Home | History | Annotate | Line # | Download | only in igc
igc_i225.c revision 1.1
      1 /*	$OpenBSD: igc_i225.c,v 1.4 2023/02/03 11:31:52 mbuhl Exp $	*/
      2 /*-
      3  * Copyright 2021 Intel Corp
      4  * Copyright 2021 Rubicon Communications, LLC (Netgate)
      5  * SPDX-License-Identifier: BSD-3-Clause
      6  */
      7 
      8 #include <dev/pci/igc_api.h>
      9 
     10 int	igc_init_nvm_params_i225(struct igc_hw *);
     11 int	igc_init_mac_params_i225(struct igc_hw *);
     12 int	igc_init_phy_params_i225(struct igc_hw *);
     13 int	igc_reset_hw_i225(struct igc_hw *);
     14 int	igc_acquire_nvm_i225(struct igc_hw *);
     15 void	igc_release_nvm_i225(struct igc_hw *);
     16 int	igc_get_hw_semaphore_i225(struct igc_hw *);
     17 int	__igc_write_nvm_srwr(struct igc_hw *, uint16_t, uint16_t, uint16_t *);
     18 int	igc_pool_flash_update_done_i225(struct igc_hw *);
     19 
     20 /**
     21  *  igc_init_nvm_params_i225 - Init NVM func ptrs.
     22  *  @hw: pointer to the HW structure
     23  **/
     24 int
     25 igc_init_nvm_params_i225(struct igc_hw *hw)
     26 {
     27 	struct igc_nvm_info *nvm = &hw->nvm;
     28 	uint32_t eecd = IGC_READ_REG(hw, IGC_EECD);
     29 	uint16_t size;
     30 
     31 	DEBUGFUNC("igc_init_nvm_params_i225");
     32 
     33 	size = (uint16_t)((eecd & IGC_EECD_SIZE_EX_MASK) >>
     34 	    IGC_EECD_SIZE_EX_SHIFT);
     35 	/*
     36 	 * Added to a constant, "size" becomes the left-shift value
     37 	 * for setting word_size.
     38 	 */
     39 	size += NVM_WORD_SIZE_BASE_SHIFT;
     40 
     41 	/* Just in case size is out of range, cap it to the largest
     42 	 * EEPROM size supported.
     43 	 */
     44 	if (size > 15)
     45 		size = 15;
     46 
     47 	nvm->word_size = 1 << size;
     48 	nvm->opcode_bits = 8;
     49 	nvm->delay_usec = 1;
     50 	nvm->type = igc_nvm_eeprom_spi;
     51 
     52 	nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8;
     53 	nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ? 16 : 8;
     54 
     55 	if (nvm->word_size == (1 << 15))
     56 		nvm->page_size = 128;
     57 
     58 	nvm->ops.acquire = igc_acquire_nvm_i225;
     59 	nvm->ops.release = igc_release_nvm_i225;
     60 	if (igc_get_flash_presence_i225(hw)) {
     61 		hw->nvm.type = igc_nvm_flash_hw;
     62 		nvm->ops.read = igc_read_nvm_srrd_i225;
     63 		nvm->ops.write = igc_write_nvm_srwr_i225;
     64 		nvm->ops.validate = igc_validate_nvm_checksum_i225;
     65 		nvm->ops.update = igc_update_nvm_checksum_i225;
     66 	} else {
     67 		hw->nvm.type = igc_nvm_invm;
     68 		nvm->ops.write = igc_null_write_nvm;
     69 		nvm->ops.validate = igc_null_ops_generic;
     70 		nvm->ops.update = igc_null_ops_generic;
     71 	}
     72 
     73 	return IGC_SUCCESS;
     74 }
     75 
     76 /**
     77  *  igc_init_mac_params_i225 - Init MAC func ptrs.
     78  *  @hw: pointer to the HW structure
     79  **/
     80 int
     81 igc_init_mac_params_i225(struct igc_hw *hw)
     82 {
     83 	struct igc_mac_info *mac = &hw->mac;
     84 	struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225;
     85 
     86 	DEBUGFUNC("igc_init_mac_params_i225");
     87 
     88 	/* Initialize function pointer */
     89 	igc_init_mac_ops_generic(hw);
     90 
     91 	/* Set media type */
     92 	hw->phy.media_type = igc_media_type_copper;
     93 	/* Set mta register count */
     94 	mac->mta_reg_count = 128;
     95 	/* Set rar entry count */
     96 	mac->rar_entry_count = IGC_RAR_ENTRIES_BASE;
     97 
     98 	/* reset */
     99 	mac->ops.reset_hw = igc_reset_hw_i225;
    100 	/* hw initialization */
    101 	mac->ops.init_hw = igc_init_hw_i225;
    102 	/* link setup */
    103 	mac->ops.setup_link = igc_setup_link_generic;
    104 	/* check for link */
    105 	mac->ops.check_for_link = igc_check_for_link_i225;
    106 	/* link info */
    107 	mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic;
    108 	/* acquire SW_FW sync */
    109 	mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225;
    110 	/* release SW_FW sync */
    111 	mac->ops.release_swfw_sync = igc_release_swfw_sync_i225;
    112 
    113 	/* Allow a single clear of the SW semaphore on I225 */
    114 	dev_spec->clear_semaphore_once = true;
    115 	mac->ops.setup_physical_interface = igc_setup_copper_link_i225;
    116 
    117 	/* Set if part includes ASF firmware */
    118 	mac->asf_firmware_present = true;
    119 
    120 	/* multicast address update */
    121 	mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic;
    122 
    123 	mac->ops.write_vfta = igc_write_vfta_generic;
    124 
    125 	return IGC_SUCCESS;
    126 }
    127 
    128 /**
    129  *  igc_init_phy_params_i225 - Init PHY func ptrs.
