igc_phy.c revision 1.2 1 1.2 rin /* $NetBSD: igc_phy.c,v 1.2 2023/10/04 07:35:27 rin Exp $ */
2 1.1 rin /* $OpenBSD: igc_phy.c,v 1.3 2023/02/03 11:31:52 mbuhl Exp $ */
3 1.1 rin /*-
4 1.1 rin * Copyright 2021 Intel Corp
5 1.1 rin * Copyright 2021 Rubicon Communications, LLC (Netgate)
6 1.1 rin * SPDX-License-Identifier: BSD-3-Clause
7 1.1 rin */
8 1.1 rin
9 1.2 rin #include <sys/cdefs.h>
10 1.2 rin __KERNEL_RCSID(0, "$NetBSD: igc_phy.c,v 1.2 2023/10/04 07:35:27 rin Exp $");
11 1.2 rin
12 1.2 rin #include <dev/pci/igc/igc_api.h>
13 1.2 rin #include <dev/mii/mii.h>
14 1.1 rin
15 1.1 rin /**
16 1.1 rin * igc_init_phy_ops_generic - Initialize PHY function pointers
17 1.1 rin * @hw: pointer to the HW structure
18 1.1 rin *
19 1.1 rin * Setups up the function pointers to no-op functions
20 1.1 rin **/
21 1.1 rin void
22 1.1 rin igc_init_phy_ops_generic(struct igc_hw *hw)
23 1.1 rin {
24 1.1 rin struct igc_phy_info *phy = &hw->phy;
25 1.1 rin DEBUGFUNC("igc_init_phy_ops_generic");
26 1.1 rin
27 1.1 rin /* Initialize function pointers */
28 1.1 rin phy->ops.init_params = igc_null_ops_generic;
29 1.1 rin phy->ops.acquire = igc_null_ops_generic;
30 1.1 rin phy->ops.check_reset_block = igc_null_ops_generic;
31 1.1 rin phy->ops.force_speed_duplex = igc_null_ops_generic;
32 1.1 rin phy->ops.get_info = igc_null_ops_generic;
33 1.1 rin phy->ops.set_page = igc_null_set_page;
34 1.1 rin phy->ops.read_reg = igc_null_read_reg;
35 1.1 rin phy->ops.read_reg_locked = igc_null_read_reg;
36 1.1 rin phy->ops.read_reg_page = igc_null_read_reg;
37 1.1 rin phy->ops.release = igc_null_phy_generic;
38 1.1 rin phy->ops.reset = igc_null_ops_generic;
39 1.1 rin phy->ops.set_d0_lplu_state = igc_null_lplu_state;
40 1.1 rin phy->ops.set_d3_lplu_state = igc_null_lplu_state;
41 1.1 rin phy->ops.write_reg = igc_null_write_reg;
42 1.1 rin phy->ops.write_reg_locked = igc_null_write_reg;
43 1.1 rin phy->ops.write_reg_page = igc_null_write_reg;
44 1.1 rin phy->ops.power_up = igc_null_phy_generic;
45 1.1 rin phy->ops.power_down = igc_null_phy_generic;
46 1.1 rin }
47 1.1 rin
48 1.1 rin /**
49 1.1 rin * igc_null_set_page - No-op function, return 0
50 1.1 rin * @hw: pointer to the HW structure
51 1.1 rin * @data: dummy variable
52 1.1 rin **/
53 1.1 rin int
54 1.1 rin igc_null_set_page(struct igc_hw IGC_UNUSEDARG *hw, uint16_t IGC_UNUSEDARG data)
55 1.1 rin {
56 1.1 rin DEBUGFUNC("igc_null_set_page");
57 1.1 rin return IGC_SUCCESS;
58 1.1 rin }
59 1.1 rin
60 1.1 rin /**
61 1.1 rin * igc_null_read_reg - No-op function, return 0
62 1.1 rin * @hw: pointer to the HW structure
63 1.1 rin * @offset: dummy variable
64 1.1 rin * @data: dummy variable
65 1.1 rin **/
66 1.1 rin int
67 1.1 rin igc_null_read_reg(struct igc_hw IGC_UNUSEDARG *hw,
68 1.1 rin uint32_t IGC_UNUSEDARG offset, uint16_t IGC_UNUSEDARG *data)
69 1.1 rin {
70 1.1 rin DEBUGFUNC("igc_null_read_reg");
71 1.1 rin return IGC_SUCCESS;
72 1.1 rin }
73 1.1 rin
74 1.1 rin /**
75 1.1 rin * igc_null_phy_generic - No-op function, return void
76 1.1 rin * @hw: pointer to the HW structure
77 1.1 rin **/
78 1.1 rin void
79 1.1 rin igc_null_phy_generic(struct igc_hw IGC_UNUSEDARG *hw)
80 1.1 rin {
81 1.1 rin DEBUGFUNC("igc_null_phy_generic");
82 1.1 rin return;
83 1.1 rin }
84 1.1 rin
85 1.1 rin /**
86 1.1 rin * igc_null_lplu_state - No-op function, return 0
87 1.1 rin * @hw: pointer to the HW structure
88 1.1 rin * @active: dummy variable
89 1.1 rin **/
90 1.1 rin int
91 1.1 rin igc_null_lplu_state(struct igc_hw IGC_UNUSEDARG *hw, bool IGC_UNUSEDARG active)
92 1.1 rin {
93 1.1 rin DEBUGFUNC("igc_null_lplu_state");
94 1.1 rin return IGC_SUCCESS;
95 1.1 rin }
96 1.1 rin
97 1.1 rin /**
98 1.1 rin * igc_null_write_reg - No-op function, return 0
99 1.1 rin * @hw: pointer to the HW structure
100 1.1 rin * @offset: dummy variable
101 1.1 rin * @data: dummy variable
102 1.1 rin **/
103 1.1 rin int
104 1.1 rin igc_null_write_reg(struct igc_hw IGC_UNUSEDARG *hw,
105 1.1 rin uint32_t IGC_UNUSEDARG offset, uint16_t IGC_UNUSEDARG data)
106 1.1 rin {
107 1.1 rin DEBUGFUNC("igc_null_write_reg");
108 1.1 rin return IGC_SUCCESS;
109 1.1 rin }
110 1.1 rin
111 1.1 rin /**
112 1.1 rin * igc_check_reset_block_generic - Check if PHY reset is blocked
113 1.1 rin * @hw: pointer to the HW structure
114 1.1 rin *
115 1.1 rin * Read the PHY management control register and check whether a PHY reset
116 1.1 rin * is blocked. If a reset is not blocked return IGC_SUCCESS, otherwise
117 1.1 rin * return IGC_BLK_PHY_RESET (12).
