igc_mac.c revision 1.2 1 1.2 rin /* $NetBSD: igc_mac.c,v 1.2 2023/10/04 07:35:27 rin Exp $ */
2 1.1 rin /* $OpenBSD: igc_mac.c,v 1.1 2021/10/31 14:52:57 patrick Exp $ */
3 1.1 rin /*-
4 1.1 rin * Copyright 2021 Intel Corp
5 1.1 rin * Copyright 2021 Rubicon Communications, LLC (Netgate)
6 1.1 rin * SPDX-License-Identifier: BSD-3-Clause
7 1.1 rin */
8 1.1 rin
9 1.2 rin #include <sys/cdefs.h>
10 1.2 rin __KERNEL_RCSID(0, "$NetBSD: igc_mac.c,v 1.2 2023/10/04 07:35:27 rin Exp $");
11 1.2 rin
12 1.2 rin #include <dev/pci/igc/igc_api.h>
13 1.2 rin #include <dev/mii/mii.h>
14 1.1 rin
15 1.1 rin /**
16 1.1 rin * igc_init_mac_ops_generic - Initialize MAC function pointers
17 1.1 rin * @hw: pointer to the HW structure
18 1.1 rin *
19 1.1 rin * Setups up the function pointers to no-op functions
20 1.1 rin **/
21 1.1 rin void
22 1.1 rin igc_init_mac_ops_generic(struct igc_hw *hw)
23 1.1 rin {
24 1.1 rin struct igc_mac_info *mac = &hw->mac;
25 1.1 rin DEBUGFUNC("igc_init_mac_ops_generic");
26 1.1 rin
27 1.1 rin /* General Setup */
28 1.1 rin mac->ops.init_params = igc_null_ops_generic;
29 1.1 rin mac->ops.config_collision_dist = igc_config_collision_dist_generic;
30 1.1 rin mac->ops.rar_set = igc_rar_set_generic;
31 1.1 rin }
32 1.1 rin
33 1.1 rin /**
34 1.1 rin * igc_null_ops_generic - No-op function, returns 0
35 1.1 rin * @hw: pointer to the HW structure
36 1.1 rin **/
37 1.1 rin int
38 1.1 rin igc_null_ops_generic(struct igc_hw IGC_UNUSEDARG *hw)
39 1.1 rin {
40 1.1 rin DEBUGFUNC("igc_null_ops_generic");
41 1.1 rin return IGC_SUCCESS;
42 1.1 rin }
43 1.1 rin
44 1.1 rin /**
45 1.1 rin * igc_write_vfta_generic - Write value to VLAN filter table
46 1.1 rin * @hw: pointer to the HW structure
47 1.1 rin * @offset: register offset in VLAN filter table
48 1.1 rin * @value: register value written to VLAN filter table
49 1.1 rin *
50 1.1 rin * Writes value at the given offset in the register array which stores
51 1.1 rin * the VLAN filter table.
52 1.1 rin **/
53 1.1 rin void
54 1.1 rin igc_write_vfta_generic(struct igc_hw *hw, uint32_t offset, uint32_t value)
55 1.1 rin {
56 1.1 rin DEBUGFUNC("igc_write_vfta_generic");
57 1.1 rin
58 1.1 rin IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, value);
59 1.1 rin IGC_WRITE_FLUSH(hw);
60 1.1 rin }
61 1.1 rin
62 1.1 rin /**
63 1.1 rin * igc_init_rx_addrs_generic - Initialize receive address's
64 1.1 rin * @hw: pointer to the HW structure
65 1.1 rin * @rar_count: receive address registers
66 1.1 rin *
67 1.1 rin * Setup the receive address registers by setting the base receive address
68 1.1 rin * register to the devices MAC address and clearing all the other receive
69 1.1 rin * address registers to 0.
70 1.1 rin **/
71 1.1 rin void
72 1.1 rin igc_init_rx_addrs_generic(struct igc_hw *hw, uint16_t rar_count)
73 1.1 rin {
74 1.1 rin uint32_t i;
75 1.1 rin uint8_t mac_addr[ETHER_ADDR_LEN] = {0};
76 1.1 rin
77 1.1 rin DEBUGFUNC("igc_init_rx_addrs_generic");
78 1.1 rin
79 1.1 rin /* Setup the receive address */
80 1.1 rin DEBUGOUT("Programming MAC Address into RAR[0]\n");
81 1.1 rin
82 1.1 rin hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
83 1.1 rin
84 1.1 rin /* Zero out the other (rar_entry_count - 1) receive addresses */
85 1.1 rin DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
86 1.1 rin for (i = 1; i < rar_count; i++)
87 1.1 rin hw->mac.ops.rar_set(hw, mac_addr, i);
88 1.1 rin }
89 1.1 rin
90 1.1 rin /**
91 1.1 rin * igc_check_alt_mac_addr_generic - Check for alternate MAC addr
92 1.1 rin * @hw: pointer to the HW structure
93 1.1 rin *
94 1.1 rin * Checks the nvm for an alternate MAC address. An alternate MAC address
95 1.1 rin * can be setup by pre-boot software and must be treated like a permanent
96 1.1 rin * address and must override the actual permanent MAC address. If an
97 1.1 rin * alternate MAC address is found it is programmed into RAR0, replacing
98 1.1 rin * the permanent address that was installed into RAR0 by the Si on reset.
99 1.1 rin * This function will return SUCCESS unless it encounters an error while
100 1.1 rin * reading the EEPROM.
