1 1.3 andvar /* $NetBSD: igc_i225.c,v 1.3 2025/02/25 15:29:00 andvar Exp $ */ 2 1.1 rin /* $OpenBSD: igc_i225.c,v 1.4 2023/02/03 11:31:52 mbuhl Exp $ */ 3 1.1 rin /*- 4 1.1 rin * Copyright 2021 Intel Corp 5 1.1 rin * Copyright 2021 Rubicon Communications, LLC (Netgate) 6 1.1 rin * SPDX-License-Identifier: BSD-3-Clause 7 1.1 rin */ 8 1.1 rin 9 1.2 rin #include <sys/cdefs.h> 10 1.3 andvar __KERNEL_RCSID(0, "$NetBSD: igc_i225.c,v 1.3 2025/02/25 15:29:00 andvar Exp $"); 11 1.2 rin 12 1.2 rin #include <dev/pci/igc/igc_api.h> 13 1.1 rin 14 1.1 rin int igc_init_nvm_params_i225(struct igc_hw *); 15 1.1 rin int igc_init_mac_params_i225(struct igc_hw *); 16 1.1 rin int igc_init_phy_params_i225(struct igc_hw *); 17 1.1 rin int igc_reset_hw_i225(struct igc_hw *); 18 1.1 rin int igc_acquire_nvm_i225(struct igc_hw *); 19 1.1 rin void igc_release_nvm_i225(struct igc_hw *); 20 1.1 rin int igc_get_hw_semaphore_i225(struct igc_hw *); 21 1.1 rin int __igc_write_nvm_srwr(struct igc_hw *, uint16_t, uint16_t, uint16_t *); 22 1.1 rin int igc_pool_flash_update_done_i225(struct igc_hw *); 23 1.1 rin 24 1.1 rin /** 25 1.1 rin * igc_init_nvm_params_i225 - Init NVM func ptrs. 26 1.1 rin * @hw: pointer to the HW structure 27 1.1 rin **/ 28 1.1 rin int 29 1.1 rin igc_init_nvm_params_i225(struct igc_hw *hw) 30 1.1 rin { 31 1.1 rin struct igc_nvm_info *nvm = &hw->nvm; 32 1.1 rin uint32_t eecd = IGC_READ_REG(hw, IGC_EECD); 33 1.1 rin uint16_t size; 34 1.1 rin 35 1.1 rin DEBUGFUNC("igc_init_nvm_params_i225"); 36 1.1 rin 37 1.1 rin size = (uint16_t)((eecd & IGC_EECD_SIZE_EX_MASK) >> 38 1.1 rin IGC_EECD_SIZE_EX_SHIFT); 39 1.1 rin /* 40 1.1 rin * Added to a constant, "size" becomes the left-shift value 41 1.1 rin * for setting word_size. 42 1.1 rin */ 43 1.1 rin size += NVM_WORD_SIZE_BASE_SHIFT; 44 1.1 rin 45 1.1 rin /* Just in case size is out of range, cap it to the largest 46 1.1 rin * EEPROM size supported. 47 1.1 rin */ 48 1.1 rin if (size > 15) 49 1.1 rin size = 15; 50 1.1 rin 51 1.1 rin nvm->word_size = 1 << size; 52 1.1 rin nvm->opcode_bits = 8; 53 1.1 rin nvm->delay_usec = 1; 54 1.1 rin nvm->type = igc_nvm_eeprom_spi; 55 1.1 rin 56 1.1 rin nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8; 57 1.1 rin nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ? 16 : 8; 58 1.1 rin 59 1.1 rin if (nvm->word_size == (1 << 15)) 60 1.1 rin nvm->page_size = 128; 61 1.1 rin 62 1.1 rin nvm->ops.acquire = igc_acquire_nvm_i225; 63 1.1 rin nvm->ops.release = igc_release_nvm_i225; 64 1.1 rin if (igc_get_flash_presence_i225(hw)) { 65 1.1 rin hw->nvm.type = igc_nvm_flash_hw; 66 1.1 rin nvm->ops.read = igc_read_nvm_srrd_i225; 67 1.1 rin nvm->ops.write = igc_write_nvm_srwr_i225; 68 1.1 rin nvm->ops.validate = igc_validate_nvm_checksum_i225; 69 1.1 rin nvm->ops.update = igc_update_nvm_checksum_i225; 70 1.1 rin } else { 71 1.1 rin hw->nvm.type = igc_nvm_invm; 72 1.1 rin nvm->ops.write = igc_null_write_nvm; 73 1.1 rin nvm->ops.validate = igc_null_ops_generic; 74 1.1 rin nvm->ops.update = igc_null_ops_generic; 75 1.1 rin } 76 1.1 rin 77 1.1 rin return IGC_SUCCESS; 78 1.1 rin } 79 1.1 rin 80 1.1 rin /** 81 1.1 rin * igc_init_mac_params_i225 - Init MAC func ptrs. 82 1.1 rin * @hw: pointer to the HW structure 83 1.1 rin **/ 84 1.1 rin int 85 1.1 rin igc_init_mac_params_i225(struct igc_hw *hw) 86 1.1 rin { 87 1.1 rin struct igc_mac_info *mac = &hw->mac; 88 1.1 rin struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225; 89 1.1 rin 90 1.1 rin DEBUGFUNC("igc_init_mac_params_i225"); 91 1.1 rin 92 1.1 rin /* Initialize function pointer */ 93 1.1 rin igc_init_mac_ops_generic(hw); 94 1.1 rin 95 1.1 rin /* Set media type */ 96 1.1 rin hw->phy.media_type = igc_media_type_copper; 97 1.1 rin /* Set mta register count */ 98 1.1 rin mac->mta_reg_count = 128; 99 1.1 rin /* Set rar entry count */ 100 1.1 rin mac->rar_entry_count = IGC_RAR_ENTRIES_BASE; 101 1.1 rin 102 1.1 rin /* reset */ 103 1.1 rin mac->ops.reset_hw = igc_reset_hw_i225; 104 1.1 rin /* hw initialization */ 105 1.1 rin mac->ops.init_hw = igc_init_hw_i225; 106 1.1 rin /* link setup */ 107 1.1 rin mac->ops.setup_link = igc_setup_link_generic; 108 1.1 rin /* check for link */ 109 1.1 rin mac->ops.check_for_link = igc_check_for_link_i225; 110 1.1 rin /* link info */ 111 1.1 rin mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic; 112 1.1 rin /* acquire SW_FW sync */ 113 1.1 rin mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225; 114 1.1 rin /* release SW_FW sync */ 115 1.1 rin mac->ops.release_swfw_sync = igc_release_swfw_sync_i225; 116 1.1 rin 117 1.1 rin /* Allow a single clear of the SW semaphore on I225 */ 118 1.1 rin dev_spec->clear_semaphore_once = true; 119 1.1 rin mac->ops.setup_physical_interface = igc_setup_copper_link_i225; 120 1.1 rin 121 1.1 rin /* Set if part includes ASF firmware */ 122 1.1 rin mac->asf_firmware_present = true; 123 1.1 rin 124 1.1 rin /* multicast address update */ 125 1.1 rin mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic; 126 1.1 rin 127 1.1 rin mac->ops.write_vfta = igc_write_vfta_generic; 128 1.1 rin 129 1.1 rin return IGC_SUCCESS; 130 1.1 rin } 131 1.1 rin 132 1.1 rin /** 133 1.1 rin * igc_init_phy_params_i225 - Init PHY func ptrs. 134 1.1 rin * @hw: pointer to the HW structure 135 1.1 rin **/ 136 1.1 rin int 137 1.1 rin igc_init_phy_params_i225(struct igc_hw *hw) 138 1.1 rin { 139 1.1 rin struct igc_phy_info *phy = &hw->phy; 140 1.1 rin int ret_val = IGC_SUCCESS; 141 1.1 rin 142 1.1 rin DEBUGFUNC("igc_init_phy_params_i225"); 143 1.1 rin 144 1.1 rin if (hw->phy.media_type != igc_media_type_copper) { 145 1.1 rin phy->type = igc_phy_none; 146 1.1 rin goto out; 147 1.1 rin } 148 1.1 rin 149 1.1 rin phy->ops.power_up = igc_power_up_phy_copper; 150 1.1 rin phy->ops.power_down = igc_power_down_phy_copper_base; 151 1.1 rin phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500; 152 1.1 rin phy->reset_delay_us = 100; 153 1.1 rin phy->ops.acquire = igc_acquire_phy_base; 154 1.1 rin phy->ops.check_reset_block = igc_check_reset_block_generic; 155 1.1 rin phy->ops.release = igc_release_phy_base; 156 1.1 rin phy->ops.reset = igc_phy_hw_reset_generic; 157 1.1 rin phy->ops.read_reg = igc_read_phy_reg_gpy; 158 1.1 rin phy->ops.write_reg = igc_write_phy_reg_gpy; 159 1.1 rin 160 1.1 rin /* Make sure the PHY is in a good state. Several people have reported 161 1.1 rin * firmware leaving the PHY's page select register set to something 162 1.1 rin * other than the default of zero, which causes the PHY ID read to 163 1.1 rin * access something other than the intended register. 164 1.1 rin */ 165 1.1 rin ret_val = hw->phy.ops.reset(hw); 166 1.1 rin if (ret_val) 167 1.1 rin goto out; 168 1.1 rin 169 1.1 rin ret_val = igc_get_phy_id(hw); 170 1.1 rin phy->type = igc_phy_i225; 171 1.1 rin 172 1.1 rin out: 173 1.1 rin return ret_val; 174 1.1 rin } 175 1.1 rin 176 1.1 rin /** 177 1.1 rin * igc_reset_hw_i225 - Reset hardware 178 1.1 rin * @hw: pointer to the HW structure 179 1.1 rin * 180 1.1 rin * This resets the hardware into a known state. 181 1.1 rin **/ 182 1.1 rin int 183 1.1 rin igc_reset_hw_i225(struct igc_hw *hw) 184 1.1 rin { 185 1.1 rin uint32_t ctrl; 186 1.1 rin int ret_val; 187 1.1 rin 188 1.1 rin DEBUGFUNC("igc_reset_hw_i225"); 189 1.1 rin 190 1.1 rin /* 191 1.1 rin * Prevent the PCI-E bus from sticking if there is no TLP connection 192 1.1 rin * on the last TLP read/write transaction when MAC is reset. 193 1.1 rin */ 194 1.1 rin ret_val = igc_disable_pcie_master_generic(hw); 195 1.1 rin if (ret_val) 196 1.1 rin DEBUGOUT("PCI-E Master disable polling has failed.\n"); 197 1.1 rin 198 1.1 rin DEBUGOUT("Masking off all interrupts\n"); 199 1.1 rin IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff); 200 1.1 rin 201 1.1 rin IGC_WRITE_REG(hw, IGC_RCTL, 0); 202 1.1 rin IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP); 203 1.1 rin IGC_WRITE_FLUSH(hw); 204 1.1 rin 205 1.1 rin msec_delay(10); 206 1.1 rin 207 1.1 rin ctrl = IGC_READ_REG(hw, IGC_CTRL); 208 1.1 rin 209 1.1 rin DEBUGOUT("Issuing a global reset to MAC\n"); 210 1.1 rin IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST); 211 1.1 rin 212 1.1 rin ret_val = igc_get_auto_rd_done_generic(hw); 213 1.1 rin if (ret_val) { 214 1.1 rin /* 215 1.1 rin * When auto config read does not complete, do not 216 1.1 rin * return with an error. This can happen in situations 217 1.1 rin * where there is no eeprom and prevents getting link. 218 1.1 rin */ 219 1.1 rin DEBUGOUT("Auto Read Done did not complete\n"); 220 1.1 rin } 221 1.1 rin 222 1.1 rin /* Clear any pending interrupt events. */ 223 1.1 rin IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff); 224 1.1 rin IGC_READ_REG(hw, IGC_ICR); 225 1.1 rin 226 1.1 rin /* Install any alternate MAC address into RAR0 */ 227 1.1 rin ret_val = igc_check_alt_mac_addr_generic(hw); 228 1.1 rin 229 1.1 rin return ret_val; 230 1.1 rin } 231 1.1 rin 232 1.1 rin /* igc_acquire_nvm_i225 - Request for access to EEPROM 233 1.1 rin * @hw: pointer to the HW structure 234 1.1 rin * 235 1.1 rin * Acquire the necessary semaphores for exclusive access to the EEPROM. 236 1.1 rin * Set the EEPROM access request bit and wait for EEPROM access grant bit. 237 1.1 rin * Return successful if access grant bit set, else clear the request for 238 1.1 rin * EEPROM access and return -IGC_ERR_NVM (-1). 239 1.1 rin */ 240 1.1 rin int 241 1.1 rin igc_acquire_nvm_i225(struct igc_hw *hw) 242 1.1 rin { 243 1.1 rin int ret_val; 244 1.1 rin 245 1.1 rin DEBUGFUNC("igc_acquire_nvm_i225"); 246 1.1 rin 247 1.1 rin ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM); 248 1.1 rin 249 1.1 rin return ret_val; 250 1.1 rin } 251 1.1 rin 252 1.1 rin /* igc_release_nvm_i225 - Release exclusive access to EEPROM 253 1.1 rin * @hw: pointer to the HW structure 254 1.1 rin * 255 1.1 rin * Stop any current commands to the EEPROM and clear the EEPROM request bit, 256 1.1 rin * then release the semaphores acquired. 257 1.1 rin */ 258 1.1 rin void 259 1.1 rin igc_release_nvm_i225(struct igc_hw *hw) 260 1.1 rin { 261 1.1 rin DEBUGFUNC("igc_release_nvm_i225"); 262 1.1 rin 263 1.1 rin igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM); 264 1.1 rin } 265 1.1 rin 266 1.1 rin /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore 267 1.1 rin * @hw: pointer to the HW structure 268 1.1 rin * @mask: specifies which semaphore to acquire 269 1.1 rin * 270 1.1 rin * Acquire the SW/FW semaphore to access the PHY or NVM. The mask 271 1.1 rin * will also specify which port we're acquiring the lock for. 272 1.1 rin */ 273 1.1 rin int 274 1.1 rin igc_acquire_swfw_sync_i225(struct igc_hw *hw, uint16_t mask) 275 1.1 rin { 276 1.1 rin uint32_t swfw_sync; 277 1.1 rin uint32_t swmask = mask; 278 1.1 rin uint32_t fwmask = mask << 16; 279 1.1 rin int ret_val = IGC_SUCCESS; 280 1.1 rin int i = 0, timeout = 200; /* FIXME: find real value to use here */ 281 1.1 rin 282 1.1 rin DEBUGFUNC("igc_acquire_swfw_sync_i225"); 283 1.1 rin 284 1.1 rin while (i < timeout) { 285 1.1 rin if (igc_get_hw_semaphore_i225(hw)) { 286 1.1 rin ret_val = -IGC_ERR_SWFW_SYNC; 287 1.1 rin goto out; 288 1.1 rin } 289 1.1 rin 290 1.1 rin swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC); 291 1.1 rin if (!