igc_i225.c revision 1.1 1 1.1 rin /* $OpenBSD: igc_i225.c,v 1.4 2023/02/03 11:31:52 mbuhl Exp $ */
2 1.1 rin /*-
3 1.1 rin * Copyright 2021 Intel Corp
4 1.1 rin * Copyright 2021 Rubicon Communications, LLC (Netgate)
5 1.1 rin * SPDX-License-Identifier: BSD-3-Clause
6 1.1 rin */
7 1.1 rin
8 1.1 rin #include <dev/pci/igc_api.h>
9 1.1 rin
10 1.1 rin int igc_init_nvm_params_i225(struct igc_hw *);
11 1.1 rin int igc_init_mac_params_i225(struct igc_hw *);
12 1.1 rin int igc_init_phy_params_i225(struct igc_hw *);
13 1.1 rin int igc_reset_hw_i225(struct igc_hw *);
14 1.1 rin int igc_acquire_nvm_i225(struct igc_hw *);
15 1.1 rin void igc_release_nvm_i225(struct igc_hw *);
16 1.1 rin int igc_get_hw_semaphore_i225(struct igc_hw *);
17 1.1 rin int __igc_write_nvm_srwr(struct igc_hw *, uint16_t, uint16_t, uint16_t *);
18 1.1 rin int igc_pool_flash_update_done_i225(struct igc_hw *);
19 1.1 rin
20 1.1 rin /**
21 1.1 rin * igc_init_nvm_params_i225 - Init NVM func ptrs.
22 1.1 rin * @hw: pointer to the HW structure
23 1.1 rin **/
24 1.1 rin int
25 1.1 rin igc_init_nvm_params_i225(struct igc_hw *hw)
26 1.1 rin {
27 1.1 rin struct igc_nvm_info *nvm = &hw->nvm;
28 1.1 rin uint32_t eecd = IGC_READ_REG(hw, IGC_EECD);
29 1.1 rin uint16_t size;
30 1.1 rin
31 1.1 rin DEBUGFUNC("igc_init_nvm_params_i225");
32 1.1 rin
33 1.1 rin size = (uint16_t)((eecd & IGC_EECD_SIZE_EX_MASK) >>
34 1.1 rin IGC_EECD_SIZE_EX_SHIFT);
35 1.1 rin /*
36 1.1 rin * Added to a constant, "size" becomes the left-shift value
37 1.1 rin * for setting word_size.
38 1.1 rin */
39 1.1 rin size += NVM_WORD_SIZE_BASE_SHIFT;
40 1.1 rin
41 1.1 rin /* Just in case size is out of range, cap it to the largest
42 1.1 rin * EEPROM size supported.
43 1.1 rin */
44 1.1 rin if (size > 15)
45 1.1 rin size = 15;
46 1.1 rin
47 1.1 rin nvm->word_size = 1 << size;
48 1.1 rin nvm->opcode_bits = 8;
49 1.1 rin nvm->delay_usec = 1;
50 1.1 rin nvm->type = igc_nvm_eeprom_spi;
51 1.1 rin
52 1.1 rin nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8;
53 1.1 rin nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ? 16 : 8;
54 1.1 rin
55 1.1 rin if (nvm->word_size == (1 << 15))
56 1.1 rin nvm->page_size = 128;
57 1.1 rin
58 1.1 rin nvm->ops.acquire = igc_acquire_nvm_i225;
59 1.1 rin nvm->ops.release = igc_release_nvm_i225;
60 1.1 rin if (igc_get_flash_presence_i225(hw)) {
61 1.1 rin hw->nvm.type = igc_nvm_flash_hw;
62 1.1 rin nvm->ops.read = igc_read_nvm_srrd_i225;
63 1.1 rin nvm->ops.write = igc_write_nvm_srwr_i225;
64 1.1 rin nvm->ops.validate = igc_validate_nvm_checksum_i225;
65 1.1 rin nvm->ops.update = igc_update_nvm_checksum_i225;
66 1.1 rin } else {
67 1.1 rin hw->nvm.type = igc_nvm_invm;
68 1.1 rin nvm->ops.write = igc_null_write_nvm;
69 1.1 rin nvm->ops.validate = igc_null_ops_generic;
70 1.1 rin nvm->ops.update = igc_null_ops_generic;
71 1.1 rin }
72 1.1 rin
73 1.1 rin return IGC_SUCCESS;
74 1.1 rin }
75 1.1 rin
76 1.1 rin /**
77 1.1 rin * igc_init_mac_params_i225 - Init MAC func ptrs.
78 1.1 rin * @hw: pointer to the HW structure
79 1.1 rin **/
80 1.1 rin int
81 1.1 rin igc_init_mac_params_i225(struct igc_hw *hw)
82 1.1 rin {
83 1.1 rin struct igc_mac_info *mac = &hw->mac;
84 1.1 rin struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225;
85 1.1 rin
86 1.1 rin DEBUGFUNC("igc_init_mac_params_i225");
87 1.1 rin
88 1.1 rin /* Initialize function pointer */
89 1.1 rin igc_init_mac_ops_generic(hw);
90 1.1 rin
91 1.1 rin /* Set media type */
92 1.1 rin hw->phy.media_type = igc_media_type_copper;
93 1.1 rin /* Set mta register count */
94 1.1 rin mac->mta_reg_count = 128;
95 1.1 rin /* Set rar entry count */
96 1.1 rin mac->rar_entry_count = IGC_RAR_ENTRIES_BASE;
97 1.1 rin
98 1.1 rin /* reset */
99 1.1 rin mac->ops.reset_hw = igc_reset_hw_i225;
100 1.1 rin /* hw initialization */
101 1.1 rin mac->ops.init_hw = igc_init_hw_i225;
102 1.1 rin /* link setup */
103 1.1 rin mac->ops.setup_link = igc_setup_link_generic;
104 1.1 rin /* check for link */
105 1.1 rin mac->ops.check_for_link = igc_check_for_link_i225;
106 1.1 rin /* link info */
107 1.1 rin mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic;
108 1.1 rin /* acquire SW_FW sync */
109 1.1 rin mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225;
110 1.1 rin /* release SW_FW sync */
111 1.1 rin mac->ops.release_swfw_sync = igc_release_swfw_sync_i225;
112 1.1 rin
113 1.1 rin /* Allow a single clear of the SW semaphore on I225 */
114 1.1 rin dev_spec->clear_semaphore_once = true;
115 1.1 rin mac->ops.setup_physical_interface = igc_setup_copper_link_i225;
116 1.1 rin
117 1.1 rin /* Set if part includes ASF firmware */
118 1.1 rin mac->asf_firmware_present = true;
119 1.1 rin
120 1.1 rin /* multicast address update */
121 1.1 rin mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic;
122 1.1 rin
123 1.1 rin mac->ops.write_vfta = igc_write_vfta_generic;
124 1.1 rin
125 1.1 rin return IGC_SUCCESS;
126 1.1 rin }
127 1.1 rin
128 1.1 rin /**
129 1.1 rin * igc_init_phy_params_i225 - Init PHY func ptrs.
