable to allocate interrupts\n");
397 goto err_pci;
398 }
399
400 /* Allocate TX/RX queues */
401 if (igc_allocate_queues(sc)) {
402 aprint_error_dev(sc->sc_dev, "unable to allocate queues\n");
403 goto err_alloc_intr;
404 }
405
406 /* Do shared code initialization */
407 if (igc_setup_init_funcs(hw, true)) {
408 aprint_error_dev(sc->sc_dev, "unable to initialize\n");
409 goto err_alloc_intr;
410 }
411
412 hw->mac.autoneg = DO_AUTO_NEG;
413 hw->phy.autoneg_wait_to_complete = false;
414 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
415
416 /* Copper options. */
417 if (hw->phy.media_type == igc_media_type_copper)
418 hw->phy.mdix = AUTO_ALL_MODES;
419
420 /* Set the max frame size. */
421 sc->hw.mac.max_frame_size = 9234;
422
423 /* Allocate multicast array memory. */
424 sc->mta = kmem_alloc(IGC_MTA_LEN, KM_SLEEP);
425
426 /* Check SOL/IDER usage. */
427 if (igc_check_reset_block(hw)) {
428 aprint_error_dev(sc->sc_dev,
429 "PHY reset is blocked due to SOL/IDER session\n");
430 }
431
432 /* Disable Energy Efficient Ethernet. */
433 sc->hw.dev_spec._i225.eee_disable = true;
434
435 igc_reset_hw(hw);
436
437 /* Make sure we have a good EEPROM before we read from it. */
438 if (igc_validate_nvm_checksum(hw) < 0) {
439 /*
440 * Some PCI-E parts fail the first check due to
441 * the link being in sleep state, call it again,
442 * if it fails a second time its a real issue.
443 */
444 if (igc_validate_nvm_checksum(hw) < 0) {
445 aprint_error_dev(sc->sc_dev,
446 "EEPROM checksum invalid\n");
447 goto err_late;
448 }
449 }
450
451 /* Copy the permanent MAC address out of the EEPROM. */
452 if (igc_read_mac_addr(hw) < 0) {
453 aprint_error_dev(sc->sc_dev,
454 "unable to read MAC address from EEPROM\n");
455 goto err_late;
456 }
457
458 if (!igc_is_valid_ether_addr(hw->mac.addr)) {
459 aprint_error_dev(sc->sc_dev, "invalid MAC address\n");
460 goto err_late;
461 }
462
463 if (igc_setup_interrupts(sc))
464 goto err_late;
465
466 /* Attach counters. */
467 igc_attach_counters(sc);
468
469 /* Setup OS specific network interface. */
470 igc_setup_interface(sc);
471
472 igc_print_devinfo(sc);
473
474 igc_reset(sc);
475 hw->mac.get_link_status = true;
476 igc_update_link_status(sc);
477
478 /* The driver can now take control from firmware. */
479 igc_get_hw_control(sc);
480
481 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
482 ether_sprintf(sc->hw.mac.addr));
483
484 if (pmf_device_register(self, NULL, NULL))
485 pmf_class_network_register(self, &sc->sc_ec.ec_if);
486 else
487 aprint_error_dev(self, "couldn't establish power handler\n");
488
489 return;
490
491 err_late:
492 igc_release_hw_control(sc);
493 err_alloc_intr:
494 igc_free_interrupts(sc);
495 err_pci:
496 igc_free_pci_resources(sc);
497 kmem_free(sc->mta, IGC_MTA_LEN);
498 }
499
500 /*********************************************************************
501 * Device removal routine
502 *
503 * The detach entry point is called when the driver is being removed.
504 * This routine stops the adapter and deallocates all the resources
505 * that were allocated for driver operation.
506 *
507 * return 0 on success, positive on failure
508 *********************************************************************/
509 static int
510 igc_detach(device_t self, int flags)
511 {
512 struct igc_softc *sc = device_private(self);
513 struct ifnet *ifp = &sc->sc_ec.ec_if;
514
515 mutex_enter(&sc->sc_core_lock);
516 igc_stop_locked(sc);
517 mutex_exit(&sc->sc_core_lock);
518
519 igc_detach_counters(sc);
520
521 igc_free_queues(sc);
522
523 igc_phy_hw_reset(&sc->hw);
524 igc_release_hw_control(sc);
525
526 ether_ifdetach(ifp);
527 if_detach(ifp);
528 ifmedia_fini(&sc->media);
529
530 igc_free_interrupts(sc);
531 igc_free_pci_resources(sc);
532 kmem_free(sc->mta, IGC_MTA_LEN);
533
534 mutex_destroy(&sc->sc_core_lock);
535
536 return 0;
537 }
538
539 static void
540 igc_identify_hardware(struct igc_softc *sc)
541 {
542 struct igc_osdep *os = &sc->osdep;
543 struct pci_attach_args *pa = &os->os_pa;
544
545 /* Save off the information about this board. */
546 sc->hw.device_id = PCI_PRODUCT(pa->pa_id);
547
548 /* Do shared code init and setup. */
549 if (igc_set_mac_type(&sc->hw)) {
550 aprint_error_dev(sc->sc_dev, "unable to identify hardware\n");
551 return;
552 }
553 }
554
555 static int
556 igc_allocate_pci_resources(struct igc_softc *sc)
557 {
558 struct igc_osdep *os = &sc->osdep;
559 struct pci_attach_args *pa = &os->os_pa;
560
561 /*
562 * Enable bus mastering and memory-mapped I/O for sure.
563 */
564 pcireg_t csr =
565 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
566 csr |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE;
567 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
568
569 const pcireg_t memtype =
570 pci_mapreg_type(pa->pa_pc, pa->pa_tag, IGC_PCIREG);
571 if (pci_mapreg_map(pa, IGC_PCIREG, memtype, 0, &os->os_memt,
572 &os->os_memh, &os->os_membase, &os->os_memsize)) {
573 aprint_error_dev(sc->sc_dev, "unable to map registers\n");
574 return ENXIO;
575 }
576
577 sc->hw.hw_addr = os->os_membase;
578 sc->hw.back = os;
579
580 return 0;
581 }
582
583 static int __unused
584 igc_adjust_nqueues(struct igc_softc *sc)
585 {
586 struct pci_attach_args *pa = &sc->osdep.os_pa;
587 int nqueues = MIN(IGC_MAX_NQUEUES, ncpu);
588
589 const int nmsix = pci_msix_count(pa->pa_pc, pa->pa_tag);
590 if (nmsix <= 1)
591 nqueues = 1;
592 else if (nmsix < nqueues + 1)
593 nqueues = nmsix - 1;
594
595 return nqueues;
596 }
597
598 static int
599 igc_allocate_interrupts(struct igc_softc *sc)
600 {
601 struct pci_attach_args *pa = &sc->osdep.os_pa;
602 int error;
603
604 #ifndef IGC_DISABLE_MSIX
605 const int nqueues = igc_adjust_nqueues(sc);
606 if (nqueues > 1) {
607 sc->sc_nintrs = nqueues + 1;
608 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
609 if (!error) {
610 sc->sc_nqueues = nqueues;
611 sc->sc_intr_type = PCI_INTR_TYPE_MSIX;
612 return 0;
613 }
614 }
615 #endif
616
617 /* fallback to MSI */
618 sc->sc_nintrs = sc->sc_nqueues = 1;
619
620 #ifndef IGC_DISABLE_MSI
621 error = pci_msi_alloc_exact(pa, &sc->sc_intrs, sc->sc_nintrs);
622 if (!error) {
623 sc->sc_intr_type = PCI_INTR_TYPE_MSI;
624 return 0;
625 }
626 #endif
627
628 /* fallback to INTx */
629
630 error = pci_intx_alloc(pa, &sc->sc_intrs);
631 if (!error) {
632 sc->sc_intr_type = PCI_INTR_TYPE_INTX;
633 return 0;
634 }
635
636 return error;
637 }
638
639 static int
640 igc_allocate_queues(struct igc_softc *sc)
641 {
642 device_t dev = sc->sc_dev;
643 int rxconf = 0, txconf = 0;
644
645 /* Allocate the top level queue structs. */
646 sc->queues =
647 kmem_zalloc(sc->sc_nqueues * sizeof(struct igc_queue), KM_SLEEP);
648
649 /* Allocate the TX ring. */
650 sc->tx_rings =
651 kmem_zalloc(sc->sc_nqueues * sizeof(struct tx_ring), KM_SLEEP);
652
653 /* Allocate the RX ring. */
654 sc->rx_rings =
655 kmem_zalloc(sc->sc_nqueues * sizeof(struct rx_ring), KM_SLEEP);
656
657 /* Set up the TX queues. */
658 for (int iq = 0; iq < sc->sc_nqueues; iq++, txconf++) {
659 struct tx_ring *txr = &sc->tx_rings[iq];
660 const int tsize = roundup2(
661 sc->num_tx_desc * sizeof(union igc_adv_tx_desc),
662 IGC_DBA_ALIGN);
663
664 txr->sc = sc;
665 txr->txr_igcq = &sc->queues[iq];
666 txr->me = iq;
667 if (igc_dma_malloc(sc, tsize, &txr->txdma)) {
668 aprint_error_dev(dev,
669 "unable to allocate TX descriptor\n");
670 goto fail;
671 }
672 txr->tx_base = (union igc_adv_tx_desc *)txr->txdma.dma_vaddr;
673 memset(txr->tx_base, 0, tsize);
674 }
675
676 /* Prepare transmit descriptors and buffers. */
677 if (igc_setup_transmit_structures(sc)) {
678 aprint_error_dev(dev, "unable to setup transmit structures\n");
679 goto fail;
680 }
681
682 /* Set up the RX queues. */
683 for (int iq = 0; iq < sc->sc_nqueues; iq++, rxconf++) {
684 struct rx_ring *rxr = &sc->rx_rings[iq];
685 const int rsize = roundup2(
686 sc->num_rx_desc * sizeof(union igc_adv_rx_desc),
687 IGC_DBA_ALIGN);
688
689 rxr->sc = sc;
690 rxr->rxr_igcq = &sc->queues[iq];
691 rxr->me = iq;
692 #ifdef OPENBSD
693 timeout_set(&rxr->rx_refill, igc_rxrefill, rxr);
694 #endif
695 if (igc_dma_malloc(sc, rsize, &rxr->rxdma)) {
696 aprint_error_dev(dev,
697 "unable to allocate RX descriptor\n");
698 goto fail;
699 }
700 rxr->rx_base = (union igc_adv_rx_desc *)rxr->rxdma.dma_vaddr;
701 memset(rxr->rx_base, 0, rsize);
702 }
703
704 sc->rx_mbuf_sz = MCLBYTES;
705 /* Prepare receive descriptors and buffers. */
706 if (igc_setup_receive_structures(sc)) {
707 aprint_error_dev(sc->sc_dev,
708 "unable to setup receive structures\n");
709 goto fail;
710 }
711
712 /* Set up the queue holding structs. */
713 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
714 struct igc_queue *q = &sc->queues[iq];
715
716 q->sc = sc;
717 q->txr = &sc->tx_rings[iq];
718 q->rxr = &sc->rx_rings[iq];
719 }
720
721 return 0;
722
723 fail:
724 for (struct rx_ring *rxr = sc->rx_rings; rxconf > 0; rxr++, rxconf--)
725 igc_dma_free(sc, &rxr->rxdma);
726 for (struct tx_ring *txr = sc->tx_rings; txconf > 0; txr++, txconf--)
727 igc_dma_free(sc, &txr->txdma);
728
729 kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
730 sc->rx_rings = NULL;
731 kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
732 sc->tx_rings = NULL;
733 kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
734 sc->queues = NULL;
735
736 return ENOMEM;
737 }
738
739 static void
740 igc_free_pci_resources(struct igc_softc *sc)
741 {
742 struct igc_osdep *os = &sc->osdep;
743
744 if (os->os_membase != 0)
745 bus_space_unmap(os->os_memt, os->os_memh, os->os_memsize);
746 os->os_membase = 0;
747 }
748
749 static void
750 igc_free_interrupts(struct igc_softc *sc)
751 {
752 struct pci_attach_args *pa = &sc->osdep.os_pa;
753 pci_chipset_tag_t pc = pa->pa_pc;
754
755 for (int i = 0; i < sc->sc_nintrs; i++) {
756 if (sc->sc_ihs[i] != NULL) {
757 pci_intr_disestablish(pc, sc->sc_ihs[i]);
758 sc->sc_ihs[i] = NULL;
759 }
760 }
761 pci_intr_release(pc, sc->sc_intrs, sc->sc_nintrs);
762 }
763
764 static void
765 igc_free_queues(struct igc_softc *sc)
766 {
767
768 igc_free_receive_structures(sc);
769 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
770 struct rx_ring *rxr = &sc->rx_rings[iq];
771
772 igc_dma_free(sc, &rxr->rxdma);
773 }
774
775 igc_free_transmit_structures(sc);
776 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
777 struct tx_ring *txr = &sc->tx_rings[iq];
778
779 igc_dma_free(sc, &txr->txdma);
780 }
781
782 kmem_free(sc->rx_rings, sc->sc_nqueues * sizeof(struct rx_ring));
783 kmem_free(sc->tx_rings, sc->sc_nqueues * sizeof(struct tx_ring));
784 kmem_free(sc->queues, sc->sc_nqueues * sizeof(struct igc_queue));
785 }
786
787 /*********************************************************************
788 *
789 * Initialize the hardware to a configuration as specified by the
790 * adapter structure.
791 *
792 **********************************************************************/
793 static void
794 igc_reset(struct igc_softc *sc)
795 {
796 struct igc_hw *hw = &sc->hw;
797
798 /* Let the firmware know the OS is in control */
799 igc_get_hw_control(sc);
800
801 /*
802 * Packet Buffer Allocation (PBA)
803 * Writing PBA sets the receive portion of the buffer
804 * the remainder is used for the transmit buffer.
805 */
806 const uint32_t pba = IGC_PBA_34K;
807
808 /*
809 * These parameters control the automatic generation (Tx) and
810 * response (Rx) to Ethernet PAUSE frames.
811 * - High water mark should allow for at least two frames to be
812 * received after sending an XOFF.
813 * - Low water mark works best when it is very near the high water mark.
814 * This allows the receiver to restart by sending XON when it has
815 * drained a bit. Here we use an arbitrary value of 1500 which will
816 * restart after one full frame is pulled from the buffer. There
817 * could be several smaller frames in the buffer and if so they will
818 * not trigger the XON until their total number reduces the buffer
819 * by 1500.