101 1.1 rin **/
102 1.1 rin int
103 1.1 rin igc_check_alt_mac_addr_generic(struct igc_hw *hw)
104 1.1 rin {
105 1.1 rin uint32_t i;
106 1.1 rin int ret_val;
107 1.1 rin uint16_t offset, nvm_alt_mac_addr_offset, nvm_data;
108 1.1 rin uint8_t alt_mac_addr[ETHER_ADDR_LEN];
109 1.1 rin
110 1.1 rin DEBUGFUNC("igc_check_alt_mac_addr_generic");
111 1.1 rin
112 1.1 rin ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
113 1.1 rin if (ret_val)
114 1.1 rin return ret_val;
115 1.1 rin
116 1.1 rin ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
117 1.1 rin &nvm_alt_mac_addr_offset);
118 1.1 rin if (ret_val) {
119 1.1 rin DEBUGOUT("NVM Read Error\n");
120 1.1 rin return ret_val;
121 1.1 rin }
122 1.1 rin
123 1.1 rin if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
124 1.1 rin (nvm_alt_mac_addr_offset == 0x0000))
125 1.1 rin /* There is no Alternate MAC Address */
126 1.1 rin return IGC_SUCCESS;
127 1.1 rin
128 1.1 rin if (hw->bus.func == IGC_FUNC_1)
129 1.1 rin nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN1;
130 1.1 rin for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
131 1.1 rin offset = nvm_alt_mac_addr_offset + (i >> 1);
132 1.1 rin ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
133 1.1 rin if (ret_val) {
134 1.1 rin DEBUGOUT("NVM Read Error\n");
135 1.1 rin return ret_val;
136 1.1 rin }
137 1.1 rin
138 1.1 rin alt_mac_addr[i] = (uint8_t)(nvm_data & 0xFF);
139 1.1 rin alt_mac_addr[i + 1] = (uint8_t)(nvm_data >> 8);
140 1.1 rin }
141 1.1 rin
142 1.1 rin /* if multicast bit is set, the alternate address will not be used */
143 1.1 rin if (alt_mac_addr[0] & 0x01) {
144 1.1 rin DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
145 1.1 rin return IGC_SUCCESS;
146 1.1 rin }
147 1.1 rin
148 1.1 rin /* We have a valid alternate MAC address, and we want to treat it the
149 1.1 rin * same as the normal permanent MAC address stored by the HW into the
150 1.1 rin * RAR. Do this by mapping this address into RAR0.
151 1.1 rin */
152 1.1 rin hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
153 1.1 rin
154 1.1 rin return IGC_SUCCESS;
155 1.1 rin }
156 1.1 rin
157 1.1 rin /**
158 1.1 rin * igc_rar_set_generic - Set receive address register
159 1.1 rin * @hw: pointer to the HW structure
160 1.1 rin * @addr: pointer to the receive address
161 1.1 rin * @index: receive address array register
162 1.1 rin *
163 1.1 rin * Sets the receive address array register at index to the address passed
164 1.1 rin * in by addr.
165 1.1 rin **/
166 1.1 rin int
167 1.1 rin igc_rar_set_generic(struct igc_hw *hw, uint8_t *addr, uint32_t index)
168 1.1 rin {
169 1.1 rin uint32_t rar_low, rar_high;
170 1.1 rin
171 1.1 rin DEBUGFUNC("igc_rar_set_generic");
172 1.1 rin
173 1.1 rin /* HW expects these in little endian so we reverse the byte order
174 1.1 rin * from network order (big endian) to little endian
175 1.1 rin */
176 1.1 rin rar_low = ((uint32_t) addr[0] | ((uint32_t) addr[1] << 8) |
177 1.1 rin ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
178 1.1 rin
179 1.1 rin rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
180 1.1 rin
181 1.1 rin /* If MAC address zero, no need to set the AV bit */
182 1.1 rin if (rar_low || rar_high)
183 1.1 rin rar_high |= IGC_RAH_AV;
184 1.1 rin
185 1.1 rin /* Some bridges will combine consecutive 32-bit writes into
186 1.1 rin * a single burst write, which will malfunction on some parts.
187 1.1 rin * The flushes avoid this.
188 1.1 rin */
189 1.1 rin IGC_WRITE_REG(hw, IGC_RAL(index), rar_low);
190 1.1 rin IGC_WRITE_FLUSH(hw);
191 1.1 rin IGC_WRITE_REG(hw, IGC_RAH(index), rar_high);
192 1.1 rin IGC_WRITE_FLUSH(hw);
193 1.1 rin
194 1.1 rin return IGC_SUCCESS;
195 1.1 rin }
196 1.1 rin
197 1.1 rin /**
198 1.1 rin * igc_hash_mc_addr_generic - Generate a multicast hash value
199 1.1 rin * @hw: pointer to the HW structure
200 1.1 rin * @mc_addr: pointer to a multicast address
201 1.1 rin *
202 1.1 rin * Generates a multicast address hash value which is used to determine
203 1.1 rin * the multicast filter table array address and new table value.
204 1.1 rin **/
205 1.1 rin int
206 1.1 rin igc_hash_mc_addr_generic(struct igc_hw *hw, uint8_t *mc_addr)
207 1.1 rin {
208 1.1 rin uint32_t hash_value, hash_mask;
209 1.1 rin uint8_t bit_shift = 0;
210 1.1 rin
211 1.1 rin DEBUGFUNC("igc_hash_mc_addr_generic");
212 1.1 rin
213 1.1 rin /* Register count multiplied by bits per register */
214 1.1 rin hash_mask = (hw->mac.mta_reg_count * 32) - 1;
215 1.1 rin
216 1.1 rin /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
217 1.1 rin * where 0xFF would still fall within the hash mask.
218 1.1 rin */
219 1.1 rin while (hash_mask >> bit_shift != 0xFF)
220 1.1 rin bit_shift++;
221 1.1 rin
222 1.1 rin /* The portion of the address that is used for the hash table
223 1.1 rin * is determined by the mc_filter_type setting.