130 1.1 rin * @hw: pointer to the HW structure
131 1.1 rin **/
132 1.1 rin int
133 1.1 rin igc_init_phy_params_i225(struct igc_hw *hw)
134 1.1 rin {
135 1.1 rin struct igc_phy_info *phy = &hw->phy;
136 1.1 rin int ret_val = IGC_SUCCESS;
137 1.1 rin
138 1.1 rin DEBUGFUNC("igc_init_phy_params_i225");
139 1.1 rin
140 1.1 rin if (hw->phy.media_type != igc_media_type_copper) {
141 1.1 rin phy->type = igc_phy_none;
142 1.1 rin goto out;
143 1.1 rin }
144 1.1 rin
145 1.1 rin phy->ops.power_up = igc_power_up_phy_copper;
146 1.1 rin phy->ops.power_down = igc_power_down_phy_copper_base;
147 1.1 rin phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500;
148 1.1 rin phy->reset_delay_us = 100;
149 1.1 rin phy->ops.acquire = igc_acquire_phy_base;
150 1.1 rin phy->ops.check_reset_block = igc_check_reset_block_generic;
151 1.1 rin phy->ops.release = igc_release_phy_base;
152 1.1 rin phy->ops.reset = igc_phy_hw_reset_generic;
153 1.1 rin phy->ops.read_reg = igc_read_phy_reg_gpy;
154 1.1 rin phy->ops.write_reg = igc_write_phy_reg_gpy;
155 1.1 rin
156 1.1 rin /* Make sure the PHY is in a good state. Several people have reported
157 1.1 rin * firmware leaving the PHY's page select register set to something
158 1.1 rin * other than the default of zero, which causes the PHY ID read to
159 1.1 rin * access something other than the intended register.
160 1.1 rin */
161 1.1 rin ret_val = hw->phy.ops.reset(hw);
162 1.1 rin if (ret_val)
163 1.1 rin goto out;
164 1.1 rin
165 1.1 rin ret_val = igc_get_phy_id(hw);
166 1.1 rin phy->type = igc_phy_i225;
167 1.1 rin
168 1.1 rin out:
169 1.1 rin return ret_val;
170 1.1 rin }
171 1.1 rin
172 1.1 rin /**
173 1.1 rin * igc_reset_hw_i225 - Reset hardware
174 1.1 rin * @hw: pointer to the HW structure
175 1.1 rin *
176 1.1 rin * This resets the hardware into a known state.
177 1.1 rin **/
178 1.1 rin int
179 1.1 rin igc_reset_hw_i225(struct igc_hw *hw)
180 1.1 rin {
181 1.1 rin uint32_t ctrl;
182 1.1 rin int ret_val;
183 1.1 rin
184 1.1 rin DEBUGFUNC("igc_reset_hw_i225");
185 1.1 rin
186 1.1 rin /*
187 1.1 rin * Prevent the PCI-E bus from sticking if there is no TLP connection
188 1.1 rin * on the last TLP read/write transaction when MAC is reset.
189 1.1 rin */
190 1.1 rin ret_val = igc_disable_pcie_master_generic(hw);
191 1.1 rin if (ret_val)
192 1.1 rin DEBUGOUT("PCI-E Master disable polling has failed.\n");
193 1.1 rin
194 1.1 rin DEBUGOUT("Masking off all interrupts\n");
195 1.1 rin IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
196 1.1 rin
197 1.1 rin IGC_WRITE_REG(hw, IGC_RCTL, 0);
198 1.1 rin IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP);
199 1.1 rin IGC_WRITE_FLUSH(hw);
200 1.1 rin
201 1.1 rin msec_delay(10);
202 1.1 rin
203 1.1 rin ctrl = IGC_READ_REG(hw, IGC_CTRL);
204 1.1 rin
205 1.1 rin DEBUGOUT("Issuing a global reset to MAC\n");
206 1.1 rin IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST);
207 1.1 rin
208 1.1 rin ret_val = igc_get_auto_rd_done_generic(hw);
209 1.1 rin if (ret_val) {
210 1.1 rin /*
211 1.1 rin * When auto config read does not complete, do not
212 1.1 rin * return with an error. This can happen in situations
213 1.1 rin * where there is no eeprom and prevents getting link.
214 1.1 rin */
215 1.1 rin DEBUGOUT("Auto Read Done did not complete\n");
216 1.1 rin }
217 1.1 rin
218 1.1 rin /* Clear any pending interrupt events. */
219 1.1 rin IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
220 1.1 rin IGC_READ_REG(hw, IGC_ICR);
221 1.1 rin
222 1.1 rin /* Install any alternate MAC address into RAR0 */
223 1.1 rin ret_val = igc_check_alt_mac_addr_generic(hw);
224 1.1 rin
225 1.1 rin return ret_val;
226 1.1 rin }
227 1.1 rin
228 1.1 rin /* igc_acquire_nvm_i225 - Request for access to EEPROM
229 1.1 rin * @hw: pointer to the HW structure
230 1.1 rin *
231 1.1 rin * Acquire the necessary semaphores for exclusive access to the EEPROM.
232 1.1 rin * Set the EEPROM access request bit and wait for EEPROM access grant bit.
233 1.1 rin * Return successful if access grant bit set, else clear the request for
234 1.1 rin * EEPROM access and return -IGC_ERR_NVM (-1).
235 1.1 rin */
236 1.1 rin int
237 1.1 rin igc_acquire_nvm_i225(struct igc_hw *hw)
238 1.1 rin {
239 1.1 rin int ret_val;
240 1.1 rin
241 1.1 rin DEBUGFUNC("igc_acquire_nvm_i225");
242 1.1 rin
243 1.1 rin ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
244 1.1 rin
245 1.1 rin return ret_val;
246 1.1 rin }
247 1.1 rin
248 1.1 rin /* igc_release_nvm_i225 - Release exclusive access to EEPROM
249 1.1 rin * @hw: pointer to the HW structure
250 1.1 rin *
251 1.1 rin * Stop any current commands to the EEPROM and clear the EEPROM request bit,
252 1.1 rin * then release the semaphores acquired.
253 1.1 rin */
254 1.1 rin void
255 1.1 rin igc_release_nvm_i225(struct igc_hw *hw)
256 1.1 rin {
257 1.1 rin DEBUGFUNC("igc_release_nvm_i225");
258 1.1 rin
259 1.1 rin igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
260 1.1 rin }
261 1.1 rin
262 1.1 rin /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
263 1.1 rin * @hw: pointer to the HW structure
264 1.1 rin * @mask: specifies which semaphore to acquire
265 1.1 rin *
266 1.1 rin * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
267 1.1 rin * will also specify which port we're acquiring the lock for.