    130  *  @hw: pointer to the HW structure
    131  **/
    132 int
    133 igc_init_phy_params_i225(struct igc_hw *hw)
    134 {
    135 	struct igc_phy_info *phy = &hw->phy;
    136 	int ret_val = IGC_SUCCESS;
    137 
    138 	DEBUGFUNC("igc_init_phy_params_i225");
    139 
    140 	if (hw->phy.media_type != igc_media_type_copper) {
    141 		phy->type = igc_phy_none;
    142 		goto out;
    143 	}
    144 
    145 	phy->ops.power_up = igc_power_up_phy_copper;
    146 	phy->ops.power_down = igc_power_down_phy_copper_base;
    147 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500;
    148 	phy->reset_delay_us = 100;
    149 	phy->ops.acquire = igc_acquire_phy_base;
    150 	phy->ops.check_reset_block = igc_check_reset_block_generic;
    151 	phy->ops.release = igc_release_phy_base;
    152 	phy->ops.reset = igc_phy_hw_reset_generic;
    153 	phy->ops.read_reg = igc_read_phy_reg_gpy;
    154 	phy->ops.write_reg = igc_write_phy_reg_gpy;
    155 
    156 	/* Make sure the PHY is in a good state. Several people have reported
    157 	 * firmware leaving the PHY's page select register set to something
    158 	 * other than the default of zero, which causes the PHY ID read to
    159 	 * access something other than the intended register.
    160 	 */
    161 	ret_val = hw->phy.ops.reset(hw);
    162 	if (ret_val)
    163 		goto out;
    164 
    165 	ret_val = igc_get_phy_id(hw);
    166 	phy->type = igc_phy_i225;
    167 
    168 out:
    169 	return ret_val;
    170 }
    171 
    172 /**
    173  *  igc_reset_hw_i225 - Reset hardware
    174  *  @hw: pointer to the HW structure
    175  *
    176  *  This resets the hardware into a known state.
    177  **/
    178 int
    179 igc_reset_hw_i225(struct igc_hw *hw)
    180 {
    181 	uint32_t ctrl;
    182 	int ret_val;
    183 
    184 	DEBUGFUNC("igc_reset_hw_i225");
    185 
    186 	/*
    187 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
    188 	 * on the last TLP read/write transaction when MAC is reset.
    189 	 */
    190 	ret_val = igc_disable_pcie_master_generic(hw);
    191 	if (ret_val)
    192 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
    193 
    194 	DEBUGOUT("Masking off all interrupts\n");
    195 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
    196 
    197 	IGC_WRITE_REG(hw, IGC_RCTL, 0);
    198 	IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP);
    199 	IGC_WRITE_FLUSH(hw);
    200 
    201 	msec_delay(10);
    202 
    203 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
    204 
    205 	DEBUGOUT("Issuing a global reset to MAC\n");
    206 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST);
    207 
    208 	ret_val = igc_get_auto_rd_done_generic(hw);
    209 	if (ret_val) {
    210 		/*
    211 		 * When auto config read does not complete, do not
    212 		 * return with an error. This can happen in situations
    213 		 * where there is no eeprom and prevents getting link.
    214 		 */
    215 		DEBUGOUT("Auto Read Done did not complete\n");
    216 	}
    217 
    218 	/* Clear any pending interrupt events. */
    219 	IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
    220 	IGC_READ_REG(hw, IGC_ICR);
    221 
    222 	/* Install any alternate MAC address into RAR0 */
    223 	ret_val = igc_check_alt_mac_addr_generic(hw);
    224 
    225 	return ret_val;
    226 }
    227 
    228 /* igc_acquire_nvm_i225 - Request for access to EEPROM
    229  * @hw: pointer to the HW structure
    230  *
    231  * Acquire the necessary semaphores for exclusive access to the EEPROM.
    232  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
    233  * Return successful if access grant bit set, else clear the request for
    234  * EEPROM access and return -IGC_ERR_NVM (-1).
    235  */
    236 int
    237 igc_acquire_nvm_i225(struct igc_hw *hw)
    238 {
    239 	int ret_val;
    240 
    241 	DEBUGFUNC("igc_acquire_nvm_i225");
    242 
    243 	ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
    244 
    245 	return ret_val;
    246 }
    247 
    248 /* igc_release_nvm_i225 - Release exclusive access to EEPROM
    249  * @hw: pointer to the HW structure
    250  *
    251  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
    252  * then release the semaphores acquired.
    253  */
    254 void
    255 igc_release_nvm_i225(struct igc_hw *hw)
    256 {
    257 	DEBUGFUNC("igc_release_nvm_i225");
    258 
    259 	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
    260 }
    261 
    262 /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
    263  * @hw: pointer to the HW structure
    264  * @mask: specifies which semaphore to acquire
    265  *
    266  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
    267  * will also specify which port we're acquiring the lock for.
