igc_mac.c revision 1.1 1 1.1 rin /* $OpenBSD: igc_mac.c,v 1.1 2021/10/31 14:52:57 patrick Exp $ */
2 1.1 rin /*-
3 1.1 rin * Copyright 2021 Intel Corp
4 1.1 rin * Copyright 2021 Rubicon Communications, LLC (Netgate)
5 1.1 rin * SPDX-License-Identifier: BSD-3-Clause
6 1.1 rin */
7 1.1 rin
8 1.1 rin #include <dev/pci/igc_api.h>
9 1.1 rin
10 1.1 rin /**
11 1.1 rin * igc_init_mac_ops_generic - Initialize MAC function pointers
12 1.1 rin * @hw: pointer to the HW structure
13 1.1 rin *
14 1.1 rin * Setups up the function pointers to no-op functions
15 1.1 rin **/
16 1.1 rin void
17 1.1 rin igc_init_mac_ops_generic(struct igc_hw *hw)
18 1.1 rin {
19 1.1 rin struct igc_mac_info *mac = &hw->mac;
20 1.1 rin DEBUGFUNC("igc_init_mac_ops_generic");
21 1.1 rin
22 1.1 rin /* General Setup */
23 1.1 rin mac->ops.init_params = igc_null_ops_generic;
24 1.1 rin mac->ops.config_collision_dist = igc_config_collision_dist_generic;
25 1.1 rin mac->ops.rar_set = igc_rar_set_generic;
26 1.1 rin }
27 1.1 rin
28 1.1 rin /**
29 1.1 rin * igc_null_ops_generic - No-op function, returns 0
30 1.1 rin * @hw: pointer to the HW structure
31 1.1 rin **/
32 1.1 rin int
33 1.1 rin igc_null_ops_generic(struct igc_hw IGC_UNUSEDARG *hw)
34 1.1 rin {
35 1.1 rin DEBUGFUNC("igc_null_ops_generic");
36 1.1 rin return IGC_SUCCESS;
37 1.1 rin }
38 1.1 rin
39 1.1 rin /**
40 1.1 rin * igc_write_vfta_generic - Write value to VLAN filter table
41 1.1 rin * @hw: pointer to the HW structure
42 1.1 rin * @offset: register offset in VLAN filter table
43 1.1 rin * @value: register value written to VLAN filter table
44 1.1 rin *
45 1.1 rin * Writes value at the given offset in the register array which stores
46 1.1 rin * the VLAN filter table.
47 1.1 rin **/
48 1.1 rin void
49 1.1 rin igc_write_vfta_generic(struct igc_hw *hw, uint32_t offset, uint32_t value)
50 1.1 rin {
51 1.1 rin DEBUGFUNC("igc_write_vfta_generic");
52 1.1 rin
53 1.1 rin IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, value);
54 1.1 rin IGC_WRITE_FLUSH(hw);
55 1.1 rin }
56 1.1 rin
57 1.1 rin /**
58 1.1 rin * igc_init_rx_addrs_generic - Initialize receive address's
59 1.1 rin * @hw: pointer to the HW structure
60 1.1 rin * @rar_count: receive address registers
61 1.1 rin *
62 1.1 rin * Setup the receive address registers by setting the base receive address
63 1.1 rin * register to the devices MAC address and clearing all the other receive
64 1.1 rin * address registers to 0.
65 1.1 rin **/
66 1.1 rin void
67 1.1 rin igc_init_rx_addrs_generic(struct igc_hw *hw, uint16_t rar_count)
68 1.1 rin {
69 1.1 rin uint32_t i;
70 1.1 rin uint8_t mac_addr[ETHER_ADDR_LEN] = {0};
71 1.1 rin
72 1.1 rin DEBUGFUNC("igc_init_rx_addrs_generic");
73 1.1 rin
74 1.1 rin /* Setup the receive address */
75 1.1 rin DEBUGOUT("Programming MAC Address into RAR[0]\n");
76 1.1 rin
77 1.1 rin hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
78 1.1 rin
79 1.1 rin /* Zero out the other (rar_entry_count - 1) receive addresses */
80 1.1 rin DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
81 1.1 rin for (i = 1; i < rar_count; i++)
82 1.1 rin hw->mac.ops.rar_set(hw, mac_addr, i);
83 1.1 rin }
84 1.1 rin
85 1.1 rin /**
86 1.1 rin * igc_check_alt_mac_addr_generic - Check for alternate MAC addr
87 1.1 rin * @hw: pointer to the HW structure
88 1.1 rin *
89 1.1 rin * Checks the nvm for an alternate MAC address. An alternate MAC address
90 1.1 rin * can be setup by pre-boot software and must be treated like a permanent
91 1.1 rin * address and must override the actual permanent MAC address. If an
92 1.1 rin * alternate MAC address is found it is programmed into RAR0, replacing
93 1.1 rin * the permanent address that was installed into RAR0 by the Si on reset.
94 1.1 rin * This function will return SUCCESS unless it encounters an error while
95 1.1 rin * reading the EEPROM.