(swfw_sync & (fwmask | swmask))) 292 1.1 rin break; 293 1.1 rin 294 1.1 rin /* Firmware currently using resource (fwmask) 295 1.1 rin * or other software thread using resource (swmask) 296 1.1 rin */ 297 1.1 rin igc_put_hw_semaphore_generic(hw); 298 1.1 rin msec_delay(5); 299 1.1 rin i++; 300 1.1 rin } 301 1.1 rin 302 1.1 rin if (i == timeout) { 303 1.1 rin DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); 304 1.1 rin ret_val = -IGC_ERR_SWFW_SYNC; 305 1.1 rin goto out; 306 1.1 rin } 307 1.1 rin 308 1.1 rin swfw_sync |= swmask; 309 1.1 rin IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync); 310 1.1 rin 311 1.1 rin igc_put_hw_semaphore_generic(hw); 312 1.1 rin 313 1.1 rin out: 314 1.1 rin return ret_val; 315 1.1 rin } 316 1.1 rin 317 1.1 rin /* igc_release_swfw_sync_i225 - Release SW/FW semaphore 318 1.1 rin * @hw: pointer to the HW structure 319 1.1 rin * @mask: specifies which semaphore to acquire 320 1.1 rin * 321 1.1 rin * Release the SW/FW semaphore used to access the PHY or NVM. The mask 322 1.1 rin * will also specify which port we're releasing the lock for. 323 1.1 rin */ 324 1.1 rin void 325 1.1 rin igc_release_swfw_sync_i225(struct igc_hw *hw, uint16_t mask) 326 1.1 rin { 327 1.1 rin uint32_t swfw_sync; 328 1.1 rin 329 1.1 rin DEBUGFUNC("igc_release_swfw_sync_i225"); 330 1.1 rin 331 1.1 rin while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS) 332 1.1 rin ; /* Empty */ 333 1.1 rin 334 1.1 rin swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC); 335 1.1 rin swfw_sync &= ~mask; 336 1.1 rin IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync); 337 1.1 rin 338 1.1 rin igc_put_hw_semaphore_generic(hw); 339 1.1 rin } 340 1.1 rin 341 1.1 rin /* 342 1.1 rin * igc_setup_copper_link_i225 - Configure copper link settings 343 1.1 rin * @hw: pointer to the HW structure 344 1.1 rin * 345 1.1 rin * Configures the link for auto-neg or forced speed and duplex. Then we check 346 1.1 rin * for link, once link is established calls to configure collision distance 347 1.1 rin * and flow control are called. 348 1.1 rin */ 349 1.1 rin int 350 1.1 rin igc_setup_copper_link_i225(struct igc_hw *hw) 351 1.1 rin { 352 1.1 rin uint32_t ctrl, phpm_reg; 353 1.1 rin int ret_val; 354 1.1 rin 355 1.1 rin DEBUGFUNC("igc_setup_copper_link_i225"); 356 1.1 rin 357 1.1 rin ctrl = IGC_READ_REG(hw, IGC_CTRL); 358 1.1 rin ctrl |= IGC_CTRL_SLU; 359 1.1 rin ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX); 360 1.1 rin IGC_WRITE_REG(hw, IGC_CTRL, ctrl); 361 1.1 rin 362 1.1 rin phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM); 363 1.1 rin phpm_reg &= ~IGC_I225_PHPM_GO_LINKD; 364 1.1 rin IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg); 365 1.1 rin 366 1.1 rin ret_val = igc_setup_copper_link_generic(hw); 367 1.1 rin 368 1.1 rin return ret_val; 369 1.1 rin } 370 1.1 rin 371 1.1 rin /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore 372 1.1 rin * @hw: pointer to the HW structure 373 1.1 rin * 374 1.1 rin * Acquire the HW semaphore to access the PHY or NVM 375 1.1 rin */ 376 1.1 rin int 377 1.1 rin igc_get_hw_semaphore_i225(struct igc_hw *hw) 378 1.1 rin { 379 1.1 rin uint32_t swsm; 380 1.1 rin int timeout = hw->nvm.word_size + 1; 381 1.1 rin int i = 0; 382 1.1 rin 383 1.1 rin DEBUGFUNC("igc_get_hw_semaphore_i225"); 384 1.1 rin 385 1.1 rin /* Get the SW semaphore */ 386 1.1 rin while (i < timeout) { 387 1.1 rin swsm = IGC_READ_REG(hw, IGC_SWSM); 388 1.1 rin if (!(swsm & IGC_SWSM_SMBI)) 389 1.1 rin break; 390 1.1 rin 391 1.1 rin DELAY(50); 392 1.1 rin i++; 393 1.1 rin } 394 1.1 rin 395 1.1 rin if (i == timeout) { 396 1.1 rin /* In rare circumstances, the SW semaphore may already be held 397 1.1 rin * unintentionally. Clear the semaphore once before giving up. 398 1.1 rin */ 399 1.1 rin if (hw->dev_spec._i225.clear_semaphore_once) { 400 1.1 rin hw->dev_spec._i225.clear_semaphore_once = false; 401 1.1 rin igc_put_hw_semaphore_generic(hw); 402 1.1 rin for (i = 0; i < timeout; i++) { 403 1.1 rin swsm = IGC_READ_REG(hw, IGC_SWSM); 404 1.1 rin if (!(swsm & IGC_SWSM_SMBI)) 405 1.1 rin break; 406 1.1 rin 407 1.1 rin DELAY(50); 408 1.1 rin } 409 1.1 rin } 410 1.1 rin 411 1.1 rin /* If we do not have the semaphore here, we have to give up. */ 412 1.1 rin if (i == timeout) { 413 1.1 rin DEBUGOUT("Driver can't access device -\n"); 414 1.1 rin DEBUGOUT("SMBI bit is set.\n"); 415 1.1 rin return -IGC_ERR_NVM; 416 1.1 rin } 417 1.1 rin } 418 1.1 rin 419 1.1 rin /* Get the FW semaphore. */ 420 1.1 rin for (i = 0; i < timeout; i++) { 421 1.1 rin swsm = IGC_READ_REG(hw, IGC_SWSM); 422 1.1 rin IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI); 423 1.1 rin 424 1.1 rin /* Semaphore acquired if bit latched */ 425 1.1 rin if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI) 426 1.1 rin break; 427 1.1 rin 428 1.1 rin DELAY(50); 429 1.1 rin } 430 1.1 rin 431 1.1 rin if (i == timeout) { 432 1.1 rin /* Release semaphores */ 433 1.1 rin igc_put_hw_semaphore_generic(hw); 434 1.1 rin DEBUGOUT("Driver can't access the NVM\n"); 435 1.1 rin return -IGC_ERR_NVM; 436 1.1 rin } 437 1.1 rin 438 1.1 rin return IGC_SUCCESS; 439 1.1 rin } 440 1.1 rin 441 1.1 rin /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register 442 1.1 rin * @hw: pointer to the HW structure 443 1.1 rin * @offset: offset of word in the Shadow Ram to read 444 1.1 rin * @words: number of words to read 445 1.1 rin * @data: word read from the Shadow Ram 446 1.1 rin * 447 1.1 rin * Reads a 16 bit word from the Shadow Ram using the EERD register. 