118 1.1 rin **/
119 1.1 rin int
120 1.1 rin igc_check_reset_block_generic(struct igc_hw *hw)
121 1.1 rin {
122 1.1 rin uint32_t manc;
123 1.1 rin
124 1.1 rin DEBUGFUNC("igc_check_reset_block");
125 1.1 rin
126 1.1 rin manc = IGC_READ_REG(hw, IGC_MANC);
127 1.1 rin
128 1.1 rin return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
129 1.1 rin IGC_BLK_PHY_RESET : IGC_SUCCESS;
130 1.1 rin }
131 1.1 rin
132 1.1 rin /**
133 1.1 rin * igc_get_phy_id - Retrieve the PHY ID and revision
134 1.1 rin * @hw: pointer to the HW structure
135 1.1 rin *
136 1.1 rin * Reads the PHY registers and stores the PHY ID and possibly the PHY
137 1.1 rin * revision in the hardware structure.
138 1.1 rin **/
139 1.1 rin int
140 1.1 rin igc_get_phy_id(struct igc_hw *hw)
141 1.1 rin {
142 1.1 rin struct igc_phy_info *phy = &hw->phy;
143 1.1 rin uint16_t phy_id;
144 1.1 rin int ret_val = IGC_SUCCESS;
145 1.1 rin
146 1.1 rin DEBUGFUNC("igc_get_phy_id");
147 1.1 rin
148 1.1 rin if (!phy->ops.read_reg)
149 1.1 rin return IGC_SUCCESS;
150 1.1 rin
151 1.1 rin ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
152 1.1 rin if (ret_val)
153 1.1 rin return ret_val;
154 1.1 rin
155 1.1 rin phy->id = (uint32_t)(phy_id << 16);
156 1.1 rin DELAY(200);
157 1.1 rin ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
158 1.1 rin if (ret_val)
159 1.1 rin return ret_val;
160 1.1 rin
161 1.1 rin phy->id |= (uint32_t)(phy_id & PHY_REVISION_MASK);
162 1.1 rin phy->revision = (uint32_t)(phy_id & ~PHY_REVISION_MASK);
163 1.1 rin
164 1.1 rin return IGC_SUCCESS;
165 1.1 rin }
166 1.1 rin
167 1.1 rin /**
168 1.1 rin * igc_read_phy_reg_mdic - Read MDI control register
169 1.1 rin * @hw: pointer to the HW structure
170 1.1 rin * @offset: register offset to be read
171 1.1 rin * @data: pointer to the read data
172 1.1 rin *
173 1.1 rin * Reads the MDI control register in the PHY at offset and stores the
174 1.1 rin * information read to data.
175 1.1 rin **/
176 1.1 rin int
177 1.1 rin igc_read_phy_reg_mdic(struct igc_hw *hw, uint32_t offset, uint16_t *data)
178 1.1 rin {
179 1.1 rin struct igc_phy_info *phy = &hw->phy;
180 1.1 rin uint32_t i, mdic = 0;
181 1.1 rin
182 1.1 rin DEBUGFUNC("igc_read_phy_reg_mdic");
183 1.1 rin
184 1.1 rin if (offset > MAX_PHY_REG_ADDRESS) {
185 1.1 rin DEBUGOUT1("PHY Address %d is out of range\n", offset);
186 1.1 rin return -IGC_ERR_PARAM;
187 1.1 rin }
188 1.1 rin
189 1.1 rin /* Set up Op-code, Phy Address, and register offset in the MDI
190 1.1 rin * Control register. The MAC will take care of interfacing with the
191 1.1 rin * PHY to retrieve the desired data.
192 1.1 rin */
193 1.1 rin mdic = ((offset << IGC_MDIC_REG_SHIFT) |
194 1.1 rin (phy->addr << IGC_MDIC_PHY_SHIFT) | (IGC_MDIC_OP_READ));
195 1.1 rin
196 1.1 rin IGC_WRITE_REG(hw, IGC_MDIC, mdic);
197 1.1 rin
198 1.1 rin /* Poll the ready bit to see if the MDI read completed
199 1.1 rin * Increasing the time out as testing showed failures with
200 1.1 rin * the lower time out
201 1.1 rin */
202 1.1 rin for (i = 0; i < (IGC_GEN_POLL_TIMEOUT * 3); i++) {
203 1.1 rin DELAY(50);
204 1.1 rin mdic = IGC_READ_REG(hw, IGC_MDIC);
205 1.1 rin if (mdic & IGC_MDIC_READY)
206 1.1 rin break;
207 1.1 rin }
208 1.1 rin if (!(mdic & IGC_MDIC_READY)) {
209 1.1 rin DEBUGOUT("MDI Read did not complete\n");
210 1.1 rin return -IGC_ERR_PHY;
211 1.1 rin }
212 1.1 rin if (mdic & IGC_MDIC_ERROR) {
213 1.1 rin DEBUGOUT("MDI Error\n");
214 1.1 rin return -IGC_ERR_PHY;
215 1.1 rin }
216 1.1 rin if (((mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT) != offset) {
217 1.1 rin DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
218 1.1 rin offset, (mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT);
219 1.1 rin return -IGC_ERR_PHY;
220 1.1 rin }
221 1.1 rin *data = (uint16_t)mdic;
222 1.1 rin
223 1.1 rin return IGC_SUCCESS;
224 1.1 rin }
225 1.1 rin
226 1.1 rin /**
227 1.1 rin * igc_write_phy_reg_mdic - Write MDI control register
228 1.1 rin * @hw: pointer to the HW structure
229 1.1 rin * @offset: register offset to write to
230 1.1 rin * @data: data to write to register at offset
231 1.1 rin *
232 1.1 rin * Writes data to MDI control register in the PHY at offset.