820 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
821 */
822 const uint16_t rx_buffer_size = (pba & 0xffff) << 10;
823
824 hw->fc.high_water = rx_buffer_size -
825 roundup2(sc->hw.mac.max_frame_size, 1024);
826 /* 16-byte granularity */
827 hw->fc.low_water = hw->fc.high_water - 16;
828
829 if (sc->fc) /* locally set flow control value? */
830 hw->fc.requested_mode = sc->fc;
831 else
832 hw->fc.requested_mode = igc_fc_full;
833
834 hw->fc.pause_time = IGC_FC_PAUSE_TIME;
835
836 hw->fc.send_xon = true;
837
838 /* Issue a global reset */
839 igc_reset_hw(hw);
840 IGC_WRITE_REG(hw, IGC_WUC, 0);
841
842 /* and a re-init */
843 if (igc_init_hw(hw) < 0) {
844 aprint_error_dev(sc->sc_dev, "unable to reset hardware\n");
845 return;
846 }
847
848 /* Setup DMA Coalescing */
849 igc_init_dmac(sc, pba);
850
851 IGC_WRITE_REG(hw, IGC_VET, ETHERTYPE_VLAN);
852 igc_get_phy_info(hw);
853 igc_check_for_link(hw);
854 }
855
856 /*********************************************************************
857 *
858 * Initialize the DMA Coalescing feature
859 *
860 **********************************************************************/
861 static void
862 igc_init_dmac(struct igc_softc *sc, uint32_t pba)
863 {
864 struct igc_hw *hw = &sc->hw;
865 const uint16_t max_frame_size = sc->hw.mac.max_frame_size;
866 uint32_t reg, status;
867
868 if (sc->dmac == 0) { /* Disabling it */
869 reg = ~IGC_DMACR_DMAC_EN; /* XXXRO */
870 IGC_WRITE_REG(hw, IGC_DMACR, reg);
871 DPRINTF(MISC, "DMA coalescing disabled\n");
872 return;
873 } else {
874 device_printf(sc->sc_dev, "DMA coalescing enabled\n");
875 }
876
877 /* Set starting threshold */
878 IGC_WRITE_REG(hw, IGC_DMCTXTH, 0);
879
880 uint16_t hwm = 64 * pba - max_frame_size / 16;
881 if (hwm < 64 * (pba - 6))
882 hwm = 64 * (pba - 6);
883 reg = IGC_READ_REG(hw, IGC_FCRTC);
884 reg &= ~IGC_FCRTC_RTH_COAL_MASK;
885 reg |= (hwm << IGC_FCRTC_RTH_COAL_SHIFT) & IGC_FCRTC_RTH_COAL_MASK;
886 IGC_WRITE_REG(hw, IGC_FCRTC, reg);
887
888 uint32_t dmac = pba - max_frame_size / 512;
889 if (dmac < pba - 10)
890 dmac = pba - 10;
891 reg = IGC_READ_REG(hw, IGC_DMACR);
892 reg &= ~IGC_DMACR_DMACTHR_MASK;
893 reg |= (dmac << IGC_DMACR_DMACTHR_SHIFT) & IGC_DMACR_DMACTHR_MASK;
894
895 /* transition to L0x or L1 if available..*/
896 reg |= IGC_DMACR_DMAC_EN | IGC_DMACR_DMAC_LX_MASK;
897
898 /* Check if status is 2.5Gb backplane connection
899 * before configuration of watchdog timer, which is
900 * in msec values in 12.8usec intervals
901 * watchdog timer= msec values in 32usec intervals
902 * for non 2.5Gb connection
903 */
904 status = IGC_READ_REG(hw, IGC_STATUS);
905 if ((status & IGC_STATUS_2P5_SKU) &&
906 !(status & IGC_STATUS_2P5_SKU_OVER))
907 reg |= (sc->dmac * 5) >> 6;
908 else
909 reg |= sc->dmac >> 5;
910
911 IGC_WRITE_REG(hw, IGC_DMACR, reg);
912
913 IGC_WRITE_REG(hw, IGC_DMCRTRH, 0);
914
915 /* Set the interval before transition */
916 reg = IGC_READ_REG(hw, IGC_DMCTLX);
917 reg |= IGC_DMCTLX_DCFLUSH_DIS;
918
919 /*
920 * in 2.5Gb connection, TTLX unit is 0.4 usec
921 * which is 0x4*2 = 0xA. But delay is still 4 usec
922 */
923 status = IGC_READ_REG(hw, IGC_STATUS);
924 if ((status & IGC_STATUS_2P5_SKU) &&
925 !(status & IGC_STATUS_2P5_SKU_OVER))
926 reg |= 0xA;
927 else
928 reg |= 0x4;
929
930 IGC_WRITE_REG(hw, IGC_DMCTLX, reg);
931
932 /* free space in tx packet buffer to wake from DMA coal */
933 IGC_WRITE_REG(hw, IGC_DMCTXTH,
934 (IGC_TXPBSIZE - (2 * max_frame_size)) >> 6);
935
936 /* make low power state decision controlled by DMA coal */
937 reg = IGC_READ_REG(hw, IGC_PCIEMISC);
938 reg &= ~IGC_PCIEMISC_LX_DECISION;
939 IGC_WRITE_REG(hw, IGC_PCIEMISC, reg);
940 }
941
942 static int
943 igc_setup_interrupts(struct igc_softc *sc)
944 {
945 int error;
946
947 switch (sc->sc_intr_type) {
948 case PCI_INTR_TYPE_MSIX:
949 error = igc_setup_msix(sc);
950 break;
951 case PCI_INTR_TYPE_MSI:
952 error = igc_setup_msi(sc);
953 break;
954 case PCI_INTR_TYPE_INTX:
955 error = igc_setup_intx(sc);
956 break;
957 default:
958 panic("%s: invalid interrupt type: %d",
959 device_xname(sc->sc_dev), sc->sc_intr_type);
960 }
961
962 return error;
963 }
964
965 static void
966 igc_attach_counters(struct igc_softc *sc)
967 {
968 #ifdef IGC_EVENT_COUNTERS
969
970 /* Global counters */
971 sc->sc_global_evcnts = kmem_zalloc(
972 IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts[0]), KM_SLEEP);
973
974 for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++) {
975 evcnt_attach_dynamic(&sc->sc_global_evcnts[cnt],
976 igc_global_counters[cnt].type, NULL,
977 device_xname(sc->sc_dev), igc_global_counters[cnt].name);
978 }
979
980 /* Driver counters */
981 sc->sc_driver_evcnts = kmem_zalloc(
982 IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts[0]), KM_SLEEP);
983
984 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
985 evcnt_attach_dynamic(&sc->sc_driver_evcnts[cnt],
986 igc_driver_counters[cnt].type, NULL,
987 device_xname(sc->sc_dev), igc_driver_counters[cnt].name);
988 }
989
990 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
991 struct igc_queue *q = &sc->queues[iq];
992
993 q->igcq_driver_counters = kmem_zalloc(
994 IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]),
995 KM_SLEEP);
996 }
997
998 /* Queue counters */
999 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1000 struct igc_queue *q = &sc->queues[iq];
1001
1002 snprintf(q->igcq_queue_evname, sizeof(q->igcq_queue_evname),
1003 "%s q%d", device_xname(sc->sc_dev), iq);
1004
1005 q->igcq_queue_evcnts = kmem_zalloc(
1006 IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]),
1007 KM_SLEEP);
1008
1009 for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++) {
1010 evcnt_attach_dynamic(&q->igcq_queue_evcnts[cnt],
1011 igc_queue_counters[cnt].type, NULL,
1012 q->igcq_queue_evname, igc_queue_counters[cnt].name);
1013 }
1014 }
1015
1016 /* MAC counters */
1017 snprintf(sc->sc_mac_evname, sizeof(sc->sc_mac_evname),
1018 "%s Mac Statistics", device_xname(sc->sc_dev));
1019
1020 sc->sc_mac_evcnts = kmem_zalloc(
1021 IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]), KM_SLEEP);
1022
1023 for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1024 evcnt_attach_dynamic(&sc->sc_mac_evcnts[cnt], EVCNT_TYPE_MISC,
1025 NULL, sc->sc_mac_evname, igc_mac_counters[cnt].name);
1026 }
1027 #endif
1028 }
1029
1030 static void
1031 igc_detach_counters(struct igc_softc *sc)
1032 {
1033 #ifdef IGC_EVENT_COUNTERS
1034
1035 /* Global counters */
1036 for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
1037 evcnt_detach(&sc->sc_global_evcnts[cnt]);
1038
1039 kmem_free(sc->sc_global_evcnts,
1040 IGC_GLOBAL_COUNTERS * sizeof(sc->sc_global_evcnts));
1041
1042 /* Driver counters */
1043 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1044 struct igc_queue *q = &sc->queues[iq];
1045
1046 kmem_free(q->igcq_driver_counters,
1047 IGC_DRIVER_COUNTERS * sizeof(q->igcq_driver_counters[0]));
1048 }
1049
1050 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1051 evcnt_detach(&sc->sc_driver_evcnts[cnt]);
1052
1053 kmem_free(sc->sc_driver_evcnts,
1054 IGC_DRIVER_COUNTERS * sizeof(sc->sc_driver_evcnts));
1055
1056 /* Queue counters */
1057 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1058 struct igc_queue *q = &sc->queues[iq];
1059
1060 for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
1061 evcnt_detach(&q->igcq_queue_evcnts[cnt]);
1062
1063 kmem_free(q->igcq_queue_evcnts,
1064 IGC_QUEUE_COUNTERS * sizeof(q->igcq_queue_evcnts[0]));
1065 }
1066
1067 /* MAC statistics */
1068 for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++)
1069 evcnt_detach(&sc->sc_mac_evcnts[cnt]);
1070
1071 kmem_free(sc->sc_mac_evcnts,
1072 IGC_MAC_COUNTERS * sizeof(sc->sc_mac_evcnts[0]));
1073 #endif
1074 }
1075
1076 /*
1077 * XXX
1078 * FreeBSD uses 4-byte-wise read for 64-bit counters, while Linux just
1079 * drops hi words.
1080 */
1081 static inline uint64_t __unused
1082 igc_read_mac_counter(struct igc_hw *hw, bus_size_t reg, bool is64)
1083 {
1084 uint64_t val;
1085
1086 val = IGC_READ_REG(hw, reg);
1087 if (is64)
1088 val += ((uint64_t)IGC_READ_REG(hw, reg + 4)) << 32;
1089 return val;
1090 }
1091
1092 static void
1093 igc_update_counters(struct igc_softc *sc)
1094 {
1095 #ifdef IGC_EVENT_COUNTERS
1096
1097 /* Global counters: nop */
1098
1099 /* Driver counters */
1100 uint64_t sum[IGC_DRIVER_COUNTERS];
1101
1102 memset(sum, 0, sizeof(sum));
1103 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1104 struct igc_queue *q = &sc->queues[iq];
1105
1106 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++) {
1107 sum[cnt] += IGC_QUEUE_DRIVER_COUNTER_VAL(q, cnt);
1108 IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
1109 }
1110 }
1111
1112 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1113 IGC_DRIVER_COUNTER_ADD(sc, cnt, sum[cnt]);
1114
1115 /* Queue counters: nop */
1116
1117 /* Mac statistics */
1118 struct igc_hw *hw = &sc->hw;
1119
1120 for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1121 IGC_MAC_COUNTER_ADD(sc, cnt, igc_read_mac_counter(hw,
1122 igc_mac_counters[cnt].reg, igc_mac_counters[cnt].is64));
1123 }
1124 #endif
1125 }
1126
1127 static void
1128 igc_clear_counters(struct igc_softc *sc)
1129 {
1130 #ifdef IGC_EVENT_COUNTERS
1131
1132 /* Global counters */
1133 for (int cnt = 0; cnt < IGC_GLOBAL_COUNTERS; cnt++)
1134 IGC_GLOBAL_COUNTER_STORE(sc, cnt, 0);
1135
1136 /* Driver counters */
1137 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1138 struct igc_queue *q = &sc->queues[iq];
1139
1140 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1141 IGC_QUEUE_DRIVER_COUNTER_STORE(q, cnt, 0);
1142 }
1143
1144 for (int cnt = 0; cnt < IGC_DRIVER_COUNTERS; cnt++)
1145 IGC_DRIVER_COUNTER_STORE(sc, cnt, 0);
1146
1147 /* Queue counters */
1148 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1149 struct igc_queue *q = &sc->queues[iq];
1150
1151 for (int cnt = 0; cnt < IGC_QUEUE_COUNTERS; cnt++)
1152 IGC_QUEUE_COUNTER_STORE(q, cnt, 0);
1153 }
1154
1155 /* Mac statistics */
1156 struct igc_hw *hw = &sc->hw;
1157
1158 for (int cnt = 0; cnt < IGC_MAC_COUNTERS; cnt++) {
1159 (void)igc_read_mac_counter(hw, igc_mac_counters[cnt].reg,
1160 igc_mac_counters[cnt].is64);
1161 IGC_MAC_COUNTER_STORE(sc, cnt, 0);
1162 }
1163 #endif
1164 }
1165
1166 static int
1167 igc_setup_msix(struct igc_softc *sc)
1168 {
1169 pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1170 device_t dev = sc->sc_dev;
1171 pci_intr_handle_t *intrs;
1172 void **ihs;
1173 const char *intrstr;
1174 char intrbuf[PCI_INTRSTR_LEN];
1175 char xnamebuf[MAX(32, MAXCOMLEN)];
1176 int iq, error;
1177
1178 for (iq = 0, intrs = sc->sc_intrs, ihs = sc->sc_ihs;
1179 iq < sc->sc_nqueues; iq++, intrs++, ihs++) {
1180 struct igc_queue *q = &sc->queues[iq];
1181
1182 snprintf(xnamebuf, sizeof(xnamebuf), "%s: txrx %d",
1183 device_xname(dev), iq);
1184
1185 intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
1186
1187 pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
1188 *ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
1189 igc_intr_queue, q, xnamebuf);
1190 if (*ihs == NULL) {
1191 aprint_error_dev(dev,
1192 "unable to establish txrx interrupt at %s\n",
1193 intrstr);
1194 return ENOBUFS;
1195 }
1196 aprint_normal_dev(dev, "txrx interrupting at %s\n", intrstr);
1197
1198 kcpuset_t *affinity;
1199 kcpuset_create(&affinity, true);
1200 kcpuset_set(affinity, iq % ncpu);
1201 error = interrupt_distribute(*ihs, affinity, NULL);
1202 if (error) {
1203 aprint_normal_dev(dev,
1204 "%s: unable to change affinity, use default CPU\n",
1205 intrstr);
1206 }
1207 kcpuset_destroy(affinity);
1208
1209 q->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1210 igc_handle_queue, q);
1211 if (q->igcq_si == NULL) {
1212 aprint_error_dev(dev,
1213 "%s: unable to establish softint\n", intrstr);
1214 return ENOBUFS;
1215 }
1216
1217 q->msix = iq;
1218 q->eims = 1 << iq;
1219 }
1220
1221 snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
1222 error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
1223 igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
1224 WQ_PERCPU | WQ_MPSAFE);
1225 if (error) {
1226 aprint_error_dev(dev, "workqueue_create failed\n");
1227 return ENOBUFS;
1228 }
1229 sc->sc_txrx_workqueue = false;
1230
1231 intrstr = pci_intr_string(pc, *intrs, intrbuf, sizeof(intrbuf));
1232 snprintf(xnamebuf, sizeof(xnamebuf), "%s: link", device_xname(dev));
1233 pci_intr_setattr(pc, intrs, PCI_INTR_MPSAFE, true);
1234 *ihs = pci_intr_establish_xname(pc, *intrs, IPL_NET,
1235 igc_intr_link, sc, xnamebuf);
1236 if (*ihs == NULL) {
1237 aprint_error_dev(dev,
1238 "unable to establish link interrupt at %s\n", intrstr);
1239 return ENOBUFS;
1240 }
1241 aprint_normal_dev(dev, "link interrupting at %s\n", intrstr);
1242 /* use later in igc_configure_queues() */
1243 sc->linkvec = iq;
1244
1245 return 0;
1246 }
1247
1248 static int
1249 igc_setup_msi(struct igc_softc *sc)
1250 {
1251 pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1252 device_t dev = sc->sc_dev;
1253 pci_intr_handle_t *intr = sc->sc_intrs;
1254 void **ihs = sc->sc_ihs;
1255 const char *intrstr;
1256 char intrbuf[PCI_INTRSTR_LEN];
1257 char xnamebuf[MAX(32, MAXCOMLEN)];
1258 int error;
1259
1260 intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
1261
1262 snprintf(xnamebuf, sizeof(xnamebuf), "%s: msi", device_xname(dev));
1263 pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
1264 *ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
1265 igc_intr, sc, xnamebuf);
1266 if (*ihs == NULL) {
1267 aprint_error_dev(dev,
1268 "unable to establish interrupt at %s\n", intrstr);
1269 return ENOBUFS;
1270 }
1271 aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
1272
1273 struct igc_queue *iq = sc->queues;
1274 iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1275 igc_handle_queue, iq);
1276 if (iq->igcq_si == NULL) {
1277 aprint_error_dev(dev,
1278 "%s: unable to establish softint\n", intrstr);
1279 return ENOBUFS;
1280 }
1281
1282 snprintf(xnamebuf, MAXCOMLEN, "%s_tx_rx", device_xname(dev));
1283 error = workqueue_create(&sc->sc_queue_wq, xnamebuf,
1284 igc_handle_queue_work, sc, IGC_WORKQUEUE_PRI, IPL_NET,
1285 WQ_PERCPU | WQ_MPSAFE);
1286 if (error) {
1287 aprint_error_dev(dev, "workqueue_create failed\n");
1288 return ENOBUFS;
1289 }
1290 sc->sc_txrx_workqueue = false;
1291
1292 sc->queues[0].msix = 0;
1293 sc->linkvec = 0;
1294
1295 return 0;
1296 }
1297
1298 static int
1299 igc_setup_intx(struct igc_softc *sc)
1300 {
1301 pci_chipset_tag_t pc = sc->osdep.os_pa.pa_pc;
1302 device_t dev = sc->sc_dev;
1303 pci_intr_handle_t *intr = sc->sc_intrs;
1304 void **ihs = sc->sc_ihs;
1305 const char *intrstr;
1306 char intrbuf[PCI_INTRSTR_LEN];
1307 char xnamebuf[32];
1308
1309 intrstr = pci_intr_string(pc, *intr, intrbuf, sizeof(intrbuf));
1310
1311 snprintf(xnamebuf, sizeof(xnamebuf), "%s:intx", device_xname(dev));
1312 pci_intr_setattr(pc, intr, PCI_INTR_MPSAFE, true);
1313 *ihs = pci_intr_establish_xname(pc, *intr, IPL_NET,
1314 igc_intr, sc, xnamebuf);
1315 if (*ihs == NULL) {
1316 aprint_error_dev(dev,
1317 "unable to establish interrupt at %s\n", intrstr);
1318 return ENOBUFS;
1319 }
1320 aprint_normal_dev(dev, "interrupting at %s\n", intrstr);
1321
1322 struct igc_queue *iq = sc->queues;
1323 iq->igcq_si = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1324 igc_handle_queue, iq);
1325 if (iq->igcq_si == NULL) {
1326 aprint_error_dev(dev,
1327 "%s: unable to establish softint\n", intrstr);
1328 return ENOBUFS;
1329 }
1330
1331 /* create workqueue? */
1332 sc->sc_txrx_workqueue = false;
1333
1334 sc->queues[0].msix = 0;
1335 sc->linkvec = 0;
1336
1337 return 0;
1338 }
1339
1340 static int
1341 igc_dma_malloc(struct igc_softc *sc, bus_size_t size, struct igc_dma_alloc *dma)
1342 {
1343 struct igc_osdep *os = &sc->osdep;
1344
1345 dma->dma_tag = os->os_dmat;
1346
1347 if (bus_dmamap_create(dma->dma_tag, size, 1, size, 0,
1348 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->dma_map))
1349 return 1;
1350 if (bus_dmamem_alloc(dma->dma_tag, size, PAGE_SIZE, 0, &dma->dma_seg,
1351 1, &dma->dma_nseg, BUS_DMA_WAITOK))
1352 goto destroy;
1353 /*
1354 * XXXRO
1355 *
1356 * Coherent mapping for descriptors is required for now.