448 1.1 rin * Uses necessary synchronization semaphores. 449 1.1 rin */ 450 1.1 rin int 451 1.1 rin igc_read_nvm_srrd_i225(struct igc_hw *hw, uint16_t offset, uint16_t words, 452 1.1 rin uint16_t *data) 453 1.1 rin { 454 1.1 rin uint16_t i, count; 455 1.1 rin int status = IGC_SUCCESS; 456 1.1 rin 457 1.1 rin DEBUGFUNC("igc_read_nvm_srrd_i225"); 458 1.1 rin 459 1.1 rin /* We cannot hold synchronization semaphores for too long, 460 1.1 rin * because of forceful takeover procedure. However it is more efficient 461 1.1 rin * to read in bursts than synchronizing access for each word. 462 1.1 rin */ 463 1.1 rin for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) { 464 1.1 rin count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ? 465 1.1 rin IGC_EERD_EEWR_MAX_COUNT : (words - i); 466 1.1 rin if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { 467 1.1 rin status = igc_read_nvm_eerd(hw, offset, count, data + i); 468 1.1 rin hw->nvm.ops.release(hw); 469 1.1 rin } else { 470 1.1 rin status = IGC_ERR_SWFW_SYNC; 471 1.1 rin } 472 1.1 rin 473 1.1 rin if (status != IGC_SUCCESS) 474 1.1 rin break; 475 1.1 rin } 476 1.1 rin 477 1.1 rin return status; 478 1.1 rin } 479 1.1 rin 480 1.1 rin /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR 481 1.1 rin * @hw: pointer to the HW structure 482 1.1 rin * @offset: offset within the Shadow RAM to be written to 483 1.1 rin * @words: number of words to write 484 1.1 rin * @data: 16 bit word(s) to be written to the Shadow RAM 485 1.1 rin * 486 1.1 rin * Writes data to Shadow RAM at offset using EEWR register. 487 1.1 rin * 488 1.1 rin * If igc_update_nvm_checksum is not called after this function , the 489 1.1 rin * data will not be committed to FLASH and also Shadow RAM will most likely 490 1.1 rin * contain an invalid checksum. 491 1.1 rin * 492 1.1 rin * If error code is returned, data and Shadow RAM may be inconsistent - buffer 493 1.1 rin * partially written. 494 1.1 rin */ 495 1.1 rin int 496 1.1 rin igc_write_nvm_srwr_i225(struct igc_hw *hw, uint16_t offset, uint16_t words, 497 1.1 rin uint16_t *data) 498 1.1 rin { 499 1.1 rin uint16_t i, count; 500 1.1 rin int status = IGC_SUCCESS; 501 1.1 rin 502 1.1 rin DEBUGFUNC("igc_write_nvm_srwr_i225"); 503 1.1 rin 504 1.1 rin /* We cannot hold synchronization semaphores for too long, 505 1.1 rin * because of forceful takeover procedure. However it is more efficient 506 1.1 rin * to write in bursts than synchronizing access for each word. 507 1.1 rin */ 508 1.1 rin for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) { 509 1.1 rin count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ? 510 1.1 rin IGC_EERD_EEWR_MAX_COUNT : (words - i); 511 1.1 rin if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { 512 1.1 rin status = __igc_write_nvm_srwr(hw, offset, count, 513 1.1 rin data + i); 514 1.1 rin hw->nvm.ops.release(hw); 515 1.1 rin } else 516 1.1 rin status = IGC_ERR_SWFW_SYNC; 517 1.1 rin 518 1.1 rin if (status != IGC_SUCCESS) 519 1.1 rin break; 520 1.1 rin } 521 1.1 rin 522 1.1 rin return status; 523 1.1 rin } 524 1.1 rin 525 1.1 rin /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR 526 1.1 rin * @hw: pointer to the HW structure 527 1.1 rin * @offset: offset within the Shadow Ram to be written to 528 1.1 rin * @words: number of words to write 529 1.1 rin * @data: 16 bit word(s) to be written to the Shadow Ram 530 1.1 rin * 531 1.1 rin * Writes data to Shadow Ram at offset using EEWR register. 532 1.1 rin * 533 1.1 rin * If igc_update_nvm_checksum is not called after this function , the 534 1.1 rin * Shadow Ram will most likely contain an invalid checksum. 535 1.1 rin */ 536 1.1 rin int 537 1.1 rin __igc_write_nvm_srwr(struct igc_hw *hw, uint16_t offset, uint16_t words, 538 1.1 rin uint16_t *data) 539 1.1 rin { 540 1.1 rin struct igc_nvm_info *nvm = &hw->nvm; 541 1.1 rin uint32_t i, k, eewr = 0; 542 1.1 rin uint32_t attempts = 100000; 543 1.1 rin int ret_val = IGC_SUCCESS; 544 1.1 rin 545 1.1 rin DEBUGFUNC("__igc_write_nvm_srwr"); 546 1.1 rin 547 1.1 rin /* A check for invalid values: offset too large, too many words, 548 1.1 rin * too many words for the offset, and not enough words. 549 1.1 rin */ 550 1.1 rin if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 551 1.1 rin (words == 0)) { 552 1.1 rin DEBUGOUT("nvm parameter(s) out of bounds\n"); 553 1.1 rin ret_val = -IGC_ERR_NVM; 554 1.1 rin goto out; 555 1.1 rin } 556 1.1 rin 557 1.1 rin for (i = 0; i < words; i++) { 558 1.1 rin eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) | 559 1.1 rin (data[i] << IGC_NVM_RW_REG_DATA) | IGC_NVM_RW_REG_START; 560 1.1 rin 561 1.1 rin IGC_WRITE_REG(hw, IGC_SRWR, eewr); 562 1.1 rin 563 1.1 rin for (k = 0; k < attempts; k++) { 564 1.1 rin if (IGC_NVM_RW_REG_DONE & IGC_READ_REG(hw, IGC_SRWR)) { 565 1.1 rin ret_val = IGC_SUCCESS; 566 1.1 rin break; 567 1.1 rin } 568 1.1 rin DELAY(5); 569 1.1 rin } 570 1.1 rin 571 1.1 rin if (ret_val != IGC_SUCCESS) { 572 1.1 rin DEBUGOUT("Shadow RAM write EEWR timed out\n"); 573 1.1 rin break; 574 1.1 rin } 575 1.1 rin } 576 1.1 rin 577 1.1 rin out: 578 1.1 rin return ret_val; 579 1.1 rin } 580 1.1 rin 581 1.1 rin /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum 582 1.1 rin * @hw: pointer to the HW structure 583 1.1 rin * 584 1.1 rin * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 585 1.1 rin * and then verifies that the sum of the EEPROM is equal to 0xBABA. 