    268  */
    269 int
    270 igc_acquire_swfw_sync_i225(struct igc_hw *hw, uint16_t mask)
    271 {
    272 	uint32_t swfw_sync;
    273 	uint32_t swmask = mask;
    274 	uint32_t fwmask = mask << 16;
    275 	int ret_val = IGC_SUCCESS;
    276 	int i = 0, timeout = 200;	/* FIXME: find real value to use here */
    277 
    278 	DEBUGFUNC("igc_acquire_swfw_sync_i225");
    279 
    280 	while (i < timeout) {
    281 		if (igc_get_hw_semaphore_i225(hw)) {
    282 			ret_val = -IGC_ERR_SWFW_SYNC;
    283 			goto out;
    284 		}
    285 
    286 		swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
    287 		if (!(swfw_sync & (fwmask | swmask)))
    288 			break;
    289 
    290 		/* Firmware currently using resource (fwmask)
    291 		 * or other software thread using resource (swmask)
    292 		 */
    293 		igc_put_hw_semaphore_generic(hw);
    294 		msec_delay(5);
    295 		i++;
    296 	}
    297 
    298 	if (i == timeout) {
    299 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
    300 		ret_val = -IGC_ERR_SWFW_SYNC;
    301 		goto out;
    302 	}
    303 
    304 	swfw_sync |= swmask;
    305 	IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
    306 
    307 	igc_put_hw_semaphore_generic(hw);
    308 
    309 out:
    310 	return ret_val;
    311 }
    312 
    313 /* igc_release_swfw_sync_i225 - Release SW/FW semaphore
    314  * @hw: pointer to the HW structure
    315  * @mask: specifies which semaphore to acquire
    316  *
    317  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
    318  * will also specify which port we're releasing the lock for.
    319  */
    320 void
    321 igc_release_swfw_sync_i225(struct igc_hw *hw, uint16_t mask)
    322 {
    323 	uint32_t swfw_sync;
    324 
    325 	DEBUGFUNC("igc_release_swfw_sync_i225");
    326 
    327 	while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS)
    328 		; /* Empty */
    329 
    330 	swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
    331 	swfw_sync &= ~mask;
    332 	IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
    333 
    334 	igc_put_hw_semaphore_generic(hw);
    335 }
    336 
    337 /*
    338  * igc_setup_copper_link_i225 - Configure copper link settings
    339  * @hw: pointer to the HW structure
    340  *
    341  * Configures the link for auto-neg or forced speed and duplex.  Then we check
    342  * for link, once link is established calls to configure collision distance
    343  * and flow control are called.
    344  */
    345 int
    346 igc_setup_copper_link_i225(struct igc_hw *hw)
    347 {
    348 	uint32_t ctrl, phpm_reg;
    349 	int ret_val;
    350 
    351 	DEBUGFUNC("igc_setup_copper_link_i225");
    352 
    353 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
    354 	ctrl |= IGC_CTRL_SLU;
    355 	ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
    356 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
    357 
    358 	phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM);
    359 	phpm_reg &= ~IGC_I225_PHPM_GO_LINKD;
    360 	IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg);
    361 
    362 	ret_val = igc_setup_copper_link_generic(hw);
    363 
    364 	return ret_val;
    365 }
    366 
    367 /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore
    368  * @hw: pointer to the HW structure
    369  *
    370  * Acquire the HW semaphore to access the PHY or NVM
    371  */
    372 int
    373 igc_get_hw_semaphore_i225(struct igc_hw *hw)
    374 {
    375 	uint32_t swsm;
    376 	int timeout = hw->nvm.word_size + 1;
    377 	int i = 0;
    378 
    379 	DEBUGFUNC("igc_get_hw_semaphore_i225");
    380 
    381 	/* Get the SW semaphore */
    382 	while (i < timeout) {
    383 		swsm = IGC_READ_REG(hw, IGC_SWSM);
    384 		if (!(swsm & IGC_SWSM_SMBI))
    385 			break;
    386 
    387 		DELAY(50);
    388 		i++;
    389 	}
    390 
    391 	if (i == timeout) {
    392 		/* In rare circumstances, the SW semaphore may already be held
    393 		 * unintentionally. Clear the semaphore once before giving up.
    394 		 */
    395 		if (hw->dev_spec._i225.clear_semaphore_once) {
    396 			hw->dev_spec._i225.clear_semaphore_once = false;
    397 			igc_put_hw_semaphore_generic(hw);
    398 			for (i = 0; i < timeout; i++) {
    399 				swsm = IGC_READ_REG(hw, IGC_SWSM);
    400 				if (!(swsm & IGC_SWSM_SMBI))
    401 					break;
    402 
    403 				DELAY(50);
    404 			}
    405 		}
    406 
    407 		/* If we do not have the semaphore here, we have to give up. */
    408 		if (i == timeout) {
    409 			DEBUGOUT("Driver can't access device -\n");
    410 			DEBUGOUT("SMBI bit is set.\n");
    411 			return -IGC_ERR_NVM;
    412 		}
    413 	}
    414 
    415 	/* Get the FW semaphore. */
    416 	for (i = 0; i < timeout; i++) {
    417 		swsm = IGC_READ_REG(hw, IGC_SWSM);
    418 		IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
    419 
    420 		/* Semaphore acquired if bit latched */
    421 		if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
    422 			break;
    423 
    424 		DELAY(50);
    425 	}
    426 
    427 	if (i == timeout) {
    428 		/* Release semaphores */
    429 		igc_put_hw_semaphore_generic(hw);
    430 		DEBUGOUT("Driver can't access the NVM\n");
    431 		return -IGC_ERR_NVM;
    432 	}
    433 
    434 	return IGC_SUCCESS;
    435 }
    436 
    437 /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
    438  * @hw: pointer to the HW structure
    439  * @offset: offset of word in the Shadow Ram to read
    440  * @words: number of words to read
    441  * @data: word read from the Shadow Ram
    442  *
    443  * Reads a 16 bit word from the Shadow Ram using the EERD register.