96 1.1 rin **/
97 1.1 rin int
98 1.1 rin igc_check_alt_mac_addr_generic(struct igc_hw *hw)
99 1.1 rin {
100 1.1 rin uint32_t i;
101 1.1 rin int ret_val;
102 1.1 rin uint16_t offset, nvm_alt_mac_addr_offset, nvm_data;
103 1.1 rin uint8_t alt_mac_addr[ETHER_ADDR_LEN];
104 1.1 rin
105 1.1 rin DEBUGFUNC("igc_check_alt_mac_addr_generic");
106 1.1 rin
107 1.1 rin ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
108 1.1 rin if (ret_val)
109 1.1 rin return ret_val;
110 1.1 rin
111 1.1 rin ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
112 1.1 rin &nvm_alt_mac_addr_offset);
113 1.1 rin if (ret_val) {
114 1.1 rin DEBUGOUT("NVM Read Error\n");
115 1.1 rin return ret_val;
116 1.1 rin }
117 1.1 rin
118 1.1 rin if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
119 1.1 rin (nvm_alt_mac_addr_offset == 0x0000))
120 1.1 rin /* There is no Alternate MAC Address */
121 1.1 rin return IGC_SUCCESS;
122 1.1 rin
123 1.1 rin if (hw->bus.func == IGC_FUNC_1)
124 1.1 rin nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN1;
125 1.1 rin for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
126 1.1 rin offset = nvm_alt_mac_addr_offset + (i >> 1);
127 1.1 rin ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
128 1.1 rin if (ret_val) {
129 1.1 rin DEBUGOUT("NVM Read Error\n");
130 1.1 rin return ret_val;
131 1.1 rin }
132 1.1 rin
133 1.1 rin alt_mac_addr[i] = (uint8_t)(nvm_data & 0xFF);
134 1.1 rin alt_mac_addr[i + 1] = (uint8_t)(nvm_data >> 8);
135 1.1 rin }
136 1.1 rin
137 1.1 rin /* if multicast bit is set, the alternate address will not be used */
138 1.1 rin if (alt_mac_addr[0] & 0x01) {
139 1.1 rin DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
140 1.1 rin return IGC_SUCCESS;
141 1.1 rin }
142 1.1 rin
143 1.1 rin /* We have a valid alternate MAC address, and we want to treat it the
144 1.1 rin * same as the normal permanent MAC address stored by the HW into the
145 1.1 rin * RAR. Do this by mapping this address into RAR0.
146 1.1 rin */
147 1.1 rin hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
148 1.1 rin
149 1.1 rin return IGC_SUCCESS;
150 1.1 rin }
151 1.1 rin
152 1.1 rin /**
153 1.1 rin * igc_rar_set_generic - Set receive address register
154 1.1 rin * @hw: pointer to the HW structure
155 1.1 rin * @addr: pointer to the receive address
156 1.1 rin * @index: receive address array register
157 1.1 rin *
158 1.1 rin * Sets the receive address array register at index to the address passed
159 1.1 rin * in by addr.
160 1.1 rin **/
161 1.1 rin int
162 1.1 rin igc_rar_set_generic(struct igc_hw *hw, uint8_t *addr, uint32_t index)
163 1.1 rin {
164 1.1 rin uint32_t rar_low, rar_high;
165 1.1 rin
166 1.1 rin DEBUGFUNC("igc_rar_set_generic");
167 1.1 rin
168 1.1 rin /* HW expects these in little endian so we reverse the byte order
169 1.1 rin * from network order (big endian) to little endian
170 1.1 rin */
171 1.1 rin rar_low = ((uint32_t) addr[0] | ((uint32_t) addr[1] << 8) |
172 1.1 rin ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
173 1.1 rin
174 1.1 rin rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
175 1.1 rin
176 1.1 rin /* If MAC address zero, no need to set the AV bit */
177 1.1 rin if (rar_low || rar_high)
178 1.1 rin rar_high |= IGC_RAH_AV;
179 1.1 rin
180 1.1 rin /* Some bridges will combine consecutive 32-bit writes into
181 1.1 rin * a single burst write, which will malfunction on some parts.
182 1.1 rin * The flushes avoid this.
183 1.1 rin */
184 1.1 rin IGC_WRITE_REG(hw, IGC_RAL(index), rar_low);
185 1.1 rin IGC_WRITE_FLUSH(hw);
186 1.1 rin IGC_WRITE_REG(hw, IGC_RAH(index), rar_high);
187 1.1 rin IGC_WRITE_FLUSH(hw);
188 1.1 rin
189 1.1 rin return IGC_SUCCESS;
190 1.1 rin }
191 1.1 rin
192 1.1 rin /**
193 1.1 rin * igc_hash_mc_addr_generic - Generate a multicast hash value
194 1.1 rin * @hw: pointer to the HW structure
195 1.1 rin * @mc_addr: pointer to a multicast address
196 1.1 rin *
197 1.1 rin * Generates a multicast address hash value which is used to determine
198 1.1 rin * the multicast filter table array address and new table value.
199 1.1 rin **/
200 1.1 rin int
201 1.1 rin igc_hash_mc_addr_generic(struct igc_hw *hw, uint8_t *mc_addr)
202 1.1 rin {
203 1.1 rin uint32_t hash_value, hash_mask;
204 1.1 rin uint8_t bit_shift = 0;
205 1.1 rin
206 1.1 rin DEBUGFUNC("igc_hash_mc_addr_generic");
207 1.1 rin
208 1.1 rin /* Register count multiplied by bits per register */
209 1.1 rin hash_mask = (hw->mac.mta_reg_count * 32) - 1;
210 1.1 rin
211 1.1 rin /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
212 1.1 rin * where 0xFF would still fall within the hash mask.