586 1.1 rin */ 587 1.1 rin int 588 1.1 rin igc_validate_nvm_checksum_i225(struct igc_hw *hw) 589 1.1 rin { 590 1.1 rin int status = IGC_SUCCESS; 591 1.1 rin int (*read_op_ptr)(struct igc_hw *, uint16_t, uint16_t, uint16_t *); 592 1.1 rin 593 1.1 rin DEBUGFUNC("igc_validate_nvm_checksum_i225"); 594 1.1 rin 595 1.1 rin if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { 596 1.1 rin /* Replace the read function with semaphore grabbing with 597 1.1 rin * the one that skips this for a while. 598 1.1 rin * We have semaphore taken already here. 599 1.1 rin */ 600 1.1 rin read_op_ptr = hw->nvm.ops.read; 601 1.1 rin hw->nvm.ops.read = igc_read_nvm_eerd; 602 1.1 rin 603 1.1 rin status = igc_validate_nvm_checksum_generic(hw); 604 1.1 rin 605 1.1 rin /* Revert original read operation. */ 606 1.1 rin hw->nvm.ops.read = read_op_ptr; 607 1.1 rin 608 1.1 rin hw->nvm.ops.release(hw); 609 1.1 rin } else { 610 1.1 rin status = IGC_ERR_SWFW_SYNC; 611 1.1 rin } 612 1.1 rin 613 1.1 rin return status; 614 1.1 rin } 615 1.1 rin 616 1.1 rin /* igc_update_nvm_checksum_i225 - Update EEPROM checksum 617 1.1 rin * @hw: pointer to the HW structure 618 1.1 rin * 619 1.1 rin * Updates the EEPROM checksum by reading/adding each word of the EEPROM 620 1.1 rin * up to the checksum. Then calculates the EEPROM checksum and writes the 621 1.1 rin * value to the EEPROM. Next commit EEPROM data onto the Flash. 622 1.1 rin */ 623 1.1 rin int 624 1.1 rin igc_update_nvm_checksum_i225(struct igc_hw *hw) 625 1.1 rin { 626 1.1 rin uint16_t checksum = 0; 627 1.1 rin uint16_t i, nvm_data; 628 1.1 rin int ret_val; 629 1.1 rin 630 1.1 rin DEBUGFUNC("igc_update_nvm_checksum_i225"); 631 1.1 rin 632 1.1 rin /* Read the first word from the EEPROM. If this times out or fails, do 633 1.1 rin * not continue or we could be in for a very long wait while every 634 1.1 rin * EEPROM read fails 635 1.1 rin */ 636 1.1 rin ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data); 637 1.1 rin if (ret_val != IGC_SUCCESS) { 638 1.1 rin DEBUGOUT("EEPROM read failed\n"); 639 1.1 rin goto out; 640 1.1 rin } 641 1.1 rin 642 1.1 rin if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) { 643 1.1 rin /* Do not use hw->nvm.ops.write, hw->nvm.ops.read 644 1.1 rin * because we do not want to take the synchronization 645 1.1 rin * semaphores twice here. 646 1.1 rin */ 647 1.1 rin 648 1.1 rin for (i = 0; i < NVM_CHECKSUM_REG; i++) { 649 1.1 rin ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data); 650 1.1 rin if (ret_val) { 651 1.1 rin hw->nvm.ops.release(hw); 652 1.1 rin DEBUGOUT("NVM Read Error while updating\n"); 653 1.1 rin DEBUGOUT("checksum.\n"); 654 1.1 rin goto out; 655 1.1 rin } 656 1.1 rin checksum += nvm_data; 657 1.1 rin } 658 1.1 rin checksum = (uint16_t)NVM_SUM - checksum; 659 1.1 rin ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, 660 1.1 rin &checksum); 661 1.1 rin if (ret_val != IGC_SUCCESS) { 662 1.1 rin hw->nvm.ops.release(hw); 663 1.1 rin DEBUGOUT("NVM Write Error while updating checksum.\n"); 664 1.1 rin goto out; 665 1.1 rin } 666 1.1 rin 667 1.1 rin hw->nvm.ops.release(hw); 668 1.1 rin 669 1.1 rin ret_val = igc_update_flash_i225(hw); 670 1.1 rin } else { 671 1.1 rin ret_val = IGC_ERR_SWFW_SYNC; 672 1.1 rin } 673 1.1 rin out: 674 1.1 rin return ret_val; 675 1.1 rin } 676 1.1 rin 677 1.1 rin /* igc_get_flash_presence_i225 - Check if flash device is detected. 678 1.1 rin * @hw: pointer to the HW structure 679 1.1 rin */ 680 1.1 rin bool 681 1.1 rin igc_get_flash_presence_i225(struct igc_hw *hw) 682 1.1 rin { 683 1.1 rin uint32_t eec = 0; 684 1.1 rin bool ret_val = false; 685 1.1 rin 686 1.1 rin DEBUGFUNC("igc_get_flash_presence_i225"); 687 1.1 rin 688 1.1 rin eec = IGC_READ_REG(hw, IGC_EECD); 689 1.1 rin 690 1.1 rin if (eec & IGC_EECD_FLASH_DETECTED_I225) 691 1.1 rin ret_val = true; 692 1.1 rin 693 1.1 rin return ret_val; 694 1.1 rin } 695 1.1 rin 696 1.1 rin /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst 697 1.1 rin * Counter in FLSWCNT register. 698 1.1 rin * 699 1.1 rin * @hw: pointer to the HW structure 700 1.1 rin * @burst_counter: size in bytes of the Flash burst to read or write 701 1.1 rin */ 702 1.1 rin int 703 1.1 rin igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw, uint32_t burst_counter) 704 1.1 rin { 705 1.1 rin int ret_val = IGC_SUCCESS; 706 1.1 rin 707 1.1 rin DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225"); 708 1.1 rin 709 1.1 rin /* Validate input data */ 710 1.1 rin if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) { 711 1.1 rin /* Write FLSWCNT - burst counter */ 712 1.1 rin IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter); 713 1.1 rin } else { 714 1.1 rin ret_val = IGC_ERR_INVALID_ARGUMENT; 715 1.1 rin } 716 1.1 rin 717 1.1 rin return ret_val; 718 1.1 rin } 719 1.1 rin 720 1.1 rin 721 1.1 rin /* igc_write_erase_flash_command_i225 - write/erase to a sector 722 1.1 rin * region on a given address. 