    444  * Uses necessary synchronization semaphores.
    445  */
    446 int
    447 igc_read_nvm_srrd_i225(struct igc_hw *hw, uint16_t offset, uint16_t words,
    448     uint16_t *data)
    449 {
    450 	uint16_t i, count;
    451 	int status = IGC_SUCCESS;
    452 
    453 	DEBUGFUNC("igc_read_nvm_srrd_i225");
    454 
    455 	/* We cannot hold synchronization semaphores for too long,
    456 	 * because of forceful takeover procedure. However it is more efficient
    457 	 * to read in bursts than synchronizing access for each word.
    458 	 */
    459 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
    460 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
    461 		    IGC_EERD_EEWR_MAX_COUNT : (words - i);
    462 		if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
    463 			status = igc_read_nvm_eerd(hw, offset, count, data + i);
    464 			hw->nvm.ops.release(hw);
    465 		} else {
    466 			status = IGC_ERR_SWFW_SYNC;
    467 		}
    468 
    469 		if (status != IGC_SUCCESS)
    470 			break;
    471 	}
    472 
    473 	return status;
    474 }
    475 
    476 /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
    477  * @hw: pointer to the HW structure
    478  * @offset: offset within the Shadow RAM to be written to
    479  * @words: number of words to write
    480  * @data: 16 bit word(s) to be written to the Shadow RAM
    481  *
    482  * Writes data to Shadow RAM at offset using EEWR register.
    483  *
    484  * If igc_update_nvm_checksum is not called after this function , the
    485  * data will not be committed to FLASH and also Shadow RAM will most likely
    486  * contain an invalid checksum.
    487  *
    488  * If error code is returned, data and Shadow RAM may be inconsistent - buffer
    489  * partially written.
    490  */
    491 int
    492 igc_write_nvm_srwr_i225(struct igc_hw *hw, uint16_t offset, uint16_t words,
    493     uint16_t *data)
    494 {
    495 	uint16_t i, count;
    496 	int status = IGC_SUCCESS;
    497 
    498 	DEBUGFUNC("igc_write_nvm_srwr_i225");
    499 
    500 	/* We cannot hold synchronization semaphores for too long,
    501 	 * because of forceful takeover procedure. However it is more efficient
    502 	 * to write in bursts than synchronizing access for each word.
    503 	 */
    504 	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
    505 		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
    506 		    IGC_EERD_EEWR_MAX_COUNT : (words - i);
    507 		if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
    508 			status = __igc_write_nvm_srwr(hw, offset, count,
    509 			    data + i);
    510 			hw->nvm.ops.release(hw);
    511 		} else
    512 			status = IGC_ERR_SWFW_SYNC;
    513 
    514 		if (status != IGC_SUCCESS)
    515 			break;
    516 	}
    517 
    518 	return status;
    519 }
    520 
    521 /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR
    522  * @hw: pointer to the HW structure
    523  * @offset: offset within the Shadow Ram to be written to
    524  * @words: number of words to write
    525  * @data: 16 bit word(s) to be written to the Shadow Ram
    526  *
    527  * Writes data to Shadow Ram at offset using EEWR register.
    528  *
    529  * If igc_update_nvm_checksum is not called after this function , the
    530  * Shadow Ram will most likely contain an invalid checksum.
    531  */
    532 int
    533 __igc_write_nvm_srwr(struct igc_hw *hw, uint16_t offset, uint16_t words,
    534     uint16_t *data)
    535 {
    536 	struct igc_nvm_info *nvm = &hw->nvm;
    537 	uint32_t i, k, eewr = 0;
    538 	uint32_t attempts = 100000;
    539 	int ret_val = IGC_SUCCESS;
    540 
    541 	DEBUGFUNC("__igc_write_nvm_srwr");
    542 
    543 	/* A check for invalid values:  offset too large, too many words,
    544 	 * too many words for the offset, and not enough words.
    545 	 */
    546 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
    547 	    (words == 0)) {
    548 		DEBUGOUT("nvm parameter(s) out of bounds\n");
    549 		ret_val = -IGC_ERR_NVM;
    550 		goto out;
    551 	}
    552 
    553 	for (i = 0; i < words; i++) {
    554 		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
    555 		    (data[i] << IGC_NVM_RW_REG_DATA) | IGC_NVM_RW_REG_START;
    556 
    557 		IGC_WRITE_REG(hw, IGC_SRWR, eewr);
    558 
    559 		for (k = 0; k < attempts; k++) {
    560 			if (IGC_NVM_RW_REG_DONE & IGC_READ_REG(hw, IGC_SRWR)) {
    561 				ret_val = IGC_SUCCESS;
    562 				break;
    563 			}
    564 			DELAY(5);
    565 		}
    566 
    567 		if (ret_val != IGC_SUCCESS) {
    568 			DEBUGOUT("Shadow RAM write EEWR timed out\n");
    569 			break;
    570 		}
    571 	}
    572 
    573 out:
    574 	return ret_val;
    575 }
    576 
    577 /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
    578  * @hw: pointer to the HW structure
    579  *
    580  * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
    581  * and then verifies that the sum of the EEPROM is equal to 0xBABA.