213 1.1 rin */
214 1.1 rin while (hash_mask >> bit_shift != 0xFF)
215 1.1 rin bit_shift++;
216 1.1 rin
217 1.1 rin /* The portion of the address that is used for the hash table
218 1.1 rin * is determined by the mc_filter_type setting.
219 1.1 rin * The algorithm is such that there is a total of 8 bits of shifting.
220 1.1 rin * The bit_shift for a mc_filter_type of 0 represents the number of
221 1.1 rin * left-shifts where the MSB of mc_addr[5] would still fall within
222 1.1 rin * the hash_mask. Case 0 does this exactly. Since there are a total
223 1.1 rin * of 8 bits of shifting, then mc_addr[4] will shift right the
224 1.1 rin * remaining number of bits. Thus 8 - bit_shift. The rest of the
225 1.1 rin * cases are a variation of this algorithm...essentially raising the
226 1.1 rin * number of bits to shift mc_addr[5] left, while still keeping the
227 1.1 rin * 8-bit shifting total.
228 1.1 rin *
229 1.1 rin * For example, given the following Destination MAC Address and an
230 1.1 rin * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
231 1.1 rin * we can see that the bit_shift for case 0 is 4. These are the hash
232 1.1 rin * values resulting from each mc_filter_type...
233 1.1 rin * [0] [1] [2] [3] [4] [5]
234 1.1 rin * 01 AA 00 12 34 56
235 1.1 rin * LSB MSB
236 1.1 rin *
237 1.1 rin * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
238 1.1 rin * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
239 1.1 rin * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
240 1.1 rin * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
241 1.1 rin */
242 1.1 rin switch (hw->mac.mc_filter_type) {
243 1.1 rin default:
244 1.1 rin case 0:
245 1.1 rin break;
246 1.1 rin case 1:
247 1.1 rin bit_shift += 1;
248 1.1 rin break;
249 1.1 rin case 2:
250 1.1 rin bit_shift += 2;
251 1.1 rin break;
252 1.1 rin case 3:
253 1.1 rin bit_shift += 4;
254 1.1 rin break;
255 1.1 rin }
256 1.1 rin
257 1.1 rin hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
258 1.1 rin (((uint16_t) mc_addr[5]) << bit_shift)));
259 1.1 rin
260 1.1 rin return hash_value;
261 1.1 rin }
262 1.1 rin
263 1.1 rin /**
264 1.1 rin * igc_update_mc_addr_list_generic - Update Multicast addresses
265 1.1 rin * @hw: pointer to the HW structure
266 1.1 rin * @mc_addr_list: array of multicast addresses to program
267 1.1 rin * @mc_addr_count: number of multicast addresses to program
268 1.1 rin *
269 1.1 rin * Updates entire Multicast Table Array.
270 1.1 rin * The caller must have a packed mc_addr_list of multicast addresses.
271 1.1 rin **/
272 1.1 rin void
273 1.1 rin igc_update_mc_addr_list_generic(struct igc_hw *hw, uint8_t *mc_addr_list,
274 1.1 rin uint32_t mc_addr_count)
275 1.1 rin {
276 1.1 rin uint32_t hash_value, hash_bit, hash_reg;
277 1.1 rin int i;
278 1.1 rin
279 1.1 rin DEBUGFUNC("igc_update_mc_addr_list_generic");
280 1.1 rin
281 1.1 rin /* clear mta_shadow */
282 1.1 rin memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
283 1.1 rin
284 1.1 rin /* update mta_shadow from mc_addr_list */
285 1.1 rin for (i = 0; (uint32_t)i < mc_addr_count; i++) {
286 1.1 rin hash_value = igc_hash_mc_addr_generic(hw, mc_addr_list);
287 1.1 rin
288 1.1 rin hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
289 1.1 rin hash_bit = hash_value & 0x1F;
290 1.1 rin
291 1.1 rin hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
292 1.1 rin mc_addr_list += (ETHER_ADDR_LEN);
293 1.1 rin }
294 1.1 rin
295 1.1 rin /* replace the entire MTA table */
296 1.1 rin for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
297 1.1 rin IGC_WRITE_REG_ARRAY(hw, IGC_MTA, i, hw->mac.mta_shadow[i]);
298 1.1 rin IGC_WRITE_FLUSH(hw);
299 1.1 rin }
300 1.1 rin
301 1.1 rin /**
302 1.1 rin * igc_clear_hw_cntrs_base_generic - Clear base hardware counters
303 1.1 rin * @hw: pointer to the HW structure
304 1.1 rin *
305 1.1 rin * Clears the base hardware counters by reading the counter registers.