723 1.1 rin * 724 1.1 rin * @hw: pointer to the HW structure 725 1.1 rin * @opcode: opcode to be used for the write command 726 1.1 rin * @address: the offset to write into the FLASH image 727 1.1 rin */ 728 1.1 rin int 729 1.1 rin igc_write_erase_flash_command_i225(struct igc_hw *hw, uint32_t opcode, 730 1.1 rin uint32_t address) 731 1.1 rin { 732 1.1 rin uint32_t flswctl = 0; 733 1.1 rin int timeout = IGC_NVM_GRANT_ATTEMPTS; 734 1.1 rin int ret_val = IGC_SUCCESS; 735 1.1 rin 736 1.1 rin DEBUGFUNC("igc_write_erase_flash_command_i225"); 737 1.1 rin 738 1.1 rin flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL); 739 1.1 rin /* Polling done bit on FLSWCTL register */ 740 1.1 rin while (timeout) { 741 1.1 rin if (flswctl & IGC_FLSWCTL_DONE) 742 1.1 rin break; 743 1.1 rin DELAY(5); 744 1.1 rin flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL); 745 1.1 rin timeout--; 746 1.1 rin } 747 1.1 rin 748 1.1 rin if (!timeout) { 749 1.1 rin DEBUGOUT("Flash transaction was not done\n"); 750 1.1 rin return -IGC_ERR_NVM; 751 1.1 rin } 752 1.1 rin 753 1.1 rin /* Build and issue command on FLSWCTL register */ 754 1.1 rin flswctl = address | opcode; 755 1.1 rin IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl); 756 1.1 rin 757 1.1 rin /* Check if issued command is valid on FLSWCTL register */ 758 1.1 rin flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL); 759 1.1 rin if (!(flswctl & IGC_FLSWCTL_CMDV)) { 760 1.1 rin DEBUGOUT("Write flash command failed\n"); 761 1.1 rin ret_val = IGC_ERR_INVALID_ARGUMENT; 762 1.1 rin } 763 1.1 rin 764 1.1 rin return ret_val; 765 1.1 rin } 766 1.1 rin 767 1.1 rin /* igc_update_flash_i225 - Commit EEPROM to the flash 768 1.1 rin * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC 769 1.1 rin * register makes the FW load the internal shadow RAM into the flash. 770 1.1 rin * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0 771 1.1 rin * then FW is not active so the SW is responsible shadow RAM dump. 772 1.1 rin * 773 1.1 rin * @hw: pointer to the HW structure 774 1.1 rin */ 775 1.1 rin int 776 1.1 rin igc_update_flash_i225(struct igc_hw *hw) 777 1.1 rin { 778 1.1 rin uint32_t block_sw_protect = 1; 779 1.1 rin uint32_t i, flup, fw_valid_bit; 780 1.1 rin uint16_t current_offset; 781 1.1 rin uint16_t base_address = 0x0; 782 1.1 rin uint16_t current_offset_data = 0; 783 1.1 rin int ret_val = 0; 784 1.1 rin 785 1.1 rin DEBUGFUNC("igc_update_flash_i225"); 786 1.1 rin 787 1.1 rin block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) & 788 1.1 rin IGC_FLSECU_BLK_SW_ACCESS_I225; 789 1.1 rin 790 1.1 rin fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) & IGC_FWSM_FW_VALID_I225; 791 1.1 rin if (fw_valid_bit) { 792 1.1 rin ret_val = igc_pool_flash_update_done_i225(hw); 793 1.1 rin if (ret_val == -IGC_ERR_NVM) { 794 1.1 rin DEBUGOUT("Flash update time out\n"); 795 1.1 rin goto out; 796 1.1 rin } 797 1.1 rin 798 1.1 rin flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225; 799 1.1 rin IGC_WRITE_REG(hw, IGC_EECD, flup); 800 1.1 rin 801 1.1 rin ret_val = igc_pool_flash_update_done_i225(hw); 802 1.1 rin if (ret_val == IGC_SUCCESS) 803 1.1 rin DEBUGOUT("Flash update complete\n"); 804 1.1 rin else 805 1.1 rin DEBUGOUT("Flash update time out\n"); 806 1.1 rin } else if (!block_sw_protect) { 807 1.1 rin /* FW is not active and security protection is disabled. 808 1.1 rin * therefore, SW is in charge of shadow RAM dump. 809 1.1 rin * Check which sector is valid. if sector 0 is valid, 810 1.1 rin * base address remains 0x0. otherwise, sector 1 is 811 1.1 rin * valid and its base address is 0x1000 812 1.1 rin */ 813 1.1 rin if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225) 814 1.1 rin base_address = 0x1000; 815 1.1 rin 816 1.1 rin /* Valid sector erase */ 817 1.1 rin ret_val = igc_write_erase_flash_command_i225(hw, 818 1.1 rin IGC_I225_ERASE_CMD_OPCODE, base_address); 819 1.1 rin if (!ret_val) { 820 1.1 rin DEBUGOUT("Sector erase failed\n"); 821 1.1 rin goto out; 822 1.1 rin } 823 1.1 rin 824 1.1 rin current_offset = base_address; 825 1.1 rin 826 1.1 rin /* Write */ 827 1.1 rin for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) { 828 1.1 rin /* Set burst write length */ 829 1.1 rin ret_val = igc_set_flsw_flash_burst_counter_i225(hw, 830 1.1 rin 0x2); 831 1.1 rin if (ret_val != IGC_SUCCESS) 832 1.1 rin break; 833 1.1 rin 834 1.1 rin /* Set address and opcode */ 835 1.1 rin ret_val = igc_write_erase_flash_command_i225(hw, 836 1.1 rin IGC_I225_WRITE_CMD_OPCODE, 2 * current_offset); 837 1.1 rin if (ret_val != IGC_SUCCESS) 838 1.1 rin break; 839 1.1 rin 840 1.1 rin ret_val = igc_read_nvm_eerd(hw, current_offset, 1, 841 1.1 rin ¤t_offset_data); 842 1.1 rin if (ret_val) { 843 1.1 rin DEBUGOUT("Failed to read from EEPROM\n"); 844 1.1 rin goto out; 845 1.1 rin } 846 1.1 rin 847 1.3 andvar /* Write CurrentOffsetData to FLSWDATA register */ 848 1.1 rin IGC_WRITE_REG(hw, IGC_I225_FLSWDATA, 849 1.1 rin current_offset_data); 850 1.1 rin current_offset++; 851 1.1 rin 852 1.1 rin /* Wait till operation has finished */ 853 1.1 rin ret_val = igc_poll_eerd_eewr_done(hw, 854 1.1 rin IGC_NVM_POLL_READ); 855 1.1 rin if (ret_val) 856 1.1 rin break; 857 1.1 rin 858 1.1 rin DELAY(1000); 859 1.1 rin } 860 1.1 rin } 861 1.1 rin out: 862 1.1 rin return ret_val; 863 1.1 rin } 864 1.1 rin 865 1.1 rin /* igc_pool_flash_update_done_i225 - Pool FLUDONE status. 866 1.1 rin * @hw: pointer to the HW structure 867 1.1 rin */ 868 1.1 rin int 869 1.1 rin igc_pool_flash_update_done_i225(struct igc_hw *hw) 870 1.1 rin { 871 1.1 rin uint32_t i, reg; 872 1.1 rin int ret_val = -IGC_ERR_NVM; 873 1.1 rin 874 1.1 rin DEBUGFUNC("igc_pool_flash_update_done_i225"); 875 1.1 rin 876 1.1 rin for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) { 877 1.1 rin reg = IGC_READ_REG(hw, IGC_EECD); 878 1.1 rin if (reg & IGC_EECD_FLUDONE_I225) { 879 1.1 rin ret_val = IGC_SUCCESS; 880 1.1 rin break; 881 1.1 rin } 882 1.1 rin DELAY(5); 883 1.1 rin } 884 1.1 rin 885 1.1 rin return ret_val; 886 1.1 rin } 887 1.1 rin 888 1.1 rin /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds. 889 1.1 rin * @hw: pointer to the HW structure 890 1.1 rin * @link: bool indicating link status 891 1.1 rin * 892 1.1 rin * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC 893 1.1 rin * settings, otherwise specify that there is no LTR requirement. 