224 1.1 rin * The algorithm is such that there is a total of 8 bits of shifting.
225 1.1 rin * The bit_shift for a mc_filter_type of 0 represents the number of
226 1.1 rin * left-shifts where the MSB of mc_addr[5] would still fall within
227 1.1 rin * the hash_mask. Case 0 does this exactly. Since there are a total
228 1.1 rin * of 8 bits of shifting, then mc_addr[4] will shift right the
229 1.1 rin * remaining number of bits. Thus 8 - bit_shift. The rest of the
230 1.1 rin * cases are a variation of this algorithm...essentially raising the
231 1.1 rin * number of bits to shift mc_addr[5] left, while still keeping the
232 1.1 rin * 8-bit shifting total.
233 1.1 rin *
234 1.1 rin * For example, given the following Destination MAC Address and an
235 1.1 rin * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
236 1.1 rin * we can see that the bit_shift for case 0 is 4. These are the hash
237 1.1 rin * values resulting from each mc_filter_type...
238 1.1 rin * [0] [1] [2] [3] [4] [5]
239 1.1 rin * 01 AA 00 12 34 56
240 1.1 rin * LSB MSB
241 1.1 rin *
242 1.1 rin * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
243 1.1 rin * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
244 1.1 rin * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
245 1.1 rin * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
246 1.1 rin */
247 1.1 rin switch (hw->mac.mc_filter_type) {
248 1.1 rin default:
249 1.1 rin case 0:
250 1.1 rin break;
251 1.1 rin case 1:
252 1.1 rin bit_shift += 1;
253 1.1 rin break;
254 1.1 rin case 2:
255 1.1 rin bit_shift += 2;
256 1.1 rin break;
257 1.1 rin case 3:
258 1.1 rin bit_shift += 4;
259 1.1 rin break;
260 1.1 rin }
261 1.1 rin
262 1.1 rin hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
263 1.1 rin (((uint16_t) mc_addr[5]) << bit_shift)));
264 1.1 rin
265 1.1 rin return hash_value;
266 1.1 rin }
267 1.1 rin
268 1.1 rin /**
269 1.1 rin * igc_update_mc_addr_list_generic - Update Multicast addresses
270 1.1 rin * @hw: pointer to the HW structure
271 1.1 rin * @mc_addr_list: array of multicast addresses to program
272 1.1 rin * @mc_addr_count: number of multicast addresses to program
273 1.1 rin *
274 1.1 rin * Updates entire Multicast Table Array.
275 1.1 rin * The caller must have a packed mc_addr_list of multicast addresses.
276 1.1 rin **/
277 1.1 rin void
278 1.1 rin igc_update_mc_addr_list_generic(struct igc_hw *hw, uint8_t *mc_addr_list,
279 1.1 rin uint32_t mc_addr_count)
280 1.1 rin {
281 1.1 rin uint32_t hash_value, hash_bit, hash_reg;
282 1.1 rin int i;
283 1.1 rin
284 1.1 rin DEBUGFUNC("igc_update_mc_addr_list_generic");
285 1.1 rin
286 1.1 rin /* clear mta_shadow */
287 1.1 rin memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
288 1.1 rin
289 1.1 rin /* update mta_shadow from mc_addr_list */
290 1.1 rin for (i = 0; (uint32_t)i < mc_addr_count; i++) {
291 1.1 rin hash_value = igc_hash_mc_addr_generic(hw, mc_addr_list);
292 1.1 rin
293 1.1 rin hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
294 1.1 rin hash_bit = hash_value & 0x1F;
295 1.1 rin
296 1.1 rin hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
297 1.1 rin mc_addr_list += (ETHER_ADDR_LEN);
298 1.1 rin }
299 1.1 rin
300 1.1 rin /* replace the entire MTA table */
301 1.1 rin for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
302 1.1 rin IGC_WRITE_REG_ARRAY(hw, IGC_MTA, i, hw->mac.mta_shadow[i]);
303 1.1 rin IGC_WRITE_FLUSH(hw);
304 1.1 rin }
305 1.1 rin
306 1.1 rin /**
307 1.1 rin * igc_clear_hw_cntrs_base_generic - Clear base hardware counters
308 1.1 rin * @hw: pointer to the HW structure
309 1.1 rin *
310 1.1 rin * Clears the base hardware counters by reading the counter registers.