268 1.1 rin */
269 1.1 rin int
270 1.1 rin igc_acquire_swfw_sync_i225(struct igc_hw *hw, uint16_t mask)
271 1.1 rin {
272 1.1 rin uint32_t swfw_sync;
273 1.1 rin uint32_t swmask = mask;
274 1.1 rin uint32_t fwmask = mask << 16;
275 1.1 rin int ret_val = IGC_SUCCESS;
276 1.1 rin int i = 0, timeout = 200; /* FIXME: find real value to use here */
277 1.1 rin
278 1.1 rin DEBUGFUNC("igc_acquire_swfw_sync_i225");
279 1.1 rin
280 1.1 rin while (i < timeout) {
281 1.1 rin if (igc_get_hw_semaphore_i225(hw)) {
282 1.1 rin ret_val = -IGC_ERR_SWFW_SYNC;
283 1.1 rin goto out;
284 1.1 rin }
285 1.1 rin
286 1.1 rin swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
287 1.1 rin if (!(swfw_sync & (fwmask | swmask)))
288 1.1 rin break;
289 1.1 rin
290 1.1 rin /* Firmware currently using resource (fwmask)
291 1.1 rin * or other software thread using resource (swmask)
292 1.1 rin */
293 1.1 rin igc_put_hw_semaphore_generic(hw);
294 1.1 rin msec_delay(5);
295 1.1 rin i++;
296 1.1 rin }
297 1.1 rin
298 1.1 rin if (i == timeout) {
299 1.1 rin DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
300 1.1 rin ret_val = -IGC_ERR_SWFW_SYNC;
301 1.1 rin goto out;
302 1.1 rin }
303 1.1 rin
304 1.1 rin swfw_sync |= swmask;
305 1.1 rin IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
306 1.1 rin
307 1.1 rin igc_put_hw_semaphore_generic(hw);
308 1.1 rin
309 1.1 rin out:
310 1.1 rin return ret_val;
311 1.1 rin }
312 1.1 rin
313 1.1 rin /* igc_release_swfw_sync_i225 - Release SW/FW semaphore
314 1.1 rin * @hw: pointer to the HW structure
315 1.1 rin * @mask: specifies which semaphore to acquire
316 1.1 rin *
317 1.1 rin * Release the SW/FW semaphore used to access the PHY or NVM. The mask
318 1.1 rin * will also specify which port we're releasing the lock for.
319 1.1 rin */
320 1.1 rin void
321 1.1 rin igc_release_swfw_sync_i225(struct igc_hw *hw, uint16_t mask)
322 1.1 rin {
323 1.1 rin uint32_t swfw_sync;
324 1.1 rin
325 1.1 rin DEBUGFUNC("igc_release_swfw_sync_i225");
326 1.1 rin
327 1.1 rin while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS)
328 1.1 rin ; /* Empty */
329 1.1 rin
330 1.1 rin swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
331 1.1 rin swfw_sync &= ~mask;
332 1.1 rin IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
333 1.1 rin
334 1.1 rin igc_put_hw_semaphore_generic(hw);
335 1.1 rin }
336 1.1 rin
337 1.1 rin /*
338 1.1 rin * igc_setup_copper_link_i225 - Configure copper link settings
339 1.1 rin * @hw: pointer to the HW structure
340 1.1 rin *
341 1.1 rin * Configures the link for auto-neg or forced speed and duplex. Then we check
342 1.1 rin * for link, once link is established calls to configure collision distance
343 1.1 rin * and flow control are called.
344 1.1 rin */
345 1.1 rin int
346 1.1 rin igc_setup_copper_link_i225(struct igc_hw *hw)
347 1.1 rin {
348 1.1 rin uint32_t ctrl, phpm_reg;
349 1.1 rin int ret_val;
350 1.1 rin
351 1.1 rin DEBUGFUNC("igc_setup_copper_link_i225");
352 1.1 rin
353 1.1 rin ctrl = IGC_READ_REG(hw, IGC_CTRL);
354 1.1 rin ctrl |= IGC_CTRL_SLU;
355 1.1 rin ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
356 1.1 rin IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
357 1.1 rin
358 1.1 rin phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM);
359 1.1 rin phpm_reg &= ~IGC_I225_PHPM_GO_LINKD;
360 1.1 rin IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg);
361 1.1 rin
362 1.1 rin ret_val = igc_setup_copper_link_generic(hw);
363 1.1 rin
364 1.1 rin return ret_val;
365 1.1 rin }
366 1.1 rin
367 1.1 rin /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore
368 1.1 rin * @hw: pointer to the HW structure
369 1.1 rin *
370 1.1 rin * Acquire the HW semaphore to access the PHY or NVM
371 1.1 rin */
372 1.1 rin int
373 1.1 rin igc_get_hw_semaphore_i225(struct igc_hw *hw)
374 1.1 rin {
375 1.1 rin uint32_t swsm;
376 1.1 rin int timeout = hw->nvm.word_size + 1;
377 1.1 rin int i = 0;
378 1.1 rin
379 1.1 rin DEBUGFUNC("igc_get_hw_semaphore_i225");
380 1.1 rin
381 1.1 rin /* Get the SW semaphore */
382 1.1 rin while (i < timeout) {
383 1.1 rin swsm = IGC_READ_REG(hw, IGC_SWSM);
384 1.1 rin if (!(swsm & IGC_SWSM_SMBI))
385 1.1 rin break;
386 1.1 rin
387 1.1 rin DELAY(50);
388 1.1 rin i++;
389 1.1 rin }
390 1.1 rin
391 1.1 rin if (i == timeout) {
392 1.1 rin /* In rare circumstances, the SW semaphore may already be held
393 1.1 rin * unintentionally. Clear the semaphore once before giving up.
394 1.1 rin */
395 1.1 rin if (hw->dev_spec._i225.clear_semaphore_once) {
396 1.1 rin hw->dev_spec._i225.clear_semaphore_once = false;
397 1.1 rin igc_put_hw_semaphore_generic(hw);
398 1.1 rin for (i = 0; i < timeout; i++) {
399 1.1 rin swsm = IGC_READ_REG(hw, IGC_SWSM);
400 1.1 rin if (!(swsm & IGC_SWSM_SMBI))
401 1.1 rin break;
402 1.1 rin
403 1.1 rin DELAY(50);
404 1.1 rin }
405 1.1 rin }
406 1.1 rin
407 1.1 rin /* If we do not have the semaphore here, we have to give up. */
408 1.1 rin if (i == timeout) {
409 1.1 rin DEBUGOUT("Driver can't access device -\n");
410 1.1 rin DEBUGOUT("SMBI bit is set.\n");
411 1.1 rin return -IGC_ERR_NVM;
412 1.1 rin }
413 1.1 rin }
414 1.1 rin
415 1.1 rin /* Get the FW semaphore. */
416 1.1 rin for (i = 0; i < timeout; i++) {
417 1.1 rin swsm = IGC_READ_REG(hw, IGC_SWSM);
418 1.1 rin IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
419 1.1 rin
420 1.1 rin /* Semaphore acquired if bit latched */
421 1.1 rin if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
422 1.1 rin break;
423 1.1 rin
424 1.1 rin DELAY(50);
425 1.1 rin }
426 1.1 rin
427 1.1 rin if (i == timeout) {
428 1.1 rin /* Release semaphores */
429 1.1 rin igc_put_hw_semaphore_generic(hw);
430 1.1 rin DEBUGOUT("Driver can't access the NVM\n");
431 1.1 rin return -IGC_ERR_NVM;
432 1.1 rin }
433 1.1 rin
434 1.1 rin return IGC_SUCCESS;
435 1.1 rin }
436 1.1 rin
437 1.1 rin /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
438 1.1 rin * @hw: pointer to the HW structure
439 1.1 rin * @offset: offset of word in the Shadow Ram to read
440 1.1 rin * @words: number of words to read
441 1.1 rin * @data: word read from the Shadow Ram
442 1.1 rin *
443 1.1 rin * Reads a 16 bit word from the Shadow Ram using the EERD register.