306 1.1 rin **/
307 1.1 rin void
308 1.1 rin igc_clear_hw_cntrs_base_generic(struct igc_hw *hw)
309 1.1 rin {
310 1.1 rin DEBUGFUNC("igc_clear_hw_cntrs_base_generic");
311 1.1 rin
312 1.1 rin IGC_READ_REG(hw, IGC_CRCERRS);
313 1.1 rin IGC_READ_REG(hw, IGC_MPC);
314 1.1 rin IGC_READ_REG(hw, IGC_SCC);
315 1.1 rin IGC_READ_REG(hw, IGC_ECOL);
316 1.1 rin IGC_READ_REG(hw, IGC_MCC);
317 1.1 rin IGC_READ_REG(hw, IGC_LATECOL);
318 1.1 rin IGC_READ_REG(hw, IGC_COLC);
319 1.1 rin IGC_READ_REG(hw, IGC_RERC);
320 1.1 rin IGC_READ_REG(hw, IGC_DC);
321 1.1 rin IGC_READ_REG(hw, IGC_RLEC);
322 1.1 rin IGC_READ_REG(hw, IGC_XONRXC);
323 1.1 rin IGC_READ_REG(hw, IGC_XONTXC);
324 1.1 rin IGC_READ_REG(hw, IGC_XOFFRXC);
325 1.1 rin IGC_READ_REG(hw, IGC_XOFFTXC);
326 1.1 rin IGC_READ_REG(hw, IGC_FCRUC);
327 1.1 rin IGC_READ_REG(hw, IGC_GPRC);
328 1.1 rin IGC_READ_REG(hw, IGC_BPRC);
329 1.1 rin IGC_READ_REG(hw, IGC_MPRC);
330 1.1 rin IGC_READ_REG(hw, IGC_GPTC);
331 1.1 rin IGC_READ_REG(hw, IGC_GORCL);
332 1.1 rin IGC_READ_REG(hw, IGC_GORCH);
333 1.1 rin IGC_READ_REG(hw, IGC_GOTCL);
334 1.1 rin IGC_READ_REG(hw, IGC_GOTCH);
335 1.1 rin IGC_READ_REG(hw, IGC_RNBC);
336 1.1 rin IGC_READ_REG(hw, IGC_RUC);
337 1.1 rin IGC_READ_REG(hw, IGC_RFC);
338 1.1 rin IGC_READ_REG(hw, IGC_ROC);
339 1.1 rin IGC_READ_REG(hw, IGC_RJC);
340 1.1 rin IGC_READ_REG(hw, IGC_TORL);
341 1.1 rin IGC_READ_REG(hw, IGC_TORH);
342 1.1 rin IGC_READ_REG(hw, IGC_TOTL);
343 1.1 rin IGC_READ_REG(hw, IGC_TOTH);
344 1.1 rin IGC_READ_REG(hw, IGC_TPR);
345 1.1 rin IGC_READ_REG(hw, IGC_TPT);
346 1.1 rin IGC_READ_REG(hw, IGC_MPTC);
347 1.1 rin IGC_READ_REG(hw, IGC_BPTC);
348 1.1 rin IGC_READ_REG(hw, IGC_TLPIC);
349 1.1 rin IGC_READ_REG(hw, IGC_RLPIC);
350 1.1 rin IGC_READ_REG(hw, IGC_RXDMTC);
351 1.1 rin }
352 1.1 rin
353 1.1 rin /**
354 1.1 rin * igc_setup_link_generic - Setup flow control and link settings
355 1.1 rin * @hw: pointer to the HW structure
356 1.1 rin *
357 1.1 rin * Determines which flow control settings to use, then configures flow
358 1.1 rin * control. Calls the appropriate media-specific link configuration
359 1.1 rin * function. Assuming the adapter has a valid link partner, a valid link
360 1.1 rin * should be established. Assumes the hardware has previously been reset
361 1.1 rin * and the transmitter and receiver are not enabled.
362 1.1 rin **/
363 1.1 rin int
364 1.1 rin igc_setup_link_generic(struct igc_hw *hw)
365 1.1 rin {
366 1.1 rin int ret_val;
367 1.1 rin
368 1.1 rin DEBUGFUNC("igc_setup_link_generic");
369 1.1 rin
370 1.1 rin /* In the case of the phy reset being blocked, we already have a link.
371 1.1 rin * We do not need to set it up again.
372 1.1 rin */
373 1.1 rin if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
374 1.1 rin return IGC_SUCCESS;
375 1.1 rin
376 1.1 rin /* If requested flow control is set to default, set flow control
377 1.1 rin * for both 'rx' and 'tx' pause frames.
378 1.1 rin */
379 1.1 rin if (hw->fc.requested_mode == igc_fc_default) {
380 1.1 rin hw->fc.requested_mode = igc_fc_full;
381 1.1 rin }
382 1.1 rin
383 1.1 rin /* Save off the requested flow control mode for use later. Depending
384 1.1 rin * on the link partner's capabilities, we may or may not use this mode.
385 1.1 rin */
386 1.1 rin hw->fc.current_mode = hw->fc.requested_mode;
387 1.1 rin
388 1.1 rin DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
389 1.1 rin hw->fc.current_mode);
390 1.1 rin
391 1.1 rin /* Call the necessary media_type subroutine to configure the link. */
392 1.1 rin ret_val = hw->mac.ops.setup_physical_interface(hw);
393 1.1 rin if (ret_val)
394 1.1 rin return ret_val;
395 1.1 rin
396 1.1 rin /* Initialize the flow control address, type, and PAUSE timer
397 1.1 rin * registers to their default values. This is done even if flow
398 1.1 rin * control is disabled, because it does not hurt anything to
399 1.1 rin * initialize these registers.