311 1.1 rin **/
312 1.1 rin void
313 1.1 rin igc_clear_hw_cntrs_base_generic(struct igc_hw *hw)
314 1.1 rin {
315 1.1 rin DEBUGFUNC("igc_clear_hw_cntrs_base_generic");
316 1.1 rin
317 1.1 rin IGC_READ_REG(hw, IGC_CRCERRS);
318 1.2 rin IGC_READ_REG(hw, IGC_ALGNERRC);
319 1.1 rin IGC_READ_REG(hw, IGC_MPC);
320 1.1 rin IGC_READ_REG(hw, IGC_SCC);
321 1.1 rin IGC_READ_REG(hw, IGC_ECOL);
322 1.1 rin IGC_READ_REG(hw, IGC_MCC);
323 1.1 rin IGC_READ_REG(hw, IGC_LATECOL);
324 1.1 rin IGC_READ_REG(hw, IGC_COLC);
325 1.1 rin IGC_READ_REG(hw, IGC_RERC);
326 1.1 rin IGC_READ_REG(hw, IGC_DC);
327 1.2 rin IGC_READ_REG(hw, IGC_TNCRS);
328 1.2 rin IGC_READ_REG(hw, IGC_HTDPMC);
329 1.1 rin IGC_READ_REG(hw, IGC_RLEC);
330 1.1 rin IGC_READ_REG(hw, IGC_XONRXC);
331 1.1 rin IGC_READ_REG(hw, IGC_XONTXC);
332 1.1 rin IGC_READ_REG(hw, IGC_XOFFRXC);
333 1.1 rin IGC_READ_REG(hw, IGC_XOFFTXC);
334 1.1 rin IGC_READ_REG(hw, IGC_FCRUC);
335 1.2 rin IGC_READ_REG(hw, IGC_PRC64);
336 1.2 rin IGC_READ_REG(hw, IGC_PRC127);
337 1.2 rin IGC_READ_REG(hw, IGC_PRC255);
338 1.2 rin IGC_READ_REG(hw, IGC_PRC511);
339 1.2 rin IGC_READ_REG(hw, IGC_PRC1023);
340 1.2 rin IGC_READ_REG(hw, IGC_PRC1522);
341 1.1 rin IGC_READ_REG(hw, IGC_GPRC);
342 1.1 rin IGC_READ_REG(hw, IGC_BPRC);
343 1.1 rin IGC_READ_REG(hw, IGC_MPRC);
344 1.1 rin IGC_READ_REG(hw, IGC_GPTC);
345 1.1 rin IGC_READ_REG(hw, IGC_GORCL);
346 1.1 rin IGC_READ_REG(hw, IGC_GORCH);
347 1.1 rin IGC_READ_REG(hw, IGC_GOTCL);
348 1.1 rin IGC_READ_REG(hw, IGC_GOTCH);
349 1.1 rin IGC_READ_REG(hw, IGC_RNBC);
350 1.1 rin IGC_READ_REG(hw, IGC_RUC);
351 1.1 rin IGC_READ_REG(hw, IGC_RFC);
352 1.1 rin IGC_READ_REG(hw, IGC_ROC);
353 1.1 rin IGC_READ_REG(hw, IGC_RJC);
354 1.2 rin IGC_READ_REG(hw, IGC_MGTPRC);
355 1.2 rin IGC_READ_REG(hw, IGC_MGTPDC);
356 1.2 rin IGC_READ_REG(hw, IGC_MGTPTC);
357 1.1 rin IGC_READ_REG(hw, IGC_TORL);
358 1.1 rin IGC_READ_REG(hw, IGC_TORH);
359 1.1 rin IGC_READ_REG(hw, IGC_TOTL);
360 1.1 rin IGC_READ_REG(hw, IGC_TOTH);
361 1.1 rin IGC_READ_REG(hw, IGC_TPR);
362 1.1 rin IGC_READ_REG(hw, IGC_TPT);
363 1.2 rin IGC_READ_REG(hw, IGC_PTC64);
364 1.2 rin IGC_READ_REG(hw, IGC_PTC127);
365 1.2 rin IGC_READ_REG(hw, IGC_PTC255);
366 1.2 rin IGC_READ_REG(hw, IGC_PTC511);
367 1.2 rin IGC_READ_REG(hw, IGC_PTC1023);
368 1.2 rin IGC_READ_REG(hw, IGC_PTC1522);
369 1.1 rin IGC_READ_REG(hw, IGC_MPTC);
370 1.1 rin IGC_READ_REG(hw, IGC_BPTC);
371 1.2 rin IGC_READ_REG(hw, IGC_TSCTC);
372 1.2 rin IGC_READ_REG(hw, IGC_IAC);
373 1.2 rin IGC_READ_REG(hw, IGC_RXDMTC);
374 1.2 rin IGC_READ_REG(hw, IGC_HGORCL);
375 1.2 rin IGC_READ_REG(hw, IGC_HGORCH);
376 1.2 rin IGC_READ_REG(hw, IGC_HGOTCL);
377 1.2 rin IGC_READ_REG(hw, IGC_HGOTCH);
378 1.2 rin IGC_READ_REG(hw, IGC_LENERRS);
379 1.1 rin IGC_READ_REG(hw, IGC_TLPIC);
380 1.1 rin IGC_READ_REG(hw, IGC_RLPIC);
381 1.1 rin }
382 1.1 rin
383 1.1 rin /**
384 1.1 rin * igc_setup_link_generic - Setup flow control and link settings
385 1.1 rin * @hw: pointer to the HW structure
386 1.1 rin *
387 1.1 rin * Determines which flow control settings to use, then configures flow
388 1.1 rin * control. Calls the appropriate media-specific link configuration
389 1.1 rin * function. Assuming the adapter has a valid link partner, a valid link
390 1.1 rin * should be established. Assumes the hardware has previously been reset
391 1.1 rin * and the transmitter and receiver are not enabled.
392 1.1 rin **/
393 1.1 rin int
394 1.1 rin igc_setup_link_generic(struct igc_hw *hw)
395 1.1 rin {
396 1.1 rin int ret_val;
397 1.1 rin
398 1.1 rin DEBUGFUNC("igc_setup_link_generic");
399 1.1 rin
400 1.1 rin /* In the case of the phy reset being blocked, we already have a link.
401 1.1 rin * We do not need to set it up again.
402 1.1 rin */
403 1.1 rin if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
404 1.1 rin return IGC_SUCCESS;
405 1.1 rin
406 1.1 rin /* If requested flow control is set to default, set flow control
407 1.1 rin * for both 'rx' and 'tx' pause frames.
408 1.1 rin */
409 1.1 rin if (hw->fc.requested_mode == igc_fc_default) {
410 1.1 rin hw->fc.requested_mode = igc_fc_full;
411 1.1 rin }
412 1.1 rin
413 1.1 rin /* Save off the requested flow control mode for use later. Depending
414 1.1 rin * on the link partner's capabilities, we may or may not use this mode.