444 1.1 rin * Uses necessary synchronization semaphores.
445 1.1 rin */
446 1.1 rin int
447 1.1 rin igc_read_nvm_srrd_i225(struct igc_hw *hw, uint16_t offset, uint16_t words,
448 1.1 rin uint16_t *data)
449 1.1 rin {
450 1.1 rin uint16_t i, count;
451 1.1 rin int status = IGC_SUCCESS;
452 1.1 rin
453 1.1 rin DEBUGFUNC("igc_read_nvm_srrd_i225");
454 1.1 rin
455 1.1 rin /* We cannot hold synchronization semaphores for too long,
456 1.1 rin * because of forceful takeover procedure. However it is more efficient
457 1.1 rin * to read in bursts than synchronizing access for each word.
458 1.1 rin */
459 1.1 rin for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
460 1.1 rin count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
461 1.1 rin IGC_EERD_EEWR_MAX_COUNT : (words - i);
462 1.1 rin if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
463 1.1 rin status = igc_read_nvm_eerd(hw, offset, count, data + i);
464 1.1 rin hw->nvm.ops.release(hw);
465 1.1 rin } else {
466 1.1 rin status = IGC_ERR_SWFW_SYNC;
467 1.1 rin }
468 1.1 rin
469 1.1 rin if (status != IGC_SUCCESS)
470 1.1 rin break;
471 1.1 rin }
472 1.1 rin
473 1.1 rin return status;
474 1.1 rin }
475 1.1 rin
476 1.1 rin /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
477 1.1 rin * @hw: pointer to the HW structure
478 1.1 rin * @offset: offset within the Shadow RAM to be written to
479 1.1 rin * @words: number of words to write
480 1.1 rin * @data: 16 bit word(s) to be written to the Shadow RAM
481 1.1 rin *
482 1.1 rin * Writes data to Shadow RAM at offset using EEWR register.
483 1.1 rin *
484 1.1 rin * If igc_update_nvm_checksum is not called after this function , the
485 1.1 rin * data will not be committed to FLASH and also Shadow RAM will most likely
486 1.1 rin * contain an invalid checksum.
487 1.1 rin *
488 1.1 rin * If error code is returned, data and Shadow RAM may be inconsistent - buffer
489 1.1 rin * partially written.
490 1.1 rin */
491 1.1 rin int
492 1.1 rin igc_write_nvm_srwr_i225(struct igc_hw *hw, uint16_t offset, uint16_t words,
493 1.1 rin uint16_t *data)
494 1.1 rin {
495 1.1 rin uint16_t i, count;
496 1.1 rin int status = IGC_SUCCESS;
497 1.1 rin
498 1.1 rin DEBUGFUNC("igc_write_nvm_srwr_i225");
499 1.1 rin
500 1.1 rin /* We cannot hold synchronization semaphores for too long,
501 1.1 rin * because of forceful takeover procedure. However it is more efficient
502 1.1 rin * to write in bursts than synchronizing access for each word.
503 1.1 rin */
504 1.1 rin for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
505 1.1 rin count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
506 1.1 rin IGC_EERD_EEWR_MAX_COUNT : (words - i);
507 1.1 rin if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
508 1.1 rin status = __igc_write_nvm_srwr(hw, offset, count,
509 1.1 rin data + i);
510 1.1 rin hw->nvm.ops.release(hw);
511 1.1 rin } else
512 1.1 rin status = IGC_ERR_SWFW_SYNC;
513 1.1 rin
514 1.1 rin if (status != IGC_SUCCESS)
515 1.1 rin break;
516 1.1 rin }
517 1.1 rin
518 1.1 rin return status;
519 1.1 rin }
520 1.1 rin
521 1.1 rin /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR
522 1.1 rin * @hw: pointer to the HW structure
523 1.1 rin * @offset: offset within the Shadow Ram to be written to
524 1.1 rin * @words: number of words to write
525 1.1 rin * @data: 16 bit word(s) to be written to the Shadow Ram
526 1.1 rin *
527 1.1 rin * Writes data to Shadow Ram at offset using EEWR register.
528 1.1 rin *
529 1.1 rin * If igc_update_nvm_checksum is not called after this function , the
530 1.1 rin * Shadow Ram will most likely contain an invalid checksum.
531 1.1 rin */
532 1.1 rin int
533 1.1 rin __igc_write_nvm_srwr(struct igc_hw *hw, uint16_t offset, uint16_t words,
534 1.1 rin uint16_t *data)
535 1.1 rin {
536 1.1 rin struct igc_nvm_info *nvm = &hw->nvm;
537 1.1 rin uint32_t i, k, eewr = 0;
538 1.1 rin uint32_t attempts = 100000;
539 1.1 rin int ret_val = IGC_SUCCESS;
540 1.1 rin
541 1.1 rin DEBUGFUNC("__igc_write_nvm_srwr");
542 1.1 rin
543 1.1 rin /* A check for invalid values: offset too large, too many words,
544 1.1 rin * too many words for the offset, and not enough words.
545 1.1 rin */
546 1.1 rin if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
547 1.1 rin (words == 0)) {
548 1.1 rin DEBUGOUT("nvm parameter(s) out of bounds\n");
549 1.1 rin ret_val = -IGC_ERR_NVM;
550 1.1 rin goto out;
551 1.1 rin }
552 1.1 rin
553 1.1 rin for (i = 0; i < words; i++) {
554 1.1 rin eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
555 1.1 rin (data[i] << IGC_NVM_RW_REG_DATA) | IGC_NVM_RW_REG_START;
556 1.1 rin
557 1.1 rin IGC_WRITE_REG(hw, IGC_SRWR, eewr);
558 1.1 rin
559 1.1 rin for (k = 0; k < attempts; k++) {
560 1.1 rin if (IGC_NVM_RW_REG_DONE & IGC_READ_REG(hw, IGC_SRWR)) {
561 1.1 rin ret_val = IGC_SUCCESS;
562 1.1 rin break;
563 1.1 rin }
564 1.1 rin DELAY(5);
565 1.1 rin }
566 1.1 rin
567 1.1 rin if (ret_val != IGC_SUCCESS) {
568 1.1 rin DEBUGOUT("Shadow RAM write EEWR timed out\n");
569 1.1 rin break;
570 1.1 rin }
571 1.1 rin }
572 1.1 rin
573 1.1 rin out:
574 1.1 rin return ret_val;
575 1.1 rin }
576 1.1 rin
577 1.1 rin /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
578 1.1 rin * @hw: pointer to the HW structure
579 1.1 rin *
580 1.1 rin * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
581 1.1 rin * and then verifies that the sum of the EEPROM is equal to 0xBABA.