400 1.1 rin */
401 1.1 rin IGC_WRITE_REG(hw, IGC_FCT, FLOW_CONTROL_TYPE);
402 1.1 rin IGC_WRITE_REG(hw, IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
403 1.1 rin IGC_WRITE_REG(hw, IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW);
404 1.1 rin
405 1.1 rin IGC_WRITE_REG(hw, IGC_FCTTV, hw->fc.pause_time);
406 1.1 rin
407 1.1 rin return igc_set_fc_watermarks_generic(hw);
408 1.1 rin }
409 1.1 rin
410 1.1 rin /**
411 1.1 rin * igc_config_collision_dist_generic - Configure collision distance
412 1.1 rin * @hw: pointer to the HW structure
413 1.1 rin *
414 1.1 rin * Configures the collision distance to the default value and is used
415 1.1 rin * during link setup.
416 1.1 rin **/
417 1.1 rin void
418 1.1 rin igc_config_collision_dist_generic(struct igc_hw *hw)
419 1.1 rin {
420 1.1 rin uint32_t tctl;
421 1.1 rin
422 1.1 rin DEBUGFUNC("igc_config_collision_dist_generic");
423 1.1 rin
424 1.1 rin tctl = IGC_READ_REG(hw, IGC_TCTL);
425 1.1 rin
426 1.1 rin tctl &= ~IGC_TCTL_COLD;
427 1.1 rin tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT;
428 1.1 rin
429 1.1 rin IGC_WRITE_REG(hw, IGC_TCTL, tctl);
430 1.1 rin IGC_WRITE_FLUSH(hw);
431 1.1 rin }
432 1.1 rin
433 1.1 rin /**
434 1.1 rin * igc_set_fc_watermarks_generic - Set flow control high/low watermarks
435 1.1 rin * @hw: pointer to the HW structure
436 1.1 rin *
437 1.1 rin * Sets the flow control high/low threshold (watermark) registers. If
438 1.1 rin * flow control XON frame transmission is enabled, then set XON frame
439 1.1 rin * transmission as well.
440 1.1 rin **/
441 1.1 rin int
442 1.1 rin igc_set_fc_watermarks_generic(struct igc_hw *hw)
443 1.1 rin {
444 1.1 rin uint32_t fcrtl = 0, fcrth = 0;
445 1.1 rin
446 1.1 rin DEBUGFUNC("igc_set_fc_watermarks_generic");
447 1.1 rin
448 1.1 rin /* Set the flow control receive threshold registers. Normally,
449 1.1 rin * these registers will be set to a default threshold that may be
450 1.1 rin * adjusted later by the driver's runtime code. However, if the
451 1.1 rin * ability to transmit pause frames is not enabled, then these
452 1.1 rin * registers will be set to 0.
453 1.1 rin */
454 1.1 rin if (hw->fc.current_mode & igc_fc_tx_pause) {
455 1.1 rin /* We need to set up the Receive Threshold high and low water
456 1.1 rin * marks as well as (optionally) enabling the transmission of
457 1.1 rin * XON frames.
458 1.1 rin */
459 1.1 rin fcrtl = hw->fc.low_water;
460 1.1 rin if (hw->fc.send_xon)
461 1.1 rin fcrtl |= IGC_FCRTL_XONE;
462 1.1 rin
463 1.1 rin fcrth = hw->fc.high_water;
464 1.1 rin }
465 1.1 rin IGC_WRITE_REG(hw, IGC_FCRTL, fcrtl);
466 1.1 rin IGC_WRITE_REG(hw, IGC_FCRTH, fcrth);
467 1.1 rin
468 1.1 rin return IGC_SUCCESS;
469 1.1 rin }
470 1.1 rin
471 1.1 rin /**
472 1.1 rin * igc_force_mac_fc_generic - Force the MAC's flow control settings
473 1.1 rin * @hw: pointer to the HW structure
474 1.1 rin *
475 1.1 rin * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
476 1.1 rin * device control register to reflect the adapter settings. TFCE and RFCE
477 1.1 rin * need to be explicitly set by software when a copper PHY is used because
478 1.1 rin * autonegotiation is managed by the PHY rather than the MAC. Software must
479 1.1 rin * also configure these bits when link is forced on a fiber connection.
480 1.1 rin **/
481 1.1 rin int
482 1.1 rin igc_force_mac_fc_generic(struct igc_hw *hw)
483 1.1 rin {
484 1.1 rin uint32_t ctrl;
485 1.1 rin
486 1.1 rin DEBUGFUNC("igc_force_mac_fc_generic");
487 1.1 rin
488 1.1 rin ctrl = IGC_READ_REG(hw, IGC_CTRL);
489 1.1 rin
490 1.1 rin /* Because we didn't get link via the internal auto-negotiation
491 1.1 rin * mechanism (we either forced link or we got link via PHY
492 1.1 rin * auto-neg), we have to manually enable/disable transmit an
493 1.1 rin * receive flow control.
494 1.1 rin *
495 1.1 rin * The "Case" statement below enables/disable flow control
496 1.1 rin * according to the "hw->fc.current_mode" parameter.
497 1.1 rin *
498 1.1 rin * The possible values of the "fc" parameter are:
499 1.1 rin * 0: Flow control is completely disabled
500 1.1 rin * 1: Rx flow control is enabled (we can receive pause
501 1.1 rin * frames but not send pause frames).
502 1.1 rin * 2: Tx flow control is enabled (we can send pause frames
503 1.1 rin * frames but we do not receive pause frames).
504 1.1 rin * 3: Both Rx and Tx flow control (symmetric) is enabled.
505 1.1 rin * other: No other values should be possible at this point.