894 1.1 rin */ 895 1.1 rin int 896 1.1 rin igc_set_ltr_i225(struct igc_hw *hw, bool link) 897 1.1 rin { 898 1.1 rin uint16_t speed, duplex; 899 1.1 rin uint32_t tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max; 900 1.1 rin int size; 901 1.1 rin 902 1.1 rin DEBUGFUNC("igc_set_ltr_i225"); 903 1.1 rin 904 1.1 rin /* If we do not have link, LTR thresholds are zero. */ 905 1.1 rin if (link) { 906 1.1 rin hw->mac.ops.get_link_up_info(hw, &speed, &duplex); 907 1.1 rin 908 1.1 rin /* Check if using copper interface with EEE enabled or if the 909 1.1 rin * link speed is 10 Mbps. 910 1.1 rin */ 911 1.1 rin if ((hw->phy.media_type == igc_media_type_copper) && 912 1.1 rin !(hw->dev_spec._i225.eee_disable) && 913 1.1 rin (speed != SPEED_10)) { 914 1.1 rin /* EEE enabled, so send LTRMAX threshold. */ 915 1.1 rin ltrc = IGC_READ_REG(hw, IGC_LTRC) | IGC_LTRC_EEEMS_EN; 916 1.1 rin IGC_WRITE_REG(hw, IGC_LTRC, ltrc); 917 1.1 rin 918 1.1 rin /* Calculate tw_system (nsec). */ 919 1.1 rin if (speed == SPEED_100) { 920 1.1 rin tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) & 921 1.1 rin IGC_TW_SYSTEM_100_MASK) >> 922 1.1 rin IGC_TW_SYSTEM_100_SHIFT) * 500; 923 1.1 rin } else { 924 1.1 rin tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) & 925 1.1 rin IGC_TW_SYSTEM_1000_MASK) * 500; 926 1.1 rin } 927 1.1 rin } else { 928 1.1 rin tw_system = 0; 929 1.1 rin } 930 1.1 rin 931 1.1 rin /* Get the Rx packet buffer size. */ 932 1.1 rin size = IGC_READ_REG(hw, IGC_RXPBS) & IGC_RXPBS_SIZE_I225_MASK; 933 1.1 rin 934 1.1 rin /* Calculations vary based on DMAC settings. */ 935 1.1 rin if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) { 936 1.1 rin size -= (IGC_READ_REG(hw, IGC_DMACR) & 937 1.1 rin IGC_DMACR_DMACTHR_MASK) >> IGC_DMACR_DMACTHR_SHIFT; 938 1.1 rin /* Convert size to bits. */ 939 1.1 rin size *= 1024 * 8; 940 1.1 rin } else { 941 1.1 rin /* Convert size to bytes, subtract the MTU, and then 942 1.1 rin * convert the size to bits. 943 1.1 rin */ 944 1.1 rin size *= 1024; 945 1.1 rin size -= hw->dev_spec._i225.mtu; 946 1.1 rin size *= 8; 947 1.1 rin } 948 1.1 rin 949 1.1 rin if (size < 0) { 950 1.1 rin DEBUGOUT1("Invalid effective Rx buffer size %d\n", 951 1.1 rin size); 952 1.1 rin return -IGC_ERR_CONFIG; 953 1.1 rin } 954 1.1 rin 955 1.1 rin /* Calculate the thresholds. Since speed is in Mbps, simplify 956 1.1 rin * the calculation by multiplying size/speed by 1000 for result 957 1.1 rin * to be in nsec before dividing by the scale in nsec. Set the 958 1.1 rin * scale such that the LTR threshold fits in the register. 959 1.1 rin */ 960 1.1 rin ltr_min = (1000 * size) / speed; 961 1.1 rin ltr_max = ltr_min + tw_system; 962 1.1 rin scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 : 963 1.1 rin IGC_LTRMINV_SCALE_32768; 964 1.1 rin scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 : 965 1.1 rin IGC_LTRMAXV_SCALE_32768; 966 1.1 rin ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768; 967 1.1 rin ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768; 968 1.1 rin 969 1.1 rin /* Only write the LTR thresholds if they differ from before. */ 970 1.1 rin ltrv = IGC_READ_REG(hw, IGC_LTRMINV); 971 1.1 rin if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) { 972 1.1 rin ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min | 973 1.1 rin (scale_min << IGC_LTRMINV_SCALE_SHIFT); 974 1.1 rin IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv); 975 1.1 rin } 976 1.1 rin 977 1.1 rin ltrv = IGC_READ_REG(hw, IGC_LTRMAXV); 978 1.1 rin if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) { 979 1.1 rin ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max | 980 1.1 rin (scale_min << IGC_LTRMAXV_SCALE_SHIFT); 981 1.1 rin IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv); 982 1.1 rin } 983 1.1 rin } 984 1.1 rin 985 1.1 rin return IGC_SUCCESS; 986 1.1 rin } 987 1.1 rin 988 1.1 rin /* igc_check_for_link_i225 - Check for link 989 1.1 rin * @hw: pointer to the HW structure 990 1.1 rin * 991 1.1 rin * Checks to see of the link status of the hardware has changed. If a 992 1.1 rin * change in link status has been detected, then we read the PHY registers 993 1.1 rin * to get the current speed/duplex if link exists. 994 1.1 rin */ 995 1.1 rin int 996 1.1 rin igc_check_for_link_i225(struct igc_hw *hw) 997 1.1 rin { 998 1.1 rin struct igc_mac_info *mac = &hw->mac; 999 1.1 rin int ret_val; 1000 1.1 rin bool link = false; 1001 1.1 rin 1002 1.1 rin DEBUGFUNC("igc_check_for_link_i225"); 1003 1.1 rin 1004 1.1 rin /* We only want to go out to the PHY registers to see if 1005 1.1 rin * Auto-Neg has completed and/or if our link status has 1006 1.1 rin * changed. The get_link_status flag is set upon receiving 1007 1.1 rin * a Link Status Change or Rx Sequence Error interrupt. 