582 1.1 rin */
583 1.1 rin int
584 1.1 rin igc_validate_nvm_checksum_i225(struct igc_hw *hw)
585 1.1 rin {
586 1.1 rin int status = IGC_SUCCESS;
587 1.1 rin int (*read_op_ptr)(struct igc_hw *, uint16_t, uint16_t, uint16_t *);
588 1.1 rin
589 1.1 rin DEBUGFUNC("igc_validate_nvm_checksum_i225");
590 1.1 rin
591 1.1 rin if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
592 1.1 rin /* Replace the read function with semaphore grabbing with
593 1.1 rin * the one that skips this for a while.
594 1.1 rin * We have semaphore taken already here.
595 1.1 rin */
596 1.1 rin read_op_ptr = hw->nvm.ops.read;
597 1.1 rin hw->nvm.ops.read = igc_read_nvm_eerd;
598 1.1 rin
599 1.1 rin status = igc_validate_nvm_checksum_generic(hw);
600 1.1 rin
601 1.1 rin /* Revert original read operation. */
602 1.1 rin hw->nvm.ops.read = read_op_ptr;
603 1.1 rin
604 1.1 rin hw->nvm.ops.release(hw);
605 1.1 rin } else {
606 1.1 rin status = IGC_ERR_SWFW_SYNC;
607 1.1 rin }
608 1.1 rin
609 1.1 rin return status;
610 1.1 rin }
611 1.1 rin
612 1.1 rin /* igc_update_nvm_checksum_i225 - Update EEPROM checksum
613 1.1 rin * @hw: pointer to the HW structure
614 1.1 rin *
615 1.1 rin * Updates the EEPROM checksum by reading/adding each word of the EEPROM
616 1.1 rin * up to the checksum. Then calculates the EEPROM checksum and writes the
617 1.1 rin * value to the EEPROM. Next commit EEPROM data onto the Flash.
618 1.1 rin */
619 1.1 rin int
620 1.1 rin igc_update_nvm_checksum_i225(struct igc_hw *hw)
621 1.1 rin {
622 1.1 rin uint16_t checksum = 0;
623 1.1 rin uint16_t i, nvm_data;
624 1.1 rin int ret_val;
625 1.1 rin
626 1.1 rin DEBUGFUNC("igc_update_nvm_checksum_i225");
627 1.1 rin
628 1.1 rin /* Read the first word from the EEPROM. If this times out or fails, do
629 1.1 rin * not continue or we could be in for a very long wait while every
630 1.1 rin * EEPROM read fails
631 1.1 rin */
632 1.1 rin ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
633 1.1 rin if (ret_val != IGC_SUCCESS) {
634 1.1 rin DEBUGOUT("EEPROM read failed\n");
635 1.1 rin goto out;
636 1.1 rin }
637 1.1 rin
638 1.1 rin if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
639 1.1 rin /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
640 1.1 rin * because we do not want to take the synchronization
641 1.1 rin * semaphores twice here.
642 1.1 rin */
643 1.1 rin
644 1.1 rin for (i = 0; i < NVM_CHECKSUM_REG; i++) {
645 1.1 rin ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
646 1.1 rin if (ret_val) {
647 1.1 rin hw->nvm.ops.release(hw);
648 1.1 rin DEBUGOUT("NVM Read Error while updating\n");
649 1.1 rin DEBUGOUT("checksum.\n");
650 1.1 rin goto out;
651 1.1 rin }
652 1.1 rin checksum += nvm_data;
653 1.1 rin }
654 1.1 rin checksum = (uint16_t)NVM_SUM - checksum;
655 1.1 rin ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
656 1.1 rin &checksum);
657 1.1 rin if (ret_val != IGC_SUCCESS) {
658 1.1 rin hw->nvm.ops.release(hw);
659 1.1 rin DEBUGOUT("NVM Write Error while updating checksum.\n");
660 1.1 rin goto out;
661 1.1 rin }
662 1.1 rin
663 1.1 rin hw->nvm.ops.release(hw);
664 1.1 rin
665 1.1 rin ret_val = igc_update_flash_i225(hw);
666 1.1 rin } else {
667 1.1 rin ret_val = IGC_ERR_SWFW_SYNC;
668 1.1 rin }
669 1.1 rin out:
670 1.1 rin return ret_val;
671 1.1 rin }
672 1.1 rin
673 1.1 rin /* igc_get_flash_presence_i225 - Check if flash device is detected.
674 1.1 rin * @hw: pointer to the HW structure
675 1.1 rin */
676 1.1 rin bool
677 1.1 rin igc_get_flash_presence_i225(struct igc_hw *hw)
678 1.1 rin {
679 1.1 rin uint32_t eec = 0;
680 1.1 rin bool ret_val = false;
681 1.1 rin
682 1.1 rin DEBUGFUNC("igc_get_flash_presence_i225");
683 1.1 rin
684 1.1 rin eec = IGC_READ_REG(hw, IGC_EECD);
685 1.1 rin
686 1.1 rin if (eec & IGC_EECD_FLASH_DETECTED_I225)
687 1.1 rin ret_val = true;
688 1.1 rin
689 1.1 rin return ret_val;
690 1.1 rin }
691 1.1 rin
692 1.1 rin /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst
693 1.1 rin * Counter in FLSWCNT register.
694 1.1 rin *
695 1.1 rin * @hw: pointer to the HW structure
696 1.1 rin * @burst_counter: size in bytes of the Flash burst to read or write
697 1.1 rin */
698 1.1 rin int
699 1.1 rin igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw, uint32_t burst_counter)
700 1.1 rin {
701 1.1 rin int ret_val = IGC_SUCCESS;
702 1.1 rin
703 1.1 rin DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225");
704 1.1 rin
705 1.1 rin /* Validate input data */
706 1.1 rin if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) {
707 1.1 rin /* Write FLSWCNT - burst counter */
708 1.1 rin IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter);
709 1.1 rin } else {
710 1.1 rin ret_val = IGC_ERR_INVALID_ARGUMENT;
711 1.1 rin }
712 1.1 rin
713 1.1 rin return ret_val;
714 1.1 rin }
715 1.1 rin
716 1.1 rin
717 1.1 rin /* igc_write_erase_flash_command_i225 - write/erase to a sector
718 1.1 rin * region on a given address.