506 1.1 rin */
507 1.1 rin DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
508 1.1 rin
509 1.1 rin switch (hw->fc.current_mode) {
510 1.1 rin case igc_fc_none:
511 1.1 rin ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE));
512 1.1 rin break;
513 1.1 rin case igc_fc_rx_pause:
514 1.1 rin ctrl &= (~IGC_CTRL_TFCE);
515 1.1 rin ctrl |= IGC_CTRL_RFCE;
516 1.1 rin break;
517 1.1 rin case igc_fc_tx_pause:
518 1.1 rin ctrl &= (~IGC_CTRL_RFCE);
519 1.1 rin ctrl |= IGC_CTRL_TFCE;
520 1.1 rin break;
521 1.1 rin case igc_fc_full:
522 1.1 rin ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE);
523 1.1 rin break;
524 1.1 rin default:
525 1.1 rin DEBUGOUT("Flow control param set incorrectly\n");
526 1.1 rin return -IGC_ERR_CONFIG;
527 1.1 rin }
528 1.1 rin
529 1.1 rin IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
530 1.1 rin
531 1.1 rin return IGC_SUCCESS;
532 1.1 rin }
533 1.1 rin
534 1.1 rin /**
535 1.1 rin * igc_config_fc_after_link_up_generic - Configures flow control after link
536 1.1 rin * @hw: pointer to the HW structure
537 1.1 rin *
538 1.1 rin * Checks the status of auto-negotiation after link up to ensure that the
539 1.1 rin * speed and duplex were not forced. If the link needed to be forced, then
540 1.1 rin * flow control needs to be forced also. If auto-negotiation is enabled
541 1.1 rin * and did not fail, then we configure flow control based on our link
542 1.1 rin * partner.
543 1.1 rin **/
544 1.1 rin int
545 1.1 rin igc_config_fc_after_link_up_generic(struct igc_hw *hw)
546 1.1 rin {
547 1.1 rin struct igc_mac_info *mac = &hw->mac;
548 1.1 rin uint16_t mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
549 1.1 rin uint16_t speed, duplex;
550 1.1 rin int ret_val = IGC_SUCCESS;
551 1.1 rin
552 1.1 rin DEBUGFUNC("igc_config_fc_after_link_up_generic");
553 1.1 rin
554 1.1 rin if (ret_val) {
555 1.1 rin DEBUGOUT("Error forcing flow control settings\n");
556 1.1 rin return ret_val;
557 1.1 rin }
558 1.1 rin
559 1.1 rin /* Check for the case where we have copper media and auto-neg is
560 1.1 rin * enabled. In this case, we need to check and see if Auto-Neg
561 1.1 rin * has completed, and if so, how the PHY and link partner has
562 1.1 rin * flow control configured.
563 1.1 rin */
564 1.1 rin if (mac->autoneg) {
565 1.1 rin /* Read the MII Status Register and check to see if AutoNeg
566 1.1 rin * has completed. We read this twice because this reg has
567 1.1 rin * some "sticky" (latched) bits.
568 1.1 rin */
569 1.1 rin ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
570 1.1 rin if (ret_val)
571 1.1 rin return ret_val;
572 1.1 rin ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
573 1.1 rin if (ret_val)
574 1.1 rin return ret_val;
575 1.1 rin
576 1.1 rin if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE))
577 1.1 rin return ret_val;
578 1.1 rin
579 1.1 rin /* The AutoNeg process has completed, so we now need to
580 1.1 rin * read both the Auto Negotiation Advertisement
581 1.1 rin * Register (Address 4) and the Auto_Negotiation Base
582 1.1 rin * Page Ability Register (Address 5) to determine how
583 1.1 rin * flow control was negotiated.
584 1.1 rin */
585 1.1 rin ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
586 1.1 rin &mii_nway_adv_reg);
587 1.1 rin if (ret_val)
588 1.1 rin return ret_val;
589 1.1 rin ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
590 1.1 rin &mii_nway_lp_ability_reg);
591 1.1 rin if (ret_val)
592 1.1 rin return ret_val;
593 1.1 rin
594 1.1 rin /* Two bits in the Auto Negotiation Advertisement Register
595 1.1 rin * (Address 4) and two bits in the Auto Negotiation Base
596 1.1 rin * Page Ability Register (Address 5) determine flow control
597 1.1 rin * for both the PHY and the link partner. The following
598 1.1 rin * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
599 1.1 rin * 1999, describes these PAUSE resolution bits and how flow
600 1.1 rin * control is determined based upon these settings.
601 1.1 rin * NOTE: DC = Don't Care
602 1.1 rin *
603 1.1 rin * LOCAL DEVICE | LINK PARTNER
604 1.1 rin * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
605 1.1 rin *-------|---------|-------|---------|--------------------
606 1.1 rin * 0 | 0 | DC | DC | igc_fc_none
607 1.1 rin * 0 | 1 | 0 | DC | igc_fc_none
608 1.1 rin * 0 | 1 | 1 | 0 | igc_fc_none
609 1.1 rin * 0 | 1 | 1 | 1 | igc_fc_tx_pause
610 1.1 rin * 1 | 0 | 0 | DC | igc_fc_none
611 1.1 rin * 1 | DC | 1 | DC | igc_fc_full
612 1.1 rin * 1 | 1 | 0 | 0 | igc_fc_none
613 1.1 rin * 1 | 1 | 0 | 1 | igc_fc_rx_pause
614 1.1 rin *
615 1.1 rin * Are both PAUSE bits set to 1? If so, this implies
616 1.1 rin * Symmetric Flow Control is enabled at both ends. The
617 1.1 rin * ASM_DIR bits are irrelevant per the spec.