1357 *
1358 * Both TX and RX descriptors are 16-byte length, which is shorter
1359 * than dcache lines on modern CPUs. Therefore, sync for a descriptor
1360 * may overwrite DMA read for descriptors in the same cache line.
1361 *
1362 * Can't we avoid this by use cache-line-aligned descriptors at once?
1363 */
1364 if (bus_dmamem_map(dma->dma_tag, &dma->dma_seg, dma->dma_nseg, size,
1365 &dma->dma_vaddr, BUS_DMA_WAITOK | BUS_DMA_COHERENT /* XXXRO */))
1366 goto free;
1367 if (bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
1368 NULL, BUS_DMA_WAITOK))
1369 goto unmap;
1370
1371 dma->dma_size = size;
1372
1373 return 0;
1374 unmap:
1375 bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
1376 free:
1377 bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
1378 destroy:
1379 bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1380 dma->dma_map = NULL;
1381 dma->dma_tag = NULL;
1382 return 1;
1383 }
1384
1385 static void
1386 igc_dma_free(struct igc_softc *sc, struct igc_dma_alloc *dma)
1387 {
1388
1389 if (dma->dma_tag == NULL)
1390 return;
1391
1392 if (dma->dma_map != NULL) {
1393 bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0,
1394 dma->dma_map->dm_mapsize,
1395 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1396 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1397 bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, dma->dma_size);
1398 bus_dmamem_free(dma->dma_tag, &dma->dma_seg, dma->dma_nseg);
1399 bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1400 dma->dma_map = NULL;
1401 }
1402 }
1403
1404 /*********************************************************************
1405 *
1406 * Setup networking device structure and register an interface.
1407 *
1408 **********************************************************************/
1409 static void
1410 igc_setup_interface(struct igc_softc *sc)
1411 {
1412 struct ifnet *ifp = &sc->sc_ec.ec_if;
1413
1414 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
1415 ifp->if_softc = sc;
1416 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1417 ifp->if_extflags = IFEF_MPSAFE;
1418 ifp->if_ioctl = igc_ioctl;
1419 ifp->if_start = igc_start;
1420 if (sc->sc_nqueues > 1)
1421 ifp->if_transmit = igc_transmit;
1422 ifp->if_watchdog = igc_watchdog;
1423 ifp->if_init = igc_init;
1424 ifp->if_stop = igc_stop;
1425
1426 #if 0 /* notyet */
1427 ifp->if_capabilities = IFCAP_TSOv4 | IFCAP_TSOv6;
1428 #endif
1429
1430 ifp->if_capabilities |=
1431 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1432 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1433 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1434 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
1435 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
1436
1437 ifp->if_capenable = 0;
1438
1439 sc->sc_ec.ec_capabilities |=
1440 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
1441
1442 IFQ_SET_MAXLEN(&ifp->if_snd, sc->num_tx_desc - 1);
1443 IFQ_SET_READY(&ifp->if_snd);
1444
1445 #if NVLAN > 0
1446 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
1447 #endif
1448
1449 mutex_init(&sc->sc_core_lock, MUTEX_DEFAULT, IPL_NET);
1450
1451 /* Initialize ifmedia structures. */
1452 sc->sc_ec.ec_ifmedia = &sc->media;
1453 ifmedia_init_with_lock(&sc->media, IFM_IMASK, igc_media_change,
1454 igc_media_status, &sc->sc_core_lock);
1455 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1456 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1457 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1458 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1459 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1460 ifmedia_add(&sc->media, IFM_ETHER | IFM_2500_T | IFM_FDX, 0, NULL);
1461 ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1462 ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1463
1464 sc->sc_rx_intr_process_limit = IGC_RX_INTR_PROCESS_LIMIT_DEFAULT;
1465 sc->sc_tx_intr_process_limit = IGC_TX_INTR_PROCESS_LIMIT_DEFAULT;
1466 sc->sc_rx_process_limit = IGC_RX_PROCESS_LIMIT_DEFAULT;
1467 sc->sc_tx_process_limit = IGC_TX_PROCESS_LIMIT_DEFAULT;
1468
1469 if_initialize(ifp);
1470 sc->sc_ipq = if_percpuq_create(ifp);
1471 if_deferred_start_init(ifp, NULL);
1472 ether_ifattach(ifp, sc->hw.mac.addr);
1473 ether_set_ifflags_cb(&sc->sc_ec, igc_ifflags_cb);
1474 if_register(ifp);
1475 }
1476
1477 static int
1478 igc_init(struct ifnet *ifp)
1479 {
1480 struct igc_softc *sc = ifp->if_softc;
1481 int error;
1482
1483 mutex_enter(&sc->sc_core_lock);
1484 error = igc_init_locked(sc);
1485 mutex_exit(&sc->sc_core_lock);
1486
1487 return error;
1488 }
1489
1490 static int
1491 igc_init_locked(struct igc_softc *sc)
1492 {
1493 struct ethercom *ec = &sc->sc_ec;
1494 struct ifnet *ifp = &ec->ec_if;
1495
1496 DPRINTF(CFG, "called\n");
1497
1498 KASSERT(mutex_owned(&sc->sc_core_lock));
1499
1500 if (ISSET(ifp->if_flags, IFF_RUNNING))
1501 igc_stop_locked(sc);
1502
1503 /* Put the address into the receive address array. */
1504 igc_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1505
1506 /* Initialize the hardware. */
1507 igc_reset(sc);
1508 igc_update_link_status(sc);
1509
1510 /* Setup VLAN support, basic and offload if available. */
1511 IGC_WRITE_REG(&sc->hw, IGC_VET, ETHERTYPE_VLAN);
1512
1513 igc_initialize_transmit_unit(sc);
1514 igc_initialize_receive_unit(sc);
1515
1516 if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1517 uint32_t ctrl = IGC_READ_REG(&sc->hw, IGC_CTRL);
1518 ctrl |= IGC_CTRL_VME;
1519 IGC_WRITE_REG(&sc->hw, IGC_CTRL, ctrl);
1520 }
1521
1522 /* Setup multicast table. */
1523 igc_set_filter(sc);
1524
1525 igc_clear_hw_cntrs_base_generic(&sc->hw);
1526
1527 if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
1528 igc_configure_queues(sc);
1529
1530 /* This clears any pending interrupts */
1531 IGC_READ_REG(&sc->hw, IGC_ICR);
1532 IGC_WRITE_REG(&sc->hw, IGC_ICS, IGC_ICS_LSC);
1533
1534 /* The driver can now take control from firmware. */
1535 igc_get_hw_control(sc);
1536
1537 /* Set Energy Efficient Ethernet. */
1538 igc_set_eee_i225(&sc->hw, true, true, true);
1539
1540 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1541 struct rx_ring *rxr = &sc->rx_rings[iq];
1542
1543 mutex_enter(&rxr->rxr_lock);
1544 igc_rxfill(rxr);
1545 mutex_exit(&rxr->rxr_lock);
1546 }
1547
1548 sc->sc_core_stopping = false;
1549
1550 ifp->if_flags |= IFF_RUNNING;
1551
1552 /* Save last flags for the callback */
1553 sc->sc_if_flags = ifp->if_flags;
1554
1555 callout_schedule(&sc->sc_tick_ch, hz);
1556
1557 igc_enable_intr(sc);
1558
1559 return 0;
1560 }
1561
1562 static inline int
1563 igc_load_mbuf(struct igc_queue *q, bus_dma_tag_t dmat, bus_dmamap_t map,
1564 struct mbuf *m)
1565 {
1566 int error;
1567
1568 error = bus_dmamap_load_mbuf(dmat, map, m,
1569 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1570
1571 if (__predict_false(error == EFBIG)) {
1572 IGC_DRIVER_EVENT(q, txdma_efbig, 1);
1573 m = m_defrag(m, M_NOWAIT);
1574 if (__predict_false(m == NULL)) {
1575 IGC_DRIVER_EVENT(q, txdma_defrag, 1);
1576 return ENOBUFS;
1577 }
1578 error = bus_dmamap_load_mbuf(dmat, map, m,
1579 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1580 }
1581
1582 switch (error) {
1583 case 0:
1584 break;
1585 case ENOMEM:
1586 IGC_DRIVER_EVENT(q, txdma_enomem, 1);
1587 break;
1588 case EINVAL:
1589 IGC_DRIVER_EVENT(q, txdma_einval, 1);
1590 break;
1591 case EAGAIN:
1592 IGC_DRIVER_EVENT(q, txdma_eagain, 1);
1593 break;
1594 default:
1595 IGC_DRIVER_EVENT(q, txdma_other, 1);
1596 break;
1597 }
1598
1599 return error;
1600 }
1601
1602 #define IGC_TX_START 1
1603 #define IGC_TX_TRANSMIT 2
1604
1605 static void
1606 igc_start(struct ifnet *ifp)
1607 {
1608 struct igc_softc *sc = ifp->if_softc;
1609
1610 if (__predict_false(!sc->link_active)) {
1611 IFQ_PURGE(&ifp->if_snd);
1612 return;
1613 }
1614
1615 struct tx_ring *txr = &sc->tx_rings[0]; /* queue 0 */
1616 mutex_enter(&txr->txr_lock);
1617 igc_tx_common_locked(ifp, txr, IGC_TX_START);
1618 mutex_exit(&txr->txr_lock);
1619 }
1620
1621 static inline u_int
1622 igc_select_txqueue(struct igc_softc *sc, struct mbuf *m __unused)
1623 {
1624 const u_int cpuid = cpu_index(curcpu());
1625
1626 return cpuid % sc->sc_nqueues;
1627 }
1628
1629 static int
1630 igc_transmit(struct ifnet *ifp, struct mbuf *m)
1631 {
1632 struct igc_softc *sc = ifp->if_softc;
1633 const u_int qid = igc_select_txqueue(sc, m);
1634 struct tx_ring *txr = &sc->tx_rings[qid];
1635 struct igc_queue *q = txr->txr_igcq;
1636
1637 if (__predict_false(!pcq_put(txr->txr_interq, m))) {
1638 IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
1639 m_freem(m);
1640 return ENOBUFS;
1641 }
1642
1643 mutex_enter(&txr->txr_lock);
1644 igc_tx_common_locked(ifp, txr, IGC_TX_TRANSMIT);
1645 mutex_exit(&txr->txr_lock);
1646
1647 return 0;
1648 }
1649
1650 static void
1651 igc_tx_common_locked(struct ifnet *ifp, struct tx_ring *txr, int caller)
1652 {
1653 struct igc_softc *sc = ifp->if_softc;
1654 struct igc_queue *q = txr->txr_igcq;
1655 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1656 int prod, free, last = -1;
1657 bool post = false;
1658
1659 prod = txr->next_avail_desc;
1660 free = txr->next_to_clean;
1661 if (free <= prod)
1662 free += sc->num_tx_desc;
1663 free -= prod;
1664
1665 DPRINTF(TX, "%s: begin: msix %d prod %d n2c %d free %d\n",
1666 caller == IGC_TX_TRANSMIT ? "transmit" : "start",
1667 txr->me, prod, txr->next_to_clean, free);
1668
1669 for (;;) {
1670 struct mbuf *m;
1671
1672 if (__predict_false(free <= IGC_MAX_SCATTER)) {
1673 IGC_QUEUE_EVENT(q, tx_no_desc, 1);
1674 break;
1675 }
1676
1677 if (caller == IGC_TX_TRANSMIT)
1678 m = pcq_get(txr->txr_interq);
1679 else
1680 IFQ_DEQUEUE(&ifp->if_snd, m);
1681 if (__predict_false(m == NULL))
1682 break;
1683
1684 struct igc_tx_buf *txbuf = &txr->tx_buffers[prod];
1685 bus_dmamap_t map = txbuf->map;
1686
1687 if (__predict_false(
1688 igc_load_mbuf(q, txr->txdma.dma_tag, map, m))) {
1689 if (caller == IGC_TX_TRANSMIT)
1690 IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
1691 m_freem(m);
1692 if_statinc_ref(nsr, if_oerrors);
1693 continue;
1694 }
1695
1696 bus_dmamap_sync(txr->txdma.dma_tag, map, 0,
1697 map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1698
1699 uint32_t ctx_cmd_type_len = 0, olinfo_status = 0;
1700 if (igc_tx_ctx_setup(txr, m, prod, &ctx_cmd_type_len,
1701 &olinfo_status)) {
1702 IGC_QUEUE_EVENT(q, tx_ctx, 1);
1703 /* Consume the first descriptor */
1704 prod = igc_txdesc_incr(sc, prod);
1705 free--;
1706 }
1707 for (int i = 0; i < map->dm_nsegs; i++) {
1708 union igc_adv_tx_desc *txdesc = &txr->tx_base[prod];
1709
1710 uint32_t cmd_type_len = ctx_cmd_type_len |
1711 IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DTYP_DATA |
1712 IGC_ADVTXD_DCMD_DEXT | map->dm_segs[i].ds_len;
1713 if (i == map->dm_nsegs - 1) {
1714 cmd_type_len |=
1715 IGC_ADVTXD_DCMD_EOP | IGC_ADVTXD_DCMD_RS;
1716 }
1717
1718 igc_txdesc_sync(txr, prod,
1719 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1720 htolem64(&txdesc->read.buffer_addr,
1721 map->dm_segs[i].ds_addr);
1722 htolem32(&txdesc->read.cmd_type_len, cmd_type_len);
1723 htolem32(&txdesc->read.olinfo_status, olinfo_status);