    582  */
    583 int
    584 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
    585 {
    586 	int status = IGC_SUCCESS;
    587 	int (*read_op_ptr)(struct igc_hw *, uint16_t, uint16_t, uint16_t *);
    588 
    589 	DEBUGFUNC("igc_validate_nvm_checksum_i225");
    590 
    591 	if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
    592 		/* Replace the read function with semaphore grabbing with
    593 		 * the one that skips this for a while.
    594 		 * We have semaphore taken already here.
    595 		 */
    596 		read_op_ptr = hw->nvm.ops.read;
    597 		hw->nvm.ops.read = igc_read_nvm_eerd;
    598 
    599 		status = igc_validate_nvm_checksum_generic(hw);
    600 
    601 		/* Revert original read operation. */
    602 		hw->nvm.ops.read = read_op_ptr;
    603 
    604 		hw->nvm.ops.release(hw);
    605 	} else {
    606 		status = IGC_ERR_SWFW_SYNC;
    607 	}
    608 
    609 	return status;
    610 }
    611 
    612 /* igc_update_nvm_checksum_i225 - Update EEPROM checksum
    613  * @hw: pointer to the HW structure
    614  *
    615  * Updates the EEPROM checksum by reading/adding each word of the EEPROM
    616  * up to the checksum.  Then calculates the EEPROM checksum and writes the
    617  * value to the EEPROM. Next commit EEPROM data onto the Flash.
    618  */
    619 int
    620 igc_update_nvm_checksum_i225(struct igc_hw *hw)
    621 {
    622 	uint16_t checksum = 0;
    623 	uint16_t i, nvm_data;
    624 	int ret_val;
    625 
    626 	DEBUGFUNC("igc_update_nvm_checksum_i225");
    627 
    628 	/* Read the first word from the EEPROM. If this times out or fails, do
    629 	 * not continue or we could be in for a very long wait while every
    630 	 * EEPROM read fails
    631 	 */
    632 	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
    633 	if (ret_val != IGC_SUCCESS) {
    634 		DEBUGOUT("EEPROM read failed\n");
    635 		goto out;
    636 	}
    637 
    638 	if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
    639 		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
    640 		 * because we do not want to take the synchronization
    641 		 * semaphores twice here.
    642 		 */
    643 
    644 		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
    645 			ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
    646 			if (ret_val) {
    647 				hw->nvm.ops.release(hw);
    648 				DEBUGOUT("NVM Read Error while updating\n");
    649 				DEBUGOUT("checksum.\n");
    650 				goto out;
    651 			}
    652 			checksum += nvm_data;
    653 		}
    654 		checksum = (uint16_t)NVM_SUM - checksum;
    655 		ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
    656 		    &checksum);
    657 		if (ret_val != IGC_SUCCESS) {
    658 			hw->nvm.ops.release(hw);
    659 			DEBUGOUT("NVM Write Error while updating checksum.\n");
    660 			goto out;
    661 		}
    662 
    663 		hw->nvm.ops.release(hw);
    664 
    665 		ret_val = igc_update_flash_i225(hw);
    666 	} else {
    667 		ret_val = IGC_ERR_SWFW_SYNC;
    668 	}
    669 out:
    670 	return ret_val;
    671 }
    672 
    673 /* igc_get_flash_presence_i225 - Check if flash device is detected.
    674  * @hw: pointer to the HW structure
    675  */
    676 bool
    677 igc_get_flash_presence_i225(struct igc_hw *hw)
    678 {
    679 	uint32_t eec = 0;
    680 	bool ret_val = false;
    681 
    682 	DEBUGFUNC("igc_get_flash_presence_i225");
    683 
    684 	eec = IGC_READ_REG(hw, IGC_EECD);
    685 
    686 	if (eec & IGC_EECD_FLASH_DETECTED_I225)
    687 		ret_val = true;
    688 
    689 	return ret_val;
    690 }
    691 
    692 /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst
    693  * Counter in FLSWCNT register.
    694  *
    695  * @hw: pointer to the HW structure
    696  * @burst_counter: size in bytes of the Flash burst to read or write
    697  */
    698 int
    699 igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw, uint32_t burst_counter)
    700 {
    701 	int ret_val = IGC_SUCCESS;
    702 
    703 	DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225");
    704 
    705 	/* Validate input data */
    706 	if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) {
    707 		/* Write FLSWCNT - burst counter */
    708 		IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter);
    709 	} else {
    710 		ret_val = IGC_ERR_INVALID_ARGUMENT;
    711 	}
    712 
    713 	return ret_val;
    714 }
    715 
    716 
    717 /* igc_write_erase_flash_command_i225 - write/erase to a sector
    718  * region on a given address.