415 1.1 rin */
416 1.1 rin hw->fc.current_mode = hw->fc.requested_mode;
417 1.1 rin
418 1.1 rin DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
419 1.1 rin hw->fc.current_mode);
420 1.1 rin
421 1.1 rin /* Call the necessary media_type subroutine to configure the link. */
422 1.1 rin ret_val = hw->mac.ops.setup_physical_interface(hw);
423 1.1 rin if (ret_val)
424 1.1 rin return ret_val;
425 1.1 rin
426 1.1 rin /* Initialize the flow control address, type, and PAUSE timer
427 1.1 rin * registers to their default values. This is done even if flow
428 1.1 rin * control is disabled, because it does not hurt anything to
429 1.1 rin * initialize these registers.
430 1.1 rin */
431 1.1 rin IGC_WRITE_REG(hw, IGC_FCT, FLOW_CONTROL_TYPE);
432 1.1 rin IGC_WRITE_REG(hw, IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
433 1.1 rin IGC_WRITE_REG(hw, IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW);
434 1.1 rin
435 1.1 rin IGC_WRITE_REG(hw, IGC_FCTTV, hw->fc.pause_time);
436 1.1 rin
437 1.1 rin return igc_set_fc_watermarks_generic(hw);
438 1.1 rin }
439 1.1 rin
440 1.1 rin /**
441 1.1 rin * igc_config_collision_dist_generic - Configure collision distance
442 1.1 rin * @hw: pointer to the HW structure
443 1.1 rin *
444 1.1 rin * Configures the collision distance to the default value and is used
445 1.1 rin * during link setup.
446 1.1 rin **/
447 1.1 rin void
448 1.1 rin igc_config_collision_dist_generic(struct igc_hw *hw)
449 1.1 rin {
450 1.1 rin uint32_t tctl;
451 1.1 rin
452 1.1 rin DEBUGFUNC("igc_config_collision_dist_generic");
453 1.1 rin
454 1.1 rin tctl = IGC_READ_REG(hw, IGC_TCTL);
455 1.1 rin
456 1.1 rin tctl &= ~IGC_TCTL_COLD;
457 1.1 rin tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT;
458 1.1 rin
459 1.1 rin IGC_WRITE_REG(hw, IGC_TCTL, tctl);
460 1.1 rin IGC_WRITE_FLUSH(hw);
461 1.1 rin }
462 1.1 rin
463 1.1 rin /**
464 1.1 rin * igc_set_fc_watermarks_generic - Set flow control high/low watermarks
465 1.1 rin * @hw: pointer to the HW structure
466 1.1 rin *
467 1.1 rin * Sets the flow control high/low threshold (watermark) registers. If
468 1.1 rin * flow control XON frame transmission is enabled, then set XON frame
469 1.1 rin * transmission as well.
470 1.1 rin **/
471 1.1 rin int
472 1.1 rin igc_set_fc_watermarks_generic(struct igc_hw *hw)
473 1.1 rin {
474 1.1 rin uint32_t fcrtl = 0, fcrth = 0;
475 1.1 rin
476 1.1 rin DEBUGFUNC("igc_set_fc_watermarks_generic");
477 1.1 rin
478 1.1 rin /* Set the flow control receive threshold registers. Normally,
479 1.1 rin * these registers will be set to a default threshold that may be
480 1.1 rin * adjusted later by the driver's runtime code. However, if the
481 1.1 rin * ability to transmit pause frames is not enabled, then these
482 1.1 rin * registers will be set to 0.
483 1.1 rin */
484 1.1 rin if (hw->fc.current_mode & igc_fc_tx_pause) {
485 1.1 rin /* We need to set up the Receive Threshold high and low water
486 1.1 rin * marks as well as (optionally) enabling the transmission of
487 1.1 rin * XON frames.
488 1.1 rin */
489 1.1 rin fcrtl = hw->fc.low_water;
490 1.1 rin if (hw->fc.send_xon)
491 1.1 rin fcrtl |= IGC_FCRTL_XONE;
492 1.1 rin
493 1.1 rin fcrth = hw->fc.high_water;
494 1.1 rin }
495 1.1 rin IGC_WRITE_REG(hw, IGC_FCRTL, fcrtl);
496 1.1 rin IGC_WRITE_REG(hw, IGC_FCRTH, fcrth);
497 1.1 rin
498 1.1 rin return IGC_SUCCESS;
499 1.1 rin }
500 1.1 rin
501 1.1 rin /**
502 1.1 rin * igc_force_mac_fc_generic - Force the MAC's flow control settings
503 1.1 rin * @hw: pointer to the HW structure
504 1.1 rin *
505 1.1 rin * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
506 1.1 rin * device control register to reflect the adapter settings. TFCE and RFCE
507 1.1 rin * need to be explicitly set by software when a copper PHY is used because
508 1.1 rin * autonegotiation is managed by the PHY rather than the MAC. Software must
509 1.1 rin * also configure these bits when link is forced on a fiber connection.
510 1.1 rin **/
511 1.1 rin int
512 1.1 rin igc_force_mac_fc_generic(struct igc_hw *hw)
513 1.1 rin {
514 1.1 rin uint32_t ctrl;
515 1.1 rin
516 1.1 rin DEBUGFUNC("igc_force_mac_fc_generic");
517 1.1 rin
518 1.1 rin ctrl = IGC_READ_REG(hw, IGC_CTRL);
519 1.1 rin
520 1.1 rin /* Because we didn't get link via the internal auto-negotiation
521 1.1 rin * mechanism (we either forced link or we got link via PHY
522 1.1 rin * auto-neg), we have to manually enable/disable transmit an
523 1.1 rin * receive flow control.