719 1.1 rin *
720 1.1 rin * @hw: pointer to the HW structure
721 1.1 rin * @opcode: opcode to be used for the write command
722 1.1 rin * @address: the offset to write into the FLASH image
723 1.1 rin */
724 1.1 rin int
725 1.1 rin igc_write_erase_flash_command_i225(struct igc_hw *hw, uint32_t opcode,
726 1.1 rin uint32_t address)
727 1.1 rin {
728 1.1 rin uint32_t flswctl = 0;
729 1.1 rin int timeout = IGC_NVM_GRANT_ATTEMPTS;
730 1.1 rin int ret_val = IGC_SUCCESS;
731 1.1 rin
732 1.1 rin DEBUGFUNC("igc_write_erase_flash_command_i225");
733 1.1 rin
734 1.1 rin flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
735 1.1 rin /* Polling done bit on FLSWCTL register */
736 1.1 rin while (timeout) {
737 1.1 rin if (flswctl & IGC_FLSWCTL_DONE)
738 1.1 rin break;
739 1.1 rin DELAY(5);
740 1.1 rin flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
741 1.1 rin timeout--;
742 1.1 rin }
743 1.1 rin
744 1.1 rin if (!timeout) {
745 1.1 rin DEBUGOUT("Flash transaction was not done\n");
746 1.1 rin return -IGC_ERR_NVM;
747 1.1 rin }
748 1.1 rin
749 1.1 rin /* Build and issue command on FLSWCTL register */
750 1.1 rin flswctl = address | opcode;
751 1.1 rin IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl);
752 1.1 rin
753 1.1 rin /* Check if issued command is valid on FLSWCTL register */
754 1.1 rin flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
755 1.1 rin if (!(flswctl & IGC_FLSWCTL_CMDV)) {
756 1.1 rin DEBUGOUT("Write flash command failed\n");
757 1.1 rin ret_val = IGC_ERR_INVALID_ARGUMENT;
758 1.1 rin }
759 1.1 rin
760 1.1 rin return ret_val;
761 1.1 rin }
762 1.1 rin
763 1.1 rin /* igc_update_flash_i225 - Commit EEPROM to the flash
764 1.1 rin * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC
765 1.1 rin * register makes the FW load the internal shadow RAM into the flash.
766 1.1 rin * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0
767 1.1 rin * then FW is not active so the SW is responsible shadow RAM dump.
768 1.1 rin *
769 1.1 rin * @hw: pointer to the HW structure
770 1.1 rin */
771 1.1 rin int
772 1.1 rin igc_update_flash_i225(struct igc_hw *hw)
773 1.1 rin {
774 1.1 rin uint32_t block_sw_protect = 1;
775 1.1 rin uint32_t i, flup, fw_valid_bit;
776 1.1 rin uint16_t current_offset;
777 1.1 rin uint16_t base_address = 0x0;
778 1.1 rin uint16_t current_offset_data = 0;
779 1.1 rin int ret_val = 0;
780 1.1 rin
781 1.1 rin DEBUGFUNC("igc_update_flash_i225");
782 1.1 rin
783 1.1 rin block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) &
784 1.1 rin IGC_FLSECU_BLK_SW_ACCESS_I225;
785 1.1 rin
786 1.1 rin fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) & IGC_FWSM_FW_VALID_I225;
787 1.1 rin if (fw_valid_bit) {
788 1.1 rin ret_val = igc_pool_flash_update_done_i225(hw);
789 1.1 rin if (ret_val == -IGC_ERR_NVM) {
790 1.1 rin DEBUGOUT("Flash update time out\n");
791 1.1 rin goto out;
792 1.1 rin }
793 1.1 rin
794 1.1 rin flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225;
795 1.1 rin IGC_WRITE_REG(hw, IGC_EECD, flup);
796 1.1 rin
797 1.1 rin ret_val = igc_pool_flash_update_done_i225(hw);
798 1.1 rin if (ret_val == IGC_SUCCESS)
799 1.1 rin DEBUGOUT("Flash update complete\n");
800 1.1 rin else
801 1.1 rin DEBUGOUT("Flash update time out\n");
802 1.1 rin } else if (!block_sw_protect) {
803 1.1 rin /* FW is not active and security protection is disabled.
804 1.1 rin * therefore, SW is in charge of shadow RAM dump.
805 1.1 rin * Check which sector is valid. if sector 0 is valid,
806 1.1 rin * base address remains 0x0. otherwise, sector 1 is
807 1.1 rin * valid and its base address is 0x1000
808 1.1 rin */
809 1.1 rin if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225)
810 1.1 rin base_address = 0x1000;
811 1.1 rin
812 1.1 rin /* Valid sector erase */
813 1.1 rin ret_val = igc_write_erase_flash_command_i225(hw,
814 1.1 rin IGC_I225_ERASE_CMD_OPCODE, base_address);
815 1.1 rin if (!ret_val) {
816 1.1 rin DEBUGOUT("Sector erase failed\n");
817 1.1 rin goto out;
818 1.1 rin }
819 1.1 rin
820 1.1 rin current_offset = base_address;
821 1.1 rin
822 1.1 rin /* Write */
823 1.1 rin for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) {
824 1.1 rin /* Set burst write length */
825 1.1 rin ret_val = igc_set_flsw_flash_burst_counter_i225(hw,
826 1.1 rin 0x2);
827 1.1 rin if (ret_val != IGC_SUCCESS)
828 1.1 rin break;
829 1.1 rin
830 1.1 rin /* Set address and opcode */
831 1.1 rin ret_val = igc_write_erase_flash_command_i225(hw,
832 1.1 rin IGC_I225_WRITE_CMD_OPCODE, 2 * current_offset);
833 1.1 rin if (ret_val != IGC_SUCCESS)
834 1.1 rin break;
835 1.1 rin
836 1.1 rin ret_val = igc_read_nvm_eerd(hw, current_offset, 1,
837 1.1 rin ¤t_offset_data);
838 1.1 rin if (ret_val) {
839 1.1 rin DEBUGOUT("Failed to read from EEPROM\n");
840 1.1 rin goto out;
841 1.1 rin }
842 1.1 rin
843 1.1 rin /* Write CurrentOffseData to FLSWDATA register */
844 1.1 rin IGC_WRITE_REG(hw, IGC_I225_FLSWDATA,
845 1.1 rin current_offset_data);
846 1.1 rin current_offset++;
847 1.1 rin
848 1.1 rin /* Wait till operation has finished */
849 1.1 rin ret_val = igc_poll_eerd_eewr_done(hw,
850 1.1 rin IGC_NVM_POLL_READ);
851 1.1 rin if (ret_val)
852 1.1 rin break;
853 1.1 rin
854 1.1 rin DELAY(1000);
855 1.1 rin }
856 1.1 rin }
857 1.1 rin out:
858 1.1 rin return ret_val;
859 1.1 rin }
860 1.1 rin
861 1.1 rin /* igc_pool_flash_update_done_i225 - Pool FLUDONE status.