    719  *
    720  * @hw: pointer to the HW structure
    721  * @opcode: opcode to be used for the write command
    722  * @address: the offset to write into the FLASH image
    723  */
    724 int
    725 igc_write_erase_flash_command_i225(struct igc_hw *hw, uint32_t opcode,
    726     uint32_t address)
    727 {
    728 	uint32_t flswctl = 0;
    729 	int timeout = IGC_NVM_GRANT_ATTEMPTS;
    730 	int ret_val = IGC_SUCCESS;
    731 
    732 	DEBUGFUNC("igc_write_erase_flash_command_i225");
    733 
    734 	flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
    735 	/* Polling done bit on FLSWCTL register */
    736 	while (timeout) {
    737 		if (flswctl & IGC_FLSWCTL_DONE)
    738 			break;
    739 		DELAY(5);
    740 		flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
    741 		timeout--;
    742 	}
    743 
    744 	if (!timeout) {
    745 		DEBUGOUT("Flash transaction was not done\n");
    746 		return -IGC_ERR_NVM;
    747 	}
    748 
    749 	/* Build and issue command on FLSWCTL register */
    750 	flswctl = address | opcode;
    751 	IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl);
    752 
    753 	/* Check if issued command is valid on FLSWCTL register */
    754 	flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
    755 	if (!(flswctl & IGC_FLSWCTL_CMDV)) {
    756 		DEBUGOUT("Write flash command failed\n");
    757 		ret_val = IGC_ERR_INVALID_ARGUMENT;
    758 	}
    759 
    760 	return ret_val;
    761 }
    762 
    763 /* igc_update_flash_i225 - Commit EEPROM to the flash
    764  * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC
    765  * register makes the FW load the internal shadow RAM into the flash.
    766  * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0
    767  * then FW is not active so the SW is responsible shadow RAM dump.
    768  *
    769  * @hw: pointer to the HW structure
    770  */
    771 int
    772 igc_update_flash_i225(struct igc_hw *hw)
    773 {
    774 	uint32_t block_sw_protect = 1;
    775 	uint32_t i, flup, fw_valid_bit;
    776 	uint16_t current_offset;
    777 	uint16_t base_address = 0x0;
    778 	uint16_t current_offset_data = 0;
    779 	int ret_val = 0;
    780 
    781 	DEBUGFUNC("igc_update_flash_i225");
    782 
    783 	block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) &
    784 	    IGC_FLSECU_BLK_SW_ACCESS_I225;
    785 
    786 	fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) & IGC_FWSM_FW_VALID_I225;
    787 	if (fw_valid_bit) {
    788 		ret_val = igc_pool_flash_update_done_i225(hw);
    789 		if (ret_val == -IGC_ERR_NVM) {
    790 			DEBUGOUT("Flash update time out\n");
    791 			goto out;
    792 		}
    793 
    794 		flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225;
    795 		IGC_WRITE_REG(hw, IGC_EECD, flup);
    796 
    797 		ret_val = igc_pool_flash_update_done_i225(hw);
    798 		if (ret_val == IGC_SUCCESS)
    799 			DEBUGOUT("Flash update complete\n");
    800 		else
    801 			DEBUGOUT("Flash update time out\n");
    802 	} else if (!block_sw_protect) {
    803 		/* FW is not active and security protection is disabled.
    804 		 * therefore, SW is in charge of shadow RAM dump.
    805 		 * Check which sector is valid. if sector 0 is valid,
    806 		 * base address remains 0x0. otherwise, sector 1 is
    807 		 * valid and its base address is 0x1000
    808 		 */
    809 		if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225)
    810 			base_address = 0x1000;
    811 
    812 		/* Valid sector erase */
    813 		ret_val = igc_write_erase_flash_command_i225(hw,
    814 		    IGC_I225_ERASE_CMD_OPCODE, base_address);
    815 		if (!ret_val) {
    816 			DEBUGOUT("Sector erase failed\n");
    817 			goto out;
    818 		}
    819 
    820 		current_offset = base_address;
    821 
    822 		/* Write */
    823 		for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) {
    824 			/* Set burst write length */
    825 			ret_val = igc_set_flsw_flash_burst_counter_i225(hw,
    826 			    0x2);
    827 			if (ret_val != IGC_SUCCESS)
    828 				break;
    829 
    830 			/* Set address and opcode */
    831 			ret_val = igc_write_erase_flash_command_i225(hw,
    832 			    IGC_I225_WRITE_CMD_OPCODE, 2 * current_offset);
    833 			if (ret_val != IGC_SUCCESS)
    834 				break;
    835 
    836 			ret_val = igc_read_nvm_eerd(hw, current_offset, 1,
    837 			    &current_offset_data);
    838 			if (ret_val) {
    839 				DEBUGOUT("Failed to read from EEPROM\n");
    840 				goto out;
    841 			}
    842 
    843 			/* Write CurrentOffseData to FLSWDATA register */
    844 			IGC_WRITE_REG(hw, IGC_I225_FLSWDATA,
    845 			    current_offset_data);
    846 			current_offset++;
    847 
    848 			/* Wait till operation has finished */
    849 			ret_val = igc_poll_eerd_eewr_done(hw,
    850 			    IGC_NVM_POLL_READ);
    851 			if (ret_val)
    852 				break;
    853 
    854 			DELAY(1000);
    855 		}
    856 	}
    857 out:
    858 	return ret_val;
    859 }
    860 
    861 /* igc_pool_flash_update_done_i225 - Pool FLUDONE status.
    862  * @hw: pointer to the HW structure
    863  */
    864 int
    865 igc_pool_flash_update_done_i225(struct igc_hw *hw)
    866 {
    867 	uint32_t i, reg;
    868 	int ret_val = -IGC_ERR_NVM;
    869 
    870 	DEBUGFUNC("igc_pool_flash_update_done_i225");
    871 
    872 	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
    873 		reg = IGC_READ_REG(hw, IGC_EECD);
    874 		if (reg & IGC_EECD_FLUDONE_I225) {
    875 			ret_val = IGC_SUCCESS;
    876 			break;
    877 		}
    878 		DELAY(5);
    879 	}
    880 
    881 	return ret_val;
    882 }
    883 
    884 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds.