1724 igc_txdesc_sync(txr, prod,
1725 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1726
1727 last = prod;
1728 prod = igc_txdesc_incr(sc, prod);
1729 }
1730
1731 txbuf->m_head = m;
1732 txbuf->eop_index = last;
1733
1734 bpf_mtap(ifp, m, BPF_D_OUT);
1735
1736 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
1737 if (m->m_flags & M_MCAST)
1738 if_statinc_ref(nsr, if_omcasts);
1739 IGC_QUEUE_EVENT(q, tx_packets, 1);
1740 IGC_QUEUE_EVENT(q, tx_bytes, m->m_pkthdr.len);
1741
1742 free -= map->dm_nsegs;
1743 post = true;
1744 }
1745
1746 if (post) {
1747 txr->next_avail_desc = prod;
1748 IGC_WRITE_REG(&sc->hw, IGC_TDT(txr->me), prod);
1749 }
1750
1751 DPRINTF(TX, "%s: done : msix %d prod %d n2c %d free %d\n",
1752 caller == IGC_TX_TRANSMIT ? "transmit" : "start",
1753 txr->me, prod, txr->next_to_clean, free);
1754
1755 IF_STAT_PUTREF(ifp);
1756 }
1757
1758 static bool
1759 igc_txeof(struct tx_ring *txr, u_int limit)
1760 {
1761 struct igc_softc *sc = txr->sc;
1762 struct ifnet *ifp = &sc->sc_ec.ec_if;
1763 int cons, prod;
1764 bool more = false;
1765
1766 prod = txr->next_avail_desc;
1767 cons = txr->next_to_clean;
1768
1769 if (cons == prod) {
1770 DPRINTF(TX, "false: msix %d cons %d prod %d\n",
1771 txr->me, cons, prod);
1772 return false;
1773 }
1774
1775 do {
1776 struct igc_tx_buf *txbuf = &txr->tx_buffers[cons];
1777 const int last = txbuf->eop_index;
1778
1779 membar_consumer(); /* XXXRO necessary? */
1780
1781 KASSERT(last != -1);
1782 union igc_adv_tx_desc *txdesc = &txr->tx_base[last];
1783 igc_txdesc_sync(txr, last, BUS_DMASYNC_POSTREAD);
1784 const uint32_t status = le32toh(txdesc->wb.status);
1785 igc_txdesc_sync(txr, last, BUS_DMASYNC_PREREAD);
1786
1787 if (!(status & IGC_TXD_STAT_DD))
1788 break;
1789
1790 if (limit-- == 0) {
1791 more = true;
1792 DPRINTF(TX, "pending TX "
1793 "msix %d cons %d last %d prod %d "
1794 "status 0x%08x\n",
1795 txr->me, cons, last, prod, status);
1796 break;
1797 }
1798
1799 DPRINTF(TX, "handled TX "
1800 "msix %d cons %d last %d prod %d "
1801 "status 0x%08x\n",
1802 txr->me, cons, last, prod, status);
1803
1804 if_statinc(ifp, if_opackets);
1805
1806 bus_dmamap_t map = txbuf->map;
1807 bus_dmamap_sync(txr->txdma.dma_tag, map, 0, map->dm_mapsize,
1808 BUS_DMASYNC_POSTWRITE);
1809 bus_dmamap_unload(txr->txdma.dma_tag, map);
1810 m_freem(txbuf->m_head);
1811
1812 txbuf->m_head = NULL;
1813 txbuf->eop_index = -1;
1814
1815 cons = igc_txdesc_incr(sc, last);
1816 } while (cons != prod);
1817
1818 txr->next_to_clean = cons;
1819
1820 return more;
1821 }
1822
1823 static void
1824 igc_intr_barrier(struct igc_softc *sc __unused)
1825 {
1826
1827 xc_barrier(0);
1828 }
1829
1830 static void
1831 igc_stop(struct ifnet *ifp, int disable)
1832 {
1833 struct igc_softc *sc = ifp->if_softc;
1834
1835 mutex_enter(&sc->sc_core_lock);
1836 igc_stop_locked(sc);
1837 mutex_exit(&sc->sc_core_lock);
1838 }
1839
1840 /*********************************************************************
1841 *
1842 * This routine disables all traffic on the adapter by issuing a
1843 * global reset on the MAC.
1844 *
1845 **********************************************************************/
1846 static void
1847 igc_stop_locked(struct igc_softc *sc)
1848 {
1849 struct ifnet *ifp = &sc->sc_ec.ec_if;
1850
1851 DPRINTF(CFG, "called\n");
1852
1853 KASSERT(mutex_owned(&sc->sc_core_lock));
1854
1855 /*
1856 * If stopping processing has already started, do nothing.
1857 */
1858 if ((ifp->if_flags & IFF_RUNNING) == 0)
1859 return;
1860
1861 /* Tell the stack that the interface is no longer active. */
1862 ifp->if_flags &= ~IFF_RUNNING;
1863
1864 /*
1865 * igc_handle_queue() can enable interrupts, so wait for completion of
1866 * last igc_handle_queue() after unset IFF_RUNNING.
1867 */
1868 mutex_exit(&sc->sc_core_lock);
1869 igc_barrier_handle_queue(sc);
1870 mutex_enter(&sc->sc_core_lock);
1871
1872 sc->sc_core_stopping = true;
1873
1874 igc_disable_intr(sc);
1875
1876 callout_halt(&sc->sc_tick_ch, &sc->sc_core_lock);
1877
1878 igc_reset_hw(&sc->hw);
1879 IGC_WRITE_REG(&sc->hw, IGC_WUC, 0);
1880
1881 /*
1882 * Wait for completion of interrupt handlers.
1883 */
1884 mutex_exit(&sc->sc_core_lock);
1885 igc_intr_barrier(sc);
1886 mutex_enter(&sc->sc_core_lock);
1887
1888 igc_update_link_status(sc);
1889
1890 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1891 struct tx_ring *txr = &sc->tx_rings[iq];
1892
1893 igc_withdraw_transmit_packets(txr, false);
1894 }
1895
1896 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1897 struct rx_ring *rxr = &sc->rx_rings[iq];
1898
1899 igc_clear_receive_status(rxr);
1900 }
1901
1902 /* Save last flags for the callback */
1903 sc->sc_if_flags = ifp->if_flags;
1904 }
1905
1906 /*********************************************************************
1907 * Ioctl entry point
1908 *
1909 * igc_ioctl is called when the user wants to configure the
1910 * interface.
1911 *
1912 * return 0 on success, positive on failure
1913 **********************************************************************/
1914 static int
1915 igc_ioctl(struct ifnet * ifp, u_long cmd, void *data)
1916 {
1917 struct igc_softc *sc __unused = ifp->if_softc;
1918 int s;
1919 int error;
1920
1921 DPRINTF(CFG, "cmd 0x%016lx\n", cmd);
1922
1923 switch (cmd) {
1924 case SIOCADDMULTI:
1925 case SIOCDELMULTI:
1926 break;
1927 default:
1928 KASSERT(IFNET_LOCKED(ifp));
1929 }
1930
1931 if (cmd == SIOCZIFDATA) {
1932 mutex_enter(&sc->sc_core_lock);
1933 igc_clear_counters(sc);
1934 mutex_exit(&sc->sc_core_lock);
1935 }
1936
1937 switch (cmd) {
1938 #ifdef IF_RXR
1939 case SIOCGIFRXR:
1940 s = splnet();
1941 error = igc_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data);
1942 splx(s);
1943 break;
1944 #endif
1945 default:
1946 s = splnet();
1947 error = ether_ioctl(ifp, cmd, data);
1948 splx(s);
1949 break;
1950 }
1951
1952 if (error != ENETRESET)
1953 return error;
1954
1955 error = 0;
1956
1957 if (cmd == SIOCSIFCAP)
1958 error = if_init(ifp);
1959 else if ((cmd == SIOCADDMULTI) || (cmd == SIOCDELMULTI)) {
1960 mutex_enter(&sc->sc_core_lock);
1961 if (sc->sc_if_flags & IFF_RUNNING) {
1962 /*
1963 * Multicast list has changed; set the hardware filter
1964 * accordingly.
1965 */
1966 igc_disable_intr(sc);
1967 igc_set_filter(sc);
1968 igc_enable_intr(sc);
1969 }
1970 mutex_exit(&sc->sc_core_lock);
1971 }
1972
1973 return error;
1974 }
1975
1976 #ifdef IF_RXR
1977 static int
1978 igc_rxrinfo(struct igc_softc *sc, struct if_rxrinfo *ifri)
1979 {
1980 struct if_rxring_info *ifr, ifr1;
1981 int error;
1982
1983 if (sc->sc_nqueues > 1) {
1984 ifr = kmem_zalloc(sc->sc_nqueues * sizeof(*ifr), KM_SLEEP);
1985 } else {
1986 ifr = &ifr1;
1987 memset(ifr, 0, sizeof(*ifr));
1988 }
1989
1990 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
1991 struct rx_ring *rxr = &sc->rx_rings[iq];
1992
1993 ifr[iq].ifr_size = MCLBYTES;
1994 snprintf(ifr[iq].ifr_name, sizeof(ifr[iq].ifr_name), "%d", iq);
1995 ifr[iq].ifr_info = rxr->rx_ring;
1996 }
1997
1998 error = if_rxr_info_ioctl(ifri, sc->sc_nqueues, ifr);
1999 if (sc->sc_nqueues > 1)
2000 kmem_free(ifr, sc->sc_nqueues * sizeof(*ifr));
2001
2002 return error;
2003 }
2004 #endif
2005
2006 static void
2007 igc_rxfill(struct rx_ring *rxr)
2008 {
2009 struct igc_softc *sc = rxr->sc;
2010 int id;
2011
2012 for (id = 0; id < sc->num_rx_desc; id++) {
2013 if (igc_get_buf(rxr, id, false)) {
2014 panic("%s: msix=%d i=%d\n", __func__, rxr->me, id);
2015 }
2016 }
2017
2018 id = sc->num_rx_desc - 1;
2019 rxr->last_desc_filled = id;
2020 IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
2021 rxr->next_to_check = 0;
2022 }
2023
2024 static void
2025 igc_rxrefill(struct rx_ring *rxr, int end)
2026 {
2027 struct igc_softc *sc = rxr->sc;
2028 int id;
2029
2030 for (id = rxr->next_to_check; id != end; id = igc_rxdesc_incr(sc, id)) {
2031 if (igc_get_buf(rxr, id, true)) {
2032 /* XXXRO */
2033 panic("%s: msix=%d id=%d\n", __func__, rxr->me, id);
2034 }
2035 }
2036
2037 id = igc_rxdesc_decr(sc, id);
2038 DPRINTF(RX, "%s RDT %d id %d\n",
2039 rxr->last_desc_filled == id ? "same" : "diff",
2040 rxr->last_desc_filled, id);
2041 rxr->last_desc_filled = id;
2042 IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), id);
2043 }
2044
2045 /*********************************************************************
2046 *
2047 * This routine executes in interrupt context. It replenishes
2048 * the mbufs in the descriptor and sends data which has been
2049 * dma'ed into host memory to upper layer.
2050 *
2051 *********************************************************************/
2052 static bool
2053 igc_rxeof(struct rx_ring *rxr, u_int limit)
2054 {
2055 struct igc_softc *sc = rxr->sc;
2056 struct igc_queue *q = rxr->rxr_igcq;
2057 struct ifnet *ifp = &sc->sc_ec.ec_if;
2058 int id;
2059 bool more = false;
2060
2061 id = rxr->next_to_check;
2062 for (;;) {
2063 union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
2064 struct igc_rx_buf *rxbuf, *nxbuf;
2065 struct mbuf *mp, *m;
2066
2067 igc_rxdesc_sync(rxr, id,
2068 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2069
2070 const uint32_t staterr = le32toh(rxdesc->wb.upper.status_error);
2071
2072 if (!ISSET(staterr, IGC_RXD_STAT_DD)) {
2073 igc_rxdesc_sync(rxr, id,
2074 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2075 break;
2076 }
2077
2078 if (limit-- == 0) {
2079 igc_rxdesc_sync(rxr, id,
2080 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2081 DPRINTF(RX, "more=true\n");
2082 more = true;
2083 break;
2084 }
2085
2086 /* Zero out the receive descriptors status. */
2087 rxdesc->wb.upper.status_error = 0;
2088
2089 /* Pull the mbuf off the ring. */
2090 rxbuf = &rxr->rx_buffers[id];
2091 bus_dmamap_t map = rxbuf->map;
2092 bus_dmamap_sync(rxr->rxdma.dma_tag, map,
2093 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2094 bus_dmamap_unload(rxr->rxdma.dma_tag, map);
2095
2096 mp = rxbuf->buf;
2097 rxbuf->buf = NULL;
2098
2099 const bool eop = staterr & IGC_RXD_STAT_EOP;
2100 const uint16_t len = le16toh(rxdesc->wb.upper.length);
2101
2102 #if NVLAN > 0
2103 const uint16_t vtag = le16toh(rxdesc->wb.upper.vlan);
2104 #endif
2105
2106 const uint32_t ptype = le32toh(rxdesc->wb.lower.lo_dword.data) &
2107 IGC_PKTTYPE_MASK;
2108
2109 const uint32_t hash __unused =
2110 le32toh(rxdesc->wb.lower.hi_dword.rss);
2111 const uint16_t hashtype __unused =
2112 le16toh(rxdesc->wb.lower.lo_dword.hs_rss.pkt_info) &
2113 IGC_RXDADV_RSSTYPE_MASK;
2114
2115 igc_rxdesc_sync(rxr, id,
2116 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2117
2118 if (__predict_false(staterr & IGC_RXDEXT_STATERR_RXE)) {
2119 if (rxbuf->fmp) {
2120 m_freem(rxbuf->fmp);
2121 rxbuf->fmp = NULL;
2122 }
2123
2124 m_freem(mp);
2125 m = NULL;
2126
2127 if_statinc(ifp, if_ierrors);
2128 IGC_QUEUE_EVENT(q, rx_discard, 1);
2129
2130 DPRINTF(RX, "ierrors++\n");
2131
2132 goto next_desc;
2133 }
2134
2135 if (__predict_false(mp == NULL)) {
2136 panic("%s: igc_rxeof: NULL mbuf in slot %d "
2137 "(filled %d)", device_xname(sc->sc_dev),
2138 id, rxr->last_desc_filled);
2139 }
2140
2141 if (!eop) {
2142 /*
2143 * Figure out the next descriptor of this frame.