618 1.1 rin *
619 1.1 rin * For Symmetric Flow Control:
620 1.1 rin *
621 1.1 rin * LOCAL DEVICE | LINK PARTNER
622 1.1 rin * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
623 1.1 rin *-------|---------|-------|---------|--------------------
624 1.1 rin * 1 | DC | 1 | DC | IGC_fc_full
625 1.1 rin *
626 1.1 rin */
627 1.1 rin if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
628 1.1 rin (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
629 1.1 rin /* Now we need to check if the user selected Rx ONLY
630 1.1 rin * of pause frames. In this case, we had to advertise
631 1.1 rin * FULL flow control because we could not advertise Rx
632 1.1 rin * ONLY. Hence, we must now check to see if we need to
633 1.1 rin * turn OFF the TRANSMISSION of PAUSE frames.
634 1.1 rin */
635 1.1 rin if (hw->fc.requested_mode == igc_fc_full)
636 1.1 rin hw->fc.current_mode = igc_fc_full;
637 1.1 rin else
638 1.1 rin hw->fc.current_mode = igc_fc_rx_pause;
639 1.1 rin }
640 1.1 rin /* For receiving PAUSE frames ONLY.
641 1.1 rin *
642 1.1 rin * LOCAL DEVICE | LINK PARTNER
643 1.1 rin * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
644 1.1 rin *-------|---------|-------|---------|--------------------
645 1.1 rin * 0 | 1 | 1 | 1 | igc_fc_tx_pause
646 1.1 rin */
647 1.1 rin else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
648 1.1 rin (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
649 1.1 rin (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
650 1.1 rin (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
651 1.1 rin hw->fc.current_mode = igc_fc_tx_pause;
652 1.1 rin }
653 1.1 rin /* For transmitting PAUSE frames ONLY.
654 1.1 rin *
655 1.1 rin * LOCAL DEVICE | LINK PARTNER
656 1.1 rin * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
657 1.1 rin *-------|---------|-------|---------|--------------------
658 1.1 rin * 1 | 1 | 0 | 1 | igc_fc_rx_pause
659 1.1 rin */
660 1.1 rin else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
661 1.1 rin (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
662 1.1 rin !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
663 1.1 rin (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
664 1.1 rin hw->fc.current_mode = igc_fc_rx_pause;
665 1.1 rin } else {
666 1.1 rin /* Per the IEEE spec, at this point flow control
667 1.1 rin * should be disabled.
668 1.1 rin */
669 1.1 rin hw->fc.current_mode = igc_fc_none;
670 1.1 rin DEBUGOUT("Flow Control = NONE.\n");
671 1.1 rin }
672 1.1 rin
673 1.1 rin /* Now we need to do one last check... If we auto-
674 1.1 rin * negotiated to HALF DUPLEX, flow control should not be
675 1.1 rin * enabled per IEEE 802.3 spec.
676 1.1 rin */
677 1.1 rin ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
678 1.1 rin if (ret_val) {
679 1.1 rin DEBUGOUT("Error getting link speed and duplex\n");
680 1.1 rin return ret_val;
681 1.1 rin }
682 1.1 rin
683 1.1 rin if (duplex == HALF_DUPLEX)
684 1.1 rin hw->fc.current_mode = igc_fc_none;
685 1.1 rin
686 1.1 rin /* Now we call a subroutine to actually force the MAC
687 1.1 rin * controller to use the correct flow control settings.
688 1.1 rin */
689 1.1 rin ret_val = igc_force_mac_fc_generic(hw);
690 1.1 rin if (ret_val) {
691 1.1 rin DEBUGOUT("Error forcing flow control settings\n");
692 1.1 rin return ret_val;
693 1.1 rin }
694 1.1 rin }
695 1.1 rin
696 1.1 rin return IGC_SUCCESS;
697 1.1 rin }
698 1.1 rin
699 1.1 rin /**
700 1.1 rin * igc_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
701 1.1 rin * @hw: pointer to the HW structure
702 1.1 rin * @speed: stores the current speed
703 1.1 rin * @duplex: stores the current duplex
704 1.1 rin *
705 1.1 rin * Read the status register for the current speed/duplex and store the current
706 1.1 rin * speed and duplex for copper connections.
707 1.1 rin **/
708 1.1 rin int
709 1.1 rin igc_get_speed_and_duplex_copper_generic(struct igc_hw *hw, uint16_t *speed,
710 1.1 rin uint16_t *duplex)
711 1.1 rin {
712 1.1 rin uint32_t status;
713 1.1 rin
714 1.1 rin DEBUGFUNC("igc_get_speed_and_duplex_copper_generic");
715 1.1 rin
716 1.1 rin status = IGC_READ_REG(hw, IGC_STATUS);
717 1.1 rin if (status & IGC_STATUS_SPEED_1000) {
718 1.1 rin /* For I225, STATUS will indicate 1G speed in both 1 Gbps
719 1.1 rin * and 2.5 Gbps link modes. An additional bit is used
720 1.1 rin * to differentiate between 1 Gbps and 2.5 Gbps.