    885  * @hw: pointer to the HW structure
    886  * @link: bool indicating link status
    887  *
    888  * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
    889  * settings, otherwise specify that there is no LTR requirement.
    890  */
    891 int
    892 igc_set_ltr_i225(struct igc_hw *hw, bool link)
    893 {
    894 	uint16_t speed, duplex;
    895 	uint32_t tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
    896 	int size;
    897 
    898 	DEBUGFUNC("igc_set_ltr_i225");
    899 
    900 	/* If we do not have link, LTR thresholds are zero. */
    901 	if (link) {
    902 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
    903 
    904 		/* Check if using copper interface with EEE enabled or if the
    905 		 * link speed is 10 Mbps.
    906 		 */
    907 		if ((hw->phy.media_type == igc_media_type_copper) &&
    908 		    !(hw->dev_spec._i225.eee_disable) &&
    909 		     (speed != SPEED_10)) {
    910 			/* EEE enabled, so send LTRMAX threshold. */
    911 			ltrc = IGC_READ_REG(hw, IGC_LTRC) | IGC_LTRC_EEEMS_EN;
    912 			IGC_WRITE_REG(hw, IGC_LTRC, ltrc);
    913 
    914 			/* Calculate tw_system (nsec). */
    915 			if (speed == SPEED_100) {
    916 				tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) &
    917 				    IGC_TW_SYSTEM_100_MASK) >>
    918 				    IGC_TW_SYSTEM_100_SHIFT) * 500;
    919 			} else {
    920 				tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) &
    921 				    IGC_TW_SYSTEM_1000_MASK) * 500;
    922 				}
    923 		} else {
    924 			tw_system = 0;
    925 			}
    926 
    927 		/* Get the Rx packet buffer size. */
    928 		size = IGC_READ_REG(hw, IGC_RXPBS) & IGC_RXPBS_SIZE_I225_MASK;
    929 
    930 		/* Calculations vary based on DMAC settings. */
    931 		if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) {
    932 			size -= (IGC_READ_REG(hw, IGC_DMACR) &
    933 			    IGC_DMACR_DMACTHR_MASK) >> IGC_DMACR_DMACTHR_SHIFT;
    934 			/* Convert size to bits. */
    935 			size *= 1024 * 8;
    936 		} else {
    937 			/* Convert size to bytes, subtract the MTU, and then
    938 			 * convert the size to bits.
    939 			 */
    940 			size *= 1024;
    941 			size -= hw->dev_spec._i225.mtu;
    942 			size *= 8;
    943 		}
    944 
    945 		if (size < 0) {
    946 			DEBUGOUT1("Invalid effective Rx buffer size %d\n",
    947 			    size);
    948 			return -IGC_ERR_CONFIG;
    949 		}
    950 
    951 		/* Calculate the thresholds. Since speed is in Mbps, simplify
    952 		 * the calculation by multiplying size/speed by 1000 for result
    953 		 * to be in nsec before dividing by the scale in nsec. Set the
    954 		 * scale such that the LTR threshold fits in the register.
    955 		 */
    956 		ltr_min = (1000 * size) / speed;
    957 		ltr_max = ltr_min + tw_system;
    958 		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
    959 		    IGC_LTRMINV_SCALE_32768;
    960 		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
    961 		    IGC_LTRMAXV_SCALE_32768;
    962 		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
    963 		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
    964 
    965 		/* Only write the LTR thresholds if they differ from before. */
    966 		ltrv = IGC_READ_REG(hw, IGC_LTRMINV);
    967 		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
    968 			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
    969 			    (scale_min << IGC_LTRMINV_SCALE_SHIFT);
    970 			IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv);
    971 		}
    972 
    973 		ltrv = IGC_READ_REG(hw, IGC_LTRMAXV);
    974 		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
    975 			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
    976 			    (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
    977 			IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv);
    978 		}
    979 	}
    980 
    981 	return IGC_SUCCESS;
    982 }
    983 
    984 /* igc_check_for_link_i225 - Check for link
    985  * @hw: pointer to the HW structure
    986  *
    987  * Checks to see of the link status of the hardware has changed.  If a
    988  * change in link status has been detected, then we read the PHY registers
    989  * to get the current speed/duplex if link exists.
    990  */
    991 int
    992 igc_check_for_link_i225(struct igc_hw *hw)
    993 {
    994 	struct igc_mac_info *mac = &hw->mac;
    995 	int ret_val;
    996 	bool link = false;
    997 
    998 	DEBUGFUNC("igc_check_for_link_i225");
    999 
   1000 	/* We only want to go out to the PHY registers to see if
   1001 	 * Auto-Neg has completed and/or if our link status has
   1002 	 * changed.  The get_link_status flag is set upon receiving
   1003 	 * a Link Status Change or Rx Sequence Error interrupt.
   1004 	 */
   1005 	if (!mac->get_link_status) {
   1006 		ret_val = IGC_SUCCESS;
   1007 		goto out;
   1008 	}
   1009 
   1010 	/* First we want to see if the MII Status Register reports
   1011 	 * link.  If so, then we want to get the current speed/duplex
   1012 	 * of the PHY.