2144 */
2145 int nextp = igc_rxdesc_incr(sc, id);
2146
2147 nxbuf = &rxr->rx_buffers[nextp];
2148 /*
2149 * TODO prefetch(nxbuf);
2150 */
2151 }
2152
2153 mp->m_len = len;
2154
2155 m = rxbuf->fmp;
2156 rxbuf->fmp = NULL;
2157
2158 if (m != NULL) {
2159 m->m_pkthdr.len += mp->m_len;
2160 } else {
2161 m = mp;
2162 m->m_pkthdr.len = mp->m_len;
2163 #if NVLAN > 0
2164 if (staterr & IGC_RXD_STAT_VP)
2165 vlan_set_tag(m, vtag);
2166 #endif
2167 }
2168
2169 /* Pass the head pointer on */
2170 if (!eop) {
2171 nxbuf->fmp = m;
2172 m = NULL;
2173 mp->m_next = nxbuf->buf;
2174 } else {
2175 m_set_rcvif(m, ifp);
2176
2177 m->m_pkthdr.csum_flags = igc_rx_checksum(q,
2178 ifp->if_capenable, staterr, ptype);
2179
2180 #ifdef notyet
2181 if (hashtype != IGC_RXDADV_RSSTYPE_NONE) {
2182 m->m_pkthdr.ph_flowid = hash;
2183 SET(m->m_pkthdr.csum_flags, M_FLOWID);
2184 }
2185 ml_enqueue(&ml, m);
2186 #endif
2187
2188 if_percpuq_enqueue(sc->sc_ipq, m);
2189
2190 if_statinc(ifp, if_ipackets);
2191 IGC_QUEUE_EVENT(q, rx_packets, 1);
2192 IGC_QUEUE_EVENT(q, rx_bytes, m->m_pkthdr.len);
2193 }
2194 next_desc:
2195 /* Advance our pointers to the next descriptor. */
2196 id = igc_rxdesc_incr(sc, id);
2197 }
2198
2199 DPRINTF(RX, "fill queue[%d]\n", rxr->me);
2200 igc_rxrefill(rxr, id);
2201
2202 DPRINTF(RX, "%s n2c %d id %d\n",
2203 rxr->next_to_check == id ? "same" : "diff",
2204 rxr->next_to_check, id);
2205 rxr->next_to_check = id;
2206
2207 #ifdef OPENBSD
2208 if (!(staterr & IGC_RXD_STAT_DD))
2209 return 0;
2210 #endif
2211
2212 return more;
2213 }
2214
2215 /*********************************************************************
2216 *
2217 * Verify that the hardware indicated that the checksum is valid.
2218 * Inform the stack about the status of checksum so that stack
2219 * doesn't spend time verifying the checksum.
2220 *
2221 *********************************************************************/
2222 static int
2223 igc_rx_checksum(struct igc_queue *q, uint64_t capenable, uint32_t staterr,
2224 uint32_t ptype)
2225 {
2226 const uint16_t status = (uint16_t)staterr;
2227 const uint8_t errors = (uint8_t)(staterr >> 24);
2228 int flags = 0;
2229
2230 if ((status & IGC_RXD_STAT_IPCS) != 0 &&
2231 (capenable & IFCAP_CSUM_IPv4_Rx) != 0) {
2232 IGC_DRIVER_EVENT(q, rx_ipcs, 1);
2233 flags |= M_CSUM_IPv4;
2234 if (__predict_false((errors & IGC_RXD_ERR_IPE) != 0)) {
2235 IGC_DRIVER_EVENT(q, rx_ipcs_bad, 1);
2236 flags |= M_CSUM_IPv4_BAD;
2237 }
2238 }
2239
2240 if ((status & IGC_RXD_STAT_TCPCS) != 0) {
2241 IGC_DRIVER_EVENT(q, rx_tcpcs, 1);
2242 if ((capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
2243 flags |= M_CSUM_TCPv4;
2244 if ((capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
2245 flags |= M_CSUM_TCPv6;
2246 }
2247
2248 if ((status & IGC_RXD_STAT_UDPCS) != 0) {
2249 IGC_DRIVER_EVENT(q, rx_udpcs, 1);
2250 if ((capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
2251 flags |= M_CSUM_UDPv4;
2252 if ((capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
2253 flags |= M_CSUM_UDPv6;
2254 }
2255
2256 if (__predict_false((errors & IGC_RXD_ERR_TCPE) != 0)) {
2257 IGC_DRIVER_EVENT(q, rx_l4cs_bad, 1);
2258 if ((flags & ~M_CSUM_IPv4) != 0)
2259 flags |= M_CSUM_TCP_UDP_BAD;
2260 }
2261
2262 return flags;
2263 }
2264
2265 static void
2266 igc_watchdog(struct ifnet * ifp)
2267 {
2268 }
2269
2270 static void
2271 igc_tick(void *arg)
2272 {
2273 struct igc_softc *sc = arg;
2274
2275 mutex_enter(&sc->sc_core_lock);
2276
2277 if (__predict_false(sc->sc_core_stopping)) {
2278 mutex_exit(&sc->sc_core_lock);
2279 return;
2280 }
2281
2282 /* XXX watchdog */
2283 if (0) {
2284 IGC_GLOBAL_EVENT(sc, watchdog, 1);
2285 }
2286
2287 igc_update_counters(sc);
2288
2289 mutex_exit(&sc->sc_core_lock);
2290
2291 callout_schedule(&sc->sc_tick_ch, hz);
2292 }
2293
2294 /*********************************************************************
2295 *
2296 * Media Ioctl callback
2297 *
2298 * This routine is called whenever the user queries the status of
2299 * the interface using ifconfig.
2300 *
2301 **********************************************************************/
2302 static void
2303 igc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2304 {
2305 struct igc_softc *sc = ifp->if_softc;
2306 struct igc_hw *hw = &sc->hw;
2307
2308 igc_update_link_status(sc);
2309
2310 ifmr->ifm_status = IFM_AVALID;
2311 ifmr->ifm_active = IFM_ETHER;
2312
2313 if (!sc->link_active) {
2314 ifmr->ifm_active |= IFM_NONE;
2315 return;
2316 }
2317
2318 ifmr->ifm_status |= IFM_ACTIVE;
2319
2320 switch (sc->link_speed) {
2321 case 10:
2322 ifmr->ifm_active |= IFM_10_T;
2323 break;
2324 case 100:
2325 ifmr->ifm_active |= IFM_100_TX;
2326 break;
2327 case 1000:
2328 ifmr->ifm_active |= IFM_1000_T;
2329 break;
2330 case 2500:
2331 ifmr->ifm_active |= IFM_2500_T;
2332 break;
2333 }
2334
2335 if (sc->link_duplex == FULL_DUPLEX)
2336 ifmr->ifm_active |= IFM_FDX;
2337 else
2338 ifmr->ifm_active |= IFM_HDX;
2339
2340 switch (hw->fc.current_mode) {
2341 case igc_fc_tx_pause:
2342 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
2343 break;
2344 case igc_fc_rx_pause:
2345 ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
2346 break;
2347 case igc_fc_full:
2348 ifmr->ifm_active |= IFM_FLOW |
2349 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
2350 break;
2351 case igc_fc_none:
2352 default:
2353 break;
2354 }
2355 }
2356
2357 /*********************************************************************
2358 *
2359 * Media Ioctl callback
2360 *
2361 * This routine is called when the user changes speed/duplex using
2362 * media/mediopt option with ifconfig.
2363 *
2364 **********************************************************************/
2365 static int
2366 igc_media_change(struct ifnet *ifp)
2367 {
2368 struct igc_softc *sc = ifp->if_softc;
2369 struct ifmedia *ifm = &sc->media;
2370
2371 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2372 return EINVAL;
2373
2374 sc->hw.mac.autoneg = DO_AUTO_NEG;
2375
2376 switch (IFM_SUBTYPE(ifm->ifm_media)) {
2377 case IFM_AUTO:
2378 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
2379 break;
2380 case IFM_2500_T:
2381 sc->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
2382 break;
2383 case IFM_1000_T:
2384 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
2385 break;
2386 case IFM_100_TX:
2387 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2388 sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
2389 else
2390 sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
2391 break;
2392 case IFM_10_T:
2393 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2394 sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
2395 else
2396 sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
2397 break;
2398 default:
2399 return EINVAL;
2400 }
2401
2402 igc_init_locked(sc);
2403
2404 return 0;
2405 }
2406
2407 static int
2408 igc_ifflags_cb(struct ethercom *ec)
2409 {
2410 struct ifnet *ifp = &ec->ec_if;
2411 struct igc_softc *sc = ifp->if_softc;
2412 int rc = 0;
2413 u_short iffchange;
2414 bool needreset = false;
2415
2416 DPRINTF(CFG, "called\n");
2417
2418 KASSERT(IFNET_LOCKED(ifp));
2419
2420 mutex_enter(&sc->sc_core_lock);
2421
2422 /*
2423 * Check for if_flags.
2424 * Main usage is to prevent linkdown when opening bpf.
2425 */
2426 iffchange = ifp->if_flags ^ sc->sc_if_flags;
2427 sc->sc_if_flags = ifp->if_flags;
2428 if ((iffchange & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
2429 needreset = true;
2430 goto ec;
2431 }
2432
2433 /* iff related updates */
2434 if ((iffchange & IFF_PROMISC) != 0)
2435 igc_set_filter(sc);
2436
2437 #ifdef notyet
2438 igc_set_vlan(sc);
2439 #endif
2440
2441 ec:
2442 #ifdef notyet
2443 /* Check for ec_capenable. */
2444 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
2445 sc->sc_ec_capenable = ec->ec_capenable;
2446 if ((ecchange & ~ETHERCAP_SOMETHING) != 0) {
2447 needreset = true;
2448 goto out;
2449 }
2450 #endif
2451 if (needreset)
2452 rc = ENETRESET;
2453
2454 mutex_exit(&sc->sc_core_lock);
2455
2456 return rc;
2457 }
2458
2459 static void
2460 igc_set_filter(struct igc_softc *sc)
2461 {
2462 struct ethercom *ec = &sc->sc_ec;
2463 uint32_t rctl;
2464
2465 rctl = IGC_READ_REG(&sc->hw, IGC_RCTL);
2466 rctl &= ~(IGC_RCTL_BAM |IGC_RCTL_UPE | IGC_RCTL_MPE);
2467
2468 if ((sc->sc_if_flags & IFF_BROADCAST) != 0)
2469 rctl |= IGC_RCTL_BAM;
2470 if ((sc->sc_if_flags & IFF_PROMISC) != 0) {
2471 DPRINTF(CFG, "promisc\n");
2472 rctl |= IGC_RCTL_UPE;
2473 ETHER_LOCK(ec);
2474 allmulti:
2475 ec->ec_flags |= ETHER_F_ALLMULTI;
2476 ETHER_UNLOCK(ec);
2477 rctl |= IGC_RCTL_MPE;
2478 } else {
2479 struct ether_multistep step;
2480 struct ether_multi *enm;
2481 int mcnt = 0;
2482
2483 memset(sc->mta, 0, IGC_MTA_LEN);
2484
2485 ETHER_LOCK(ec);
2486 ETHER_FIRST_MULTI(step, ec, enm);
2487 while (enm != NULL) {
2488 if (((memcmp(enm->enm_addrlo, enm->enm_addrhi,
2489 ETHER_ADDR_LEN)) != 0) ||
2490 (mcnt >= MAX_NUM_MULTICAST_ADDRESSES)) {
2491 /*
2492 * We must listen to a range of multicast
2493 * addresses. For now, just accept all
2494 * multicasts, rather than trying to set only
2495 * those filter bits needed to match the range.
2496 * (At this time, the only use of address
2497 * ranges is for IP multicast routing, for
2498 * which the range is big enough to require all
2499 * bits set.)
2500 */
2501 goto allmulti;
2502 }
2503 DPRINTF(CFG, "%d: %s\n", mcnt,
2504 ether_sprintf(enm->enm_addrlo));
2505 memcpy(&sc->mta[mcnt * ETHER_ADDR_LEN],
2506 enm->enm_addrlo, ETHER_ADDR_LEN);
2507
2508 mcnt++;
2509 ETHER_NEXT_MULTI(step, enm);
2510 }
2511 ec->ec_flags &= ~ETHER_F_ALLMULTI;
2512 ETHER_UNLOCK(ec);
2513
2514 DPRINTF(CFG, "hw filter\n");
2515 igc_update_mc_addr_list(&sc->hw, sc->mta, mcnt);
2516 }
2517
2518 IGC_WRITE_REG(&sc->hw, IGC_RCTL, rctl);
2519 }
2520
2521 static void
2522 igc_update_link_status(struct igc_softc *sc)
2523 {
2524 struct ifnet *ifp = &sc->sc_ec.ec_if;
2525 struct igc_hw *hw = &sc->hw;
2526
2527 if (IGC_READ_REG(&sc->hw, IGC_STATUS) & IGC_STATUS_LU) {
2528 if (sc->link_active == 0) {
2529 igc_get_speed_and_duplex(hw, &sc->link_speed,
2530 &sc->link_duplex);
2531 sc->link_active = 1;
2532 ifp->if_baudrate = IF_Mbps(sc->link_speed);
2533 if_link_state_change(ifp, LINK_STATE_UP);
2534 }
2535 } else {
2536 if (sc->link_active == 1) {
2537 ifp->if_baudrate = sc->link_speed = 0;
2538 sc->link_duplex = 0;
2539 sc->link_active = 0;
2540 if_link_state_change(ifp, LINK_STATE_DOWN);
2541 }
2542 }
2543 }
2544
2545 /*********************************************************************
2546 *
2547 * Get a buffer from system mbuf buffer pool.