524 1.1 rin *
525 1.1 rin * The "Case" statement below enables/disable flow control
526 1.1 rin * according to the "hw->fc.current_mode" parameter.
527 1.1 rin *
528 1.1 rin * The possible values of the "fc" parameter are:
529 1.1 rin * 0: Flow control is completely disabled
530 1.1 rin * 1: Rx flow control is enabled (we can receive pause
531 1.1 rin * frames but not send pause frames).
532 1.1 rin * 2: Tx flow control is enabled (we can send pause frames
533 1.1 rin * frames but we do not receive pause frames).
534 1.1 rin * 3: Both Rx and Tx flow control (symmetric) is enabled.
535 1.1 rin * other: No other values should be possible at this point.
536 1.1 rin */
537 1.1 rin DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
538 1.1 rin
539 1.1 rin switch (hw->fc.current_mode) {
540 1.1 rin case igc_fc_none:
541 1.1 rin ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE));
542 1.1 rin break;
543 1.1 rin case igc_fc_rx_pause:
544 1.1 rin ctrl &= (~IGC_CTRL_TFCE);
545 1.1 rin ctrl |= IGC_CTRL_RFCE;
546 1.1 rin break;
547 1.1 rin case igc_fc_tx_pause:
548 1.1 rin ctrl &= (~IGC_CTRL_RFCE);
549 1.1 rin ctrl |= IGC_CTRL_TFCE;
550 1.1 rin break;
551 1.1 rin case igc_fc_full:
552 1.1 rin ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE);
553 1.1 rin break;
554 1.1 rin default:
555 1.1 rin DEBUGOUT("Flow control param set incorrectly\n");
556 1.1 rin return -IGC_ERR_CONFIG;
557 1.1 rin }
558 1.1 rin
559 1.1 rin IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
560 1.1 rin
561 1.1 rin return IGC_SUCCESS;
562 1.1 rin }
563 1.1 rin
564 1.1 rin /**
565 1.1 rin * igc_config_fc_after_link_up_generic - Configures flow control after link
566 1.1 rin * @hw: pointer to the HW structure
567 1.1 rin *
568 1.1 rin * Checks the status of auto-negotiation after link up to ensure that the
569 1.1 rin * speed and duplex were not forced. If the link needed to be forced, then
570 1.1 rin * flow control needs to be forced also. If auto-negotiation is enabled
571 1.1 rin * and did not fail, then we configure flow control based on our link
572 1.1 rin * partner.
573 1.1 rin **/
574 1.1 rin int
575 1.1 rin igc_config_fc_after_link_up_generic(struct igc_hw *hw)
576 1.1 rin {
577 1.1 rin struct igc_mac_info *mac = &hw->mac;
578 1.1 rin uint16_t mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
579 1.1 rin uint16_t speed, duplex;
580 1.1 rin int ret_val = IGC_SUCCESS;
581 1.1 rin
582 1.1 rin DEBUGFUNC("igc_config_fc_after_link_up_generic");
583 1.1 rin
584 1.1 rin if (ret_val) {
585 1.1 rin DEBUGOUT("Error forcing flow control settings\n");
586 1.1 rin return ret_val;
587 1.1 rin }
588 1.1 rin
589 1.1 rin /* Check for the case where we have copper media and auto-neg is
590 1.1 rin * enabled. In this case, we need to check and see if Auto-Neg
591 1.1 rin * has completed, and if so, how the PHY and link partner has
592 1.1 rin * flow control configured.
593 1.1 rin */
594 1.1 rin if (mac->autoneg) {
595 1.1 rin /* Read the MII Status Register and check to see if AutoNeg
596 1.1 rin * has completed. We read this twice because this reg has
597 1.1 rin * some "sticky" (latched) bits.
598 1.1 rin */
599 1.2 rin ret_val = hw->phy.ops.read_reg(hw, MII_BMSR, &mii_status_reg);
600 1.1 rin if (ret_val)
601 1.1 rin return ret_val;
602 1.2 rin ret_val = hw->phy.ops.read_reg(hw, MII_BMSR, &mii_status_reg);
603 1.1 rin if (ret_val)
604 1.1 rin return ret_val;
605 1.1 rin
606 1.1 rin if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE))
607 1.1 rin return ret_val;
608 1.1 rin
609 1.1 rin /* The AutoNeg process has completed, so we now need to
610 1.1 rin * read both the Auto Negotiation Advertisement
611 1.1 rin * Register (Address 4) and the Auto_Negotiation Base
612 1.1 rin * Page Ability Register (Address 5) to determine how
613 1.1 rin * flow control was negotiated.
614 1.1 rin */
615 1.1 rin ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
616 1.1 rin &mii_nway_adv_reg);
617 1.1 rin if (ret_val)
618 1.1 rin return ret_val;
619 1.1 rin ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
620 1.1 rin &mii_nway_lp_ability_reg);
621 1.1 rin if (ret_val)
622 1.1 rin return ret_val;
623 1.1 rin
624 1.1 rin /* Two bits in the Auto Negotiation Advertisement Register
625 1.1 rin * (Address 4) and two bits in the Auto Negotiation Base
626 1.1 rin * Page Ability Register (Address 5) determine flow control
627 1.1 rin * for both the PHY and the link partner. The following
628 1.1 rin * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
629 1.1 rin * 1999, describes these PAUSE resolution bits and how flow
630 1.1 rin * control is determined based upon these settings.