721 1.1 rin */
722 1.1 rin if ((hw->mac.type == igc_i225) &&
723 1.1 rin (status & IGC_STATUS_SPEED_2500)) {
724 1.1 rin *speed = SPEED_2500;
725 1.1 rin DEBUGOUT("2500 Mbs, ");
726 1.1 rin } else {
727 1.1 rin *speed = SPEED_1000;
728 1.1 rin DEBUGOUT("1000 Mbs, ");
729 1.1 rin }
730 1.1 rin } else if (status & IGC_STATUS_SPEED_100) {
731 1.1 rin *speed = SPEED_100;
732 1.1 rin DEBUGOUT("100 Mbs, ");
733 1.1 rin } else {
734 1.1 rin *speed = SPEED_10;
735 1.1 rin DEBUGOUT("10 Mbs, ");
736 1.1 rin }
737 1.1 rin
738 1.1 rin if (status & IGC_STATUS_FD) {
739 1.1 rin *duplex = FULL_DUPLEX;
740 1.1 rin DEBUGOUT("Full Duplex\n");
741 1.1 rin } else {
742 1.1 rin *duplex = HALF_DUPLEX;
743 1.1 rin DEBUGOUT("Half Duplex\n");
744 1.1 rin }
745 1.1 rin
746 1.1 rin return IGC_SUCCESS;
747 1.1 rin }
748 1.1 rin
749 1.1 rin /**
750 1.1 rin * igc_put_hw_semaphore_generic - Release hardware semaphore
751 1.1 rin * @hw: pointer to the HW structure
752 1.1 rin *
753 1.1 rin * Release hardware semaphore used to access the PHY or NVM
754 1.1 rin **/
755 1.1 rin void
756 1.1 rin igc_put_hw_semaphore_generic(struct igc_hw *hw)
757 1.1 rin {
758 1.1 rin uint32_t swsm;
759 1.1 rin
760 1.1 rin DEBUGFUNC("igc_put_hw_semaphore_generic");
761 1.1 rin
762 1.1 rin swsm = IGC_READ_REG(hw, IGC_SWSM);
763 1.1 rin swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI);
764 1.1 rin
765 1.1 rin IGC_WRITE_REG(hw, IGC_SWSM, swsm);
766 1.1 rin }
767 1.1 rin
768 1.1 rin /**
769 1.1 rin * igc_get_auto_rd_done_generic - Check for auto read completion
770 1.1 rin * @hw: pointer to the HW structure
771 1.1 rin *
772 1.1 rin * Check EEPROM for Auto Read done bit.
773 1.1 rin **/
774 1.1 rin int
775 1.1 rin igc_get_auto_rd_done_generic(struct igc_hw *hw)
776 1.1 rin {
777 1.1 rin int i = 0;
778 1.1 rin
779 1.1 rin DEBUGFUNC("igc_get_auto_rd_done_generic");
780 1.1 rin
781 1.1 rin while (i < AUTO_READ_DONE_TIMEOUT) {
782 1.1 rin if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_AUTO_RD)
783 1.1 rin break;
784 1.1 rin msec_delay(1);
785 1.1 rin i++;
786 1.1 rin }
787 1.1 rin
788 1.1 rin if (i == AUTO_READ_DONE_TIMEOUT) {
789 1.1 rin DEBUGOUT("Auto read by HW from NVM has not completed.\n");
790 1.1 rin return -IGC_ERR_RESET;
791 1.1 rin }
792 1.1 rin
793 1.1 rin return IGC_SUCCESS;
794 1.1 rin }
795 1.1 rin
796 1.1 rin /**
797 1.1 rin * igc_disable_pcie_master_generic - Disables PCI-express master access
798 1.1 rin * @hw: pointer to the HW structure
799 1.1 rin *
800 1.1 rin * Returns IGC_SUCCESS if successful, else returns -10
801 1.1 rin * (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
802 1.1 rin * the master requests to be disabled.
803 1.1 rin *
804 1.1 rin * Disables PCI-Express master access and verifies there are no pending
805 1.1 rin * requests.
806 1.1 rin **/
807 1.1 rin int
808 1.1 rin igc_disable_pcie_master_generic(struct igc_hw *hw)
809 1.1 rin {
810 1.1 rin uint32_t ctrl;
811 1.1 rin int timeout = MASTER_DISABLE_TIMEOUT;
812 1.1 rin
813 1.1 rin DEBUGFUNC("igc_disable_pcie_master_generic");
814 1.1 rin
815 1.1 rin ctrl = IGC_READ_REG(hw, IGC_CTRL);
816 1.1 rin ctrl |= IGC_CTRL_GIO_MASTER_DISABLE;
817 1.1 rin IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
818 1.1 rin
819 1.1 rin while (timeout) {
820 1.1 rin if (!(IGC_READ_REG(hw, IGC_STATUS) &
821 1.1 rin IGC_STATUS_GIO_MASTER_ENABLE))
822 1.1 rin break;
823 1.1 rin DELAY(100);
824 1.1 rin timeout--;
825 1.1 rin }
826 1.1 rin
827 1.1 rin if (!timeout) {
828 1.1 rin DEBUGOUT("Master requests are pending.\n");
829 1.1 rin return -IGC_ERR_MASTER_REQUESTS_PENDING;
830 1.1 rin }
831 1.1 rin
832 1.1 rin return IGC_SUCCESS;
833 1.1 rin }
834