2548 *
2549 **********************************************************************/
2550 static int
2551 igc_get_buf(struct rx_ring *rxr, int id, bool strict)
2552 {
2553 struct igc_softc *sc = rxr->sc;
2554 struct igc_queue *q = rxr->rxr_igcq;
2555 struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
2556 bus_dmamap_t map = rxbuf->map;
2557 struct mbuf *m;
2558 int error;
2559
2560 if (__predict_false(rxbuf->buf)) {
2561 if (strict) {
2562 DPRINTF(RX, "slot %d already has an mbuf\n", id);
2563 return EINVAL;
2564 }
2565 return 0;
2566 }
2567
2568 MGETHDR(m, M_DONTWAIT, MT_DATA);
2569 if (__predict_false(m == NULL)) {
2570 enobuf:
2571 IGC_QUEUE_EVENT(q, rx_no_mbuf, 1);
2572 return ENOBUFS;
2573 }
2574
2575 MCLGET(m, M_DONTWAIT);
2576 if (__predict_false(!(m->m_flags & M_EXT))) {
2577 m_freem(m);
2578 goto enobuf;
2579 }
2580
2581 m->m_len = m->m_pkthdr.len = sc->rx_mbuf_sz;
2582
2583 error = bus_dmamap_load_mbuf(rxr->rxdma.dma_tag, map, m,
2584 BUS_DMA_READ | BUS_DMA_NOWAIT);
2585 if (error) {
2586 m_freem(m);
2587 return error;
2588 }
2589
2590 bus_dmamap_sync(rxr->rxdma.dma_tag, map, 0,
2591 map->dm_mapsize, BUS_DMASYNC_PREREAD);
2592 rxbuf->buf = m;
2593
2594 union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
2595 igc_rxdesc_sync(rxr, id, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
2596 rxdesc->read.pkt_addr = htole64(map->dm_segs[0].ds_addr);
2597 igc_rxdesc_sync(rxr, id, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2598
2599 return 0;
2600 }
2601
2602 static void
2603 igc_configure_queues(struct igc_softc *sc)
2604 {
2605 struct igc_hw *hw = &sc->hw;
2606 uint32_t ivar;
2607
2608 /* First turn on RSS capability */
2609 IGC_WRITE_REG(hw, IGC_GPIE, IGC_GPIE_MSIX_MODE | IGC_GPIE_EIAME |
2610 IGC_GPIE_PBA | IGC_GPIE_NSICR);
2611
2612 /* Set the starting interrupt rate */
2613 uint32_t newitr = (4000000 / MAX_INTS_PER_SEC) & 0x7FFC;
2614 newitr |= IGC_EITR_CNT_IGNR;
2615
2616 /* Turn on MSI-X */
2617 uint32_t newmask = 0;
2618 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2619 struct igc_queue *q = &sc->queues[iq];
2620
2621 /* RX entries */
2622 igc_set_queues(sc, iq, q->msix, 0);
2623 /* TX entries */
2624 igc_set_queues(sc, iq, q->msix, 1);
2625 newmask |= q->eims;
2626 IGC_WRITE_REG(hw, IGC_EITR(q->msix), newitr);
2627 }
2628 sc->msix_queuesmask = newmask;
2629
2630 #if 1
2631 ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 0);
2632 DPRINTF(CFG, "ivar(0)=0x%x\n", ivar);
2633 ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, 1);
2634 DPRINTF(CFG, "ivar(1)=0x%x\n", ivar);
2635 #endif
2636
2637 /* And for the link interrupt */
2638 ivar = (sc->linkvec | IGC_IVAR_VALID) << 8;
2639 sc->msix_linkmask = 1 << sc->linkvec;
2640 IGC_WRITE_REG(hw, IGC_IVAR_MISC, ivar);
2641 }
2642
2643 static void
2644 igc_set_queues(struct igc_softc *sc, uint32_t entry, uint32_t vector, int type)
2645 {
2646 struct igc_hw *hw = &sc->hw;
2647 const uint32_t index = entry >> 1;
2648 uint32_t ivar = IGC_READ_REG_ARRAY(hw, IGC_IVAR0, index);
2649
2650 if (type) {
2651 if (entry & 1) {
2652 ivar &= 0x00FFFFFF;
2653 ivar |= (vector | IGC_IVAR_VALID) << 24;
2654 } else {
2655 ivar &= 0xFFFF00FF;
2656 ivar |= (vector | IGC_IVAR_VALID) << 8;
2657 }
2658 } else {
2659 if (entry & 1) {
2660 ivar &= 0xFF00FFFF;
2661 ivar |= (vector | IGC_IVAR_VALID) << 16;
2662 } else {
2663 ivar &= 0xFFFFFF00;
2664 ivar |= vector | IGC_IVAR_VALID;
2665 }
2666 }
2667 IGC_WRITE_REG_ARRAY(hw, IGC_IVAR0, index, ivar);
2668 }
2669
2670 static void
2671 igc_enable_queue(struct igc_softc *sc, uint32_t eims)
2672 {
2673 IGC_WRITE_REG(&sc->hw, IGC_EIMS, eims);
2674 }
2675
2676 static void
2677 igc_enable_intr(struct igc_softc *sc)
2678 {
2679 struct igc_hw *hw = &sc->hw;
2680
2681 if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
2682 const uint32_t mask = sc->msix_queuesmask | sc->msix_linkmask;
2683
2684 IGC_WRITE_REG(hw, IGC_EIAC, mask);
2685 IGC_WRITE_REG(hw, IGC_EIAM, mask);
2686 IGC_WRITE_REG(hw, IGC_EIMS, mask);
2687 IGC_WRITE_REG(hw, IGC_IMS, IGC_IMS_LSC);
2688 } else {
2689 IGC_WRITE_REG(hw, IGC_IMS, IMS_ENABLE_MASK);
2690 }
2691 IGC_WRITE_FLUSH(hw);
2692 }
2693
2694 static void
2695 igc_disable_intr(struct igc_softc *sc)
2696 {
2697 struct igc_hw *hw = &sc->hw;
2698
2699 if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX) {
2700 IGC_WRITE_REG(hw, IGC_EIMC, 0xffffffff);
2701 IGC_WRITE_REG(hw, IGC_EIAC, 0);
2702 }
2703 IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
2704 IGC_WRITE_FLUSH(hw);
2705 }
2706
2707 static int
2708 igc_intr_link(void *arg)
2709 {
2710 struct igc_softc *sc = (struct igc_softc *)arg;
2711 const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
2712
2713 IGC_GLOBAL_EVENT(sc, link, 1);
2714
2715 if (reg_icr & IGC_ICR_LSC) {
2716 mutex_enter(&sc->sc_core_lock);
2717 sc->hw.mac.get_link_status = true;
2718 igc_update_link_status(sc);
2719 mutex_exit(&sc->sc_core_lock);
2720 }
2721
2722 IGC_WRITE_REG(&sc->hw, IGC_IMS, IGC_IMS_LSC);
2723 IGC_WRITE_REG(&sc->hw, IGC_EIMS, sc->msix_linkmask);
2724
2725 return 1;
2726 }
2727
2728 static int
2729 igc_intr_queue(void *arg)
2730 {
2731 struct igc_queue *iq = arg;
2732 struct igc_softc *sc = iq->sc;
2733 struct ifnet *ifp = &sc->sc_ec.ec_if;
2734 struct rx_ring *rxr = iq->rxr;
2735 struct tx_ring *txr = iq->txr;
2736 const u_int txlimit = sc->sc_tx_intr_process_limit,
2737 rxlimit = sc->sc_rx_intr_process_limit;
2738 bool txmore, rxmore;
2739
2740 IGC_QUEUE_EVENT(iq, irqs, 1);
2741
2742 if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
2743 return 0;
2744
2745 mutex_enter(&txr->txr_lock);
2746 txmore = igc_txeof(txr, txlimit);
2747 mutex_exit(&txr->txr_lock);
2748 mutex_enter(&rxr->rxr_lock);
2749 rxmore = igc_rxeof(rxr, rxlimit);
2750 mutex_exit(&rxr->rxr_lock);
2751
2752 if (txmore || rxmore) {
2753 IGC_QUEUE_EVENT(iq, req, 1);
2754 igc_sched_handle_queue(sc, iq);
2755 } else {
2756 igc_enable_queue(sc, iq->eims);
2757 }
2758
2759 return 1;
2760 }
2761
2762 static int
2763 igc_intr(void *arg)
2764 {
2765 struct igc_softc *sc = arg;
2766 struct ifnet *ifp = &sc->sc_ec.ec_if;
2767 struct igc_queue *iq = &sc->queues[0];
2768 struct rx_ring *rxr = iq->rxr;
2769 struct tx_ring *txr = iq->txr;
2770 const u_int txlimit = sc->sc_tx_intr_process_limit,
2771 rxlimit = sc->sc_rx_intr_process_limit;
2772 bool txmore, rxmore;
2773
2774 if (__predict_false(!ISSET(ifp->if_flags, IFF_RUNNING)))
2775 return 0;
2776
2777 const uint32_t reg_icr = IGC_READ_REG(&sc->hw, IGC_ICR);
2778 DPRINTF(MISC, "reg_icr=0x%x\n", reg_icr);
2779
2780 /* Definitely not our interrupt. */
2781 if (reg_icr == 0x0) {
2782 DPRINTF(MISC, "not for me");
2783 return 0;
2784 }
2785
2786 IGC_QUEUE_EVENT(iq, irqs, 1);
2787
2788 /* Hot eject? */
2789 if (__predict_false(reg_icr == 0xffffffff)) {
2790 DPRINTF(MISC, "hot eject\n");
2791 return 0;
2792 }
2793
2794 if (__predict_false(!(reg_icr & IGC_ICR_INT_ASSERTED))) {
2795 DPRINTF(MISC, "not set IGC_ICR_INT_ASSERTED");
2796 return 0;
2797 }
2798
2799 /*
2800 * Only MSI-X interrupts have one-shot behavior by taking advantage
2801 * of the EIAC register. Thus, explicitly disable interrupts. This
2802 * also works around the MSI message reordering errata on certain
2803 * systems.
2804 */
2805 igc_disable_intr(sc);
2806
2807 mutex_enter(&txr->txr_lock);
2808 txmore = igc_txeof(txr, txlimit);
2809 mutex_exit(&txr->txr_lock);
2810 mutex_enter(&rxr->rxr_lock);
2811 rxmore = igc_rxeof(rxr, rxlimit);
2812 mutex_exit(&rxr->rxr_lock);
2813
2814 /* Link status change */
2815 // XXXX FreeBSD checks IGC_ICR_RXSEQ
2816 if (__predict_false(reg_icr & IGC_ICR_LSC)) {
2817 IGC_GLOBAL_EVENT(sc, link, 1);
2818 mutex_enter(&sc->sc_core_lock);
2819 sc->hw.mac.get_link_status = true;
2820 igc_update_link_status(sc);
2821 mutex_exit(&sc->sc_core_lock);
2822 }
2823
2824 if (txmore || rxmore) {
2825 IGC_QUEUE_EVENT(iq, req, 1);
2826 igc_sched_handle_queue(sc, iq);
2827 } else {
2828 igc_enable_intr(sc);
2829 }
2830
2831 return 1;
2832 }
2833
2834 static void
2835 igc_handle_queue(void *arg)
2836 {
2837 struct igc_queue *iq = arg;
2838 struct igc_softc *sc = iq->sc;
2839 struct tx_ring *txr = iq->txr;
2840 struct rx_ring *rxr = iq->rxr;
2841 const u_int txlimit = sc->sc_tx_process_limit,
2842 rxlimit = sc->sc_rx_process_limit;
2843 bool txmore, rxmore;
2844
2845 IGC_QUEUE_EVENT(iq, handleq, 1);
2846
2847 mutex_enter(&txr->txr_lock);
2848 txmore = igc_txeof(txr, txlimit);
2849 /* for ALTQ, dequeue from if_snd */
2850 if (txr->me == 0) {
2851 struct ifnet *ifp = &sc->sc_ec.ec_if;
2852
2853 igc_tx_common_locked(ifp, txr, IGC_TX_START);
2854 }
2855 mutex_exit(&txr->txr_lock);
2856
2857 mutex_enter(&rxr->rxr_lock);
2858 rxmore = igc_rxeof(rxr, rxlimit);
2859 mutex_exit(&rxr->rxr_lock);
2860
2861 if (txmore || rxmore) {
2862 igc_sched_handle_queue(sc, iq);
2863 } else {
2864 if (sc->sc_intr_type == PCI_INTR_TYPE_MSIX)
2865 igc_enable_queue(sc, iq->eims);
2866 else
2867 igc_enable_intr(sc);
2868 }
2869 }
2870
2871 static void
2872 igc_handle_queue_work(struct work *wk, void *context)
2873 {
2874 struct igc_queue *iq =
2875 container_of(wk, struct igc_queue, igcq_wq_cookie);
2876
2877 igc_handle_queue(iq);
2878 }
2879
2880 static void
2881 igc_sched_handle_queue(struct igc_softc *sc, struct igc_queue *iq)
2882 {
2883
2884 if (iq->igcq_workqueue) {
2885 /* XXXRO notyet */
2886 workqueue_enqueue(sc->sc_queue_wq, &iq->igcq_wq_cookie,
2887 curcpu());
2888 } else {
2889 softint_schedule(iq->igcq_si);
2890 }
2891 }
2892
2893 static void
2894 igc_barrier_handle_queue(struct igc_softc *sc)
2895 {
2896
2897 if (sc->sc_txrx_workqueue) {
2898 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2899 struct igc_queue *q = &sc->queues[iq];
2900
2901 workqueue_wait(sc->sc_queue_wq, &q->igcq_wq_cookie);
2902 }
2903 } else {
2904 xc_barrier(0);
2905 }
2906 }
2907
2908 /*********************************************************************
2909 *
2910 * Allocate memory for tx_buffer structures. The tx_buffer stores all
2911 * the information needed to transmit a packet on the wire.
2912 *
2913 **********************************************************************/
2914 static int
2915 igc_allocate_transmit_buffers(struct tx_ring *txr)
2916 {
2917 struct igc_softc *sc = txr->sc;
2918 int error;
2919
2920 txr->tx_buffers =
2921 kmem_zalloc(sc->num_tx_desc * sizeof(struct igc_tx_buf), KM_SLEEP);
2922 txr->txtag = txr->txdma.dma_tag;
2923
2924 /* Create the descriptor buffer dma maps. */
2925 for (int id = 0; id < sc->num_tx_desc; id++) {
2926 struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
2927
2928 error = bus_dmamap_create(txr->txdma.dma_tag,
2929 round_page(IGC_TSO_SIZE + sizeof(struct ether_vlan_header)),
2930 IGC_MAX_SCATTER, PAGE_SIZE, 0, BUS_DMA_NOWAIT, &txbuf->map);
2931 if (error != 0) {
2932 aprint_error_dev(sc->sc_dev,
2933 "unable to create TX DMA map\n");
2934 goto fail;
2935 }
2936
2937 txbuf->eop_index = -1;
2938 }
2939
2940 return 0;
2941 fail:
2942 return error;
2943 }
2944
2945
2946 /*********************************************************************
2947 *
2948 * Allocate and initialize transmit structures.
2949 *
2950 **********************************************************************/
2951 static int
2952 igc_setup_transmit_structures(struct igc_softc *sc)
2953 {
2954
2955 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
2956 struct tx_ring *txr = &sc->tx_rings[iq];
2957
2958 if (igc_setup_transmit_ring(txr))
2959 goto fail;
2960 }
2961
2962 return 0;
2963 fail:
2964 igc_free_transmit_structures(sc);
2965 return ENOBUFS;
2966 }
2967
2968 /*********************************************************************
2969 *
2970 * Initialize a transmit ring.
2971 *
2972 **********************************************************************/
2973 static int
2974 igc_setup_transmit_ring(struct tx_ring *txr)
2975 {
2976 struct igc_softc *sc = txr->sc;
2977
2978 /* Now allocate transmit buffers for the ring. */
2979 if (igc_allocate_transmit_buffers(txr))
2980 return ENOMEM;
2981
2982 /* Clear the old ring contents */
2983 memset(txr->tx_base, 0,
2984 sizeof(union igc_adv_tx_desc) * sc->num_tx_desc);
2985
2986 /* Reset indices. */
2987 txr->next_avail_desc = 0;
2988 txr->next_to_clean = 0;
2989
2990 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 0,
2991 txr->txdma.dma_map->dm_mapsize,
2992 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2993
2994 txr->txr_interq = pcq_create(sc->num_tx_desc, KM_SLEEP);
2995
2996 mutex_init(&txr->txr_lock, MUTEX_DEFAULT, IPL_NET);
2997
2998 return 0;
2999 }
3000
3001 /*********************************************************************
3002 *
3003 * Enable transmit unit.