233 1.1 rin **/
234 1.1 rin int
235 1.1 rin igc_write_phy_reg_mdic(struct igc_hw *hw, uint32_t offset, uint16_t data)
236 1.1 rin {
237 1.1 rin struct igc_phy_info *phy = &hw->phy;
238 1.1 rin uint32_t i, mdic = 0;
239 1.1 rin
240 1.1 rin DEBUGFUNC("igc_write_phy_reg_mdic");
241 1.1 rin
242 1.1 rin if (offset > MAX_PHY_REG_ADDRESS) {
243 1.1 rin DEBUGOUT1("PHY Address %d is out of range\n", offset);
244 1.1 rin return -IGC_ERR_PARAM;
245 1.1 rin }
246 1.1 rin
247 1.1 rin /* Set up Op-code, Phy Address, and register offset in the MDI
248 1.1 rin * Control register. The MAC will take care of interfacing with the
249 1.1 rin * PHY to retrieve the desired data.
250 1.1 rin */
251 1.1 rin mdic = (((uint32_t)data) | (offset << IGC_MDIC_REG_SHIFT) |
252 1.1 rin (phy->addr << IGC_MDIC_PHY_SHIFT) | (IGC_MDIC_OP_WRITE));
253 1.1 rin
254 1.1 rin IGC_WRITE_REG(hw, IGC_MDIC, mdic);
255 1.1 rin
256 1.1 rin /* Poll the ready bit to see if the MDI read completed
257 1.1 rin * Increasing the time out as testing showed failures with
258 1.1 rin * the lower time out
259 1.1 rin */
260 1.1 rin for (i = 0; i < (IGC_GEN_POLL_TIMEOUT * 3); i++) {
261 1.1 rin DELAY(50);
262 1.1 rin mdic = IGC_READ_REG(hw, IGC_MDIC);
263 1.1 rin if (mdic & IGC_MDIC_READY)
264 1.1 rin break;
265 1.1 rin }
266 1.1 rin if (!(mdic & IGC_MDIC_READY)) {
267 1.1 rin DEBUGOUT("MDI Write did not complete\n");
268 1.1 rin return -IGC_ERR_PHY;
269 1.1 rin }
270 1.1 rin if (mdic & IGC_MDIC_ERROR) {
271 1.1 rin DEBUGOUT("MDI Error\n");
272 1.1 rin return -IGC_ERR_PHY;
273 1.1 rin }
274 1.1 rin if (((mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT) != offset)
275 1.1 rin return -IGC_ERR_PHY;
276 1.1 rin
277 1.1 rin return IGC_SUCCESS;
278 1.1 rin }
279 1.1 rin
280 1.1 rin /**
281 1.1 rin * igc_phy_setup_autoneg - Configure PHY for auto-negotiation
282 1.1 rin * @hw: pointer to the HW structure
283 1.1 rin *
284 1.1 rin * Reads the MII auto-neg advertisement register and/or the 1000T control
285 1.1 rin * register and if the PHY is already setup for auto-negotiation, then
286 1.1 rin * return successful. Otherwise, setup advertisement and flow control to
287 1.1 rin * the appropriate values for the wanted auto-negotiation.
288 1.1 rin **/
289 1.2 rin static int
290 1.1 rin igc_phy_setup_autoneg(struct igc_hw *hw)
291 1.1 rin {
292 1.1 rin struct igc_phy_info *phy = &hw->phy;
293 1.1 rin uint16_t mii_autoneg_adv_reg;
294 1.1 rin uint16_t mii_1000t_ctrl_reg = 0;
295 1.1 rin uint16_t aneg_multigbt_an_ctrl = 0;
296 1.1 rin int ret_val;
297 1.1 rin
298 1.1 rin DEBUGFUNC("igc_phy_setup_autoneg");
299 1.1 rin
300 1.1 rin phy->autoneg_advertised &= phy->autoneg_mask;
301 1.1 rin
302 1.1 rin /* Read the MII Auto-Neg Advertisement Register (Address 4). */
303 1.1 rin ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
304 1.1 rin if (ret_val)
305 1.1 rin return ret_val;
306 1.1 rin
307 1.1 rin if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
308 1.1 rin /* Read the MII 1000Base-T Control Register (Address 9). */
309 1.1 rin ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
310 1.1 rin &mii_1000t_ctrl_reg);
311 1.1 rin if (ret_val)
312 1.1 rin return ret_val;
313 1.1 rin }
314 1.1 rin
315 1.1 rin if (phy->autoneg_mask & ADVERTISE_2500_FULL) {
316 1.1 rin /* Read the MULTI GBT AN Control Register - reg 7.32 */
317 1.1 rin ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
318 1.1 rin MMD_DEVADDR_SHIFT) | ANEG_MULTIGBT_AN_CTRL,
319 1.1 rin &aneg_multigbt_an_ctrl);
320 1.1 rin if (ret_val)
321 1.1 rin return ret_val;
322 1.1 rin }
323 1.1 rin
324 1.1 rin /* Need to parse both autoneg_advertised and fc and set up
325 1.1 rin * the appropriate PHY registers. First we will parse for
326 1.1 rin * autoneg_advertised software override. Since we can advertise
327 1.1 rin * a plethora of combinations, we need to check each bit
328 1.1 rin * individually.