862 1.1 rin * @hw: pointer to the HW structure
863 1.1 rin */
864 1.1 rin int
865 1.1 rin igc_pool_flash_update_done_i225(struct igc_hw *hw)
866 1.1 rin {
867 1.1 rin uint32_t i, reg;
868 1.1 rin int ret_val = -IGC_ERR_NVM;
869 1.1 rin
870 1.1 rin DEBUGFUNC("igc_pool_flash_update_done_i225");
871 1.1 rin
872 1.1 rin for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
873 1.1 rin reg = IGC_READ_REG(hw, IGC_EECD);
874 1.1 rin if (reg & IGC_EECD_FLUDONE_I225) {
875 1.1 rin ret_val = IGC_SUCCESS;
876 1.1 rin break;
877 1.1 rin }
878 1.1 rin DELAY(5);
879 1.1 rin }
880 1.1 rin
881 1.1 rin return ret_val;
882 1.1 rin }
883 1.1 rin
884 1.1 rin /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds.
885 1.1 rin * @hw: pointer to the HW structure
886 1.1 rin * @link: bool indicating link status
887 1.1 rin *
888 1.1 rin * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
889 1.1 rin * settings, otherwise specify that there is no LTR requirement.
890 1.1 rin */
891 1.1 rin int
892 1.1 rin igc_set_ltr_i225(struct igc_hw *hw, bool link)
893 1.1 rin {
894 1.1 rin uint16_t speed, duplex;
895 1.1 rin uint32_t tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
896 1.1 rin int size;
897 1.1 rin
898 1.1 rin DEBUGFUNC("igc_set_ltr_i225");
899 1.1 rin
900 1.1 rin /* If we do not have link, LTR thresholds are zero. */
901 1.1 rin if (link) {
902 1.1 rin hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
903 1.1 rin
904 1.1 rin /* Check if using copper interface with EEE enabled or if the
905 1.1 rin * link speed is 10 Mbps.
906 1.1 rin */
907 1.1 rin if ((hw->phy.media_type == igc_media_type_copper) &&
908 1.1 rin !(hw->dev_spec._i225.eee_disable) &&
909 1.1 rin (speed != SPEED_10)) {
910 1.1 rin /* EEE enabled, so send LTRMAX threshold. */
911 1.1 rin ltrc = IGC_READ_REG(hw, IGC_LTRC) | IGC_LTRC_EEEMS_EN;
912 1.1 rin IGC_WRITE_REG(hw, IGC_LTRC, ltrc);
913 1.1 rin
914 1.1 rin /* Calculate tw_system (nsec). */
915 1.1 rin if (speed == SPEED_100) {
916 1.1 rin tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) &
917 1.1 rin IGC_TW_SYSTEM_100_MASK) >>
918 1.1 rin IGC_TW_SYSTEM_100_SHIFT) * 500;
919 1.1 rin } else {
920 1.1 rin tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) &
921 1.1 rin IGC_TW_SYSTEM_1000_MASK) * 500;
922 1.1 rin }
923 1.1 rin } else {
924 1.1 rin tw_system = 0;
925 1.1 rin }
926 1.1 rin
927 1.1 rin /* Get the Rx packet buffer size. */
928 1.1 rin size = IGC_READ_REG(hw, IGC_RXPBS) & IGC_RXPBS_SIZE_I225_MASK;
929 1.1 rin
930 1.1 rin /* Calculations vary based on DMAC settings. */
931 1.1 rin if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) {
932 1.1 rin size -= (IGC_READ_REG(hw, IGC_DMACR) &
933 1.1 rin IGC_DMACR_DMACTHR_MASK) >> IGC_DMACR_DMACTHR_SHIFT;
934 1.1 rin /* Convert size to bits. */
935 1.1 rin size *= 1024 * 8;
936 1.1 rin } else {
937 1.1 rin /* Convert size to bytes, subtract the MTU, and then
938 1.1 rin * convert the size to bits.
939 1.1 rin */
940 1.1 rin size *= 1024;
941 1.1 rin size -= hw->dev_spec._i225.mtu;
942 1.1 rin size *= 8;
943 1.1 rin }
944 1.1 rin
945 1.1 rin if (size < 0) {
946 1.1 rin DEBUGOUT1("Invalid effective Rx buffer size %d\n",
947 1.1 rin size);
948 1.1 rin return -IGC_ERR_CONFIG;
949 1.1 rin }
950 1.1 rin
951 1.1 rin /* Calculate the thresholds. Since speed is in Mbps, simplify
952 1.1 rin * the calculation by multiplying size/speed by 1000 for result
953 1.1 rin * to be in nsec before dividing by the scale in nsec. Set the
954 1.1 rin * scale such that the LTR threshold fits in the register.
955 1.1 rin */
956 1.1 rin ltr_min = (1000 * size) / speed;
957 1.1 rin ltr_max = ltr_min + tw_system;
958 1.1 rin scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
959 1.1 rin IGC_LTRMINV_SCALE_32768;
960 1.1 rin scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
961 1.1 rin IGC_LTRMAXV_SCALE_32768;
962 1.1 rin ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
963 1.1 rin ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
964 1.1 rin
965 1.1 rin /* Only write the LTR thresholds if they differ from before. */
966 1.1 rin ltrv = IGC_READ_REG(hw, IGC_LTRMINV);
967 1.1 rin if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
968 1.1 rin ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
969 1.1 rin (scale_min << IGC_LTRMINV_SCALE_SHIFT);
970 1.1 rin IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv);
971 1.1 rin }
972 1.1 rin
973 1.1 rin ltrv = IGC_READ_REG(hw, IGC_LTRMAXV);
974 1.1 rin if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
975 1.1 rin ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
976 1.1 rin (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
977 1.1 rin IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv);
978 1.1 rin }
979 1.1 rin }
980 1.1 rin
981 1.1 rin return IGC_SUCCESS;
982 1.1 rin }
983 1.1 rin
984 1.1 rin /* igc_check_for_link_i225 - Check for link
985 1.1 rin * @hw: pointer to the HW structure
986 1.1 rin *
987 1.1 rin * Checks to see of the link status of the hardware has changed. If a
988 1.1 rin * change in link status has been detected, then we read the PHY registers
989 1.1 rin * to get the current speed/duplex if link exists.
990 1.1 rin */
991 1.1 rin int
992 1.1 rin igc_check_for_link_i225(struct igc_hw *hw)
993 1.1 rin {
994 1.1 rin struct igc_mac_info *mac = &hw->mac;
995 1.1 rin int ret_val;
996 1.1 rin bool link = false;
997 1.1 rin
998 1.1 rin DEBUGFUNC("igc_check_for_link_i225");
999 1.1 rin
1000 1.1 rin /* We only want to go out to the PHY registers to see if
1001 1.1 rin * Auto-Neg has completed and/or if our link status has
1002 1.1 rin * changed. The get_link_status flag is set upon receiving
1003 1.1 rin * a Link Status Change or Rx Sequence Error interrupt.
1004 1.1 rin */
1005 1.1 rin if (!mac->get_link_status) {
1006 1.1 rin ret_val = IGC_SUCCESS;
1007 1.1 rin goto out;
1008 1.1 rin }
1009 1.1 rin
1010 1.1 rin /* First we want to see if the MII Status Register reports
1011 1.1 rin * link. If so, then we want to get the current speed/duplex
1012 1.1 rin * of the PHY.