3004 *
3005 **********************************************************************/
3006 static void
3007 igc_initialize_transmit_unit(struct igc_softc *sc)
3008 {
3009 struct ifnet *ifp = &sc->sc_ec.ec_if;
3010 struct igc_hw *hw = &sc->hw;
3011
3012 /* Setup the Base and Length of the TX descriptor ring. */
3013 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3014 struct tx_ring *txr = &sc->tx_rings[iq];
3015 const uint64_t bus_addr =
3016 txr->txdma.dma_map->dm_segs[0].ds_addr;
3017
3018 /* Base and len of TX ring */
3019 IGC_WRITE_REG(hw, IGC_TDLEN(iq),
3020 sc->num_tx_desc * sizeof(union igc_adv_tx_desc));
3021 IGC_WRITE_REG(hw, IGC_TDBAH(iq), (uint32_t)(bus_addr >> 32));
3022 IGC_WRITE_REG(hw, IGC_TDBAL(iq), (uint32_t)bus_addr);
3023
3024 /* Init the HEAD/TAIL indices */
3025 IGC_WRITE_REG(hw, IGC_TDT(iq), 0 /* XXX txr->next_avail_desc */);
3026 IGC_WRITE_REG(hw, IGC_TDH(iq), 0);
3027
3028 txr->watchdog_timer = 0;
3029
3030 uint32_t txdctl = 0; /* Clear txdctl */
3031 txdctl |= 0x1f; /* PTHRESH */
3032 txdctl |= 1 << 8; /* HTHRESH */
3033 txdctl |= 1 << 16; /* WTHRESH */
3034 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3035 txdctl |= IGC_TXDCTL_GRAN;
3036 txdctl |= 1 << 25; /* LWTHRESH */
3037
3038 IGC_WRITE_REG(hw, IGC_TXDCTL(iq), txdctl);
3039 }
3040 ifp->if_timer = 0;
3041
3042 /* Program the Transmit Control Register */
3043 uint32_t tctl = IGC_READ_REG(&sc->hw, IGC_TCTL);
3044 tctl &= ~IGC_TCTL_CT;
3045 tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
3046 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
3047
3048 /* This write will effectively turn on the transmit unit. */
3049 IGC_WRITE_REG(&sc->hw, IGC_TCTL, tctl);
3050 }
3051
3052 /*********************************************************************
3053 *
3054 * Free all transmit rings.
3055 *
3056 **********************************************************************/
3057 static void
3058 igc_free_transmit_structures(struct igc_softc *sc)
3059 {
3060
3061 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3062 struct tx_ring *txr = &sc->tx_rings[iq];
3063
3064 igc_free_transmit_buffers(txr);
3065 }
3066 }
3067
3068 /*********************************************************************
3069 *
3070 * Free transmit ring related data structures.
3071 *
3072 **********************************************************************/
3073 static void
3074 igc_free_transmit_buffers(struct tx_ring *txr)
3075 {
3076 struct igc_softc *sc = txr->sc;
3077
3078 if (txr->tx_buffers == NULL)
3079 return;
3080
3081 igc_withdraw_transmit_packets(txr, true);
3082
3083 kmem_free(txr->tx_buffers,
3084 sc->num_tx_desc * sizeof(struct igc_tx_buf));
3085 txr->tx_buffers = NULL;
3086 txr->txtag = NULL;
3087
3088 pcq_destroy(txr->txr_interq);
3089 mutex_destroy(&txr->txr_lock);
3090 }
3091
3092 /*********************************************************************
3093 *
3094 * Withdraw transmit packets.
3095 *
3096 **********************************************************************/
3097 static void
3098 igc_withdraw_transmit_packets(struct tx_ring *txr, bool destroy)
3099 {
3100 struct igc_softc *sc = txr->sc;
3101 struct igc_queue *q = txr->txr_igcq;
3102
3103 mutex_enter(&txr->txr_lock);
3104
3105 for (int id = 0; id < sc->num_tx_desc; id++) {
3106 union igc_adv_tx_desc *txdesc = &txr->tx_base[id];
3107
3108 igc_txdesc_sync(txr, id,
3109 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3110 txdesc->read.buffer_addr = 0;
3111 txdesc->read.cmd_type_len = 0;
3112 txdesc->read.olinfo_status = 0;
3113 igc_txdesc_sync(txr, id,
3114 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3115
3116 struct igc_tx_buf *txbuf = &txr->tx_buffers[id];
3117 bus_dmamap_t map = txbuf->map;
3118
3119 if (map != NULL && map->dm_nsegs > 0) {
3120 bus_dmamap_sync(txr->txdma.dma_tag, map,
3121 0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3122 bus_dmamap_unload(txr->txdma.dma_tag, map);
3123 }
3124 if (txbuf->m_head != NULL) {
3125 m_freem(txbuf->m_head);
3126 txbuf->m_head = NULL;
3127 }
3128 if (map != NULL && destroy) {
3129 bus_dmamap_destroy(txr->txdma.dma_tag, map);
3130 txbuf->map = NULL;
3131 }
3132 txbuf->eop_index = -1;
3133
3134 txr->next_avail_desc = 0;
3135 txr->next_to_clean = 0;
3136 }
3137
3138 struct mbuf *m;
3139 while ((m = pcq_get(txr->txr_interq)) != NULL) {
3140 IGC_QUEUE_EVENT(q, tx_pcq_drop, 1);
3141 m_freem(m);
3142 }
3143
3144 mutex_exit(&txr->txr_lock);
3145 }
3146
3147
3148 /*********************************************************************
3149 *
3150 * Advanced Context Descriptor setup for VLAN, CSUM or TSO
3151 *
3152 **********************************************************************/
3153
3154 static int
3155 igc_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
3156 uint32_t *cmd_type_len, uint32_t *olinfo_status)
3157 {
3158 struct ether_vlan_header *evl;
3159 uint32_t type_tucmd_mlhl = 0;
3160 uint32_t vlan_macip_lens = 0;
3161 uint32_t ehlen, iphlen;
3162 uint16_t ehtype;
3163 int off = 0;
3164
3165 const int csum_flags = mp->m_pkthdr.csum_flags;
3166
3167 /* First check if TSO is to be used */
3168 if ((csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
3169 return igc_tso_setup(txr, mp, prod, cmd_type_len,
3170 olinfo_status);
3171 }
3172
3173 const bool v4 = (csum_flags &
3174 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0;
3175 const bool v6 = (csum_flags & (M_CSUM_UDPv6 | M_CSUM_TCPv6)) != 0;
3176
3177 /* Indicate the whole packet as payload when not doing TSO */
3178 *olinfo_status |= mp->m_pkthdr.len << IGC_ADVTXD_PAYLEN_SHIFT;
3179
3180 /*
3181 * In advanced descriptors the vlan tag must
3182 * be placed into the context descriptor. Hence
3183 * we need to make one even if not doing offloads.
3184 */
3185 #if NVLAN > 0
3186 if (vlan_has_tag(mp)) {
3187 vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
3188 << IGC_ADVTXD_VLAN_SHIFT;
3189 off = 1;
3190 } else
3191 #endif
3192 if (!v4 && !v6)
3193 return 0;
3194
3195 KASSERT(mp->m_len >= sizeof(struct ether_header));
3196 evl = mtod(mp, struct ether_vlan_header *);
3197 if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3198 KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
3199 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3200 ehtype = evl->evl_proto;
3201 } else {
3202 ehlen = ETHER_HDR_LEN;
3203 ehtype = evl->evl_encap_proto;
3204 }
3205
3206 vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
3207
3208 #ifdef IGC_DEBUG
3209 /*
3210 * For checksum offloading, L3 headers are not mandatory.
3211 * We use these only for consistency checks.
3212 */
3213 struct ip *ip;
3214 struct ip6_hdr *ip6;
3215 uint8_t ipproto;
3216 char *l3d;
3217
3218 if (mp->m_len == ehlen && mp->m_next != NULL)
3219 l3d = mtod(mp->m_next, char *);
3220 else
3221 l3d = mtod(mp, char *) + ehlen;
3222 #endif
3223
3224 switch (ntohs(ehtype)) {
3225 case ETHERTYPE_IP:
3226 iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
3227 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
3228
3229 if ((csum_flags & M_CSUM_IPv4) != 0) {
3230 *olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
3231 off = 1;
3232 }
3233 #ifdef IGC_DEBUG
3234 KASSERT(!v6);
3235 ip = (void *)l3d;
3236 ipproto = ip->ip_p;
3237 KASSERT(iphlen == ip->ip_hl << 2);
3238 KASSERT((mp->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0 ||
3239 ip->ip_sum == 0);
3240 #endif
3241 break;
3242 case ETHERTYPE_IPV6:
3243 iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
3244 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
3245 #ifdef IGC_DEBUG
3246 KASSERT(!v4);
3247 ip6 = (void *)l3d;
3248 ipproto = ip6->ip6_nxt; /* XXX */
3249 KASSERT(iphlen == sizeof(struct ip6_hdr));
3250 #endif
3251 break;
3252 default:
3253 /*
3254 * Unknown L3 protocol. Clear L3 header length and proceed for
3255 * LAN as done by Linux driver.
3256 */
3257 iphlen = 0;
3258 #ifdef IGC_DEBUG
3259 KASSERT(!v4 && !v6);
3260 ipproto = 0;
3261 #endif
3262 break;
3263 }
3264
3265 vlan_macip_lens |= iphlen;
3266
3267 const bool tcp = (csum_flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0;
3268 const bool udp = (csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0;
3269
3270 if (tcp) {
3271 #ifdef IGC_DEBUG
3272 KASSERTMSG(ipproto == IPPROTO_TCP, "ipproto = %d", ipproto);
3273 #endif
3274 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
3275 *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3276 off = 1;
3277 } else if (udp) {
3278 #ifdef IGC_DEBUG
3279 KASSERTMSG(ipproto == IPPROTO_UDP, "ipproto = %d", ipproto);
3280 #endif
3281 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
3282 *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3283 off = 1;
3284 }
3285
3286 if (off == 0)
3287 return 0;
3288
3289 type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
3290
3291 /* Now ready a context descriptor */
3292 struct igc_adv_tx_context_desc *txdesc =
3293 (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
3294
3295 /* Now copy bits into descriptor */
3296 igc_txdesc_sync(txr, prod,
3297 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3298 htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
3299 htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
3300 htolem32(&txdesc->seqnum_seed, 0);
3301 htolem32(&txdesc->mss_l4len_idx, 0);
3302 igc_txdesc_sync(txr, prod,
3303 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3304
3305 return 1;
3306 }
3307
3308 /*********************************************************************
3309 *
3310 * Advanced Context Descriptor setup for TSO
3311 *
3312 * XXX XXXRO
3313 * Not working. Some packets are sent with correct csums, but
3314 * others aren't. th->th_sum may be adjusted.
3315 *
3316 **********************************************************************/
3317
3318 static int
3319 igc_tso_setup(struct tx_ring *txr, struct mbuf *mp, int prod,
3320 uint32_t *cmd_type_len, uint32_t *olinfo_status)
3321 {
3322 #if 1 /* notyet */
3323 return 0;
3324 #else
3325 struct ether_vlan_header *evl;
3326 struct ip *ip;
3327 struct ip6_hdr *ip6;
3328 struct tcphdr *th;
3329 uint32_t type_tucmd_mlhl = 0;
3330 uint32_t vlan_macip_lens = 0;
3331 uint32_t mss_l4len_idx = 0;
3332 uint32_t ehlen, iphlen, tcphlen, paylen;
3333 uint16_t ehtype;
3334
3335 /*
3336 * In advanced descriptors the vlan tag must
3337 * be placed into the context descriptor. Hence
3338 * we need to make one even if not doing offloads.
3339 */
3340 #if NVLAN > 0
3341 if (vlan_has_tag(mp)) {
3342 vlan_macip_lens |= (uint32_t)vlan_get_tag(mp)
3343 << IGC_ADVTXD_VLAN_SHIFT;
3344 }
3345 #endif
3346
3347 KASSERT(mp->m_len >= sizeof(struct ether_header));
3348 evl = mtod(mp, struct ether_vlan_header *);
3349 if (evl->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3350 KASSERT(mp->m_len >= sizeof(struct ether_vlan_header));
3351 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3352 ehtype = evl->evl_proto;
3353 } else {
3354 ehlen = ETHER_HDR_LEN;
3355 ehtype = evl->evl_encap_proto;
3356 }
3357
3358 vlan_macip_lens |= ehlen << IGC_ADVTXD_MACLEN_SHIFT;
3359
3360 switch (ntohs(ehtype)) {
3361 case ETHERTYPE_IP:
3362 iphlen = M_CSUM_DATA_IPv4_IPHL(mp->m_pkthdr.csum_data);
3363 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
3364 *olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
3365
3366 KASSERT(mp->m_len >= ehlen + sizeof(*ip));
3367 ip = (void *)(mtod(mp, char *) + ehlen);
3368 ip->ip_len = 0;
3369 KASSERT(iphlen == ip->ip_hl << 2);
3370 KASSERT(ip->ip_sum == 0);
3371 KASSERT(ip->ip_p == IPPROTO_TCP);
3372
3373 KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
3374 th = (void *)((char *)ip + iphlen);
3375 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, ip->ip_dst.s_addr,
3376 htons(IPPROTO_TCP));
3377 break;
3378 case ETHERTYPE_IPV6:
3379 iphlen = M_CSUM_DATA_IPv6_IPHL(mp->m_pkthdr.csum_data);
3380 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
3381
3382 KASSERT(mp->m_len >= ehlen + sizeof(*ip6));
3383 ip6 = (void *)(mtod(mp, char *) + ehlen);
3384 ip6->ip6_plen = 0;
3385 KASSERT(iphlen == sizeof(struct ip6_hdr));
3386 KASSERT(ip6->ip6_nxt == IPPROTO_TCP);
3387
3388 KASSERT(mp->m_len >= ehlen + iphlen + sizeof(*th));
3389 th = (void *)((char *)ip6 + iphlen);
3390 tcphlen = th->th_off << 2;
3391 paylen = mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
3392 th->th_sum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 0,
3393 htonl(IPPROTO_TCP));
3394 break;
3395 default:
3396 panic("%s", __func__);
3397 }
3398
3399 tcphlen = th->th_off << 2;
3400 paylen = mp->m_pkthdr.len - ehlen - iphlen - tcphlen;
3401
3402 vlan_macip_lens |= iphlen;
3403
3404 type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
3405 type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
3406
3407 mss_l4len_idx |= mp->m_pkthdr.segsz << IGC_ADVTXD_MSS_SHIFT;
3408 mss_l4len_idx |= tcphlen << IGC_ADVTXD_L4LEN_SHIFT;
3409
3410 /* Now ready a context descriptor */
3411 struct igc_adv_tx_context_desc *txdesc =
3412 (struct igc_adv_tx_context_desc *)&txr->tx_base[prod];
3413
3414 /* Now copy bits into descriptor */
3415 igc_txdesc_sync(txr, prod,
3416 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3417 htolem32(&txdesc->vlan_macip_lens, vlan_macip_lens);
3418 htolem32(&txdesc->type_tucmd_mlhl, type_tucmd_mlhl);
3419 htolem32(&txdesc->seqnum_seed, 0);
3420 htolem32(&txdesc->mss_l4len_idx, mss_l4len_idx);
3421 igc_txdesc_sync(txr, prod,
3422 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3423
3424 *cmd_type_len |= IGC_ADVTXD_DCMD_TSE;
3425 *olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
3426 *olinfo_status |= paylen << IGC_ADVTXD_PAYLEN_SHIFT;
3427
3428 return 1;
3429 #endif /* notyet */
3430 }
3431
3432 /*********************************************************************
3433 *
3434 * Allocate memory for rx_buffer structures. Since we use one
3435 * rx_buffer per received packet, the maximum number of rx_buffer's
3436 * that we'll need is equal to the number of receive descriptors
3437 * that we've allocated.