631 1.1 rin * NOTE: DC = Don't Care
632 1.1 rin *
633 1.1 rin * LOCAL DEVICE | LINK PARTNER
634 1.1 rin * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
635 1.1 rin *-------|---------|-------|---------|--------------------
636 1.1 rin * 0 | 0 | DC | DC | igc_fc_none
637 1.1 rin * 0 | 1 | 0 | DC | igc_fc_none
638 1.1 rin * 0 | 1 | 1 | 0 | igc_fc_none
639 1.1 rin * 0 | 1 | 1 | 1 | igc_fc_tx_pause
640 1.1 rin * 1 | 0 | 0 | DC | igc_fc_none
641 1.1 rin * 1 | DC | 1 | DC | igc_fc_full
642 1.1 rin * 1 | 1 | 0 | 0 | igc_fc_none
643 1.1 rin * 1 | 1 | 0 | 1 | igc_fc_rx_pause
644 1.1 rin *
645 1.1 rin * Are both PAUSE bits set to 1? If so, this implies
646 1.1 rin * Symmetric Flow Control is enabled at both ends. The
647 1.1 rin * ASM_DIR bits are irrelevant per the spec.
648 1.1 rin *
649 1.1 rin * For Symmetric Flow Control:
650 1.1 rin *
651 1.1 rin * LOCAL DEVICE | LINK PARTNER
652 1.1 rin * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
653 1.1 rin *-------|---------|-------|---------|--------------------
654 1.1 rin * 1 | DC | 1 | DC | IGC_fc_full
655 1.1 rin *
656 1.1 rin */
657 1.1 rin if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
658 1.1 rin (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
659 1.1 rin /* Now we need to check if the user selected Rx ONLY
660 1.1 rin * of pause frames. In this case, we had to advertise
661 1.1 rin * FULL flow control because we could not advertise Rx
662 1.1 rin * ONLY. Hence, we must now check to see if we need to
663 1.1 rin * turn OFF the TRANSMISSION of PAUSE frames.
664 1.1 rin */
665 1.1 rin if (hw->fc.requested_mode == igc_fc_full)
666 1.1 rin hw->fc.current_mode = igc_fc_full;
667 1.1 rin else
668 1.1 rin hw->fc.current_mode = igc_fc_rx_pause;
669 1.1 rin }
670 1.1 rin /* For receiving PAUSE frames ONLY.
671 1.1 rin *
672 1.1 rin * LOCAL DEVICE | LINK PARTNER
673 1.1 rin * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
674 1.1 rin *-------|---------|-------|---------|--------------------
675 1.1 rin * 0 | 1 | 1 | 1 | igc_fc_tx_pause
676 1.1 rin */
677 1.1 rin else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
678 1.1 rin (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
679 1.1 rin (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
680 1.1 rin (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
681 1.1 rin hw->fc.current_mode = igc_fc_tx_pause;
682 1.1 rin }
683 1.1 rin /* For transmitting PAUSE frames ONLY.
684 1.1 rin *
685 1.1 rin * LOCAL DEVICE | LINK PARTNER
686 1.1 rin * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
687 1.1 rin *-------|---------|-------|---------|--------------------
688 1.1 rin * 1 | 1 | 0 | 1 | igc_fc_rx_pause
689 1.1 rin */
690 1.1 rin else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
691 1.1 rin (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
692 1.1 rin !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
693 1.1 rin (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
694 1.1 rin hw->fc.current_mode = igc_fc_rx_pause;
695 1.1 rin } else {
696 1.1 rin /* Per the IEEE spec, at this point flow control
697 1.1 rin * should be disabled.
698 1.1 rin */
699 1.1 rin hw->fc.current_mode = igc_fc_none;
700 1.1 rin DEBUGOUT("Flow Control = NONE.\n");
701 1.1 rin }
702 1.1 rin
703 1.1 rin /* Now we need to do one last check... If we auto-
704 1.1 rin * negotiated to HALF DUPLEX, flow control should not be
705 1.1 rin * enabled per IEEE 802.3 spec.
706 1.1 rin */
707 1.1 rin ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
708 1.1 rin if (ret_val) {
709 1.1 rin DEBUGOUT("Error getting link speed and duplex\n");
710 1.1 rin return ret_val;
711 1.1 rin }
712 1.1 rin
713 1.1 rin if (duplex == HALF_DUPLEX)
714 1.1 rin hw->fc.current_mode = igc_fc_none;
715 1.1 rin
716 1.1 rin /* Now we call a subroutine to actually force the MAC
717 1.1 rin * controller to use the correct flow control settings.
718 1.1 rin */
719 1.1 rin ret_val = igc_force_mac_fc_generic(hw);
720 1.1 rin if (ret_val) {
721 1.1 rin DEBUGOUT("Error forcing flow control settings\n");
722 1.1 rin return ret_val;
723 1.1 rin }
724 1.1 rin }
725 1.1 rin
726 1.1 rin return IGC_SUCCESS;
727 1.1 rin }
728 1.1 rin
729 1.1 rin /**
730 1.1 rin * igc_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
731 1.1 rin * @hw: pointer to the HW structure
732 1.1 rin * @speed: stores the current speed
733 1.1 rin * @duplex: stores the current duplex
734 1.1 rin *
735 1.1 rin * Read the status register for the current speed/duplex and store the current
736 1.1 rin * speed and duplex for copper connections.
737 1.1 rin **/
738 1.1 rin int
739 1.1 rin igc_get_speed_and_duplex_copper_generic(struct igc_hw *hw, uint16_t *speed,
740 1.1 rin uint16_t *duplex)
741 1.1 rin {
742 1.1 rin uint32_t status;
743 1.1 rin
744 1.1 rin DEBUGFUNC("igc_get_speed_and_duplex_copper_generic");
745 1.1 rin
746 1.1 rin status = IGC_READ_REG(hw, IGC_STATUS);
747 1.1 rin if (status & IGC_STATUS_SPEED_1000) {
748 1.1 rin /* For I225, STATUS will indicate 1G speed in both 1 Gbps
749 1.1 rin * and 2.5 Gbps link modes. An additional bit is used
750 1.1 rin * to differentiate between 1 Gbps and 2.5 Gbps.