329 1.1 rin */
330 1.1 rin
331 1.1 rin /* First we clear all the 10/100 mb speed bits in the Auto-Neg
332 1.1 rin * Advertisement Register (Address 4) and the 1000 mb speed bits in
333 1.1 rin * the 1000Base-T Control Register (Address 9).
334 1.1 rin */
335 1.1 rin mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | NWAY_AR_100TX_HD_CAPS |
336 1.1 rin NWAY_AR_10T_FD_CAPS | NWAY_AR_10T_HD_CAPS);
337 1.1 rin mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
338 1.1 rin
339 1.1 rin DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
340 1.1 rin
341 1.1 rin /* Do we want to advertise 10 Mb Half Duplex? */
342 1.1 rin if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
343 1.1 rin DEBUGOUT("Advertise 10mb Half duplex\n");
344 1.1 rin mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
345 1.1 rin }
346 1.1 rin
347 1.1 rin /* Do we want to advertise 10 Mb Full Duplex? */
348 1.1 rin if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
349 1.1 rin DEBUGOUT("Advertise 10mb Full duplex\n");
350 1.1 rin mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
351 1.1 rin }
352 1.1 rin
353 1.1 rin /* Do we want to advertise 100 Mb Half Duplex? */
354 1.1 rin if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
355 1.1 rin DEBUGOUT("Advertise 100mb Half duplex\n");
356 1.1 rin mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
357 1.1 rin }
358 1.1 rin
359 1.1 rin /* Do we want to advertise 100 Mb Full Duplex? */
360 1.1 rin if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
361 1.1 rin DEBUGOUT("Advertise 100mb Full duplex\n");
362 1.1 rin mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
363 1.1 rin }
364 1.1 rin
365 1.1 rin /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
366 1.1 rin if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
367 1.1 rin DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
368 1.1 rin
369 1.1 rin /* Do we want to advertise 1000 Mb Full Duplex? */
370 1.1 rin if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
371 1.1 rin DEBUGOUT("Advertise 1000mb Full duplex\n");
372 1.1 rin mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
373 1.1 rin }
374 1.1 rin
375 1.1 rin /* We do not allow the Phy to advertise 2500 Mb Half Duplex */
376 1.1 rin if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
377 1.1 rin DEBUGOUT("Advertise 2500mb Half duplex request denied!\n");
378 1.1 rin
379 1.1 rin /* Do we want to advertise 2500 Mb Full Duplex? */
380 1.1 rin if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
381 1.1 rin DEBUGOUT("Advertise 2500mb Full duplex\n");
382 1.1 rin aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
383 1.1 rin } else
384 1.1 rin aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
385 1.1 rin
386 1.1 rin /* Check for a software override of the flow control settings, and
387 1.1 rin * setup the PHY advertisement registers accordingly. If
388 1.1 rin * auto-negotiation is enabled, then software will have to set the
389 1.1 rin * "PAUSE" bits to the correct value in the Auto-Negotiation
390 1.1 rin * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
391 1.1 rin * negotiation.
392 1.1 rin *
393 1.1 rin * The possible values of the "fc" parameter are:
394 1.1 rin * 0: Flow control is completely disabled
395 1.1 rin * 1: Rx flow control is enabled (we can receive pause frames
396 1.1 rin * but not send pause frames).
397 1.1 rin * 2: Tx flow control is enabled (we can send pause frames
398 1.1 rin * but we do not support receiving pause frames).
399 1.1 rin * 3: Both Rx and Tx flow control (symmetric) are enabled.
400 1.1 rin * other: No software override. The flow control configuration
401 1.1 rin * in the EEPROM is used.
402 1.1 rin */
403 1.1 rin switch (hw->fc.current_mode) {
404 1.1 rin case igc_fc_none:
405 1.1 rin /* Flow control (Rx & Tx) is completely disabled by a
406 1.1 rin * software over-ride.
407 1.1 rin */
408 1.1 rin mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
409 1.1 rin break;
410 1.1 rin case igc_fc_rx_pause:
411 1.1 rin /* Rx Flow control is enabled, and Tx Flow control is
412 1.1 rin * disabled, by a software over-ride.
413 1.1 rin *
414 1.1 rin * Since there really isn't a way to advertise that we are
415 1.1 rin * capable of Rx Pause ONLY, we will advertise that we
416 1.1 rin * support both symmetric and asymmetric Rx PAUSE. Later
417 1.1 rin * (in igc_config_fc_after_link_up) we will disable the
418 1.1 rin * hw's ability to send PAUSE frames.
419 1.1 rin */
420 1.1 rin mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
421 1.1 rin break;
422 1.1 rin case igc_fc_tx_pause:
423 1.1 rin /* Tx Flow control is enabled, and Rx Flow control is
424 1.1 rin * disabled, by a software over-ride.
425 1.1 rin */
426 1.1 rin mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
427 1.1 rin mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
428 1.1 rin break;
429 1.1 rin case igc_fc_full:
430 1.1 rin /* Flow control (both Rx and Tx) is enabled by a software
431 1.1 rin * over-ride.