3438 *
3439 **********************************************************************/
3440 static int
3441 igc_allocate_receive_buffers(struct rx_ring *rxr)
3442 {
3443 struct igc_softc *sc = rxr->sc;
3444 int error;
3445
3446 rxr->rx_buffers =
3447 kmem_zalloc(sc->num_rx_desc * sizeof(struct igc_rx_buf), KM_SLEEP);
3448
3449 for (int id = 0; id < sc->num_rx_desc; id++) {
3450 struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
3451
3452 error = bus_dmamap_create(rxr->rxdma.dma_tag, MCLBYTES, 1,
3453 MCLBYTES, 0, BUS_DMA_WAITOK, &rxbuf->map);
3454 if (error) {
3455 aprint_error_dev(sc->sc_dev,
3456 "unable to create RX DMA map\n");
3457 goto fail;
3458 }
3459 }
3460 bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 0,
3461 rxr->rxdma.dma_map->dm_mapsize,
3462 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3463
3464 return 0;
3465 fail:
3466 return error;
3467 }
3468
3469 /*********************************************************************
3470 *
3471 * Allocate and initialize receive structures.
3472 *
3473 **********************************************************************/
3474 static int
3475 igc_setup_receive_structures(struct igc_softc *sc)
3476 {
3477
3478 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3479 struct rx_ring *rxr = &sc->rx_rings[iq];
3480
3481 if (igc_setup_receive_ring(rxr))
3482 goto fail;
3483 }
3484
3485 return 0;
3486 fail:
3487 igc_free_receive_structures(sc);
3488 return ENOBUFS;
3489 }
3490
3491 /*********************************************************************
3492 *
3493 * Initialize a receive ring and its buffers.
3494 *
3495 **********************************************************************/
3496 static int
3497 igc_setup_receive_ring(struct rx_ring *rxr)
3498 {
3499 struct igc_softc *sc = rxr->sc;
3500 const int rsize = roundup2(
3501 sc->num_rx_desc * sizeof(union igc_adv_rx_desc), IGC_DBA_ALIGN);
3502
3503 /* Clear the ring contents. */
3504 memset(rxr->rx_base, 0, rsize);
3505
3506 if (igc_allocate_receive_buffers(rxr))
3507 return ENOMEM;
3508
3509 /* Setup our descriptor indices. */
3510 rxr->next_to_check = 0;
3511 rxr->last_desc_filled = 0;
3512
3513 mutex_init(&rxr->rxr_lock, MUTEX_DEFAULT, IPL_NET);
3514
3515 return 0;
3516 }
3517
3518 /*********************************************************************
3519 *
3520 * Enable receive unit.
3521 *
3522 **********************************************************************/
3523 static void
3524 igc_initialize_receive_unit(struct igc_softc *sc)
3525 {
3526 struct ifnet *ifp = &sc->sc_ec.ec_if;
3527 struct igc_hw *hw = &sc->hw;
3528 uint32_t rctl, rxcsum, srrctl;
3529
3530 DPRINTF(RX, "called\n");
3531
3532 /*
3533 * Make sure receives are disabled while setting
3534 * up the descriptor ring.
3535 */
3536 rctl = IGC_READ_REG(hw, IGC_RCTL);
3537 IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
3538
3539 /* Setup the Receive Control Register */
3540 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
3541 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
3542 IGC_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
3543
3544 #if 1
3545 /* Do not store bad packets */
3546 rctl &= ~IGC_RCTL_SBP;
3547 #else
3548 /* for debug */
3549 rctl |= IGC_RCTL_SBP;
3550 #endif
3551
3552 /* Enable Long Packet receive */
3553 if (sc->hw.mac.max_frame_size > ETHER_MAX_LEN)
3554 rctl |= IGC_RCTL_LPE;
3555 else
3556 rctl &= ~IGC_RCTL_LPE;
3557
3558 /* Strip the CRC */
3559 rctl |= IGC_RCTL_SECRC;
3560
3561 /*
3562 * Set the interrupt throttling rate. Value is calculated
3563 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3564 *
3565 * XXX Sync with Linux, especially for jumbo MTU or TSO.
3566 * XXX Shouldn't be here?
3567 */
3568 IGC_WRITE_REG(hw, IGC_ITR, DEFAULT_ITR);
3569
3570 rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
3571 rxcsum &= ~(IGC_RXCSUM_IPOFL | IGC_RXCSUM_TUOFL | IGC_RXCSUM_PCSD);
3572 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3573 rxcsum |= IGC_RXCSUM_IPOFL;
3574 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
3575 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
3576 rxcsum |= IGC_RXCSUM_TUOFL;
3577 if (sc->sc_nqueues > 1)
3578 rxcsum |= IGC_RXCSUM_PCSD;
3579 IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
3580
3581 if (sc->sc_nqueues > 1)
3582 igc_initialize_rss_mapping(sc);
3583
3584 srrctl = 0;
3585 #if 0
3586 srrctl |= 4096 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
3587 rctl |= IGC_RCTL_SZ_4096 | IGC_RCTL_BSEX;
3588 #else
3589 srrctl |= 2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
3590 rctl |= IGC_RCTL_SZ_2048;
3591 #endif
3592
3593 /*
3594 * If TX flow control is disabled and there's > 1 queue defined,
3595 * enable DROP.
3596 *
3597 * This drops frames rather than hanging the RX MAC for all queues.
3598 */
3599 if (sc->sc_nqueues > 1 &&
3600 (sc->fc == igc_fc_none || sc->fc == igc_fc_rx_pause))
3601 srrctl |= IGC_SRRCTL_DROP_EN;
3602
3603 /* Setup the Base and Length of the RX descriptor rings. */
3604 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3605 struct rx_ring *rxr = &sc->rx_rings[iq];
3606 const uint64_t bus_addr =
3607 rxr->rxdma.dma_map->dm_segs[0].ds_addr;
3608
3609 IGC_WRITE_REG(hw, IGC_RXDCTL(iq), 0);
3610
3611 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
3612
3613 IGC_WRITE_REG(hw, IGC_RDLEN(iq),
3614 sc->num_rx_desc * sizeof(union igc_adv_rx_desc));
3615 IGC_WRITE_REG(hw, IGC_RDBAH(iq), (uint32_t)(bus_addr >> 32));
3616 IGC_WRITE_REG(hw, IGC_RDBAL(iq), (uint32_t)bus_addr);
3617 IGC_WRITE_REG(hw, IGC_SRRCTL(iq), srrctl);
3618
3619 /* Setup the Head and Tail Descriptor Pointers */
3620 IGC_WRITE_REG(hw, IGC_RDH(iq), 0);
3621 IGC_WRITE_REG(hw, IGC_RDT(iq), 0 /* XXX rxr->last_desc_filled */);
3622
3623 /* Enable this Queue */
3624 uint32_t rxdctl = IGC_READ_REG(hw, IGC_RXDCTL(iq));
3625 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
3626 rxdctl &= 0xFFF00000;
3627 rxdctl |= IGC_RX_PTHRESH;
3628 rxdctl |= IGC_RX_HTHRESH << 8;
3629 rxdctl |= IGC_RX_WTHRESH << 16;
3630 IGC_WRITE_REG(hw, IGC_RXDCTL(iq), rxdctl);
3631 }
3632
3633 /* Make sure VLAN Filters are off */
3634 rctl &= ~IGC_RCTL_VFE;
3635
3636 /* Write out the settings */
3637 IGC_WRITE_REG(hw, IGC_RCTL, rctl);
3638 }
3639
3640 /*********************************************************************
3641 *
3642 * Free all receive rings.
3643 *
3644 **********************************************************************/
3645 static void
3646 igc_free_receive_structures(struct igc_softc *sc)
3647 {
3648
3649 for (int iq = 0; iq < sc->sc_nqueues; iq++) {
3650 struct rx_ring *rxr = &sc->rx_rings[iq];
3651
3652 igc_free_receive_buffers(rxr);
3653 }
3654 }
3655
3656 /*********************************************************************
3657 *
3658 * Free receive ring data structures
3659 *
3660 **********************************************************************/
3661 static void
3662 igc_free_receive_buffers(struct rx_ring *rxr)
3663 {
3664 struct igc_softc *sc = rxr->sc;
3665
3666 if (rxr->rx_buffers != NULL) {
3667 for (int id = 0; id < sc->num_rx_desc; id++) {
3668 struct igc_rx_buf *rxbuf = &rxr->rx_buffers[id];
3669 bus_dmamap_t map = rxbuf->map;
3670
3671 if (rxbuf->buf != NULL) {
3672 bus_dmamap_sync(rxr->rxdma.dma_tag, map,
3673 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD);
3674 bus_dmamap_unload(rxr->rxdma.dma_tag, map);
3675 m_freem(rxbuf->buf);
3676 rxbuf->buf = NULL;
3677 }
3678 bus_dmamap_destroy(rxr->rxdma.dma_tag, map);
3679 rxbuf->map = NULL;
3680 }
3681 kmem_free(rxr->rx_buffers,
3682 sc->num_rx_desc * sizeof(struct igc_rx_buf));
3683 rxr->rx_buffers = NULL;
3684 }
3685
3686 mutex_destroy(&rxr->rxr_lock);
3687 }
3688
3689 /*********************************************************************
3690 *
3691 * Clear status registers in all RX descriptors.
3692 *
3693 **********************************************************************/
3694 static void
3695 igc_clear_receive_status(struct rx_ring *rxr)
3696 {
3697 struct igc_softc *sc = rxr->sc;
3698
3699 mutex_enter(&rxr->rxr_lock);
3700
3701 for (int id = 0; id < sc->num_rx_desc; id++) {
3702 union igc_adv_rx_desc *rxdesc = &rxr->rx_base[id];
3703
3704 igc_rxdesc_sync(rxr, id,
3705 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3706 rxdesc->wb.upper.status_error = 0;
3707 igc_rxdesc_sync(rxr, id,
3708 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3709 }
3710
3711 mutex_exit(&rxr->rxr_lock);
3712 }
3713
3714 /*
3715 * Initialise the RSS mapping for NICs that support multiple transmit/
3716 * receive rings.
3717 */
3718 static void
3719 igc_initialize_rss_mapping(struct igc_softc *sc)
3720 {
3721 struct igc_hw *hw = &sc->hw;
3722
3723 /*
3724 * The redirection table controls which destination
3725 * queue each bucket redirects traffic to.
3726 * Each DWORD represents four queues, with the LSB
3727 * being the first queue in the DWORD.
3728 *
3729 * This just allocates buckets to queues using round-robin
3730 * allocation.
3731 *
3732 * NOTE: It Just Happens to line up with the default
3733 * RSS allocation method.
3734 */
3735
3736 /* Warning FM follows */
3737 uint32_t reta = 0;
3738 for (int i = 0; i < 128; i++) {
3739 const int shift = 0; /* XXXRO */
3740 int queue_id = i % sc->sc_nqueues;
3741 /* Adjust if required */
3742 queue_id <<= shift;
3743
3744 /*
3745 * The low 8 bits are for hash value (n+0);
3746 * The next 8 bits are for hash value (n+1), etc.
3747 */
3748 reta >>= 8;
3749 reta |= ((uint32_t)queue_id) << 24;
3750 if ((i & 3) == 3) {
3751 IGC_WRITE_REG(hw, IGC_RETA(i >> 2), reta);
3752 reta = 0;
3753 }
3754 }
3755
3756 /*
3757 * MRQC: Multiple Receive Queues Command
3758 * Set queuing to RSS control, number depends on the device.
3759 */
3760
3761 /* Set up random bits */
3762 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3763 rss_getkey((uint8_t *)rss_key);
3764
3765 /* Now fill our hash function seeds */
3766 for (int i = 0; i < __arraycount(rss_key); i++)
3767 IGC_WRITE_REG_ARRAY(hw, IGC_RSSRK(0), i, rss_key[i]);
3768
3769 /*
3770 * Configure the RSS fields to hash upon.
3771 */
3772 uint32_t mrqc = IGC_MRQC_ENABLE_RSS_4Q;
3773 mrqc |= IGC_MRQC_RSS_FIELD_IPV4 | IGC_MRQC_RSS_FIELD_IPV4_TCP;
3774 mrqc |= IGC_MRQC_RSS_FIELD_IPV6 | IGC_MRQC_RSS_FIELD_IPV6_TCP;
3775 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
3776
3777 IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
3778 }
3779
3780 /*
3781 * igc_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3782 * For ASF and Pass Through versions of f/w this means
3783 * that the driver is loaded. For AMT version type f/w
3784 * this means that the network i/f is open.
3785 */
3786 static void
3787 igc_get_hw_control(struct igc_softc *sc)
3788 {
3789 const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
3790
3791 IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
3792 }
3793
3794 /*
3795 * igc_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3796 * For ASF and Pass Through versions of f/w this means that
3797 * the driver is no longer loaded. For AMT versions of the
3798 * f/w this means that the network i/f is closed.
3799 */
3800 static void
3801 igc_release_hw_control(struct igc_softc *sc)
3802 {
3803 const uint32_t ctrl_ext = IGC_READ_REG(&sc->hw, IGC_CTRL_EXT);
3804
3805 IGC_WRITE_REG(&sc->hw, IGC_CTRL_EXT, ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
3806 }
3807
3808 static int
3809 igc_is_valid_ether_addr(uint8_t *addr)
3810 {
3811 const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3812
3813 if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3814 return 0;
3815
3816 return 1;
3817 }
3818
3819 static void
3820 igc_print_devinfo(struct igc_softc *sc)
3821 {
3822 device_t dev = sc->sc_dev;
3823 struct igc_hw *hw = &sc->hw;
3824 struct igc_phy_info *phy = &hw->phy;
3825 u_int oui, model, rev;
3826 uint16_t id1, id2, nvm_ver, phy_ver;
3827 char descr[MII_MAX_DESCR_LEN];
3828
3829 /* Print PHY Info */
3830 id1 = phy->id >> 16;
3831 /* The revision field in phy->id is cleard and it's in phy->revision */
3832 id2 = (phy->id & 0xfff0) | phy->revision;
3833 oui = MII_OUI(id1, id2);
3834 model = MII_MODEL(id2);
3835 rev = MII_REV(id2);
3836 mii_get_descr(descr, sizeof(descr), oui, model);
3837 if (descr[0])
3838 aprint_normal_dev(dev, "PHY: %s, rev. %d\n",
3839 descr, rev);
3840 else
3841 aprint_normal_dev(dev,
3842 "PHY OUI 0x%06x, model 0x%04x, rev. %d\n",
3843 oui, model, rev);
3844
3845 /* Get NVM version */
3846 hw->nvm.ops.read(hw, NVM_VERSION, 1, &nvm_ver);
3847
3848 /* Get PHY FW version */
3849 phy->ops.read_reg(hw, 0x1e, &phy_ver);
3850
3851 aprint_normal_dev(dev, "ROM image version %x.%02x",
3852 (nvm_ver & NVM_VERSION_MAJOR) >> NVM_VERSION_MAJOR_SHIFT,
3853 (nvm_ver & NVM_VERSION_MINOR));
3854 aprint_debug("(0x%04hx)", nvm_ver);
3855
3856 aprint_normal(", PHY FW version 0x%04hx\n", phy_ver);
3857 }
3858