1008 1.1 rin */ 1009 1.1 rin if (!mac->get_link_status) { 1010 1.1 rin ret_val = IGC_SUCCESS; 1011 1.1 rin goto out; 1012 1.1 rin } 1013 1.1 rin 1014 1.1 rin /* First we want to see if the MII Status Register reports 1015 1.1 rin * link. If so, then we want to get the current speed/duplex 1016 1.1 rin * of the PHY. 1017 1.1 rin */ 1018 1.1 rin ret_val = igc_phy_has_link_generic(hw, 1, 0, &link); 1019 1.1 rin if (ret_val) 1020 1.1 rin goto out; 1021 1.1 rin 1022 1.1 rin if (!link) 1023 1.1 rin goto out; /* No link detected */ 1024 1.1 rin 1025 1.1 rin /* First we want to see if the MII Status Register reports 1026 1.1 rin * link. If so, then we want to get the current speed/duplex 1027 1.1 rin * of the PHY. 1028 1.1 rin */ 1029 1.1 rin ret_val = igc_phy_has_link_generic(hw, 1, 0, &link); 1030 1.1 rin if (ret_val) 1031 1.1 rin goto out; 1032 1.1 rin 1033 1.1 rin if (!link) 1034 1.1 rin goto out; /* No link detected */ 1035 1.1 rin 1036 1.1 rin mac->get_link_status = false; 1037 1.1 rin 1038 1.1 rin /* Check if there was DownShift, must be checked 1039 1.1 rin * immediately after link-up 1040 1.1 rin */ 1041 1.1 rin igc_check_downshift_generic(hw); 1042 1.1 rin 1043 1.1 rin /* If we are forcing speed/duplex, then we simply return since 1044 1.1 rin * we have already determined whether we have link or not. 1045 1.1 rin */ 1046 1.1 rin if (!mac->autoneg) 1047 1.1 rin goto out; 1048 1.1 rin 1049 1.1 rin /* Auto-Neg is enabled. Auto Speed Detection takes care 1050 1.1 rin * of MAC speed/duplex configuration. So we only need to 1051 1.1 rin * configure Collision Distance in the MAC. 1052 1.1 rin */ 1053 1.1 rin mac->ops.config_collision_dist(hw); 1054 1.1 rin 1055 1.1 rin /* Configure Flow Control now that Auto-Neg has completed. 1056 1.1 rin * First, we need to restore the desired flow control 1057 1.1 rin * settings because we may have had to re-autoneg with a 1058 1.1 rin * different link partner. 1059 1.1 rin */ 1060 1.1 rin ret_val = igc_config_fc_after_link_up_generic(hw); 1061 1.1 rin if (ret_val) 1062 1.1 rin DEBUGOUT("Error configuring flow control\n"); 1063 1.1 rin out: 1064 1.1 rin /* Now that we are aware of our link settings, we can set the LTR 1065 1.1 rin * thresholds. 1066 1.1 rin */ 1067 1.1 rin ret_val = igc_set_ltr_i225(hw, link); 1068 1.1 rin 1069 1.1 rin return ret_val; 1070 1.1 rin } 1071 1.1 rin 1072 1.1 rin /* igc_init_function_pointers_i225 - Init func ptrs. 1073 1.1 rin * @hw: pointer to the HW structure 1074 1.1 rin * 1075 1.1 rin * Called to initialize all function pointers and parameters. 1076 1.1 rin */ 1077 1.1 rin void 1078 1.1 rin igc_init_function_pointers_i225(struct igc_hw *hw) 1079 1.1 rin { 1080 1.1 rin igc_init_mac_ops_generic(hw); 1081 1.1 rin igc_init_phy_ops_generic(hw); 1082 1.1 rin igc_init_nvm_ops_generic(hw); 1083 1.1 rin hw->mac.ops.init_params = igc_init_mac_params_i225; 1084 1.1 rin hw->nvm.ops.init_params = igc_init_nvm_params_i225; 1085 1.1 rin hw->phy.ops.init_params = igc_init_phy_params_i225; 1086 1.1 rin } 1087 1.1 rin 1088 1.1 rin /* igc_init_hw_i225 - Init hw for I225 1089 1.1 rin * @hw: pointer to the HW structure 1090 1.1 rin * 1091 1.1 rin * Called to initialize hw for i225 hw family. 1092 1.1 rin */ 1093 1.1 rin int 1094 1.1 rin igc_init_hw_i225(struct igc_hw *hw) 1095 1.1 rin { 1096 1.1 rin int ret_val; 1097 1.1 rin 1098 1.1 rin DEBUGFUNC("igc_init_hw_i225"); 1099 1.1 rin 1100 1.1 rin ret_val = igc_init_hw_base(hw); 1101 1.1 rin return ret_val; 1102 1.1 rin } 1103 1.1 rin 1104 1.1 rin /** 1105 1.1 rin * igc_set_eee_i225 - Enable/disable EEE support 1106 1.1 rin * @hw: pointer to the HW structure 1107 1.1 rin * @adv2p5G: boolean flag enabling 2.5G EEE advertisement 1108 1.1 rin * @adv1G: boolean flag enabling 1G EEE advertisement 1109 1.1 rin * @adv100M: boolean flag enabling 100M EEE advertisement 1110 1.1 rin * 1111 1.1 rin * Enable/disable EEE based on setting in dev_spec structure. 1112 1.1 rin * 1113 1.1 rin **/ 1114 1.1 rin int 1115 1.1 rin igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G, 1116 1.1 rin bool adv100M) 1117 1.1 rin { 1118 1.1 rin uint32_t ipcnfg, eeer; 1119 1.1 rin 1120 1.1 rin DEBUGFUNC("igc_set_eee_i225"); 1121 1.1 rin 1122 1.1 rin if (hw->mac.type != igc_i225 || 1123 1.1 rin hw->phy.media_type != igc_media_type_copper) 1124 1.1 rin goto out; 1125 1.1 rin ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG); 1126 1.1 rin eeer = IGC_READ_REG(hw, IGC_EEER); 1127 1.1 rin 1128 1.1 rin /* enable or disable per user setting */ 1129 1.1 rin if (!(hw->dev_spec._i225.eee_disable)) { 1130 1.1 rin uint32_t eee_su = IGC_READ_REG(hw, IGC_EEE_SU); 1131 1.1 rin 1132 1.1 rin if (adv100M) 1133 1.1 rin ipcnfg |= IGC_IPCNFG_EEE_100M_AN; 1134 1.1 rin else 1135 1.1 rin ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN; 1136 1.1 rin 1137 1.1 rin if (adv1G) 1138 1.1 rin ipcnfg |= IGC_IPCNFG_EEE_1G_AN; 1139 1.1 rin else 1140 1.1 rin ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN; 1141 1.1 rin 1142 1.1 rin if (adv2p5G) 1143 1.1 rin ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN; 1144 1.1 rin else 1145 1.1 rin ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN; 1146 1.1 rin 1147 1.1 rin eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN | 1148 1.1 rin IGC_EEER_LPI_FC); 1149 1.1 rin 1150 1.1 rin /* This bit should not be set in normal operation. */ 1151 1.1 rin if (eee_su & IGC_EEE_SU_LPI_CLK_STP) 1152 1.1 rin DEBUGOUT("LPI Clock Stop Bit should not be set!\n"); 1153 1.1 rin } else { 1154 1.1 rin ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN | 1155 1.1 rin IGC_IPCNFG_EEE_100M_AN); 1156 1.1 rin eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN | 1157 1.1 rin IGC_EEER_LPI_FC); 1158 1.1 rin } 1159 1.1 rin IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg); 1160 1.1 rin IGC_WRITE_REG(hw, IGC_EEER, eeer); 1161 1.1 rin IGC_READ_REG(hw, IGC_IPCNFG); 1162 1.1 rin IGC_READ_REG(hw, IGC_EEER); 1163 1.1 rin out: 1164 1.1 rin 1165 1.1 rin return IGC_SUCCESS; 1166 1.1 rin } 1167