432 1.1 rin */
433 1.1 rin mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
434 1.1 rin break;
435 1.1 rin default:
436 1.1 rin DEBUGOUT("Flow control param set incorrectly\n");
437 1.1 rin return -IGC_ERR_CONFIG;
438 1.1 rin }
439 1.1 rin
440 1.1 rin ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
441 1.1 rin if (ret_val)
442 1.1 rin return ret_val;
443 1.1 rin
444 1.1 rin DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
445 1.1 rin
446 1.1 rin if (phy->autoneg_mask & ADVERTISE_1000_FULL)
447 1.1 rin ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
448 1.1 rin mii_1000t_ctrl_reg);
449 1.1 rin
450 1.1 rin if (phy->autoneg_mask & ADVERTISE_2500_FULL)
451 1.1 rin ret_val = phy->ops.write_reg(hw,
452 1.1 rin (STANDARD_AN_REG_MASK << MMD_DEVADDR_SHIFT) |
453 1.1 rin ANEG_MULTIGBT_AN_CTRL, aneg_multigbt_an_ctrl);
454 1.1 rin
455 1.1 rin return ret_val;
456 1.1 rin }
457 1.1 rin
458 1.1 rin /**
459 1.1 rin * igc_copper_link_autoneg - Setup/Enable autoneg for copper link
460 1.1 rin * @hw: pointer to the HW structure
461 1.1 rin *
462 1.1 rin * Performs initial bounds checking on autoneg advertisement parameter, then
463 1.1 rin * configure to advertise the full capability. Setup the PHY to autoneg
464 1.1 rin * and restart the negotiation process between the link partner. If
465 1.1 rin * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
466 1.1 rin **/
467 1.2 rin static int
468 1.1 rin igc_copper_link_autoneg(struct igc_hw *hw)
469 1.1 rin {
470 1.1 rin struct igc_phy_info *phy = &hw->phy;
471 1.1 rin uint16_t phy_ctrl;
472 1.1 rin int ret_val;
473 1.1 rin
474 1.1 rin DEBUGFUNC("igc_copper_link_autoneg");
475 1.1 rin
476 1.1 rin /* Perform some bounds checking on the autoneg advertisement
477 1.1 rin * parameter.
478 1.1 rin */
479 1.1 rin phy->autoneg_advertised &= phy->autoneg_mask;
480 1.1 rin
481 1.1 rin /* If autoneg_advertised is zero, we assume it was not defaulted
482 1.1 rin * by the calling code so we set to advertise full capability.
483 1.1 rin */
484 1.1 rin if (!phy->autoneg_advertised)
485 1.1 rin phy->autoneg_advertised = phy->autoneg_mask;
486 1.1 rin
487 1.1 rin DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
488 1.1 rin ret_val = igc_phy_setup_autoneg(hw);
489 1.1 rin if (ret_val) {
490 1.1 rin DEBUGOUT("Error Setting up Auto-Negotiation\n");
491 1.1 rin return ret_val;
492 1.1 rin }
493 1.1 rin DEBUGOUT("Restarting Auto-Neg\n");
494 1.1 rin
495 1.1 rin /* Restart auto-negotiation by setting the Auto Neg Enable bit and
496 1.1 rin * the Auto Neg Restart bit in the PHY control register.
497 1.1 rin */
498 1.1 rin ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
499 1.1 rin if (ret_val)
500 1.1 rin return ret_val;
501 1.1 rin
502 1.1 rin phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
503 1.1 rin ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
504 1.1 rin if (ret_val)
505 1.1 rin return ret_val;
506 1.1 rin
507 1.1 rin /* Does the user want to wait for Auto-Neg to complete here, or
508 1.1 rin * check at a later time (for example, callback routine).
509 1.1 rin */
510 1.1 rin if (phy->autoneg_wait_to_complete) {
511 1.1 rin ret_val = igc_wait_autoneg(hw);
512 1.1 rin if (ret_val)
513 1.1 rin return ret_val;
514 1.1 rin }
515 1.1 rin
516 1.1 rin hw->mac.get_link_status = true;
517 1.1 rin
518 1.1 rin return ret_val;
519 1.1 rin }
520 1.1 rin
521 1.1 rin /**
522 1.1 rin * igc_setup_copper_link_generic - Configure copper link settings
523 1.1 rin * @hw: pointer to the HW structure
524 1.1 rin *
525 1.1 rin * Calls the appropriate function to configure the link for auto-neg or forced
526 1.1 rin * speed and duplex. Then we check for link, once link is established calls
527 1.1 rin * to configure collision distance and flow control are called. If link is
528 1.1 rin * not established, we return -IGC_ERR_PHY (-2).
529 1.1 rin **/
530 1.1 rin int
531 1.1 rin igc_setup_copper_link_generic(struct igc_hw *hw)
532 1.1 rin {
533 1.1 rin int ret_val;
534 1.1 rin bool link;
535 1.1 rin
536 1.1 rin DEBUGFUNC("igc_setup_copper_link_generic");
537 1.1 rin
538 1.1 rin if (hw->mac.autoneg) {
539 1.1 rin /* Setup autoneg and flow control advertisement and perform
540 1.1 rin * autonegotiation.
541 1.1 rin */
542 1.1 rin ret_val = igc_copper_link_autoneg(hw);
543 1.1 rin if (ret_val)
544 1.1 rin return ret_val;
545 1.1 rin } else {
546 1.1 rin /* PHY will be set to 10H, 10F, 100H or 100F
547 1.1 rin * depending on user settings.
548 1.1 rin */
549 1.1 rin DEBUGOUT("Forcing Speed and Duplex\n");
550 1.1 rin ret_val = hw->phy.ops.force_speed_duplex(hw);
551 1.1 rin if (ret_val) {
552 1.1 rin DEBUGOUT("Error Forcing Speed and Duplex\n");
553 1.1 rin return ret_val;
554 1.1 rin }
555 1.1 rin }
556 1.1 rin
557 1.1 rin /* Check link status. Wait up to 100 microseconds for link to become
558 1.1 rin * valid.