   1013 	 */
   1014 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
   1015 	if (ret_val)
   1016 		goto out;
   1017 
   1018 	if (!link)
   1019 		goto out; /* No link detected */
   1020 
   1021 	/* First we want to see if the MII Status Register reports
   1022 	 * link.  If so, then we want to get the current speed/duplex
   1023 	 * of the PHY.
   1024 	 */
   1025 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
   1026 	if (ret_val)
   1027 		goto out;
   1028 
   1029 	if (!link)
   1030 		goto out; /* No link detected */
   1031 
   1032 	mac->get_link_status = false;
   1033 
   1034 	/* Check if there was DownShift, must be checked
   1035 	 * immediately after link-up
   1036 	 */
   1037 	igc_check_downshift_generic(hw);
   1038 
   1039 	/* If we are forcing speed/duplex, then we simply return since
   1040 	 * we have already determined whether we have link or not.
   1041 	 */
   1042 	if (!mac->autoneg)
   1043 		goto out;
   1044 
   1045 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
   1046 	 * of MAC speed/duplex configuration.  So we only need to
   1047 	 * configure Collision Distance in the MAC.
   1048 	 */
   1049 	mac->ops.config_collision_dist(hw);
   1050 
   1051 	/* Configure Flow Control now that Auto-Neg has completed.
   1052 	 * First, we need to restore the desired flow control
   1053 	 * settings because we may have had to re-autoneg with a
   1054 	 * different link partner.
   1055 	 */
   1056 	ret_val = igc_config_fc_after_link_up_generic(hw);
   1057 	if (ret_val)
   1058 		DEBUGOUT("Error configuring flow control\n");
   1059 out:
   1060 	/* Now that we are aware of our link settings, we can set the LTR
   1061 	 * thresholds.
   1062 	 */
   1063 	ret_val = igc_set_ltr_i225(hw, link);
   1064 
   1065 	return ret_val;
   1066 }
   1067 
   1068 /* igc_init_function_pointers_i225 - Init func ptrs.
   1069  * @hw: pointer to the HW structure
   1070  *
   1071  * Called to initialize all function pointers and parameters.
   1072  */
   1073 void
   1074 igc_init_function_pointers_i225(struct igc_hw *hw)
   1075 {
   1076 	igc_init_mac_ops_generic(hw);
   1077 	igc_init_phy_ops_generic(hw);
   1078 	igc_init_nvm_ops_generic(hw);
   1079 	hw->mac.ops.init_params = igc_init_mac_params_i225;
   1080 	hw->nvm.ops.init_params = igc_init_nvm_params_i225;
   1081 	hw->phy.ops.init_params = igc_init_phy_params_i225;
   1082 }
   1083 
   1084 /* igc_init_hw_i225 - Init hw for I225
   1085  * @hw: pointer to the HW structure
   1086  *
   1087  * Called to initialize hw for i225 hw family.
   1088  */
   1089 int
   1090 igc_init_hw_i225(struct igc_hw *hw)
   1091 {
   1092 	int ret_val;
   1093 
   1094 	DEBUGFUNC("igc_init_hw_i225");
   1095 
   1096 	ret_val = igc_init_hw_base(hw);
   1097 	return ret_val;
   1098 }
   1099 
   1100 /**
   1101  *  igc_set_eee_i225 - Enable/disable EEE support
   1102  *  @hw: pointer to the HW structure
   1103  *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
   1104  *  @adv1G: boolean flag enabling 1G EEE advertisement
   1105  *  @adv100M: boolean flag enabling 100M EEE advertisement
   1106  *
   1107  *  Enable/disable EEE based on setting in dev_spec structure.
   1108  *
   1109  **/
   1110 int
   1111 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
   1112     bool adv100M)
   1113 {
   1114 	uint32_t ipcnfg, eeer;
   1115 
   1116 	DEBUGFUNC("igc_set_eee_i225");
   1117 
   1118 	if (hw->mac.type != igc_i225 ||
   1119 	    hw->phy.media_type != igc_media_type_copper)
   1120 		goto out;
   1121 	ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG);
   1122 	eeer = IGC_READ_REG(hw, IGC_EEER);
   1123 
   1124 	/* enable or disable per user setting */
   1125 	if (!(hw->dev_spec._i225.eee_disable)) {
   1126 		uint32_t eee_su = IGC_READ_REG(hw, IGC_EEE_SU);
   1127 
   1128 		if (adv100M)
   1129 			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
   1130 		else
   1131 			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
   1132 
   1133 		if (adv1G)
   1134 			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
   1135 		else
   1136 			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
   1137 
   1138 		if (adv2p5G)
   1139 			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
   1140 		else
   1141 			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
   1142 
   1143 		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
   1144 			IGC_EEER_LPI_FC);
   1145 
   1146 		/* This bit should not be set in normal operation. */
   1147 		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
   1148 			DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
   1149 	} else {
   1150 		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
   1151 			IGC_IPCNFG_EEE_100M_AN);
   1152 		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
   1153 			IGC_EEER_LPI_FC);
   1154 	}
   1155 	IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg);
   1156 	IGC_WRITE_REG(hw, IGC_EEER, eeer);
   1157 	IGC_READ_REG(hw, IGC_IPCNFG);
   1158 	IGC_READ_REG(hw, IGC_EEER);
   1159 out:
   1160 
   1161 	return IGC_SUCCESS;
   1162 }
   1163