1013 1.1 rin */
1014 1.1 rin ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
1015 1.1 rin if (ret_val)
1016 1.1 rin goto out;
1017 1.1 rin
1018 1.1 rin if (!link)
1019 1.1 rin goto out; /* No link detected */
1020 1.1 rin
1021 1.1 rin /* First we want to see if the MII Status Register reports
1022 1.1 rin * link. If so, then we want to get the current speed/duplex
1023 1.1 rin * of the PHY.
1024 1.1 rin */
1025 1.1 rin ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
1026 1.1 rin if (ret_val)
1027 1.1 rin goto out;
1028 1.1 rin
1029 1.1 rin if (!link)
1030 1.1 rin goto out; /* No link detected */
1031 1.1 rin
1032 1.1 rin mac->get_link_status = false;
1033 1.1 rin
1034 1.1 rin /* Check if there was DownShift, must be checked
1035 1.1 rin * immediately after link-up
1036 1.1 rin */
1037 1.1 rin igc_check_downshift_generic(hw);
1038 1.1 rin
1039 1.1 rin /* If we are forcing speed/duplex, then we simply return since
1040 1.1 rin * we have already determined whether we have link or not.
1041 1.1 rin */
1042 1.1 rin if (!mac->autoneg)
1043 1.1 rin goto out;
1044 1.1 rin
1045 1.1 rin /* Auto-Neg is enabled. Auto Speed Detection takes care
1046 1.1 rin * of MAC speed/duplex configuration. So we only need to
1047 1.1 rin * configure Collision Distance in the MAC.
1048 1.1 rin */
1049 1.1 rin mac->ops.config_collision_dist(hw);
1050 1.1 rin
1051 1.1 rin /* Configure Flow Control now that Auto-Neg has completed.
1052 1.1 rin * First, we need to restore the desired flow control
1053 1.1 rin * settings because we may have had to re-autoneg with a
1054 1.1 rin * different link partner.
1055 1.1 rin */
1056 1.1 rin ret_val = igc_config_fc_after_link_up_generic(hw);
1057 1.1 rin if (ret_val)
1058 1.1 rin DEBUGOUT("Error configuring flow control\n");
1059 1.1 rin out:
1060 1.1 rin /* Now that we are aware of our link settings, we can set the LTR
1061 1.1 rin * thresholds.
1062 1.1 rin */
1063 1.1 rin ret_val = igc_set_ltr_i225(hw, link);
1064 1.1 rin
1065 1.1 rin return ret_val;
1066 1.1 rin }
1067 1.1 rin
1068 1.1 rin /* igc_init_function_pointers_i225 - Init func ptrs.
1069 1.1 rin * @hw: pointer to the HW structure
1070 1.1 rin *
1071 1.1 rin * Called to initialize all function pointers and parameters.
1072 1.1 rin */
1073 1.1 rin void
1074 1.1 rin igc_init_function_pointers_i225(struct igc_hw *hw)
1075 1.1 rin {
1076 1.1 rin igc_init_mac_ops_generic(hw);
1077 1.1 rin igc_init_phy_ops_generic(hw);
1078 1.1 rin igc_init_nvm_ops_generic(hw);
1079 1.1 rin hw->mac.ops.init_params = igc_init_mac_params_i225;
1080 1.1 rin hw->nvm.ops.init_params = igc_init_nvm_params_i225;
1081 1.1 rin hw->phy.ops.init_params = igc_init_phy_params_i225;
1082 1.1 rin }
1083 1.1 rin
1084 1.1 rin /* igc_init_hw_i225 - Init hw for I225
1085 1.1 rin * @hw: pointer to the HW structure
1086 1.1 rin *
1087 1.1 rin * Called to initialize hw for i225 hw family.
1088 1.1 rin */
1089 1.1 rin int
1090 1.1 rin igc_init_hw_i225(struct igc_hw *hw)
1091 1.1 rin {
1092 1.1 rin int ret_val;
1093 1.1 rin
1094 1.1 rin DEBUGFUNC("igc_init_hw_i225");
1095 1.1 rin
1096 1.1 rin ret_val = igc_init_hw_base(hw);
1097 1.1 rin return ret_val;
1098 1.1 rin }
1099 1.1 rin
1100 1.1 rin /**
1101 1.1 rin * igc_set_eee_i225 - Enable/disable EEE support
1102 1.1 rin * @hw: pointer to the HW structure
1103 1.1 rin * @adv2p5G: boolean flag enabling 2.5G EEE advertisement
1104 1.1 rin * @adv1G: boolean flag enabling 1G EEE advertisement
1105 1.1 rin * @adv100M: boolean flag enabling 100M EEE advertisement
1106 1.1 rin *
1107 1.1 rin * Enable/disable EEE based on setting in dev_spec structure.
1108 1.1 rin *
1109 1.1 rin **/
1110 1.1 rin int
1111 1.1 rin igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
1112 1.1 rin bool adv100M)
1113 1.1 rin {
1114 1.1 rin uint32_t ipcnfg, eeer;
1115 1.1 rin
1116 1.1 rin DEBUGFUNC("igc_set_eee_i225");
1117 1.1 rin
1118 1.1 rin if (hw->mac.type != igc_i225 ||
1119 1.1 rin hw->phy.media_type != igc_media_type_copper)
1120 1.1 rin goto out;
1121 1.1 rin ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG);
1122 1.1 rin eeer = IGC_READ_REG(hw, IGC_EEER);
1123 1.1 rin
1124 1.1 rin /* enable or disable per user setting */
1125 1.1 rin if (!(hw->dev_spec._i225.eee_disable)) {
1126 1.1 rin uint32_t eee_su = IGC_READ_REG(hw, IGC_EEE_SU);
1127 1.1 rin
1128 1.1 rin if (adv100M)
1129 1.1 rin ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
1130 1.1 rin else
1131 1.1 rin ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
1132 1.1 rin
1133 1.1 rin if (adv1G)
1134 1.1 rin ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
1135 1.1 rin else
1136 1.1 rin ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
1137 1.1 rin
1138 1.1 rin if (adv2p5G)
1139 1.1 rin ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
1140 1.1 rin else
1141 1.1 rin ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
1142 1.1 rin
1143 1.1 rin eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1144 1.1 rin IGC_EEER_LPI_FC);
1145 1.1 rin
1146 1.1 rin /* This bit should not be set in normal operation. */
1147 1.1 rin if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
1148 1.1 rin DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
1149 1.1 rin } else {
1150 1.1 rin ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
1151 1.1 rin IGC_IPCNFG_EEE_100M_AN);
1152 1.1 rin eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1153 1.1 rin IGC_EEER_LPI_FC);
1154 1.1 rin }
1155 1.1 rin IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg);
1156 1.1 rin IGC_WRITE_REG(hw, IGC_EEER, eeer);
1157 1.1 rin IGC_READ_REG(hw, IGC_IPCNFG);
1158 1.1 rin IGC_READ_REG(hw, IGC_EEER);
1159 1.1 rin out:
1160 1.1 rin
1161 1.1 rin return IGC_SUCCESS;
1162 1.1 rin }
1163