559 1.1 rin */
560 1.1 rin ret_val = igc_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
561 1.1 rin &link);
562 1.1 rin if (ret_val)
563 1.1 rin return ret_val;
564 1.1 rin
565 1.1 rin if (link) {
566 1.1 rin DEBUGOUT("Valid link established!!!\n");
567 1.1 rin hw->mac.ops.config_collision_dist(hw);
568 1.1 rin ret_val = igc_config_fc_after_link_up_generic(hw);
569 1.1 rin } else
570 1.1 rin DEBUGOUT("Unable to establish link!!!\n");
571 1.1 rin
572 1.1 rin return ret_val;
573 1.1 rin }
574 1.1 rin
575 1.1 rin /**
576 1.1 rin * igc_check_downshift_generic - Checks whether a downshift in speed occurred
577 1.1 rin * @hw: pointer to the HW structure
578 1.1 rin *
579 1.1 rin * Success returns 0, Failure returns 1
580 1.1 rin *
581 1.1 rin * A downshift is detected by querying the PHY link health.
582 1.1 rin **/
583 1.1 rin int
584 1.1 rin igc_check_downshift_generic(struct igc_hw *hw)
585 1.1 rin {
586 1.1 rin struct igc_phy_info *phy = &hw->phy;
587 1.1 rin int ret_val;
588 1.1 rin
589 1.1 rin DEBUGFUNC("igc_check_downshift_generic");
590 1.1 rin
591 1.1 rin switch (phy->type) {
592 1.1 rin case igc_phy_i225:
593 1.1 rin default:
594 1.1 rin /* speed downshift not supported */
595 1.1 rin phy->speed_downgraded = false;
596 1.1 rin return IGC_SUCCESS;
597 1.1 rin }
598 1.1 rin
599 1.1 rin return ret_val;
600 1.1 rin }
601 1.1 rin
602 1.1 rin /**
603 1.1 rin * igc_wait_autoneg - Wait for auto-neg completion
604 1.1 rin * @hw: pointer to the HW structure
605 1.1 rin *
606 1.1 rin * Waits for auto-negotiation to complete or for the auto-negotiation time
607 1.1 rin * limit to expire, which ever happens first.
608 1.1 rin **/
609 1.1 rin int
610 1.1 rin igc_wait_autoneg(struct igc_hw *hw)
611 1.1 rin {
612 1.1 rin uint16_t i, phy_status;
613 1.1 rin int ret_val = IGC_SUCCESS;
614 1.1 rin
615 1.1 rin DEBUGFUNC("igc_wait_autoneg");
616 1.1 rin
617 1.1 rin if (!hw->phy.ops.read_reg)
618 1.1 rin return IGC_SUCCESS;
619 1.1 rin
620 1.1 rin /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
621 1.1 rin for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
622 1.2 rin ret_val = hw->phy.ops.read_reg(hw, MII_BMSR, &phy_status);
623 1.1 rin if (ret_val)
624 1.1 rin break;
625 1.2 rin ret_val = hw->phy.ops.read_reg(hw, MII_BMSR, &phy_status);
626 1.1 rin if (ret_val)
627 1.1 rin break;
628 1.1 rin if (phy_status & MII_SR_AUTONEG_COMPLETE)
629 1.1 rin break;
630 1.1 rin msec_delay(100);
631 1.1 rin }
632 1.1 rin
633 1.1 rin /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
634 1.1 rin * has completed.
635 1.1 rin */
636 1.1 rin return ret_val;
637 1.1 rin }
638 1.1 rin
639 1.1 rin /**
640 1.1 rin * igc_phy_has_link_generic - Polls PHY for link
641 1.1 rin * @hw: pointer to the HW structure
642 1.1 rin * @iterations: number of times to poll for link
643 1.1 rin * @usec_interval: delay between polling attempts
644 1.1 rin * @success: pointer to whether polling was successful or not
645 1.1 rin *
646 1.1 rin * Polls the PHY status register for link, 'iterations' number of times.
647 1.1 rin **/
648 1.1 rin int
649 1.1 rin igc_phy_has_link_generic(struct igc_hw *hw, uint32_t iterations,
650 1.1 rin uint32_t usec_interval, bool *success)
651 1.1 rin {
652 1.1 rin uint16_t i, phy_status;
653 1.1 rin int ret_val = IGC_SUCCESS;
654 1.1 rin
655 1.1 rin DEBUGFUNC("igc_phy_has_link_generic");
656 1.1 rin
657 1.1 rin if (!hw->phy.ops.read_reg)
658 1.1 rin return IGC_SUCCESS;
659 1.1 rin
660 1.1 rin for (i = 0; i < iterations; i++) {
661 1.2 rin /* Some PHYs require the MII_BMSR register to be read
662 1.1 rin * twice due to the link bit being sticky. No harm doing
663 1.1 rin * it across the board.
664 1.1 rin */
665 1.2 rin ret_val = hw->phy.ops.read_reg(hw, MII_BMSR, &phy_status);
666 1.1 rin if (ret_val) {
667 1.1 rin /* If the first read fails, another entity may have
668 1.1 rin * ownership of the resources, wait and try again to
669 1.1 rin * see if they have relinquished the resources yet.