751 1.1 rin */
752 1.1 rin if ((hw->mac.type == igc_i225) &&
753 1.1 rin (status & IGC_STATUS_SPEED_2500)) {
754 1.1 rin *speed = SPEED_2500;
755 1.1 rin DEBUGOUT("2500 Mbs, ");
756 1.1 rin } else {
757 1.1 rin *speed = SPEED_1000;
758 1.1 rin DEBUGOUT("1000 Mbs, ");
759 1.1 rin }
760 1.1 rin } else if (status & IGC_STATUS_SPEED_100) {
761 1.1 rin *speed = SPEED_100;
762 1.1 rin DEBUGOUT("100 Mbs, ");
763 1.1 rin } else {
764 1.1 rin *speed = SPEED_10;
765 1.1 rin DEBUGOUT("10 Mbs, ");
766 1.1 rin }
767 1.1 rin
768 1.1 rin if (status & IGC_STATUS_FD) {
769 1.1 rin *duplex = FULL_DUPLEX;
770 1.1 rin DEBUGOUT("Full Duplex\n");
771 1.1 rin } else {
772 1.1 rin *duplex = HALF_DUPLEX;
773 1.1 rin DEBUGOUT("Half Duplex\n");
774 1.1 rin }
775 1.1 rin
776 1.1 rin return IGC_SUCCESS;
777 1.1 rin }
778 1.1 rin
779 1.1 rin /**
780 1.1 rin * igc_put_hw_semaphore_generic - Release hardware semaphore
781 1.1 rin * @hw: pointer to the HW structure
782 1.1 rin *
783 1.1 rin * Release hardware semaphore used to access the PHY or NVM
784 1.1 rin **/
785 1.1 rin void
786 1.1 rin igc_put_hw_semaphore_generic(struct igc_hw *hw)
787 1.1 rin {
788 1.1 rin uint32_t swsm;
789 1.1 rin
790 1.1 rin DEBUGFUNC("igc_put_hw_semaphore_generic");
791 1.1 rin
792 1.1 rin swsm = IGC_READ_REG(hw, IGC_SWSM);
793 1.1 rin swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI);
794 1.1 rin
795 1.1 rin IGC_WRITE_REG(hw, IGC_SWSM, swsm);
796 1.1 rin }
797 1.1 rin
798 1.1 rin /**
799 1.1 rin * igc_get_auto_rd_done_generic - Check for auto read completion
800 1.1 rin * @hw: pointer to the HW structure
801 1.1 rin *
802 1.1 rin * Check EEPROM for Auto Read done bit.
803 1.1 rin **/
804 1.1 rin int
805 1.1 rin igc_get_auto_rd_done_generic(struct igc_hw *hw)
806 1.1 rin {
807 1.1 rin int i = 0;
808 1.1 rin
809 1.1 rin DEBUGFUNC("igc_get_auto_rd_done_generic");
810 1.1 rin
811 1.1 rin while (i < AUTO_READ_DONE_TIMEOUT) {
812 1.1 rin if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_AUTO_RD)
813 1.1 rin break;
814 1.1 rin msec_delay(1);
815 1.1 rin i++;
816 1.1 rin }
817 1.1 rin
818 1.1 rin if (i == AUTO_READ_DONE_TIMEOUT) {
819 1.1 rin DEBUGOUT("Auto read by HW from NVM has not completed.\n");
820 1.1 rin return -IGC_ERR_RESET;
821 1.1 rin }
822 1.1 rin
823 1.1 rin return IGC_SUCCESS;
824 1.1 rin }
825 1.1 rin
826 1.1 rin /**
827 1.1 rin * igc_disable_pcie_master_generic - Disables PCI-express master access
828 1.1 rin * @hw: pointer to the HW structure
829 1.1 rin *
830 1.1 rin * Returns IGC_SUCCESS if successful, else returns -10
831 1.1 rin * (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
832 1.1 rin * the master requests to be disabled.
833 1.1 rin *
834 1.1 rin * Disables PCI-Express master access and verifies there are no pending
835 1.1 rin * requests.
836 1.1 rin **/
837 1.1 rin int
838 1.1 rin igc_disable_pcie_master_generic(struct igc_hw *hw)
839 1.1 rin {
840 1.1 rin uint32_t ctrl;
841 1.1 rin int timeout = MASTER_DISABLE_TIMEOUT;
842 1.1 rin
843 1.1 rin DEBUGFUNC("igc_disable_pcie_master_generic");
844 1.1 rin
845 1.1 rin ctrl = IGC_READ_REG(hw, IGC_CTRL);
846 1.1 rin ctrl |= IGC_CTRL_GIO_MASTER_DISABLE;
847 1.1 rin IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
848 1.1 rin
849 1.1 rin while (timeout) {
850 1.1 rin if (!(IGC_READ_REG(hw, IGC_STATUS) &
851 1.1 rin IGC_STATUS_GIO_MASTER_ENABLE))
852 1.1 rin break;
853 1.1 rin DELAY(100);
854 1.1 rin timeout--;
855 1.1 rin }
856 1.1 rin
857 1.1 rin if (!timeout) {
858 1.1 rin DEBUGOUT("Master requests are pending.\n");
859 1.1 rin return -IGC_ERR_MASTER_REQUESTS_PENDING;
860 1.1 rin }
861 1.1 rin
862 1.1 rin return IGC_SUCCESS;
863 1.1 rin }
864