670 1.1 rin */
671 1.1 rin if (usec_interval >= 1000)
672 1.1 rin msec_delay(usec_interval/1000);
673 1.1 rin else
674 1.1 rin DELAY(usec_interval);
675 1.1 rin }
676 1.2 rin ret_val = hw->phy.ops.read_reg(hw, MII_BMSR, &phy_status);
677 1.1 rin if (ret_val)
678 1.1 rin break;
679 1.1 rin if (phy_status & MII_SR_LINK_STATUS)
680 1.1 rin break;
681 1.1 rin if (usec_interval >= 1000)
682 1.1 rin msec_delay(usec_interval/1000);
683 1.1 rin else
684 1.1 rin DELAY(usec_interval);
685 1.1 rin }
686 1.1 rin
687 1.1 rin *success = (i < iterations);
688 1.1 rin
689 1.1 rin return ret_val;
690 1.1 rin }
691 1.1 rin
692 1.1 rin /**
693 1.1 rin * igc_phy_hw_reset_generic - PHY hardware reset
694 1.1 rin * @hw: pointer to the HW structure
695 1.1 rin *
696 1.1 rin * Verify the reset block is not blocking us from resetting. Acquire
697 1.1 rin * semaphore (if necessary) and read/set/write the device control reset
698 1.1 rin * bit in the PHY. Wait the appropriate delay time for the device to
699 1.1 rin * reset and release the semaphore (if necessary).
700 1.1 rin **/
701 1.1 rin int
702 1.1 rin igc_phy_hw_reset_generic(struct igc_hw *hw)
703 1.1 rin {
704 1.1 rin struct igc_phy_info *phy = &hw->phy;
705 1.1 rin uint32_t ctrl, timeout = 10000, phpm = 0;
706 1.1 rin int ret_val;
707 1.1 rin
708 1.1 rin DEBUGFUNC("igc_phy_hw_reset_generic");
709 1.1 rin
710 1.1 rin if (phy->ops.check_reset_block) {
711 1.1 rin ret_val = phy->ops.check_reset_block(hw);
712 1.1 rin if (ret_val)
713 1.1 rin return IGC_SUCCESS;
714 1.1 rin }
715 1.1 rin
716 1.1 rin ret_val = phy->ops.acquire(hw);
717 1.1 rin if (ret_val)
718 1.1 rin return ret_val;
719 1.1 rin
720 1.1 rin phpm = IGC_READ_REG(hw, IGC_I225_PHPM);
721 1.1 rin
722 1.1 rin ctrl = IGC_READ_REG(hw, IGC_CTRL);
723 1.1 rin IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
724 1.1 rin IGC_WRITE_FLUSH(hw);
725 1.1 rin
726 1.1 rin DELAY(phy->reset_delay_us);
727 1.1 rin
728 1.1 rin IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
729 1.1 rin IGC_WRITE_FLUSH(hw);
730 1.1 rin
731 1.1 rin DELAY(150);
732 1.1 rin
733 1.1 rin do {
734 1.1 rin phpm = IGC_READ_REG(hw, IGC_I225_PHPM);
735 1.1 rin timeout--;
736 1.1 rin DELAY(1);
737 1.1 rin } while (!(phpm & IGC_I225_PHPM_RST_COMPL) && timeout);
738 1.1 rin
739 1.1 rin if (!timeout)
740 1.1 rin DEBUGOUT("Timeout expired after a phy reset\n");
741 1.1 rin
742 1.1 rin phy->ops.release(hw);
743 1.1 rin
744 1.1 rin return ret_val;
745 1.1 rin }
746 1.1 rin
747 1.1 rin /**
748 1.1 rin * igc_power_up_phy_copper - Restore copper link in case of PHY power down
749 1.1 rin * @hw: pointer to the HW structure
750 1.1 rin *
751 1.1 rin * In the case of a PHY power down to save power, or to turn off link during a
752 1.1 rin * driver unload, or wake on lan is not enabled, restore the link to previous
753 1.1 rin * settings.
754 1.1 rin **/
755 1.1 rin void
756 1.1 rin igc_power_up_phy_copper(struct igc_hw *hw)
757 1.1 rin {
758 1.1 rin uint16_t mii_reg = 0;
759 1.1 rin
760 1.1 rin /* The PHY will retain its settings across a power down/up cycle */
761 1.1 rin hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
762 1.1 rin mii_reg &= ~MII_CR_POWER_DOWN;
763 1.1 rin hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
764 1.1 rin DELAY(300);
765 1.1 rin }
766 1.1 rin
767 1.1 rin /**
768 1.1 rin * igc_power_down_phy_copper - Restore copper link in case of PHY power down
769 1.1 rin * @hw: pointer to the HW structure
770 1.1 rin *
771 1.1 rin * In the case of a PHY power down to save power, or to turn off link during a
772 1.1 rin * driver unload, or wake on lan is not enabled, restore the link to previous
773 1.1 rin * settings.
774 1.1 rin **/
775 1.1 rin void
776 1.1 rin igc_power_down_phy_copper(struct igc_hw *hw)
777 1.1 rin {
778 1.1 rin uint16_t mii_reg = 0;
779 1.1 rin
780 1.1 rin /* The PHY will retain its settings across a power down/up cycle */
781 1.1 rin hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
782 1.1 rin mii_reg |= MII_CR_POWER_DOWN;
783 1.1 rin hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
784 1.1 rin msec_delay(1);
785 1.1 rin }
786 1.1 rin
787 1.1 rin /**
788 1.1 rin * igc_write_phy_reg_gpy - Write GPY PHY register
789 1.1 rin * @hw: pointer to the HW structure
790 1.1 rin * @offset: register offset to write to
791 1.1 rin * @data: data to write at register offset
792 1.1 rin *
793 1.1 rin * Acquires semaphore, if necessary, then writes the data to PHY register
794 1.1 rin * at the offset. Release any acquired semaphores before exiting.
795 1.1 rin **/
796 1.1 rin int
797 1.1 rin igc_write_phy_reg_gpy(struct igc_hw *hw, uint32_t offset, uint16_t data)
798 1.1 rin {
799 1.1 rin uint8_t dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
800 1.1 rin int ret_val;
801 1.1 rin
802 1.1 rin DEBUGFUNC("igc_write_phy_reg_gpy");
803 1.1 rin
804 1.1 rin offset = offset & GPY_REG_MASK;
805 1.1 rin
806 1.1 rin if (!dev_addr) {
807 1.1 rin ret_val = hw->phy.ops.acquire(hw);
808 1.1 rin if (ret_val)
809 1.1 rin return ret_val;
810 1.1 rin ret_val = igc_write_phy_reg_mdic(hw, offset, data);
811 1.1 rin if (ret_val)
812 1.1 rin return ret_val;
813 1.1 rin hw->phy.ops.release(hw);
814 1.1 rin } else {
815 1.1 rin ret_val = igc_write_xmdio_reg(hw, (uint16_t)offset, dev_addr,
816 1.1 rin data);
817 1.1 rin }
818 1.1 rin
819 1.1 rin return ret_val;
820 1.1 rin }
821 1.1 rin
822 1.1 rin /**
823 1.1 rin * igc_read_phy_reg_gpy - Read GPY PHY register
824 1.1 rin * @hw: pointer to the HW structure
825 1.1 rin * @offset: lower half is register offset to read to
826 1.1 rin * upper half is MMD to use.
827 1.1 rin * @data: data to read at register offset
828 1.1 rin *
829 1.1 rin * Acquires semaphore, if necessary, then reads the data in the PHY register
830 1.1 rin * at the offset. Release any acquired semaphores before exiting.
831 1.1 rin **/
832 1.1 rin int
833 1.1 rin igc_read_phy_reg_gpy(struct igc_hw *hw, uint32_t offset, uint16_t *data)
834 1.1 rin {
835 1.1 rin uint8_t dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
836 1.1 rin int ret_val;
837 1.1 rin
838 1.1 rin DEBUGFUNC("igc_read_phy_reg_gpy");
839 1.1 rin
840 1.1 rin offset = offset & GPY_REG_MASK;
841 1.1 rin
842 1.1 rin if (!dev_addr) {
843 1.1 rin ret_val = hw->phy.ops.acquire(hw);
844 1.1 rin if (ret_val)
845 1.1 rin return ret_val;
846 1.1 rin ret_val = igc_read_phy_reg_mdic(hw, offset, data);
847 1.1 rin if (ret_val)
848 1.1 rin return ret_val;
849 1.1 rin hw->phy.ops.release(hw);
850 1.1 rin } else {
851 1.1 rin ret_val = igc_read_xmdio_reg(hw, (uint16_t)offset, dev_addr,
852 1.1 rin data);
853 1.1 rin }
854 1.1 rin
855 1.1 rin return ret_val;
856 1.1 rin }
857 1.1 rin
858 1.1 rin /**
859 1.1 rin * __igc_access_xmdio_reg - Read/write XMDIO register
860 1.1 rin * @hw: pointer to the HW structure
861 1.1 rin * @address: XMDIO address to program
862 1.1 rin * @dev_addr: device address to program
863 1.1 rin * @data: pointer to value to read/write from/to the XMDIO address
864 1.1 rin * @read: boolean flag to indicate read or write
865 1.1 rin **/
866 1.2 rin static int
867 1.1 rin __igc_access_xmdio_reg(struct igc_hw *hw, uint16_t address, uint8_t dev_addr,
868 1.1 rin uint16_t *data, bool read)
869 1.1 rin {
870 1.1 rin int ret_val;
871 1.1 rin
872 1.1 rin DEBUGFUNC("__igc_access_xmdio_reg");
873 1.1 rin
874 1.1 rin ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
875 1.1 rin if (ret_val)
876 1.1 rin return ret_val;
877 1.1 rin
878 1.1 rin ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
879 1.1 rin if (ret_val)
880 1.1 rin return ret_val;
881 1.1 rin
882 1.1 rin ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
883 1.1 rin dev_addr);
884 1.1 rin if (ret_val)
885 1.1 rin return ret_val;
886 1.1 rin
887 1.1 rin if (read)
888 1.1 rin ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
889 1.1 rin else
890 1.1 rin ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
891 1.1 rin if (ret_val)
892 1.1 rin return ret_val;
893 1.1 rin
894 1.1 rin /* Recalibrate the device back to 0 */
895 1.1 rin ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
896 1.1 rin if (ret_val)
897 1.1 rin return ret_val;
898 1.1 rin
899 1.1 rin return ret_val;
900 1.1 rin }
901 1.1 rin
902 1.1 rin /**
903 1.1 rin * igc_read_xmdio_reg - Read XMDIO register
904 1.1 rin * @hw: pointer to the HW structure
905 1.1 rin * @addr: XMDIO address to program
906 1.1 rin * @dev_addr: device address to program
907 1.1 rin * @data: value to be read from the EMI address
908 1.1 rin **/
909 1.1 rin int
910 1.1 rin igc_read_xmdio_reg(struct igc_hw *hw, uint16_t addr, uint8_t dev_addr,
911 1.1 rin uint16_t *data)
912 1.1 rin {
913 1.1 rin DEBUGFUNC("igc_read_xmdio_reg");
914 1.1 rin
915 1.1 rin return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
916 1.1 rin }
917 1.1 rin
918 1.1 rin /**
919 1.1 rin * igc_write_xmdio_reg - Write XMDIO register
920 1.1 rin * @hw: pointer to the HW structure
921 1.1 rin * @addr: XMDIO address to program
922 1.1 rin * @dev_addr: device address to program
923 1.1 rin * @data: value to be written to the XMDIO address
924 1.1 rin **/
925 1.1 rin int
926 1.1 rin igc_write_xmdio_reg(struct igc_hw *hw, uint16_t addr, uint8_t dev_addr,
927 1.1 rin uint16_t data)
928 1.1 rin {
929 1.1 rin DEBUGFUNC("igc_write_xmdio_reg");
930 1.1 rin
931 1.1 rin return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
932 1.1 rin }
933